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Computational phylogenetic has been dominated by model-based inference, which is

sensitive to model misspecification and has high computational burden. In this dissertation, I

present efficient non-parametric methods to facilitate phylogenetic analyses. These methods

connect tree topology with the molecular clock principle - as manifested by tree branch lengths -

using discrete and numerical optimization. I conclude with an application on one of the largest

phylogenomic analyses performed to date.

Chapter 1 presents TreeShrink, an algorithm to detect errors from phylogenetic trees

without assumptions about root placement or branch length distributions. I propose and solve
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an optimization problem using dynamic programming. By solving this problem, TreeShrink

computes the impact of each species on the tree diameter and transforms anomaly detection in

tree space to outlier detection in Euclidean space. Our results show effective error detection on

simulated and empirical data.

Chapter 2 introduces tripVote, a new method to complete gene trees without a reference

species tree. Each gene tree is imputed such that its total quartet distance to the other gene trees is

minimized. I develop a quasi-linear time algorithm to solve this problem and show that tripVote

is accurate on both simulated and empirical data.

Chapter 3 presents MinVar, a method for tree rooting. MinVar roots a given tree at the

point that minimizes the root-to-tip variance. I present a linear-time algorithm to find the MinVar

point and prove important properties that make it consistent with the molecular clock principle.

Empirically, MinVar is more accurate than other linear-time rooting methods.

Chapter 4 introduces wLogDate, a method that computes divergent times by minimizing

the weighted least squares of the log-transformed mutation rates from their mean value. The

advantages of this log-transformed penalty function over those derived from a strict-clock model

are demonstrated both theoretically and empirically. On simulated data, wLogDate is more

accurate than the alternatives in most model conditions and is more than ten times faster than a

state-of-the-art method that uses Bayesian MCMC.

Chapter 5 introduces MD-Cat, a method that uses a categorical distribution to approximate

the unknown clock model. An EM-based algorithm is described to co-estimate the rate categories

and branch lengths in time units. On simulated data of Angiosperm and HIV, the method is more

accurate than the alternatives - including wLogDate and Bayesian MCMC - when there are local

clocks or heterogeneous rates.

The last Chapter describes an empirical analysis that infers a phylogenetic tree of 10,575

microbial species. This analysis used some of the aforementioned methods and motivated the

development of others. The resulting dataset has been used as a reference library in many analyses.
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Introduction

Evolution is the fundamental source of the diversity of life on earth [64]. Understanding

the evolutionary past is crucial in multiple disciplines in biomedical sciences, including but not

limited to microbiology, immunology, vaccine development, epidemiology, and the study of

cancer. The evolutionary history of a group of biological entities is referred to as their phylogeny,

typically represented by a tree structure - a phylogenetic tree. The topology of this tree shows

how the entities evolved and diverged from their ancestors while the length of each branch

quantifies the level of divergence between the two entities (i.e. nodes) that it connects. The

divergence can be quantified in different units, such as the expected number of substitutions or the

amount of time. Both aspects, topology and branch length, are integral to the interpretation and

downstream applications of phylogenetic trees. A main goal of my research has been developing

computational methods that consider both aspects.

In the rest of the chapter, I first give a high level overview of the concept used throughout

the chapter. I then briefly summarize the contributions from the other chapters.

Background

Phylogenetic inference Phylogenetic inference is the process of inferring a phylogenetic tree

that best describes the observed characteristics or molecular sequences of extant species (or other

biological entities) [130, 94, 188]. Historically, morphology (e.g., color, shape, pattern, size) were
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used to reconstruct phylogenies. However, modern biology – following the surge in the availability

of molecular sequence data in the past several decades [213] – has compelled most researchers to

use molecular data (e.g., DNA, RNA, or protein sequences) to infer phylogenies [130].

Maximum likelihood (ML) methods to infer phylogenies from single gene sequences have

been used since the mid 20th century [91]. Typically, these methods assume a time-reversible

model (for example, the GTR model) and use sequence data to infer the phylogeny that has

the maximum likelihood. Although ML-based methods are currently the most commonly used

methods for phylogenetic inference, they have limitations, including sensitivity to model misspeci-

fication and high computational burden. While model selection techniques (such as [89, 260, 161])

have been proposed to alleviate the former problem, they exacerbate the later. Moreover, scalable

ML methods often rely on a time-reversible model - for mathematical and algorithmic conve-

nience. These methods can only infer unrooted trees [91] and leave the problem of root placement

unsolved.

Phylogenomics After the introduction of Next Generation Sequencing [213, 31], using whole

genomes to infer phylogenies has become routine, leading to the creation of a new sub-field,

called phylogenomics. Compared to the traditional phylogenetic inference on a single gene,

phylogenomics analyses have access to a collection of genes to infer the species-level phylogeny.

While the richer data has a prospect to reduce uncertainties in phylogeny reconstruction [107], the

opportunities also come with new challenges [151, 255]. A major challenge in phylogenomics is

the biological inconsistencies in the evolutionary history among different parts of the genome

(i.e. gene tree) and between a gene tree and the species-level history (i.e. the species tree). To

address this problem, new models and methods devoted to phylogenomics inference have been

introduced [83, 103, 68].

Molecular clock The phylogenetic trees inferred from sequence data can only have branch

lengths in substitution unit. However, the divergence times of the species are of interest, and
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many downstream applications require or benefit from access to a dated tree (i.e. branch lengths

in time unit) or scaled tree (i.e. the unit-height tree proportional to the dated tree). To date or

scale the tree, one needs to have a model for mutation rate variation. Following the terminology

by Ho et. al. [135], I use the term molecular clock model, or clock model for short, to refer to

a model that explains the variation of mutation rates in a phylogeny. Despite its crucial role in

many phylogenetic analyses, there is no universally accepted clock model. The true distribution

of the mutation rates is unknown and seems to depend on the dataset. Besides, the impact

of using an incorrect clock model (or clock model prior) in phylogenetic inference has been

studied, but remains controversial [185, 135, 351, 295]. Nevertheless, many methods for tree

rooting [44, 342, 340] and dating (see e.g. [135] for a review) rely on a molecular clock model to

apply either a maximum likelihood or Bayesian MCMC inference framework.

Several models have been proposed to serve as a molecular clock. The simplest one is the

strict clock model, which directly applies the original hypothesis by Zuckerkandl and Pauling

in 1962 [384] to assume that the substitution rate is constant across all tree branches. Despite

its convenience for computation and algorithm development, this model has been shown to be

over-simplistic [39, 170]. More sophisticated models to allow rate variation are termed relaxed

clock models. Relaxed clock models can be classified into two main types: uncorrelated and

autocorrelated models. In a uncorrelated model, the rate of each branch is assumed to be drawn

independently from a common underlying distribution. In autocorrelated models, the mutation

rate of each branch varies from that of its parent branch under a presumed model. Both types of

models usually use a conventional parametric distribution, such as an exponential, gamma, or

lognormal distribution, to represent the rate variation [15].

There are also efforts to model the sudden rate shift in evolutionary history, where a

lineage possesses a dramatic rate change comparing to its parent and passes on this new rate to its

descendants, creating an entire clade or subtree with dramatic rate shift. Such a phenomenon can

happen multiple times in the evolutionary history and when a phylogeny possesses this type of
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rate shift, it is said to have multiple local clocks or heterogeneous rates. Computational methods

addressing heterogeneous rates use a discrete clock model where a finite number of rate changes

is assumed in any given tree [373, 370, 14, 79, 101, 126]. With this setting, these methods define

local clock as a monophyletic group where every lineage evolves at exactly the same mutation

rate. However, empirical studies have explored phylogenies with more complex heterogeneous

clock models, such as a mixture of Lognormal distributions [23].

Contributions

Dominated by ML and Bayesian MCMC methods, computational phylogenetic has been

driven by model-based parametric inference. These methods are known to be sensitive to model

misspecification and tend to have high computational burden. In this dissertation, I present

non-parametric and efficient methods to enable several types of phylogenetic analyses, including

anomaly detection, data imputation, tree rooting, and tree dating. The first two chapters focus

on the issue errors and incompleteness in input data, using branch lengths and the topology,

respectively. I follow that with three chapters that are focused on non-parametric models of clock

rate, addressing the inter-related problems of dating and rooting phylogenetic trees. I end with an

empirical analysis that used some of these techniques and proposed the others.

In Chapter 1, I present TreeShrink, a non-parametric method to detect errors in phy-

logenetic trees. When they are present, the erroneous sequences often form abnormally long

branches and inflate the tree diameter. I define and develop an efficient algorithm to exactly solve

the following optimization problem: given an integer k, find the set of k species that should

be removed from a tree to minimize its diameter. Using the solutions to this problem with

varying k, TreeShrink computes distributions on the impact of individual species on the tree

diameter. This way, it transforms the anomaly detection in the tree space to the outlier detection

in Euclidean space, which can be solved using standard methods. In addition, TreeShrink can
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use phylogenomics data to simultaneously filter error from a set of gene trees with high accuracy.

When a set of gene trees is given, TreeShrink computes the impact of each species on each gene

tree diameter and learns a distribution of this value per species. The outlier detection is then

conducted per species to detect all the erroneous sequences that should be removed from the

gene tree collection. Our results on simulated and empirical data show fast and effective outlier

detection without making explicit assumptions about root placement, branch length distributions,

or molecular clock model.

In Chapter 2, I introduce tripVote, a polynomial time algorithm to complete a set of gene

trees without a reference species tree. This method works on phylogenomic datasets, which

are known to be riddled with missing data: gene trees often lack representatives from some

species. Many downstream applications, however, require or benefit from having complete gene

trees. While gene tree completion with respect to a reference species tree has been studied

before, reference-free completion has not been sufficiently explored. In tripVote, I formulate an

optimization problem to complete each gene tree such that its total quartet distance to the other

gene trees is minimized. I then design and implement a quasi-linear time algorithm to solve this

problem. Interestingly, the same technique can also be used for rooting a gene tree with respect

to other gene trees, presenting another application for the technique. Tested on simulated and

empirical data for the data imputation task, I show that tripVote is relatively accurate and, unlike

reference-based methods for gene tree completion, is unbiased. For rooting trees, comparison to

other methods, including those presented in Chapter 3 are more mixed and depend on the model

condition.

As mentioned above, phylogenies are often inferred as unrooted trees with branch lengths

in substitution units, but many biological applications of the phylogeny, such as viral epidemiology,

phylodynamics, and biogeography, require rooted trees with branch lengths in time units. At the

same time, the difficulties in clock model selection can reduce the effectiveness of parametric

methods for tree rooting and dating, calling for nonparametric alternatives. In the next three
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chapters, I present nonparametric methods to root and date trees using their branch lengths in

addition to topology. In Chapter 3, I present MinVar, a rooting method that roots a given tree

at the point that minimizes the variance of its root-to-tip distances. In contrast to the method

presented in Chapter 2, this method takes advantage of both topology and branch length. I derive

special properties of the MinVar point and show that this rooting method is consistent with the

molecular clock hypothesis under the Random Deviations model that I define. I also describe

a linear-time algorithm to find the MinVar point and show that it is very scalable in practice.

In simulation, MinVar rooting was shown to be more accurate than other linear-time rooting

methods.

In Chapter 4 and Chapter 5, I present two novel tree dating methods. Chapter 4 describes

wLogDate, which formulates dating as a constrained optimization problem, where the constraints

are defined by the calibration points and the objective is to minimize the weighted least squares

of the log-transformed mutation rates from their mean value. On a simulated dataset of the

HIV envelope gene, wLogDate is more accurate than parametric methods that assume a strict

molecular clock. Compared to BEAST - the state-of-the-art method using Bayesian MCMC -

wLogDate is more accurate on inter-host data and is more than ten times faster.

Chapter 5 describes MD-Cat, a method that uses a categorical distribution of k bins to

approximate the unknown rate distribution. The proposed categorical model is free of assumptions

about the true clock model and has a sole user-defined parameter k that determines the resolution

of the discretization. I develop an EM-based algorithm to optimize the likelihood function and

co-estimate all the k rate categories and tree branch lengths in time units. I test MD-Cat on

simulated datasets of Angiosperms and HIV using a wide selection of clock models. Compared

to the alternatives, including wLogDate and BEAST, MD-Cat is more accurate on datasets that

have local clocks or heterogeneous rates.

I conclude by presenting empirical analyses of a phylogenomics data consisting 10,575

microbial genomes. These analyses used some of the methods described in the other chapters and
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motivated the development of others. The resulting dataset has been used as a reference library in

many downstream analyses.
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Chapter 1

TreeShrink: Fast and accurate detection of

outlier long branches in collections of

phylogenetic trees

Sequence data used in reconstructing phylogenetic trees may include various sources

of error. Typically errors are detected at the sequence level, but when missed, the erroneous

sequences often appear as unexpectedly long branches in the inferred phylogeny. We propose an

automatic method to detect such errors. We build a phylogeny including all the data then detect

sequences that artificially inflate the tree diameter. We formulate an optimization problem, called

the k-shrink problem, that seeks to find k leaves that could be removed to maximally reduce the

tree diameter. We present an algorithm to find the exact solution for this problem in polynomial

time. We then use several statistical tests to find outlier species that have an unexpectedly high

impact on the tree diameter. These tests can use a single tree or a set of related gene trees and can

also adjust to species-specific patterns of branch length. The resulting method is called TreeShrink.

We test our method on six phylogenomic biological datasets and an HIV dataset and show that

the method successfully detects and removes long branches. TreeShrink removes sequences more
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conservatively than rogue taxon removal and often reduces gene tree discordance more than rogue

taxon removal once the amount of filtering is controlled. TreeShrink is an effective method for

detecting sequences that lead to unrealistically long branch lengths in phylogenetic trees. The

tool is publicly available at https://github.com/uym2/TreeShrink.

1.1 Background

Datasets used in phylogenetic analyses include a large number of genes and species these

days. The number of loci involved and the size of the trees make it impossible to carefully

examine every sequence alignment and every gene tree manually. Such manual curation, even

if possible, is subject to biases of the curator and poses challenges in reproducibility. But the

need for data curation is as strong as ever. Phylogenetic analyses typically use pipelines of many

steps, starting from sequencing, to contamination removal, homology and orthology detection,

multiple sequence alignment, and gene tree inference, and finally species tree reconstruction.

Each step is error-prone, and it has been long recognized that errors can propagate among these

steps [36, 145, 156]. However, detecting errors is difficult, especially when large numbers of

genes are being analyzed [385]. For example, discordance among estimated gene trees may

have biological causes or may be the result of gene tree estimation error; when error-prone gene

trees are fed to a species tree estimation method, the error may propagate [182, 216, 106]. This

possibility motivates the co-estimation methods that aim to break or weaken the chain of error

propagation [16, 5, 328]. However, the end-to-end co-estimation of all steps in the phylogenetic

analyses remains elusive [328]. In practice, analysts often devise creative (if ad-hoc) methods to

find and remove erroneous data. Such data filtering should be treated with care because it may

remove useful signal in addition to error [333], and it also runs the risk of introducing biases. One

common method of data filtering is alignment masking [51, 48], despite some criticism [333].

Beyond filtering based on sequences, detecting problematic species from reconstructed trees is

9

https://github.com/uym2/TreeShrink


also possible.

Two common approaches for filtering based on phylogenetic trees are rogue taxon removal

(RTR) [169, 352, 3, 112, 248] and gene tree filtering [139, 323]. More recent approaches include

filtering of individual sites with an outsized impact on the tree topology [305]. RTR aim to find

species that have an unstable position in the inferred trees, judging the stability with regards to

replicate trees generated by bootstrapping [248, 3] or jackknifing [169]. A second approach is

to remove genes that are believed to be problematic, perhaps due to missing data [139, 323],

lack of signal [287], or even inconsistent signal [305]. When potentially problematic genes are

removed, the justification is that the inference of the species tree (i.e., by summarizing gene

trees or concatenation) may become more accurate as a result. Alternatively, some analyses

(e.g., [355, 298]) filter individual species from individual gene trees based on some criteria

(e.g., fragmentation) while keeping the gene. These analyses aim to find and eliminate only the

problematic data but nothing more.

The branch lengths of an inferred phylogeny can provide indications of error in sequence

data in some cases. If the evolution follows a strict molecular clock, we expect that all leaves

should be equidistant from the root. Deviations from the strict clock, if not extreme, would not

produce situations where a small minority of species have dramatically different rates of evolution

and hence root to tip distances. In other words, variations in root to tip distance are expected,

but outlier species in terms of distances to the root have to be treated with suspicion. Several

types of error in a phylogenetic data, e.g., contamination, mistaken orthology, and misalignment,

can lead to the addition of very long branches to the tree (e.g., Figure 1.1a). When a handful of

species dramatically diverge from the rest, it is likely that the sequences of outlier species contain

errors (of unclear nature). Also suspicious is a species that has normal root to tip distances in

most gene trees but has an unexpectedly large root to tip distance in a handful of genes. Even

when the sequences of long branches are error-free, they may still pose difficulties due to long

branch attraction [24]. Thus, several studies have tried removing species with outlier root-to-tip
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distances in gene trees [355, 123]. However, rooting is often challenging and prone to error [201].

Moreover, rooting is not necessary for finding outlier species in terms of branch length.

A useful concept is the tree diameter, which gives the maximum distance between any

two leaves of the tree. We introduce an optimization problem that if solved efficiently can help in

finding species that artificially inflate the tree diameter.

The k-shrink problem: Given a tree on n leaves with branch lengths and a number 1≤ k ≤ n;

for every 1≤ i≤ k, find a set of i leaves that should be removed to reduce the tree diameter

maximally.

We develop an algorithm to solve the problem in O(k2h+n) time where h is the height of the

tree after being rerooted at the centroid edge (which can be done in linear time [201]). Given the

solution to the k-shrink problem, we need to decide the species to remove such that the number

of error-free sequences removed is minimized. Towards this goal, we propose three statistical

tests to find outlier species. We set k = Θ(
√

n) and compute the proportional reduction in the

diameter when going from i−1 to i removals for 1≤ i≤ k. We then look for outlier values in the

spectrum of these proportional reductions; outliers are defined as those that lie at the extreme tails

of the distribution, and the outlier detection is controlled by a level of false positive tolerance (α).

A further complication is that outgroups, even when error-free, can greatly impact the diameter

(Figure 1.1b). Moreover, if a clade has an increased rate of mutations, it may impact the tree

diameter more than other clades and may become prone to removal. When multiple gene trees are

available, we can learn such patterns of rate variation. Our second statistical test simply combines

data from all gene trees to find outliers in a single distribution. The third test goes further and

learns a different distribution per species. We implement these tests in a tool called TreeShrink.

We test TreeShrink on six phylogenomic datasets and an HIV transmission tree. We show

that TreeShrink improves the quality of gene trees effectively for phylogenomic datasets and can

separate strains of HIV. When distributions are learned per species, outgroups are also handled

effectively.
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1.2 Methods

1.2.1 Notations and definitions

For an unrooted tree t on the leaf-set L , let δ(a,b) give the distance between a and b. The

restriction of t to the leafset A is denoted by t ↾A, and we use the shorthand t\a = t ↾L−{a}. We

refer to a pair of leaves in t with the highest pairwise distance as a diameter pair and call the

two leaves on-diameter. Any tree has at least one diameter-pair but could have more. We define

P (t) as a set of all diameter pairs of t; that is, P (t) = {(a,b) : (∀x,y ∈ L)[δ(a,b)≥ δ(x,y)]}. The

diameter set D(t) is defined as the set of all on-diameter leaves: D(t) = {a : (∃x)[(a,x) ∈ P (t)]}.

We call a tree t singly paired if all the restricted trees of t (including t) have only one

diameter pair; that is, ∀A⊆ L , |P (t ↾A)|= 1. We refer to the process of removing one leaf from t

as a removal. A removal is called reasonable iff a ∈D(t).

A removing chain of t is defined as an ordered list of removals. We refer to a removing

chain of length k as a k-removing chain and denote it by Hk(t). We refer to a removing chain that

consists only of reasonable removals as a reasonable removing chain. An optimal k-removing

chain, H ∗k (t), is a removing chain that results in a tree with the minimum diameter among all

chains of length k. Any Rk(t)⊂ L with |Rk(t)|= k is called a k-removing set of t, and is called a

reasonable k-removing set if there exists an ordering of Rk(t) that gives a reasonable k-removing

chain. We refer to the set of all reasonable k-removing sets as the k-removing space of t, and

denote it by Sk(t). We let R ∗k (t) denote an arbitrary removing set that gives the restricted tree

with the minimum diameter. Finally, for a rooted version of t, we let Cld(u) denote the set of

leaves descended from u.

For all the theoretical results given below, proofs are given in Appendix A.

12



1.2.2 A polynomial time solution to the k-shrink problem

Only reasonable removals have the potential to reduce the tree diameter. If t is singly

paired, two reasonable removals exist, and one of them may reduce the diameter more. This

can be simply checked and thus, the problem is trivial for k = 1. For k > 1, a greedy approach

that takes the optimal removal at each step does not always produce an optimal solution (see

Figure A.1a for a counter-example). Therefore, to solve this problem, we need to consider a

search space. However, a brute force search for all reasonable k-removing chains is infeasible.

The brute force method would first consider the initial diameter pair(s); then, to remove each of

the two on-diameter leaves, it would consider the new diameter pair(s) after the first removal and

recurse on each diameter-pair. This recursive process produces all reasonable removing chains

from 1 to k, but its space grows exponentially.

Three observations enable us to find the optimal solution in a reduced search space that

only grows linearly with k. The first observation is that if (a,b) is a diameter pair, then b remains

on-diameter after removing a.

Proposition 1. If an on-diameter leaf is removed, the rest of the on-diameter set are on-diameter

for the restricted tree: a ∈D(t)⇒D(t)−{a} ⊂D(t\a).

All i-removing spaces for 1 ≤ i ≤ k can be represented as a directed acyclic graph

(Figure 1.2). In this DAG, each node at row i represents an i-removing set Ri(t), and is also

annotated with a diameter pair after the removal of Ri(t). All the entries in the row i form the

i−removing space. Any path from the root ending at a node Ri(t) is an i-removing chain. Note

that each node can be reached with multiple paths from the root; this leads to a second observation,

which is trivial but important. Any ordering of an i-removing chain gives the same restricted tree.

Thus, we can reduce the search space from reasonable chains to reasonable sets. The first two

observations allow us to design a polynomial time algorithm for singly paired trees (described

next). Our third observation (formalized later) is that when a tree is not singly paired, breaking
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ties arbitrarily still guarantees optimality.

Singly paired trees

Our main result states that, for singly paired trees, the ith row of the reasonable search

space graph (Figure 1.2) contains i+1 nodes and one of the nodes gives an optimal i-removing

set. Moreover, traversing all O(k2) nodes in this graph gives the optimal solution to our k-shrink

problem.

Theorem 1. The k-removing space of a singly paired tree t includes all the optimal k-removing

sets of t; that is: ∀k > 0 : R ∗k (t) ∈ Sk(t).

Theorem 2. The size of the k-removing space for a singly paired tree t is k+1.

Corollary 1. The size of the reasonable search space up to level k is O(k2).

Our algorithm (Algorithm 1) start with a preprocessing in order to enable computing

the pair set at any point in a removal chain in O(n). The preprocessing uses a bottom-up

traversal of t (rooted arbitrarily). For each internal node u, we store four values: (i) the leaf

x ∈ Cld(u) with the longest distance to u, (ii) the distance δ(u,x), (iii) the leaf y ∈ Cld(u)−

Cld(c1) with the longest distance to u (where c1 is a child of u such that x ∈ Cld(c1)), and

(iv) the distance δ(x,y) (see Figure A.1b). We store these values for each node u as a tuple

rec(u) = (rec1(u),rec2(u),rec3(u),rec4(u)). These values can be computed in a post-order

traversal of the tree in the natural way. Once these records are computed, finding diameter pairs

can be done quickly (see function FindPair in Algorithm 1). Let (a,b) be a diameter pair; note

that regardless of the arbitrary rooting of the tree, at the LCA of a and b, the record includes a, b

as the first and third fields and the tree diameter as the last. Thus, the tree diameter corresponds to

the record with the largest fourth value. As we will see, throughout the algorithm, the values of

the records may have to change. However, these updates can also happen in O(h). Thus,
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Algorithm 1 Polynomial time k-shrink algorithm. Function Shrink gives the main algorithm.
Assuming (a,b) ∈ P (t), function FindPair finds a leaf x such that (x,b) ∈ P (t\a); it assumes
that t has rec(u) computed for all of its nodes.

function SHRINK(t,k)
Compute rec(u) for all internal nodes u of t using a postorder tree traversal
(a,b)← (rec1(u),rec3(u)) where u is the node with the maximum rec4(u)
minD← an array of k elements initialized to ∞

Q← an empty queue initialized with tuple (0,a,b,{},δ(a,b))
seen← /0

while |Q| ̸= 0 do
(i,a,b,R,d)← Q.remove()
minD[i]←min(minD[i],d)
if i < k then

Q.append(i+1,FindPair(t ↾L−R,a,b),b,R∪{a})
if i /∈ seen then

Q.append(i+1,a,FindPair(t ↾L−R,b,a),R∪{b})
seen← seen∪{i}

return minD
function FINDPAIR(t,a,b)

diameter← 0
for all node u in the path from the parent of a to the root do

Update rec(u) from records of its children (ignore a if it is one of the children)
if rec4(u)> diameter then

diameter← rec4(u) and diamPair← (rec1(u),rec3(u))
for all node u in the path from the parent of b to LCA(a,b) do

if rec4(u)> diameter then
diameter← rec4(u) and diamPair← (rec1(u),rec3(u))

return x ∈ diamPair if x ̸= a

Proposition 2. Given a rooted tree t of height h, (a,b) ∈ P (t), and rec(u) for all nodes u ∈ L ,

we can find one diameter pair of t\a in O(h).

Once the preprocessing finishes, we start building the DAG (Fig 1.2). We start with the

root node, corresponding to the initial tree t and build the rows iteratively. For any node at step i

with (x,y) as its diameter pair, two nodes have to be added to the next row, one for removing x

and another for removing y. As the proof of Theorem 2 (Appendix A) indicates, two sister nodes

in step i have to share one descendant in step i+1 (Figure 1.2). Thus, to construct each row from
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the previous row we simply need to find the diameter pair of the tree restricted to the removal-set

of each node; this is done in the function FindPair previously described. As we build the DAG,

we also keep track of the length of the diameter at each node and the optimal i-removing set. At

the end, we report an optimal-removing set for each i from 1 to k.

According to Proposition 2, finding each new diameter pair after removing any node can

be done in O(h). From Corollary 1 and Proposition 2, we have:

Corollary 2. Algorithm 1 solves the k-shrink problem in O(k2h+n).

Generalization to all trees

If the tree t is not singly paired, nodes in the search graph could have more than two

children which increase the size of the search space. However, we prove that we can break the ties

arbitrarily at any step and still guarantee an optimal solution. It follows naturally that Algorithm 1

also works for trees that are not singly paired.

For any diameter pair (a,b) ∈ P (t), we define a pair-restricted k-removing space as a

subset of Sk(t) such that each of its elements includes either a or b.

Theorem 3. For any k, any arbitrary pair-restricted k-removing space includes at least one

optimal k-removing set.

Proof (sketch). It is not hard to prove that any tree t has a single midpoint which partitions its

diameter set into disjoint subsets. We call each of those subsets a diameter group of t (Appendix

A, Lemma S2 and Lemma S3). Clearly, unless all but one of the diameter groups are removed, the

tree diameter is unchanged. We refer to the restricted tree of t that have all but one of the diameter

groups removed as a minimum shrunk tree of t. We can prove that any arbitrary pair-restricted

removing space can produce all minimum shrunk tree (see the full proof in the Appendix A). If

k is so small such that there is no k-removing set can reduce the tree diameter, any solution is

optimal and the result of Theorem 3 trivially follows. Otherwise, any optimal solution of k-shrink
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can be induced from one of the minimum shrunk trees (Lemma S4 in Appendix A, Additional

file 1). Thus, to find an optimal tree t∗, we can start from any pair-restricted removing space and

concatenate the two removing chains: the chain that induces the minimum shrunk tree t∗i from

any arbitrary diameter pair, and the chain that starts from t∗i to induce t∗. Full proof is given in

Appendix A.

According to Theorem 3, any pair-restricted k-removing space includes at least one

optimal solution. For a tree that is not singly paired, we can arbitrarily restrict the search space

to any of its diameter pairs at any step of the algorithm. This ensures that the search space size

grows with O(k2), and that Algorithm 1 still correctly finds an optimal solution in O(k2h+n).

1.2.3 Statistical selection of the filtering species

The solution to the k-shrink problem for a given k gives the minimum diameters for

1≤ i≤ k and the corresponding optimal removing sets. Given these results, we now need to find

a set of species that have unexpectedly large impacts on the tree diameter. Defining what is an

expected impact on the diameter is not trivial and depends on many factors such as the rate of

speciation, taxon sampling, and the tree topology. To avoid modeling such processes, we use

empirical statistics.

Let νi be the ratio of the minimum diameter with i−1 leaves removed and the minimum

diameter with i leaves removed, and let ∆i = log(νi). For a tree with no outlier branches, we

expect νi values to be close to one (e.g., T1 in Figure 1.3a). For a tree with one outlier leaf on a

very long branch, we expect that ν1 is much larger than other νi values (T2 in Figure 1.3a). If two

species are on a very long branch, we expect a small ν1, a large ν2, and small values again for

i > 2 (T3 in Figure 1.3a). If there are two exceptionally long branches, one with three species

and another with five species, we expect ν3 and ν8 to be large and other values to be small (T4 in

Figure 1.3a). We use ν values to detect outliers, but we first need to introduce the concept of a
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signature.

The νi values for the removing sets that include a species measure the impact of that

species on the tree diameter. We will refer to the maximum ∆i among all removing sets i that

include a species as the signature of that species (note that this is defined only for some of the

species). A species with an exceptionally larger signature compared to the other species can be

considered an outlier (Figure 1.3b). To define what qualifies as exceptionally large, we design

three different tests. The first test can be applied to a single tree, while the other two require a

collection of gene trees.

The “per-gene” test

For a single input tree and a large enough k, we have a distribution over signature values.

Since we have limited data in this scenario, we use a parametric approach and fit a log-normal

distribution to the signatures. Given a false positive tolerance rate α, we define values with a CDF

above 1−α as outliers. Then, species associated with the outlier signatures are removed.

The “all-gene” test

When a dataset includes several gene trees, all related by a species tree, combining the

distributions across genes can increase the power. With many genes, we may also be able to

distinguish outgroup species from outliers. The signatures of outgroups across all gene trees

should be consistently higher than those of ingroups, and these high signatures will appear as

part of the combined signature distribution. Thus, we may be able to avoid designating outgroups

signatures as outliers.

In this test, we put the signature of all genes together to create one distribution. Unlike the

per-gene test, here we have many data points, which enables us to use a non-parametric approach.

We compute a kernel density function [310] over the empirical distribution of the combined set of

signature values. To estimate the density, we use Gaussian kernels with Silverman’s rule of thumb
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smoothing bandwidth [310] (as implemented in the R package [337]). Given the density function

and a false positive tolerance rate α, we define values with a CDF above 1−α as outliers.

The “per-species” test

Outgroups can contribute to the tree diameter as much as erroneous species (Figure 1.1b).

To better distinguish outgroups from errors, when a set of gene trees are available, we can learn

a distribution per species. Given a sufficient number of gene trees, the signatures of a species

across all genes form a distribution that specifically captures the impact of that species on the

gene tree diameter. These species-specific distributions naturally model the inherent difference

between outgroups and ingroups in terms of their impacts on the tree diameter. More broadly,

changes in the evolutionary tempo are captured naturally by the per species distributions.

In this test, we first compute a non-parametric distribution of the signature values for each

species. When the signature of a species is not defined for a gene, we simply use zero as its

signature. Then, for each species, we use the same non-parametric approach as in the all-gene test

to compute a threshold for the signature value corresponding to the chosen α. Finally, we remove

each species from those genes where its signature is strictly above its species-specific threshold.

The default parameters of TreeShrink

TreeShrink has two parameters: α and k. By default, we set α to 0.05 (but users can

choose other thresholds). Large values of k do not fit our goal of finding outlier species and can

even lead to misleading results (e.g., Figure A.2), but a small value of k may also miss outliers

and may lead to insufficient data points for learning distributions.

Using a value of k that grows sublinearly with n (i.e., the number of leaves) gives us an

algorithm that is fast enough for large n. For example, using k = Θ(
√

n) gives O(nh) running

time, which on average is close to O(n logn) and is O(n2) in the worst case. While the choice

must be ultimately made by the user, as a default, we set k = min(n
4 ,5
√

n). This heuristic formula
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ensures that our running time does not grow worse than quadratically with n but also avoids

setting k to values close to n (thus also limits the proportion of leaves that could be removed).

1.2.4 Evaluation procedures

Datasets

We use six multi-gene datasets and a single-gene HIV dataset, and each dataset includes

one or more outgroup species defined by the original papers (Table 1.1).

Plants [355]: This dataset of 104 plant/algae species (four Chlorophyta outgroups) and 852

genes was used to establish early diversification patterns within land plants and their sister

groups. The data are based on transcriptoms, and authors faced challenges in terms of gene

identification and annotation, leading to abundant missing data. To obtain reliable species

trees using ASTRAL [218], the authors had to use various filterings, including removal of low

occupancy genes and genes with fragmentary sequences. The ASTRAL tree obtained on these

filtered gene trees was mostly congruent with results from concatenation, though some interesting

clades (e.g., the Bryophytes) were differently resolved. In our analyses, we start with all gene

trees estimated from nucleotide data with the third codon position removed.

Insects [220]: This phylotranscriptomic dataset includes 144 species and 1,478 genes. This

dataset was used to resolve controversial relationships among major insect orders, but only

concatenation analyses were reported. A different paper performed a species tree analysis of the

same dataset using ASTRAL, obtained on RAxML gene trees that we estimated on all 1,478 gene

trees [298]. We use these gene trees in our analysis.

Metazoa-Cannon [47] and Rouse [282]: Whether Xenacoelomorpha (a group of bilaterally

symmetrical marine worms) are sister to all the remaining Bilateria (animals with bilateral
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symmetry) has been the subject of much recent debate [47, 254, 282]. The Cannon et al. dataset

of 213 genes from 78 species sampled from across the animal tree-of-life was used to confidently

place Xenacoelomorpha as sister to Bilateria. Among other analyses, ASTRAL-II [219] was used

on a collection of gene trees that the authors published, and we use. The dataset by Rouse et al.

addresses the same question as Cannon et al. using 393 genes and 26 species.

Mammals [314]: This mammalian dataset consists of 37 species (36 mammals and Chicken

as outgroup) and 424 gene trees. Since the original gene trees had several issues (including

insufficient ML searches and mislabeled species [318]), here we use RAxML gene trees that were

inferred and used in a re-analysis of this dataset [216]. Several reanalyses of this dataset using

various methodologies have largely been consistent, except, for the position of the tree shrews

that often changes [216, 218].

Frogs [96]: This dataset consists of 164 species (156 frog species and 8 outgroups) and 95 genes.

The dataset was used to study the evolutionary history and tempo of frog diversification [96].

The RAxML gene trees we use here were used as inputs for ASTRAL to construct the species

tree [96] and were provided by the authors [95].

HIV dataset [189]: This HIV dataset consists of 648 partial HIV-1 pol sequences that were used

to reconstruct the local HIV-1 transmission network from 1996 to 2011 in San Diego, California.

The dataset consists of 639 subtype B, 7 non-subtype B, and 2 unassigned sequences of HIV-1 pol

coding region. The sequences have GenBank accession numbers from KJ722809 to KJ723456,

and were provided to us by the authors. Note that this dataset has only one gene.

Methods tested

We implemented TreeShrink (https://github.com/uym2/TreeShrink) using the Den-

dropy package [327]. We compare the three tests of TreeShrink, namely per-gene, all-gene, and
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per-species. In addition, we compare the most effective test of TreeShrink, the per-species test,

with two alternative methods and a control where we remove species randomly from the tree.

The main alternative to TreeShrink used previously [355, 123] is to root gene trees and

then remove species with outlier root-to-tip distances. We use this “rooted pruning” approach

where we define outliers as values that lie several standard deviations (we vary this threshold)

above the average. For the Plant dataset, 681 genes included the outgroups; for the remaining, we

used a linear-time implementation of the midpoint rooting [201]. In other datasets, each gene tree

included at least one of the outgroups. While the goals of RTR are somewhat different from ours,

we also compare our method with RogueNaRok [3], which defines a rogue taxon as one that has

unstable positions in replicate bootstrap runs.

Evaluation

Judging the effectiveness of the filtering methods on real data is challenging, as we do

not know if a removed sequence is in fact erroneous. However, patterns of discordance can help.

While true gene trees may be discordant with the species tree, erroneous sequences will further

increase the observed discordance. Thus, the amount of gene tree discordance among genes

should reduce as a result of effective filtering, and more effective filtering methods arguably

reduce the discordance more than less effective ones. Thus, the quality of a filtering procedure

can be judged (albeit with some uncertainty) by its impact on gene tree discordance, as long

as its optimization problem does not seek to reduce discordance directly. Note that none of the

methods that we test take the species tree as input, and none is trying to directly reduce the gene

tree discordance. Thus, we use the reduction in discordance as one measure of accuracy. To

compute gene tree discordance, we compare all pairs of gene trees to each other and use the

MS (Matching Splits) metric [28], implemented in the TreeCmp [29] to measure distance. To

facilitate the interpretation of MS, which is not normalized, we include random removal as a

control.
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A second concern is the potential of methods to aggressively remove true signal. To

evaluate this, we investigate the impact of filtering on the taxon occupancy, defined as the number

of gene trees that include each species. Lowered occupancy may negatively impact downstream

analyses such as species tree inference and functional analyses. Ideally, a filtering method would

not reduce taxon occupancy dramatically. Moreover, removing the same species repeatedly

from many genes could be even more problematic for downstream analyses such as species tree

estimation.

Filtering methods have a knob that can control the amount of filtering. To avoid impacts

of arbitrary choices, we explore a range of knob settings. For the three tests of TreeShrink, we

set α to 20 different values in the range [0.005,0.1]. For RogueNaRok, we change the weight

factor to control the penalizing factor of the dropset size by setting it to 21 values in range [0,1.0]

(0.0 is the default value). For rooted pruning, we vary the number of standard deviations above

the average that would constitute long branches between 0.25 to 5.00, with 0.25 increments. For

random pruning, for each threshold of TreeShrink on each gene tree, we remove the same exact

number of leaves as TreeShrink removes, but we choose the species randomly. We repeat the

random pruning ten times and show the average.

On the HIV dataset, we test the power of TreeShrink (α = 5%), rooted pruning (3 std),

and RogueNaRok (default settings) in detecting the outliers. Outliers are either non-subtype B

sequences in the full dataset in experiment 1 or the simulated outliers we added in experiment 2

(described below).

In the first experiment, we infer a RAxML tree from the 648 sequences and use it as the

input for TreeShrink. We root the RAxML tree at its midpoint and use it for rooted pruning. To

run RogueNaRok, we also create 100 bootstrap trees using RAxML. We use the 7 non-subtype B

and 2 unassigned sequences as outliers (see Table A.1) and test if TreeShrink, rooted pruning,

and RogueNaRok can detect them.

In the second experiment, we add 10 simulated outliers to the 639 subtype B sequences
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and use TreeShrink and rooted pruning to detect them. To create the outliers, we randomly select

10 sequences from the 639 subtype B sequences and change a small fraction of their sites, selected

randomly, to a random nucleotide drawn from the distribution of the base frequencies estimated

from the original sequences. In order to root the tree, we include the 3 subtype C sequences

(Table A.1) and root the tree on the branch separating the two subtypes, then remove them before

feeding it to TreeShrink or rooted pruning. We create two sets of data, one with 5% and the other

with 10% of the sites changed, each consists of 20 replicates. The trees in this experiment are

estimated by FastTree.

1.3 Results

We start by comparing the three tests currently implemented in TreeShrink. We then

compare the per-species test of TreeShrink with alternative methods.

1.3.1 Comparing the three tests of TreeShrink

The impact of filtering on taxon occupancy

The three tests of TreeShrink (α= 0.05) impact taxon occupancy differently, especially for

outgroups. Outgroups naturally impact the tree diameter, but ideally, they should not be removed

more often than other leaves. In all six datasets, the per-gene and all-gene tests tend to remove

outgroups aggressively, while the per-species test removes all species, including outgroups, close

to uniformly (Table 1.2 and Figure A.3).

The most severe case is chicken, the sole outgroup in the Mammalian dataset. Chicken is

removed in 12% of the genes by the per-gene test (19 times more than the average) and in 17%

by the all-gene test (13 times more than the average). Note that in this dataset, both per-gene

and all-gene tests remove only around 1% of the data, so the frequent removal of the chicken

corroborates our suspicion that TreeShrink used with per-gene or all-gene tests can remove
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outgroups often even if the outgroup sequence contains no errors. The per-species test, on the

other hand, only removes chicken slightly more often than the average: it removes about 4% of

the overall data and removes chicken in about 5% of the genes that have it (Figure A.3b).

In addition to the outgroups, platypus is also removed often. Being basal to the other

mammals, platypus is prone to the same issues as outgroups. However, there is also some evidence

that platypus is often misplaced in many gene trees of this dataset [318]. Just as the chicken,

platypus is removed significantly more often than other species: 5% in the per-gene test (7 times

more often than the average) and 13% in the all-gene test (10 times more often than the average).

Again, the per-species test removes platypus just slightly more often than the average: platypus is

removed in about 5% of the genes while the average of all species is 4% (Figure A.3).

The impact of filtering on gene tree discordance

We now compare the three tests of TreeShrink in reducing gene tree discordance with

minimal filtering. A method is preferred when it reduces the discordance more for a given level

of filtering (i.e., higher lines in Figure 1.4 are preferred). Except for the Frogs dataset, all the

three tests of TreeShrink are on average better than the control random pruning. On the Frogs

dataset, however, only the per-species test is better than the control. The failure of the other two

tests could be because they remove outgroups often (see Table 1.2) and fail to remove the true

outliers (perhaps because the true outliers are masked by the outgroups). Overall, the per-species

test is consistently the most effective, followed by the all-gene test, and finally the per-gene test.

Differences between the per-species test and the all-gene tests are substantial for plants, mammals,

and frogs datasets, and less pronounced for others. Since the per-species test of TreeShrink is

consistently the best here, we recommend using the per-species test for phylogenomic datasets

which contain many genes.
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1.3.2 Comparing TreeShrink per-species with RogueNaRok and rooted

pruning

We now compare TreeShrink per-species with alternative filtering methods.

The impact of filtering on taxon occupancy

Methods run in the default settings (α = 0.05 for TreeShrink, 3 std for rooted pruning)

impact occupancy differently. Overall, RogueNaRok reduces the occupancy more than the other

methods (Figure 1.5). Single species at the base of large clades seem especially prone to filtering

by RogueNaRok. In contrast, TreeShrink and rooted pruning do not remove any specific taxon

extensively.

On the plants dataset (Figure 1.5a), RogueNaRok removes three species from at least

half of the gene trees where they are present and removes 12 species from one-third of the

genes. Examples include Kochia scoparia (removed in 343 out of 654 genes), Acorus americanus

(251/693), and Larrea tridentata (221/590) genes. Kochia scoparia is on a long branch and sister

to a group of 7 Eudicots, and Acorus americanus is basal to 10 Monocots [355]. Surprisingly,

Arabidopsis thaliana is removed in 200 genes, even though it is a genome and is presumably less

error-prone compared to most other transcriptomes species. Moreover, a focal point of this study

is placing Chara vulgaris as basal to all land plants plus two algal groups (Zygnematophyceae,

and Coleochaetales). RogueNaRok removes Chara from 160 genes out of 302 that include

it; such aggressive filtering could limit the ability to answer this main biological question

with confidence. In contrast, rooted pruning and TreeShrink remove 4% and 7% of the data,

respectively. TreeShrink never removes any species in more than 6% of the genes and all species

are removed in similar proportions.

On the insects dataset (Figure 1.5c), RogueNaRok removes 17% of all the data and

many removed species are basal to large diverse groups. For example, RogueNaRok removes
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Conwentzia psociformis, which is basal among 8 Neuropterida [220] from 684 out of 1,412 genes

that included it. Zorotypus caudelli, an enigmatic species placed as sister to a large clade in

the ASTRAL species tree is also removed from 52% of the genes. Interestingly, RogueNaRok

removes several outgroups, including Speleonectes tulumensis and Cypridininae sp frequently

(56% and 57%). In contrast, rooted pruning and TreeShrink only remove a minimal amount of

data (1% and 4%, respectively) and do not impact occupancy dramatically for any species.

Similar patterns are observed on Metazoa datasets (Figure 1.5ef). RogueNaRok removes

more than 20% of the leaves overall, and many species are extensively removed from many genes.

In the Cannon dataset, Xenoturbella bocki is removed in 93 out of the 208 genes that included it.

Xenoturbella is the basal branch of the Xenacoelomorpha and in this study, is one of the most

important species; removing it in 45% of genes would leave a long branch and could negatively

impact the placement of Xenacoelomorpha. Rooted pruning and TreeShrink, again, remove a

minimal portion of the data (2% and 4%, respectively) and no species is extensively removed.

The mammalian dataset is not extensively filtered by any method (Figure 1.5b). Rooted

pruning only removes about 1% of the data, while RogueNaRok and TreeShrink remove about

4%. RogueNaRok removes three species (shrew, tree shrew, and hedgehog) relatively often

(i.e., > 80 genes). The shrew and the hedgehog are both basal branches to a larger clade of

Laurasiatheria. The tree shrew has a very uncertain position in various species trees estimated on

this dataset [216, 218, 314, 318]; RogueNaRok results indicate that its position is also unstable in

gene trees. Platypus is also removed relatively often by rooted pruning (54 times), but somewhat

less frequently by RogueNaRok (31 times) and TreeShrink (20 times). Several issues in the

platypus sequences have been identified [318], and perhaps, its extensive filtering by rooted

pruning is justified. Similar to the mammalian dataset, on the frogs dataset (Figure 1.5d), all

methods remove very little data (<3% overall).
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The impact of filtering on gene tree discordance

Since extensive filtering is neither intended nor desired in this section, we focus on

filtering thresholds that result in removing at most 5% of the data (see Figure A.4 for the full

data). On all six datasets, all the three filtering methods are on average better than the control

random pruning. Comparing TreeShrink and the two alternatives, different patterns are observed

on various datasets (Figure 1.6).

On the two datasets with the largest numbers of genes, Plants and Insects, TreeShrink

outperforms the other methods substantially (Figure 1.6ab). On the Insects dataset, RogueNaRok

barely outperforms random pruning and TreeShrink is substantially better than rooted pruning.

On the Plants dataset, rooted pruning and RogueNaRok are essentially tied and TreeShrink is

consistently better than both. For example, TreeShrink with a 0.03 threshold removes 1476

species in total from all genes and reduces the average pairwise MS discordance by 15 units (as

opposed to 11 for the control), whereas RogueNaRok and rooted pruning need to remove 1649

and 1740 species to achieve a reduction of up to 15 units in the MS discord.

On the Metazoa-Cannon dataset (Figure 1.6c), TreeShrink and RogueNaRok both outper-

form rooted pruning, and TreeShrink has a small but consistent advantage over RogueNaRok. On

the Metazoa-Rouse dataset, all methods are comparable and barely outperform random pruning

(Figure 1.6d).

On the Mammalian dataset (Figure 1.6e), RogueNaRok is by far the best, followed by

TreeShrink and rooted pruning, which have similar overall performance. On the Frogs dataset,

which included only 95 genes, RogueNaRok and rooted pruning are tied and both substantially

outperform TreeShrink (Figure 1.6f).

Overall, TreeShrink is the best or tied with the best method in four datasets, and is

outperformed in the other two. TreeShrink seems especially well suited for datasets with a large

number of genes.
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1.3.3 The HIV dataset

Detecting non-subtype B sequences

Using the RAxML tree of the 648 HIV pol sequences as input, TreeShrink correctly

detects all seven non-subtype B sequences, including a single subtype CRF01 AE sequence,

two CRF02 AG sequences, three subtype C sequences, and a subtype G sequence. The two

unassigned sequences are not identified as outliers by TreeShrink (Figure 1.7). Importantly,

TreeShrink does not remove any subtype B sequences. In contrast, RogueNaRok identifies 41

rogue sequences in total, only one of which is non-subtype B (the subtype G sequence KJ723366).

As we elaborate in the discussions, these differences are due to different objectives of the two

methods. With midpoint rooting, rooted pruning detects three non-subtype B sequences (i.e.,

CRF01 AE and two CRF02 AG) as outliers but it misses the other 4 non-subtype B sequences

and has two false positives.

Detecting simulated outliers

Recall that for each simulated dataset, we have 20 replicates and each consists of 10

simulated outliers, for the total of 200 outliers to be detected. On the dataset with outliers at

10% changed in sequences, TreeShrink correctly detects 198/200 outliers and rooted pruning

detects all 200/200 outliers; neither method has a false positive. On the dataset with outliers at 5%

changed in sequences, TreeShrink correctly detects 106/200 outliers with 9 false positives while

rooted pruning detects 131/200 outliers with 17 false positives. Overall, TreeShrink has higher

precision and specificity but lower sensitivity comparing to rooted pruning (table 1.3), indicating

that TreeShrink is a more conservative approach. Figure 1.8 shows one example for each of the

two simulation settings.
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1.4 Discussions

It has been noted before that extreme long branches in a phylogeny can be erroneous.

Gatesy and Springer used the presence of long branches in gene trees estimated in two mam-

malian datasets to argue against specific coalescent-based analyses (see Figs. 9 and 10 of their

paper [106]). To eliminate problematic long branches, a typical approach is to root the tree and

filter out leaves too distant from the root [355, 123]. TreeShrink can automatically filter out such

outliers without rooting. In addition, TreeShrink is very scalable. It could finish processing the

GreenGenes tree [70] with 203,452 leaves (k = 2255) in 28 minutes and identified 39 species

that could be filtered.

In this study, we observed that the per-species test of TreeShrink is consistently the

best strategy, followed by the all-gene and the per-gene tests. However, it should be noted that

the per-species test requires more data than the two alternative tests, and its data requirement

has some practical implications. Because it relies on computing a distribution per species by

aggregating data from all gene trees, the per-species test may degrade in performance when few

genes are available. Consistent with this observation, we observed that the only dataset where

the per-species test of TreeShrink was outperformed by rooted pruning was the Frogs dataset,

which has fewer than a hundred gene trees (less than half of any other datasets). Similarly, the

per-species test may not have enough information for species that have extremely low occupancy,

to begin with. Therefore, we recommend caution in taking the suggestions of the per-species test

for low-occupancy species.

We only examined effects of filtering leaves from existing trees without redoing alignments

or gene trees after filtering. This was mostly due to our inability to replicate the exact analysis

pipelines of every dataset we analyzed. When used on novel datasets, it is better to reestimate

alignments and gene trees after the problematic sequences have been removed, because the

problematic sequences could have negatively impacted gene alignments and gene trees of the
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remaining sequences.

Although we compared our method to RogueNaRok as an alternative to our approach,

we point out that the two methods have different objectives and can complement each other.

While RogueNaRok aims to remove rogue species based on topological stability, TreeShrink

detects and removes erroneous species based on tree diameter. An analysis pipeline could use a

combination of the two methods to find both erroneous sequences and difficult unstable tips of

the phylogenetic tree. Our HIV dataset is a case in point. The differences between TreeShrink

and RogueNaRok on this dataset can be mainly attributed to their different objectives. TreeShrink

is specialized for detecting outlier species and is well-suited for specific applications such as

screening of sub-types, finding contamination, or perhaps even finding paralogs. RogueNaRok,

on the other hand, is designed to find species with unstable positions. Thus, our results should not

discourage the use of RogueNaRok. Rather, the HIV example, and our results more broadly, are

meant to clarify that shrinking the tree diameter can be an orthogonal approach to rogue taxon

removal.

1.5 Conclusions

In this paper, we introduced TreeShrink, a method to remove species that disproportion-

ately impact a phylogenetic tree diameter without rooting. The tool is fully automatic and is

publicly available. In our study, we showed that TreeShrink is highly accurate in screening

subtypes of HIV, and is effective in reducing gene tree discordance in phylogenomic datasets.

As a complement to the state-of-the-art rogue taxon removal tools, TreeShrink can be a new

component to an analysis pipeline for screening sub-types, filtering contamination, and detecting

paralogs.
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a) Easy case: a gene tree in the Plant dataset
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b) Hard case: a gene tree in the mammalian dataset

Figure 1.1: Example trees with suspicious long branches.(a) An unfiltered gene tree of a Plant
dataset [355] with an obvious outlier leaf; (b) a gene tree in a mammalian dataset with a hard to
detect outlier branch [314]. Outgroups are shown in blue and the suspicious long branches in
the red. Dashed green line: the tree diameter after removal of red branches. Detecting the red
branch is easy on the left but hard on the right.
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Dataset Species Genes Outgroups Download
Plants [355] 104 852 Monomastix opisthostigma, DOI 10.1186/2047-217X-3-17

Uronema sp.,
Nephroselmis pyriformis,
Pyramimonas parkeae

Mammals [314] 37 424 Chicken DOI 10.13012/C5BG2KWG
Insects [220] 144 1478 IXODES SCAPULARIS, http://esayyari.github.io/InsectsData

Symphylella vulgaris,
Glomeris pustulata,
Lepeophtheirus salmonis,
DAPHNIA PULEX,
Cypridininae sp,
Sarsinebalia urgorii,
Celuca puligator,
Litopenaeus vannamei

Cannon [47] 78 213 Salpingoeca rosetta, DOI 10.5061/dryad.493b7
Monosiga brevicollis
Mnemiopsis leidyi,
Pleurobrachia bachei,
Euplokamis dunlapae

Rouse [282] 26 393 Mnemiopsis leidyi, DOI 10.5061/dryad.79dq1
Amphimedon queenslandica,
Trichoplax adhaerens,
Nematostella vectensis

Frogs [95] 164 95 Latimeria chalumnae, DOI 10.5061/dryad.12546.2
Protopterus annectens,
Homo sapiens,
Crocodylus siamensis,
Gallus gallus,
Ichthyophis bannanicus,
Batrachuperus yenyuanensis,
Andrias davidianus

Table 1.1: Summary of the biological datasets
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Dataset Method Portion of data removed(%) Portion of outgroups removed(%)
per-gene 3.3 29.9

Plants all-gene 2.5 12.8
per-species 4.9 5.1
per-gene 0.6 11.8

Mammals all-gene 1.2 17.0
per-species 3.6 4.7
per-gene 1.4 6.2

Cannon all-gene 1.3 4.7
per-species 3.5 5.0
per-gene 1.3 1.9

Rouse all-gene 1.2 1.1
per-species 4.0 4.5
per-gene 1.2 6.6

Insects all-gene 0.8 2.9
per-species 4.3 5.0
per-gene 1.3 26.7

Frogs all-gene 0.8 15.9
per-species 2.7 4.5

Table 1.2: The impact of the three tests of TreeShrink on taxon occupancy

Dataset Method True positives False positives Precision Recall (Sensitivity) Specificity
5% TreeShrink 106 9 92.2% 53.0% 98.6%

Rooted pruning 131 17 88.5% 65.5% 97.3%
10% TreeShrink 198 0 100% 99.00% 100%

Rooted pruning 200 0 100% 100.00% 100%

Table 1.3: Performance of TreeShrink in detecting simulated outliers. Each of the two datasets
consists of 20 replicates, each has 639 HIV-1 subtype B sequences and 10 simulated outliers,
for the total of 12780 subtype B HIV sequences and 200 simulated outliers.
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The triangular structure

k = 0

k = 1

k = 2

k = 3

k = 4

Figure 1.2: Graphical representation of the reasonable search space. The root node represents
the initial tree t; each node on row k represents a restricted tree with k leaves removed. Each
node is annotated by the removing set (top) and a diameter pair of the induced tree (bottom).
Each edge in the graph represents a reasonable removal. The path from the root to any node
corresponds to a reasonable removing chain. Each row k in the graph gives the k-removing
space of t (Sk(t)).
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Figure 1.3: (a) Patterns of νi as a function of i. Four unfiltered gene trees from a Plant
dataset [355] are shown (top). For each tree, we also show νi for 1 ≤ i ≤ k = min(n/4,5

√
n)

(bottom). (b) An example tree from the Plant dataset with the removing sets and species
signatures. The removing sets are shown with the corresponding ν values. The max ν values
associated with the species signatures are marked in red.
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Figure 1.4: The impact of the three versions of TreeShrink on gene tree discordance on six
datasets comparing to random pruning. MS distances are computed for all pairs of gene trees.
The average reduction in the MS distance (y-axis) is shown versus the total proportion of the
species retained in the gene trees after filtering (x-axis). A line is drawn between all points
corresponding to different thresholds of the same method.
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Figure 1.5: The impact of filtering on taxon occupancy for the six datasets. For each taxon
(x-axis, ordered by occupancy), we show the number of genes that include it before and after
filtering.
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Figure 1.6: The impact of TreeShrink, RogueNaRok, and rooted pruning on gene tree discor-
dance on six datasets comparing to random pruning. MS distances are computed for all pairs of
gene trees. The average reduction in the MS distance (y-axis) is shown versus the total proportion
of the species retained in the gene trees after filtering (x-axis). A line is drawn between all
points corresponding to different thresholds of the same method. The points corresponding to
the default setting of TreeShrink (α = 0.05) are marked in red.
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Figure 1.7: The HIV Tree. The subtype G sequence that could be detected by both TreeShrink
and RogueNaRok is marked in yellow. The other non-subtype B sequences that could be
detected by TreeShrink are marked in green. The subtype B species that were detected by
RogueNaRok are marked in red. The two unassigned sequences are marked in blue.
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(a) 10% error (b) 5% error

Figure 1.8: Examples of two HIV trees with 10 leaves of 10% and 5% changed in sequence.
The true positives, false positives, and false negatives of TreeShrink detection (default settings)
are marked in green, red, and yellow, respectively.
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Chapter 2

Completing Gene Trees Without Species

Trees in Sub-quadratic Time

As genome-wide reconstruction of phylogenetic trees becomes more widespread, limita-

tions of available data are being appreciated more than ever before. One issue is that phylogenomic

datasets are riddled with missing data, and gene trees, in particular, almost always lack representa-

tives from some species otherwise available in the dataset. Since many downstream applications

of gene trees require or can benefit from access to complete gene trees, it will be beneficial to

algorithmically complete gene trees. Also, gene trees are often unrooted and rooting them is

useful for downstream applications. While completing and rooting a gene tree with respect to a

given species tree has been studied, those problems are not studied in depth when we lack such a

reference species tree. We study completion of gene trees without a need for a reference species

tree. We formulate an optimization problem to complete the gene trees while minimizing their

quartet distance to the given set of gene trees. We extend a seminal algorithm by Brodal et al.,

2013 to solve this problem in quasi-linear time. In simulated studies and on a large empirical

data, we show that completion of gene trees using other gene trees is relatively accurate and,

unlike the case where a species tree is available, is unbiased. Our method, tripVote, is available at
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https://github.com/uym2/tripVote.

2.1 Introduction

Phylogenetic analyses of genome-wide data (i.e., phylogenomics) typically infer a set of

gene trees, each from a different region of the genome (not necessarily a gene), and a species

tree, which may be obtained from combining the gene trees. These analyses, in principle,

benefit from the size of available data and can have high accuracy. However, phylogenomic

datasets are also known to suffer from both partial incompleteness and undiscovered errors

[180, 140, 319, 257]. The preparation of the data for phylogenomic analyses involves many steps,

much of them error prone, and these steps can easily miss parts of the sequences. The issue

of undetected errors is being increasingly addressed using new methods [199, 379] and simple

filtering strategies [75, 298, 140]. However, by further removing data, many of these methods

exacerbate the issue and sometimes have negative effects on tree inference [333, 210].

There is growing evidence that species tree inference methods are robust to presence of

some missing data [141, 364, 222, 237]. The incompleteness of gene trees, however, is not just

a concern for species tree inference. Gene trees are used for many other analyses, including

gene family evolution, functional analyses of proteins, reconstructing ancestral gene content, and

dating gene birth. Moreover, many species tree inference methods internally rely on completing

gene trees, even if just approximately. For example, ASTRAL completes input gene trees with

respect to each other to define a bipartitions set as its search space [219]. Thus, researchers have

studied the problem of completing incomplete gene trees using the rest of the data.

The existing gene tree completion methods mostly are based on the same philosophy: that

once a species tree is inferred, a gene tree can be completed with respect to that species tree to

minimize their distance. What differentiates the methods is what measure of distance they use to

achieve that goal. For example, [22] used a parsimony framework to minimize deep coalescence.
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More recently, [53, 18] and later [4] showed how [278] (RF) distance can be minimized efficiently.

While these methods are all valuable, they do not directly provide a way to complete

gene trees without a species tree. Such a completion may be desired for two reasons. First,

completing gene trees with respect to the species tree may artificially reduce the amount of

observed discordance. For example, if we use the species tree from the plant dataset of [241], to

complete gene trees by minimizing the RF distances, the mean normalized RF distance of the

gene trees to the species tree drops by 8%, meaning that the observed discordance paradoxically

reduces as a result of gene tree completion. This level of discordance leads to an increase in

estimated coalescent unit branch lengths of 0.26 on average. Thus, the added taxa are artificially

less discordant with the species tree than the backbone species. Second, species trees are not

always available where gene trees are. For example, part of the ASTRAL algorithm completes

gene trees before the species tree is inferred.

We formulated gene tree completion without species trees as follows. Given a set of gene

trees, complete each gene tree with respect to the other gene trees such that its overall distance

to the other trees is minimized. Mathematically, the problem is similar to completion based

on a species tree with the difference being that a set of reference trees (i.e., other gene trees)

are available. The benefit of species-tree-free completion is that it may escape the paradoxical

reduction in gene tree discordance after completion and it does not need a reference species

tree. To our knowledge, very little work on this question exists. [215] introduced a method for

completing gene trees by computing a quartet-based distance matrix from the gene trees and

repeated use of the four-point condition. Since this heuristic method was just one step of the

larger ASTRAL algorithm, it was not empirically or theoretically evaluated on its own.

Gene tree completion is also intimately connected to another problem: phylogenetic

placement given a set of input gene trees. [268] introduced a method called INSTRAL for adding

a new species into an species tree given a set of gene trees that already include the new species

while minimizing total quartet discordance between the updated tree and the gene trees. That

44



same mathematical problem can be used to update a gene tree using the other gene trees. When

more than one taxon is missing, ordering them in some fashion and repeatedly applying the same

algorithm can be used to complete the gene tree. Similarly, [267] designed a version of ASTRAL

that can satisfy constraints, and the constrained version of ASTRAL can be used to complete

gene trees.

In this paper, we make several contributions. First, we empirically study the species-tree-

free gene tree completion problem. While past methods such as INSTRAL can be used to solve

the problem, we are not aware of any study that has used them for this purpose. Second, we note

that the running time of INSTRAL, which grows quadratically with the size of the backbone tree

for each insertion, is sub-optimal. In a seminal work, [38] introduced an algorithm (called B13

hereafter) that allows computation of the quartet (or triplet) score between two trees in time that

grows quasi-linearly with the size of the tree. Here, we extend the B13 algorithm so that it can

insert new species into a tree while maximizing its total quartet score with respect to a given set

of trees. Thus, we improve the asymptotic complexity of quartet-based taxon insertion (whether

for gene trees or species trees). Finally, we introduce some techniques, including subsampling of

quartets, that dramatically increase the accuracy of gene tree completion compared to the vanilla

application of the optimization problem.

2.2 Methods

2.2.1 Notations and definitions

Let T = (V,E) be a single leaf-labelled rooted tree and note all edges are directed towards

a root node, denoted by r(T ). Let e = (v,u) or ev for short denote the edge that connects node v to

u, and use u = parent of v to denote that u is the parent of v and v a child of u. The set of children

of an internal node u ∈V is denoted as ch(u). We give each leaf of T a unique index in the leafset

LT = {1 . . .n}. We use [x] as shorthand for {0,1, . . . ,x}. We use nT and dT to denote the number
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of leaves and the maximum degree of any nodes in tree T , respectively (omitting the subscript

when clear by context). To reroot the tree T at an edge ev = (v,u) ∈ E, we first divide e into two

edges by adding a new vertex r(v) to V and replacing ev with edges (u,r(v)) and (v,r(v)), then

we reverse the direction of all edges on the path from u to r(T ), and optionally, remove the old

root r(T ) from V and make each of its children point towards its parent. The resulting graph, Tv,

is a new rooted tree with the same topology as T and is called an alternative rooting of T on v.

We use r(v) to denote the root of Tv if we were to reroot T on ev.

A triplet is a subtree of T induced by any three leaves in LT (note that because T is single

leaf-labeled, a triplet can be uniquely defined by a set of three leaf labels). For each triplet of T ,

the least common ancestor (LCA) in T of the three leaves is called the anchor node of that triplet.

A triplet is resolved if the LCA of one pair of its species is not the anchor; otherwise, the triplet

is unresolved. A quartet is an unrooted subtree of T induce by any four leaves in LT . Note that

while triplets depend on the rooting of T , quartets do not.

For two trees T1 and T2 whose leafsets intersect on a set S of n leaves and a given triplet

{a,b,c} ⊂ S, we say that T1 matches T2 on {a,b,c} if T1 restricted on {a,b,c} has identical

topology to T2 restricted on {a,b,c}. The number of matching triplets of T1 and T2 is the number

of triplets that are shared among
(n

3

)
triplets on S and is denoted by Ψ(T1,T2). For unresolved

triplets, we count them as matching only if they are unresolved in both trees. Similarly, for a

quartet {a,b,c,d} ⊂ S, and two unrooted trees T1 and T2, we can define Φ(T1,T2) as the number

of quartet topologies that match between the two trees.

2.2.2 Problem formulations

We start by defining five interconnected computational problems.

Problem 1 (Maximum-matching quartet placement (MQP)). Given an unrooted reference tree R

with n+1 leaves and an unrooted query tree T on all leaves of R except a leaf x, find an optimal

completion Tx of T by placing x onto T to maximize Φ(Tx,R).
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Problem 2 (Maximum-matching triplet rooting (MTR)). Given a rooted reference tree R and an

unrooted query tree T , find a rooting Tv of T that maximizes Ψ(Tv,R).

Problem 3 (Multi-reference MQP (m-MQP)). Given a collection of k reference trees R =

{R1,R2, . . . ,Rk} all including a leaf x (among other leaves) and a query tree T missing x, find a

placement Tx of x on T to maximize ∑
k
i=1 Φ(Tx,Ri).

Problem 4 (Multi-reference MTR (m-MTR).). Given a collection of k rooted reference trees

R = {R1,R2, . . . ,Rk} and an unrooted query tree T , find a rooting Tv of T that maximizes

∑
k
i=1 Ψ(Tv,Ri).

The MQP problem is equivalent to the MTR problem: first root R at the taxon x, then

remove x from R to obtain R′, next solve MTR on R′ and T to obtain the optimal rooting of T ,

and finally, place x on the new root of T to obtain Tx. As proved in Appendix B:

Claim 4. The tree Tx obtained by applying MTR on the query tree T using the reference tree R′

and adding x as an outgroup is a solution to the MQP problem on T ,x, and R.

Now consider a more general problem:

Problem 5 (Multi-reference multi-query MQP (mm-MQP)). Given a query tree T and a set of

k reference trees R = {R1,R2, . . . ,Rk} with
⋃k

1 LRi = LT ∪X , find a tree TX on LT ∪X that is

compatible with T and maximizes ∑
k
i=1 Φ(TX ,Ri).

Note that the mm-MQP problem is similar to the problem solved by ASTRAL with an

input constraint [267], and is NP-hard [172]. Below, we introduce algorithms to solve MTR,

MQP, m-MTR, and m-MQP, and a heuristic to solve mm-MQP by sequentially applying m-MQP

for each query x in X .

2.2.3 Algorithms to solve MTR, MQP, m-MTR and m-MQP

We extend the B13 algorithm to compute Ψ(Tv,R) for every rooting Tv of T and select the

maximum score. We first assume T and R share the same leafset of size n and then show that it is

47



. . .. . .

u
u

v0

v1 v2 v3 vdu−1
0

0
v0

321 du − 1du − 1321
vdu−1v1 v2 v3

T Tv1

rv1

rv1

Figure 2.1: Left: The query tree T colored by node u with degree du. Leaves under each vi are
given the same color i, and the leaves outside u are colored 0. Any triplet of T anchoring at u
must have two leaves taken from leaves under vi and the other from a clade v j different from
vi (exclude v0 as it does not define a clade below u). Thus, the colors of a triplet anchoring at
u must be (i, i, j) or one of its permutations, where i ̸= j, i, j ∈ {1,2, . . . ,du− 1}. Right: The
alternative rooting Tv1 of T . A new node rv1 is added between u and v1 to split the edge into two,
and the edge directions are adjusted accordingly to have all nodes pointing to the new root. To
count the triplets anchoring at u in Tv1 , we exclude v1 instead of v0 as in T . To count the triplets
anchoring at rv1 , we group all colors other than 1 into one group, and count the triplets that have
colors (i, i,1) or (1,1, i), or a permutation of these two, where i ̸= 1.

straightforward to extend the algorithm to trees with different leafsets.

The B13 Overview. To compute Ψ(T1,T2), the B13 algorithm traverses T1 top-down, and when

a node u is visited, it counts the number of triplets anchoring at u in T1 that match T2. To do so, it

colors leaves according to which side of u they belong to. To obtain the quasi-linear complexity, a

Hierarchical Decomposition Tree (HDT) data structure representing T2 is maintained. The HDT

keeps a set of counters that allow computing the number of matching triplets for the anchor node

u of T1. HDT needs to be updated each time we move to a new node of T1 and colors change;

however, thanks to its careful design that guarantees a locally-balanced structure, updating the

HDT for each leaf only takes sub-linear time.

Algorithm overview Naively using the B13 algorithm to examine each edge and choose the

one with the maximum score has quasi-quadratic running time. Such a solution would be worse

than that of [268], which is worst-case quadratic time. Here, we extend the B13 algorithm to

solve the MTR problem in quasi-linear time (Algorithm 2). When we visit each node u in T in
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Algorithm 2 Quasi-linear-time algorithm to solve the MTR problem. color(u, i) colors all the
leaves below u with i. du is the of degree u.

function SOLVEMTR(T = (V,E),R)
HDT rooted at R ← BUILD HDT(R) ▷ See [38]
color(root of T , 1)
COLORANDQUERY(root of T )
Ψ(root of T )← ∑u∈internal nodes of T τi

u
for edge (v,u) in pre-order traversal of T do

Ψ(v) = Ψ(u)− τi
u− τr

u + τo
v + τr

v
return T rooted at argmaxv Ψ(v)

function COLORANDQUERY(u)
if u is a leaf then

color(u,0) and return
v1,v2, . . . ,vdu−1← c(u)
Swap v1 with the largest vi clade
for i = 2 to du−1 do

color(vi, i)
π

R
0 , . . . ,πR

du−1,ρ
R ← update HDT counters ▷ Equ. (2.2)-(2.5)

τi
u← π

R
0

τr
u← ρR

for i = 1 to du−1 do
τo

vi
← π

R
i

for i = 2 to du−1 do
color(vi, 0)

ColorAndQuery(v1)
for i = 2 to du−1 do

color(vi,1)
ColorAndQuery(vi)

the topdown traversal, we compute several new counters per node (i.e., the number of triplets

anchoring at u in T that match the reference tree, the number of triplets anchoring at u in each

alternative rooting Tvi for the d−1 children v1 . . .vd−1 of u that match the reference tree, and the

number of triplets anchoring at r(u) in Tu that match the reference tree) that allow us to score all

possible rootings. To efficiently compute these counters, we also augment the HDT with a new

set of counters. Next, we first describe the node coloring scheme, then HDT and its counters, and

finally our extensions.
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Coloring and scoring the query tree T

Consider an arbitrary node u in T (except the root) that has degree d, p(u) = v0, and

c(u) = {v1, . . . ,vd−1}. The node u defines a set of d subtrees on T : the d− 1 clades rooted at

v1,v2, . . . ,vd−1, and the complement subtree of the clade rooted at u. To color T by u, we give

all leaves belonging to a same subtree of u the same color index i ∈ [d−1]. By convention, the

subtree on the direction from u to the root always gets the color 0 (Fig. 2.1, left). When T is

colored according to u, each triplet of T that anchors at u must have leaves with two distinct

non-zero colors.

Triplet counters of the query tree To solve the MTR problem, we extend the B13 algorithm

to also count the u-anchored triplets of each alternative rooting Tvi of T . These triplets can be

determined by the u coloring: each triplet of Tvi anchored at u must have leaves colored with two

distinct colors other than i (see Fig. 2.1, right). As the query tree is traversed top down in the B13

algorithm, we update it to compute and store a set of counters for each node v in T (other than the

root). Let u = parent of v and recall that r(v) is the root of Tv; we maintain the following counters

for v:

• τi
v: triplets inside v. This is the number of triplets anchored at v that match the reference

tree.

• τo
v : triplets outside v. This is the number of triplets anchored at u in the alternative rooting

Tv that match the reference tree.

• τr
v: triplets at the rerooting point. This is the number of triplets anchored at r(v) in Tv that

match the reference tree.

Note τo
v equals to τi

u in Tv (Fig. 2.1). Below, we show how to compute these counters using new

HDT counters updated after each coloring of T .
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Score of alternative rooting After the first top down traversal, we compute the triplet score of

T (original rooting) to R by summing up τi
v for all nodes of T . Then, we compute the triplet score

for all alternative rooting Tv of T using a second top down traversal and the following recursive

formula:

Ψ(v) = Ψ(parent of v)− τ
i
parent of v− τ

r
parent of v + τ

o
v + τ

r
v . (2.1)

Here, to move from the parent to a child, we remove matching triplets anchored at the parent or

nodes outside it and add those anchored at the child or any node outside it (a triplet may be added

and subtracted back).

Building and using the HDT of the reference tree

Building the HDT We use the linear-time algorithm of [38] to build the HDT data structure

from the reference tree R. Each node of HDT is a combination of multiple nodes in R carefully

selected in a way that ensures the HDT tree is locally balanced, meaning that each node with

m leaves has O(m) height. This local balance property enables efficient query of the number of

matching triplets according to a coloring by an internal node of T . [153] refer to the nodes in

the HDT as components, each of which is classified into one of the three types: C, G, or I (see

Table B1 and Fig. B.5 in Appendix B, or refer to the original text and Fig. 2.5 of [153]). We use

terms node and component interchangeably.

Updating HDT counters. To compute the number of matching triplets, each node of HDT

keeps a set of counters (Table 2.1). These counters only depend on the coloring of leaves, and

when a leaf changes color, the HDT counters must be updated. [38] and [153] have derived

recursive formula to compute these counters for each component in the HDT given its children;

thus, we can update the counters by visiting all the nodes from the leaf that has changed color to

the root.

Let T be colored by node u with degree du and children of u, v1, . . . ,vdu−1 by 1, . . . ,du−1.
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Is the number of . . .
nX

i i-colored leaves below X .
nX

i j pairs of leaves below X where one is colored i, the other is colored j. If X is a C
type, the LCA of these two leaves must be on the external path of X and the path
from the LCA to either of these two leaves does not pass through any other node
on the external path. If X is a G type, the two leaves must belong to two distinct
subtrees of the super root of X (Fig. B.5) in Appendix B.

nX
i↑ j pairs of leaves where one is colored i, the other is colored j, and the i-colored leaf

is below the j-colored leaf in X (only defined for C type; see Fig.B.5 in Appendix
B).

nX
(ii) pairs of leaves below X both with color i. If X is a C type, the LCA of these leaves

must not belong to the external path. If X is a G type, the LCA must not be the
super root of X .

nX
(0•) pairs of leaves below X with one leaf colored 0 and the other colored different

from 0 whose LCA is not a node on the external path if X is a C component or the
super root if X is a G component.

Table 2.1: HDT Counters. Everywhere, i, j ∈ [d]. As in [153], we use the descriptors • and
□ to represent any color (unlike [153], we include 0, which is needed for rooting). Thus,
nX

i↑• = ∑ j∈[d] nX
i↑ j; nX

i• = ∑ j ̸=i nX
i j; nX

• = ∑i nX
i ; nX

•□ = ∑i nX
i•.

Note that du ≤ d and recall that the subtree above u has color 0. In addition to counters defined

by B13, we add the following two sets of counters to component X of HDT.

• ρX : the number of triplets of R that belong to component X and match the corresponding

triplets of Tu that are anchored at ru.

• πX
j : the number of triplets of R that belong to component X and match the corresponding

triplets of Tv j that are anchored at u. If du < d, we set πX
j = 0 for all j > du−1.

We now show recursions for ρX and πX
j and prove them in Appendix B. If X is an I or a L,

we simply skip it.

If X is an IG→C, we copy over the counters of its G child.

If X is a CC→C component with children C1 and C2 (note that by the convention, C1 is
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below C2; see Fig. B.5 in Appendix B), then

π
X
j =π

C1
j +π

C2
j +∑

i ̸= j

((nC1
i
2

)
(nC2
• −nC2

j −nC2
i )+

nC1
i (nC2

i↑•−nC2
i↑ j)+(nC1

• −nC1
j −nC1

i )nC2
(ii)+

nC1
i (nC2

•□−nC2
j• −nC2

i• +nC2
i j )
) (2.2)

ρ
X = ρ

C1+ρ
C2 +nC1

0 nC2
0↑•+(nC1

• −nC1
0 )

d

∑
i=1

nC2
i↑0

+

(
nC1

0
2

)
(nC2
• −nC2

0 )+

(
nC1
• −nC1

0
2

)
nC2

0

+(nC1
• −nC1

0 )nC2
(00)+nC1

0 (nC2
(•□)−nC2

(0•))

(2.3)

If X is a GG→G component with children G1 and G2, then

π
X
j =π

G1
j +π

G2
j +∑

i̸= j

(
nG1

i (nG2
•□−nG2

j• −nG2
i• +nG2

ji )+

nG2
i (nG1

•□−nG1
j• −nG1

i• +nG1
ji )+

nG1
(ii)(n

G2
• −nG2

j −nG2
i )+nG2

(ii)(n
G1
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These HDT counters readily give us the d + 1 counters associated to node u of T as

defined earlier. More precisely, τi
u = π

R
0 , τr

u = ρR , and τo
v j
= π

R
j for each j = [du] where R is the

root of the HDT.
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Generalizations to m-MTR and m-MQP and unequal leafsets

Note that Algorithm 2 computes and stores the score Ψ(Tv,R) for every alternative rooting

Tv of T . Thus, solving m-MTR is straightforward: we first apply Algorithm 2 to each reference

tree Ri and T to compute Ψ(Tv,Ri) for all node v of T . Then, for each node v of T , we compute

Ψv = ∑
k
i=1 Ψ(Tv,Ri). Finally, we select the node v∗ with maximum Ψv∗ and reroot T at v∗. By

Claim 4, this algorithm also solves m-MQP.

Algorithm 2 can be adopted to cases where T and R have different leafsets LT ∩LR = S

with minor modifications. Because the leaves in LR \S and LT \S do not contribute to the number

of matching triplets, we can simply ignore them. To do so, we restrict R on S by removing from

R all the leaves in LR \S. We mark all the leaves in T that are not in S as inactive and ignore the

inactive leaves by not coloring them during the topdown traversal of T . The resulting algorithm

is clearly correct.

2.2.4 Complexity analysis

Thank to the smaller-half trick of [38], at most O(n logn) leaves change color in the

(recursive) topdown traversal of Algorithm 2 (i.e. the ColorAndQuery function). Therefore, the

coloring module performs at most O(n logn) operations. To incorporate our extensions, three

extra counters are maintained for each node in T , all of which are computed in O(1) using the

same topdown traversal for coloring. Thus, the asymptotic complexity of coloring does not

change.

The B13 algorithm builds HDT in linear time. Because the HDT has O(n) components and

is locally balanced, the original HDT used in B13 can be queried in O(logn) per leaf recoloring

(see [38] and [153]). Our extensions require O(d2) counters per HDT component (instead of

O(1) counters used in B13) increasing complexity per HDT query by a factor of O(d2). Thus,

the total time complexity of Algorithm 2 is O(d2n log2 n).
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In a tree where d is bounded by a constant (e.g., a fully resolved binary tree), the

complexity is O(n log2 n). With k reference trees, the time complexity of both m-MTR and

m-MQP is O(kd2n log2 n).

2.2.5 tripVote: Completing gene trees (mm-MTR)

We develop a heuristic method Using m-MQP to complete a set of incomplete gene trees

(mm-MTR). To complete a gene tree Ti, we sequentially apply the m-MQP algorithm to place

each missing taxon onto Ti, using the other gene trees as references. This greedy algorithm

optimizes the number of shared quartets with reference trees that include at least three of their

four leaves coming from Ti. However, it does not solve the NP-Hard problem [172] of finding

a complete tree with optimal quartet score over all quartets. Thus, the order of placements can

change the outcome. In tripVote, we order missing taxa by their descending frequency of presence

in the input gene trees, breaking ties arbitrarily. Note that tripVote only works on single-labelled

gene trees.

Quartet sampling

As long appreciated, quartets with shorter terminal branches (i.e., short quartets) have

better theoretical [87] and empirical [312] performance than long quartets, motivating some

quartet-based methods to select short quartets [349, 230]. Inspired by these methods, we propose

a stochastic approach to down-weight the votes of long quartets around the query taxon in

reference trees. After rooting a gene tree at the query taxon, we sample random paths from the

root to a leaf, selecting a child of a node uniformly at random at each step (Fig. B.4 in Appendix

B). For each reference tree, we sample s taxa with replacement, then remove duplicates and

restrict the tree to the selected set of taxa. We repeat this sampling procedure r times to generate

r sampled trees for each reference tree. After sampling, we combine all the generated sample

trees across all genes as the reference trees in m-MQP.
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While hyper parameters s and r can be set by users, by default, we choose them such

that leaves close to the root have a sufficiently high probability of being sampled at least once

across the s× r draws. We first set s such that a taxon at the distance 1
2 log2 n from the root is

expected to be sampled once in each round. Since the probability of sampling a leaf at distance

1
2 log2 n from the root in one traversal is 1

2(log2 n)/2 =
1√
n , setting s =

√
n achieves the goal. Thus,

we choose s = ⌈
√

n⌉. To select the number of rounds, we set r such that a taxon with distance

at most h (a predefined constant) from the root is sampled with high probability. That is, for

a false negative tolerance ε, we require: 1− (1− 1
2h )

sr > 1− ε By default, we set h = 5 and

ε = 0.05; thus, s× r = log(0.05)
log(31/32) ≈ 95 to satisfy the above inequality. Thus, by default s = ⌈

√
n⌉

and r = 95
⌈
√

n⌉ .

Software package

We updated the C++ software by [289] to incorporate our algorithm to solve MTR. We

built a Python wrapper, tripVote, for the C++ package and added new functions for gene tree

completion using MQP, with or without the quartet sampling strategy.

2.3 Evaluation procedures

2.3.1 Datasets

We test tripVote on published simulated datasets by [219] and [201] and a real plant

dataset by [241]. The simulated datasets were both created using Simphy to generate gene and

species trees under the multi-species coalescent (MSC) model and heterogeneous parameters, and

Indelible to simulate nucleotide sequences on gene trees according to the GTR+Γ model with

varying sequence lengths and sequence evolution parameters. FastTree2 was used to estimate

gene trees based on the GTR+Γ model. Original papers provide full details on the parameters

used in each of these two datasets.
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The 201-taxon dataset by [219] enables us to examine the effect of incomplete lineage

sorting (ILS) on gene tree completion methods. From this dataset, we use 3 model conditions with

200 taxa, and use the first 20 out of the 50 replicates of the original dataset (to save computational

time). In each replicate, we use the first 500 (out of 1000) estimated gene trees that are fully-

resolved. The three model conditions have medium, high, and very high levels of ILS, resulting

in 21%, 33%, and 69% RF distance between true gene trees and the species tree. They also have

high levels of gene tree estimation error (15%, 22%, and 34% RF between estimated and true

gene trees).

The 31-taxon dataset by [201] is used to examine the effect of clock deviation on gene

tree completion methods. Here, we use the 3 model conditions with the root to crown ratio equal

to 1.0, but varying levels of deviation from the clock (low, medium, high). We only use the first

20 out of the 100 replicates of the original dataset because our experiments are computationally

intensive. The average coefficient of variation of root-to-tip distances of low, medium, and high

deviations are 0.04, 0.30, and 0.69, respectively. These replicates have moderately high level of

ILS (with 24% mean RF distance between true gene trees and the species tree). The amount of

gene tree estimation error increases with deviations from the clock (RF error are 30%,41%, and

52%).

The real OneKP biological dataset of 1178 plants by [241] has 384 gene trees, all of

which miss some of the species. The original study provide an ASTRAL species tree inferred

from 384 gene trees, inferred using RAxML, each with at least 384/2 = 192 species.

2.3.2 Experiments

We compare tripVote with two alternatives tree completion algorithms: ASTRAL-

completion, the method used in ASTRAL and described in [215], and OCTAL, the gene tree

completion method that minimizes RF distance of each gene tree to the species tree. ASTRAL-

completion is run using the ASTRAL software, and OCTAL is run using the TRACTION-RF
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software [53]. In addition, to guide visualization and interpretation, we add a lower-bound control

by randomly completing the gene trees (repeated 100 times and averaged).

In simulated datasets, we randomly remove m leaves from each estimated gene tree

to create incomplete gene trees; m ∈ {0,1,2,20,50,100} for the 201-taxon dataset and m ∈

{0,1,2,3,8,15} for the 31-taxon dataset. We use tripVote, OCTAL, and ASTRAL-completion to

complete each set. For the 201-taxon dataset with m = 1, we compare the accuracy of tripVote

with and without the sampling.

We use two different error metric: the normalized RF distance and the induced RF

distance, as described below. To separate the gene tree estimation error from the error by

completion methods, we define the induced (normalized) RF distance, as follow: given two

trees T1, T2 and a reference tree R, the induced RF distance of T2 on T1 with respect to R is
RF(T2,R)−RF(T1,R)

RF(T1,R)
where RF denotes the normalized RF distance of two trees after restricting them

to their shared leafset. Positive (negative) induced RF distances show that T1 (T2) is closer to the

reference tree. On the simulated datasets, we use the estimated gene tree by FastTree as T1, the

tree completed by a completion method (e.g. ASTRAL-completion, tripVote, etc.) as T2, and the

true gene tree as R.

In addition, we test the ability of tripVote to improve species tree estimation. On the 201-

taxon dataset, we compare five versions of ASTRAL for inferring species trees from incomplete

gene trees. (1) The default ASTRAL uses ASTRAL-completion to construct the search space

and original trees to score. (2) We use tripVote in place of ASTRAL-completion but continue to

score trees using incomplete trees. (3) We use OCTAL in place of ASTRAL-completion. Since

running OCTAL needs a species tree, we use the ASTRAL species tree inferred in (1) as input to

OCTAL. Thus, in this setting, ASTRAL is run twice. (4) We use the gene trees completed by

ASTRAL-completion as input to ASTRAL, making them used both for search space creation and

scoring. (5) Similarly, we use tripVote completed trees as input. We measure the error of these

ASTRAL trees by computing their RF distances to the true species tree.
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We also test tripVote and ASTRAL-completion on the ability to root an unrooted gene tree

with respect to other rooted gene trees. On the two simulated datasets, we remove the outgroup

from a set of n− k gene trees (arbitrarily selected) and use the k remaining trees to infer the

outgroup placement. We vary k in {1,10,50,100,250,500}. To measure error, we compute the

optimal rooting that minimizes the triplet distance to the true tree and report the delta triplet error,

defined as the difference between the triplet distances of a rooted tree and the optimal tree to the

true tree. In addition to ASTRAL-completion, we also compare tripVote to other rooting methods,

including the outgroup rooting (root at the original placement of the outgroup before removing

it), mid-point rooting, and MinVar rooting [201] and add the random rooting as a control.

For the OneKP dataset, we set up two versions: one where the original gene trees are

used directly and one with extra missing data where we prune out an extra p% of the taxa from

each gene tree (for p ∈ {5,10,15,20}). With original data, where the completed gene trees are

unknown, we measure the induced RF distance of the completed gene tree (T2) on the original

(incomplete) one (T1) with respect to the species tree (R). For the extra missing data, after running

the methods to complete the gene trees, we reduce the completed gene trees to the same leafset as

the original gene trees and compute their normalized RF distances.

2.4 Results

2.4.1 Simulated datasets

Gene tree completion

Across all model conditions with m = 1, the sub-sampling strategy dramatically lowers

the error compared to full quartet sampling (Fig. B.6 in Appendix B). Both versions of tripVote

have higher error when the ILS level increases. The averaged error of tripVote with and without

sampling are 0.51 versus 0.84, 0.77 versus 1.75, and 3.77 versus 5.42 for medium, high, and

59



very high ILS, respectively. Thus, the error is less than half for the high ILS level and is reduced

everywhere. Looking beyond the average error and examining the full distribution shows that

while in the majority of cases error is at most one branch with sampling, the same is not true when

sampling is not performed. Both versions suffer from a tail of placements with very high error

(e.g., five edges or more), a condition that unsurprisingly is observed mostly for the highest level

of ILS. However, the tail of large errors is clearly reduced after sampling. Because restricting

the calculations to shorter quartets has a clear positive impact on the results, we use sampling by

default in tripVote and use it in the remaining experiments.

Comparing tripVote and ASTRAL-completion, across all conditions, tripVote always has

lower error, and the difference between the two methods is more pronounced when the number of

missing taxa increases (Fig. 2.2). The relative improvements of tripVote compared to ASTRAL-

completion are quite large. On the 201-taxon dataset at 50% missing data (i.e. m = 100), the

induced RF error of tripVote is 32%, 34%, and 6% lower than that of ASTRAL-completion in

medium, high, and very high ILS levels, respectively (Fig. 2.2b). Similarly, tripVote dominates

ASTRAL-completion on the 31-taxon dataset across all conditions of clock deviation, albeit

with smaller differences compared to 201-taxon dataset. For example, with m = 15, the induced

RF error of tripVote is 11%, 2%, and 4% lower in low, medium, and high clock deviations,

respectively (Fig. 2.2d).

The comparison between tripVote and OCTAL depends on the dataset and the level of

missing data. On the 31-taxon dataset, tripVote has better accuracy, and the improvements are

most pronounced with higher clock deviations and medium level of missing data (e.g., eight taxa).

On the other hand, OCTAL is more accurate in most conditions of the 201-taxon dataset and

especially when the amount of missing data exceeds 50 taxa. Improvements of OCTAL over

tripVote are non-existent or negligible for the highest levels of ILS and are increased for lower

levels.

All methods are affected by the level of missing data, ILS (Fig. 2.2a,b), and clock
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deviations (Figure 2.2c,d). Even before completion, gene trees have higher levels of errors when

the ILS is higher or when the deviations from the clock are more pronounced. Completion

always increases error compared to estimated gene trees, and increases in the error are higher

when there are more missing data. However, this increase in error is more pronounced for the

highest level of ILS than lower levels. Thus, for very high ILS, not only gene tree estimation is

difficult, completion is also difficult. In particular, RF distances after completion can reach 0.7

for the highest ILS case. In contrast, average levels of RF remain below 0.33 after completion for

medium or high ILS. Thus, gene tree-based completion using tripVote fails to be accurate at the

highest levels of ILS. In contrast to ILS levels, we did not detect a reduction in effectiveness of

tripVote as deviations from the clock increase. In fact, induced RF errors go down with increasing

levels of clock deviations (Fig. 2.2d). Note that with high deviations, the error is already very

high before completion and there is relatively little room left for increased error.

Effects on species tree accuracy

We ran ASTRAL to infer the species trees from incomplete gene trees under five different

settings (described earlier) and compared their normalized RF errors (Fig. 2.3). All ways of

running ASTRAL showed some level of sensitivity to missing data, especially for high ILS and

with more than 50 missing taxa per gene (i.e., ≈ 25% of the leaves). In contrast, the condition

with the lowest level of ILS is remarkably robust to even extreme levels of missing data (≈ 50%

of the leaves).

At all levels of ILS, the accuracy is always higher when the completed gene trees are only

used to construct search space than when they are also used for scoring species trees. Overall,

the best accuracy is obtained when tripVote is used only for building the search space. In this

setting, tripVote slightly improves upon the default ASTRAL-completion method when ILS is

very high and there is moderate amount of missing data (i.e. up to 50 taxa). Thus, tripVote can

be used in place of ASTRAL-completion inside ASTRAL to improve its accuracy. Moreover,
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tripVote has far better accuracy than ASTRAL-complete when the completed gene trees are used

both for search space and scoring. Comparing to the original setting of ASTRAL (which uses

ASTRAL-completion for search space only), the ASTRAL tree inferred using OCTAL either has

the same accuracy (when ILS is medium) or worse. Note that the OCTAL setting uses the default

ASTRAL species as input. Therefore, our results do not show any benefit in using OCTAL for

improving the search space of ASTRAL.

Gene tree rooting

The accuracy of tripVote for rooting is mixed. The absolute error of tripVote rooting

clearly increases with the level of ILS (Fig. 2.4 Top, but not with deviations from the clock

(Fig. 2.4 Bottom). The accuracy of tripVote (and also ASTRAL-completion) rapidly increases as

the number of voting trees increases to 100, but there is relatively little improvement after that.

Overall, the accuracy of tripVote improves as a result of adding the sampling strategy; however,

the improvements are more subtle than those observed for the placement problem.

In all model conditions, tripVote is more accurate than ASTRAL-completion, but its

accuracy comparing to other methods depends on the model condition. With medium ILS,

tripVote is the best method and even outperforms outgroup rooting (Fig 2.4a). With high ILS,

tripVote is similar in accuracy to MinVar. However, when ILS is very high, tripVote is not a good

choice (Fig. 2.4a). Overall, if an outgroup is available, it is clearly a better choice than tripVote

when ILS levels are high or very high. When clock deviation is low, branch-length-based rooting

methods are very accurate and better than outgroups and tripVote. (Fig 2.4b). In medium clock,

the error of MinVar and MidPoint go up but still slightly dominate tripVote, and outgroup rooting

is the most accurate. When the clock deviation is high, MinVar and MidPoint have higher error,

and tripVote is the best method given enough number of voting trees (Fig. 2.4b).
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Running time

We note that tripVote, if run without the sampling strategy to complete the species tree,

solves a similar problem to INSTRAL. Using the dataset from the original study by [268],

we compare the running time of INSTRAL and the two versions of tripVote with and without

sampling (Fig. B.2 in Appendix B). Here, the species tree (not a gene tree) is being completed,

and the two methods are guaranteed to return the same solution; the only difference is the running

time. The running times of the two methods are comparable when they both use complete input

gene trees as input. The theoretical running time of INSTRAL depends on the number of unique

nodes across all gene trees (e.g., tripartitions for a binary tree), and thus, very similar gene trees

do not increase its running time dramatically. However, in practice, gene trees often miss at least

some leaves, forcing most nodes to be distinct. Thus, we also tested a case where gene trees

missed only 1% of the leaves. Under these conditions, tripVote is much faster. For example, with

10000 species, INSTRAL takes on average 71 minutes while tripVote takes only 14 minutes.

Consistent with the theory, the asymptotic running time of INSTRAL grows faster than

linearly (close to n1.4) without missing data and close to quadratically with missing data. In

contrast, tripVote running time without sampling increases close to linearly with or without

missing data. With sampling, because we set the sampling size to a sublinear function of n, the

running time of tripVote further reduces and is sublinear (close to n0.9).

2.4.2 Real datasets

On the real dataset, we show the incongruence of the completed gene trees (original data)

with the species tree (Fig. 2.5a), the error of the completed gene trees at different levels of extra

missing data (Fig. 2.5b), and the estimated branch length of the species tree (for original and

extra missing data at 20%, Fig. 2.5c). Consistent with the results of simulated data, here we also

see that tripVote is more accurate than ASTRAL-complete, but is not as accurate as OCTAL,
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especially with higher levels of missing data. Thus, in terms of topological accuracy of gene trees

alone, using the species tree to complete the gene trees gives the best results.

The completed OCTAL trees, however, are biased. Ideally, the completed trees should be

no more or less distant to the species tree than the original incomplete trees, and the induced RF

distance should be distributed around 0. Both the random and the OCTAL methods substantially

change the distance to the species tree, especially when the number of missing taxa increases.

The random completion sharply increases the induced RF distance with a high variance. While

the induced RF distance of the OCTAL method has very low variance at all levels of missing

data, the value decreases below 0 when the missing data increases. This reduction shows that

the OCTAL method produces completed gene trees that have lower discordance with the species

tree than incomplete gene trees, and indicates that the resulting completed trees may be overfit to

the species tree. ASTRAL-completion and tripVote have relatively little effect on induced RF

distance and keep it around 0 even at the highest levels of missing data.

The two methods have the opposite tendencies: ASTRAL-completion tends to slightly

increase the distance to species tree (mean induced RF: 0.035) while tripVote tends to slightly

decrease the distance (mean induced RF: −0.015). Also, ASTRAL-completion has a higher

variance compared to tripVote (0.006 versus 0.002).

As a result of these biases, when OCTAL-completed gene trees are used to estimate

the species tree, the OCTAL trees cause an overestimation in the species tree branch lengths

compared to using the original gene trees (Fig. 2.5c). Such a problem is far less severe when

tripVote or ASTRAL-completion is used. Both original data and the extra 20% missing data

show a consistent pattern. As expected, the branches of the species tree estimated using random

completed gene trees are underestimated compared to the original branch lengths obtained from

incomplete gene trees.
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2.5 Discussions

We introduced a quasi-linear algorithm for adding a new taxon to a tree to maximize its

total matching quartets to a given set of reference trees that already include the taxon. We built

a method called tripVote around this algorithm by using a sampling strategy to further improve

accuracy and a simple greedy algorithm to allow adding multiple taxa. Overall, results indicate

that species-tree-free completion of gene trees does add to the error of the trees, compared to

what could be achieved if sequences were available. This much should not be surprising. Gene

tree based completion was also not always more accurate than species tree aware completion.

However, results indicate that gene-tree-based completion is able to maintain the overall levels

of gene tree discordance with the species tree. Thus, unlike species tree aware completion, the

method does not seem biased toward increasing or decreasing the gene tree discordance. Two

main factors limiting the accuracy of gene tree completion seem to be the true levels of gene tree

discordance (e.g., ILS) and the amount of gene tree error (controlled in our experiments using

deviations from the clock).

Comparing the species tree aware method, OCTAL, and tripVote, we saw mixed results.

While tripVote has better accuracy with higher clock deviations and moderate levels of missing

data, OCTAL is more accurate in other settings, and the gap increases with the number of missing

taxa. While part of the differences may be due to the inherent advantage of using a species

tree, the more subtle issue of optimality needs to be also considered. While OCTAL is an exact

algorithms that minimizes the RF distance of each gene tree to the species tree, tripVote is a

greedy heuristic when there are more than one missing taxon. Its heuristic nature may explain

why tripVote’s accuracy degrades with the level of missing data more quickly than OCTAL, as its

error after each m-MQP application can add up. Note that since OCTAL requires a species tree to

operate, it has two limitations: it makes the completed gene trees biased towards the species tree

used and it is not useful for the species tree estimation problem (even in the 2-iteration setting
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where we tested it). In contrast, tripVote works directly on a set of gene trees and maintains a

more faithful distribution of the gene trees discordance after completion. Therefore, tripVote is

more suitable than OCTAL in use cases that need to maintain the discordance level or have to

avoid the use of a reference tree.

While we tested tripVote for gene tree completion, the MQP and m-MQP algorithms

can be used in other contexts such as species tree completion. In that usage, tripVote (without

sampling) would be identical to INSTRAL in terms of the resulting placement (both solve the

same problem exactly) but will have a better worst-case running time complexity. This better

running time also opens the door for developing methods that can infer an entire species tree

by repeated placements (i.e., using a greedy algorithm to solve an NP-Hard problem). While a

simple greedy search may not outperform methods such as ASTRAL [378], repeated applications

of the greedy search may provide a better running time versus optimality trade-off. We leave the

exploration of such directions to future work. gn,

The ability of tripVote to root trees was mixed and depended on the dataset. Given

the difficulty of knowing the model condition on real data, we do not necessarily advocate

using tripVote for rooting, unless when researchers know the levels of ILS are not high and

some deviations from the clock are expected. Otherwise, using methods such as MinVar seems

preferable. Future works can improve the rooting accuracy by combining tripVote and branch-

length-based rooting. One direction could be incorporating the MinVar score of each branch in

addition to the tripVote score, but that approach requires a way to combine the two scores. Taking

the idea further, machine learning techniques could perhaps be used to combine the scores from

multiple methods to find the best rooting overall by training for parameters of a function that

combines these scores as features.

The tripVote method can also be improved in several ways. First, since tripVote is a

greedy algorithm, the ordering of the taxa to be inserted may affect its accuracy. Future works

can explore different strategies to order the queries or run multiple times and summarize results
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across multiple orderings. Second, the current setting gives the same weight to the vote of every

reference tree, regardless of its distance to the backbone tree. As the topology of different gene

trees can vary substantially, a weighting scheme that discounts the votes of distant gene trees to

the backbone tree should be explored. Lastly, while tripVote computes all the individual votes

of every reference tree, it only uses their sum to select the placement branch. Another research

direction is to explore other strategies to summarize the votes, such as using the median, or a

non-linear transformation of each triplet score before summing. Alternatively, one can also take a

machine learning approach to use the set of votes from the reference trees as features to learn and

predict the best placement branch, in a framework such as that of [152].
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Figure 2.2: (a,c) Normalized RF error of tripVote, OCTAL, and ASTRAL-completion on the
201-taxon dataset with different levels of ILS, (a), and the 31-taxon dataset with different levels
of clock deviations, (c); m = 0 shows the average RF error of the complete gene trees estimated
by FastTree. (b,d) Induced RF error of tripVote, OCTAL, and ASTRAL-completion on the
201-taxon dataset, (b), and the 31-taxon dataset, (d). Also see Figures B.8 and B.9 for a different
view that includes the random completion as control.
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Figure 2.3: Topological error of the ASTRAL species tree estimated using different set of gene
trees (the 201-taxon dataset). The three panels show different levels of ILS. In “search space
only”, the completed gene trees (by ASTRAL-complete, tripVote, or OCTAL) were only used
to guide ASTRAL’s search space, whereas in “search and score”, the completed gene trees
were used as the actual input to ASTRAL. To obtain the results for OCTAL, two rounds of
ASTRAL was run: in the first round the search space was produced by ASTRAL-complete
and the incomplete trees were used as input; in the second round, ASTRAL was run using the
OCTAL-completed gene trees, both for search space and as input.
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Figure 2.4: Accuracy of rooting based on different methods for Top: The 201-taxon dataset and
Bottom: The 31-taxon dataset. The outgroup is removed from m randomly selected trees and
inserted back using either ASTRAL-completion or tripVote, then each of these trees is rerooted
at the reinserted outgroup. The x-axis shows the number of voting trees for ASTRAL-completion
and tripVote (i.e. n−m) and the y-axis shows the delta triplet error (i.e. the triplet error to the
true rooted tree subtracting the triplet error of the optimal rooting that has minimum triplet
error to the true tree). We added alternative rooting methods (Outgroup, MinVar, MidPoint, and
Random) that do not use other gene trees. Outgroup rooting was done on the complete estimated
trees with outgroup included. MidPoint and MinVar were run after the outgroup was removed.
The Random rooting was repeated 50 times and the average error is reported. See also Fig. B.3
in Appendix B where the error is measured by the raw triplet error.
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Figure 2.5: The OneKP results for (a and left panel of c) completing incomplete gene trees, and
(b and right panel of c) completing gene trees with extra (introduced) missing data. (a) Induced
RF distance to the species tree of different completion methods on the original incomplete gene
trees versus the number of missing taxa. (b) The ratio of the species tree branch lengths after
versus before completion by different methods; the y-axis is shown in logarithmic scale. See
Fig. B.7 in Appendix B for normalized RF and another view of the branch length estimation.
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Chapter 3

Minimum variance rooting of phylogenetic

trees and implications for species tree

reconstruction

Phylogenetic trees inferred using commonly-used models of sequence evolution are

unrooted, but the root position matters both for interpretation and downstream applications. This

issue has been long recognized; however, whether the potential for discordance between the

species tree and gene trees impacts methods of rooting a phylogenetic tree has not been extensively

studied. In this paper, we introduce a new method of rooting a tree based on its branch length

distribution; our method, which minimizes the variance of root to tip distances, is inspired by the

traditional midpoint rerooting and is justified when deviations from the strict molecular clock

are random. Like midpoint rerooting, the method can be implemented in a linear time algorithm.

In extensive simulations that consider discordance between gene trees and the species tree, we

show that the new method is more accurate than midpoint rerooting, but its relative accuracy

compared to using outgroups to root gene trees depends on the size of the dataset and levels of

deviations from the strict clock. We show high levels of error for all methods of rooting estimated
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gene trees due to factors that include effects of gene tree discordance, deviations from the clock,

and gene tree estimation error. Our simulations, however, did not reveal significant differences

between two equivalent methods for species tree estimation that use rooted and unrooted input,

namely, STAR and NJst. Nevertheless, our results point to limitations of existing scalable rooting

methods.

3.1 Introduction

Commonly-used models of sequence evolution, such as GTR [336], are time reversible

and can therefore be used to reconstruct unrooted phylogenetic trees. The correct placement

of the root is often of intrinsic interest as evident by long debates on the correct rooting of the

universal tree-of-life [173, 41, 100, 322, 115, 274], and other major groups (e.g., [206, 335, 322]).

Moreover, the knowledge of the root is often needed for downstream applications of phylogenetic

trees, such as ancestral state reconstruction [197], comparative genomics [92], taxonomic profiling

of metagenomic samples [232, 207], and dating.

Several approaches have been proposed for this long recognized issue [251]. The current

prevailing practice is to simply use outgroups [197]. An outgroup is a species known apriori to be

outside the group of interest (referred to as the ingroup). Outgroup selection is an art that requires

balancing two opposite goals; the outgroup needs to be divergent enough from the ingroup to

make its outgroup status unambiguous, but at the same time not so distant that strong long branch

attraction [256, 131, 24] negatively impacts the resolution of the ingroup, the placement of the

outgroup, or both [334, 116, 137, 187, 281]. Nevertheless, several studies have found outgroups

to be competitive with more complex methods [142, 35] that use evidence from molecular data

for rooting.

At one end of the spectrum, rooting an unrooted tree is trivial when the rooted tree is

ultrametric (i.e., all leaves are equidistant to the root). Only one rooting of an unrooted tree can
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create an ultrametric tree, and that rooting can be obtained by midpoint (MP) rooting; i.e., root the

tree at the middle point of the longest path between any two leaves of the tree. A phylogenetic tree

with branch lengths measured in the expected number of mutations will be expected to be close

to ultrametric if mutations follow a strict molecular clock (i.e., rates of mutation are constant).

When a strict molecular clock is not followed in the data, one can still use the midpoint rooting,

hoping that divergences from a strict clock are small and that midpoint rooting can still be a

good proxy for the correct root [129]. At the other end of the spectrum, non-reversible models

of sequence evolution, such as the General Markov Model[20, 9, 150], or those that incorporate

nonstationarity [27, 32], can be used to infer a rooted tree from the data; however, these methods

have not yet enjoyed broad application because of statistical issues related to model complexity

and lack of scalability to large datasets (but see [357] for recent advances).

Despite the long history of thinking about tree rooting, we believe the question should

be revisited in the phylogenomic era. The potential for discordance among gene trees and

incongruence with the species tree due to factors such as incomplete lineage sorting (ILS) is now

well-understood [196, 68, 83] and many empirical analyses strive to account for it [149, 355, 314,

263, 13] (but see [106, 311, 318, 84] for the ongoing debate on this issue).

Rooting phylogenies needs fresh thinking in the phylogenomic area for several reasons.

Firstly, an outgroup is a species believed to be outside the ingroups in the true species tree;

however, depending on how the outgroup is chosen, its true position may or may not be outside

the ingroups in every single gene tree. As an example, according to the multi-species coalescent

model [244], an outgroup separated from the ingroups by a branch of length 2 in coalescent

units [68] (corresponding to 8 millions years assuming a diploid effective population size of

200,000 and a generation time of 10 years) is expected to be mixed with the ingroups in 9%

of genes only because of ILS effects and optimistically assuming that all basal branches of the

ingroups are so long that only two lineages have to coalesce in the branch below the root. Thus,

even if outgroups are reliable methods of rooting a species tree, they may fail to root every gene
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tree accurately. A second reason to revisit rooting is related to the practice of species tree estima-

tion. The most scalable pipeline for estimating a species tree first estimates a set of gene trees and

then uses a “summary method” to combine the estimated gene trees to reconstruct a species tree.

Some summary methods (e.g., MP-EST [192], STAR/STEAC [193], and GLASS [224]) rely on

rooted input gene trees, while more recent methods (e.g, ASTRAL [218, 219] and NJst [191, 343]

– also known as USTAR/NJ [8]) can combine unrooted gene trees. Even though the question has

never been directly addressed before, the accuracy of methods based on unrooted trees tends to be

superior to rooted trees on simulated and empirical data [212, 219, 218, 191, 311]. It remains to be

tested if these trends relate to incorrect rooting of gene trees, as suggested by some studies [311].

Finally, reconciliation between gene trees and a species tree may provide a way to root them.

Gene duplication history, the number of deep coalescences, and distributions of unrooted gene

trees have all been used to root gene trees, species trees, or both [163, 33, 7, 249, 374]. However,

in this manuscript, we will focus on rooting gene trees individually and not collectively or with

reference to a known species tree.

Beyond phylogenomics, the ever-expanding size of phylogenetic trees is another factor

that should be considered in discussions of rooting. Trees with thousands of leaves are routinely

inferred and used currently, and trees with many hundreds of thousands of leaves are also in

use [322, 132, 266, 209]. We should ask whether rooting such large trees with existing methods

is computationally feasible, and if so, whether they are accurate.

In this paper, we address the problem of rooting large phylogenomic datasets. We

introduce a new rooting method that minimizes the variance of the root to tip distances. We

implement our new method, called min-var (MV) rooting, in an algorithm that scales linearly

with the tree size, just like the MP rooting (note that the term minimum variance used here

does not relate to statistical minimum variance estimators). We compare MV and MP with

outgroup (OG) rooting under a wide range of conditions where gene trees and the species tree

can be discordant, with a range of dataset sizes, with several ways of choosing an outgroup,
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and with various levels of divergence from a strict clock. We then go on to compare several

species tree reconstruction methods, including those that use inferred unrooted trees, or trees

rooted using the three rooting approaches. Our rooting tool is publicly available at https:

//uym2.github.io/MinVar-Rooting/.

3.2 Materials and Methods

3.2.1 Min-Var (MV) rooting

Notations and definitions

Let an unrooted tree be represented as a connected acyclic undirected graph G = (V,E),

and let each edge e = (u,v) ∈ E be weighted by a length we. To root G at an edge e = (u,v) ∈ E

and a position x≤ we from u, we first divide e to two edges by a vertex p and replace e with edges

(p,u) and (p,v) with lengths x and we− x, respectively. Then, we convert G to a directed graph

by pointing all its edges away from p. The resulting graph is a rooted tree, T , and is a rooting of

G.

We use the following notations for a rooted tree T . Each node u in T , except the root r(T ),

has a parent, p(u), and the child set of a node u is denoted by c(u). A node u is either internal

and has two or more children or is a leaf and has no children. The set of leaves is denoted by

L = {1 . . .n}. For any node u, we denote the length of the edge (p(u),u) by eu. For each point p

on this edge (including u), we let Cld(p) denote the set of leaves descending from node u and

|p| is used for the size of Cld(p). For two points p and p′, potentially on different edges, we let

d(p, p′) denote the total length of the undirected path from p to p′, and use di(p) = d(i, p) as a

shorthand for i ∈ L.

We set mean(p) = 1/n∑i∈L di(p), var(p) = 1/n∑i∈L(di(p)−mean(p))2,

SI(p) = ∑i∈Cld(p) di(p), and ST (p) = ∑i∈L di(p).
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We call a p0 a local MV of tree T if and only if for any point p and x = d(p0, p),

lim
x→0

var(p)− var(p0)

x
= 0 (3.1)

and the second derivative of var(p0) is non-negative (i.e., var(p)> var(p0)).

The global MV of a tree is a point p0 that has the minimum var(p0) among all positions

on all branches of the tree. Unless otherwise specified, we use the terminology MV to refer to the

global MV.

A point p is said to be a balance point of T if the average of tip distances to p are equal

on any two sides of p in the unrooted version of T ; that is, p is a balance point if

1
|u| ∑

i∈Cld(u)
di(p) =

1
n−|u| ∑

i/∈Cld(u)
di(p) (3.2)

for all ways of choosing u such that p is on the edge (p(u),u) (including both ends).

Problem statement

MP rooting can be framed as an optimization problem that seeks the rooting position that

minimizes the maximum distance from any leaf to the root. Our proposed approach, MV rooting,

is based on a similar idea, but minimizes the variance instead of the maximum.

The MV problem is: Given an unrooted tree G, find a rooting T ∗ of G such that

T ∗ = argmin
T

var(r(T )) . (3.3)

Thus, we seek the root that minimizes the variance of root to tip distances.

Motivation for MV rooting

We start with the following propositions (proofs are shown in Appendix C)

77



Proposition 3. A point p on tree T is a local MV if and only if it is a balance point.

Based on Proposition 3, we refer to local MV and balance point interchangeably.

Proposition 4. Any tree has at least one local MV.

Proposition 5. The global MV of any tree is one of its local MVs.

When the strict molecular clock is followed, the true rooted phylogenetic tree is ultrametric

with zero root-to-tip distance variance. For ultrametric trees, only the true rooting position is a

balance point, and therefore, the tree has a unique local MV at the correct root, which is also its

global MV (Proposition 5). Since local MVs are also balance points, they provide a natural choice

for rooting when there are randomly distributed deviations from the molecular clock. Among

several local MVs, the global MV also minimizes the total variance, and arguably is the best

choice. We now describe a simplified model under which we can prove that MV is in expectation

the correct root.

Random deviations model: Consider a model where a rooted tree T is generated from an

ultrametric tree T0 by multiplying the length of each edge (u,v) by a random variable αv drawn

from any distribution with support [1− ε,1+ ε] and expected value 1. Let h be the height of T0

and r be the position of the true root on T , which it inherited from T0. We have the following two

propositions (proofs are shown in Appendix C).

Proposition 6. Let p denote the global MV of T . If

ε≤ min
w∈c(r)

(
ew

n
n−|w|h+ ew

)

then there exists a child w of r such that p ∈ e = (r,w)

Following Proposition 6, the global MV is guaranteed to be on one of the adjacent edges

of r if ε is sufficiently small. Note that the restriction on ε is a sufficient but not a necessary

condition. Regardless of the value of ε, we can also show the following.
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Proposition 7. When the global MV is on one of the adjacent edges of r, let a random variable X

indicate the distance of the global MV to the root; then, E(X) = 0.

Corollary 3. Under our random deviations model where deviations from the strict molecular clock

are independent and bounded, the MV rooting will find the correct branch, and in expectation,

will also have zero distance on that branch to the correct rooting position.

Although the random deviations model considerably simplifies real biological processes,

it is useful in motivating the MV rooting approach in general.

The MV rooting algorithm

The algorithm is based on the following proposition (proof is shown in Appendix C)

Proposition 8. Let p be a point on an edge (u,v) of tree T with distance d(p,u) = x. If we let p

vary along edge (u,v) and consider var(p) as a function of variable x with parameters u and v,

then:

var(p) = var(x;u,v) = (1−β
2)x2 +

(
α− 2ST (u)β

n

)
x+ var(u) (3.4)

in which

α =
2ST (u)−4(SI(v)+ |v|ev)

n
and β = 1− 2|v|

n
(3.5)

To find the MV root, we first arbitrarily root the unrooted tree at rT to get a rooted tree T .

We then use Algorithm 3 to traverse T three times to search for local MVs. At the end, we select

the local minimum with the lowest variance value as the global MV.

Traversal 1 and 2 (Preprocessing): In the first top down traversal, we trivially compute

the distance to root (i.e., d(u,rT )) for all nodes of the tree, and then simply compute the variance

of root-to-tip distances. Next, in a post-order traversal, for each node u, we compute the size of

its clade (i.e., |u|) and the sum of distances to the tips in its clade (i.e., SI(u)), both of which are

simple to compute.
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Algorithm 3 Linear time MinVar rooting algorithm
Function MinVarRoot(T )

For node u in pre-order(T ) # Top-down traversal
Compute d(u,r(T )) = d(p(u),rT )+ eu for i ∈ L\{r(T )}

minvar← σ2({di(r(T ))|i ∈ L}) # σ2 is variance
For node u in post-order(T ) # Bottom-up traversal

Store |u|= 1 if u ∈ L, else |u|= ∑v∈c(u) |v|
Store SI(u) = 0 if u ∈ L, else SI(u) = ∑v∈c(u)(SI(v)+ ev|v|)

globalMV ← r(T )
For node v and u = p(v) in pre-order(T ) # Top-down traversal

Compute and store ST (v) using Eq. 3.6
Compute and store var(v) using Eq. 3.4

Compute x∗ using Eq. 3.7 and call the corresponding point p∗

Compute var(p∗) using Eq. 3.4
if minvar > var(p∗)

minvar← var(p∗)
globalMV ← p∗

reroot T at p∗

Traversal 3: The final top-down traversal finds the local MV along each edge (u,v) if it

exists, and records the local MV with the minimum root-to-tip variance as the global MV. We set

ST (rT ) = SI(rT ) and for other nodes we compute and store:

ST (v) = ST (p(v))+(n−2|v|)ev. (3.6)

According to Proposition 8, for any point p along the edge (u,v) with x = d(u, p), we can

compute var(p) (the variance of root-to-tip distance if we root at p) using Eq 3.4. Let a= (1−β2),

b = (α− 2ST (u)β
n ), and c = var(u); Eq. 3.4 is a standard quadratic function ax2+bx+c with a > 0

(because |β| < 1) and with the restriction x ∈ [0,ev]. Thus, var(p) is minimized on a point p∗

with distance x∗ from u where:

x∗ =


−b
2a , if −b

2a ∈ [0,ev]

argminx∈{0,ev}(var(x;u,v)), otherwise
(3.7)
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and p∗ is a local MV of T only if x∗ = −b
2a . Since we compute this for all edges, at the end, we

have all local MVs and their corresponding root-to-tip variance; we simply select the local MV

point that has the lowest variance and reroot T on that point. Derivation of Eq. 3.6 and the proof

for Proposition 8 are shown in Appendix C.

Theorem 5. Algorithm 3 is guaranteed to find the global MV.

Proof. It is clear that Equation 3.7 minimizes 3.4 given the constraint x ∈ [0,ev] (recall that the

second derivative a > 0) and thus finds local MV points. According to Proposition 8, Equation

3.4 gives the correct variance of root-to-tip distances for any point on the tree. By the definition of

global MV and Propositions 4 and 5, the global MV p is always the local MV with the minimum

var(p). Because Algorithm 3 checks all edges for all local MVs and compute root-to-tip variance

at all of those points, it guarantees to find the correct global MV.

Proposition 9. The running time of Algorithm 3 scales linearly with the number of leaves in the

tree.

Proof. Algorithm 3 visits each edge in T exactly three times, each of which involves only constant

time operations. After the rooting position is found, rerooting the tree also takes no more than

linear time assuming that the tree is represented with the usual pointer structure. Thus, the overall

time complexity of Algorithm 3 is O(n).

Algorithm 4 Linear time midpoint rooting algorithm.
Function MidpointRoot(T )

For node u in post-order(T ) # Bottom-up traversal
MI(u)←max({MI(v)+ ev|v ∈ c(u)})

MO(r(T ))← 0
For node v in pre-order(T ) # Top-down traversal

MO←max({MO(p(v))}∪{MI(s)+ es|s ∈ c(p(v))−{v}})
x∗← (MI(v)−MO+ ev)/2

if x∗ ≥ 0 and x∗ ≤ ev
reroot T at (u,v) with distance x∗ from u and return

MO(v)←MO+ ev

81



Similar to MV, MP rooting can be done in linear time using two tree traversals (Algo-

rithm 4). Interestingly, at least one phylogenetic package in common use, Dendropy, seems to

have opted not to implement this simple algorithm, and instead uses an approach that scales

quadratically with n (our attempt to use ape [245] failed). We re-implemented MP using the

Dendropy package to solve this shortcoming.

3.2.2 Experimental design

Simulated datasets

We study four simulated datasets, including two that were previously published. One

of the published datasets, RNASim [217], includes only one gene tree and is used here only to

evaluate the scalability of rooting methods. The other datasets all use SimPhy [202] to generate

gene and species trees under the multi-species coalescent (MSC) model [244] and heterogeneous

parameters. We then used Indelible [98] to simulate nucleotide sequence evolution on gene trees

according to the GTR+Γ model with varying sequence length and different sequence evolution

parameters (Appendix C). Then, FastTree2 [262] was used to estimate gene trees based on the

GTR+Γ model.

The three main datasets with species trees and gene trees are:

• D1 – 30-taxon heterogeneous dataset: Here, the number of ingroup species was fixed to 30.

We simulated 100 replicates, each with a different species tree and 500 gene trees. This

dataset is used for extensive analysis of all methods.

• D2 – Large heterogeneous dataset: This dataset includes two subsets, one with 2000 and

another with 5000 taxa, and is used for testing performance on large datasets. For both

datasets we created 20 replicates with different species trees and 50 gene trees.

• D3 – ASTRAL-II dataset: We reused a previously published dataset [219] to investigate

performance for intermediate number of species (i.e, 10, 50, 100, 200, 500, and 1000).
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The new datasets, D1 and D2 are simulated using a similar approach. For each number

of species in both D1 and D2, we simulated 10 different model conditions where we changed

parameters that control divergence from the strict clock and the distance of the outgroup to the

ingroups. Seven out of ten model conditions included an outgroup. The outgroup is added as a

sister to the ingroups on the species tree. The length of the branch above ingroups (connecting

them with the root) is decided by multiplying a fixed number by the height of the ingroup species

tree; we refer to that fixed number as the root to crown ratio (R/C). For example, an R/C of 0.5

indicates that the branch connecting the root of the ingroups to the root of the tree is half the

height of the ingroup tree. The choice of the R/C ratio directly impacts how often the species tree

outgroup is also a gene tree outgroup (Fig. 3.1C).

Beyond the R/C ratio, model conditions are also distinguished by two parameters of

SimPhy that control deviations from the clock: (i) gene by lineage specific rate heterogeneity,

which is a multiplier drawn from a gamma distribution for each branch of each gene tree, and

(ii) species specific branch rate heterogeneity rate, which is also a multiplier drawn from a

gamma distribution per species and is used to scale all gene tree branches for that species

universally. The gamma distributions are mean-preserving, and therefore are specified with one

shape parameter. We draw the value of that shape parameter from a log normal distribution with

the scale hyperparameter σ = 1 and a varying location hyperparameter, which controls the level

of deviation from the strict clock. We refer to the log normal location (which is the log of the

mean of the distribution minus 0.5) as the clock deviation parameter; the higher values correspond

to gamma distributions more closely centered around one, and thus, less deviation from the clock,

while lower values correspond to more deviation (Fig. 3.1D).

In six model conditions, the clock deviation parameter is fixed to a moderate value of 1.5,

and the R/C ratio is varied between 0 (no outgroup), 0.25, 0.5, 1, 2, and 4. In the remaining model

conditions, the R/C ratio is fixed to either 0 or 1 and the clock deviation parameter is changed

between 0.15, 1.5, and 5 to get high, moderate, and low levels of deviations, respectively. Note
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that the two model conditions with heterogeneity hyperparameter 1.5 are common with six

conditions that varied the R/C ratio; thus, in total we have ten model conditions for each number

of species.

Other parameters of the SimPhy simulation procedure are sampled from distributions

as described in Appendix C. In D2, the expected species tree height in is set to 14.7 million

generations, which is much higher than the 3 million used for the 30-taxon dataset. We chose

different heights for small and large datasets because having 30 surviving species in a span of 3

million generations is reasonable, but having many thousands of extant species in such a short

evolutionary time is unlikely. Thus, for the D2 dataset, we increased the height to obtain more

realistic conditions.

The portion of quartet trees induced by gene trees that are found in the species tree can be

used as a measure of ILS [297], where values close to 1/3 indicate extremely high levels of ILS

and values close to 1 indicate no ILS. Our datasets varied between these two extremes (Fig. 3.1A).

The gene tree estimation error, measured by RF distance between true gene trees and estimated

gene trees, was similarly heterogeneous and was also substantially impacted by deviations from

the clock (Fig. 3.1B); with low and medium deviations, median gene tree error was respectively

25% and 32%, while for high deviations, the error increased to 49%.

A major point of the current paper is that an outgroup species is not always an outgroup

in gene trees, even in the true gene trees. When the R/C ratio is low, many of the true gene trees

do not have the outgroup species in the outgroup position (Fig. 3.1C). Interestingly, with the

30-taxon dataset, only at the extremely high R/C= 4 the outgroup is outside the ingroups in close

to all gene trees of all replicate datasets. At the other extreme, with R/C= 0.25, in more than 50%

of replicate runs, more than 50% of our 500 true gene trees did not have the outgroup species in

the outgroup position. The larger datasets, which had higher numbers of generation and higher

levels of ILS (Fig. 3.1A) had fewer cases of outgroup mixing with ingroups in true gene trees.
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Evaluation metrics

To estimate the accuracy of a rooted gene tree, we measure the proportion of all
(n

3

)
triplets in the reference (i.e., true) tree that are also found in the estimated tree. This measure is

a function of both the accuracy of the unrooted topology of the estimated tree and the accuracy

of the rooting. To separate the rooting error from the tree error, for the small 30-taxon dataset

where it is feasible, we examine all possible root placements and find the “ideal” rooting that

results in the lowest possible triplet distance (the ideal triplet distance is zero if and only if the

unrooted tree is correct). We then define “delta triplet distance” as the difference between the

triplet distance of the estimated tree with the rooting of interest (OG/MV/MP) and the triplet

distance of the estimated tree with the ideal rooting. For the small trees with 30 leaves, we also

afford to compute the rooted SPR distance using SPRDist [363]; however, for larger trees, SPR

could not be computed. Finally, for the true unrooted gene trees that are rooted using an algorithm,

we also report normalized branch distance, defined as the number of branches between the correct

root and the estimated root, normalized by the maximum number of branches from any leaf to the

root.

Beyond triplet distance, we use the normalized RF distance to measure the accuracy of

unrooted trees, and we use percentage of quartets in the gene trees also present in the true gene

trees (as computed by ASTRAL [218]) as a measure of ILS. For species trees, we also report

the Matching Split measure [28]. We also report running time, measured on Intel EM64T Xeon

nodes with 64GB memory.

Implementations

We implemented both MP and MV (https://uym2.github.io/MinVar-Rooting/)

using the Dendropy package for phylogenetic manipulations [327]. As expected, the running

time of the algorithm increases linearly with the number of leaves (Fig. 3.2); an RNASim [217]

tree with 200,000 leaves could be rooted in just under a minute. In contrast, Dendropy seems to
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use a quadratic implementation of MP rooting (Fig. 3.2A).

3.3 Results

We will examine the following research questions using simulated and empirical data:

• RQ1: Does our novel MV rooting improve the root placement accuracy compared to MP

and OG rooting for datasets with varying numbers of species?

• RQ2: How are MP, MV, and OG impacted by (i) gene tree estimation error, (ii), divergence

from the clock, and (iii) outgroup distance to ingroups (R/C)?

• RQ3: What is the impact of rooting error on the species tree estimation, and is STAR less

accurate than its unrooted counterpart, NJst?

3.3.1 Simulation results

RQ1: MV for varying numbers of leaves

On the D1 (30-taxon) dataset with estimated gene trees, MV matched or improved the

triplet accuracy of MP in all 10 model conditions (Figs. 3.3 and 3.4B, and Fig. C.5 in Appendix

C. Overall, MV had lower error than MP (mean triplet error: 0.238 and 0.244, respectively),

and the differences were statistically significant according to an analysis of variance (ANOVA)

test comparing the two methods (p < 10−5), and considering divergence from the clock or the

outgroup distance as other independent variables (to be discussed in RQ2). However, averaged

over all 7 conditions of D1 where outgroups were available, OG rooting was more accurate

than MV rooting, a pattern that was not universal and will require a nuanced consideration of

parameter effects (RQ2).

When we combine D1, D2, and D3 to get a heterogeneous dataset that ranges between 10

to 5000 taxa, a clear pattern emerges. While with smaller numbers of species, OG performs the
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best, when the number of taxa is increased to 1000 and beyond, MV gradually becomes the most

accurate method (Fig. 3.3A). Increasing the number of taxa from 10 to 5,000 gradually increases

the error for all methods, but OG is impacted more than MV (an increase from 0.1 triplet distance

to 0.4 for OG, but from 0.2 to 0.35 for MV). MP is never the most accurate method but with trees

of 5000 taxa, it is not worse than OG either. It is interesting to note that 2000 and 5000-taxon

datasets, which have higher average tree height than 30-taxon datasets, have lower numbers of

true gene trees where the outgroup species is not the gene tree outgroup (Fig. 3.1C). Thus, the

sharp decrease in the accuracy of OG is not related to increased impacts of ILS and has to be

attributed to increased error in the estimated gene trees. When we focus on our new datasets (D1

and D2), it becomes clear that improvements of MV over OG are the most pronounced with lower

deviations from the clock (Fig 3.3B).

RQ2: Impact of error, clock, and outgroup distance

We focus our discussion on D1, but patterns on the D2 dataset are similar. On D1, we

focus on the triplet error, but SPR distance gives similar results. See supplementary figures in

Appendix C for details.

While MV is always at least as good as MP in our simulations, on D1, improvements of

MV compared to MP are significantly impacted by both the level of divergence from the clock

and the R/C ratio (p = 0.002 and p < 10−5, respectively, according to the two-way ANOVA test).

The improvements of MV over MP are higher when divergence from the clock is less and when

the outgroup distance is smaller; the highest difference is for the case with no outgroup (Fig. 3.4A,

Figs C.5 and C.6 in Appendix C).

The OG rooting is extremely accurate if true gene trees were known (Fig 3.4AB, and Figs.

C.4 and C.5 in Appendix C); cases of error are limited to when the root is not very diverged from

the ingroups (R/C< 1). In contrast, MV and MP, while are better than OG with low divergence

from the clock, can have very high error rate even on true gene trees if divergences from the
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clock are sufficiently large (Fig. 3.4B and Figs.C.4 and C.6 in Appendix C). For example, MV

(MP) finds a root that on average has 25% (30%) normalized branch distance to the correct root

(Fig. C.4 in Appendix C); i.e., the inferred root is away from the correct root by a quarter of the

maximum tree height.

On estimated gene trees, however, the accuracy of OG rooting severely degrades. The

delta triplet error (triplet error above ideal rooting) of OG is only slightly better than MV with

various R/C ratios with medium divergence from the clock (Fig. 3.4A) and is worse than MV

with low divergence from the clock (Fig. 3.4B); OG remains substantially more accurate than MV

with high divergence from the clock. Confirming this pattern, considering all individual genes in

all replicates, as gene tree error increases from 0% to approx. 50%, delta triplet error seems to

increase for all methods but the increase is more pronounced for OG (Fig. 3.4C). Beyond 60%

gene tree error (RF), delta triplet error actually goes down perhaps because even the ideal rooting

has very high error, leaving little or no room for extra error due to rooting alone.

The delta triplet error of estimated gene trees rooted with OG reveals an interesting (U-

shape) pattern. Choosing very small or very large R/C ratios (e.g., very close or distant outgroups)

is not ideal (Fig. 3.4A). Instead, the best performance is obtained by R/C= 1. This ratio seems to

give outgroups that are as close as possible to the ingroups to reduce LBA effects while remaining

sufficiently long to reduce impacts of ILS.

RQ3: Species tree error

We focus on the average RF distance here; using RF distributions (Fig. C.3 in Appendix

C) or average distances according to the MS metric (Table C in Appendix C) do not change any

of our conclusions.

The average RF error of species trees run on estimated gene trees with inferred roots

ranges between 9.1% and 9.5% (Table 3.1). STAR run on the true gene trees with the true root

has an average RF error of 5.8%; thus, a substantial part of the species tree error can simply be
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attributed to ILS and lack of insufficient number of gene trees to find a perfect species tree. STAR

run on the gene trees with ideal rooting has 8.6% RF error, which is a 48% increase from STAR

run on true gene trees. These differences are statistically significant according to a two-way

ANOVA test where the clock divergence parameter is the second independent variable. Therefore,

the second substantial contributor to the species tree error is the gene tree estimation error.

Despite all the differences observed in the accuracy of rooting individual gene trees, we

surprisingly found no clear evidence that the rooting error has a significant impact on the species

tree accuracy. The RF error of STAR species trees run on estimated gene trees with ideal rooting

(which uses the known true gene tree) was not significantly different from that of the STAR run on

estimated gene trees rooted using OG or MV (Table 3.1). We also saw no statistically significant

differences between species trees estimated from gene trees rooted using MV or OG. Thus, given

estimated gene trees, which in our dataset had high rates of error (Fig. 3.1B), the delta error due

to rooting inaccuracies does not seem to lead to much further reduction in accuracy. Consistent

with this hypothesis, we also observed no statistically significant differences (Table 3.1) between

STAR rooted using OG and NJst (which due to its strong parallels with STAR can be called

unrooted STAR [8]).

On estimated gene trees, all rooting methods are negatively impacted by increased devia-

tions from a strict clock (Tables 3.1 and C.3 in appendix C). The reduction may relate to increased

unrooted gene tree estimation error with increased deviations (Fig. 3.1B); it may also be related

to the fact that rooting becomes successively harder with stronger deviations from the strict clock

(Fig. 3.4B).

3.3.2 Biological results

We tested MV rooting on an angiosperm dataset with 46 species and 310 genes [365],

where the correct rooting has been a point of debate [318]. This dataset includes a single outgroup

(Selaginella). We rooted each gene tree using both OG and MV, and compared gene trees with the
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Methods compared p-value Mean RF ST error
method clock par. 1st method 2nd method

STAR True vs STAR Ideal < 10−5 0.126 0.058 0.086
STAR Ideal vs STAR OG 0.551 0.0009 0.086 0.091
STAR Ideal vs STAR MV 0.144 < 10−5 0.086 0.095
STAR OG vs STAR MV 0.476 < 10−5 0.091 0.095
STAR OG vs NJst 0.623 0.00005 0.091 0.093

Table 3.1: Species tree estimation accuracy using rooted and unrooted gene trees. ANOVA
tests were performed on the D1 (30-taxon) dataset for pairs of methods. RF error is used as the
metric. The tests were performed on the subset of D1 where outgroup exists. For true gene trees,
the true root is known. For estimated gene trees, the Ideal is the rooting position that minimizes
triplet error to the true gene trees. p-values are shown for the significance of differences between
the error of the two methods specified in each row, and for the differences in error among the
three levels of clock divergence parameter, respectively.

published MP-EST species tree [365, 219] using the triplet distance after removing the outgroup

from the gene trees and the species tree. The motivation for using this score is that we conjecture

an incorrect rooting will tend to increase observed discordance of gene trees with the species

tree. On this dataset, OG and MV essentially result in the same average triplet distance to the

MP-EST species tree (19.2% for OG and 19.3% for MV) and their differences are not statistically

significant (p-value=0.9). It’s worth noting that excluding outgroups could have had reduced gene

tree estimation error, and therefore, may have been a better approach overall.

3.4 Discussions

Our simulations made it clear that even if the outgroup distance to ingroups is twice as

much as the most distant ingroups (i.e., R/C= 1), there can still be many true gene trees that fail to

have the outgroup as sister to the ingroups (Fig. 3.1C). How often such cases of outgroup/ingroup

mixing happens depends on the level of ILS, and by extension on the depth of the species tree

and population size. Our 30-taxon dataset had numbers of generations that ranged between 407K

and 9.1M generations in 90% of replicates; thus, our trees range between relatively shallow to

moderately deep. Overall congruence of gene trees with the species tree, as measured by the
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quartet score, was high (> 0.8) for 43% of replicates, and was moderate (0.6 – 0.8) for another

34%. Thus, despite having realistic conditions, we observe outgroups mixed with ingroups in

true gene trees.

Making outgroups maximally distant from ingroups, however, won’t solve the problem.

As Rosenfeld et al. have pointed out [281], making the outgroups distant can lead to random

assignment of outgroups in the gene trees, thereby increasing the apparent discordance. In

agreement with their results, and much of the literature, we found that very distant outgroups,

while placed as desired in the true gene trees, can lead to increased overall error (Fig. 3.4A). There

is a trade-off between making the outgroup closer to ingroups to minimize LBA and making

it more distant to reduce ILS; in our 30-taxon dataset and under our conditions of simulations,

the optimal setting was R/C=1, corresponding to outgroups that are twice as distant from any

of the ingroups as the most two divergent ingroups. The exact optimal value, however, likely

depends on the exact parameters of a biological dataset and the choice of R/C= 1 cannot be

blindly prescribed.

Increased divergence from the clock substantially increased unrooted gene tree estimation

error (Fig. 3.1B), but impacted the accuracy of rooting only when MP or MV were used (Fig. 3.4B).

The strong dependence of gene tree estimation on clock assumptions leads us to suggest that

simulations of the MSC process should always include conditions where the strict clock are

violated. Many methods are proved consistent and tested empirically only under the strict clock

assumption, a situation that we hope our results will change. New simulation tools such as

SimPhy make it easy to simulate datasets that deviate from the strict clock assumption.

A surprising result of our simulation studies was that while gene tree rooting error was

generally high, we could not detect a significant impact on the species tree. Two explanations

have to be considered. It could be that in general the impact of rooting error on species tree

estimation is minimal. On the other hand, the lack of power to detect significant impact may be

limited to specifics of our simulation procedure. Several important parameters of the simulation
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may have reduced the effect of rooting error on species tree estimation error. We always had

five hundred genes, which is relatively high considering that we only had 30 ingroup species.

Impact of rooting error for datasets with more species and/or fewer genes may be different, a

problem that we did not get to address here because of computational limitations. Moreover, we

conjecture that at least part of the reason for this lack of observed impact is that our datasets had

high levels of gene tree estimation error even for the unrooted tree. It is conceivable that the

impact from mis-rooting is drawn out by the impact of topological error and is hard to detect

with a datasets of 100 replicates, simulated with heterogeneous parameters drawn from wide

parameter distributions. We note that our simulation setup was designed mainly to address the

question of gene tree rooting error and to enable a comparison between our new MV and existing

MP and OG rooting methods. Moreover, we focused only on comparing NJst and STAR because

of their deep mathematical connection; our current study cannot be generalized to other methods

such as ASTRAL and MP-EST (which can in principle be altered to take as input both rooted and

unrooted trees). Thus, while our results are suggestive that there may be considerable robustness

to gene tree rooting error at least among some methods, to arrive at a more nuanced understanding

of impacts of rooting, simulation setups designed directly to answer this questions will be needed

in future.

Several other limitations of our study should be noted. In our simulations, we always

included only one outgroup (a limitation of SimPhy), but the impact of selecting multiple

outgroups will be important to examine. We inferred gene trees under the exact model of

sequence evolution that generated the data, but the impact of factors such as LBA are known to

be exacerbated by model misspecification. Our deviations from the clock were random and did

not depend on time. Finally, more realistic models of change in evolutionary tempo may result in

more systematic biases and different conclusions.
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3.5 Conclusion

We introduce a new method for rooting phylogenetic trees, which relies on minimizing the

variance of the root to tip distances. The method can be efficiently implemented in an algorithm

that scales linearly with increased number of species and runs in less than a minute for datasets of

up to 200,000 leaves. Our new approach is more accurate than the traditional midpoint rooting

and its relative accuracy compared to the dominant method of outgroup rooting depends on the

number of species; with very large trees, minimizing root to tip variance outperforms outgroup

rooting whereas for small and moderate size datasets outgroups are more accurate. Regardless

of the relative accuracy of methods, we showed that rooting gene trees is challenging because

deviations from a strict clock make it hard for automatic methods to find the correct root, while

gene tree discordance makes outgroup rooting unreliable. However, within the limitations of our

study, we detected no significant impact due to gene tree error on the accuracy of the species tree

accuracy for datasets with large numbers of gene trees, many of them inferred from datasets with

low phylogenetic signal. We leave a more nuanced consideration of impacts of incorrect rooting

on species tree error to future research.
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Figure 3.1: Properties of simulated datasets D1 and D2. A: The level of ILS, measured by the
quartet score of true species tree with respect to true gene trees with R/C= 1 for (left) the D1
dataset, broken down by the clock divergence parameter and (right) both D1 and D2 datasets. B:
gene tree estimation error, measured as the normalized Robinson-Foulds (RF) distance [278]
between true and estimated gene trees for the D1 dataset with R/C= 1 and varying clock
divergence parameters. C: The empirical cumulative distribution for the proportion of true gene
trees where the outgroup species is not an outgroup; thus, each point (x,y) on a line indicates that
y out of 100 replicates had at most x×500 true gene trees where the species tree outgroup was
not the gene tree outgroup. Boxes correspond to the three datasets with different sizes. D: The
ratio between standard deviation to mean (i.e., coefficient of variation) of root to leaf distances
of gene tree branches, as an empirical measure of divergence from the clock; 0 corresponds to
strict molecular clock and higher values correspond increased divergence (the x axis is in the
log scale). See Appendix C for model conditions not shown here.
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Figure 3.2: Running time of MP and MV. Left: comparison of our implementation of MV/MP
with the implementation of MP in Dendropy, which employs a quadratic algorithm, on datasets
D1, D2, and D3 with up to 5,000 leaves; Right: Linear time scaling of our implementation,
tested on the RNASim dataset with up to 200,000 leaves.
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parameter to medium to best match the conditions of D3. Bottom: Results for D1 and D2 with
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Figure 3.4: Rooting error above ideal rooting on 30-taxon dataset. Top: delta triplet error with
both true and estimated gene trees for (A) medium divergence from the clock and varying R/C
ratios and (B) R/C=1 and varying levels of divergence from the clock. C: Delta triplet error
versus gene tree estimation error, measured by RF distance, shown for high, medium, and low
divergence from the clock; each point is an average of all gene trees in all replicates that had an
identical RF gene tree error. A loess regression is fitted to the data using R.
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Chapter 4

Log Transformation Improves Dating of

Phylogenies

Phylogenetic trees inferred from sequence data often have branch lengths measured in the

expected number of substitutions and therefore, do not have divergence times estimated. These

trees give an incomplete view of evolutionary histories since many applications of phylogenies

require time trees. Many methods have been developed to convert the inferred branch lengths

from substitution unit to time unit using calibration points, but none is universally accepted as

they are challenged in both scalability and accuracy under complex models. Here, we introduce a

new method that formulates dating as a non-convex optimization problem where the variance of

log-transformed rate multipliers are minimized across the tree. On simulated and real data, we

show that our method, wLogDate, is often more accurate than alternatives and is more robust to

various model assumptions.
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4.1 Introduction

Phylogenetic inference from sequence data does not reveal divergence time (i.e. exact

timing of evolutionary events) unless paired with external timing information. Under standard

models of sequence evolution, the evolutionary processes, including sequence divergence, are

fully determined by the product of the absolute time and mutation rates in a non-identifiable

form. Thus, these models measure branch lengths in the unit of expected numbers of mutations

per site (since standard models like GTR [336] only allow substitutions, focusing on these

models, we use substitutions and mutations interchangeably throughout this paper). Nevertheless,

knowing divergence times is crucial for understanding evolutionary processes [130, 99] and is a

fundamental need in many clinical applications of phylogenetics and phylodynamics [347]. A

commonly used approach first infers a phylogeny with branch lengths in the unit of substitution

per site and then dates the phylogeny by translating branch lengths from substitution unit to

time unit; co-estimation of topology and dates is also possible [77] though its merits have been

debated [351].

The fundamental challenge in dating is to find a way to factorize the number of substi-

tutions into the product of the evolutionary rate and time. A common mechanism allowing this

translation is to impose soft or hard constraints on the timing of some nodes of the tree, leaving the

divergence times of the remaining nodes to be inferred based on the constrained nodes. Timing

information is often in one of two forms: calibration points obtained from the geological record

[168] and imposed on either internal nodes or tips that represent fossils [74], or tip sampling times

for fast-evolving viruses and bacteria. The constraints still leave us with a need to extrapolate

from observed times for a few nodes to the remaining nodes, a challenging task that requires a

mathematical approach. Obtaining accurate timing information and formulating the right method

of extrapolation are both challenging [283].

Many computational methods for dating phylogenies are available [283, 171], and a main
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point of differentiation between these methods is the clock model they assume [291]. Some

methods rely on a strict molecular clock [384] where rates are effectively assumed to be constant

[177, 304]. However, empirical evidence has now made it clear that rates can vary substantially,

and ignoring these changes can lead to incorrect dating [39, 170]. Consequently, there have

been many attempts to relax the molecular clock and allow variations in rates. A main challenge

in relaxing the clock is the need for a model of rates, and it is not clear what model should

be preferred. As a result, many methods for dating using relaxed molecular clocks have been

developed. Some of these methods allow rates to be drawn independently from a stationary

distribution [77, 346, 6] while others model the evolution of rates with time [143] or allow

correlated rates across branches [339, 166, 292, 185, 79, 331, 313]. Despite these developments,

strict molecular clocks continue to be used, especially in the context of intraspecific evolution

where there is an expectation of relatively uniform rates [42].

Another distinction between methods is the use of explicit models [290]. Many dating

methods use a parametric statistical model and formulate dating as estimating parameters in a

maximum likelihood (ML) or Bayesian inference framework [177, 77, 346, 340]. Another family

of methods [292, 331] formulate dating as optimization problems, including distance-based

optimization [367, 366], that avoid computing likelihood under an explicit statistical model.

When the assumed parametric model is close to the reality, we expect parametric methods to

perform well. However, these methods can be sensitive to model deviations, a problem that may

be avoided by methods that avoid using specific models.

In this paper, we introduce LogDate, a new method of dating rooted phylogenies that

allows variations in rates but without modeling rates using specific distributions. We define

mutation rates necessary to compute time unit branch lengths as the product of a single global rate

and a set of rate multipliers, one per branch. We seek to find the overall rate and all rate multipliers

such that the log-transformed rate multipliers have the minimum variance. This formulation

gives us a constrained optimization problem, which although not convex, can be solved in a
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scalable fashion using the standard approaches such as sequential least squares programming.

While formulation of dating as an optimization problem is not new [340, 177], here we introduce

log-transformation of the rate multipliers, which as we will show, results in more accurate dates.

Our observation is in line with a recent change to RelTime [332] where the switch from arithmetic

means to geometric means (between rates of sister lineages) has improved accuracy. In extensive

simulation studies and three biological data sets, we show that a weighted version of LogDate,

namely wLogDate, has higher accuracy in inferring node ages compared to alternative methods,

including some that rely on time-consuming Bayesian inference. While wLogDate can date trees

using both sampling times for leaves (e.g., in viral evolution) or estimated time of ancestors, most

of our results are focused on cases with sampling times at the tips of the tree.

4.2 Methods

4.2.1 Definitions and notations

For a rooted binary tree T with n leaves, we give each node a unique index in [0, . . . ,2n−2].

By convention, the root is always assigned 0, the other internal nodes are arbitrarily assigned

indices in the range [1, . . . ,n− 1], and the leaves are arbitrarily assigned indices in the range

[n−1, . . . ,2n−2]. In the rest of this paper, we will refer to any node by its index. If a node i is

not the root node, we let par(i) denote the parent of i and if i is not a leaf, we let cl(i) and cr(i)

denote the left and right children of i, respectively. We refer to the edge connecting par(i) and i

as ei.

We can measure each edge ei of T in either time unit or substitution unit. Let ti denote the

divergence time of node i, i.e. the time when species i diverged into cl(i) and cr(i). Then for any

node i other than the root, τi = ti− tpar(i) is the length of the edge ei in time unit. We measure

divergence time of a node with respect to a fixed reference point in the past (i.e., time increases

forward). Thus, we enforce ti > tpar(i) for all i. Let µi be the substitution rate (per sequence
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site per time unit) on branch ei, then the expected number of substitutions per sequence site is

bi = µiτi. Let τ = [τ1, . . . ,τ2n−2] and b = [b1, . . . ,b2n−2].

From sequence data, b can be inferred using standard methods such as maximum par-

simony [97], minimum evolution [284], neighbor-joining [286, 105], and maximum-likelihood

(ML) [91, 118, 231]. Note that inferred trees need to be rooted subsequently using an outgroup

(that can be removed) or automatic methods such as midpoint or minimum variance rooting [201].

We let b̂i denote the estimate of bi by an inference method and let b̂ = [b̂1, . . . , b̂2n−1].

In this paper, we are interested in computing τ from b̂. The computation of τ from b̂ is

complicated by two factors: (1) the possibility of change among rates, and (2) deviations of the

inferred edge length b̂i from the true value bi.

To better describe the mathematical formulation of the optimization problem, we first do

the following change of variables. Assuming the mutation rates on the branches are distributed

around a global rate µ, we define νi =
µτi
b̂i

. Let x = [ν1, . . . ,ν2n−2,µ]; our goal of finding τ is

identical to finding x.

4.2.2 Dating as a constrained optimization problem

We formulate dating as an optimization problem on 2n−1 variables x = [ν1, . . . ,ν2n−2,µ],

subject to the linear constraints defined by calibration points and/or sampling times. Many

existing methods, including LF [177] and LSD [340], can be described in this framework, with

the choice of the objective function distinguishing them from each other. We start by describing

the setup of the constraints enforced by a set of calibration points/sampling times, and show that

they can all be written as linear equations on x. We then give the formulation of both LF and

LSD in this framework and use their formulation to motivate our own new approach. Finally, we

describe strategies to solve the wLogDate optimization problem.
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Linear constraints Ψ from sampling times

For any pair of nodes (i, j) (where each of i and j can either be a leaf or an internal node)

with enforced divergence times (ti, t j), the following constraint ψ(i, j) must be satisfied

ψ(i, j) : µ(t j− ti) = ∑
k∈P(m, j)

νkb̂k− ∑
k∈P(i,m)

νkb̂k (4.1)

where m is the LCA of i and j and P(m, j) and P(i,m) are the paths connecting m to j and i to m,

respectively. Thus, given k time points, k(k−1)/2 constraints must hold. However, only k−1 of

these constraints imply all others, as we show below.

Let t0 be the unknown divergence time at the root of the tree. For k calibration points

t1, . . . , tk, we can setup k constraints of the form:

Ci : µ(ti− t0) = ∑
k∈P(0,i)

νkb̂k, (4.2)

where node 0 is the root and P(0, i) is the path from the root to node i. For any pair (i, j), the

linear constraint given in Eq. 4.1 can be derived by subtracting Ci from C j side by side. Also, we

can remove t0 from the set of constraints by subtracting C1 from all other constraints C2, . . . ,Ck.

This gives us the final k−1 linear constraints on x, which we denote as Ψ. We can build Ψ using

Algorithm 1 (Supplementary material).

Optimization Criteria

Since νi =
µτi
b̂i

, the distribution of νi is influenced by both the distribution of the rates (µi)

and the distribution of b̂i around bi. In traditional strict-clock models [384], a constant rate is

assumed throughout the tree (∀iµi = µ ). Under this model, the distribution of νi is determined by

deviations of b̂i from bi.

[177] (LF) modeled the number of observed substitutions per sequence site on a branch i
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by a Poisson distribution with mean λ = µτi and treated sb̂i as if they were the total number of

observed substitutions; as such, they assume sb̂i ∼ Poisson(sµτi), where s is the sequence length.

Therefore, by changing variable, we can write the log-likelihood function as:

2n−2

∑
i=1

(
sb̂i log(sb̂i)− log((sb̂i)!)

)
+

2n−2

∑
i=1

sb̂i (logνi−νi) .

Given s and b̂i, LF finds x that maximizes the log-likelihood function and subject to the constraints

Ψ. As such,

x∗P =argmin
x

2n−2

∑
i=1

b̂i
(
νi− logνi

)
subject to Ψ. (4.3)

[340] assume b̂i follows a Gaussian model: b̂i ∼ Gaussian(µτi,σ
2
i ) and assume the vari-

ance is approximated by b̂i
s (the method includes smoothing strategies omitted here). Then, the

negative log likelihood function can be written as:

2n−2

∑
i=1

(b̂i−µτi)
2

σ2
i

≈
2n−2

∑
i=1

s
b̂i
(b̂i−µτi)

2 =
2n−2

∑
i=1

sb̂i(1−νi)
2.

Thus, the ML estimate can be formulated as:

x∗G =argmin
x

2n−2

∑
i=1

b̂i(1−νi)
2 subject to Ψ. (4.4)

Both LF and LSD have convex formulations. [177] proved that their negative log-

likelihood function is convex and thus the local minimum is also the global minimum. Our

constraint-based formulation of LF also can be easily proved convex by showing its Hessian

matrix is positive definite. [340] pointed out their objective function is a weighted least squares.

Using our formulation, we also see that Eq. 4.4 together with the calibration constraints form a

standard convex quadratic optimization problem which has a unique analytical solution.
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4.2.3 LogDate Method

Motivation

LF only seeks to model the errors in b̂ and ignore true rate heterogeneity. Strict-clock

assumption is now believed to be unrealistic in many settings [265, 301, 135], motivating relaxed

clocks, typically by assuming that µis are drawn i.i.d. from some distribution [77, 346, 6].

Most methods rely on presumed parametric distributions (typically, LogNormal, Exponential,

or Gamma) and estimate parameters using ML [346], MAP [6], or MCMC [77, 78]. The LSD

method, which like LF directly models errors in b̂, is additionally justified under a normally-

distributed clock model. Choices of specific distributions in these methods are not motivated by

the knowledge that real data follow them exactly (for example, the Normal distribution has to be

misspecified as mutation rates cannot be negative).

Our goal is to avoid explicit parameter inference under a model of rate multipliers. Instead,

we follow the assumption shared by existing methods like LSD and LF: we assume that given

two solutions of x both satisfying the calibration constraints, the solution with less variability in

νi values is preferable. Thus, we prefer solutions that minimize deviations from a strict clock

while allowing deviations. A natural way to minimize deviations from the clock is to minimize

the variance of τi
b̂i

. This can be achieved by finding µ and all νi such that νi is centered at 1 and

∑
2n−2
i=1 (νi−1)2 is minimized. Interestingly, the ML function used by LSD (Eq. 4.4) is a weighted

version of this approach.

The minimum variance principle results in a fundamental asymmetry: multiplying or

dividing the rate of a branch by the same factor are penalized differently (Fig 4.1a). For example,

the penalty for νi = 4 is more than ten times larger than νi = 1/4. The LF model is more

symmetrical than LSD but remains asymmetrical (Fig 4.1a). This asymmetry results from the

asymmetric distribution of the Poisson distribution around its mean, especially for small mean, in

log scale (Fig 4.1b). Because of this asymmetry, methods like LSD and LF judge a very small
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Figure 4.1: (a) The penalty associated to multiplying a single edge i with multiplier νi in LSD,
LF, and LogDate approaches, as shown in Equations 4.3, 4.4, and 4.5. To allow comparison, we
normalize the penalty to be zero at ν = 1 and to be 1 at ν = 4. (b) The confidence interval of the
ratio between estimated and true branch length using the Poisson model. For this purpose of
this exposition, we assume that the estimated branch length equals the number of substitutions
occurring on the branch and follows a Poisson distribution (i.e., JC69 model), divided by
sequence length. With these assumptions, the CI for estimate length b̂i is between 1/2χ2

2sbi
and

1/2χ2
2sbi+2; we draw the CI for α/2 = 0.05 and α/2 = 0.2 to get 0.2–0.8 and 0.05–0.095 intervals for

0.0001≤ bi ≤ 0.4. (c) and (e): Density and histograms of penalty terms (without square) used
by LSD (µτi/b̂i−1) and LogDate (log µτi/b̂i) under different clock models. (c) Fixing µτi = 0.1, we
draw 500000 rate multipliers (ri) from LogNormal, Gamma, or Exponential distributions with
mean 1 and variance 0.16 for LogNormal and Gamma. For strict clock, ri = 1. We then draw
estimated branch length for each replicate i from the Normal distributed with mean bi = riµτi

and variance bi/s for s = 200. (e) The branch lengths are estimated from the sequences using
PhyML from simulated sequences of [340], as explained in the text. Parameters of rate multiplier
distributions match part (c). We omit extremely short branches (< 0.001) for better visualization.
(d) and (f): The penalty of LSD and LogDate versus the empirical log-likelihood of estimated
length for the models described in (c) and (e), respectively. To compute the empirical likelihood,
we divide estimated branch lengths into small bins and the empirical likelihood of each bin is
estimated as the frequency of the data assigned to it. See Appendix D Fig. D.2 for extended
results.
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b̂i/bi to be within the realm of possible outcomes, and thus penalize νi < 1 multipliers less heavily

than νi > 1.

Our method is based on a principle, which we call the symmetry of ratios: the penalty for

multiplying a branch by a factor of ν should be no different than dividing the branch by ν. Note

that this assertion is only applicable to true variations of the mutation rate (i.e, ignoring branch

length estimation error). We further motivate this principle with more probabilistic arguments

below, but here we make the following case. If one considers the distribution of rate multipliers

for various branches, absent of an explicit model, it is reasonable to assume that compared to

an overall rate, branches rates are as likely to increase by a factor of ν as they are to decrease

by a factor of ν. When this statement is true, we shall prefer a method that penalizes ν and 1/ν

identically. To ensure the symmetry of ratios, we propose taking the logarithm of the multipliers

νi before minimizing their variance. Minimizing the variance of the rates in log-scale is the

essence of our method. It achieves the symmetry, and, as we show below, a better correspondence

between penalty and data likelihood.

Log-transformation has long been used to reduce data skewness before applying linear

regression [325, 164, 368, 55]. In molecular dating, it can be argued that log-transformation is

implicit in the new version of RelTime [332] where the geometric means between sister lineages

replaced the arithmetic means in its predecessor. The improvement in the accuracy of RelTime

encourages a wider use of log-transformation in molecular dating. Note that log-transforming the

rate multipliers before minimizing their least squares penalty is identical to applying linear least

squares after log-transformation of both time and the number of substitutions. In other fields,

log-transformation has been used to make the least-squares method more robust to highly skewed

distributions [211, 2].
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LogDate optimization function

We formulate the LogDate problem as follows. Given b̂ and the set of calibration

constraints described earlier, we seek to find

x∗ =argmin
x

2n−1

∑
i=1

log2(νi) subject to Ψ. (4.5)

This objective function satisfies the symmetry of ratio property (Fig. 4.1a). Since νi

values are multipliers of rates around µ, if we assume µ is the mean rate, the LogDate problem

is equivalent to minimizing the variance of the log-transformed rate multipliers (around their

mean 1). The objective function only depends on νi; however, note that µ is still included in the

constraints and therefore is part of the optimization problem. This setting reduces the complexity

of the objective function and speeds up the numerical search for the optimal solution. Since the

values of νi close to 1 are preferred in Eq. 4.5, the optimal solution would push µ to the mean rate.

Justification as a relaxed-clock model

After log-transformation, LogDate, similar to LSD, constructs the objective function using

the least squares principle (for ease of exposition, here we discuss ordinary least-squares without

weights). We can rewrite the objective function of LSD as ∑i (
µτi
b̂i
−1)2 and that of LogDate

as ∑i (log µτi
b̂i
)2 and see that both seek to find a global rate µ and the time τi for each branch to

minimize the total deviations of the estimated branches from µτi. This observation may motivate

viewing both LSD and LogDate as strict-clock methods. However, the following result justifies

viewing LogDate as a relaxed clock method.

We can prove that if the mutation rates µi are drawn i.i.d. from a LogNormal distribution

with any parameters with mode µ and the branches are estimated without error (i.e. b̂i = bi for all

i), then νi follows a LogNormal distribution with mode 1 and the LogDate optimization problem

is equivalent to finding ν that have maximum joint probability, subject to the constraints. The
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proof is given in Claim 1 (Supplementary materials).

Justification for symmetry of ratios

Having shown that LogDate has a justification under the LogNormal distribution, we now

compare LogDate and LSD objective functions in a wider range of clock models. Recall that the

objective functions of LSD and LogDate are the sum-of-squares of their penalty terms, which are

µτi
b̂i
−1 for LSD and log µτi

b̂i
for LogDate.

Following the likelihood principle, an ideal objective function must assign equal penalties

to data values that are equally likely to occur. Therefore, for an ideal objective function written

as sum-of-squares of the penalty terms, the probability distribution of its penalty terms (before

square) under the model that generates the data must be symmetric around 0 (because of the

square). The true distribution of our penalty terms is a function of both clock rate variations and

branch length estimation error. While no objective function is ideal for all compound models

of rates and estimation error, a robust objective function should remain close to symmetric and

maintain a low skewness under a wide range of models. We now present several theoretical and

empirical results comparing LogDate and LSD in terms of skewness of distributions of their

penalty terms.

First, consider a relaxed clock model of the rates and assume no branch estimation error

(i.e., b̂i = µiτi). If µi follows a LogNormal distribution parameterized by θ and σ then it is easy to

see that µτi
b̂i

= µ
µi

(penalty of LSD) also follow a LogNormal distribution and the skewness depends

on σ. In contrast, the log µτi
b̂i

(penalty of LogDate) follows a Normal distribution, which has

skewness 0, and for which least square estimation is the maximum likelihood estimator. Thus, as

stated before, log-transforming is the ML solution if rate multipliers are log-normally distributed.

Now assume µi follows a Gamma distribution with mean µ. Then µτi/b̂i = µ/µi follows an

Inverse Gamma distribution while its log-transformation follows a Log-Gamma distribution. We

can analytically compute the skewness of the penalty terms of LSD and LogDate and compare
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them (see Supplementary materials for the equations). As shown in Fig. D.1 (Appendix D),

the skewness of LSD is much higher than that of LogDate, especially for higher variance of

the gamma rates. Higher skewness of penalty terms violates the likelihood principle mentioned

before. Thus, for the two models where we could compute analytical formulas for skewness, we

have grounds to prefer LogDate.

Next, we consider the compound impacts of branch length estimation error and rate

variation, and we study the question in two ways. One approach is to measure the combined

effect of error and true variation by simulating sequence data and measuring b̂i for known bi

empirically; here, we use simulations by [340] with 1000 sites and PhyML-inferred trees (details

will be provided in the Experiments section). The other approach is modelling the compound

effect. While it is hard to know generally how estimated branch length is distributed around its

expected value, here, we can follow [340] and assume b̂i ∼N (bi,
bi
s ). The other challenge is that

the compound distribution of estimation error and rate multipliers is hard to compute analytically.

However, we can easily generate a very large number of samples from compound distributions

and analyze the empirical distribution to approximate the true distribution.

Inspecting the empirical density of the penalty terms of LSD and LogDate across different

clock models result in consistent patterns using both approaches, modeling the compound distri-

bution (Fig. 4.1c) and using simulated sequence data (Fig. 4.1e). Across three models of rates,

Exponential, LogNormal, and Gamma, the distributions of the LogDate penalty terms are always

more symmetric than that of LSD. Results are similar for other rate models such as Log-Uniform

and are further amplified when the variance is increased (Fig. D.2a, Appendix D).

To further explore that relationship between the likelihood and the penalty assigned by

LogDate and LSD, we plot the penalty (with square terms) versus the empirical log likelihood of

the rate multipliers (Figs. 4.1d and 4.1f and S2b in Supplementary Materials). Ideally, increasing

likelihood should monotonically decrease penalty, and points with similar likelihood should have

similar penalties. In both modelled and simulated branch lengths and across models, LSD assigns
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two sets of widely different penalties (one for increased and one for decreased rates) to data with

similar likelihood. LogDate, while far from perfect, is much closer to the ideal mapping between

likelihood and penalty. Also, for LogNormal with median rate multipliers set to 1, we empirically

observe a perfectly monotonic relationship between the penalty and likelihood (Fig. D.2b in

Appendix D), as theory suggested.

wLogDate optimization function

The simple LogDate formulation, however, has a limitation: by allowing rates to vary

freely in a multiplicative way, it fails to deal with the varied levels of relative branch error; i.e.,

the ratio of the estimated branch length to the true branch length (b̂i/bi). As b̂i is estimated from

the sequences, the error of b̂i is directly related to the variations in the number of substitutions

occurred along the branch bi. Let us assume sequences follow the [157] model, and le Ni be the

total number of substitutions occurred along branch i on a sequence with length s. Under Juke-

Cantor model, we have Ni ∼ Poisson(sµτi) and therefore, var(Ni) = sµτi. Therefore, the variance

of the expected number of substitutions around the true branch length is var( Ni
sbi
) = sµτi

s2b2
i
= 1

bis
. As

Figure 4.1b shows, when bi is small, Ni
s can easily vary by several orders of magnitude around

bi. Furthermore, the distribution is not symmetric: drawing values several factors smaller than

the mean is more likely than drawing values above the mean by the same factor. These analyses

predict that the distribution of b̂i
bi

depends strongly on bi - with smaller bi giving higher variance -

and is not symmetric.

The variances of the relative error b̂i
bi

is difficult to compute analytically due to the

involvement of the sequence substitution model and the method to estimate b̂i, which are both

unknown. Therefore, we instead use empirical analyses of the estimated branch lengths by PhyML

to demonstrate our arguments. Consistent with our prediction, Figures S7 a and c illustrate that

the relative error b̂i
bi

varies more in small branches and the distribution is not symmetric. These

properties of the branch length estimates are not modeled in our LogDate formulation and we
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seek to incorporate them in a refined version of LogDate which will be described below.

Since the true branch length bi is unknown, a common practice is to use the estimated

b̂i in place of bi to estimate its variance as 1
b̂is

. This explains why both LF and LSD objective

functions (Eqs. 4.3 and 4.4) have a weight of b̂i for each term of νi. Following the same strategy,

we propose weighting each log2(νi) term in a way that reduces the contribution of short branches

to the total penalty, and thus allows more deviations in the log space if the branch is small (and

is thus subject to higher error). Since we log-transform νi and pursue a model-free approach,

explicitly computing the weights to cancel out the variations of relative error among the branches

is challenging. However, since the weights should reflect the variance of b̂i
bi

(logarithmic scale),

they should monotonically increase with b̂i (Fig. 4.1b) to allow more variance for the relative

errors in short branches than in long branches. We use
√

b̂i as weights, a selection driven by

simplicity and empirical performance (shown in a later section).

The shortest branches require even more care. When the branch is very short, for a

limited-size alignment, the evolution produces zero mutations with high probability. For these

no-event branches, tree estimation tools report arbitrary small lengths (see Fig. D.7 in Appendix

D), rendering b̂i values meaningless for very small branches. To deal with this challenge, the r8s’s

implementation of LF [293] collapses all branches with length b̂i < 1/s. [340] proposed adding a

smoothing constant c/s to each b̂i to estimate the variance of b̂i, where c is a parameter that the

user can tune. Following a similar strategy, we propose adding a small constant b̃ to each b̂i. We

choose b̃ to be the maximum branch length that produces no substitutions with probability at

least 1−α for α ∈ [0,1]. Recall that N is the total number of actual substitutions on a branch.

Under the [157] model, it is easy to show that argmaxb̃ Pr(N = 0|b = b̃)≥ 1−α =−1
s log(1−α).

We choose this value as b̃ and set α = 0.01 by default. Thus, we define the weighted LogDate

(wLogDate) as follows:
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x∗ = argmin
x

2n−1

∑
i=1

√
b̃+ b̂i log2(νi)

subject to Ψ.

(4.6)

Solving the optimization problem

Both LogDate and wLogDate problems (Eq. 4.5 and Eq. 4.6) are non-convex, and hence

solving them is non-trivial. The problem is convex if 0≤ νi ≤ e. For small clock deviation and

small estimation error in b̂i, the νi values should be small so that the problem becomes convex

with one local minimum. However, as νi ≤ e is not guaranteed, we have to rely on gradient-based

numerical methods to search for multiple local minima and select the best solution we can find.

To search for local minima, we use the Scipy solver with trust-constr [175] method. To help

the solver work efficiently, we incorporate three techniques that we next describe.

Computing Jacobian and Hessian matrices analytically helps speedup the search. By taking

the partial derivative of each νi, we can compute the Jacobian, J, of Eq. 4.6. Also, since Eq. 4.6 is

separable, its Hessian H is a (2n−2)× (2n−2) diagonal matrix. Simple derivations give us:

J =
[
2
√

b̃+ b̂1
logν1

ν1
, . . . ,2

√
b̃+ b̂2n−2

logν2n−2

ν2n−2

]T

and Hii =2
√

b̃+ b̂i
1− logνi

ν2
i

.

Sparse matrix representation further saves space and computational time. The Hessian matrix

is diagonal, allowing us to store only the diagonal elements. In addition, the constraint matrix

defined by Ψ is highly sparse. If all sampling times are given at the leaves, the number of non-zero

elements in our (n−1)× (2n−1) matrix is O(n logn) (Claim 3; Supplementary materials). If

the tree is either caterpillar or balanced, the number of non-zeroes reduced to Θ(n). Thus, we use
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sparse matrix representation implemented in the Scipy package. This significantly reduces the

running time of LogDate.

Starting from multiple feasible initial points is necessary given that our optimization problem

is non-convex. Providing initial points that are feasible (i.e. satisfied the calibration constraints)

helps the SciPy solver work efficiently. We designed a heuristic strategy to find multiple initial

points given sampling times t1, . . . , tn of all the leaves (as is common in phylodynamics).

We first describe the process to get a single initial point. We compute the root age t0 and

µ using root-to-tip regression (RTT) [304]. Next, we scale all branches of T to conform with

Ψ as follow: let m = argmini ti (breaking ties arbitrarily). Let d(r, i) denote the distance from

the root r to node i and P(r,m) denote the path from r to m. For each node i in P(r,m), we set

τi = b̂i(tm− t0)/d(r,m). Then going upward from m to r following P(m,r), for each edge (i, j)

we compute t j = ti− τi and recursively apply the process on the clade i. At the root, we set tm to

the second oldest (second minimum) sampling time and repeat the process on a new path until all

leaves are processed. Since RTT gives us µ, to find ν we simply set νi = µτi/b̂i.

To find multiple initial points, we repeatedly apply RTT to a set of randomly selected

clades of T and scale each clade using the aforementioned strategy. Specifically, we randomly

select a set S of some internal nodes in the tree and add the root to S. Then, by a post-order

traversal, we visit each u ∈ S and date the clade u using the scaling strategy described above. We

then remove the entire clade u from the tree but keep the node u as a leaf (note that the age of u is

already computed) and repeat the process for the next node in S. The root will be the last node

to be visited. After visiting the root, we have all the τi for all i. After having all the branches

in time unit, we find x to minimize either Eq. 4.5 or Eq. 4.6, depending on whether LogDate or

wLogDate is chosen. In a tree of n leaves, we have 2(n−1)−1 ways to select the initial non-empty

set S, giving us enough room for randomization.
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Computing confidence interval

With the ability of wLogDate to work on any combination of sampling times/calibration

points on both leaves and internal nodes (as long as at least two time points are provided),

we design a method to estimate the confidence intervals for the estimates of wLogDate. We

subsample the sampling times/calibration points given to us repeatedly to create N replicate

datasets (where N is 100 by default, but can be adjusted). Note our subsampling is not exactly

a bootstrapping procedure as node sampling times cannot be resampled with replacement. We

then compute the time tree for each replicate to obtain N different estimates for the divergence

time of each node, from which we can compute their confidence intervals (95% as default). This

sampling would work best when we have a fairly large number of calibration points, which is

the case in phylodynamic settings where all (or nearly all) sampling times for the leaves are

given, or in large phylogenies where abundant calibration points can be obtained from fossils.

Although we refer to the resulting intervals as confidence intervals, it is important to recognize

that the resampling procedure is not strictly justified via bootstrap theory because subsampling is

necessarily without replacement and sampled nodes are not independent of each other.

4.2.4 Experiments on simulated data

Phylodynamics setting

[340] simulated a dataset of HIV env gene. Their time trees were generated based

on a birth-death model with periodic sampling times. There are four tree models, namely

D995 11 10 (M1), D995 3 25 (M2), D750 11 10 (M3), and D750 3 25 (M4), each of which has

100 replicates for a total of 400 different tree topologies. M1 and M2 simulate intra-host HIV

evolution and are ladder-like while M3 and M4 simulate inter-host evolution and are balanced.

Also, M4 has much higher root-to-tip distance (mean: 57) compared to M1–M3 (22, 33, and

29). Starting from conditions simulated by [340], we use the provided time tree to simulate the
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clock deviations. Using an uncorrelated model of the rates, we draw each rate from one of three

different distributions, each of which is centered at the value µ = 0.006 as in [340]. Thus, we set

each µi to xiµ where xi is drawn from one of three distributions: LogNormal (mean:1.0, std: 0.4),

Gamma (α = β = 6.05), and Exponential (λ = 1). Sequences of length 1000 were simulated for

each of the model conditions using SeqGen [270] under the same settings as [340].

Calibrations on autocorrelated rate model

We used the software NELSI and the same protocol as in [133] to simulate a dataset where

the rates are autocorrelated. The dataset has 10 replicates, each contains 50 taxa. The time trees

were generated under Birth-death model and the rate heterogeneity through time is modeled by

the autocorrelation model ( [166]) with the initial rate set to 0.01 and the autocorrelated parameter

set to 0.3. DNA sequences (1000 bases) were generated under Jukes-Cantor model. We used

PhyML [118] to estimate the branch lengths in substitution unit from the simulated sequences

while keeping the true topology. These trees are the inputs to wLogDate, RelTime, LF, and

DAMBE [366] to infer time trees.

4.2.5 Real biological data

H1N1 2009 pandemic We re-analyze the H1N1 biological data provided by [340] which

includes 892

H1N1pdm09 sequences collected worldwide between 13 March 2009 and 9 June 2011. We

reuse the estimated PhyML [118] trees, 100 bootstrap replicates, and all the results of the dating

methods other than LogDate that are provided by [340].

San Diego HIV We study a dataset of 926 HIV-1 subtype B pol sequences obtained in San

Diego between 1996 and 2018 as part of the PIRC study. We use IQTree [231] to infer a tree

under the GTR+Γ model, root the tree on 22 outgroups, then remove the outgroups. Because of
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the size, we could not run BEAST.

West African Ebola epidemic We study the dataset of Zaire Ebola virus from Africa, which

includes 1,610 near-full length genomes sampled between 17 March 2014 and 24 October 2015.

The data was collected and analyzed by [80] using BEAST and re-analyzed by [346] using IQTree

to estimate the ML tree and treedater to infer node ages. We run LSD, LF, and wLogDate on

the IQTree from [346] and use the BEAST trees from [80], which include 1000 sampled trees

(BEAST-1000) and the Maximum clade credibility tree (BEAST-MCC). To root the IQTree, we

search for the rooting position that minimizes the triplet distance [288] between the IQTree and

the BEAST-MCC tree.

Methods Compared

For the phylodynamics data, we compared wLogDate to three other methods: LSD [340],

LF [177], and BEAST [78]. For all methods, we fixed the true rooted tree topology and only

inferred branch lengths. For LSD, LF, and wLogDate, we used phyML [118] to estimate the

branch lengths in substitution unit from sequence alignments and used each of them to infer the

time tree. LSD was run in the same settings as the QPD* mode described in the original paper

[340]. LF was run using the implementation in r8s [293]. wLogDate was run with 10 feasible

starting points. For the Bayesian method BEAST, we also fixed the true rooted tree topology

and only inferred node ages. Following [340], we ran BEAST using HKY+Γ8 and coalescent

with constant population size tree prior. We used two clock models on the rate parameter: the

strict-clock (i.e. fixed rate) model and the LogNormal model. For the strict-clock prior, we set

clock rate prior to a uniform distribution between 0 and 1. For the LogNormal prior, we set the

ucld.mean prior to a uniform distribution between 0 and 1, and ucld.stdev prior to an exponential

distribution with parameter 1/3 (default). We always set the length of the MCMC chain to 107

generations, burn-in to 10%, and sampling to every 104 generations (identical to [340]).
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For the autocorrelated rate model, we compared wLogDate to LF and RelTime [332],

which is one of the state-of-the-art model-free dating methods. We randomly chose subsets of

the internal nodes (10% on average) as calibration points and created 20 tests for each of the 10

replicates (for a total of 200 tests). We also compared wLogDate to DAMBE using this dataset.

Because DAMBE can only be run in interactive mode where each calibration point has to be

manually placed onto the tree, we could not run DAMBE on the 200 tests with hundreds of

calibration points in total. Therefore, we instead ran DAMBE only once on each of the 10 trees

and infer a unit time tree for each of them (i.e. calibrate the root to be at 1 unit time backward)

and compared the results to that of wLogDate. DAMBE does not accept identical sequences so

we removed identical sequences from the simulated alignments and trees before running DAMBE

and ran wLogDate using these reduced trees to have a fair comparison.

Evaluation Criteria

On the simulated phylodynamics dataset where the ground truth is known, we compare

the accuracy of the methods using several metrics. We compute the root-mean-square error

(RMSE) of the true and estimated vector of the divergence times (τ) and normalize it by tree

height. We also rank methods by RMSE rounded to two decimal digits (to avoid different ranks

when errors are similar). In addition, we examine the inferred divergence time of the Most Recent

Common Ancestor (tMRCA) and mutation rate. The comparison of methods mostly focuses

on point-estimates of these parameters and the accuracy of the estimates (as opposed to their

variance). In one analysis, we also compare the confidence intervals produced by wLogDate and

BEAST on one model condition (M3 with LogNormal rate distribution). Finally, we examine the

correlation between variance of the error in wLogDate and divergence times and branch lengths.

On the simulated data with autocorrelated rate, we show the distributions of the divergence

times estimated by wLogDate, LF, and RelTime and report the RMSE normalized by tree height

for each replicate. To compare to DAMBE in inferring unit time trees, we report the average
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relative error of the inferred to the true divergence times. After removing identical sequences,

there are 438 internal nodes in total across the 10 tree replicates. For each internal nodes, we

compute the relative error of its divergence time inferred by either DAMBE or wLogDate to

its true divergence time in the normalized true time tree, which is |t̂i−ti|
ti

where t̂i and ti are the

inferred and true divergence times of node i, respectively. We report the average relative error per

tree replicate and the average of all 438 nodes for DAMBE and wLogDate.

On real data, we show lineage-through-time (LTT) plots [229], which trace the number of

lineages at any point in time and compare tMRCA times to the values reported in the literature.

We also compare the runtime of wLogDate to all other methods in all analyses.

4.3 Results

4.3.1 Simulated data for phylodynamics

We first evaluate the convergence of the ScipPy solver across 10 starting points (Fig. D.3a

in Appendix D). LogDate and wLogDate converge to a stable result after 50–200 iterations,

depending on the model condition. Convergence seems easier when rates are Gamma or LogDate

and harder when the rates are Exponential. Next, to control for the effect of the starting points on

the accuracy of our method, we compare the error of these starting points with the wLogDate

optimal point (Fig. D.3b in Appendix D). In all model conditions, the optimal point shows

dramatic improvement in accuracy compared to the starting point. We then compare different

weighting strategies for LogDate (Table D.4 in Appendix D).

In all model conditions, the weighting
√

b̂i + b̃, is one of the two best, so it is chosen

as the default weighting for wLogDate. Moreover, wLogDate is never worse than LogDate,

and under exponential clock models, appropriate weighting results in dramatic improvements

(Table D.4 in Appendix D).

Next, we study the properties of wLogDate estimates in relation to: (1) the age of the
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Figure 4.2: Analyses of wLogDate on inferring branch lengths on simulated data. (a) error
normalized by tree height versus divergence time (i.e. the time of the midpoint of each branch);
both axes are normalized by the tree height. (b) error versus branch length (in time unit);
both axes are normalized by the maximum branch length. For both (a) and (b), the x-axis is
discretized into 10 bins of equal size. We label the bins by their median values, relative to either
the tree height for (a) or the maximum branch length for (b). We also show the number of points
in each bin in parentheses. Note the small number of points in the final bins in panel (b). For
each bin, the blue dot represents the mean, the red cross represents the median, and the bar
represents one standard deviations around the mean.

node (Fig. 4.2a), (2) the length of the true branch in time unit (Fig. 4.2b), and (3) the error of the

branch lengths (in substitution unit) estimated by PhyML (Fig. D.6). Overall, we do not observe

a substantial change in the mean estimation error of wLogDate as the node age and the branch

length change. The variance, however, can vary with node ages (Figure 4.2a), especially in M3

and M4 model conditions. Moreover, longer branches have a tendency to have higher variance in

absolute terms (Fig. 4.2b). However, note that the relative error (i.e., log-odds error) dramatically
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Figure 4.3: Distributions of RMSE normalized by the tree height for internal node ages
inferred by all methods on model trees M1–M4, each with clock models Lognorm, Gamma, and
Exponential. Boxes show median, 10% and 90% quantiles; dots and error bars show mean and
standard error (100 replicates).

reduces as branches become longer (Fig. D.6 in Appendix D).

In studying the effect of the error in branch length estimation, we see that wLogDate can

underestimate the branch time if the branch length in substitution unit is extremely underestimated

(Fig. D.6a in Appendix D). In some cases wLogDate under-estimates branch times by two order

of magnitude or more; all of these cases correspond to super-short branches with substitution unit

branch length under-estimated by three or four orders of magnitude . As mentioned previously,

extremely short estimated branch lengths are often the zero-event branches (Fig. D.7 in Appendix

D), which are unavoidable for short sequences.

We next compare wLogDate to alternative methods, namely LF, LSD, and BEAST with

strict-clock and Lognormal clock. Measured by RMSE, the accuracy of all methods varies

substantially across model trees (M1 – M4) and models of rate variation (Fig. 4.3). Comparing

methods, for many conditions, wLogDate has the lowest error, and in many others, it is ranked
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model Clock model B lnorm B strict LF LSD wLogDate
LogNormal 1 3 4 5 1

M4 Gamma 2 4 3 5 1
Exponential 4 3 2 5 1
LogNormal 2 3 3 5 1

M3 Gamma 4 2 2 5 1
Exponential 5 3 2 4 1
LogNormal 5 1 3 4 2

M2 Gamma 4 1 3 5 2
Exponential 4 1 2 5 3
LogNormal 4 1 2 4 2

M1 Gamma 5 1 1 4 1
Exponential 2 1 3 3 5

average rank 3.5 2 2.5 4.5 1.75

Table 4.1: Ranking of the dating methods under different model conditions. For each model
condition, the average RMSE of all internal node ages is computed and ranked among the dating
methods (rounded to two decimal digits). The best method is shown in bold.

second best (Table 4.1). Across all conditions, wLogDate has a mean rank of 1.75, followed by

BEAST with strict clock with a mean rank 2; mean normalized RMSE of wLogDate, LF, BEAST-

strict, BEAST-LogNormal, and LSD are 0.072, 0.074, 0.077, 0.087, and 0.116, respectively.

Interestingly, in contrast to wLogDate, LSD seems to often underestimate branch times for many

short branches even when they are estimated relatively accurately in substitution units (Fig. D.6b

in Appendix D).

For all methods, errors are an order of magnitude smaller for the LogNormal and Gamma

models of rate variations compared to the Exponential model. In terms of trees, M4, which

simulates inter-host evolution and high the largest height, presents the most challenging case for

all methods. Interestingly, wLogDate has the best accuracy under all parameters of M4 tree and

also all parameters of M3 (thus, both inter-host conditions). On M1, all methods have very low

error and perform similarly (Fig. 4.3).
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Among other methods, results are consistent with the literature. Despite its conceptual

similarity to wLogDate, LSD has the worst accuracy. On M1 and M2, LSD is competitive

with other methods; however, on M3 and M4, it has a much higher error, especially with the

Exponential model of rate variation. With the LogNormal clock model, BEAST-LogNormal is

better than BEAST-strict only for M4 but not for M1–M3; in fact, BEAST-LogNormal has the

highest error for the M2 condition. This result is surprising given the correct model specification.

Nevertheless, BEAST-LogNormal is competitive only under the LogNormal model of rate

variation and is one of the two worst methods elsewhere. Thus, BEAST-LogNormal is sensitive to

model misspecification. In contrast, BEAST-strict is less sensitive to the model of rate variation

and ranks among the top three in most cases. In particular, BEAST-strict is always the best

method for intra-host ladder-like trees M1 and M2.

Accuracy of tMRCA follows similar patterns (Fig. 4.4). Again, the Exponential rate

variation model is the most difficult case for all methods, resulting in biased results and highly

variable error rates for most methods. In all conditions of M3 and M4, wLogDate has the best

accuracy and improves on the second best method by 9 – 66% (Table 4.2). For M1 and M2,

BEAST-strict is often the best method. The mean tMRCA error of wLogDate across all conditions

is 4.83 (years), which is substantially better than the second best method, BEAST-strict (6.21).

In terms of the mutation rate, the distinction between methods is less pronounced (Table

S1). wLogDate is the best method jointly with the two strict clock models BEAST-strict and

LF. Overall, even though LF and wLogDate tend to over-estimate mutation rates, both have less

biased results compared to other methods (Fig. 4.4). LSD and BEAST-LogNormal have the

highest errors; depending on the condition, each can overestimate or underestimate the rate but

LSD tends to underestimate while BEAST-LogNormal tends to overestimate. On M1, wLogDate

and LF have a clear advantage over BEAST-strict, which tends to over-estimate the rate. On M2,

the three methods have similar accuracy. For M3 and M4, BEAST-strict under-estimates the rate

under the Exponential model of rate variation, and wLogDate and LF are closer to the true value.
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Figure 4.4: The inferred (top) tMRCA and (bottom) expected mutation rate on different tree
models and clock models. Distributions are over 100 replicates. The solid horizontal lines
indicate the true mutation rate and tMRCA. Each black is the average of the inferred values
for each method under each model condition. We remove 6 outlier data points (2 LF, 1 LSD,
2 BEAST-LogNormal, 1 BEAST-Strict) with exceptional incorrect tMRCA (< −350) in the
M4/Exponential model.

For all methods, M4 is the most challenging case.

We also compare confidence intervals obtained from wLogDate and BEAST (Fig.4.5).

Although wLogDate intervals are on average 2.7 times larger than BEAST, 33% and 12% of

the true values fall outside the 95% confidence interval for BEAST and wLogDate, respectively.

Thus, while both methods under-estimate the confidence interval range, wLogDate, with its larger

intervals, is closer to capturing the true value in its confidence interval at the desired level.

Finally, we compared all methods in terms of their running time (Table S2). LSD and LF

are the fastest methods in all conditions, always taking tens of seconds (less than a minute) on
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Tree Clock Model B strict B lnorm LF LSD RTT wLogDate
Lognormal 6.99 9.50 6.66 7.38 9.28 6.11 ( 9% ↓)

M4 Gamma 7.83 10.48 7.02 8.48 8.24 6.28 (12% ↓)
Exponential 43.5 140.9 116.2 62.2 31.5 32.5 (3% ↑)
Lognormal 1.37 2.60 1.21 1.39 1.46 1.03 (17% ↓)

M3 Gamma 1.60 3.14 1.23 1.67 1.42 0.97 (27% ↓)
Exponential 5.76 34.67 4.87 8.35 3.39 2.94 (66% ↓)
Lognormal 1.40 1.41 1.50 1.63 2.19 1.47 ( 5% ↑)

M2 Gamma 1.54 1.44 1.75 1.92 2.56 1.66 (15% ↑)
Exponential 3.39 4.59 4.28 5.27 5.23 3.72 ( 10% ↑)
Lognormal 0.28 0.28 0.30 0.37 0.78 0.30 ( 7% ↑)

M1 Gamma 0.27 0.29 0.32 0.35 0.80 0.30 (11% ↑)
Exponential 0.60 1.11 0.79 0.82 1.37 0.69 (15% ↑)

Average 6.21 17.54 12.17 8.13 5.68 4.83

Table 4.2: Mean absolute error of the inferred tMRCA of BEAST strict, BEAST lognorm, LF,
LSD, RTT, and wLogDate. For wLogDate, parenthetically, we compare it with the best (↑) or
second best (↓) method for each condition. We show percent improvement by wLogDate, as
measured by the increase in the error of the second best method (wLogDate or the alternative)
divided by the error of the best method.

these data. The running time of wLogDate depends on the model condition and can be an order of

magnitude higher for Exponential rates than the other two models of rate variation. Nevertheless,

wLogDate finishes on average in half a minute to 12 minutes, depending on the model condition.

In contrast, BEAST took close to one hour with strict clock and close to two hours with the

LogNormal model (and even more if run with longer chains; see Table S5 in Supplementary

Materials.

4.3.2 Simulated data with autocorrelated rate

In simulations with the autocorrelated rate model, we compare wLogDate to LF and

RelTime (Fig. 4.6 and Table S7) and wLogDate to DAMBE (Table D8 in Appendix D). The

distribution of the estimated divergence time of uncalibrated internal nodes does not show any

sign of biased in divergence time estimation for either method. All methods seem to give less
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Figure 4.5: Estimated versus true divergence time. Each bar corresponds to the 95% confidence
interval (CI) of one node estimate (each of the 109 nodes of the 10 replicates) by BEAST strict
clock and wLogDate. Red color is used to mark points where the true time falls outside the CI.

varied estimates for the younger nodes (i.e. those with higher divergence times) and have more

varied estimates for older nodes. In addition, the estimates of wLogDate are more concentrated

around the true values than that of LF and RelTime, indicating a better accuracy. In two test cases

(out of 200), LF had extremely high error (Fig. D.7 in Appendix D). Once those two cases are

removed, the average RMSE normalized by tree height is 0.09 for wLogDate, 0.10 for LF, and

0.13 for RelTime (Table D7 in Appendix D). Comparing to LF and wLogDate, RelTime gives

wider distributions of the estimates for a large portion of the nodes. Finally, the comparison in

running time of wLogDate and RelTime is shown in Fig. D.8 (Appendix D).

Comparing to DAMBE in inferring unit time trees, wLogDate has lower error in 6/10

replicates and DAMBE has lower error in the remaining 4 replicates (Table S8). Overall, the

average error of wLogDate is 9.40%, which is slightly lower than that of DAMBE at 9.66%.

126



LF RelTime wLogDate

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

−5.0

−2.5

0.0

2.5

True divergence time

E
st

im
at

ed
 d

iv
er

ge
nc

e 
tim

e

Figure 4.6: Comparison of LF, RelTime, and wLogDate on the simulated data with autocorre-
lated rate model. The y-axis shows estimated divergence times of uncalibrated internal nodes
while the x-axis shows the true divergence time. Each bar shows the 2.5% and 97.5% quantiles
of the estimates of a single node’s divergence time across 20 tests, each of them with different
random choices of calibration points (thus, these are not CIs for one run). There are 10 replicate
trees, each with 44 uncalibrated nodes (thus, 440 bars in total). This figure discards 2 tests
(out of 10× 20 = 200) where LF produced extremely erroneous time trees (see Fig. D.9 in
Appendix D for the full results). The root-mean-square error of the un-calibrated internal node
ages, normalized by the tree height averaged across all replicates were 0.09, 0.1, and 0.13,
respectively, for wLogDate, LF, and RelTime (see D.7 in Appendix D).

4.3.3 Biological data

On the H1N1 dataset, the best available evidence has suggested a tMRCA between

December 2008 and January 2009 [184, 271, 127]. wLogDate inferred the tMRCA to be 14

December 2008 (Fig. 4.7a), which is consistent with the literature. LF and LSD both infer a

slightly earlier tMRCA (10 November 2008), followed by BEAST-strict and BEAST-lognorm

(October 2008 and July 2008), and finally BEAST runs using the phyML tree (Feb. 2008 for strict

and July 2007 for LogNormal). While the exact tMRCA is not known on this real data, the results
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demonstrate that wLogDate, on a real data, produces times that match the presumed ground truth.
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Figure 4.7: (a) Inferred tMRCA of the H1N1 dataset. Boxplots represent the median, maximum,
minimum, 97.5% and 2.5% quantiles of the bootstrap estimates for LF, LSD, and wLogDate,
and of the posterior distribution for BEAST. Yellow dot shows the inferred tMRCA of the
best ML or MAP tree. BEAST was run with 4 different settings: B strict and B lnorm allow
BEAST to infer both tree topology and branch lengths, with strict and LogNormal clock models;
phyML B strict and phyML B lnorm fixed the topology to the rooted phyML tree given to
BEAST. All other methods (LSD, LF, and wLogDate) were run on the rooted phyML trees.
Results for LSD, LF, and BEAST are all obtained from [340]. (b) LTT plot for all methods on
the H1N1 data. (c) LTT plot of fast methods on the HIV dataset. (d) LTT plot of BEAST, LSD,
LF, and wLogDate on the Ebola dataset.

On the HIV dataset, wLogDate inferred a tMRCA of 1958 with only a handful of lineages

coalescing in the 1950s and most others coalescing in 1960s and early 1970s (Fig. D.5 in Appendix

D). The recovered tMRCAs is within the range postulated in the literature for subtype B [110, 350]

and the fact that randomly sampled HIV lineages across USA tend to coalesce deep in the tree

is a known phenomenon. LF and LSD recovered the tMRCA of 1952 and 1953, respectively.
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Comparing to wLogDate, these two strict-clock methods postulate an earlier burst of subtype B

(Fig. 4.7c). We were not able to run BEAST on this dataset.

On the Ebola dataset, the BEAST-1000 trees obtained from [80] inferred the tMRCA to be

between 13 September 2013 and 26 January 2014 (95% credible interval) and the BEAST-MCC

inferred the tMRCA to be 5 December 2013 as reported by [346]. Here, wLogDate inferred a

tMRCA on 7 December 2013, which is very close to the estimate by BEAST. Both LF and LSD

inferred an earlier tMRCA: 29 October 2013 for LF and 2 October 2013 for LSD, but still within

the 95 per cent credible interval of BEAST-1000. LTT plots showed a similar reconstruction by

all methods for this dataset (Fig. 4.7d).

We also compare running times of dating methods on the three real biological datasets

(Table S3). LSD was always the fastest, running in just seconds, compared to minutes for

LF and wLogDate. LF is faster than wLogDate on the H1N1 and HIV data, while on Ebola

data, wLogDate is faster. We report the running time for wLogDate as the sequential run of 10

independent starting points and note that wLogDate can easily be parallelized. We further tested

the scaling of wLogDate with respect to the number of species by subsampling the HIV dataset to

smaller numbers of species (Fig. D.4 in Appendix D). The results show that the running time of

wLogDate increases slightly worse than quadratically with the incrased number of species.

4.4 Discussion and future work

We introduced (w)LogDate, a new method for dating phylogenies based on a non-convex

optimization problem. We showed that by log-transforming the rates before minimizing their

variance, we obtain a method that performs much better than LSD, which is a similar method

without the log transformation. In phylodynamics settings, our relatively simple method also

outperformed other existing methods, including the Bayesian methods, which are much slower.

The improvements were most pronounced in terms of the estimation of tMRCA and individual
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node ages and less so for the mutation rate. Moreover, improvements are most visible under

the hardest model conditions, and are also observed in when data are generated according to

autocorrelated model of rates.

The log transformation results in a non-convex optimization problem, which is harder

to solve than the convex problems solved by LSD and LF. However, we note that the problem

is convex for rate multipliers between 0 and e. In addition, given the advances in numerical

methods for solving non-convex optimization problems, insistence on convex problems seems

unnecessary. Our results indicate that this non-convex problem can be solved efficiently in the

varied settings we tested. The main benefits of the log transformation is that it allow us to define a

scoring function that assigns symmetrical penalties for increased or decreased rates (Fig. 4.1a); as

we argued, this symmetry is a desirable property of the penalty function for several clock models

that deviate from a strict clock.

The accuracy of LogDate under varied conditions we tested is remarkable, especially

given its lack of reliance on a particular model of rate evolution. We emphasize that the parametric

models used in practice are employed for mathematical convenience and not because of a strong

biological reason to believe that they capture real variations in rates.

Even assuming biological realism of the rate model, the performance of the relaxed

clock model used in BEAST was surprisingly low. For example, when rates are drawn from the

LogNormal distribution, BEAST-strict often outperformed BEAST-LogNormal, especially in

terms of the estimates of tMRCA and the mutation rate. We confirmed that the lower accuracy

was not due to lack of convergence in the MCMC runs. We reran all experiments with longer

chains (Table S5). to ensure ESS values are above 300 (Table S6). These much longer runs

failed to improve the accuracy of the BEAST-LogNormal substantially and left the ranking of the

methods unchanged (Fig. D.10).

The LogDate approach can be further improved in several aspects. First, the current

formulation of LogDate assumes a rooted phylogenetic tree, whereas most inferred trees are
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unrooted. Rooting phylogenies is a non-trivial problem and can also be done based on principles

of minimizing rate variation [201]. Similar to LSD, LogDate can be generalized to unrooted trees

by rooting the tree on each branch, solving the optimization problem for each root, and choosing

the root that minimizes the (w)LogDate objective function. We leave the careful study of such an

approach to the future work.

Beyond rooting, the future work can explore the possibility of building a specialized

solver for LogDate to gain speedup. One approach could be exploiting the special structure of the

search space defined by the tree, which is the strategy employed by LSD to solve the least-squares

optimization in linear time. Divide-and-conquer may also prove effective.

The weighting scheme used in LogDate is chosen heuristically to deal with the deviations

of estimated branch lengths from the true branch length. In future, the weighting schema should

be studied more carefully, both in terms of theoretical properties and empirical performance.

We described, implemented, and tested LogDate in the condition where calibrations are

given as exact times (for any combinations of leaves and internal nodes). While the current settings

fit well to phylodynamics data, its application to paleontological data with fossil calibrations is

somewhat limited due to the requirements for exact time calibrations (in contrast to the ability

to allow minimum or maximum constraints on the ages, or a prior about the distribution of the

ages as in BEAST and RelTime). While the mathematical formulation extends easily, treatment

of fossil calibrations and uncertainty of times is a complex topic [134, 125] that requires the

expansion of the current work. Applying LogDate for deep phylogenies would need further

tweaks to the algorithm, including changing equality to inequality constraints and the ability to

setup feasible starting points for the solver.

In the studies of LogDate accuracy, we have explored various models for rate hetero-

geinety, including parametric models where rates are drawn i.i.d. from a fixed distribution

(Log-normal, Exponential, and Gamma) and autocorrelated model where the rates of adjacent

branches are correlated. Overall, none of the methods we studied is the best under all conditions.
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In phylodynamics data, our simulations showed that it is more challenging for all the dating

methods to date the phylogenies of the inter-host evolution (M3 and M4) than the intra-host (M1

and M2). wLogDate outperforms other methods for the inter-host phylogenies, regardless of the

model of rate heterogeneity. While all methods have lower error for intra-host trees, BEAST

with strict-clock prior is often the best method. However, the differences between BEAST and

wLogDate are small and wLogDate is often the second best. Thus, wLogDate works well for

virus phylogenies, especially in inter-host conditions. Despite the fact that RelTime explicitly

optimizes the rate for each pairs of sister lineages, wLogDate is more accurate than both LF and

RelTime on the data where the rates are autocorrelated between adjacent branches. These results

show that wLogDate is applicable to a fairly large number of models of the trees and the rates.

Nevertheless, the approach taken by wLogDate suffers from its own limitations. By

including a single mean rate around which (wide) variations are allowed, wLogDate is expected

to work the best when rates have distribution that are close to being unimodal. However, rates on

real phylogenies may have sudden changes leading to bimodal (or multimodal) rate distributions

with wide gaps in between modes. For example, certain clades in the tree may have local clocks

that are very different from other clades. Such a condition has been studied by [23] for a dataset

of seed plants. The authors setup a simulation where there are local clocks on the tree and the

mean values of these clocks are different by a factor varying from 3 to 6. [23] point out that under

such condition, especially when the rate shift occurs near the root, BEAST usually overestimates

the time of the Angiosperm (i.e. gives older time) by a factor of 2 (BEAST results from [23] are

reproduced in Figure D.11 in Appendix D).

We also tested wLogDate, LF, and RelTime on this dataset (Fig. D.11 in Appendix D). In

scenario 2 of the simulation, where the rate shift between the two local clocks is extreme (a factor

of 6), wLogDate clearly over-estimate the age of Angiosperms (by a median of 55%). In this

same scenario, RelTime slightly underestimate the age (by 5%). In the other 4 scenarios where

the rate shifts are more gentle, wLogDate continue to overestimate the age but by small margins
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(by 6%, 1%, 2%, and 5%), while RelTime underestimates ages also by small margins (3%, 5%,

4%, 3%, and 3%). LF has similar patterns to wLogDate. These results point to a limitation of

wLogDate (and the other dating methods) in phylogenies with multiple local clocks.

In addition to multiple clocks, future works should test LogDate under models where

rate continuously change with time, and have a direction of change. Finally, to facilitate the

comparison between different methods, we used the true topology with estimated branch lengths.

Future work should also study the impact of the incorrect topology on LogDate and other dating

methods.

Software availability The LogDate software is available on https://github.com/uym2/

wLogDate in open-source format. The command-line python tool is available through conda

for easy installation. A link to a web sever making wLogDate available as a web-server is also

available from the github page.

Data availability All the data are available on https://github.com/uym2/LogDate-paper.
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Chapter 5

MD-Cat: Phylogenetic dating under a

flexible categorical model using

Expectation-Maximization

One of the fundamental problems in phylogenetic reconstruction is dating, which is to

convert branch lengths of a phylogenetic tree from the substitution unit to the time unit. While

a small subset of node ages are known from either carbon-dating fossils or sampling times of

the leaves, inferring the ages of the other nodes is nontrivial. Assuming a clock model (i.e.

a model of how rates vary with time), we formulate dating as a maximum likelihood (ML)

estimation problem. While there exists multiple ML-based methods addressing the same problem,

their accuracy depends strongly on the type of the dataset, posing two challenges: (1) model

misspecification: the assumed clock model that determines the likelihood function is misspecified

and (2) non-convex optimization: the likelihood function involves an integral over continuous

domain of the rates and is difficult to optimize. To tackle these two problems, we propose

a new method called Molecular Dating using Categorical-models (MD-Cat) in this Chapter.

MD-Cat is a nonparametric dating method using a categorical model of rates and the Expectation-
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Maximization (EM) algorithm. We discretize the unknown rate distribution into k categories and

approximate it by a categorical distribution. The EM algorithm is used to co-estimate the k rate

categories and all the unknown branch lengths in time unit. Our model is free of any assumption

about the true clock model, and has a sole parameter, k, that determines the resolution of the

discretization. If k goes to infinity, this categorical model can in theory approximate any clock

model as long as the unknown rates are i.i.d and there are infinite amounts of data available for

estimation. On two simulated datasets of Angiosperms and HIV and a wide selection of rate

distributions, MD-Cat is often more accurate than the alternatives, especially on datasets of either

multiple local clocks or a global multimodal clock.

5.1 Introduction

Sequence data alone is not sufficient to infer phylogenetic branch lengths in the unit of

time, so external sources of information are needed. Often, the external information comes in

the form of calibration points such as ancestral divergence times that may be available from

carbon-dating fossils or sampling times of tips available when studying phylodynamics. However,

such external information alone is not sufficient either. Inferring a time tree requires assuming a

molecular clock model of how the mutation rates have (or have not) changed across the tree.

The simple strict clock model [384], where the substitution rate is assumed to be constant

across all tree branches, has been shown to be oversimplistic in some situations because mutation

rates can vary substantially across tree branches [39, 170] especially at longer evolutionary

time horizons. Attempts to relax the strict-clock have been made using both uncorrelated and

autocorrelated models. With uncorrelated models, the rate on each branch is drawn independently

from a common underlying parametric distribution such as exponential, gamma, or lognormal [15].

In autocorrelated models, the mutation rate evolves on the tree; i.e., the rate of each branch varies

from that of its parent branch under a presumed model. There have also been efforts to model rate
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heterogeneity as sudden rate shifts throughout the evolutionary history, where a lineage possesses

a dramatic rate change compared to its parent and passes on this new rate to its descendants,

creating an entire subtree with a shifted rate. Such changes can happen multiple times on the tree

creating local clocks with heterogeneous rates. Computational methods addressing these types of

heterogeneous rates use a discrete clock model where a finite number of rate changes is allowed

on the tree [14, 79, 101, 126, 373, 370]. With this assumption, these methods define local clock

as a groups of taxa where every lineage evolves at exactly the same substitution rate. In addition,

empirical studies have explored data with more complex and realistic heterogeneous clocks, such

as a mixture of Lognormal distributions [23].

A large number of computational methods for molecular dating are available (see [171,

135, 283, 291]). Bayesian methods [273, 78, 119, 126, 339, 338], arguably the most popular set

of methods, incorporate complex models in a Bayesian framework and use sampling methods to

infer the time tree directly from sequence data. These methods enable the use of various types

of priors for both molecular clock and calibration points, providing a way to make use of the

prior knowledge. On the other hand, selecting the best priors can be difficult, and their merit has

been recently debated [23, 351], especially when not given the correct clock prior. Moreover,

the application of Bayesian methods can be hindered by the computational burden of the costly

MCMC process.

An attractive alternative to Bayesian sampling is to assume a parametric model for the

molecular clock and estimate the parameters of the model using maximum likelihood (ML) [177,

340, 346]. These ML-based methods usually do not work directly on sequence data, but take as

input a tree in substitution units (such a tree can be estimated from sequence data using either

distance-based [286, 105, 183] or ML-based methods [118, 320, 231]) and convert its branch

lengths to time unit using a set of calibration points. Although they are often more efficient than

the Bayesian methods and do not need a prior, ML-based methods have their own limitations. The

simplest methods assume a strict clock model and use either a Poisson [177] or Gaussian [340]
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distribution to model the uncertainties of the (observed) branch lengths in substitution units.

Compared to other methods, these strict clock methods are very fast and can handle phylogenies

of millions of taxa. However, empirical evidence has now made it clear that mutation rates can

vary substantially [39, 170] and therefore, these strict clock methods should only be used in

limited contexts.

More sophisticated ML-based methods, such as TreeDater [346] and TreeTime [285],

use a Gamma or Lognormal distribution to model the molecular clock. Because they assume a

parametric – and often unimodal – clock model, these ML-based methods are not robust against

model misspecification. The model violation is especially pronounced when the true clock model

is multimodal – a phenomenon that can happen when the phylogeny has heterogeneous rates

or multiple local clocks. In addition, the mutation rates in these models are often treated as

continuous latent variables and the corresponding likelihood function involves an intractable

integral over all possible rates in a continuous domain. Because such a likelihood function is

difficult to optimize, some ML-based methods (e.g. [346]) have to depend on heuristic algorithms

to iteratively optimize their likelihood functions. These heuristic algorithms lack theoretical

supports, such as a guarantee to reach a local (or global) optimum, a monotonic improvement of

the likelihood function, or a convergence guarantee.

There are also non-parametric methods for molecular dating [200, 290, 292, 331, 332,

367]. Most of these methods formulate dating as an optimization problem — often in a least-

square form — to optimize a predefined objective function without an explicit parametric model

of the clock. However, the objective functions used in these methods can be understood as

making implicit assumptions about properties of the rate distribution. For example, many of these

methods implicitly assume that rates are distributed following a unimodal distribution; that is, the

rate of each branch is centering either around a global rate [367, 200] or the rate of its parent or

sibling branch [290, 331, 37]. Incidentally, minimizing the residual sum-of-square often winds

up being the ML solution under specific (often unimodal) models; e.g., our attempt at developing
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the non-parametric method wLogDate [200] produced a method that is the ML estimate under a

set of (unimodal) LogNormal distributions. Thus, although most of the non-parametric methods

are fast and show signs of robustness under multiple clock models, we postulate (and show in our

study) that these non-parametric methods are inaccurate when the true clock model is multimodal.

We introduce MD-Cat, a new ML-based method for molecular dating. Unlike other

ML-based methods, we use a categorical distribution (CAT model) to approximate the unknown

continuous clock model. While categorical models have been adopted to approximate the Gamma

model for rate heterogeneity across sequence sites [93, 320, 231], the power of the CAT model

to approximate a continuous unknown clock model across branches has not been studied. The

CAT model is non-parametric, in these sense that it does not assume the rates are drawn from

a predefined parametric model. The model is defined as a set of k rate categories at unknown

positions from which each rate is drawn. Although it is discrete, this CAT model has the power to

approximate a continuous clock model if k is large and there are enough data to fit the model. We

use the Expectation-Maximization (EM) algorithm to maximize the likelihood function associated

with this model, where the k rate categories and the branch lengths in time units are treated as

unknown parameters and are co-estimated. We show that both the E-step and M-step of our EM

algorithm can be computed efficiently and the algorithm is guaranteed to converge. We then

evaluate the method and compare it to the state-of-the-art on a wide range of simulated datasets.

5.2 Method

5.2.1 Notations

For a given binary tree T with n leaves and N = 2n− 2 branches, we give each of the

n−1 internal nodes of T a unique index in {0, . . . ,n−2} (reserving 0 for the root) and give each

of the n leaf nodes a unique index in {n−1, . . . ,N}. We denote the parent of node i as par(i), the

left and right children of node i as cl(i) and cr(i), and the edge connecting i and par(i) as ei for
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i ∈ {1, . . . ,N}. The length of ei is specified in either substitution unit or time unit. Let ti denote

the divergence time of node i (i.e. the time when species i diverges into cl(i) and cr(i)). Then

τi = ti− tpar(i) is the length of ei in time unit. As a shorthand, we combine all the τi values into

a vector τ = [τ1τ2 . . . .τN ]. Similarly, let bi be the length of ei in substitution unit, which is the

expected number of substitutions per sequence site occurred on edge ei and let b = [b1b2...bN ].

We assume that the mutation rate can change only at species divergence times and let µi = bi/τi

denote the rate along branch ei. Finally, we let s denote the alignment length.

5.2.2 The generative model

We assume sequences of length s evolve from the ancestral sequence at the root of a binary

tree T with mutation rate µi along each edge ei. We assume µis are identically and independently

drawn (i.i.d) from an unknown distribution and sites of the molecular sequences evolve i.i.d along

each edge ei following a homogeneous process such as the GTR model [336]. Using methods

such as Maximum Likelihood (ML), we can obtain an estimate of the topology of T and all

branch lengths b = [b1b2...bN ] in substitution unit.

The Gaussian model of branch length estimation error

We model the uncertainties in branch length estimation using a Gaussian model. Let

Bi be a random variable denoting the estimated length of branch ei in substitution unit and b̂i

be the observed estimated branch. The distribution of Bi depends on several factors such as

the sequence evolution model, sequence length, and the inference technique. For simplicity,

we model Bi using the Gaussian model as in [340]: let εi = Bi−bi be the estimation noise, we

assume εi ∼i.i.d. N(0, bi
s ), where the variance bi/s comes from an approximation of the Poisson

model of the number of substitutions per sequence site (see [340] for details). In addition, for

computational and algorithmic convenience, we approximate the variance bi
s ) by b̂i

s and add a

pseudo-count of 1/s to b̂i to account for zero-event branches (see [340] and [200] for discussions
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about this issue). Recall that bi = µiτi and Bi = εi +bi, so we have Bi ∼i.i.d. N(µiτi,
b̂i
s ). Thus,

f (b̂i|µi,τi) =
1√

2πb̂i/s
exp
(
− 1

2b̂i/s
(b̂i−µiτi)

2
)

. (5.1)

Approximation of the unknown clock model

As mentioned previously, the clock model that describes the distribution of µ is uncertain.

Common choices include Gaussian [340, 285], Gamma [346], LogNormal and Exponential

distributions [77]. However, there is no guarantee that these distributions, which happen to be

unimodal or mode-less, would be good models of how µ changes across a tree. For example, a

bimodal or tri-modal set of rates would not be adequately modeled with any of these models.

Instead of using a parametric continuous distribution, we use a non-parametric approach

using a discrete distribution. We discretize µ into k categories ω = [ω1,ω2, . . .ωk] each with the

same probability mass 1
k and assume µis are i.i.d. under this k-categorical model. We use this

categorical model to approximate the unknown distribution that µ was drawn from.

5.2.3 Maximum likelihood estimation using EM algorithm

Under the model described in sections 5.2.2 and 5.2.2, τ and ω are parameters, b̂i’s are

observations (i.e. data), and µi’s are latent variables. Following the ML inference framework, we

find the unknown parameters τ and ω that maximize the log-likelihood function and satisfy a set

of constraints defined by calibration or sampling times. We then employ the EM algorithm to

solve this optimization problem.
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The linear constraints defined by calibration points

Let t0 be the unknown divergence time at the root of the tree. The p calibration points

t1, . . . , tp define a set of p constraints C1, ...,Cp:

Ci : ∑
j∈P(0,i)

τ j = ti− t0 (5.2)

where P(x,y) denote the path between two nodes x and y (referring to by their indices). Recall

that the root has index 0, so P(0, i) is the path from the root to node i. To remove t0 from this set

of constraints, we arbitrarily select a constraint Ck and subtract it from the other constraints Ci

(i ̸= k) side by side to obtain the set Ψ(k) of p−1 linear constraints on τ:

Ψ
(k)
i : ∑

j∈P(LCA(i,k),i)
τ j− ∑

j∈P(LCA(i,k),k)
τ j = ti− tk, (5.3)

It is easy to see that all the linear constraint sets Ψ(k) (k ∈ [p]) are equivalent. Therefore, we use

Ψ as a short hand to refer to any (arbitrarily chosen) linear constraint set among them. We can

construct a set Ψ using a bottom up traversal of the tree, as in [200].

The log-likelihood function

Under the categorical model of the rates and the Gaussian model of branch length estima-

tion error, the log-likelihood of b̂i’s given the parameters τ and ω is

l(τ,ω) = ∑
N
i=1 logLi(b̂i;τi,ω)

= ∑
N
i=1 log∑

k
j=1 f (b̂i;ω j,τi)Pr(µi = ω j;ω)

= ∑
N
i=1 log

(
1
k ∑

k
j=1 f (b̂i;ω j,τi)

) (5.4)

where Li(b̂i;τi,ω) denotes the density of b̂i on branch i and f is the density function of the

Gaussian model described in section 5.2.2. Our goal is to find τ and ω that maximize l(τ,ω) and
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satisfy Ψ. Because l has a summation inside the log function, it is difficult to directly optimize l.

However, thanks to the categorical model of the rates, the latent variables µi are discrete and so

we can readily apply the EM algorithm [69] to maximize l, as shown below.

EM-based optimization

In the EM algorithm [69], we start with an initial of τ and ω (described later) and iteratively

improve the log-likelihood function by alternating between the E-step and M-step.

E-step In the E-step, we compute the posterior of the latent variables:

qi j = Pr(µi = ω j|b̂i;τ,ω) =
f (b̂i|µi=ω j,τi)Pr(µi=ω j;τ,ω)

∑
k
m=1 f (b̂i|µi=ωm,τi)Pr(µi=ωm;τ,ω)

=
f (b̂i|µi=ω j,τi)

∑
k
m=1 f (b̂i|µi=ωm,τi)

The second equality holds because Pr(µi = ωm;τ,ω) = 1
k for all i,m.

M-step In the M-step, we find ω and τ to maximize

∑
N
i=1 ∑

k
j=1 qi j log f (b̂i|ω j,τi), (5.5)

s.t. the constraints Ψ are satisfied (see Eq. (5.3)). Using Eq. (5.1) and removing constants, we

can reduce the problem to:

min
τ,ω

N

∑
i=1

k

∑
j=1

sqi j

b̂i
(b̂i−ω jτi)

2 (5.6)

s.t. ω > 0, τ > 0, and Ψ are satisfied.

Solving the M-step The optimization problem in the M-step (equivalently defined by Eqs. (5.5)

and (5.6)) is non-convex and is difficult to solve exactly. However, it is easy to see that the

likelihood function is bounded above, so it has a maximum. Therefore, the EM algorithm

still converges as long as after every iteration (h) the M-step finds a new point (τ(h+1),ω(h+1))
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that gives a higher value for Eq. (5.5) (or equivalently, lower value for Eq. (5.6)) than that

of (τ(h),ω(h)). In other words, it is sufficient to find a local minimum of Eq. (5.6) in every

iteration and guarantee the convergence of the EM algorithm (a proof of convergence is shown in

Supplementary).

We use coordinate descent to find multiple local minima of Eq. (5.6) and select the one

that gives the lowest penalty. In the M-step, starting with ω(h) and τ(h), we successively minimize

Eq. (5.6) along the coordinate block of either ω or τ while fixing the other, and iterate until

convergence. In other words, let τ(h,1) = τ(h) and ω(h,1) = ω(h); in each iteration (p) of coordinate

descent, we compute τ(h,p+1) and ω(h,p+1) such that:

τ
(h,p+1) = argmin

τ≥0,τsatisfiesΨ

N

∑
i=1

k

∑
j=1

sqi j

b̂i
(b̂i−ω

(h,p)
j τi)

2 (5.7)

ω
(h,p+1) = argmin

ω≥ε

N

∑
i=1

k

∑
j=1

sqi j

b̂i
(b̂i−ω jτ

(h,p+1)
i )2 (5.8)

The above two problems are instances of the weighted least-square optimization; they are convex

and can be solved efficiently using any canonical convex programming algorithm. Inspired by the

algorithms presented in [340], we use the active-set method to solve these two problems, and we

show that the complexity of each iteration of the active-set method is O(k) (Appendix E).

Initialization The EM algorithm can only find local optima, so it needs multiple initial points.

To facilitate the search, we first estimate the expected mutation rate µ, then we discretize the

uniform distribution [0,2µ] into k equal segments and set ω
(0)
j to the middle of the jth segment.

In other words,

ω
(0)
j = (2 j−1)

µ
k
,∀ j ∈ [k] (5.9)

To initialize τ
(0)
i , we draw j uniformly in [k] and set τ

(0)
i = b̂i

ω
(0)
j

. Although in this initialization τ
(0)
i

does not satisfy Ψ, the constraints will be satisfied after the first M-step. We run wLogDate [200]
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and root-to-tip (RTT) regression [304] independently to get two different estimates of µ. We then

use each of these two estimates of µ to get m different initials for τ(0), for a total of 2m initials. In

all experiments in this paper, unless otherwise specified, m is set to 100 and so EM is run with

2m = 200 initials.

The 2-round optimization strategy A focal difficulty in the co-estimation of rates and times is

that they are inseparable as a product. This same problem occurs in the EM algorithm, where

in each iteration ω and τ can both be scaled up or down by the same factor. To avoid a rapid

jump of ω and τ, we first enforce ω to have an expected value of the initial µ (estimated by

either wLogDate or RTT, as described above) and run EM until convergence. Then we relax that

constraint and let EM continue running (to allow the expected µ to be re-estimated). In other

words, for each initial point, we run EM twice:

• In the first round, the expected mutation rate is fixed to the initial µ by adding the constraint

∑ j ω j = kµ to Ψ. The EM algorithm is run until convergence.

• In the second round, we initialize EM with the ω and τ found in the first round and relax

the constraint ∑ j ω j = kµ. We let EM algorithm run until convergence.

The final solution is the one that gives the lowest value for Eq. (5.6) among all initial points.

5.3 Simulated data

5.3.1 Angiosperms hybrid rate

Beaulieu et al. [23] simulated a hybrid rate model for a phylogeny of seed plants in which

evolutionary rates formed local clocks in certain clades of the tree. The authors simulated 5

different scenarios where they change the relative ratios between some clades in the tree, as

follow:
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• scenario 1 = 3:1 herbaceous to woody angiosperm

• scenario 2 = 6:1 herbaceous to woody angiosperm

• scenario 3 = 4:1 angiosperm to gymnosperm; 3:1 herbaceous to woody angiosperm

• scenario 4 = 4:1 angiosperm to gymnosperm; 3:1 herbaceous to woody angiosperm;

Gnetales herbaceous angiosperm

• scenario 5 = 4:1 angiosperm to gymnosperm; 3:1 herbaceous to woody angiosperm;

Gnetales woody angiosperm

The time tree and 100 simulated phylograms for each of these five scenarios were down-

loaded from the Dryad Repository provided by the authors. We used the provided phylograms to

simulate DNA sequences of length 1000 using SeqGen under GTR model with the shape of the

Gamma rate heterogeneity across sites set to α = 1.

We compare MD-Cat to two other methods: wLogDate [200] and RelTime [331]. We

keep the true rooted tree topology fixed and only infer branch lengths. We use RAxML [320]

to estimate the branch lengths in substitution unit from the simulated sequences (using the

GTRGAMMA model) and use MD-Cat, wLogdate, and RelTime to infer the time tree. Because

these dating methods require rooted tree as input, we use the 20 species on the clade outside the

Angiosperm as outgroups to root the RAxML tree. As outgroup rooting cannot determine the

exact root position on the branch connecting ingroups and outgroups, we remove this entire clade

from the tree. As such, the 5 calibration points that belong to the 20 species in the outgroups are

discarded, leaving us with 15 calibration points to be used in this analysis. This same setting is

used for RelTime, wLogDate, and MD-Cat. We provide each method with the exact time of those

15 calibration points. We run wLogDate with 100 feasible starting points, MD-Cat with k = 50

rate categories and 200 initial points, and RelTime with default settings.

145



5.3.2 HIV phylodynamics

We reuse the phylodynamics data of HIV env gene simulated in previous analyses [340,

200], but we explore many more clock models. The time trees were simulated based on a birth-

death model with periodic sampling times. There are four tree models: D995 11 10 (M1) and

D995 3 25 (M2) simulate intra-host HIV evolution and D750 11 10 (M3) and D750 3 25 (M4)

simulate inter-host evolution. Each tree model has 100 replicates, so we have 400 different tree

topologies in total. Using these time trees, in our earlier work [200], we simulated phylograms

(i.e. the phylogenetic trees with branch lengths measured in substitution unit) using three clock

models: Lognormal, Gamma, and Exponential. In this paper, we further augment this dataset by

nine new clock models, one of which is a uniform distribution and the other eight are mixtures

of two, three, or four Lognormal distributions. We also simulate sequence data using Seqgen

under the same settings as the original study [340] and our prior work [200]: sequence length

is 1000; DNA evolution model is the F84 model with a gamma distribution for across-sites

rate heterogeneity with shape 1.0 and eight rate categories; transition/transversion rate ratio is

2.5; nucleotide frequency of (A, C, G, T) is (0.35,0.20,0.20,0.25). Table 5.1 summarizes the

parameters and statistics of all 12 clock models used in this paper.

We compare MD-Cat to wLogDate [200] and BEAST [79]. In this study, we keep the

true rooted tree topology fixed and only infer branch lengths in time unit. To test wLogDate

and MD-Cat, we use RAxML [320] to estimate the branch lengths in substitution unit from the

simulated sequences (using the GTRGAMMA model) and use each of these methods to infer the

time tree. wLogDate was run with 100 feasible starting points. MD-Cat was run with k = 50 rate

categories and 200 initials. To test BEAST, we use the sequences simulated by SeqGen, also fix

the true rooted tree topology and only inferred node ages. We run BEAST using the following

priors: HKY+Γ8 model, coalescent with constant population size, and strict-clock (i.e. fixed

rate) clock model. We set the length of the MCMC chain to 107 generations, burn-in to 10%, and

sampling to every 104 generations.
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Model name Parameters Mean Std CV Newly simulated
LogNormal µ = 0.006,σ = 0.0024 0.006 0.0024 0.4 No

Gamma α = 6.05,β = α/µ where µ = 0.006 0.006 0.00244 0.407 No
Exponential λ = 1/µ where µ = 0.006 0.006 0.006 1.0 No

Uniform a = 0,b = 0.012 0.006 0.0035 0.577 Yes
Bimodal 1 µ1 = 0.003,σ1 = 0.0003, p1 = 0.5 0.006 0.003 0.5 Yes

µ2 = 0.009,σ2 = 0.0003, p2 = 0.5
Bimodal 2 µ1 = 0.002,σ1 = 0.0003, p1 = 0.5 0.006 0.004 0.667 Yes

µ2 = 0.01,σ2 = 0.0003, p2 = 0.5
Bimodal 3 µ1 = 0.003,σ1 = 0.0024, p1 = 0.5 0.006 0.0038 0.641 Yes

µ2 = 0.009,σ2 = 0.0024, p2 = 0.5
Bimodal 4 µ1 = 0.002,σ1 = 0.0024, p1 = 0.5 0.006 0.0047 0.783 Yes

µ2 = 0.01,σ2 = 0.0024, p2 = 0.5
Trimodal 1 µ1 = 0.002,σ1 = 0.0003, p1 = 0.2 0.006 0.00254 0.423 Yes

µ2 = 0.006,σ2 = 0.0003, p2 = 0.6
µ3 = 0.01,σ3 = 0.0003, p3 = 0.2

Trimodal 2 µ1 = 0.002,σ1 = 0.0003, p1 = 0.4 0.006 0.0036 0.6 Yes
µ2 = 0.006,σ2 = 0.0003, p2 = 0.2
µ3 = 0.01,σ3 = 0.0003, p3 = 0.4

Trimodal 3 µ1 = 0.002,σ1 = 0.0003, p1 = 0.333 0.006 0.003 0.5 Yes
µ2 = 0.006,σ2 = 0.0003, p2 = 0.333
µ3 = 0.01,σ3 = 0.0003, p3 = 0.333

Quartmodal µ1 = 0.001,σ1 = 0.0003, p1 = 0.25 0.006 0.0038 0.633 Yes
µ2 = 0.004,σ2 = 0.0003, p2 = 0.25
µ3 = 0.008,σ3 = 0.0003, p3 = 0.25
µ4 = 0.011,σ4 = 0.0003, p4 = 0.25

Table 5.1: Parameters and statistics of the 12 clock models. Lognormal distributions are
parameterized by µ and σ, which are the actual mean and standard deviation of the distribution.
The bimodal, trimodal, and quartmodal distributions are mixtures of 2,3, or 4 Lognormal
distributions, respectively, and pi is the probability mass of component i of the mixture. Gamma
distribution is parameterized by its shape α and rate β. The other distributions are shown by
their canonical parameterization.

5.4 Results

5.4.1 Angiosperms hybrid rate

We compare MD-Cat, wLogDate, and RelTime on their accuracy in estimating the age of

the common ancestor of Angiosperms. In this simulation by [23], the true age in all replicates

is fixed to 140 mya. We show the distribution of the estimates across 100 replicates for each
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Figure 5.1: The empirical distribution of the mutation rates simulated for each of the 12 clock
models used in the HIV dataset.

methods in five scenarios (Fig. 5.2a). wLogDate tends to overestimate the Angiosperms age for

all scenarios, by a median of 12, 88, 15, 13, and 13 million years for scenarios 1–5, respectively,

and has very high error (35% in average). Compared to wLogDate, RelTime has lower error

(6.2% in average); however, it significantly underestimates the age in all 5 scenarios, by a median

of 8, 10, 10, 8, and 9 million years for scenarios 1–5, respectively. MD-Cat, in contrast, has

both low error (5.2% in average) and low bias: for scenario 1, the method overestimates the

age by 5 million years; for scenarios 2–5, it underestimates by 0.5, 1.6, 0.1, and 0.6 million

years, respectively. Comparing the estimated branch lengths in time unit (Fig. 5.2b), wLogDate

seriously underestimates the shorter branches, but tends to overestimate the longer branches,

especially in scenario 2. RelTime has an overall tendency to underestimate the branch lengths

(consistent with the underestimation of tMRCA). MD-Cat overestimates the shortest branch in all

5 scenarios and slightly overestimates the short branches in scenario 1, but overall MD-Cat has

tighter distribution of the estimates compared to wLogDate and RelTime, and is less biased.
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Figure 5.2: Comparison of MD-Cat, wLogDate, and RelTime on the Angiosperms simulated
dataset. Top: the tMRCA estimated by each method on each of the 5 scenarios. The dashed-line
shows the true tMRCA at 140. Bottom: the estimated versus true branch lengths in time unit.
Mean and standard error are shown for the estimates across 100 replicates per branch. Both axes
are shown in log-scale. Dashed line shows the unity line (i.e., perfect accuracy).

149



5.4.2 HIV phylodynamics

First, we compare MD-Cat, wLogDate, and BEAST (with strict-clock prior) on their

accuracy in estimating the divergence time of the root (Fig. 5.3 Top). Both wLogDate and BEAST

overestimate the tMRCA in all clock models. The average bias of wLogDate is 4.8% and that of

BEAST is 9.8% across all models. MD-Cat overestimates the tMRCA in 7 models (Exponential -

6.7%, Gamma - 3.4%, Lognormal - 3.0%, Bimodal 3 - 3.5%, Trimodal 1 - 2.0%, Trimodal 3 -

1.6%, and Uniform - 2.9%) and slightly underestimates the other 5 (Bimodal 1 - 0.6%, Bimodal 2

- 1.4%, Bimodal 4 - 0.07%, Trimodal 2 - 0.5%, and Quartmodal - 0.4%). Averaging across all

models, MD-Cat has a small overestimation bias of 1.7%. Next, we compare the normalized error

(i.e. Root-Mean-Squared-Error divided by the tree height) of all the estimated divergence times

(Fig. 5.3 Bottom). In the two unimodal models (Gamma and Lognormal), BEAST and wLogDate

have similar accuracy and are both more accurate than MD-Cat, albeit by a small margin (for the

Lognormal model, the average error by BEAST, wLogDate, and MD-Cat are 4.2%, 4.1%, and

4.9%, respectively; for the Gamma model, the average error by BEAST, wLogDate, and MD-Cat

are 4.4%, 4.2%, and 5.0%, respectively).

In contrast, MD-Cat is more accurate than the other two methods in the other clock models.

Across all clock models, the average error of wLogDate, BEAST, and MD-Cat are 8.0%, 8.6%,

and 6.7%, respectively. Importantly, MD-Cat gives a tighter error distribution than that of BEAST

and wLogDate (both for the MRCA and all other nodes divergence times), demonstrating its

robustness across all replicates and clock models. At the extremes, BEAST and wLogDate can

have an error of 40% or more in some replicates (e.g. in Exponential and bimodal 4), while

MD-Cat maintains an overall low to moderate 95-percentile error that is below 20% across all

clock models (Fig. 5.3 Bottom).
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Figure 5.3: Comparison of MD-Cat, wLogDate, and BEAST on the HIV simulated dataset.
Top: the bias in estimated root divergence time (tMRCA). Bottom: normalized error (RMSE
divided by tree height) of estimated divergence times for all nodes. All boxplots show 5-95
percentiles across all 400 replicates. Horizontal line shows median. Mean and standard error are
also shown as a dot and error bars. Model conditions are divided into those with zero or one
mode (left), two modes (middle), and three or more modes (right).
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5.5 Discussions

We introduced MD-Cat, a new method for dating phylogenies using a categorical model.

Although the categorical model is not new in phylogenetics, its power to approximate a continuous

distribution as the clock model has not been studied before. We formulate the dating problem

under this cateogrical model in a maximum likelihood estimation framework and show that the

problem can be solved effectively using an EM-based algorithm. Although the likelihood function

is non-convex, the objective function in the M-step is convex on ω and τ separately. We used

coordinate descent to alternatively optimize ω and τ, and show that each iteration can be solved

in linear time. Together, these strategies greatly reduce the running time of the MD-Cat method.

On two simulated datasets of the Angiosperms and HIV, the MD-Cat method outperformed

other methods in most clock models, especially in the model conditions that violate their (implicit)

assumptions of a strict or unimodal clock model. Improvements are most visible under the hardest

model conditions (i.e. scenario 2 in the Angiosperms dataset where the rate shift is extreme and

the Exponential and bimodal 4 in the HIV dataset where the rate distribution has high variance).

Compared to other methods, MD-Cat is more robust; it consistently maintains the 95-percentile

error under 20%.

The formulation of MD-Cat can face the problem of over-parameterization. As noted

before, time and rate are generally inseparable from molecular data, even with the aiding in-

formation from calibration points. In general, approximating a continuous distribution requires

a large number of rate categories (k). However, the data size is very limited compared to the

number of unknown parameters (2n−2 branch length observations and O(n) calibration points

versus 2n−2+ k parameters). Thus, these parameters are unidentifiable in general, pointing to

the difficulty of getting the correct age for every node. With the pre-estimate of the expected

mutation rate and our 2-round optimization strategy (described in section 5.2.3), we have tried to

address the over-parameterization and improved the accuracy of MD-Cat. Thus, our evidence that
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the inference of a substantial number of rates is doable despite the large space is mostly empirical

rather than theoretical. We leave the analysis of identifiability of ω and τ under this categorical

model and different combinations of calibration points for future work.

While we formulate and estimate ω and τ under a maximum likelihood framework, we

note that the proposed categorical model can also be used in Bayesian inference, where a prior

for the rate categories can be specified. In addition, for scalability purposes, we use the inferred

tree in substitution unit as input and use a simple Gaussian model for branch length estimation

error. However, a more direct method is to incorporate the categorical clock model into the

tree inference from sequence data and maximize the joint likelihood function. We note that

this approach avoids the assumption of the Gaussian error in branch length estimation used in

our study, but at the same time it may exacerbate the over-parameterization problem, as all the

parameters (tree topology, GTR parameters, per-site and per-branch rate heterogeneity) must all

be co-estimated in a maximum likelihood framework. Future works should explore this approach,

both theoretically and empirically.

The current formulation of MD-Cat assumes a rooted phylogenetic tree. However, we

note that rooting phylogenies is a non-trivial problem and also related to the problem of clock

model selection. A straight-forward generalization of MD-Cat to unrooted trees is to solve the

optimization problem for each possible rooting and select the root position that has the maximum

likelihood. Such an approach should be explored in future work, together with an updated

formulation for MD-Cat to add a parameter that determines the optimal root placement on each

branch.

In addition to ways to improve the method, our study can also be extended. To facilitate

the comparison between different methods, we used the true topology with estimated branch

lengths and left the study of the impact of incorrect topology on the dating methods for future

works. Finally, testing under more complex clock models, such as those that allow continuously

changing rates is also worth further examining.
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Chapter 6

Phylogenomics of 10,575 genomes reveals

evolutionary proximity between domains

Bacteria and Archaea

Rapid growth of genome data provides opportunities for updating microbial evolutionary

relationships, but this is challenged by the discordant evolution of individual genes. Here we

build a reference phylogeny of 10,575 evenly-sampled bacterial and archaeal genomes, based

on a comprehensive set of 381 markers, using multiple strategies. Our trees indicate remarkably

closer evolutionary proximity between Archaea and Bacteria than previous estimates that were

limited to fewer “core” genes, such as the ribosomal proteins. The robustness of the results was

tested with respect to several variables, including taxon and site sampling, amino acid substitution

heterogeneity and saturation, non-vertical evolution, and the impact of exclusion of candidate

phyla radiation (CPR) taxa. Our results provide an updated view of domain-level relationships.
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6.1 Introduction

The metaphor of a “tree of life” was used by Darwin in his On the Origin of Species in 1859.

It came into its modern form when Carl Woese and co-workers used the new ability to genetically

sequence the small subunit (SSU) ribosomal RNA gene from multiple different organisms to

create a phylogenetic tree [359], thereby showing a scenario of three domains of life: Bacteria,

Archaea, and Eukaryota [360, 243]. Recent years have seen discoveries of novel microbial

groups enabled by culture-based and metagenomic methods [276, 233, 359, 383], many of which

represent previously unknown biodiversity [40, 377, 276], and keep updating our knowledge of the

extent and relationships among domains as indicated by phylogenetics [58, 144, 121, 50]. Among

these new discoveries is the candidate phyla radiation (CPR, also referred to as Patescibacteria)

[276, 40], a highly diversified clade of mainly uncultivated microorganisms that may subdivide

the domain of Bacteria [144], although this scenario remains controversial [246]. Meanwhile,

the discovery and analysis of multiple novel archaeal lineages have suggested an archaeal origin

for eukaryotes, pointing to a two-domain scenario [356, 86]. The currently representative view

of the tree of life, inferred based on the concatenation of ribosomal proteins, illustrated a bipartite

pattern with distinct separation between Bacteria (including CPR) and Archaea (plus Eukaryota)

[144, 50]. More comprehensive work in both taxon and locus sampling exists [246], but the

inter-domain relationships were not explored.

Reconstructing phylogenies typically relies on comparing homologous features. Although

closely related organisms often share obvious genome-level homologies, building higher-level,

especially cross-domain phylogenies has been challenging due to the rarity of clearly defined

homologies [239]. To date, many efforts rely on one, or a few, universal “core” genes that are

usually involved in fundamental translation machinery [356, 124]. Examples include the SSU

rRNA [54, 264, 111], and several dozens ribosomal proteins [272]. The choice of these “marker

genes” is based on their universality, conservation, and the observation that they suffer from
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less frequent horizontal gene transfer (HGT) [239]. However, HGT is widespread across the

domains [54, 264, 111], affecting even the most conserved “housekeeping” genes [59], and

cannot be ruled out even for these markers. Furthermore, the reliance on a few marker genes

limits the information (i.e., phylogenetic signal) available for resolving all relationships in the

tree of life. Finally, it reduces applicability in metagenomics—increasingly the main source

of novel genome data—where assembled genomes are frequently incomplete and error-prone

[359]. Maximizing the included number of loci, thus, is desirable. However, when dealing with

many loci, reconciling discordant evolutionary histories among different parts of the genome can

become challenging. Moreover, a practical dilemma is imposed by computational limitations:

adding breadth across the phylogenetic space requires more computing effort, which leads to

compromises with either the quantity of genes analyzed [144] or the robustness of tree-building

algorithms [246].

In this work, we build a reference phylogeny of 10,575 bacterial and archaeal genomes

(Fig. 6.1). They are sampled from all 86,200 non-redundant genomes available from NCBI

GenBank and RefSeq [122] as of March 7, 2017 (Fig. 6.2), using a statistical approach that

maximizes the covered biodiversity. Our phylogenetic reconstruction uses 381 marker genes,

selected from whole genomes solely by sufficient sequence conservation to identify homology.

The whole data set totals 1.16 trillion non-gap amino acids, making it among the largest single

data sets upon which de novo phylogenetic trees have been built (Supplementary Table F.1). To

infer species trees, we use both a summary approach that accounts for discrepancy among the

evolutionary histories of individual genes, and the conventional gene alignment concatenation

approach. The resulting species trees provide high resolution of the basal relationships among

microbial clades, which show that Bacteria and Archaea are in closer proximity compared to

previous estimations (Fig. 6.1). The phylogeny also enable us to evaluate and revise previously

established taxonomic hierarchies. We have made our data and protocols publicly available at

https://biocore.github.io/wol/.
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6.2 Results

6.2.1 Comprehensive sampling of biodiversity and genes

By using a purpose-built “prototype selection” algorithm to maximize evenness of genome

sampling (Supplementary Fig. F.1, detailed in Supplementary Note F.1.1) and by incorporating

multiple additional criteria, including marker gene presence, genome quality, and taxonomy, we

selected 10,575 genomes, covering 146 of 153 phyla defined by NCBI, plus all 89 classes, 196

of 199 orders, 422 of 429 families, 2,081 of 2,117 genera, and 9,105 of 20,779 species (Fig.

6.2a). A total of 2,852 genomes (27.0%) are metagenome-assembled genomes (MAGs) while the

remaining are from isolates and other sources (Fig. 6.2c). Meanwhile, 2,267 genomes (21.4%)

are complete genomes or chromosomes, while the remaining are scaffolds or contigs (Fig. 6.2d).

Overall, the selected genomes are of high completeness and low contamination as evaluated based

on known lineage-specific marker gene sets (Fig. 6.2b). By testing against the MAG quality

standard established by Bowers et al. [359], only 10.4% MAGs or 3.7% of all genomes fall

within the low-quality draft category, while the remaining meet the criteria of either high or

medium quality drafts (Fig. 6.2e). This balanced representation of known bacterial and archaeal

diversity ensured the comprehensiveness and evenness of the resulting phylogeny.

Our phylogenomic analysis was based on the 400 marker genes originally proposed in

PhyloPhlAn [303] (Supplementary Fig. F.2). The taxon sampling protocol ensured that all

selected genomes contain at least 100 marker genes each. In the resulting data matrix, each

marker gene is present in 7,565± 1,730 (mean and std. dev.) genomes (Supplementary Fig. F.2a),

while each genome contains 286.14 ± 80.23 (mean and std. dev.) marker genes (Supplementary

Fig. F.2b). These marker genes were further filtered down to 381, based on metrics of alignment

quality (see Methods) across the sampled genomes (Supplementary Fig. F.2d).
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6.2.2 Assessing deep phylogeny using multiple strategies

We explored multiple tree inference methods (detailed in Supplementary Note F.1.2,

with selected ones compared in Fig. 6.3 and Supplementary Fig. F.3), but will mostly focus

on two strategies: CONCAT and ASTRAL. CONCAT concatenates gene alignments and infers

a single tree using maximum likelihood (ML) performed using the robust implementation in

RAxML [321]. Computational limitations forced us (Supplementary Table F.2) to use at most

100 sites per gene, selected either randomly (“concat.rand”) or based on maximum conservation

(“concat.cons”). However, we also tested analyzing all sites, using the faster but less accurate ML

program, FastTree [261] (referred to as “fasttree”). In contrast, the ASTRAL tree (“astral”) is

based on first inferring 381 gene trees and then summarizing them using the ASTRAL method

[378]. ASTRAL accounts for gene tree discordance due to divergent coalescent histories and

has been shown in simulations to be more accurate than concatenation in the presence of highly

frequent HGTs [66]. Due to its inherent scalability, ASTRAL analyses were able to use all the

data (i.e., all sites of every gene). For comparison to previous studies [144], a CONCAT tree was

also built using 30 ribosomal proteins (“concat.rpls”). We used ML to estimate branch lengths for

the ASTRAL tree based on the same data used to infer the CONCAT tree.

Overall, ASTRAL (Fig. 6.1, Supplementary Fig. F.4) and CONCAT trees (Supplementary

Figs. F.5 and F.6) show congruence in topology (Fig. 6.3a, b, Supplementary Note F.1.2) when

compared to trees derived from implicit (e.g., distance-based) analyses (Supplementary Fig.

F.7, Supplementary Note F.1.2). The congruence is higher at shallow branches, but generally

decreases as phylogenetic depth increases (Supplementary Fig. F.8). The ASTRAL tree, in

particular, has high support among the early branching clades (Supplementary Figs. F.3 and

F.9, also see Supplementary Figs. F.4-F.6). This high resolution is directly related to the large

number of gene trees used in the inference, as using fewer loci notably decreased the branch

support of the species tree (Supplementary Fig. F.10, Supplementary Note F.1.2). On the other

hand, the evolutionary relationships recovered by CONCAT are impacted by the breadth of site
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sampling (Supplementary Fig. F.11, Supplementary Note F.1.2) and the robustness of method

(Supplementary Fig. F.12, Supplementary Note F.1.2).

To further evaluate the impact of taxon sampling, we tested a series of subsampled sets of

taxa, selected so that they maximize the representation of large and deep-branching clades (see

Methods). Reducing taxon sampling changed the overall topology (Supplementary Fig. F.13,

Supplementary Note F.1.2) and the inferred relationship between large groups (e.g., placement of

Chloroflexi and Chlamydiae) (Supplementary Fig. F.14), further highlighting the importance of

our dense sampling of genomes.

Phylogenetic trees built by both strategies recapitulated clear separation between Archaea

(669 taxa) and Bacteria (9,906 taxa) at the root (Figs. 6.1 and 6.3, Supplementary Figs. F.4-F.6).

Meanwhile, CPR (1,454 taxa) forms a monophyletic group located at the base of the bacterial

lineage in the ASTRAL tree and the CONCAT trees that use global markers (Figs. 6.3c and

6.4a). Considering the potential impact of long branch attraction, this placement will require

further validation using more robust substitution models and controlled tests. The ASTRAL

tree shows high consistency and moderate-to-high branch support for several taxonomic units

recently defined above the phylum level, including TACK, Microgenomates, Parcubacteria, FCB,

PVC, and Terrabacteria [276] (Fig. 6.3c, d). These groups were also supported in the CONCAT

trees, with the exception of Terrabacteria in one analysis (Fig. 6.3c, d). With reference to the

trees, we systematically evaluated and curated NCBI taxonomy, showing frequent incongruences

(Supplementary Fig. F.15a, c, Supplementary Table F.3), especially in metagenome-derived

genomes (detailed in Supplementary Note F.1.3). We further compared our trees with the recently

developed GTDB taxonomy and trees [246], and observed overall high congruence, though with

a few exceptions at deep branches (Fig. 6.3a-d, Supplementary Figs. F.15b, d, F.16, elaborated in

Supplementary Note F.1.4). A detailed interpretation of our phylogeny in reference to taxonomy

and multiple previous works is provided in Supplementary Note F.1.5.
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6.2.3 Evolutionary proximity between Archaea and Bacteria

ASTRAL and CONCAT trees both reveal a relatively short branch connecting the most

recent common ancestors of Archaea and Bacteria (Figs. 6.1 and 6.4a, c, Supplementary Fig.

F.17). Its length is fractional comparing to the dimensions of both clades (appr. 0.13-0.14 by

conserved sites, 0.09-0.11 by random sites) (Fig. 6.4c, e, Supplementary Table F.4). This pattern

is in contrast to previous trees built using fewer marker genes, all or most of which are ribosomal

proteins formerly considered to be effective markers for assessing global microbial evolution

[272] (e.g., [50, 54, 376]). To further test how the choice of marker genes affects the inter-domain

distance, we estimated branch lengths of the ASTRAL tree using 30 ribosomal proteins extracted

from the genomes. Consistent with previous studies, we observed an elongated branch connecting

Bacteria and Archaea. Its length relative to clade dimensions (1.0-1.6) is about 10 times the

estimate using the 381 global marker genes (Fig. 6.4b, d and e, Supplementary Table F.4). We also

calculated the overall phylogenetic distance between taxa of the two domains, as relative to the

intra-domain distances. This relative distance based on the ribosomal proteins (4.5-5.0) is around

three times that of the distance by the global marker genes (1.5-1.6) (Fig. 6.4f, Supplementary

Table F.4).

Considering the special status of CPR, we performed an independent test with the 1,454

CPR genomes removed from the data set prior to de novo phylogenetic inference, and we

compared the results to the main results (Fig. 6.4e, f) with the CPR clade pruned from the tree.

These trees continued to reveal the substantially shorter branch and tip-to-tip distances between

the two domains as recovered by using the 381 global marker genes as compared to using the 30

ribosomal proteins (Supplementary Fig. F.18, Supplementary Table F.5).

We tested whether the potential saturation of amino acid substitution could cause an

underestimation of the domain separation. The ratio between phylogenetic distance and sequence

distance is similar between pairs of taxa selected both from Bacteria, both from Archaea, or one

from each domain (Supplementary Fig. F.19). This indicates that the relative length of the branch
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connecting the two domains compared to the intra-domain branches is not substantially impacted

by saturation.

We further evaluated how individual gene trees impact the observed proximity between

Bacteria and Archaea. Except for a few outliers, which include several “core” genes like rpoC

(RNA polymerase subunit β’, 18.27), tuf (elongation factor Tu, 12.18) and fusA1 (elongation

factor G, 9.54), most gene trees have relative Archaea-Bacteria distances between 1 and 3 (mean:

2.00) (Fig. 6.5a, b), which is consistent with that of the species tree summarizing the global

marker genes, and in contrast to that obtained using only the ribosomal proteins (Fig. 6.5a).

6.2.4 Heterogeneity among individual genes’ evolutionary histories

Because microbial genomes are highly dynamic and prone to HGTs, it is important to

investigate the discrepancies among the evolutionary paths of individual gene families to better

understand the evolution of genomes [264]. To measure the topological concordance between two

trees, we used the quartet score [297], which correlates well with the traditional Robinson–Foulds

(RF) metric (Supplementary Fig. F.20c) [279], resulting in a distribution of gene trees tightly

centered around the species tree (Fig. 6.5d, Supplementary Figs. F.20a and F.21).

The discordance between the 381 single gene trees and the species tree varied widely (Fig.

6.5c). The quartet scores (larger is more similar, with identical trees scoring 1.0) ranged from

0.372 (cmpD) to 0.943 (hslU), with the mean and standard deviation being 0.653 ± 0.136. Many

of the individual trees with high similarity to the species tree belong to genes involved in the core

machinery of genetic information processing, such as those encoding DNA/RNA polymerase

subunits, ribosomal proteins, and elongation factors, while genes involved in peripheral functions

such as membrane transport are frequently more distant from the species tree (Fig. 6.5c, d).

This pattern is generally consistent with a previous study on a small taxon set [264]. While

determining the cause of discordance for individual genes is beyond the scope of this study, the

pattern we observed is consistent with a reduced rate of HGT for fundamental genes compared
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to those with less conserved functional significance [148]. There was no apparent correlation

between a gene tree’s concordance with the species tree and the prevalence of the gene in the

sampled genomes (Supplementary Fig. F.20d, e), suggesting that universality is not necessarily

indicative of fidelity.

To further test the impact of gene tree discordance on the species tree, we sequentially

removed genes from the low end of the quartet score rank (Supplementary Note F.1.2). ASTRAL

produced stable topologies in this test (Supplementary Fig. F.22a-c). We next tested the impact

on phylogenetic distances. There was a weak positive correlation (Pearson correlation R2 = 0.157,

p = 1.88e-07) between the quartet score and the relative Archaea-Bacteria distance (Fig. 6.5e).

When the branch lengths of the species tree were estimated using genes with high quartet scores

only, the distance moderately increased, yet remained far from the result by using the ribosomal

proteins (Supplementary Table F.6). This suggests that non-vertical transmission of genetic

information has only a limited impact on our updated estimates of the inter-domain distance.

6.2.5 Heterogeneity across sites

Inferring phylogenetic trees at deep time scales, beyond the heterogeneity of gene histories,

requires paying attention to the heterogeneity of substitution processes across the genome [255,

179]. As recently as 2015, Gouy et al. declared the jury to still be out on the root of the tree

of life [115] , partially due to difficulties in modeling heterogeneity of sequence evolution

across sites. In particular, changes in amino acid frequency across sites of the same gene can

exacerbate long branch attraction [178]. To account for these difficulties, we tested whether our

main conclusions stand if the data are analyzed with a recently developed model, PMSF, which

considers heterogeneity in the amino acid substitution process [348] (Fig. 6.3: “pmsf.cons” and

“pmsf.rand”). Because of the computational complexity of this approach, we had to limit these

analyses to 1,000 taxa. At this sampling depth, we were also able to build a tree using all sites

and the CONCAT method for comparison (“concat.al1k”).
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The topology of PMSF trees largely resembled the RAxML trees with the same taxon

sampling (Fig. 6.3a, b). The impact of using the PMSF model instead of site homogeneous

models on the topology and branch lengths was small compared to the impact of taxon, locus, and

site sampling (Supplementary Fig. F.23, Supplementary Note F.1.2). The PMSF trees continued

to support a large portion of relationships among deep branches recovered by the full-scale trees

(Fig. 6.3c, d, Supplementary Fig. F.3). The evolutionary proximity between Bacteria and Archaea

continued to hold with the PMSF trees. Meanwhile, the PMSF tree based on ribosomal proteins

(“pmsf.rpls”) also resembled the corresponding full-scale tree in suggesting a long distance

between Bacteria and Archaea (Fig. 6.4e, f, Supplementary Fig. F.24, Supplementary Table

F.7). Taken together, this shows that our phylogenies and main conclusions were robust when

considering site heterogeneity.

6.3 Discussion

The origin and evolution of life has been among the most intriguing scientific questions,

with the current widely adopted notion being the three-domain system: Bacteria, Archaea and

Eukaryota [360]. Recent phylogenomics studies typically indicated a long distance between

Bacteria and Archaea, with Eukaryota as an ingroup of the Archaea clade [58, 144]. In this

work, we built a reference phylogeny of over 10,000 bacterial and archaeal genomes, covering a

significant proportion of the known biodiversity with available genome data. The result provides

an updated view of microbial evolution, showing that Bacteria and Archaea, the two microbial

domains conventionally but controversially grouped by the term “prokaryotes” [354], are much

closer in evolutionary proximity than estimates using a smaller number of “core” genes, such as the

ribosomal proteins. This observation was further supported by extensive analyses using multiple

tree-building methods, with consideration of taxon and site sampling, amino acid substitution

heterogeneity and saturation, and non-vertical evolution, and was robust against the exclusion of
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CPR taxa. Interestingly, applying a simple universal molecular clock as well as relaxed clock

rates to date our trees resulted in divergence time estimates of major lineages that are compatible

with geological timeline only when using the global markers, but not when trees are restricted to

ribosomal proteins (Fig. 6.6, Supplementary Figs. F.25 and F.26, Supplementary Tables F.8-F.10,

see full details in Supplementary Note F.1.6). These comparisons suggest accelerated evolution in

ribosomal proteins during the separation between Bacteria and Archaea. They show the limitation

of using core genes alone to model the evolution of the entire genome, and highlight the value in

using a more diverse marker gene set.

Our work highlights the value of even taxon sampling, a global marker gene set repre-

senting the larger average of genome content, and comparative phylogenetic analyses. These

procedures largely reduced the bias of gene choice in exploring genome evolution, and allowed

us to characterize the evolutionary discrepancies of individual gene families. Despite these

efforts, some lineages are still underrepresented in our sampling, such as DPANN [276] , which

has genomes that are often missing many of the 381 marker genes (detailed in Supplementary

Note F.1.5). Moreover, the rapid growth of genomic data has led to the absence of some newly

discovered groups from our tree. While it is impractical to repeat all of our analyses to include

all new genomes, it is of interest to assess whether the newly discovered microbial diversity

may impact our results. Prior to submission of this article, we updated the genome collection

from NCBI on May 23, 2019, and selected 187 new genomes representing phyla as defined

by the newest NCBI and GTDB taxonomies that are absent or underrepresented in the current

set of 10,575 genomes (see Methods). Phylogenetic trees built using the extended genome set

continued to support the domain-level relationships in both topology and evolutionary distance

as recovered by the main analysis (Supplementary Fig. F.27, Supplementary Table F.11, see

Supplementary Note F.1.7 for full details). Finally, we note that the inclusion of eukaryotes is

challenging with the current marker gene set due to the overall sparsity of detectable homology.

Further improvements in methodology are important in order to deliver a robust phylogeny that
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encompasses all forms of life.

6.4 Methods

6.4.1 High-performance computing

Analyses of the genome datasets in this study were computationally intensive. Heavy

computations used the “Comet” supercomputer located at the San Diego Supercomputer Center

(SDSC). Each standard node is equipped with 24 Intel Haswell CPU cores and 128 GB of

DDR3 memory, while each GPU node is equipped with four NVIDIA P100 GPUs, plus 28

Broadwell CPU cores and 128 GB memory. A small proportion of the computations used the

“Barnacle” computer system operated by the Knight Lab, each node of which has 32 Haswell

CPU cores and 256 GB DDR3 memory. Whenever possible, all CPU cores were used in a

typical multi-processing task to minimize run time. Tasks that required more than 128 or 256 GB

memory used the large-memory nodes of Comet, featuring 64 CPU cores and 1.5 TB memory per

node. Benchmarking of the prototype selection algorithms and some local developments were

performed on the “WarpDrv” workstation, equipped with 32 Intel Sandy Bridge CPU cores and

256 GB of DDR3 memory.

6.4.2 Retrieval of genome data and metadata

Microbial genomes were downloaded from the NCBI genome database (GenBank and

RefSeq) as of March 7, 2017. We used and provided updates related to this work to the automated

workflow RepoPhlAn (https://bitbucket.org/nsegata/repophlan, commit 03f614c) to download

genomes from the NCBI server. Each genome was given a unique identifier, which was derived

from the NCBI accession of the corresponding assembly but without version number. For example,

a genome with assembly accession “GCF 000123456.1” was identified as “G000123456” in this
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study. In cases when the same genome was present in both GenBank (accession starting with

“GCA ”) and RefSeq (accession starting with “GCF ”), only the RefSeq version was kept.

6.4.3 Annotation and classification of marker genes

The functional annotation of the 400 PhyloPhlAn marker genes [303] was performed by

aligning the protein sequences of the 400 marker genes (inferred from 2,887 bacterial and archeal

genomes as described in Segata et al. [303]) against the UniRef50 database (March 2018 release)

using BLASTp. The best hit for each gene was taken and queried against the UniProt database

for gene and protein names. To categorize genes by function, the UniProt entries were translated

into Gene Ontology (GO) terms [17] with the “subset prokaryote” tag (March 2018 release).

Because not all UniProt entries have corresponding GO terms, manual curation was involved to

pick the most appropriate GO terms for those cases by examining the BLAST hit table. GO terms

were further translated into GO slim terms to obtain higher-level functional categories. Note that

this analysis is independent from the phylogenetic analysis of the current genome data set, and

the result can be used as a reference for PhyloPhlAn users.

6.4.4 Analyses of genome sequences and identification of marker genes

The DNA sequences of the 86,200 bacterial and archaeal genomes were subjected to the

following analyses:

1 The quality scores for DNA, protein, tRNA and rRNA were calculated following Land et

al. [176].

2 A MinHash sketch was built for each genome using Mash 1.1.1 [240], with default settings

(sketch size = 1000, k-mer size=21), based on which a pairwise distance matrix was built

for the entire genome pool. In brief, MinHash is a k-mer hashing technique that enables the

166



quantification of genome-to-genome distance. It is efficient for very large genome sets, and

it correlates well with the conventionally used average nucleotide identity (ANI) [240].

3 Although NCBI provides genome annotations, we chose to re-annotate the genomes using

a uniform protocol to ensure consistency. Specifically, open reading frames (ORFs) were

predicted using Prodigal 2.6.3 [147], in the single-genome mode, and allowing ORFs to

run off edges of scaffolds.

4 Based on the predicted ORFs, the 400 marker genes were inferred and extracted using the

phylogenomics pipeline PhyloPhlAn (commit 2c0e61a) [303], in which the 400 marker

genes were originally introduced. In brief, we used USEARCH v9.1.13 to align ORFs

against the reference marker gene sequences (see above) at an E-value threshold of 1e-40.

It then selected the highest bit score hit of each ORF. Should more than one hit per marker

per genome was observed, the highest bit score hit was selected as the representative of

that marker gene.

5 The completeness, contamination, and strain heterogeneity scores were computed using

CheckM 1.0.7 [247] with the default protocol (“lineage wf”).

6.4.5 Prototype selection and genome sampling

Proper taxon sampling is a key prerequisite to inferring an unbiased view of organism

evolution [226, 81]. Beyond computational challenges in robust tree-building, the highly uneven

distribution of known biodiversity (e.g., 40.0% of all genomes (34,507) belong to the nine

most-sequenced species) requires deliberate subsampling to reduce the bias from the resulting

phylogeny in representing a global view of evolution. We therefore applied the data-reduction

strategy of “prototype selection” [104], which subsamples genomes from the pool such that they

represent the largest possible biodiversity—in terms of maximized sum of pairwise distances as

defined by k-mer signatures (Supplementary Fig. F.1a). We developed a heuristic (detailed in
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Supplementary Note F.1.1), capable of handling the size of the current genome pool, with results

comparable to or better than published alternatives (Supplementary Fig. F.1b-e).

Using this algorithm and by applying multiple criteria, we downsampled the 86,200

bacterial and archaeal genomes to 11,079. The procedures are detailed below.

1 Excluded genomes with marker gene count < 100 or contamination > 10%. The marker

gene count threshold 100 was chosen because it is sufficiently large to yield high resolution

of the tree using ASTRAL (Supplementary Fig. F.10a, c). The contamination threshold

10% is inline with the medium- and low-quality draft genome standards proposed by

Bowers et al. [359]. Nevertheless, we did not adopt the completeness and tRNA/rRNA

coverage thresholds [359], because the 400 protein-coding marker genes are more relevant

for phylogenetic reconstruction.

2 Included the NCBI-defined reference and representative genomes

(https://www.ncbi.nlm.nih.gov/refseq/about/prokaryotes/).

3 Included genomes that are the only representative of each taxonomic group from phylum to

genus.

4 Included genomes that are the only representative of each species without defined lineage

(no classification other than species).

5 Executed the prototype selection algorithm developed in this work: “destructive maxdist”

(see Supplementary Note F.1.1) based on the distance matrix defined by MinHash signatures,

with the already included genomes as seeds, to obtain a total of 11,000 genomes.

6 For each phylum to genus, and species without classification from phylum to genus, selected

one with the highest marker gene count. This added 79 genomes to the selection.

These 11,079 genomes were subjected to our phylogenetics protocol, during which further
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filtering was performed based on sequence alignment quality (see below). Eventually, 10,575

genomes were retained.

6.4.6 Impact of alternative genetic codes

We chose to uniformly apply the standard archaeal and bacterial genetic code table 11

to all genomes in order to minimize bias. Reports have shown that several lineages, such as

Mycoplasma/Spiroplasma [158], Hodgkinia [208] and Absconditabacteria [46], use alternative

genetic code tables 4, 25 and others, in most of which a stop codon is repurposed to encode for

an amino acid, resulting in ORF elongation. We did not incorporate alternative genetic codes,

however, because there is no accurate way to associate each of the 86,200 genomes with its true

genetic code. Incorrect truncation of ORFs may unnecessarily exclude genes and taxa, whereas

incorrect elongation of ORFs could result in artificially long branches because the amino acid

sequence after a true stop codon is likely relaxed from selective pressure. Considering our goal of

inferring phylogenetic topology and distances, we decided to only use the standard genetic code.

However, we did test the impact of using alternative genetic code on the gene and taxon

sampling. We ran Prodigal 3.0.0-rc1, which automatically switches from genetic code 11 to 4 if

the average ORF length is too short. This resulted in altered gene calling results in 453 out of

the 86,200 genomes, of which 63 had overly short ORF lengths even when using genetic code

4. PhyloPhlAn marker gene discovery on the other 390 genomes with genetic code 4 suggested

marginal increase in the extracted number of the 400 marker genes per genome (1.23 ± 5.28,

mean and std. dev.). Only seven additional genomes which had less than 100 marker genes

managed to pass this threshold (see above) after switching to genetic code 4. Therefore, omitting

alternative genetic code has little impact on the inclusion of genomes.
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6.4.7 Metric multidimensional scaling (mMDS) of genome distances

The effect of prototype selection was visualized using the mMDS technique, which

renders a low-dimensional plot that minimizes the loss of information when transforming from

the high-dimensional data. We performed mMDS using the “mds” function implemented in

scikit-learn 0.19.2 [250] on the genome distance matrix, using the default setting, to compute the

coordinates at the top five axes. The resulting coordinates were visualized with the interactive

tool Emperor [345] as bundled in QIIME 2 release 2017.12 [30].

6.4.8 Protein sequence alignment and filtering

Protein sequences of each of the 400 marker gene families were aligned using UPP

v2.0 [227], a phylogeny-based and fragmentary-aware alignment tool. UPP consists of several

sequentially connected modules. It first identifies suspected fragmentary sequences, then calls

PASTA v1.8.0 [214] to align the remaining sequences and build a phylogeny (backbone tree)

based on them. Then it builds an ensemble of HMMs using HMMER [82] based on the phylogeny.

Finally, it aligns the fragmentary sequences to the HMMs and selects the one with the best match.

Sequences that are 25% longer or shorter than the median sequences were considered as fragments

and excluded from the backbone. More specifically, PASTA first builds a starting tree, performs

a tree-based clustering of the sequences, and builds a spanning tree from these clusters. Then

it calls MAFFT v7.149b [162] to align the sequences in each cluster, and calls OPAL [353]

to merge the alignments of adjacent clusters according to the spanning tree, and finally uses

transitivity to perform the subsequent merging.

To ensure the quality of the alignment, we filtered out extremely gappy sites and sequences:

sites with more than 90% gaps were deleted from the alignments, followed by the dropping of

sequences with more than 66% gaps.
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6.4.9 Filtering of marker genes

To ensure the quality of the species tree built upon these marker genes [298], we filtered

out the genes that were not aligned reliably by UPP. As such, the marker genes with more than

75% gaps in the aforementioned alignments were excluded from the pool, leaving 381 marker

genes in total. The threshold 75% was chosen based on the distribution pattern of per-gene

alignment quality (Supplementary Fig. F.2d).

6.4.10 Filtering of outlier taxa from gene trees

We removed suspected outliers by detecting the taxa on disproportional long branches

and filtering them out from the phylogeny inferred by FastTree [261]. To do this, we applied

TreeShrink [199] v1.1.0, a method that simultaneously detects long branches on a set of gene

trees by identifying a set of taxa that could be removed from each gene so that the gene trees are

maximally reduced in diameter. We used FastTree 2.1.9 to infer preliminary gene trees of the

381 selected genes, then ran TreeShrink to detect outlier long branches in these trees, with the

per-species test with α = 0.05 (5% false-positive tolerance). Finally, we dropped genomes that

contained less than 100 marker genes post gene tree filtering.

6.4.11 Gene tree reconstruction

Gene tree topologies were reconstructed using the maximum likelihood (ML) method

as implemented in the state-of-the-art phylogenetic inference program RAxML 8.2.10 [321].

The best amino acid substitution model for each of the 381 universal marker genes was inferred

using RAxML’s built-in script ProteinModelSelection.pl. Three phylogenetic trees were recon-

structed for each gene family: one using a starting tree computed by the fast ML approach

implemented in FastTree) and the other two using parsimony trees built with random seeds 12345

and 23456. RAxML was executed with the ML search convergence criterion (-D) and the CAT
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rate heterogeneity model without final optimization (-F) to reduce the execution time.

For each of the 1,143 topologies (3 × 381), another RAxML run was executed to optimize

branch lengths and to compute likelihood scores under the robust but expensive Gamma rate

heterogeneity model. Because of numerical instability, at least one of the RAxML runs failed

for 39 of the 381 gene families. For those cases, IQ-TREE 1.6.1 [231], an alternative and faster

maximum likelihood program, was used instead to optimize branch lengths using the same model

(G4). The tree with the highest likelihood score among the three runs was retained for downstream

applications. In 161 gene families, this tree was from the run with the FastTree starting tree, while

in the remaining gene families the best tree was from either one of the random seeds.

6.4.12 Species tree reconstruction by summarizing gene trees (ASTRAL)

A species tree was reconstructed by summarizing the 381 gene trees, using ASTRAL-MP

[372] (implementing ASTRAL-III algorithm [378]) 5.12.6a. This analysis was run on the Comet

supercomputing cluster using 24 cores and 4 GPU acceleration. In the resulting tree, the branch

lengths represent the units of coalescence. Each branch has three support values: 1) effective

number of genes (EN): number of gene trees that contain some quartets around that branch; 2)

quartet score (QT): proportion of the quartets in the gene trees that support this branch; 3) local

posterior probability (LPP): the probability this branch is the true branch given the set of gene

trees (computed based on the quartet score and assuming incomplete lineage sorting (ILS)) [297].

6.4.13 Branch length estimation for the ASTRAL tree

The branch lengths of a summary tree generated by ASTRAL are in coalescent units and

only for internal branches. In order to obtain “conventional” branch lengths, i.e., the expected

number of amino acid substitutions per site, we ran IQ-TREE using the concatenated alignment

(most conserved or randomly selected sites as described below) as input, the ASTRAL tree as
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the topological constraint, and the LG + Gamma model. Branch lengths obtained using both site

categories were highly correlated (Supplementary Note F.1.2).

6.4.14 Species tree reconstruction based on the concatenated alignment

(CONCAT)

The alignments of the 381 marker genes were concatenated into a supermatrix. Due to

the computational challenge in running classical maximum likelihood tree reconstruction on the

full-scale data set, we had to downsample it to around 38k amino acid sites. In order to explore

the impact of site sampling on tree topology and branch lengths, we separately adopted two

strategies for site sampling: 1) selected up to 100 most conserved sites per gene. The degree of

conservation was estimated using the “trident” metric [344], which is a weighted composition of

three functions: symbol diversity, stereochemical diversity, and gap distribution. The PFASUM60

substitution matrix was used for computing the stereochemical diversity [165]. 2) randomly

selected 100 sites per gene from sites with less than 50% gaps.

For the downsampled supermatrix, a maximum likelihood tree was first built using

FastTree, with LG model for amino acid substitution and Gamma model for rate heterogeneity.

Using this FastTree tree as the starting tree, plus two maximum parsimony trees generated from

random seeds (12345 and 23456), we performed three independent runs using RAxML, with

the LG + CAT models (PROTCATLG), with rapid hillclimbing (-f D) and without final Gamma

optimization (-F). With the resulting topologies, we performed branch length optimization and

likelihood score calculation using IQ-TREE, with the LG + Gamma models (LG+G4). We further

performed 100 rapid bootstraps using RAxML to provide branch support values.
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6.4.15 Species tree reconstruction based on ribosomal proteins

To test the impact of choice of marker gene set on the topology and relative distances

among major taxonomic groups, we conducted a separate analysis in which the species tree

was built using ribosomal protein sequences. We identified and extracted 30 ribosomal protein

families using the program PhyloSift 1.0.1 [63] with its marker database released on August

8, 2017. If more than one copy of a marker protein was detected in a genome, all copies were

discarded. After this filtering, genomes with fewer than 25 marker proteins were dropped from

the data set, resulting in a total of 9,814 genomes out of the original 10,575. Sequences of each

ribosomal protein family were aligned using UPP as described above. The resulting alignments

were concatenated and subjected to RAxML tree reconstruction using the LG model for amino

acid substitution [181] (which is the best model for 304 out of the 381 genes based on RAxML’s

model selection) and the CAT model for rate heterogeneity (PROTCATLG). The resulting tree

was then fed into IQ-TREE for branch length optimization, with the Gamma model for rate

heterogeneity. One hundred rapid bootstraps were executed in RAxML to provide branch support.

The same concatenated alignment was also used to estimate the branch lengths for the

ASTRAL tree based on the 381 marker gene trees. Because the quality of an ASTRAL tree

improves as the number of gene trees increases (Supplementary Fig. F.10a, c), running ASTRAL

on only 30 trees of structurally and functionally highly related genes is of limited value. Thus we

decided not to run ASTRAL de novo but only to assess the impact of ribosomal proteins on the

branch lengths of the existing ASTRAL tree.

6.4.16 Species tree reconstruction and branch length estimation with CPR

taxa excluded

We followed the same protocol as stated above to reconstructed species trees and estimate

branch lengths based on the protein sequence alignments with the 1,454 CPR taxa removed,
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leaving 9,121 taxa. Only one modification was made to the main protocol in order to reduce

the computational expense for reconstructing the 381 gene trees: Instead of running RAxML

three times per gene and selecting one tree with the highest Gamma likelihood, we ran RAxML

once per gene using the random seed 12345. The two alternative site sampling schemes: most

conserved (“cons”) and randomly selected (“rand”) as demonstrated in the main result were both

tested, using the same amino acid sites as in the main protocol in each scheme.

6.4.17 Species tree reconstruction using site heterogeneous models (PMSF)

We built alternative CONCAT trees using the posterior mean site frequency (PMSF)

method [348] implemented in IQ-TREE, which considers mixture classes of rates and substitution

models (here the LG model) across sites. Because this method is computationally expensive,

we downsampled the 10,575 taxa to 1,000 (see below for the taxon downsampling strategy).

ModelFinder (which is part of IQ-TREE) [161] was used to select an optimal model among

the empirical profile mixture models C10 to C60 [309], plus the site homogenous model (with

Gamma rate across sites) as a control. This analysis consistently chose C60 as the optimal model

for all tests. Therefore we used the LG+C60 model for PMSF phylogenetic reconstruction. PMSF

requires a guide tree, which we obtained from ModelFinder results. Computational challenge

limited this analysis to at most 1,000 taxa (which consumed 1.43 TB memory, close to the 1.5 TB

physical memory equipped in our high-memory nodes). Branch support values were computed

using the ultrafast bootstrap (UFBoot) [136] method implemented in IQ-TREE. In parallel to

this analysis, we performed phylogenetic inference using the Gamma model (+G) or the FreeRate

[316] model (+R) on the same 1,000-taxon input data for comparison purpose.
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6.4.18 Species tree reconstruction using implicit methods

We applied two implicit strategies for inferring the evolutionary relationships among the

sampled genomes. They are not based on the alignment of homologous features across multiple

genomes, but instead, are based on the pre-defined distances among genomes. Specifically, they

are the Jaccard distances defined by the MinHash signature (see above), and by the presence /

absence of the 400 marker genes (see above). The conventional neighbor joining (NJ) method

as implemented in ClearCut 1.0.9 [88] was used to reconstruct phylogenetic trees from the two

distance matrices, respectively.

6.4.19 Rooting and post-manipulation of species trees

We rooted the species tree at the branch connecting the Archaea clade and Bacteria clade,

according to the widely adopted hypothesis of life evolution [128, 102, 61]. The absence of

Eukaryota does not impact the placement of root, since Eukaryota is considered derived, as a sister

group or ingroup of Archaea in this hypothesis. We want to remind readers that this hypothesis

is not without controversy [174, 52]. The discovery and study of CPR and other divergent or

transitional groups may provide materials for a second examination of this hypothesis, although

this is beyond the scope of this study.

Internal nodes were flipped to follow the descending order (i.e., child nodes are sorted

from less descendants to more descendants). Incremental numbers were assigned to internal node

IDs in a pre-order traversal of the tree starting from the root (i.e., root = N1, LCA of Archaea =

N2, LCA of Bacteria = N3, etc.). These node IDs can be used as unique identifiers in downstream

analyses and applications.
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6.4.20 Phylogeny-based downsampling of taxa

We designed a protocol to downsample taxa from the 10,575 genomes for further phylo-

genetic analyses. We adopted the relative evolutionary divergence (RED) metric [246], as the

core of our subsampling strategy. This metric allowed us to select large clades that best represent

the deep phylogeny. Specifically, we calculated RED for all nodes (terminal and internal) of

the ASTRAL tree (i.e., the tree shown in Fig. 6.1) using TreeNode functions implemented in

scikit-bio 0.5.2 [302]. Nodes were selected iteratively from the low end of the RED list, with

ancestral nodes (if any) of the current node dropped from the selection at each iteration, until the

desired number of clades n was achieved.

Within each selected clade, four criteria were sequentially applied to the descendants until

one taxon was selected: 1) contains the most marker genes; 2) contamination level is the lowest;

3) DNA quality score is the highest; 4) random selection (if there were still more than one taxon

after applying the other three criteria). This protocol guaranteed the selection of n taxa which

maximize the representation of deep phylogeny.

6.4.21 Visualization and annotation of trees

Unique colors were assigned to selected NCBI-defined taxonomic groups above phylum,

and phyla with 100 or more representatives in the sampled genomes. Colors of taxa were

directly assigned based on their NCBI taxonomy assignment. Colors of clades and branches

were determined based on the tax2tree decoration. The trees were rendered using iTOL v4 [186]

(unrooted or circular layouts) or FigTree 1.4.3 [1] (rectangular layout).

6.4.22 Comparison of multiple trees

We used both the classical Robinson–Foulds (RF) metric [277] (calculated using scikit-

bio’s “compare rfd” function) and the quartet score (calculated using ASTRAL) to quantify the
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topological concordance between a pair of trees. Furthermore, we used the “tip distance” (TT),

calculated using scikit-bio’s “compare tip distances” function, to measure the correlation of the

phylogenetic distances among taxa in a pair of trees. It equals (1− r)/2, where r is the Pearson

correlation efficient between the tip-to-tip distance (i.e., total length of branches connecting

two tips) matrices of the two trees. Because the two trees might have different sets of taxa, we

first truncated them using the “shear” function implemented in scikit-bio so that they both only

contained the shared taxa. This enabled the subsequent computation of the three metrics.

For a set of multiple trees (species trees or gene trees), a matrix of the pairwise RF

distance, quartet distance (1 - quartet score) or tip distance was constructed, based on which

subsequent statistical analyses were performed to assess the clustering pattern of trees, as stated

below.

6.4.23 Clustering analysis of multiple trees

We used several statistical approaches to assess the clustering pattern of multiple trees

based on the RF, tip or quartet distance matrices built as stated above:

1 Hierarchical clustering, using the “linkage” function implemented in SciPy 1.1.0 [155].

2 mMDS, as detailed above.

3 Principal coordinate analysis (PCoA), performed using QIIME 2’s “pcoa” command, and

visualized using Emperor. This method aims to visualize the biggest variance in a few

dimensions, as compared to mMDS as explained above.

4 Permutational multivariate analysis of variance (PERMANOVA) [12], performed using

QIIME 2’s “beta-group-significance” command, with 999 permutations (the default setting).

This method evaluates the statistical significance of grouping of trees by a certain variable

such as method, site sampling and taxon sampling.
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6.4.24 Cross-comparison of the ASTRAL and CONCAT trees

The first challenge for this comparison was that the branch support values were estimated

using completely different methods (local posterior probability vs. rapid bootstrap) and so are not

directly comparable. We manipulated the trees so that they have the same overall resolution: First,

we collapsed the low-supported branches in the CONCAT tree (by conserved sites), using the

commonly accepted bootstrap threshold: 50. This left 9,595 internal nodes. Then we performed

branch collapsing to the ASTRAL tree, from the low end of the range of local posterior probability

(lpp), until it reached 0.68057, also leaving 9,595 internal nodes.

The second challenge was that large-scale trees are difficult to align and to display. We

collapsed the two trees so that they have 50 paired clades with at least 50 descendants each. For

each pair of clades the descendants are identical. The remaining tips were pruned. This operation

left 7,764 taxa in each tree. The sizes of the 50 chosen clades are 155.3 ± 106.9 (mean and

standard deviation).

A tanglegram of the resulting collapsed trees was reconstructed using Dendroscope 3.5.9

[146]. In our case, the clades were fully-aligned. The tanglegram was then rendered back-to-back

without the need for displaying the connector lines.

6.4.25 Calculation of the relative Archaea-Bacteria distance

We calculated the phylogenetic distance (sum of branch lengths) between every pair of

taxa in a tree using scikit-bio ’s “tip tip distances” function. The pairs were divided into three

groups: A-A, A-B, and B-B (A and B are abbreviations for Archaea and Bacteria). Within each

group, the mean distance was calculated. Then the overall relative A-B distance was calculated

as: mean(A-B)2 / (mean(A-A) × mean(B-B)). Note that due to HGT and other reasons, archaeal

and bacterial taxa are rarely perfectly separated in individual gene trees. Therefore the calculated

distance should be interpreted as the average evolutionary distance between archaeal and bacterial
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genomes, instead of the distance between the two clades.

6.4.26 Test for amino acid substitution saturation

We followed the principle introduced by Jeffroy et al. [151] to test for the saturation.

Specifically, we wanted to test whether the degree of saturation on inter-domain taxon pairs

(Bacteria vs. Archaea) is larger than that on intra-domain pairs. For each domain, 100 taxa were

randomly sampled for this analysis. We plotted the phylogenetic distance, i.e., the sum of branch

lengths between two tips, as the x-axis, versus the Hamming distance of gap-free sites per each

alignment between a pair of sequences, as the y-axis (Supplementary Fig. F.19a-d). Because the

three categories of taxon pairs have differential distribution on the x-axis, we further binned on

the x-axis and performed comparison within each bin (Supplementary Fig. F.19e, f).

6.4.27 Phylogenetic analysis with latest genome availability

We made several modifications to the main protocol to reduce the computational expense

for this rapid test of the extended set of 10,762 (10,575 + 187) genomes: UPP was called in

“insertion” mode to update the existing amino acid sequence alignments. In-house scripts were

used to locate the same set of sites instead of performing de novo site sampling. Both ASTRAL

and CONCAT methods were used to build species trees. For CONCAT, we used IQ-TREE

in “fast” mode to build de novo species trees from concatenated alignments without using a

predefined starting tree. For ASTRAL, we kept the same analysis parameters to build a species

tree from the 381 gene trees, whereas the gene trees were built as follows to save computation

while maintaining high quality:

Firstly we used the previous gene trees as topological constraints (-g) to incorporate the

new taxa using RAxML. Then we used those trees as starting trees (-t) to perform de novo ML

searches using RAxML. This way, we only did de novo ML search once instead of three as
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previously, but we argued that the generated gene trees would have comparable ML score as

in the previous procedure. To test this hypothesis, we randomly selected 10 genes to generate

four trees each: (1) RAxML with FastTree tree as starting tree; (2) & (3) RAxML with random

starting trees with two different random seeds; (4) RAxML tree generated using the described

procedure. Note that the tree having highest likelihood score among (1), (2), and (3) defines the

ML tree in the previous procedure. Our results showed that the gene trees generated by (4) have

higher likelihood scores than the best of (1), (2), and (3) in six of 10 of the tested genes. Besides,

we use a χ2 test to show that the trees (4) have higher chance to be the best tree than (1), (2), and

(3). In this test, the null hypothesis H0 is that (4) has the same chance to be the best tree among

the four trees. Applying the test on the 10 selected genes, we rejected H0 with p-value = 0.011.

6.4.28 Divergence time estimation using maximum likelihood

We used the maximum likelihood tool r8s 1.81 [294] to estimate the divergence times

based on the species trees. Specifically, we used the Langley-Fitch (LF) method [177] , which

assumes a universal molecular clock (substitution rate) for the entire tree, with the truncated-

Newton (TN) method for optimizing the likelihoods of branch lengths [228]. A recent study

showed that this method has comparable estimation accuracy when benchmarked against the

more sophisticated Bayesian framework, but its computation is significantly faster [340], thus

suitable for the size of our dataset. Near-zero branches were collapsed to avoid numerical errors.

Ten replicates with random initial conditions were performed for each setting. In each replicate,

three restarts were executed after the initial optimization with a random perturbation factor of 5%.

Replicates that failed to pass the gradient check were discarded. The divergence times estimated

by the run with the highest likelihood score and the mean and standard deviation of those by all

successful runs were reported.
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6.4.29 Divergence time estimation using Bayesian inference

We used the Bayesian tool BEAST 1.10.4 [326] to estimate divergence times. Considering

the computational expense, we randomly selected 5,000 amino acid sites from the full-length

alignment, and downsampled the original 10,575 taxa to 100. Taxon sampling was performed

using the same RED-guided protocol (see above), but was manually modified afterwards to ensure

sufficient sampling around the calibration point. Two alternative molecular clock models were

used: the strict clock model, or the uncorrelated relaxed clock model with a lognormal distribution

(UCLD) [77]. The species tree was modeled using a Yule process [108], with topology fixed

to the ASTRAL tree. Logs of MCMC runs were examined using Tracer 1.7.1 [269]. Burn-ins

were set to be at least 10% of iterations, or higher depending on the manual observation of traces.

Sufficient MCMC iterations were executed to ensure that the effective sample size (ESS) of the

reported parameters was at least 150.

6.4.30 Tree-based taxonomic curation and annotation

We used the program tax2tree (commit 99f19be) [209] to curate the original NCBI

taxonomy [90] assignment of genomes based on the phylogenetic trees and to annotate the

internal nodes of the tree using most appropriate taxonomic labels. The same program was used

to curate multiple databases such as the classical Greengenes [209] and the recent GTDB [246].

The program took as input the species tree and the original NCBI taxonomy and inferred the

most plausible taxonomic annotation at every node of the tree, as determined using an F-measure

scoring system across candidate taxonomic terms. In scenarios where one term was estimated

to be the best candidate for multiple, independent clades (i.e., para/polyphyly), a numeric suffix

was appended to the term to indicate the grouping and order (from more descendants to less) of

those clades. For example, Firmicutes 1 is the largest clade assigned to the paraphyletic phylum

Firmicutes, followed by Firmicutes 2, Firmicutes 3, etc. Based on the decorated tree, correct
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taxonomic names were re-generated for unclassified and mis-annotated genomes. Taxonomic

groups represented by only one genome in this work were back-filled post tax2tree annotation.

6.4.31 Assessment of cladistic properties of taxon sets

The cladistic property of a taxonomic group (or an arbitrarily defined taxon set) with

reference to a species tree was evaluated using three methods:

1) The strict definition of “monophyly”: when a clade contains all genomes assigned to a

single taxonomic group and no other genomes, this taxonomic group is considered monophyletic.

Further, we identified “relaxed” monophyletic groups compared to the aforementioned “strict”

scenario. In the “relaxed” scenario, if a clade consists of genomes assigned to a taxonomic group,

and genomes without assignments at the same taxonomic rank (i.e., unclassified), this taxonomic

group is still considered monophyletic.

2) tax2tree’s classification consistency score, representing the fraction of tips within that

clade relative to the total number of tips in the tree which are of that taxon. Consistency = 1 is

equivalent to strict monophyly.

3) The ASTRAL-computed quartet score of this taxonomic group, i.e., the fraction of

quartets in the tree that supports this taxonomic group as monophyletic, i.e., separates this

taxonomic group from the others.

4) An approach introduced in DiscoVista [299] which evaluates and visualizes the

compatibility between a given taxon set and a tree with branch support values. It computes a

“support” or “rejection” degree as follows: If the taxon set constitutes a monophyletic clade

in the tree, it is supported; and the support degree (green) is the support value of the branch

connecting the lowest common ancestor of the clade to its parent. On the other hand, if it is not a

monophyletic group in the original tree, but after contracting branches with support values below

a threshold, the monophyly can no longer be rejected due to polytomy, the lowest threshold is

considered the rejection degree (with a negative sign) (magentar).
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6.4.32 Evaluation of GTDB taxonomic groups

We downloaded GTDB [246] release: 86.1 from http://gtdb.ecogenomic.org/. The format

of genome identifier in GTDB was matched to that of our work (e.g., GB GCA 000123456.1 was

translated into G000123456). Following the protocols described above, we evaluated the GTDB

phylogeny and taxonomic units, and annotated our species trees using the GTDB taxonomy.

6.4.33 Statistics

Statistical analyses and plotting were performed using Python 3.6 and QIIME 2 re-

lease 2017.12. Specifically, PERMANOVA test was performed using QIIME 2’s “beta-group-

significance” command. Independent or paired two-sample t-test was performed using scipy

1.1.0’s “ttest ind” and “ttest rel” commands, respectively. Fisher’s exact test was performed using

scipy’s “fisher exact” function. Linear regressions were performed using scipy’s “linregress”

function. The p-value was computed using a two-sided Wald test in which the null hypothesis was

slope = 0. Gaussian kernel density estimations were performed using seaborn 0.9.0’s “distplot”

function. Hierarchical clustering was performed using scipy’s “linkage” function. Quantile-

quantile (Q-Q) plot was computed using scipy’s “probplot” command. Redundancy analysis

(RDA) was performed using vegan 2.4.4’s “rda” and “ordiR2step”commands. Dimension reduc-

tions were performed using mMDS implemented in scikit-learn 0.19.2, or PCoA implemented

in QIIME 2 (both detailed above). Pairwise distances based on k-mer signatures and on marker

gene presence/absence were computed using the Jaccard index (see above). Branch supports in

the phylogenetic trees were computed using rapid bootstrap implemented in RAxML 8.2.10, and

ultrafast bootstrap implemented in IQ-TREE 1.6.1, and local posterior probability implemented

in ASTRAL 5.12.6a (detailed above). Robinson-Foulds (RF) distance and “tip distance” were

calculated using scikit-bio 0.5.2. Quartet scores were calculated using ASTRAL.
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6.4.34 Data availability

The datasets generated during and analyzed during the current study are publicly available

at GitHub: HYPERLINK ”https://github.com/biocore/wol” (DOI: 10.5281/zenodo.3524546),

under the BSD 3-Clause license. All relevant data are available from the authors. The source data

underlying Figs. 6.1-6.6, and Supplementary Figs. F.1-F.27 are provided as a source data files.

6.4.35 Code availability

The Python implementations of the prototype selection algorithms for genome subsam-

pling are publicly available at: https://github.com/biocore/wol/ (DOI: 10.5281/zenodo.3524546),

under the BSD 3-Clause license. A copy of the code is provided in Supplementary Software.
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Figure 6.1: A new view of the bacterial and archaeal tree of life. The tree contains 10,575
evenly distributed bacterial and archaeal genomes, with topology reconstructed using ASTRAL
based on individual trees of 381 globally sampled marker genes, and branch lengths estimated
based on 100 most conserved sites per gene. Branches with effective number of genes (en)
≤ 5 and local posterior probability (lpp) ≤ 0.5 were collapsed into polytomies. Taxonomic
labels at internal nodes and tips reflect the tax2tree curation result. Color codes were assigned
to above-phylum groups and phyla with 100 or more representatives. To display the tree in a
page, it was collapsed to clades (sectors) representing phyla with at least one taxon (black), and
classes with at least 10 taxa (grey). The radius of a sector indicates the median distance to all
descending taxa of the clade, and the angle is proportional to the number of descendants. For
polyphyletic taxonomic groups, minor clades with less than 5% descendants of that of the most
specious clade were omitted, while the remaining clades were appended a numeric suffix sorted
by the number of descendants from high to low. Dots (single clade) and lines (sister clades)
are used to assist visual connection between tips and labels where necessary. In four instances
where visual space is inadequate (marked by grey arrows), groups of labels in clockwise order
are provided in remote blank areas. Source data are provided as a Source Data file.
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Figure 6.2: Statistics of the 10,575 bacterial and archaeal genomes selected for phylogenetic
reconstruction. a. Numbers and proportions of NCBI-defined taxonomic units included from all
86,200 available genomes. b. Distribution of completeness vs. contamination scores computed
by CheckM [247]. c. Distribution of genome sources, i.e., the “scope” property defined by
NCBI. d. Distribution of genome assembly levels. e. Distribution of draft genome quality,
determined following the standard established by Bowers et al. [34]. Specifically: “high”:
completeness > 90%, contamination < 5%, presence of 23S, 16S, 5S rRNAs and geq 18
tRNAs.; “medium”: completeness ≥ 50%, contamination < 10%; “low”: completeness < 50%,
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represents genomes assembled from metagenomes (MAGs). f. Distribution of GC contents. g.
Distribution of DNA quality scores, calculated following Land et al. [176]. h. Distribution of
N50 statistics of nucleotide sequences per genome. i. Distribution of coding density. The y-axes
in f-h represent genome counts. Source data are provided as a Source Data file.
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Figure 6.3: Comparison of topologies of multiple species trees. Nine species trees reconstructed
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methods for building those trees were summarized in the inset table. a. Matrix of normalized
Robinson–Foulds (RF) distance, which measures the overall topological discrepancy between
two trees based on the shared taxa. b. PCoA of the RF distance matrix. c. Branch support-
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Figure 6.4: Evolutionary proximity between domains Archaea and Bacteria. a and b. The
unrooted, drawn-to-scale ASTRAL tree with branch lengths estimated using the 381 global
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with color codes highlighting domain-level relationships (Archaea and Bacteria, the latter of
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at least 50% taxa represented in each tree. A histogram with Gaussian kernel density function
and a rug plot representing individual data points are displayed. The blue and red vertical
lines indicate the values of the ASTRAL species tree with branch lengths estimated using the
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separated from the main cluster. b. Distribution of relative A-B distances by functional category
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Appendix A

Supplementary materials for Chapter 1

A.1 Theorem proofs

A.1.1 Proof of Proposition 1

We start with a Lemma:

Lemma 1. If (a,b) is a diameter pair of t, then for any c,d ∈ L−{a},

max(δ(c,b),δ(d,b))≥ δ(c,d) .

Proof. Consider the quartet formed by the 4 leaves a,b,c,d in t.

Case 1: (Figure A.1c) a and b are on the same side of the quartet:

δ(a,b)≥ δ(a,d) =⇒ δ(m,b)≥ δ(m,d) =⇒

δ(c,m)+δ(m,b)≥ δ(c,m)+δ(m,d) =⇒ δ(c,b)≥ δ(c,d)

Case 2: (Figure A.1d) Without loss of generality, we assume δ(n,c)≥ δ(n,d). We will prove that

δ(b,c)≥ δ(c,d).
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We have:

δ(a,b)≥ δ(a,c) =⇒ δ(b,m)≥ δ(c,m)

=⇒ δ(b,m)+δ(n,c)≥ δ(c,m)+δ(n,c)

=⇒ δ(b,m)+δ(n,c)≥ 2δ(n,c)

=⇒ δ(b,c) = δ(b,m)+δ(n,c)+δ(m,n)≥ δ(n,c)+δ(n,d) = δ(c,d) .

We now provide the proof of Proposition 1.

Proof. Consider an arbitrary leaf b ∈D(t)−{a}. We prove that b ∈D(t\a).

Case 1: (a,b) /∈ P (t). Because b ∈D(t), there exists c ∈D(t)−{a} such that (c,b) is a

diameter pair of t\a. Therefore, b ∈D(t\a).

Case 2: (a,b) ∈ P (t). Let (c,d) be a diameter-pair of t\a. According to Lemma 1,

max(δ(c,b),δ(d,b))≥ δ(c,d). Therefore, either (c,b) or (d,b) is a diameter-pair of t\a. Thus,

b ∈D(t\a).

A.1.2 Proof of Theorem 1

Proof. We need to prove that a Rk(t) is either a reasonable removing set or it is not an optimal

removing set. We proceed by contradiction. Assume Rk(t) is optimal but not a reasonable

removing set. Let Rm(t) be the largest reasonable removing set that is a subset of Rk(t) (note

0 ≤ m ≤ k). If m = k, then Rk(t) is a reasonable set, contradicting the assumption. For m < k,

consider the tree t ↾Rm(t) and let am,bm be its diameter pair. if am ∈ Rk(t) or bm ∈ Rk(t), adding

them to Rm(t) would generate a reasonable chain of size m+1, contradicting our assumption. If

am /∈ Rk(t) and bm /∈ Rk(t), all removals after m in Rk(t) fail to reduce the diameter, but removing

either am or bm would reduce the diameter. Thus, Rk(t) cannot be optimal, contradicting our
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assumption.

A.1.3 Proof of Theorem 2

Proof. To remove k leaves from a singly paired tree t that has (a,b) as a diameter pair, at least

one of a or b has to be removed (or else the diameter never decreases). Thus, three types of

reasonable chains exist: those that contain only a, those that contain only b, and those that contain

both a and b. Note that after removing a, by Proposition 1, removing b is a reasonable removal

(and vice versa), and thus, removing both a and b is always reasonable (in either order).

Case 1: a ∈ Rk−2,b /∈ Rk−2: If a reasonable chain has a but not b, by Proposition 1, b is in the

diameter set at each step of the chain. Since b by definition is never removed and recalling

that the tree is singly paired, at each step, there is only one reasonable removal (whatever

leaf is on-diameter in addition to b). Therefore, only one reasonable chain does not include

b.

Case 2: a /∈ Rk−2,b ∈ Rk−2: Similar to Case 1, one such chain exists.

Case 3: a ∈ Rk−2,b ∈ Rk−2: In this case, the reasonable removing chain must start with a,b or

b,a. In either ordering, we are left with the same induced tree, and need to remove k−2

more leaves. Therefore, the set of all reasonable removing sets in this case is: {({a,b}∪R)

for R in Sk−2(t ↾L−{a,b})}.

Combining the three cases together, we have:

|Sk(t)|= |Sk−2(t ↾L−{a,b})|+2
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Let sk = |Sk(t)|. We have the following recursion:

sk =


1, k = 0

2, k = 1

sk−2 +2 k ≥ 2

(A.1)

Thus, sk = k+1.

A.1.4 Proof of Proposition 2

Proof. Recall that the record of each internal node keeps track of the most distant leaves below

two children of the node. When we remove a, only those nodes on the path from a to the root can

have a change in their record. The first traversal of Algorithm 1 updates the records for those

nodes, using simple recursive functions that can be computed in O(1) per node.

According to Proposition 1, b ∈D(t\a). Therefore, one of the longest paths in t\a must

include b; let c be the other leaf. The record of the LCA of c and b, after the update in the

first round, will have the value of this longest value. Thus, by checking the updated record

for all nodes in the path from b to the root we will find the maximum value. Moreover, when

updating the records in the first traversal from a to the root, we have already checked all the nodes

from the LCA(a,b) to the root. In the second traversal, we check the nodes from b to LCA(a,b),

completing the search. Each of the two traversals of Algorithm 1 visits at most h nodes and only

need constant time operations in each visit. Therefore, the overall time complexity of Algorithm

1 is O(h).

A.1.5 Proof of Theorem 3

First, we prove the following lemmas:
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Lemma 2. All the longest paths in any tree have the same midpoint.

Proof. If t has only one diameter pair, then Lemma 2 is trivially correct.

If t has more than one diameter pair, let (a,b) and (c,d) be two distinct diameter pairs of

t and let m be the midpoint of the path between a and b. We prove that m is also the midpoint

of the path between c and d, that is m lies on that path between c and d and δ(m,c) = δ(m,d).

w.l.o.g, we suppose δ(m,c)≥ δ(m,d).

• We prove that the path between c and d must pass m; that is, c and d belong to two

different subsets in the partition defined by m on L (we call elements of the partition a

“side”). We prove by contradiction, assuming c and d belong to the same side of m. Then

δ(m,c)+δ(m,d)> δ(c,d). Also, either a or b must be on a different side from c and d to

m (by definition, a and b cannot be on the same side to m). Suppose a is in a different side

from c and d to m. Then: δ(a,b)≥ δ(a,c) =⇒ δ(a,m)+δ(m,b)≥ δ(a,m)+δ(m,c) =⇒

δ(m,b)≥ δ(m,c) =⇒ δ(m,a)≥ δ(m,c). So we have,

δ(a,c) = δ(m,a)+δ(m,c)≥ 2δ(m,c)≥ δ(m,c)+δ(m,d)> δ(c,d); this leads to a contra-

diction because (c,d) is a diameter pair.

• Prove that mc = md. Suppose δ(m,c)> δ(m,d).

We have : 2δ(m,a) = 2δ(m,b) = δ(a,b) = δ(c,d)≤ δ(m,c)+δ(m,d)< 2δ(m,c). There-

fore: δ(m,a)< δ(m,c) and δ(m,b)< δ(m,c).

Case 1: c belongs to a different side of a to m. Then, δ(m,a)+ δ(m,c) = δ(a,c) =⇒

δ(m,a)+δ(m,b)< δ(a,c) =⇒ δ(a,b)< δ(a,c). This is a contradiction because (a,b) is

a diameter pair of t.

Case 2: c belongs to the same side of a to m. Then c belongs to a different side of b to

m. Similar to case 1, in this case we can prove that δ(a,b)< δ(b,c) which also leads to a

contradiction.
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Thus, m is the midpoint of the path between c and d.

This lemma allows us to define some new concepts that are useful in the rest of the proof.

New definitions:

The single midpoint of any tree t partitions the diameter set into disjoint subsets; we call

each of those subsets a diameter group of t (if the midpoint is in the middle of the branch, we

have two diameter groups; a midpoint coinciding on an internal node would give three or more

groups). We call any restriction of t with k leaves removed a k-optimal restricted tree if no other

restriction removing k leaves has a lower diameter. We call a tree t k-shrinkable if there exists a

k-removing set that strictly reduces its diameter. We call any induced tree on t that has a smaller

diameter than t a shrunk tree of t. Note that unless all but one of the diameter groups of a tree t

are removed, the tree cannot shrink in diameter. When all but one of the diameter groups of a tree

t is removed, we refer to the resulting tree as a minimum shrunk tree of t.

It is easy to see the following lemma.

Lemma 3. For all a and b, (a,b) ∈ P (t) if and only if a and b belong to two distinct diameter

groups.

Now we prove a less obvious Lemma.

Lemma 4. If tree t is k-shrinkable, any k-optimal restricted tree t∗ can be induced from one of

the minimum shrunk trees of t.

Proof. Because t is k-shrinkable, the diameter of t∗ must be strictly smaller than the diameter

of t. Suppose t∗ is not an induced tree of any minimum shrink tree of t; then, t* has at least two

leaves from two different diameter groups of t. Based on Lemma 3, t∗ shares with t at least one

diameter pair and therefore, has the same diameter as t, which is a contradiction.
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We now turn to the proof of Theorem 3. Recall:

Theorem 3. For any k, any arbitrary pair-restricted k-removing space includes at least one optimal

k-removing set.

Proof. If t is not k-shrinkable, any k-removing set is optimal and the result trivially follows. We

now focus on a case where t is k-shrinkable.

Suppose t has m diameter groups:

D1 = {d1
1 ,d

1
2 , . . . ,d

1
p1
},D2 = {d2

1 ,d
2
2 , . . . ,d

2
p2
}, . . . ,Dm = {dm

1 ,d
m
2 , . . . ,d

m
pm
} .

For i = 1 . . .m, let ki = |
⋃

j ̸=i D j| be the size of all groups except group i, and let t i denote

the minimum shrunk tree of t that excludes all groups D j, j ̸= i. Let kp = maxi(ki). For the tree t

to be k-shrinkable, we need that ki ≤ k; thus, k ≥ kp.

To produce any minimum shrunk tree t i with ki ≤ kp, we can start from any removal

(a,b) such that a ∈ Dx and b ∈ Dy (for x ̸= y), and continue to produce t i. To see this, note that if

x ̸= y ̸= i, any chain that starts with either a or b and continues to select from any groups other

than Di will produce the minimum shrunk tree t i after ki removals. Now, w.l.o.g, consider x = i

and y ̸= i. Then, consider the chain that starts by removing y and continues by removals from

any group other than Di. This chain will also produce t i after ki removals. In other words, each

pair-restricted k-removing space of t can produce all the minimum shrunk trees t i that have ki ≤ k.

Based on Lemma 4, when t is k-shrinkable, at least one of the minimum shrunk trees (say

t∗i ) can induce any k-optimal restricted tree t∗. We also just proved that any pair-restricted space

can produce all minimum shrunk trees. Therefore, any arbitrary pair-restricted removing space

will include a chain that induces t∗i from t and another chain that produces t∗ starting from t∗i .

Thus, the union of the removing sets corresponding to these two chains will produce t∗ and will

be part of any arbitrary pair-restricted k-removing space.
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A.2 Supplementary figures and tables

Sequence ID Subtype
KJ723095 CRF01 AE
KJ723070 CRF02 AG
KJ723094 CRF02 AG
KJ723062 C
KJ723387 C
KJ723455 C
KJ723366 G
KJ722966 unassigned (B or CRF01 AE)
KJ723048 unassigned (B or F1)

Table A.1: Summary of the 9 outliers of the HIV dataset
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(a) (b)

(c) (d)

Figure A.1: Demonstration of the k-shrink algorithm. (a) An example where a greedy method
does not work. This tree only has one diameter pair (a,b) (colored in yellow). If k = 2,
the greedy method removes b and c and gives a restricted tree with diameter 11, while the
optimal solution is to remove a and d, which gives the restricted tree with diameter 10. (b)
The preprocessing step. In a post-order traversal, we store rec(u) for each internal node u. The
record has four values: leaf x under u that has the longest distance to u, the distance δ(u,x), the
leaf y in one of the other sides of u to x that has the largest δ(x,y), and the distance. (c) and (d)
Example quartet trees used in Proof of Lemma 1.
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Anomodon_attenuatus

Sphaerocarpos_texanus

Arabidopsis_thaliana

Vitis_vinifera

Eschscholzia_californica

Sorghum_bicolor
Zea_mays

Oryza_sativa

Brachypodium_distachyon

Leucodon_brachypus

Δ1= 1.01 Δ5= 1.06
Δ2= 1.48 Δ6= 2.85
Δ3= 1.54 Δ7= 1.28
Δ4= 1.07 Δ8= 8.20

RS: 1,2,3,4,5,6,7
RS: 2,3,4,5,6,7

RS: 3,4,5,6,7,8

RS: 4,5,7,8

RS: 6,7,8

RS: 5,8

RS: 6,7,8

RS: 8
RS: 8

RS: 6,7,8

Figure A.2: An example of a very small tree from the Plants dataset. Solving k-shrink with k = 8
gives the removing set of all but two species Anomodon attenuatus and Leucodon brachypus.
Although this removing set is obviously wrong, it has a very high ratio value (ν8 = 8.197).
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(a) Plant (b) Mammals
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Figure A.3: The impact of the 3 tests of TreeShrink on taxon occupancy for the six datasets.
For each species (x-axis, ordered by occupancy), we show the number of genes that include it
before and after filtering (default settings).
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(a) Insects (b) Plants

(c) Metazoa - Cannon (d) Metazoa - Rouse

(e) Mammals (f) Frogs
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Figure A.4: The impact of TreeShrink, RogueNaRok, and rooted pruning on gene tree dis-
cordance on six datasets comparing to random pruning. MS distances are computed for all
pairs of gene trees. The average reduction in the MS distance (y-axis) is shown versus the
total proportion of the species retained in the gene trees after filtering (x-axis). A line is drawn
between all points corresponding to different thresholds of the same method.
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Appendix B

Supplementary materials for Chapter 2

B.1 Proof of Claim 1

Proof. First, note that any placement of x onto T results in a tree T ′ that shares all quartets with

T except for the quartets that contain x. Therefore, to solve MQP, we only need to maximize the

number of quartets that contain x and match R. As such, the MQP problem can be restated as:

insert x to T to maximize the total number of quartets xy|z1z2 in T that match the corresponding

quartet in R, where x,y,z1,z2 are distinct and y,z1,z2 ∈ LT ∩LR. Consider an arbitrary rooting of

T . Observe that if we add x as an outgroup to T to obtain Tx, then there is a one-to-one mapping

of every quartet xy|z1z2 in Tx to the triplet y|z1z2 in T . Similarly, each quartet xy|z1z2 of R has

a unique mapping to the triplet y|z1z2 in R′ (recall that R′ has been rooted at x before having it

removed). Therefore, if y|z1z2 of T matches R′, then xy|z1z2 of Tx matches R. Thus, to find Tx that

has the maximum number of matching quartets to R, we solve MTR on T and R′ to maximize the

number of matching triplets y|z1z2, then add x as an outgroup and obtain the maximum number

of matching quartets xy|z1z2.
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B.2 Proof of the π
C1C2→C
j equation

π
C1C2→C
j is the number of triplets in the following set:

{(ii|k) ∈C|i,k ̸= j, i ̸= k}∪{(ikm) ∈C|i ̸= k ̸= m ̸= j}, (B.1)

where i, j,k,m denotes a leaf color and (ab|c) denotes the resolved triplet that separates (a,b)

from c and (abc) denotes an unresolved triplet on {a,b,c}. The number of triplets in this set is

the sum of π
C1
j ,πC2

j , and the following 4 cases (see Fig B.1a for an illustration):

Case 1: The number of ways to choose one i-colored leaf in C1 (i.e. nC1
i ) and one pair of

leaves with colors i and k in C2 such that the i-colored leaf is below the k-colored leaf in C2 (i.e.

nC2
i↑k), for all choices of i,k such that i, j,k are pairwise distinct. Thus, the counter in case 1 is

∑
i ̸= j

nC1
i ∑

k ̸=i,k ̸= j
nC2

i↑k = ∑
i ̸= j

nC1
i (nC2

i↑•−nC2
i↑ j) (B.2)

Case 2: The number of ways to choose two i-colored leaves in C1 (i.e.
(n

C1
i
2

)
) and one

k-colored leaf in C2 (i.e. nC2
k ), for all choices of i,k such that i, j,k are pairwise distinct. Thus, the

counter in case 2 is

∑
i̸= j

(
nC1

i
2

)
∑

k ̸=i,k ̸= j
(nC2

k ) = ∑
i ̸= j

(
nC1

i
2

)
(nC2
• −nC2

j −nC2
i ) (B.3)

Case 3: The number of ways to choose one k-colored leaf in C1 (i.e. nC1
k ) and two i-colored

leaves in C2 such that the LCA of these two i-colored leaves is NOT on the external path linking

C1 and C2 (i.e. nC2
(i,i)), for all choices of i,k such that i, j,k are pairwise distinct. Thus, the counter

in case 3 is

207



∑
i̸= j,k ̸= j|i̸=k

nC1
k nC2

(ii) = ∑
i ̸= j

(nC1
• −nC1

j −nC1
i )nC2

(ii) (B.4)

Case 4 (unresolved triplets): The number of ways to choose one i-colored leaf in C1 (i.e.

nC1
i ), and one k-colored leaf in C2 and one m-colored leaf in C2 such that their LCA is on the

external path linking C1 and C2 and furthermore, the path from their LCA to either the k-colored

or m-colored leaf does not consist any other node on the external path (i.e. nC2
km), for all choices of

i,k,m such that i, j,k,m are pairwise distinct. Thus, the counter in case 4 is

∑
i,k,m|i, j,k,m are pairwise distinct

nC1
i nC2

km = ∑
i ̸= j

nC1
i (nC2

•□−nC2
j• −nC2

i• +nC2
i j ) (B.5)

Summing up all the four cases and adding π
C1
j , π

C2
j , we get the equation as in the main

text.

B.3 Proof of the ρC1C2→C equation

ρC1C2→C is the number of triplets in the following set:

{(00|k) ∈C|k ̸= 0}∪{(i j|0) ∈C|i ̸= 0, j ̸= 0}, (B.6)

where i, j,k denotes a leaf color and (ab|c) denotes the resolved triplet that separates (a,b) from

c and (abc) denotes an unresolved triplet on {a,b,c}. The number of triplets in this set is the

sum of ρC1,ρC2 , and the triplets in one of the three cases that are similar to cases 1, 2, and 3 of

π
C1C2→C
j . For each of these 3 cases, we can convert the equation to compute π

C1C2→C
j to ρC1C2→C

by summing up the following two counters (see Fig. B.1b for an illustration of the two counters

in case 1).

• Replace the two i-colored leaves with two 0-colored ones. Each of these triplets has the
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Figure B.1: (a) The 4 cases of triplet arrangement for π
C1C2→C
j . In each case, we assume i,k,m

are distinct and different from j. (b) The two counters for ρC1C2→C in case 1. Here we assume i
and j are different from 0, but are not necessarily distinct. (c) The 2 cases of triplet arrangement
for π

G1G2→G
j . In each case, we assume i,k,m are distinct and different from j. To compute the

complete counter, we also need to swap the roles of G1 and G2 to count all possible triplets.

209



form (00|k). To get the counter, we count all the different ways to choose the two 0-colored

leaves and the k-colored leaf over all possible choices of k.

• Use a 0-colored leaf in place of the k-colored and use a j-colored leaf (for any j ̸= 0,

possibly equal to i) in place of one of the two i-colored leaves. It is easy to see that each

of these triplets (in any of the cases 1, 2, 3) has the form (i j|0). To get the counter, we

count all the different ways to choose the 0-colored i-colored, and j-colored leaves over all

possible choices of i and j.

It is straightforward to derive the equation of each counter for each case 1, 2, 3. Summing

up all the counters across all cases then adding ρC1 and ρC2 , we get the equation as in the main

text.

B.4 Proof of the π
G1G2→G
j equation

π
G1G2→G
j is the number of triplets in the following set:

{(ii|k) ∈ G|i,k ̸= j, i ̸= k}∪{(ikm) ∈ G|i ̸= k ̸= m ̸= j}, (B.7)

where i, j,k,m denotes a leaf color and (ab|c) denotes the resolved triplet that separates (a,b)

from c and (abc) denotes an unresolved triplet on {a,b,c}. The number of triplets in this set is

the sum of π
G1
j ,πG2

j , and the following 2 cases (see Fig. B.1c for an illustration):

Case 1: The number of ways to choose one k-colored leaf in G2 (i.e. nG2
k ) and two

i-colored leaves in G1 such that the LCA of these two i-colored leaves is NOT the super root of G

(i.e. nG1
(i,i)), for all choices of i,k such that i, j,k are pairwise distinct. Additionally, we also swap

the role of G1 and G2 and add to the counter. Thus, the counter in case 1 is
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∑
i̸= j,k ̸= j|i̸=k

nG2
k nG1

(ii)+ ∑
i̸= j,k ̸= j|i̸=k

nG1
k nG2

(ii) = ∑
i ̸= j

(nG2
• −nG2

j −nG2
i )nG1

(ii)+∑
i ̸= j

(nG1
• −nG1

j −nG1
i )nG2

(ii)

(B.8)

Case 2 (unresolved triplets): The number of ways to choose one i-colored leaf in G1 (i.e.

nG1
i ), and one k-colored and one m-colored leaves in G2 such that their LCA is the super root of

G (i.e. nG2
km), for all choices of i,k,m such that i, j,k,m are pairwise distinct. Additionally, we also

swap the role of G1 and G2 and add to the counter. Thus, the counter in case 2 is

∑i,k,m|i, j,k,m are pairwise distinct(n
G1
i nG2

km +nG2
i nG1

km)

= ∑i̸= j nG1
i (nG2

•□−nG2
j• −nG2

i• +nG2
i j )+∑i ̸= j nG1

i (nG2
•□−nG2

j• −nG2
i• +nG2

i j )
(B.9)

Summing up the two cases and adding π
G1
j , π

G2
j , we get the equation as in the main text.

B.5 Proof of the ρG1G2→G equation

ρG1G2→G is the number of triplets in the following set:

{(00|k) ∈ G|k ̸= 0}∪{(i j|0) ∈ G|i ̸= 0, j ̸= 0}, (B.10)

where i, j,k denotes a leaf color and (ab|c) denotes the resolved triplet that separates (a,b) from

c and (abc) denotes an unresolved triplet on {a,b,c}. The number of triplets in this set is the

sum of ρG1,ρG2 , and the triplets in the case corresponding to case 1 of π
G1G2→G
j . Following the

same reasoning as in ρC1C2→C, we can easily derive the equation for ρG1G2→G from π
G1G2→G
j .

Summing up this counter and ρG1,ρG1 , we get the equation as in the main text.
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Type Description
L derived from a leaf in R. Any L node is a leaf of the HDT and is linked to the

corresponding leaf in T
I a node of the HDT derived from an internal node in R. Any I node is a leaf

of the HDT
G derived from a set of subtrees in R with roots being siblings. A G node can

either be a L or GG→ G
C derived from a connected subset of nodes in R. A C node can either be a

IG→C or CC→C
GG→ G a node of the HDT that is the parent of two other G nodes
IG→C a node of the HDT that is the parent of an I and a G node
CC→C a node of the HDT that is the parent of two C nodes

Table B.1: HDT node types. The G and C are super-types.

B.6 Supplementary figures
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Figure B.2: Run time of tripVote and INSTRAL (seconds) on different trees with sizes. Left
panel: no missing data and Right panel: missing data is introduced by removing one percent of
the taxa from each gene tree.
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Figure B.3: Accuracy of rooting based on different methods for Top: The 201-taxon dataset
and Bottom: The 31-taxon dataset. The outgroup is removed from m randomly selected trees
and inserted back using either ASTRAL completion or tripVote, then each of these trees is
rerooted at the reinserted outgroup. The x-axis shows the number of voting trees for ASTRAL
completion and tripVote (i.e. n−m) and the y-axis shows the triplet error to the true rooted
tree. We added alternative rooting methods (Outgroup, MinVar, MidPoint, and Random) that
do not use other gene trees. Outgroup rooting was run on the complete estimated trees before
removing the outgroup. MidPoint and MinVar were run after the outgroup is removed. The
Random rooting was repeated 50 times and the reported error is the average.
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Figure B.4: Given a reference tree obtained by rooting a tree on a query leaf q and removing q,
we sample as follows. We follow a random path from the root to a leaf, at each internal node u,
selecting a child uniformly at random; the leaf node is sampled. Equivalently, we sample from a
multinomial distribution with sampling probability equal to the product of the probabilities of
the edges along the path from the root to that leaf.
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Figure B.5: Top: Different types of components in the HDT. (figure taken from [153]). Bottom:
Different counters maintained at each component C or G in the HDT (figure taken from [153]).
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Figure B.6: ECDF plot of placement error by tripVote with and without sampling strategy on
different levels of ILS. In this experiment, m is set to 1 and the error is measured by the path
distance between the true placement branch (from the full estimated tree by FastTree) and the
estimated placement branch by tripVote.
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Figure B.7: The estimated branch lengths of the species tree based on the original incomplete
gene trees versus the completed gene trees using different methods. In all scenarios, the species
tree topology is fixed and the branch lengths are estimated using ASTRAL-III.
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Figure B.8: Accuracy of different methods on completing gene trees of the 201-taxon dataset.
Top: Normalized RF error and Bottom: Induced RF error.
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Figure B.9: Accuracy of different methods on completing gene trees of the 31-taxon dataset.
Top: Normalized RF error and Bottom: Induced RF error.
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Appendix C

Supplementary materials for Chapter 3

C.1 Supplementary theory

In this section we prove the following propositions, which were used in the main text to

support the theory of the MinVar rooting method. Please refer to the main paper for more details.

Proposition 3: A point p on tree T is a local MV if and only if it is a balance point.

Based on Proposition 3, we refer to local MV and balance point interchangeably.

Proposition 4: Any tree has at least one local MV.

Proposition 5: The global MV of any tree is one of its local MVs.

Proposition 6: Let p denote the global MV of T . If

ε≤ min
w∈c(r)

(
ew

n
n−|w|h+ ew

)

then there exists a child w of r such that p ∈ e(r,w).

Proposition 7: When the global MV is on one of the adjacent edges of r, let a random variable X

indicate the distance of the global MV to the root; then, E(X) = 0.

Proposition 8: Let p be a point on an edge (u,v) of tree T with distance d(p,u) = x. If we let p

vary along edge (u,v) and consider var(p) as a function of variable x with parameters u and v,
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then:

var(p) = var(x;u,v) = (1−β
2)x2 +

(
α− 2ST (u)β

n

)
x+ var(u) (C.1)

in which

α =
2ST (u)−4(SI(v)+ |v|ev)

n
and β = 1− 2|v|

n
(C.2)

C.1.1 Extra notations

For two points p and p′, potentially on different edges, we let path(p, p′) denote the

directed path from p to p′. For two nodes p and u, we define Cldp(u) as the clade under u if the

tree T is rerooted at p. For ease of notation we use |p▷u| to denote the size of Cldp(u). For a

point p on tree T and another point p′ on either the same edge or an edge connected to p (if p is a

node), we let
−→
pp′ denote a direction of p. It is easy to see that any point on a tree has at least two

directions, and any node that is not the root has at least three directions. We call
−→
pp′ a dominant

direction of p if and only if

1
|p▷ p′| ∑

i∈Cldp(p′)
di(p)>

1
n−|p▷ p′| ∑

i/∈Cldp(p′)
di(p) (C.3)

C.1.2 Proofs

Proofs of ST relation and Proposition 8

On a tree T, consider a point p on the edge (u,v) with distance x from u (Fig C.1).

Proof of ST relation. Recall that ST (v) is the sum of distances of all leaves from the node v (i.e.

ST (p) = ∑i∈Cld(p)(di(p)). We need to prove that

ST (v) = ST (p(v))+(n−2|v|)ev. (C.4)
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We have

ST (p) = ∑
i∈Cld(p)

(di(u)− x)+ ∑
i∈L−Cld(p)

(di(u)+ x)

= ∑
i∈L

di(u)+(|L|− |p|− |p|)x

= ST (u)+(n−2|p|)x

(C.5)

Let p≡ v, we get Eq. C.4.

Proof of Proposition 8. Recall that ST (p) = ∑i∈L di(p).

var(p) =
1
n ∑

i∈L
(di(p)− ∑i∈L di(p)

n
)2 =

∑i∈L d2
i (p)

n
− (

ST (p)
n

)2 (C.6)

Figure C.1: An example tree T rooted at r with a point p on edge (u,v).
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The first term of the RHS of C.6 can be expanded as follow:

∑i∈L d2
i (p)

n
=

1
n ∑

i∈Cld(v)
(di(u)− x)2 +

1
n ∑

i∈L−Cld(v)
(di(u)+ x)2

=
1
n ∑

i∈Cld(v)
(d2

i (u)−2di(u)x+ x2)+
1
n ∑

i∈L−Cld(v)
(d2

i (u)+2di(u)x+ x2)

=
1
n ∑

i∈L
d2

i (u)+
2
n
( ∑

i∈L−Cld(v)
di(u)− ∑

i∈Cld(v)
di(u))x+ x2

=
1
n ∑

i∈L
d2

i (u)+2x
∑i∈L di(u)−2∑i∈Cld(v) di(u)

n
+ x2

=
1
n ∑

i∈L
d2

i (u)+2x
ST (u)−2∑i∈Cld(v)(di(v)+ ev)

n
+ x2

=
1
n ∑

i∈L
d2

i (u)+2x(
ST (u)−2(SI(v)+ |v|ev)

n
)+ x2

=
1
n ∑

i∈L
d2

i (u)+αx+ x2

(C.7)

where the last line is simply derived from the definition:

α =
2ST (u)−4(SI(v)+ |v|ev)

n

Recall β = (1− 2|v|
n ); the second term can be expanded as follow:

(
ST (p)

n

)2

=

(
ST (u)+(n−2|v|)x

n

)2

=

(
ST (u)

n
+βx

)2

=

(
ST (u)

n

)2

+
2ST (u)βx

n
+β

2x2

(C.8)

Substitute C.7 and C.8 to C.6, we obtain:
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var(p) =
∑i∈L d2

i (u)
n

+αx+ x2−
(

ST (u)
n

)2

− 2ST (u)βx
n

−β
2x2

=
∑i∈L d2

i (u)
n

−
(

ST (u)
n

)2

+

(
α− 2ST (u)β

n

)
x+(1−β

2)x2

= var(u)+
(

α− 2ST (u)β
n

)
x+(1−β

2)x2

(C.9)

Thus, we get Eq. 3.4

Useful lemmas

Below are useful lemmas that will be used later in the proofs.

Lemma 5. Any point on a tree either is a balance point or has at least one dominant direction.

Proof. On tree T , consider an arbitrary point p that is adjacent to nodes v1,v2, ...,vk of T . Let

µ j =
1
|p▷v j|∑i∈Cldp(v j) di(p). If µ1 = µ2 = ...= µk, then p is a balance point of T . Otherwise, let

µm = max(µ1,µ2, ...,µk). It is easy to see that −−→pvm is a dominant direction of p.

Lemma 6. If a point p0 is not a local MV of tree T , there exists at least one point p′ on T such

that var(p′)< var(p0).

Lemma 7. Consider an edge e = (u,v) of tree T . If −→uv is a dominant direction of u and −→vu is a

dominant direction of v, then there exists a balance point on edge e.

(Lemmas 6 and 7 are proved later)

Proofs of Proposition 3 and Lemma 6

We start by some definitions and derivations that are used in proofs of both Proposition 3

and Lemma 6. Consider a point p0 on tree T and any arbitrary point p on the same edge as p0 or

on an edge adjacent to p0 if p0 is a node. Note that when p0 is in the middle of a edge, p can be
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a point above or below it on the same edge, but when p0 is a node, p can be a point on any of

the three (or more) edges adjacent to p. We divide the leaf set L of T into two disjoint groups:

the leaves inside Cldp0(p) (group 1), and the remaining leaves (group 2). Let x = d(p0, p), n be

the size of T , and k be the size of group 1; the size of group 2 is therefore n− k. Let d′1,d
′
2, ...,d

′
k

be the distances of the leaves in group 1 to p0, d′k+1,d
′
k+2, ...,d

′
n be the distances of the leaves in

group 2 to p0, d1,d2, ...,dk be the distances of the leaves in group 1 to p, and dk+1,dk+2, ...,dn be

the distances of the leaves in group 2 to p. Also let µ′ and µ be the averages of the leaf distances

to p0 and p. Then:

di =


d′i− x, if 1≤ i≤ k

d′i + x, if k+1≤ i≤ n
(C.10)

µ′ =
1
n

(
n

∑
i=1

d′i

)
var(p0) =

∑
n
i=1(d

′
i)

2

n
−µ′2 (C.11)

µ =
1
n

n

∑
i=1

di =
1
n

(
n

∑
i=1

d′i

)
+

n−2k
n

x = µ′+
n−2k

n
x (C.12)

var(p) =
∑

n
i=1 d2

i
n
−µ2 =

1
n

(
k

∑
i=1

(d′i− x)2 +
n

∑
i=k+1

(d′i + x)2

)
−
(

µ′+
n−2k

n
x
)2

= var(p0)+

(
1− (

n−2k
n

)2
)

x2 +
2
n

x

(
(

n

∑
i=k+1

d′i)− (
k

∑
i=1

d′i)− (n−2k)µ′
) (C.13)

var(p)− var(p0)

x
=

(
1− (

n−2k
n

)2
)

x+
2
n

(
(

n

∑
i=k+1

d′i)− (
k

∑
i=1

d′i)− (n−2k)µ′
)

(C.14)
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Let x→ 0, we have

limx→0
var(p)− var(p0)

x
=

2
n

(
(

n

∑
i=k+1

d′i)− (
k

∑
i=1

d′i)− (n−2k)µ′
)

(C.15)

Proof of Proposition 3. We consider both directions.

a. Suppose p0 is a local MV of T then by Eq. C.15

(
n

∑
i=k+1

d′i)− (
k

∑
i=1

d′i)− (n−2k)µ′ = 0

=⇒ n
n

∑
i=k+1

d′i−n
k

∑
i=1

d′i− (n−2k)
n

∑
i=1

d′i = 0

=⇒ 1
k

k

∑
i=1

d′i =
1

n− k

n

∑
i=k+1

d′i

(C.16)

Thus, p0 is also a balance point, which completes one direction of Proposition 3.

b. Suppose p0 is a balance point of T ; then,

1
k

k

∑
i=1

d′i =
1

n− k

n

∑
i=k+1

d′i = µ′ (C.17)

Substituting ∑
n
i=k+1 d′i and ∑

k
i=1 d′i in Eq. C.15 gives

limx→0
var(p)− var(p0)

x
= ((n− k)− k− (n−2k))µ′ = 0 (C.18)

which means, p0 is a local MV. This completes the proof for Proposition 3.

Proof of Lemma 6. Suppose p0 is not a local MV. By Lemma 5, there is a point p1 on the same

edge or an adjacent edge to p0 such that−−→p0 p1 is a dominant direction of p0. Letting y = d(p0, p1),

replacing p with p1 in Eq. C.15, we get:
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limy→0
var(p1)− var(p0)

y
=

2
n2

(
n ∑

i/∈Cldp0(p1)

di(p0)−n ∑
i∈Cldp0(p1)

di(p0)− (n−2|p0 ▷ p1|)∑
i∈L

di(p0)
)

=

4
n2

(
|p0 ▷ p1| ∑

i/∈Cldp0(p1)

di(p0)− (n−|p0 ▷ p1|) ∑
i∈Cldp0(p1)

di(p0)
)

< 0

where the inequality follows from the fact that −−→p0 p1 is a dominant direction (see Eq. C.3).

Because the derivative at p0 approaching from p1 is negative, there exist a point p′ in a small

local neighborhood of p0 towards p1 such that var(p′)< var(p0).

Proofs of Proposition 4 – 7 and Lemma 7

Proof of Lemma 7. For the the edge (u,v) (where u = p(v)), let mu
1 =

1
|u▷v|∑i∈Cldu(v) di(u) and

mu
2 =

1
n−|u▷v|∑i/∈Cldu(v) di(u), and similarly, mv

1 =
1
|v▷u|∑i/∈Cldv(u) di(v) and

mv
2 =

1
n−|v▷u|∑i∈Cldv(u) di(v).

By definition of dominant direction (Eq. C.3), mu
1 > mu

2 and mv
1 > mv

2. On the other hand,

since mu
1 = mv

2 + ev and mu
2 = mv

1− ev, we have 0 < mu
1−mu

2 = mv
2−mv

1 +2ev < 2ev. Let p be a

point on edge e such that d(p,u) = x = mu
1−mu

2
2 . We have:

1
|p▷u| ∑

i∈Cldp(u)
di(p) = mu

1− x and
1

n−|p▷u| ∑
i/∈Cldp(u)

di(p) = mu
2 + x

1
|p▷u|∑i∈Cldp(u) di(p)− 1

n−|p▷u|∑i/∈Cldp(u) di(p) = mu
1−mu

2−2x = 0. Thus, p is a balance point of

T .

Proof of Proposition 4. Consider a tree T rooted at rT . If rT is a local MV, then the proof is

complete. If rT is not a local MV, by Lemma 5 and Lemma 7, there exists an edge e0 = (rT ,v0)

such that −−→rT v0 is a dominant direction of rT . If v0 is a balance point of T , or −−→v0rT is a dominant
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direction of v0, then by Lemma 7 and Proposition 3, there is a local MV p on e0.

Otherwise, by Lemma 5, v0 has a dominant direction −−→v0v1 associated with edge e1 =

(v0,v1). Similar to the previous case, if v1 is a balance point or −−→v1v0 is a dominant direction of v1,

then there is a balance point p on e1. Otherwise, v1 has a dominant direction −−→v1v2 associated with

edge e2 = (v1,v2).

The process can be continued until we reach an edge ek = (vk−1,vk) such that either there

is a local MV p ∈ ek or vk is a leaf of T . If vk is a leaf, then it is obvious that −−−→vkvk−1 is a dominant

direction of vk. Recall that −−−→vk−1vk is a dominant direction of vk−1. By Lemma 7 and Proposition

3, there is a local MV point p on ek.

Thus, we can always find at least one local MV in a tree T (if tree T is finite). This

completes the proof of Proposition 4.

Proof of Proposition 5. (Proof by contradiction) Suppose there exists a tree T with a global MV

p0 that is not a local MV. Let edge e = (u,v) be the edge that contains p0. Since p0 is not a

local MV, by Lemma 6, there exists a point p such that var(p)< var(p0), which contradicts the

definition of global MV.

Proof of Proposition 6. On tree T , let p be the global MV and x = d(p,r), w denote the child of

r that is on the same side as p, and di be the shorthand for di(r) (i.e. the distance from r to leaf i

of tree T ). We prove that x≤ (1− ε)ew, and therefore, p ∈ e(r0,w). Note that T0 and T have the

same topology but are different in branch lengths. In this proof we use ev to denote the length of

the edge (p(v),v) of T0.

Follow the lemma condition

ε≤ ew
n

n−|w|h+ ew
=⇒ n

n−|w|
εh≤ (1− ε)ew (C.19)
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By Proposition 3 and 5, p is a balance point. Therefore,

1
|p| ∑

i∈Cld(p)
(di− x) =

1
|p| ∑

i∈Cld(p)
di(p) =

1
n−|p| ∑

i/∈Cld(p)
di(p) (C.20)

Also,

1
n−|p| ∑

i/∈Cld(p)
di(p)≥ 1

n−|p|
(

∑
i/∈Cld(p)

(di)+(n−|w|)x− (|w|− |p|)x
)

(C.21)

From Eq. C.20 and C.21, we have

∑i∈Cld(p)(di− x)
|p|

≥
∑i/∈Cld(p) di +(n−|w|)x− (|w|− |p|)x

n−|p|

=⇒
∑i∈Cld(p) di

|p|
− x≥

∑i/∈Cld(p) di

n−|p|
+

(n−|w|)−|w|+ |p|
n−|p|

x

=⇒
(

1+
n−|w|− |w|+ |p|

n−|p|

)
x =

2(n−|w|)
n−|p|

x≤
∑i∈Cld(p) di

|p|
−

∑i/∈Cld(p) di

n−|p|

Recall that under our model, T0 is an ultrametric tree, so that for each leaf i, ∑v∈path(i,r) ev =

h. Also, T was obtained by multiplying each edge of T0 by a random variable with support

[1− ε,1+ ε]. Thus, (1− ε)h≤ di = ∑v∈path(i,r) evαv ≤ (1+ ε)h. Therefore,

2(n−|w|)
n

x≤ 2(n−|w|)
n−|p|

x≤ 2εh =⇒ x≤ n
n−|w|

εh≤ (1− ε)ew

Hence, there exists a child w of r such that the global MV belongs to edge (r,w).

Proof of Proposition 7. Let Di be the random variable corresponding to the distribution of di(r)

and P be a random variable giving the position of the global MV root. Then,

E[Di] = E[ ∑
v∈path(i,r)

evαv] = ∑
v∈path(i,r)

E[evαv]

= ∑
v∈path(i,r)

evE[αv] = ∑
v∈path(i,r)

ev = h
(C.22)
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By the global balance property of P, we can compute

X =
1
2

(
∑i∈Cld(P)Di

|P|
−

∑i/∈Cld(P)Di

n−|P|

)
(C.23)

and thus,

E[X ] =
1
2

(
∑i∈Cld(P)E[Di]

|P|
−

∑i/∈Cld(P)E[Di]

n−|P|

)
=

1
2
(h−h) = 0 (C.24)

C.2 Supplementary figures and tables

Arg. Description Value for D1 Value for D2
RS Number of replicates 100 20
RL Number of loci 500 50
RG Number of genes 1
SB Speciation rate Log normal(1.0e-7,1.0e-6)
SD Extinction rate Log normal(1.0e-7,SB)
ST Maximum tree length Lognormal(14.41412,1) Lognormal(16,1)
SL Number of taxa 30
SO Root to crown ratio R/C
SI Number of individuals per species 1
SP Global population size Uniform(10000,1000000)
SU Global substitution rate Log normal(−17.27461,0.6931472)
HH Gene by lineage specific locus tree parameter 1
HS Species specific branch rate heterogeneity Log normal(α,1)
HL Gene family specific rate heterogeneity Log normal(1.551533,0.6931472)
HG Gene by lineage specific rate heterogeneity Log normal(α,1)
CS Random number generator seed 9644

Table C.1: Parameters used in SimPhy simulation

Root to crown ratios and Divergence from the strict clock are shown with variables α and

R/C. These parameters change for each model condition and are available in Table C.2.
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Model Condition. R/C for D1 and D2 α for D1 and D2
1 0 1.5
2 0.25 1.5
3 0.5 1.5
4 1 1.5
5 2 1.5
6 4 1.5
7 1 0.15
8 1 5
9 0 0.15

10 0 5

Table C.2: R/C and α for different model conditions in datasets D1 and D2.

Methods compared p-value Mean MS ST error
method clock par. 1st method 2nd method

STAR True vs STAR Ideal < 10−5 0.0638 7.6313 7.6313
STAR Ideal vs STAR OG 0.5820 0.0041 11.8875 12.0844
STAR Ideal vs STAR MV 0.1892 0.0008 11.8875 13.0938
STAR OG vs STAR MV 0.4768 0.0008 12.0844 13.0938
STAR OG vs NJst 0.1619 0.0085 12.0844 13.5906

ANOVA tests were performed on the D1 (30-taxon) dataset for pairs of methods. Matching-split
(MS) error is used as the metric. The tests were performed on the subset of D1 where outgroup
exists. For true gene trees, the true root is known. For estimated gene trees, the Ideal is the
rooting position that minimizes triplet error to the true gene trees. p-values are shown for the
significance of differences between the error of the two methods specified in each row, and for
the differences in error among the three levels of clock divergence parameter, respectively.

Table C.3: Species tree estimation accuracy using rooted and unrooted gene trees

C.3 Supplementary methods

C.3.1 Simulation setup

In order to simulate the gene sequences we used Indelible for datasets D1 and D2, with

sequence lengths and mutation parameters drawn randomly from distributions described below.

D1 has 30 taxa and D2 is a large dataset with 2000 or 5000 taxa. Note that in order to match the

level of gene tree error observed in D1 in the D2 dataset, which included many more species, we
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Figure C.2: ILS levels for new simulated datasets D1 and D2. Density plots (top) and box plots
(middle and bottom) are shown for the quartet score of the true species tree with respect to the
true gene trees, as a measure of the amount of ILS. Top: R/C=1. Middle: divergence from the
clock = 1.5. Bottom: R/C=1.

set our sequence length hyperparameters such that we had longer sequence lengths in D2.
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Figure C.3: Gene tree estimation error for datasets D1 and D2. The normalized RF distance is
shown between true gene trees and the estimated gene trees. Top: density plots with R/C= 1;
Bottom: boxplots with the divergence clock parameter set to 1.5.

Gene lengths: In D1, for each gene, we sample the sequence lengths from a log normal

distribution. The parameters of the log normal (µ and σ) are drawn randomly from gamma and

uniform distributions, respectively, for each individual replicate. We draw µ from a distribution

because we want some replicates with high gene length (thus, low gene tree error) and some with

low gene length. Similarly, we draw σ from a distribution to have replicates with high or low

gene tree error variation.

Our goal was to have an average gene length of roughly 450 sites long across all datasets,

which would lead to reasonable average levels of gene tree error. The σ parameter was drawn

from a uniform random variable between (0.3,0.7) with the average of 0.5, and this range was

empirically derived by trial and error. The mean of log-normal distribution is given by eµ+σ2/2.
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For this number to be around 450, we need µ+σ2/2 = log(450). Replacing σ with its expected

value, 0.5, we get that the expected value of µ should be log(450)−1/8. The gamma distribution

(which we use for µ) has an expected value of shape× scale. We empirically observed that a

scale of 0.033 results in sufficient variations. So in order to have the mean 450 for log-normal,

we parameterize the gamma distribution with scale 0.033 and the shape (log(450)−1/8)/0.033

and draw a value X from this distribution. This procedure gives us a left-skewed distribution

with many numbers below 450. In order to make the distribution right-skewed (and avoid many

genes with very few sites), we used a simple trick. We use Y = 2log(450)− 1/8−X as our

draw of µ. The expected value of Y remain log(450)− 1/8, which in turn, leads to expected

gene length of 450; however, the distribution becomes right-skewed. This gives us an empirical

average sequence length of 495. The median sequence lengths is between 370 and 422 in 90% of

replicates.

In D2, for each gene, we used the same strategy but with a target gene length of 700bp

instead of 450bp (since larger trees need more sites to achieve similar accuracy). The rest of the

procedure remains the same. The empirical average sequence length was 766, and the median

sequence lengths was between 294 and 1236 in 90% of replicates.

Base frequencies: For both datasets D1 and D2 we used a Dirichlet(36 26 28 32) to

draw base frequencies for A, C, G, and T. These values are ML estimates of the three previously

published large biological datasets, and are obtained from a previous dataset [219].
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Figure C.4: Normalized branch distance in true rooted gene trees for datasets D1 and D2. The
number of branches away from the true root is normalized by the tree depth and is shown for all
three methods of rooting.
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Figure C.5: Triplet error in true and estimated rooted gene trees for datasets D1 and D2.
Absolute triplet distance is shown for all three methods of rooting plus the ideal rooting for D1
where a brute force calculation was feasible (the rooting that minimizes the triplet distance to
the true tree).
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Figure C.6: SPR and Triplet error in true and estimated rooted gene trees for the 30-taxon
dataset where SPR computation is feasible. Top: SPR and Triplet error with different R/C ratio.
Middle and Bottom: SPR and Triplet error with different levels of deviations
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Figure C.7: STAR and NJst error on estimated gene trees for dataset D3. Species trees are
estimated on estimated gene trees. RF distance is shown for NJst and STAR with all three
methods of rooting.
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Appendix D

Supplementary materials for Chapter 4

D.1 Supplementary text

D.1.1 Skewness of the penalty terms of LSD and LogDate under Gamma

clock model

Suppose the mutation rates µi are drawn i.i.d. from a Gamma distribution Γ(α,β) where α

and β are the shape and rate parameters and there is no branch estimation error (i.e. b̂i = bi = µiτi

for all branch i). Then the mean of µi is µ = α

β
. Define the rate multipliers as ri =

µi
µ , then we have

ri ∼ Γ(α,α). Recall that the penalty terms of LSD is µτi
b̂i
−1 = µτi

µiτi
−1 = 1

ri
−1 and the penalty

terms of LogDate is logri. Note that 1
ri

follows an inverse Gamma distribution (with shape α

and scale α) and logri a Log-Gamma distribution. Therefore, the skewness of the penalty terms

can be computed for LSD to be 4
√

α−2
α−3 and for LogDate to be ψ(3)(α)

[ψ(2)(α)]3/2
(where ψ(2) and ψ(3) are

the digamma and trigamma functions, respectively. Figure D.1 shows the skewness of LSD and

LogDate when the rate’s variance increases.
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Algorithm 5 Setup the linear constraints Ψ for tree T given a set of calibration points.
function SETUPCONSTRAINTS(T)

Ψ←{}
for w in post-order traversal of T do

if w is a leaf then
if w is calibrated then

nearest timepoint(w)← w
else

nearest timepoint(w)← /0

else
(w1,w2)← Children(w)
u← nearest timepoint(w1)
v← nearest timepoint(w2)
if w is calibrated then

nearest timepoint(w)← w
if u! = /0 then

Ψ←Ψ∪ψ(w,u)
if v! = /0 then

Ψ←Ψ∪ψ(w,v)
else

if u == /0 then
nearest timepoint(w)← v

else
if v == /0 then

nearest timepoint(w)← u
else

nearest timepoint(w)← u if (d(w,u)< d(w,v)) else v
Ψ←Ψ∪ψ(u,v)
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Claim 6. The optimal x∗ in Eq. 4.5 yields a set ν = {ν1,ν2, . . . ,ν2n−1} that has the maximum

joint probability under a model of rate variation where νi are i.i.d, νi ∼ LogNormal(µ0,σ
2
0), and

Mode(νi) = 1 for any µ0 and σ2
0, subject to the constraints Ψ.

Proof. We have: νi∼LogNormal(µ0,σ
2
0) =⇒ Mode(νi)= eµ0−σ2

0 =⇒ 1= eµ0−σ2
0 =⇒ µ0 =σ2

0.

In other words, for the conditions with mode 1, we only have one free parameter.

The logarithm of the joint probability of ν under the LogNormal model of rate variation

can be written as follows:

P(ν1,ν2, . . . ,ν2n−1|µ0,σ
2
0) = ∑

2n−2
i=1 log

(
1

νiσ0
√

2π
exp
(
− (logνi−µ0)

2

2σ2
0

))
∝ ∑

2n−2
i=1

(
− logνi− log2

νi−2µ0 logνi
2µ0

)
= ∑

2n−2
i=1 − log2

νi

(D.1)

Thus, maximizing the joint probability of ν is equivalent to minimizing Eq. 4.5, subject to the

constraints Ψ.

Lemma 8. The length of the shortest path from the root of a binary tree to its leaves is at most

logn where n is the number of leaves in the tree.

Proof. Consider a rooted binary tree T with n leaves; let r be the root and h be the length of the

shortest path from r to the leaves of T . We need to prove that h≤ log2 n.

Let Di be the set of nodes in T with depth i, that is, Di = {w ∈ T |d(r,w) = i}. We first

prove that |Di|= 2i ∀i≤ h where |Di| denotes the cardinality of Di. We prove this by induction.

The base case i = 0 holds since the root r is the only node with depth 0. Suppose we have

|Dk| = 2k and k < h, we need to prove that if k+ 1 ≤ h then |Dk+1| = 2k+1. Note that a node

v ∈Dk+1 if and only if its parent par(v) ∈Dk. Because T is a binary tree, each node in T must

either has no child (leaf node) or two children (internal node). Since k < h, there must be no leaf

node in Dk, otherwise, a leaf v in Dk has d(r,v) = k < h, which defines a root-to-leaf path that is
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shorter than h and contradicts the definition of h. Thus, each node in Dk has exactly 2 children,

making |Dk+1|= 2∗ |Dk|= 2∗2k = 2k+1.

Now we have |Dh| = 2h. To prove that h ≤ log2 n, note that Dh contains a mixture of

leaves and internal nodes and each internal node in Dh must have more than one leaf below it.

Therefore, the size of Dh is at most the size of the leaf set of T ; that is, |Dh| ≤ n. Thus, we have

2h = |Dh| ≤ n =⇒ h≤ log2 n.

Claim 7. If all the leaves have sampling times and there is no other calibration points given

for internal nodes, the matrix corresponding to the constraints Ψ setup by Algorithm 5 has

O(n log(n)) non-zero elements, where n is the number of leaves in the input tree T .

Proof. Let P (w) denote the shortest path from a node w to its leaves and let |P (w)| denote the

length of this path. Let Tw be the clade of T below w and let |w| denote the size of this clade (i.e.

the number of leaves below w). Applying lemma 8 on Tw, we have |P (w)| ≤ log2 |w| ≤ log2 n for

all w ∈ T .

Note that if all leaves have sampling times, Algorithm 5 adds exactly one constraint for

each internal node in the tree. For each node w with two children cl(w) and cr(w), the non-zero

elements of the constraint added when node w is visited must locate on P (cl(w)), P (cr(w)), and

the two branches (w,cl(w)) and (w,cr(w)). Let ηw denote the number of non-zero elements of the

constraint defined by node w, then ηw ≤ |P (cl(w))|+ |P (cr(w))|+1+1≤ 2log2 n+2. Thus, the

total number of non-zeros in all constraints corresponding to the n−1 internal nodes is bounded

above by (n−1)(2log2 n+2) ∈ O(n logn).

D.2 Hybrid rate Angiosperm

Beaulieu et al.( [23] ) simulated a hybrid rate model for a phylogeny of seed plants in

which evolutionary rates formed local clocks in certain clades of the tree. The authors simulated

242



that data in 5 scenarios where they change the relative ratios between some clades in the tree, as

follow:

• scenario 1 = 3:1 herbaceous to woody

• scenario 2 = 6:1 herbaceous to woody

• scenario 3 = 4:1 angio. to gymno.; 3:1 herbaceous to woody angio.

• scenario 4 = 4:1 angio. to gymno.; 3:1 herbaceous to woody angio.; Gnetales herbaceous

angio.

• scenario 5 = 4:1 angio. to gymno.; 3:1 herbaceous to woody angio.; Gnetales woody angio.

The time tree and 100 simulated phylograms for each of these five scenarios were down-

loaded from the Dryad Repository provided by the authors. We used the provided phylograms

to estimate the time tree using wLogDate, RelTime, and LF and compare the estimated age of

Angiosperm to the true tree. Without the simulated sequences, we could not run BEAST. However,

we show the BEAST results reported by the original study ([23]). We aware that the comparison

to BEAST must be made with cautions, because the experimental settings were different as we

will state below:

• As RelTime cannot run without outgroups, we had to use the 20 species on the clade outside

the Angiosperm as outgroups. As such, this entire clade is ignored by RelTime and only 91

species out of 111 are included in the time tree. We used the same setting for wLogDate

and LF. Because of this fact, 5 calibration points belong to the 20 species in the outgroups

are also discarded out of the total 20 calibration points. However, in their original study,

the authors ran BEAST using 20 calibration points (instead of 15 points) to date the full

tree with 111 species (instead of 91 species).
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• In their original study, the authors gave BEAST a distribution instead of exact-time for

each calibration, as opposed to the exact-time points as we used to run LF, RelTime, and

wLogDate.
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Supplementary figures and tables

Tree Model Clock Model BEAST strict BEAST lnorm LF LSD RTT wLogDate
Lognormal 0.0007 0.0011 0.0004 0.0005 0.0007 0.0004

M1 Gamma 0.0009 0.0014 0.0005 0.0004 0.0009 0.0006
Exponential 0.0009 0.0022 0.0008 0.0013 0.0013 0.0009
Lognormal 0.0005 0.0014 0.0005 0.0005 0.0008 0.0005

M2 Gamma 0.0006 0.0013 0.0007 0.0007 0.0009 0.0007
Exponential 0.0013 0.0038 0.0015 0.0020 0.0019 0.0015
Lognormal 0.0003 0.0003 0.0006 0.0004 0.0008 0.0006

M3 Gamma 0.0003 0.0003 0.0006 0.0004 0.0006 0.0006
Exponential 0.0010 0.0011 0.0009 0.0027 0.0012 0.0009
Lognormal 0.0007 0.0008 0.0008 0.0007 0.0010 0.0008

M4 Gamma 0.0006 0.0007 0.0008 0.0008 0.0010 0.0007
Exponential 0.0020 0.0016 0.0016 0.0037 0.0018 0.0017

Average 0.0008 0.0013 0.0008 0.0012 0.0011 0.0008

Table D.1: Mean absolute error of the inferred mutation rate of BEAST strict, BEAST lognorm,
LF, LSD, and wLogDate.
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Tree Model Clock Model BEAST strict BEAST lnorm LSD LF wLogDate
Lognormal 2784.01 6018.80 15.01 17.47 73.65

M1 Gamma 2823.09 6082.62 17.81 20.29 83.19
Exponential 2696.61 5840.18 17.44 19.40 723.61
Lognormal 2425.83 5207.20 18.61 19.94 39.32

M2 Gamma 2466.24 5303.63 20.12 21.47 81.14
Exponential 2385.73 5169.07 20.87 22.12 418.01
Lognormal 3848.01 8204.00 35.25 38.07 55.92

M3 Gamma 3850.71 8211.09 38.71 41.55 65.51
Exponential 3826.12 6520.19 40.10 43.05 280.55
Lognormal 2914.03 6201.59 28.84 30.40 38.92

M4 Gamma 2901.59 6184.01 30.78 32.29 41.56
Exponential 2855.79 6145.03 32.96 34.54 371.97

Table D.2: Average running time (seconds) of BEAST strict, BEAST lognorm, PhyML + LF,
PhyML + LSD, and PhyML + wLogDate with 10 initials on simulated data.

Data LSD LF wLogDate
H1N1 (n=892) < 1 sec 1 min 3 mins

HIV San Diego (n=904) < 1 sec 11 mins 24 mins
Ebola (n=1610) 2 secs 4 mins 3 mins

Table D.3: Running time of LSD, LF, and wLogDate on biological datasets.

Tree Model Clock Model wi = 1 wi = b̂i + b̃ wi = (b̂i + b̃)2 wi = log(1+ b̂i + b̃) wi =
√

b̂i + b̃ wi = log(1+
√

b̂i + b̃)
M1 Lognormal 0.020 0.019 0.027 0.019 0.018 0.018
M1 Gamma 0.020 0.018 0.026 0.018 0.017 0.017
M1 Exponential 0.363 0.051 0.062 0.048 0.037 0.039
M2 Lognormal 0.107 0.043 0.062 0.043 0.038 0.042
M2 Gamma 0.100 0.046 0.064 0.046 0.043 0.044
M2 Exponential 0.359 0.135 0.166 0.129 0.099 0.100
M3 Lognormal 0.039 0.051 0.134 0.050 0.039 0.039
M3 Gamma 0.041 0.050 0.132 0.049 0.039 0.039
M3 Exponential 0.220 0.173 0.349 0.168 0.105 0.103
M4 Lognormal 0.074 0.098 0.172 0.085 0.070 0.071
M4 Gamma 0.098 0.086 0.172 0.082 0.070 0.069
M4 Exponential 0.578 0.397 1.042 0.349 0.301 0.283

Table D.4: Average RMSE of the internal node ages inferred by different weight functions for
LogDate. Numbers are rounded to the closest 3 decimal digits. Recall that b̂i is the estimated
branch length and b̃ is a small constant.
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Tree Model MCMC Chain Relative Error Run Time (hours)
M1 107 1.00 1.66
M2 5×107 0.99 7.6
M3 5×107 0.99 11.3
M4 20×107 0.98 35.6

Table D.5: BEAST convergence analysis: BEAST was run on Lognormal clock models with
the correct prior. For each tree model, we run BEAST with a sufficiently long MCMC chain to
ensure the effective-sample-size (ESS) of all parameters are at least 200. We report the length of
the MCMC chain, relative error of node age estimates with respect to BEAST using 10 millions
MCMC chain, and the running time.

Tree Model Posterior ESS Likelihood ESS MeanRate ESS RootHeight ESS
M1 420.5 753.3 382.0 406.9
M2 766.9 4224.4 430.1 647.3
M3 1242.3 4024.1 531.0 430.3
M4 1254.9 16336.7 744.1 847.2

Table D.6: BEAST convergence analysis: BEAST was run on Lognormal clock models with
the correct prior. For each tree model, we run BEAST with a sufficiently long MCMC chain to
ensure the effictive-sample-size (ESS) of all parameters are at least 200. We report the average
ESS of posterior, likelihood, rootHeight, and meanRate of the first 10 replicates of each tree
model.

Replicate LF RelTime wLogDate
1 0.10 0.26 0.11
2 0.12 0.21 0.10
3 0.11 0.09 0.10
4 0.08 0.10 0.22
5 0.05 0.26 0.06
6 0.10 0.06 0.08
7 0.09 0.10 0.08
8 0.07 0.06 0.06
9 0.09 0.08 0.07

10 0.17 0.08 0.07
Average 0.10 0.13 0.09

Table D.7: Comparison of LF, RelTime, and wLogDate on autocorrelated rate dataset. The
Root-mean-square error (RMSE) of un-calibrated internal node ages is normalized by the tree
height and reported for each replicate. Results discarded the two tests where LF produced
extremely erroneous time tree. Refer to Fig. D.9 for a complete picture.
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Replicate DAMBE wLogDate
1 7.69 11.54
2 13.25 10.88
3 9.04 8.30
4 9.37 9.10
5 3.78 4.09
6 4.86 4.92
7 13.98 12.46
8 6.91 6.43
9 13.36 10.93

10 14.81 15.88
Average 9.66 9.40

Table D.8: Average relative error (%) of DAMBE and wLogDate in estimating unit time trees
on the autocorrelated rate model. For each of the 438 internal nodes across the 10 simulated
trees, the relative errors of the inferred divergence times by DAMBE and wLogDate to that of
the true normalized time tree are computed. The average error of all nodes per tree replicate and
the average error of all 438 nodes are shown for each method.
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Figure D.1: The skewness of the LSD and LogDate penalty terms when the rate multipliers ri

are drawn i.i.d. from a Gamma distribution with different α. The x-axis shows the variance of ri

and the y-axis shows the skewness of the penalty terms of LSD and LogDate.
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Figure D.2: Left: The density and histograms of the penalty terms (without square) used by
LSD (bi/b̂i−1) and LogDate (log bi/b̂i) under different clock models. Fixing µτi = 0.1, we draw
500000 values for ri from a LogNormal, Gamma, or Exponential distribution with median equal
to 1 and variance equal to 1/9, 1/3, 1, or 2.1. To simulate strict clock, we fixed ri = 1. We
then simulate estimated branch length for each replicate following the [340] model, by drawing
b̂i from a normal distribution with mean bi = riµτi and variance bi/s. Right: The penalty of
LSD and LogDate versus the empirical log-likelihood of b̂i for the models described above. To
compute the empirical likelihood, we divide b̂ observations into small bins and the empirical
likelihood of each bin is estimated as the frequency of the data assigned to it. Ideally, increasing
likelihood should monotonically decrease penalty. LogDate is closer to this idea than LSD
across all models, especially with higher variance of ri.
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Figure D.3: (a) Objective value versus iteration of the LogDate and wLogDate runs on one
arbitrarily selected simulated tree (M4, replicate 2). Each of the two methods were run using 10
random initial points generated using the strategy described in the main text. (b) Normalized
root-mean-square error of wLogDate versus the 10 initials used to run wLogDate.

251



●

●

●

●

●

●

●
●

●

●

3

10

30

100

100 200 300 500 600 900
Tree size

T
im

e 
(s

ec
on

ds
)

R−squared =  0.94  Slope = 2.23

Figure D.4: Running time of wLogDate on random subsets of the HIV dataset. For each tree
size, wLogDate was run 100 times on 10 random subsets each with 10 initial points. Each dot
represents the average run time of wLogDate per subset per initial point. Both axes are scaled
in log (base 10). The slope of the line (2.23) shows the polynomial degree of the running time
increase of wLogDate. Thus, wLogDate scales slightly worse than quadratically with increased
numbers of species.
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Figure D.5: A TimeTree of San Diego HIV epidemic according to wLogDate.
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(a) wLogDate

(b) LSD

Figure D.6: Effects of PhyML estimation error on wLogDate and LSD performance. Figure
shows log-odds error of (a) wLogDate and (b) LSD versus true branch length (in time unit);
x-axis is normalized by the maximum tree branch; dots are colored by log-odds error of phyML
estimates; large blue dots show means and bars show one standard deviations around medians.

254



(a) (b) (c)

Figure D.7: Analyses of the estimated branch lengths using PhyML on simulated data. (a)
Estimated versus true branch lengths (expected number of substitutions per site); axes scaled
in log10. (b) Error versus true branch lengths; blue dots represent means and bars represent
standard deviations around medians. (c) Log-odds error versus true branch lengths; blue dots
represent means and bars represent standard deviations around medians.
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Figure D.8: Run time of wLogDate and RelTime on the 10 replicates. Box plots show distribu-
tions for the 20 tests.
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Figure D.9: Comparison of LF, RelTime, and wLogDate on the simulated data with autocorre-
lated rate model. The y-axis shows estimated divergence times of uncalibrated internal nodes
while the x-axis shows the true divergence time. Each bar shows the 2.5% and 97.5% quantiles
of the estimates of a single node’s divergence time across 20 tests, each of them with different
random choices of calibration points (thus, these are not CIs for one run). There are 10 replicate
trees, each with 44 uncalibrated nodes (thus, 440 bars in total). There are two tests where LF
produces extremely erroneous time trees (test 2 of replicate 1 and test 16 of replicate 2) and
were discarded in Fig. 4.6 in the main text. The normalized RMSE of LF are 41.3 and 167.8 for
these two tests, while the overall error without these two tests is 0.09. Here we show the full
results for completeness. Colors are used to distinguish between replicates.
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Figure D.10: Estimation of the tMRCA of M2, M3, and M4 of the simulated data with
Lognormal clock model. For each model, BEAST was run with 3 conditions: B strict uses
the strict-clock prior, B lnorm early stop uses Lognormal clock prior with MCMC chain of 10
millions, and B lnorm converged uses Lognormal clock prior with elongated MCMC chain to
guarantee convergence (refer to table D.6 for parameters and convergence check.)
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on different settings of the simulation by [23]. Boxplots show median with 95% CI. Point ranges
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Appendix E

Supplementary materials for Chapter 5

E.1 Supplementary text

E.1.1 Solving for ω in the M-step

Here we present the algorithm to solve ω in the first round of MD-Cat where we add a

constraint on ω to fix the average to a constant µ. The algorithm to solve ω in the second round of

MD-Cat without this constraint is a simpler version and is not shown.

The optimization problem

Here we let τ fixed in Eq. 5.6 and solve the following optimization problem:

P : min
ω

N

∑
i=1

k

∑
j=1

qi j

b̂i
(b̂i−ω jτi)

2 (E.1)

such that ω≥ ε and ∑
k
j=1 ω = kµ, where ε and µ are constants and 0≤ ε < µ. It is trivial to see

that the optimization problem P is convex. Therefore, we can find the global optimal ω∗ of P

using the active-set method [235]. In addition, thanks to the simple weighted least-square form of

the objective function, we can solve each iteration of the active-set method in O(k), as shown
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below.

Overview of the active-set method

Recall that a feasible point of an optimization problem is a point that satisfies all the

problem’s constraints. If ω(i) is a feasible point of P , then its active-set A(i) is defined as:

A(i) = { j|ω(i)
j = ε} (E.2)

Starting with a feasible point ω(1) and its active-set A(1), the active-set algorithm repeat the

following procedure in each iteration (i) until the optimal point is found:

• Solve the equality constrained problem P (i) defined by the active-set A(i) (the formal

definition of P (i) will be shown later).

• Use ω(i) and the optimal point ω∗(i) of P (i) to find a new feasible point ω(i+1) that is closer

to the optimal point of P than ω(i).

• Compute the active-set A(i+1) of ω(i+1).

• Replace ω(i) with ω(i+1) and A(i) with A(i+1), then repeat the procedure.

The subproblem P (i) and the Lagrange method

In iteration (i) of the active-set method, we define and solve the following equality

constrained optimization problem:

P (i) : min
ω

N

∑
i=1

k

∑
j=1

qi j

b̂i
(b̂i−ω jτi)

2 (E.3)

such that ω j = ε,∀ j ∈ A(i) and ∑
k
j=1 ω = kµ.
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P (i) can be solved analytically by introducing Lagrange multipliers:

L =
N

∑
i=1

k

∑
j=1

qi j

b̂i
(b̂i−ω jτi)

2−η

(
k

∑
j=1

ω j− kµ

)
− ∑

j∈A(i)

λ j(ω j− ε), (E.4)

where η is the Lagrange multiplier of the constraint ∑
k
j=1 ω = kµ and each λ j is the Lagrange

multiplier of the constraint ω j = ε. We will use λ to represent the vector containing all these

Lagrange multipliers. We have:

∂L
∂ω j

=
N

∑
i=1

(
2qi jτi

b̂i
(ω jτi− b̂i)

)
−η−λ jI j∈A(i), (E.5)

where I is the indicator function.

Let ω∗, η∗, and λ∗ denote the critical point of L. If j ∈ A(i), then ω∗j = ε. Otherwise, ω∗j

can be solved by setting ∂L
∂ω j

to 0. Thus, we have

ω
∗
j =

 ε j ∈ A(i)

a j
c j
+ η∗

kc j
j /∈ A(i),

(E.6)

where a j = 2∑
N
i=1 qi jτi and c j = 2∑

N
i=1

qi jτ
2
i

b̂i
. Substitute this equation to the constraint ∑

k
j=1 ω∗j =

kµ and solve for η∗, we have:

η
∗ =

k2µ− k ∑
k
j=1

a j
c j
− kε|A(i)|

∑
k
j=1

1
c j

, (E.7)

where |A(i)| denotes the cardinality of A(i). Next, substitute ω∗j = ε to Eq. E.5 and set ∂L
∂ω j

to 0,

we can solve for each λ∗j where j ∈ A(i):

λ
∗
j = c jε−

η∗

k
−a j (E.8)
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Substitute η∗ in Eq. E.7 to Eq. E.8 and Eq. E.6, we obtain the analytical solution to all λ∗j and ω∗j .

Note that we can pre-compute all a j and c j in Eq. E.6 for all subproblems P (i). Therefore, the

analytical solution of each P (i) can be computed in O(k), as shown in Algorithm 6.

Algorithm 6 The Lagrange method to solve a subproblem P (i) defined by the active set A(i)

function SOLVELAGRANGE(A(i))
ω← [] ▷ initialize to an empty list
λ←{} ▷ initialize to an empty dictionary
compute η using Eq. E.7
for j ∈ [k] do

if j ∈ A(i) then
compute λ j using Eq. E.8
λ[ j]← λ j
ω j← ε

else:
compute ω j using Eq. E.6

append ω j to ω

return ω,η,λ

Computing ω(i+1) and A(i+1)

Let ω(i) and A(i) denote the feasible point and its active-set found in iteration (i) of the

active-set algorithm and let ω∗(i) denote the optimal point of P (i), η∗ and λ∗(i) denote its optimal

Lagrange multipliers. Depending on the characteristics of ω∗(i) and λ∗(i), we can find ω(i) and

A(i) as follows.

Case 1: ω∗(i) is feasible to P and λ∗(i) ≥ 0 In this case, ω∗(i) is also the optimal point of P ,

according to the KKT condition. We simple return ω∗(i).

Case 2: ω∗(i) is feasible to P and ∃λ∗(i)j < 0 In this case, set ω∗(i+1) to ω∗(i) and find the

constraint j that has the most negative λ
∗(i)
j and remove it from A(i) to get A(i+1) (i.e. relax the

“useless” constraint).
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Case 3: ω∗(i) is infeasible to P In this case, we search for a new feasible point ω(i+1) that

is closer to the optimum and update the active-set. To this purpose, we start from the previous

feasible point ω(i) and move it as close as possible to ω∗(i) on the direction d = ω∗(i)−ω(i) such

that the new point is still feasible. In other words, we need to find the largest number α ∈ [0,1]

such that

ω
(i)
j +α(ω

∗(i)
j −ω

(i)
j )≥ ε,∀ j ∈ A(i) (E.9)

Let V = { j|ω∗(i)j < ε} denote the violated set of ω∗(i). Because ω(i) is feasible, it is easy to see

that Eq. E.9 is always satisfied for all j /∈V . Thus, to find α we only need to satisfy Eq. E.9 for

all j in the violated set V . Now we have two sub-cases:

• If there exists j ∈V such that ω
(i)
j = ε, then Eq. E.9 is satisfied only if α(ω

∗(i)
j −ω

(i)
j )≥ 0.

On the other hand, because j ∈ V and ω(i) is feasible, we have ω
∗(i)
j < ε ≤ ω

(i)
j =⇒

ω
∗(i)
j −ω

(i)
j < 0. Therefore, Eq. E.9 is satisfied only if α = 0. Thus, in this case we set

ω(i+1) = ω(i) and add the constraint j into A(i) to obtain A(i+1).

• Otherwise, let ∆ j =
ω
∗(i)
j −ε

ω
(i)
j −ε

for all j ∈V . After rewriting Eq. E.9 and substituting ∆ j to it,

we get the following condition: α≤ 1
1−∆ j

for all j ∈V , or equivalently, α≤min j∈V
1

1−∆ j
=

1
1−∆p

where ∆p is the minimum of all ∆ j. Thus, we set α = 1
1−∆p

, ω(i+1) = ω(i)+αd, and

add p into A(i) to obtain A(i+1).

The active-set algorithm described in this section is summarized in Algorithm 7.

E.1.2 Solving for τ in the M-step

Here we let ω fixed in Eq. 5.6 and solve the following optimization problem:

P : min
τ

N

∑
i=1

k

∑
j=1

qi j

b̂i
(b̂i−ω jτi)

2 (E.10)
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Algorithm 7 The active-set method to solve the problem P defined in Eq. E.1
function SOLVEOMEGA(τ, b̂,µ,ε,k)

ω
(1)
j ← µ for all j = 1..k ▷ feasible initital point

A(1)← /0

for i = 1 to MaxNumberIterations do
ω∗(i),η∗(i),λ∗(i)← SOLVELAGRANGE(A(i)) ▷ See Algorithm. 6
if ω∗(i) is feasible then

if λ
∗(i)
j ≥ 0 for every j ∈ A(i) then
return ω∗(i) ▷ satisfies KKT =⇒ feasible and optimal

else
λ
∗(i)
h ←min j∈A(i) λ

∗(i)
j

remove h from A(i) to get A(i+1)

else
V = { j|ω∗(i)j < ε} ▷ the violated set of ω∗(i)

if there exists j ∈V s.t. ω
(i)
j = ε then

add j into A(i) to get A(i+1)

ω(i+1)← ω(i)

else
∆ j←

ω
∗(i)
j −ε

ω
(i)
j −ε

for all j ∈V

∆p←min j∈V ∆ j
α← 1

1−∆p

ω(i+1)← ω(i)+α(ω∗(i)−ω(i)) ▷ feasible and “more optimal”
add p into A(i) to get A(i+1)

return the last ω(i)
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such that τi ≥ ε, where ε is a non-negative constant, and the linear constraints Ψ set by the

calibration points are satisfied. It is trivial to see that P is convex, so we can find the global

optimal τ∗ using active-set method. Furthermore, thanks to the simple weighted least-square form

of the objective function and the hierarchical structure of the linear constraints, we can solve

each iteration of the active-set method in O(N). Below we derive the analytical solution for each

iteration of the active-set method. Readers can refer to [235] and section E.1.1 of this text to

derive the full active-set procedure.

Notations

In this section, we use the following extended notations.

• P(x,y): the path between the two nodes x and y on the tree. The nodes are uniquely

identified by their indices.

• P(x): the path from the root to node x.

• ni: the number of nodes below node i.

• Ci: the set of calibration points below node i.

The linear constraints

In our algorithm, we use the original setup of the linear constraints Ψ, where the unknown

divergence time t0 at the root is added to the equations and is co-estimated with τ. The p

calibration points t1, . . . , tp define a set of p constraints C1, ...,Cp:

Ci : ∑
j∈P(i)

τ j = ti− t0 (E.11)
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The subproblem P (h) and the Lagrange method

In iteration (h) of the active-set method, we define and solve the following equality

constrained optimization problem:

P (h) : min
τ

N

∑
i=1

k

∑
j=1

qi j

b̂i
(b̂i−ω jτi)

2 (E.12)

such that τi = ε,∀i ∈ A(h), where A(h) is the active-set at iteration (h), and all the p linear

constraints C1,C2, ...,Cp are satisfied. Introducing Lagrange multipliers, we have:

L =
N

∑
i=1

k

∑
j=1

qi j

b̂i
(b̂i−ω jτi)

2−
p

∑
m=1

λm

(
t0 + ∑

i∈P(m)

τi− tm

)
− ∑

i∈A(h)

νi(τi− ε), (E.13)

where λm and νi are Lagrange multipliers. Taking partial derivatives at each τi and t0, we have:

∂L
∂τi

= αiτi +βi− ∑
m∈Ci

λm−νiIi∈A(h), (E.14)

where α = ∑
k
j=1

2qi jω
2
j

b̂i
, β =−∑

k
j=1 2qi jω j, and Ci is the set of calibration points below node i;

∂L
∂t0

=−
p

∑
m=1

λm (E.15)

Setting the partial derivatives to 0 and use the constraints in A(h), we have the following system

of equations:

τ
∗
i =

 ε i ∈ A(h)

1
αi

∑m∈Ci λm− βi
αi

i /∈ A(h)
(E.16)

ν
∗
i =
−1
αi

∑
m∈Ci

λm +
βi

αi
+ ε (E.17)
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p

∑
m=1

λ
∗
m = 0 (E.18)

Note that using Eq. E.16, we only need the Lagrange multipliers below τ∗i to compute it. Therefore,

in a postorder traversal (with complexity O(N)), it is straight-forward to see that we can use the

method of substitution to compute all τ∗i and λ∗m with respect to λ∗1 (or any other arbitrarily chosen

λ∗j) using the method of substitution (a similar strategy has been described in [340]). Thus, all λ∗j

can be parameterized by λ∗1 as follow:

λ
∗
m = γm,1λ

∗
1 +ηm,1, (E.19)

where γm,1 and ηm,1 are constants. Substituting to Eq. E.18, we obtain the analytical solution for

λ∗1:

λ
∗
1 =
−∑

p
m=2 ηm,1

1+∑
p
m=2 γm,1

(E.20)

Substituting back to Eqs. E.16, E.17, and E.19, we obtain the analytical solution for all τ∗i , λ∗m,

and ν∗i .

E.1.3 Convergence of the EM algorithm

Recall that in the M-step, we need to find τ≥ 0 and ω≥ ε that satisfy Ψ and maximize

the following function:

g(τ,ω;q) = ∑
N
i=1 ∑

k
j=1 qi j log f (b̂i|ω j,τi), (E.21)

where f denote the density function of the Gaussian model for branch estimation uncertainty, as

described in the main text.

At each iteration (h) of the algorithm, let q(h) denote the posterior computed in the E-step,

τ(h),ω(h) and τ(h)+1,ω(h+1) denote the solution found before and after M-step. Then we
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claim the following:

Claim 8. If g(τ(h+1),ω(h+1);q(h))≥ g(τ(h),ω(h);q(h)), then l(τ(h+1),ω(h+1))≥ l(τ(h),ω(h))

Proof. Let C = ∑i, j qi j log(kq(h)i j ). Subtracting C from both sides of the conditioned inequality,

we have:

N

∑
i=1

k

∑
j=1

q(h)i j log
f (b̂i|ω

(h+1)
j ,τ

(h+1)
i )

kq(h)i j

≥
N

∑
i=1

k

∑
j=1

q(h)i j log
f (b̂i|ω

(h)
j ,τ

(h)
i )

kq(h)i j

(E.22)

Recall that q(h)i j =
f (b̂i|ω

(h)
j ,τ

(h)
i )

∑
k
m=1 f (b̂i|ω

(h)
m ,τ

(h)
i )

and ∑ j q(h)i j = 1. Therefore, we can rewrite the right hand side

(RHS) of Eq. E.22 as follows

RHS = ∑
N
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k
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]
= l(τ(h),ω(h))

(E.23)

On the other hand, applying Jensen’s inequality, we get an upper bound for the left hand side

(LHS) of Eq. E.22:

LHS ≤ ∑
N
i=1 log

[
∑

k
j=1 q(h)i j

f (b̂i|ω
(h+1)
j ,τ

(h+1)
i )

kq(h)i j

]
= ∑

N
i=1 log

[
1
k ∑

k
j=1 f (b̂i|ω

(h+1)
j ,τ

(h+1)
i )

]
= l(τ(h+1),ω(h+1))

(E.24)

Thus, from Eq. E.22, Eq. E.23, and Eq. E.24, we have l(τ(h+1),ω(h+1))≥ l(τ(h),ω(h)).

Corollary 4. The EM algorithm described in the main text monotonically improves the log-

likelihood function after each iteration and converges to a local minimum.

Proof. Recall that in the M-step at iteration (h) , we use coordinate descent starting at (τ(h),ω(h))

to find (τ(h+1),ω(h+1)). Therefore, g(τ(h+1),ω(h+1);q(h))≥ g(τ(h),ω(h);q(h)) by construction. By

Claim 8, we conclude that the algorithm monotonically improves l. In addition, because the
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Gaussian PDF is bounded above, l is also bounded above. Thus, the sequence sn(h) = l(τ(h),ω(h))

is monotonically increasing and bounded above, so it converges.
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Appendix F

Supplementary materials for Chapter 6

F.1 Supplementary Notes

F.1.1 Novel algorithms for prototype selection

Given a distance matrix D for n objects and a given number k, the problem of prototype

selection is to find a subset of k ⊂ n objects, with 1 < k < n, such that an objective function d

is optimized. This problem is known to be NP-hard [104]. In the example of [57], the objects

are geographical locations of n clients of a banking corporation. The distance matrix D reflects

the time to clear a check drawn in client’s location i and cashed in client’s location j. The

bank’s problem is to decide for a given number k at what client locations to open a branch

in order to maximize their available funds. Thus, the objective function is the minimization

over the given distances in D. For our use case of choosing a most representative subset of k

genomes, we maximize over the given distance matrix as defined by MinHash signatures [240] in

order to maximize diversity. An exact algorithm must enumerate all n over k combinations of

k objects, compute the score for every combination via objective function d and select optimal

combination(s). Since n over k grows exponentially, this is impractical for relevant input sizes

and we have to resort to heuristics. Fortunately, results of alternative heuristics implementations
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can be compared by their score, although it remains unclear what an optimal score would be.

We devised a naive algorithm to heuristically solve the prototype selection problem: It

starts with the full set of n objects. The initial score for all n objects is the sum of pairwise

distances for all objects in n. In each iteration, we greedily choose the one object, which

reduces the overall score the least and remove it from the shrinking set. We continue until

k is reached. We call this algorithm due its shrinking nature of maximizing overall distance

score: “destructive maxdist”. We furthermore implemented alternative algorithms to solve the

prototype selection problem. The implementation “constructive maxdist” is a close relative: We

start with the two objects that are most distant from each other in D. The set of prototypes is

then constructively grown by adding the object showing largest sum of distances to all remaining

objects in D. The method “constructive protoclass” implements the algorithm of [26] but for

only one “class”. Intuitively, a sphere is drawn around every object in D with radius ε. The

element whose ball covers most other objects is selected as prototype. All such covered elements

and the new prototype are removed for the next round. This is repeated until no balls cover more

than its center element. Our fourth and last method “constructive pMedian” implements the

p-median algorithm of [205] which is closely related to k-means clustering for given k.

Our comparison of those four implementations of heuristic algorithms to solve the proto-

type selection problem shows that “destructive maxdist” requires least run time, returns highest

scores for many instances and can handle instances of n = 90,000 within seconds (Supplementary

Fig. F.1b-d).

For our application, we needed to extend the original problem definition by allowing the

pre-definition of r objects as prototypes, a.k.a., “seeds”. Thus, k−r prototypes need to be selected

from n objects such that all objects of r are guaranteed to become prototypes. This alternation will

preserve objects of biological interest while minimizing the reduction of score. For example, we

wanted to make sure that several well-studied E. coli strains are chosen over other thousands of

less popular ones. The algorithms work as described above, but in the initiation phase, the set of
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selected prototypes is not empty but filled with r objects and corresponding rows and columns in

D are masked. The increase in runtime is marginal with this function enabled, while the resulting

score is notably higher than that by not using this function (Supplementary Fig. F.1e).

Python implementations are provided at https://github.com/biocore/wol/, under directory

code/prototypeSelection, which also contains a Jupyter notebook we used for benchmarking.

F.1.2 Comparative analysis of trees by different methods and input data

We conducted a systematic exploration of the optimal strategy for building the microbial

tree of life. Multiple species trees were reconstructed, using differential taxon, gene and site

sampling strategies, as well as different tree-building methods, implementations and evolution

models. The comparative analysis results are detailed in this section. Two metrics were mainly

used for comparing trees: 1) The Robinson-Foulds (RF) distance [277] normalized by tree sizes,

which measures the topological discrepancy between each pair of trees; 2) “tip distance” (TT),

which measures the correlation between tip-to-tip distance matrices of two trees (see Methods).

In addition, the distributions of branch support values, if comparable and relevant, were addressed.

To maximize objectiveness, these analyses are purely based on the mathematical properties of

trees and are free from any biological knowledge.

Comparison between “full-scale” ASTRAL and CONCAT trees. The two tree-building

methods produced similar species tree topologies (Fig. 6.3). The distance between the two

CONCAT trees is shorter (RF=0.179) than between either of them and the ASTRAL tree (see

below), which is expected considering the differential mechanisms behind each method. The

CONCAT tree based on randomly sampled sites (“concat.rand”) resembles the ASTRAL tree

(RF=0.260) more than does the CONCAT tree based on most conserved sites (“concat.cons”)

(RF=0.312), likely a consequence of random site sampling, which better represents the full-length

sequence alignments that were used for building individual gene trees for ASTRAL. Additionally,

the species tree built on all sites but using FastTree (“fasttree”) shows higher similarity with the
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random CONCAT tree (RF=0.156) than with the ASTRAL tree (RF=0.257), implicating higher

impact by tree-building method than by robustness of the same method (further discussed below,

see Supplementary Fig. F.12). Interestingly, the tree based on ribosomal proteins (“concat.rpls”)

is more similar with the ASTRAL tree (RF=0.253) than with the CONCAT trees (RF=0.340

(conserved) / 0.304 (random)).

The two methods for building large phylogenies have different computational requirements

(Supplementary Table F.2). As mentioned before, computer memory and run-time constraints

limit the size of the datasets and the complexity of the models that can be analyzed with CONCAT.

On the other hand, the gene tree summary method implemented in ASTRAL is less constrained,

even though its overall cost is greater, because most of the time is spent in building individual

gene trees, a step that can be fully parallelized across compute nodes. This scalability of ASTRAL

means that it can be extended in a straightforward manner to even larger scale phylogenomic

analyses than considered here. We estimated branch lengths for the ASTRAL tree using either

most conserved or randomly selected sites (see Methods). Even though random site sampling

gave a larger tree dimension overall than conserved site sampling, the individual branch lengths

had strong linear correlation between the two methods (slope=1.776, R2 = 0.974,p = 0.0).

Evaluation of trees inferred using implicit vs. explicit methods. We tested three

alternative approaches for assessing the relationships among organisms: namely, either explicit

(gene tree summary or gene alignment concatenation) or implicit (by marker gene distribution,

MinHash signature, andor NCBI taxonomy. Albeit simple and applicable approaches, they do

not explicitly model the evolutionary process of molecular sequences. The topological distances

among these trees and the species trees reconstructed using dedicated phylogenetic approaches

are shown in Supplementary Fig. F.7. It reveals high discrepancy among the three implicit

trees and from the explicit category (RF > 0.62). In particular, the taxonomy has the highest

discrepancy (RF > 0.83), due to its over-simplified hierarchies. Meanwhile, the four phylogenetic

trees, despite using different gene selection, site sampling and tree-building methods, notably
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converge better (RF < 0.35). Topologies were compared using the Robinson–Foulds (RF) metric

[277]. The topologies of the trees built using explicit methods, either summary or concatenation,

are better converged than those obtained from the alternate, cheaper methods, which do not

directly operate on sequence data (Supplementary Fig. F.7a). This underscores the necessity of

using sequence data and dedicated phylogenetic approaches to accurately define evolutionary

relationships in high-quality phylogenomic studies.

Impact of gene tree quality and quantity on ASTRAL trees. We evaluated whether

a large number of loci, i.e., the practice of “phylogenomics” is essential in resolving species

evolution using ASTRAL, which is based on the summary of multiple gene tree topologies. The

381 marker genes were randomly downsampled to smaller sets, on each of which an ASTRAL

tree was built. We observed a slightly increased level of deviation from the original, full-scale

ASTRAL tree (Supplementary Fig. F.10a). With 200 gene trees (around half of the original 381),

the topology differed by RF=0.081. Meanwhile, the branch supports (local posterior probabilities)

continued to increase with the number of gene trees (Supplementary Fig. F.10c) and did not

plateau even with 381 gene trees, suggesting the benefit of including more loci in resolving

species phylogeny.

We also assessed the influence of gene tree quality on the ASTRAL tree. Four trees were

generated for each marker gene: one by FastTree, and the other three by RAxML, either based on

the FastTree starting tree or two random seeds (see Methods). The reference ASTRAL tree was

built using the best scoring RAxML gene tree of the three. As alternatives, we built two more

ASTRAL trees, either based on the FastTree-started RAxML trees, or the initial FastTree trees.

We observed low levels of topological discrepancy from the reference ASTRAL tree (RF=0.048

and 0.090, respectively) (Supplementary Fig. F.10b) and very close branch support distributions

(Supplementary Fig. F.10d).

Impact of taxon sampling on species phylogeny. A long-standing dilemma for phy-

logeneticists is to balance among the number of taxa, the number of sites, and the robustness
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of algorithm, subject to realistic computational limitations. Fewer taxa allow the use of more

expensive methods (further discussed below and in the main text, also see Supplementary Fig.

F.23), at the cost of losing signals that would otherwise be helpful in better defining the evolu-

tionary relationships among clades. To test the impact of reduced taxon sampling on the species

tree, we downsampled from the original 10,575 genomes to a series of fewer taxa, in each case

maximizing the representativeness of the deep phylogeny of bacterial and archaeal evolution

(see Methods). The three robust phylogenetic methods—ASTRAL, CONCAT conserved, and

CONCAT random (which produced Supplementary Figs. F.4-F.6, respectively)—were applied to

each taxon set.

As the taxon number decreased, the reconstructed topology gradually deviated from that

of the full tree (Supplementary Fig. F.13a, first row of each panel). This trend was more obvious

in the CONCAT trees (conserved: RF=0.138 to 0.551, random: RF=0.110 to 0.384) than in

the ASTRAL trees (RF=0.056 to 0.296) (Supplementary Fig. F.13a, comparing among panels),

suggesting that ASTRAL produced more stable topologies with taxon downsampling. Meanwhile,

the deviation among trees by the three methods increased as the taxon number decreased (sum

of RF=0.752 to 1.653) (Supplementary Fig. F.13b). These results suggest that taxon sampling

does have an impact on the tree topology. Although ASTRAL appears to be more resistant to this

effect than CONCAT, it still suffered with an RF=0.103 (which translates into 10.3% incongruent

clades) when the taxon number went from 10,575 down to 1,000. Therefore, the quantity of taxa

is important in assessing the deep phylogeny.

Impact of site sampling and alternative models on CONCAT trees. Because of the

computational expense of CONCAT with RAxML, we had to truncate the concatenated sequence

alignment to at most 100 sites per marker gene (see Methods), leaving approximately 38k sites in

total. Although this was more than eight times as many as the PhyloPhlAn default (on average 12

sites per gene, or 4.5k sites in total), there is a considerable loss of signals from the 192k-site full

alignment. Meanwhile, the “trident” algorithm implemented in PhyloPhlAn enabled selection
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of the most conserved sites, compensating for the potential alignment inaccuracy in the full

alignment which may be deleterious in the subsequent phylogenetic inference. To assess the

influence of site sampling on the species tree, we used the trident algorithm to sequentially select

100, 50, and 25 sites per gene, plus the PhyloPhlAn default (∼12), and compared the CONCAT

species trees generated in each case.

Simultaneously, we evaluated the two alternative methods for modeling rate heterogeneity

among sites: Gamma (classical and expensive) and CAT (a faster and less memory-intensive

approximation to Gamma, which produces likelihood values than cannot be compared between

analyses) [320]. (Note that the rate heterogeneity discussed here should not be confused with

the more complex, profile mixture models discussed below.) Due to computational constraints,

RAxML analyses were not feasible with the Gamma model on more than 25 sites per gene or

with the CAT model on more than 100 sites per gene. Whereas the CONCAT trees discussed in

the main text were based on 100 sites per gene with the CAT method (see Methods), here we also

consider trees based on either 25 sites per gene or the default setting with the Gamma model.

We observed a pattern of sequential shift in both topology and among-taxa distances along

with site sampling (Supplementary Fig. F.11). From the default setting to 100 sites per gene,

there was an RF=0.308 and a TT=0.099 (which translates into a Pearson correlation coefficient of

0.802). This sequence moves toward the two trees built on randomly selected sites or all sites

(the later was built using FastTree, which is further discussed below, see also Supplementary Fig.

F.12). The patterns suggest that site sampling does have an impact on the phylogenetic trees.

Therefore we chose to discuss both CONCAT trees using most conserved or randomly selected

sites in interpreting the biology behind the trees. Furthermore, we noted that the choice of CAT

vs. Gamma model had low impact on tree topology and phylogenetic distances (RF=0.040 and

0.127, TT=0.00121 and 0.0046, 25 sites per gene and default).

Impact of non-vertical evolution on species phylogeny. Conventional molecular phylo-

genetics analyses usually attempt to avoid loci that are prone to horizontal gene transfer (HGT),
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which is prevalent in the microbial world and affects a large range of genes [54, 111]. One major

advantage of ASTRAL is its robustness to HGTs, allowing us to include as many as 381 gene trees

to achieve optimal species tree accuracy. To validate this assumption in the context of this study,

we performed a test, in which the marker genes were downsampled based on the quartet score

of the corresponding gene tree—a measurement of the consistency between gene and species

evolution. We selected four quartet scores thresholds: 0.5, 0.67, 0.75 and 0.8, and performed

both ASTRAL and CONCAT (using conserved or random sites) species tree reconstruction on

subsets of marker genes above each threshold. The results show that with fewer but presumably

more “vertically evolving” genes, the ASTRAL trees retained notably more consistent topologies

(smaller RF distance) than CONCAT trees did (Supplementary Fig. F.22a). When all species trees

were included in one matrix, we observed close clustering of the ASTRAL trees, in contrast to

the diverse distribution of CONCAT trees (Supplementary Fig. F.22b, c) (ASTRAL vs. CONCAT

conserved / random, PERMANOVA pseudo-F = 5.612/5.571, p-value=0.009 / 0.007). These

observations suggest that ASTRAL is significantly more robust against gene tree discordance

compared to CONCAT.

We next checked the branch supports of the ASTRAL trees. A moderate decrease

along with fewer gene trees was observed (Supplementary Fig. F.22d), despite the increased

overall concordance of the remaining gene trees. Together with the discussion above (see also

Supplementary Fig. F.7), this again suggests the benefit of using a large number of gene trees in

an ASTRAL analysis.

Evaluation of species trees built using site heterogenerous models on 1,000 taxa. The

classical site homogenerous substitution model (usually referred to as Gamma or +G) [320]

has been widely used in phylogenetics studies, including most modern efforts for building

the microbial tree of life (e.g., [246, 144] ). It assumes that all sites are subject to the same

evolutionary process, with rate heterogeneity following a Gamma distribution. However studies

have shown that this simplified assumption is prone to the long branch attraction (LBA) artefacts,
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especially with deep phylogenetic trees where large variations of evolutionary process are likely

present [178, 348]. To confirm the robustness of our findings based on the use of the Gamma

model, we also built CONCAT trees using the profile mixture model C60, which was shown

more robust against LBA [309], together with the posterior mean site frequency (PMSF) method

implemented in IQ-TREE which enables relatively large-scale analysis with this complex model

[348]. Yet this method is still notably more expensive than our reference approach, and limited

our analysis to only 1,000 downsampled taxa (described above, see also Supplementary Fig. F.13).

For comparison, we built additional CONCAT trees on these 1,000 taxa, using either the classical

Gamma model, or the FreeRate model, which relaxes from the assumption of Gamma distribution

of rates [316]. We also included the 10,575-taxon trees pruned to the 1,000 taxa for comparison.

This analysis provided an alternative and highly controlled 1,000-taxon test set to compare

models (Supplementary Fig. F.23) and to re-assess a series of questions discussed above. There

was a relatively stable disparity between pairs of trees by conserved and random site sampling, in

both topology (RF=0.201 ± 0.011, mean and std. dev., same below) and phylogenetic distances

(TT=0.0439 ± 0.0022), with PMSF not being exceptional (Supplementary Fig. F.23a). Similarly,

there was a relatively stable (but more variable than between site sampling) disparity between

trees by 10,575 or 1,000 taxa, both built using the Gamma model (RF=0.268± 0.041, TT=0.0173

± 0.0100), with random site sampling being most consistent (Supplementary Fig. F.23b). These

observations largely support the findings discussion above (see also Supplementary Figs. F.11

and F.13). Interestingly, the topological inconsistency introduced by differential taxon sampling

is significantly higher than by site sampling (two-tailed t-test p=0.0204), but the inconsistency

in phylogenetic distances is the opposite (two-tailed t-test p=0.00198). The variance between

the 381 global markers vs. the 30 ribosomal proteins was also stable, and the most significant,

especially in phylogenetic distances (RF=0.372 ± 0.018, TT=0.162 ± 0.028) (Supplementary

Fig. F.23d). In both PCoAs, the differential choice of loci dominated the variances on axis 1

(which explains 46.70% and 92.88% variance, respectively) (Supplementary Fig. F.23e, f).
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Now consider differential site heterogeneity models: For each dataset, trees generated

by the Gamma model and by the FreeRate model had little inconsistency (RF=0.061 to 0.132,

TT=0.0005 to 0.0034); the PMSF tree was more discrepant from the other two (RF=0.096 to 0.204,

TT=0.0063 to 0.0121), yet this discrepancy was lower than revealed in other comparisons (Sup-

plementary Fig. F.23c). This pattern was also indicated by hierarchical clustering (Supplementary

Fig. F.23g, h). In the PCoA of RF distances, trees by the three models on the same dataset form

compact clusters (Supplementary Fig. F.23e), whereas in the PCoA of tip distances, the PMSF

trees had noticeable deviations from the Gamma and FreeRate trees (Supplementary Fig. F.23f).

These observations suggest that the more complex and expensive PMSF method generated highly

consistent topologies, but estimated slightly less consistent phylogenetic distances, comparing to

the simpler models.

Collectively, this test also reveals that with our data set, the impact of taxon sampling on

tree topology is notably larger than the impact of site sampling or model complexity, as evident in

Supplementary Fig. F.23e across axis 2 (which explains 19.04% variance). For example, starting

from the tree using 38k randomly selected sites with 1,000 taxa (small blue square), increasing

site sampling to all 192k sites (small blue circle, a.k.a. “concat.al1k” in Fig. 6.3) resulted in

RF=0.162, but increasing taxon sampling to all 10,575 taxa (big blue square, a.k.a. “concat.rand”

in Fig. 6.3) resulted in RF=0.275 (also see Supplementary Fig. F.13).

Evaluation of species trees built using FastTree. While robust ML implementations like

RAxML and IQ-TREE are computationally expensive and forced us to perform site downsampling,

the faster alternative FastTree [261] allowed reconstruction of a CONCAT tree using all sites

(192k in total). Since FastTree was used to reconstruct large-scale reference microbial phylogenies

in several previous studies (e.g., [209, 246] ), we compared the two methods in the context of our

study. In particular, we compared species trees built using either FastTree or the robust method

based on the conserved sites by a series of downsampled taxa.

Our results show that FastTree and the robust method produced similar topologies given
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the same input data, as long as the number of taxa is large (RF=0.111 to 0.408) (Supplementary

Fig. F.12a). With different input data sets, both methods yielded relatively discrepant topologies

(RF=0.438 ± 0.140 and 0.408 ± 0.139, respectively, mean and std. dev.) (Supplementary Fig.

F.12c, d, upper left triangles), with FastTree trees being more discrepant (paired two-tailed t-test

p=0.000247). In PCoA, input data dominantly determine the clustering pattern (PERMANOVA

pseudo-F=7.117, p=0.001) of tree topologies, whereas method (RAxML vs. FastTree) has little

effect (pseudo-F=0.679, p=0.752) (Supplementary Fig. F.12e). When considering the estimated

phylogenetic distances among taxa, we observed a mixed effect. While input data set continued to

impact the distribution of trees (pseudo-F=7.616, p= 0.001) (Supplementary Fig. F.12f), forming

a clearly ascending gradient by the number of input genomes along axis 1 (which explains 62.19%

variance), method also has a significant impact (pseudo-F=4.294, p= 0.025), clearly separating

paired trees of each input data set on axis 2 (which explains 24.89% variance). The influences

of input data and method on the tree distribution are comparable (RDA effect size: adjusted

R2=0.512 vs. 0.387, p= 0.006 and 0.004).

Therefore, despite the overall congruence in topology, there is a systematic bias between

the two methods in estimating phylogenetic distances. Because our study has a strong focus on

the evolutionary distances among microbial lineages, and considering that several previous studies

associated FastTree with suboptimal likelihood scores [190, 381] and less accurate species tree

[298], we decided to favor the robust method over FastTree when reporting our results. Conducting

a comprehensive comparison between FastTree and RAxML / IQ-TREE is beyond the scope of

this study. Nevertheless, we want to remind readers of this difference when interpreting the robust

and FastTree trees, both of which were included in our data release.

F.1.3 Evaluation and curation of NCBI taxonomy

We evaluated the NCBI taxonomy [90] with reference to the ASTRAL tree. Of all 1,980

NCBI taxonomic terms with two or more representatives in our sampled genomes, only 1,219
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(61.6%) terms are monophyletic. To further quantify the divergence between taxonomy and phy-

logeny, we computed the classification consistency [209] and the quartet score [297] of each term.

The distribution of consistency scores reveals the imperfections of the taxonomy in reflecting the

phylogenetically estimated relationships (Supplementary Fig. F.15a). Some large phyla were

rejected consistently by different phylogenetic trees, pointing to potential inaccuracies in the

taxonomy (Supplementary Fig. F.15c, see also Supplementary Note F.1.5). Using the automated

taxonomy curation algorithm tax2tree [209], we reconstructed high-confidence taxonomic lin-

eages for individual genomes and for internal nodes of the ASTRAL tree. This process does not

create or modify taxonomic terms, but edits the assignments of genomes to existing taxonomic

terms. When faced with strong signal of polyphyly for a taxonomic unit, tax2tree appends a

numeric suffix to the taxonomic term for each clade (e.g., Fig. 6.1). This analysis established the

taxonomy for 873 genomes that were unclassified at one or multiple taxonomic ranks by NCBI,

and modified the existing taxonomy for 1,866 genomes (Supplementary Table F.3). Interestingly,

at class, order and family levels, 19.36% of genomes defined as metagenome-derived received

correction, while this ratio for genomes from isolates was much lower: 7.79% (one-tailed Fisher’s

exact test p-value=1.03e-23). This once more implicates the challenge in metagenome-assembled

genome discovery and emphasizes the need for improved quality standards for this practice [34].

Source data are provided as a Source Data file. Annotations and curations are available from our

data release.

F.1.4 Comparison with GTDB taxonomy and phylogeny

GTDB is a recent phylogenomics-curated taxonomy system for bacteria and archaea [246].

We compared our work with GTDB release 86.1. Among the 10,575 taxa in our phylogenetic

analysis, 9,732 (92.0%) have matches in the GTDB taxonomy, and 8,042 (76.0%) of them

are present in the GTDB phylogeny. We annotated our trees using the GTDB taxonomy (e.g.,

Supplementary Fig. F.16), and observed high overall congruence (Supplementary Fig. F.15b).
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Among all 3,466 GTDB taxonomic units with two or more representatives, 3,403 (98.2%) are

monophyletic in the ASTRAL tree. The congruence is also evident by directly comparing

topologies of the GTDB phylogeny (composed of one archaea tree and one bacteria tree) and the

ASTRAL tree (RF distance=0.185) (Fig. 6.3a, b). However, some differences in phylum-level

organization and contents were observed (Figs. 3c, d, Supplementary Figs. F.3 and F.15d), and the

ASTRAL tree appeared to have the fewest inconsistencies compared to the CONCAT trees using

the global marker gene set (Supplementary Fig. F.15d). The differential inclusion of phylum-level

classification units by the two works may contribute to this discrepancy. Further discussion

of taxonomic units with reference to the GTDB trees and other published works is provided

in Supplementary Note F.1.5. Source data are provided as a Source Data file. We included

cross translations of genome identifiers and phylogenies of the two systems, and GTDB-based

taxonomic curation of our genome pool in the data release.

F.1.5 Phylogenetic relationships of major taxonomic groups

We examined the placement of multiple important high-level (phylum and above) taxo-

nomic groups in the species trees generated in this study. The ASTRAL tree (branch support:

local posterior probability, or lpp) was used as the top-priority reference for the discussion, due to

its stability and high resolution in deep phylogeny as discussed above and in the main text. The

two CONCAT trees built using the robust ML implementation, based on either using conserved

or random sites, were used for comparison in most discussions (branch support: rapid bootstrap,

or xboot).

Archaea. The 669 representatives of the domain Archaea form a distinct clade in all three

species trees (lpp=0.998 in the ASTRAL tree, xboot=100 in both CONCAT trees). The Archaea

clade is split into the four currently accepted groups, namely Asgard, TACK, Euryarchaeota and

DPANN [86, 50]. However, not all the groups are monophyletic, and this is particularly evident

among the phylum Euryarchaeota (detailed below). Our trees do not support Asgard and TACK as
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sister groups (together as kingdom Proteoarchaeota, as proposed in [253] ), despite the closeness

of the two groups in the ASTRAL tree (detailed below).

Asgard. The recently discovered group of uncultivated archaea Asgard was considered

to be close to eukaryotes and represent the archaea-to-eukaryote transition [377]. Our dataset

includes eight representatives out of ten Asgard taxa from the original genome pool. Seven of

them, representing the candidate phyla Lokiarchaeota (one taxon), Thorarchaeota (three taxa),

and Heimdallarchaeota (three taxa), form a clade with moderate support (lpp=0.751, xboot=83 /

98) (a separation by “/” stands for conserved / random, same below) and reside in a relatively

basal location in the Archaea lineage. In the CONCAT trees, this clade is sister to Marine Group

II and III euryarchaeotes (13 and two taxa, respectively) (xboot=49 / 85), whereas in the ASTRAL

tree, it is relatively independent (see below). In contrast to [377], our only representative of

the candidate phylum Odinarchaeota is placed in a distant location, sister to a clade of four

members of the candidate phylum Verstraetearchaeota (lpp=0.976, xboot=71 / 99), which is part

of the TACK group. Therefore, tax2tree curation re-assigned Odinarchaeota to the TACK group.

Meanwhile, two Asgard taxa were retained in the 1,000-taxon PMSF trees: one Thorarchaeota

taxon is deeply nested within the TACK clade, with candidate phylum Bathyarchaeota (one taxon)

being its sister (ufboot=99 / 100), whereas the other one, a Heimdallarchaeota taxon stands alone

in a relatively basal position in the Archaea clade. We want to note the potential limitation in

resolving Asgard placements due to its low availability of genome data.

TACK. The archaea TACK group (a.k.a., Proteoarchaeota) [121] was shown related to

eukaryotes [253, 121] and placed as a sister group to Asgard in previous analyses [317, 50].

Members of the TACK group, including organisms under the phyla Crenarchaeota (169 taxa) and

Thaumarchaeota (49 taxa), as well as the candidate phyla Bathyarchaeota (14 taxa), Korarchaeota

(one taxon) and Verstraetearchaeota (four taxa), together with Odinarchaeota (see above), form

a monophyletic clade with moderate support (lpp=0.88) in the ASTRAL tree. This topological

pattern was also found in the CONCAT trees, but with weaker support (xboot=21 / 44). Further,
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in disagreement with ribosomal proteins-based results (e.g. [50] ), all three trees in our study

suggest that the TACK clade is sister to (lpp=0.979, xboot=55 / 92) the “Euryarchaeota 2 clade”

(further discussed below). They together are sister to the Asgard group in the ASTRAL tree

(lpp=0.917), although this proximity is not indicated by the CONCAT trees.

Euryarchaeota. The phylum Euryarchaeota includes most of the “conventional” archaea.

This group (407 taxa) appears to be polyphyletic in all three trees, which is inconsistent with

[50]. In the ASTRAL tree, this phylum splits into two clades: The major clade (Euryarchaeota 1)

includes genomes of the class Thermoplasmata (25 taxa), Marine Group II (12 taxa), Metha-

nomicrobia (132 taxa), Archaeoglobi (21 taxa), Halobacteria (99 taxa), Methanococci (19 taxa)

and Methanobacteria (34 taxa). The minor group (Euryarchaeota 2) (lpp=0.752), comprising

classes Thermococci (38 taxa) and Hadesarchaea (two taxa), plus the Arc I group archaea (eight

taxa), forms a distinct sister cluster to the TACK group (see above). The CONCAT trees also

show that Hadesarchaea and Thermococci are sister groups (xboot=21 / 45), and they together

are sister to the TACK group (see above), but the Arc I group was placed in a different location,

close to classes Methanococci and Methanobacteria. For comparison, the sister relationship

between Thermococci and Arc I group was also supported in [246] and [50]. Arc I group is

currently classified under the euryarchaeal class Methanomicrobia, but none of our trees support

this hierarchical relationship. The position of the secondary Euryarchaeota clade is also supported

by the PMSF trees on 1,000 taxa, which include three Thermococci and one Hadesarchaea taxa,

forming a clade sister to the 19-taxon TACK clade (ufboot=100 / 99).

DPANN. The recently defined DPANN group of archaea [276] has five representatives in

our analysis. In concordance with a recent study [50], our trees do not support the monophyly

of this group. Two members of the candidate phylum Micrarchaeota form a distinct clade in all

three trees. This group is basal to the entire Archaea clade in the ASTRAL tree (lpp=0.998).

The candidate phyla Diapherotrites and Woesearchaeota each have one representative, and they

form a clade with two unclassified archaea: GW2011 AR10 and GW2011 AR15. This clade is
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sister to the Micrarchaeota clade in the CONCAT trees with moderate support (xboot=67 / 63),

but the two clades are not adjacent in the ASTRAL tree. In addition, the five representatives

of the candidate order Altiarchaeales, which was recovered to be within the DPANN clade in

previous studies [317, 50], form a clade nested within a big clade mainly composed of the orders

Methanococcales and Methanobacteriales, and this clade is distant from the DPANN clades.

It should be noted that the taxon sampling of the DPANN group is sparse in this study

compared to previous studies that focused on newly discovered organisms (e.g., [50] ). This is

mainly because the DPANN genomes have low numbers of detectable marker genes (67.81 ±

31.19, mean and std. dev.). As a consequence, only five out of 57 available genomes were selected

using our genome subsampling protocol. (But see Supplementary Note F.1.7 for discussion of

expanded DPANN sampling.) The proposed importance of DPANN in understanding the basal

diversification of Archaea [358] calls for future improvements of our marker gene set.

CPR. The candidate phyla radiation (CPR) [40] comprises a large proportion of the

bacterial diversity. Our trees include 1,454 CPR genomes, which form a single lineage with full

support in all trees. Consistent with [50], the candidate phylum Wirthbacteria (one genome) is

basal to the entire CPR clade, with full support in all trees. A clade comprised of the candidate

phyla Peregrinibacteria [362] (60 taxa) and Abawacabacteria [11, 144] (one taxon) as sister

groups (full support in all trees) was recovered as the second basal group in the CONCAT trees

(full support) and as an early branching group, though not second basal, in the ASTRAL tree

(full support). This pattern was not revealed in [50]. Most CPR taxa are grouped under two

highly supported clades representing the superphyla Microgenomates [276] (a.k.a. OD1, 423

taxa) (lpp=0.913, xboot=97 / 96) and Parcubacteria [276] (a.k.a. OP11, 846 taxa) (lpp=1.0,

xboot=99 / 100), respectively. The two clades are relatively derived and are not immediate

sister groups. Thus the previous proposal of the superphylum Patescibacteria, comprised of

Microgenomates, Parcubacteria, and the candidate phylum Gracilibacteria [276], is not supported

[50]. Our sampling did not include any of the five genomes of Gracilibacteria, though, since
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they did not pass the quality filters. The candidate phylum Doudnabacteria [11] (19 taxa), was

placed within the Parcubacteria clade in the ASTRAL tree and the random CONCAT tree, with

weak support (lpp=0.621, xboot=60), a pattern consistent with previous work based on ribosomal

proteins [11], but was basal to the entire Parcubacteria clade (xboot=100) in the conserved

CONCAT tree. Overall, the relationships among major CPR candidate phyla were much more

consistently resolved compared to phyla under non-CPR Bacteria (see below) (Supplementary

Fig. F.3).

Non-CPR Bacteria (abbreviated as “ncBacteria” in this section). They form a mono-

phyletic group in all trees based on global marker genes. This clade is highly supported in

the ASTRAL tree (lpp=0.958) and in the random CONCAT tree (xboot=95) but less so in the

conserved CONCAT tree (xboot as low as 29) (Fig. 6.3c). The CONCAT method struggled

to resolve the relationships of the early branching ncbacterial clades, leaving poorly supported

branches that were collapsed into polytomies in Supplementary Figs. F.5 and F.6. However, the

ASTRAL tree provides remarkably higher resolution with moderate-to-high support of those

basal relationships (Supplementary Figs. F.4 and F.9). In this tree, a clade is basal to the whole

ncBacteria clade (full support), comprised of the phyla Thermotogae (35 taxa), Dictyoglomi (two

taxa), and Caldiserica (two taxa), plus Firmicutes genera Coprothermobacter (three taxa) and

Thermodesulfobium (one taxon). All of those taxonomic groups are featured by their thermophilic

and anaerobic behavior. The basal placement of Thermotogae and other rooted groups within

ncBacteria obviously support the hypothesis of an origin and early diversification of ncbacteria as

(hyper)thermophilic anaerobes [369, 275].

Terrabacteria vs. “Hydrobacteria”. Post the branching off of the (hyper)thermophilic

bacteria clade in the ASTRAL tree, the ncbacteria clade split into two major clades (lpp=0.988).

One (3,708 taxa) is mainly composed of taxa under the widely accepted term Terrabacteria, the

largest group of ncbacteria that have shared adaptations to the terrestrial lifestyle [21]. Specifically,

it contains the five originally suggested terribacterial phyla: Actinobacteria, Firmicutes (including
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Tenericutes and Synergistetes), Cyanobacteria, Chloroflexi, and Deinococcus-Thermus [21], plus

the more recently defined phylum Armatimonadetes (previously known as OP10) [330]. This

clustering pattern was not revealed in [50] and [246]. The CONCAT trees inferred in this study

also indicated mixed support/rejection for this clade (Fig. 6.3c, d). Multiple candidate phyla

reside within the Terrabacteria clade, which help to further define their classification status. The

other major clade (4,701 taxa), overlapping with the less commonly used term “Hydrobacteria”

suggested by the same authors [21], contains the remaining ncbacterial diversity. The deep

phylogeny of the Hydrobacteria clade reveals an interesting pattern of rapid diversification.

Aquificae vs. Thermotogae. The hyperthermophiles Aquificae and Thermotogae were

conventionally determined as closely related groups (e.g., [50] ) and together occupy the basal

position of the ncbacteria clade [19, 21]. Our work, however, is consistent with that of [276] and

found a clade containing the phylum Aquificae (17 taxa) and the candidate phylum Calescamantes

[276] (a.k.a. EM19, seven taxa) (lpp=1.0, xboot=60 / 86), sister to a clade mainly comprised of

class Epsilonproteobacteria (lpp=0.687, xboot=90 / 85) and distant from Thermotogae. Similar

findings were obtained in some earlier comparative genome analyses of these groups [167, 117],

while another study found no distinctive evolutionary relationship between the two groups [56],

despite many members of them sharing similar ecology and physiology.

Synergistetes. The phylum Synergistetes (29 taxa, excluding one mis-classified taxon

Synergistes sp. Zagget9) form a monophyletic clade in all three trees with full support and

is proximate to several candidate phyla in the ASTRAL tree (lpp=0.787). However, in the

CONCAT trees, the Synergistetes clade is paraphyletic to the thermophilic bacteria clade (see

above) with low support (xboot=32 / 27). Previous studies suggested a close relationship between

Synergistetes and Firmicutes, but had uncertainty in the placement of the Synergistetes clade

relative to the latter [159]. Our trees suggest that Synergistetes is not an ingroup of Firmicutes,

consistent with [225] but in contrast to [50].

Firmicutes/Tenericutes/Fusobacteria. The phylum Firmicutes has been widely reported
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to be a polyphyletic group, primarily because of the unstable positions of Tenericutes and/or

Fusobacteria [361, 225, 144]. In our analysis, the 66 taxa of the phylum Tenericutes are nested

within the Firmicutes clade in all three trees. However, this pattern is only credible in the

ASTRAL tree (lpp=1.0), whereas in the CONCAT trees, the relevant branches have low support

(xboot < 50). The Tenericutes taxa are para- or polyphyletic, mainly forming two clades, in close

proximity to the Firmicutes class Erysipelotrichia (50 taxa). The taxa of the two groups cannot

be clearly separated. It is remarkable that the Tenericutes clade has very long branch lengths

compared to the remaining Firmicutes and the entire tree. These results show the non-determinacy

of the hierarchical relationships between the two phyla. Unlike Tenericutes, the 36 taxa of the

phylum Fusobacteria form a distinct cluster within the “Hydrobacteria” group in the ASTRAL

tree (lpp=0.75), which is consistent with [225]. However, the CONCAT trees show that the

Fusobacteria clade is nested within Firmicutes, sistering the Tenericutes-Erysipelotrichia clade,

with low support (xboot=10 / 50). The instability of the class Clostridia, another Firmicutes

group, has previously been noted [324, 120, 375], mainly as a result of misclassification of several

species within the genus Clostridium [380]. In the ASTRAL tree, almost all the clades for class

Clostridia (Supplementary Fig. F.4) have high support (lpp > 0.98), indicating that this tree can

be an effective reference for resolving the problem of the classification of Clostridia.

Actinobacteria. Several orders in the phylum Actinobacteria, particularly Micrococcales

and Pseudonocardiales, are widely known to be polyphyletic, and few efforts to rectify this

problem using a combination of phylogenetic markers have been reported [236]. In our study, the

phylum Actinobacteria was found as a monophyletic clade in the ASTRAL tree (lpp=0.986) and

the random CONCAT tree (xboot=88). This finding is consistent with several previous studies

[50] [246]. Recently, Parks, et al., proposed to downgrade Nitriliruptoria to an order within the

class Actinobacteria [246]. In our trees, however, the class Nitriliruptoria (one taxon) forms a

distinct branch, well separated from the classes Actinobacteria and Acidimicrobiia.

Cyanobacteria/Melainabacteria. The candidate phylum Melainabacteria (17 taxa) is
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a recently discovered group of bacteria that are closely related to the phylum Cyanobacteria

(a.k.a. Oxyphotobacteria, 295 taxa) but that lack the capability of photosynthesis [246]. Our

trees support the members of Melainabacteria, plus 11 underclassified, metagenome-assembled

genomes, as a fully supported monophyletic group, sister to the Cyanobacteria clade (lpp=1.0,

xboot=100 / 98), which is also monophyletic (with full support). In contrast to [144, 50], our

analysis did not recover it as a basal group to non-CPR Bacteria.

Chloroflexi. Members in the phylum Chloroflexi are model organisms for investigating

a number of hypotheses related to the early evolution of photosynthetic life [308]. In all three

trees, the 100 taxa of the phylum Chloroflexi form a single lineage (lpp=0.83, xboot=94 / 100).

Our finding also suggests that the Chloroflexi group diverged during a similar period of time as

the Cyanobacteria/Melainabacteria group (Supplementary Fig. F.25, see Supplementary Note

F.1.6 for details), which is consistent with a recent study [308]. Furthermore, in this phylum, the

order Chloroflexales is considered as the main phototrophic lineage that performed anoxygenic

photosynthesis with a divergence time later than that of Cyanobacteria/Melainabacteria group.

This observation does not support the hypothesis that anoxygenic photosynthesis preceded the

development of oxygenic photosynthesis [306], in congruence with [308]. While the origin of

photosynthetic life on the basis of the analysis of extant lineages is still unclear, the problem of

undiscovered or extinct lineages further limits our understanding of evolution of phototrophy.

Spirochaetes. The basal position of the “Hydrobacteria” clade is occupied by four mono-

phyletic lineages, represented by two cultured phyla – Fusobacteria (36 taxa) and Spirochaetes

(135 taxa) – and two candidate phyla – Lindowbacteria (one taxon) and Aeriogibetes (three

taxa). The evolutionary lineage of the phylum Spirochaetes in the ASTRAL tree and the random

CONCAT tree is more consistent with [246], but contradictory to [50], which placed the phylum

closer to the Proteobacteria. Further, in contrast to the view of Yarza, et al. [371], our trees do

not support the classification of the phylum Spirochaetes into five lineages at the class level, but

rather should be determined to have triphyletic subgroups (lpp=0.99): one containing the main
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order Spirochaetales (98 taxa), the second containing the order Brachyspirales (9 taxa), and the

third containing the family Leptospiraceae of the order Leptospirales (27 taxa). The 43 taxa of the

Spirochaetales family Borreliaceae form a shallow clade with a long stem, implicating a recent

radiation.

PVC and FCB. The PVC and FCB superphyla groups form two monophyletic clades in all

trees of life reported so far [21, 144, 246]. The topology of our trees also supports the divergence

patterns reported earlier but provides a more robust position for an associated cluster of cultured

and candidate phyla. Within this cluster, the phylum Gemmatimonadetes and the candidate phyla

Glassbacteria, Eisenbacteria, Edwardsbacteria, Cloacimonates, Hyd24-12, and WOR-3 are closely

related FCB (lpp=0.585), the candidate phyla Hydrogenedentes, Omnitrophica, Desantisbacteria,

and Firestonsebacteria are closely related to PVC (lpp=0.99), and the rest, including the phylum

Elusimicrobia and the candidate phyla Poribacteria and Coatesbacteria, form the root (lpp=1.0).

While the robustness of our tree might be related to the number of selected marker proteins

and/or the number of genomes used, the diversification of the different associated groups clearly

suggests an evolutionary pattern for such divergence. For example, members of the phylum

Gemmatimonadates can undergo both aerobic and anaerobic respiration, which enable them to

adapt to an arid environment [329], while members of the phyla Chlorobi and Fibrobacteres are

usually found under more strict anaerobic conditions [85].

Proteobacteria. The phylum Proteobacteria is the largest bacterial lineage of the rank,

with 2,975 taxa in this study. The main subgroups of this phylum, particularly the classes Al-

phaproteobacteria, Betaproteobacteria, and Gammaproteobacteria are monophyletic, with the

latter two sharing the same root. The class Epsilonproteobacteria (110 taxa) forms a sister clade

(with full support) to a small clade comprised of deltaproteobacterial genera Desulfurella (one

taxon) and Hippea (four taxa), then to the Aquificae-Calescamantes clade (see above). This

pattern is consistent in all three trees, and is consistent with [246] but in disagreement with [144].

Our finding is also significant in the evolutionary point of view, as multiple Epsilonproteobacteria,
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particularly those isolated from deep-sea hydrothermal vents, meet their energy requirements

through chemolithoautotrophy [45], a physiological condition related to the phylum Aquificae.

The Epsilonproteobacteria-Aquificae clade is closely related to the class Deltaproteobacteria,

which itself appears to be paraphyletic, with several other phyla such as Nitrospinae, Nitrospirae,

and Thermodesulfobacteria nested within it. Parks, et al., proposed to upgrade Epsilonproteobac-

teria and Deltaproteobacteria to a new phylum [246]. The distinctive placement of these two

classes in our trees is roughly in concert with this proposal, though a more definitive study will

be necessary.

F.1.6 Compatibility with geological timeline

We performed a series of divergence time estimation analyses to further demonstrate

the efficacy of the 381 global marker genes in assessing the microbial evolutionary history. As

revealed in Fig. 6.4, the evolutionary distance between Bacteria and Archaea was significantly

shorter by using the global markers than by using the ribosomal proteins. Therefore, we focused

on testing whether this observation is realistic, by projecting the species trees to the geologic

timeline.

Maximum likelihood under a universal clock. Dating a phylogenetic tree of microbes

has long been a challenge since few to no reliable fossil records are available to calibrate the tree

[67, 128]. We performed a literature search and selected one calibration point that is among the

most confident ones within bacteria and archaea:

Calibration 1: the origin of photosynthetic cyanobacteria. Specifically, it is the node

that splits phylum Cyanobacteria and candidate phylum Melainabacteria, a recently discovered

group of non-photosynthetic bacteria that are closely related to Cyanobacteria [71]. In our tree,

the two sister clades have 295 and 28 taxa, respectively, with strong branch supports (further

discussed in Supplementary Note F.1.5). It is widely accepted that the rise of oxygen in the Earth’s

atmosphere was a direct consequence of the evolution of photosynthetic bacteria, specifically,

291



Cyanobacteria [315]. Recently, the Great Oxygenation Event (GOE) was precisely dated to

2.33 Ga (billion years ago) based on sulfur isotope signals [194]. In an independent study, the

Cyanobacteria/Melainabacteria split was further estimated to be 2.5-2.6 Ga, using four calibrations

based on well-accepted plant fossil records [307]. This range closely predates the GOE, indicating

strong consistency with the aforementioned hypothesis of oxygenic photosynthesis evolution.

Therefore, we adopted this range to constrain the Cyanobacteria/Melainabacteria split in the

species trees.

We started with this single calibration, a simple assumption of one universal clock, and

a maximum likelihood method which can be applied to the entire data set. The age of LUCA

was estimated to be 4.1-4.2 Ga (in Hadean) by conserved sites, or 3.6-3.7 Ga (in Eoarchean)

by random sites (Supplementary Table F.8). Either estimate is within the range consistent with

the latest microfossil evidence [72] and in-silico estimations of life origination [203]. The split

between CPR and non-CPR Bacteria took place 3.9 Ga (conserved) or 3.5-3.6 Ga (random).

No later than 3.2 Ga (end Paleoarchean), all three major clades began to diverge (Fig. 6.6,

Supplementary Fig. F.25). In contrast, using the ribosomal proteins, we obtained a very early

estimate of the age of LUCA: 7 Ga (Supplementary Table F.8), which is inconsistent with the

well-established age of the planet [62], whereas the divergence times of more derived lineages

roughly agree with those by the global markers.

Impact of method, site sampling, site model and root placement. Comparative analyses

suggest that the estimated ages were mainly influenced by gene and site sampling, whereas the

impact of the tree-building method was minimal (Supplementary Table F.8). Considering the

potential impact of root placement on the analysis, we moved the root from the midpoint of

the Archaea-Bacteria branch to the first and third quarters, and obtained consistent results

(Supplementary Table F.8). We then examined the impact of site model (PMSF vs. Gamma) on

the 1,000-taxon trees (Supplementary Table F.8). For global markers, the difference is minimal.

The age of LUCA estimated by random sites agree with the full tree (3.7 Ga), while that by
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conserved sites is slightly earlier (4.5 Ga), likely an impact of taxon downsampling (discussed

above). For ribosomal proteins, the age of LUCA was further pushed to 9.2 Ga by PMSF from

7.5 Ga by Gamma.

Alternative calibrations. We tested the compatibility of multiple other calibration points

and ranges with the photosynthetic cyanobacteria-based estimation, although these hypotheses

are usually controversial or less precise (with lower bound only).

Calibrations 2 and 3: The origin of photosynthetic eukaryotes. The widely adopted en-

dosymbiotic theory [382] suggests that eukaryotic organelles originated from symbiotic prokary-

otes. The earliest fossil of photosynthetic eukaryote with relatively evident morphological

characteristics, Bangiomorpha pubescens (a red alga), was recently precisely dated to 1,047

+13/-17 Ma [109]. Therefore we used the age 1.03 Ga to define the lower bounds of postulated

bacterial and archaeal lineages from which organelles evolved through endosymbiosis. Specifi-

cally, it is commonly agreed that plastids evolved from cyanobacteria [223], although the specific

cyanobacterial lineage is under debate (e.g., [238, 259] ). Therefore we placed this calibration at

crown Cyanobacteria.

On the other hand, it has been long suggested that mitochondria evolved from an al-

phaproteobacterial lineage, most likely Rickettsiales [280]. However, a recently study placed the

mitochondrial origin at a proteobacterial lineage that branched off before the diversification of

alphaproteobacteria [204]. We tested both theories, by placing the calibration at either crown

Alphaproteobacteria (which has 893 taxa) or the split between Alphaproteobacteria and other

proteobacteria (mostly beta- and gammaproteobacteria).

Calibration 4: The origin of akinetes-forming cyanobacteria. Several groups of extant

cyanobacteria under families Nostocaceae and Stigonemataceae (both belong to order Nostocales)

have the capability of forming environmental stress-resistant cells: akinetes [341]. Fossil akinetes

(referred to as Archaeoellipsoides) have been recorded from a wide time period, most frequently

between 1.4 Ga and 1.65 Ga [341]. The relationship between those records and modern Nostocales

293



species remains controversial [43]. Despite being a frequently used calibration (e.g, [65] ), some

authors chose not to adopt it considering the controversy (e.g., [25] ), and some found it to strongly

impact age estimation (e.g., [198] ). In our tree, order Nostocales (54 taxa) is monophyletic and

nested within the Oscillatoriales clade, which is roughly consistent with [341]. We sequentially

constrained the origin of the Nostocales clade with four representative ages of fossil akinetes: 1.2

Ga [138], 1.5 Ga [114], 1.9 Ga [113] and 2.1 Ga [10].

Calibration 5: The origin of aphid-Buchnera symbiosis. Buchnera aphidicola is the

primary obligate symbiont of aphids (Aphidoidea) [252]. This close relationship was estimated

to originate from 84-164 Ma [73], as evident by the radiation of fossil aphids and the implication

from a geological thermal shift. This estimate is roughly consistent with more recent studies on

larger scopes (e.g., [154] ). Some authors (e.g., [65] ) applied this calibration to the split between

Buchnera and Wigglesworthia (obligate symbionts of a different host: tsetse fly). In our robust

taxon sampling, a Candidatus Tachikawaea gelatinosa [160] taxon is slightly more closely related

than Wigglesworthia to the eight-taxon Buchnera clade, however considering that it has not been

rigorously studied, we still placed the calibration at the Buchnera/Wigglesworthia split, and we

used either 84 Ma or 164 Ma to define the lower bound of it.

Our results (Supplementary Table F.9) show that the estimated ages of LUCA and non-

CPR Bacteria remained largely consistent when either or both the photosynthetic eukaryotes

calibrations and the aphid-Buchnera symbiosis calibration, with all their variants, were included

in addition to the photosynthetic cyanobacteria calibration. However when the akinetes-forming

cyanobacteria calibration (with any of the four variants) was introduced, it strongly pushed

the estimations backward to an unlikely range. These results provide new information for

paleobiological discussions.

Bayesian inference with alternative models. To validate and further strengthen the

findings from maximum likelihood and the simple assumption of one clock, we analyzed the

data using the more robust Bayesian inference method, with alternative clock models (strict or

294



relaxed). The computational challenge forced us to downsample data to 5,000 sites by 100 taxa

(the impact of downsampling was discussed in Supplementary Note F.1.2), the latter of which was

selected to maximize the representation of deep phylogeny, but also to include sufficient sampling

around the calibration point. Specifically, seven Cyanobacteria and three Melainabacteria taxa

were included.

We tested two alternative prior distributions of time constraints. First (“narrow”), we

adopted the estimated 2.5-2.6 Ga range (see above), and specified a normal distribution with

mean=2.55 and std. dev.=0.025, so that 95% probability falls with this range. Next, we explored

paleogeological evidence and alternative theories of cyanobacteria evolution, and specified a

more relaxed constraint (“wide”):

Calibration 1 rev. Robust isotopic records have been found indicative of free oxygen

in ocean or atmosphere around 3.0 Ga [60, 258, 234], while the earliest putative evidence was

dated to 3.23 Ga [296]. The connection between early signs of oxygen with photosynthetic

cyanobacteria has long been suggested [195], although the relationships among early oxygen,

phototrophy, filamentous microfossils and ancestral cyanobacteria remain much debated, and

usually questioned by recent studies [300, 49, 242, 221]. Here we adopt a treatment analogous to

Shih et al. [307], by placing a soft upper bound at 3.0 Ga.

Accordingly, we specified a lognormal distribution, with offset=2.33, which is the date

of GOE (see above), mean=0.22, so that mean + offset=2.55, which is in the midpoint of the

estimated range (see above), and std. dev.=0.268, so that 95% probability falls before 3.0 Ga,

when free oxygen was evident (see above) (Plus, 97.5% probability falls before 3.23 Ga, see

above).

Our results (Supplementary Table F.10, Supplementary Fig. F.26) show that the estimated

ages of LUCA were close between alternative clock models (strict vs. relaxed) and time constraints

(narrow vs. wide), and supported the results based on on full-scale trees. We also calculated

the coefficient of variation (C.V.) of clock rate under the relaxed clock model, a measurement
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of how “clock-like” the data are [76]. The C.V. by using the global markers (despite randomly

downsampled to 5,000 sites) was ∼0.175, showing a modest deviation from a universal clock.

Meanwhile, the C.V. by using the 30 ribosomal proteins was∼0.254, suggesting a larger violation.

Taken together, we demonstrated that the microbial evolution dated using the 381 global

marker genes and our species tree correspond well with the current paleobiological and geological

evidence and theories. In contrast, the ribosomal proteins, which tend to overestimate the

evolutionary distance between Bacteria and Archaea (see main text), consistently resulted in

LUCA age estimates far older than Earth formation. This implicates a strongly accelerated

evolution in the ribosomal proteins during the Bacteria-Archaea split. Therefore, we suggest

that future researchers take caution when attempting domain-level divergence time estimations

using a handful of “core” genes such as the ribosomal proteins. Although more comprehensive

studies will be required, our analysis has indicated value of using the global marker genes for

more accurate divergence time analysis. Nevertheless, we do not recommend treating our result

(Supplementary Figs. F.25 and F.26) as a precise time table for microbial evolution, considering

the simplicity of method and the sparsity of reliable and accurate calibrations.

F.1.7 Phylogenetic analysis with latest genome availability

We collected bacterial and archaeal genomes from NCBI RefSeq and GenBank on May

23, 2019. From this updated genome pool, we examined phylum-level classification units as

defined by the latest NCBI taxonomy (released on June 1, 2019, which is after RefSeq 94) and

GTDB taxonomy (version 4, released on June 19, 2019, indexed to RefSeq 89). For phyla that

are absent, or represented by less than three genomes in the current set of 10,575 genomes, we

selected new genomes with highest number of marker genes (must be no less than 100) to make

the sampling up to three within each phylum. Genomes with CheckM contamination score larger

than or equal to 5% were excluded. This process added 187 new genomes, representing an added

or updated set of 52 NCBI phyla and 66 GTDB phyla.
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We performed phylogenetic reconstruction with the 187 genomes added to the dataset,

totaling 10,762 genomes. The procedures are largely consistent with the ASTRAL and CONCAT

methods as described above, with several modifications to reduce computational expense (see

Methods). Importantly, the same set of 381 marker genes and the same set of up to 100 most

conserved or randomly selected sites per gene were used, granting comparability with the main

analysis.

The resulting phylogenetic trees are highly consistent with the main results. In the

ASTRAL tree we observed the highest consistency with the main ASTRAL tree (RF=0.035)

(Supplementary Fig. F.27), while the two CONCAT trees using either most conserved or randomly

selected sites also show high consistency with the corresponding CONCAT trees in the main

analysis (RF=0.122 and 0.099, respectively). All three trees support the separation of Archaea,

CPR and non-CPR Bacteria. The domain-level evolutionary distances are also highly close to the

main results (Supplementary Table F.11). Therefore, our main findings hold with the up-to-date

genome data.

The newly added genomes provide several insights. First, in the ASTRAL tree a new

clade is placed at the base of the non-CPR Bacteria clade, consisted of three genomes classified as

phylum UBP7 in GTDB. This placement is consistent with Parks et al. [246] in that it is the most

CPR-proximal clade. However the CONCAT trees lack resolution at the base of the non-CPR

Bacteria clade to reveal this relationship (see also Supplementary Figs. F.3 and F.8). Second,

the previously underrepresented DPANN group (five taxa) was expanded, and revealed the same

phylogenetic pattern (see Supplementary Note F.1.5). Specifically, the main clade residing at the

base of the Archaea clade now contains six DPANN genomes and two unclassified genomes, and

the secondary Micrarchaeota clade now has four taxa and is still separated from the main clade.

F.2 Supplementary figures
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Figure F.1: Prototype selection for maximizing biodiversity included by fixed number of
genomes. a. Visual effect of the final result of the genome subsampling workflow: metric
MDS plot of the genome distance matrix, showing selected genomes (blue) vs. remaining
ones (red). Despite that the distribution of genomes is highly uneven, this statistical approach
delivered an evenly-distributed subset of genomes. Considering computational challenge and
visualization purpose, this plot shows 1,000 genomes randomly sampled from all 86,200
genomes, of which, 112 belong to the 10,575 genomes selected for phylogenetic reconstruction.
b. Runtime comparison of four alternative heuristics to solve the prototype selection problem
(detailed in Supplementary Note F.1.1), of which destructive maxdist was eventually used to
subsample genomes in this work. The x-axis is the size of the randomly generated distance
matrix: n = |D|, the y-axis is the amount of prototypes to select: k, given in ratios of n, and the
z-axis is runtime in seconds. Execution time was limited to one hour at most. The runtimes for
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of prototypes, on a moderate-size distance matrix with n=1000. e. Scores of destructive maxdist
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In another word, it bypassed the “seeds” function implemented in the destructive maxdist
algorithm. Source data are provided as a Source Data file.
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selected, but any of them was omitted if it violated monophyly based on the tree-specific tax2tree

curation. Only the LCA of each phylum is shown, while all descending branches were pruned.

Numbers in parentheses represent the number of descendants under each clade. Node labels

represent branch support values (see Fig. 6.3). Nodes without labels were fully supported. The

branch length scales are in the unit of number of substitutions per site. For display purpose, the

branch lengths of the ASTRAL tree were estimated using conserved sites (same as in Fig. 6.1).

Also for display purpose, the GTDB Archaea tree and Bacteria tree were artificially connected by

a grey line which bears no information of topology or branch length. Source data are provided as

a Source Data file
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Fig. F.4’s caption. Source data are provided as a Source Data file.

303



c__Thermoprotei (156)

Ca. Adlerbacteria (5)

Archaeoglobi (21)

Ca. Beckwithbacteria (14)

Ca. Berkelbacteria (8)

Ca. Firestonebacteria

Euryarchaeota_2 (40)

Chlorobi (13)

Thermodesulfobacteria (11)

Ca. Wallbacteria

Ca. Zixibacteria (8)

Ca. Verstraetearchaeota (5)

Ca. Portnoybacteria (10)

Ca. Harrisonbacteria (7)

Ca. Veblenbacteria (8)

Ca. Abawacabacteria

Nitrospirae (54)

Phycisphaerae (15)

Ignavibacteria (22)

Planctomycetia_1 (31)

Chrysiogenetes (2)

Ca. Tagabacteria (3)

Ca. Dependentiae (21)

Gemmatimonadetes (8)

Ca. Shapirobacteria (6)

Ca. Komeilibacteria (12)

Ca. Heimdallarchaeota (3)

Ca. Chisholmbacteria (4)

Ca. Colwellbacteria (8)

Ca. Giovannonibacteria (49)

Caldiserica (2)

Ca. Glassbacteria (3)

Verrucomicrobiae_1 (21)

Lentisphaerae (10)

Ca. Taylorbacteria (46)

Ca. Uhrbacteria (51)

Dehalococcoidia (31)

Ca. Schekmanbacteria (7)

Ca. CPR2 (7)

Firmicutes_5 (108)

Ca. Levybacteria (37)

Ca. Margulisbacteria

Ca. Doudnabacteria (19)

Fusobacteria (36)

Ca. Daviesbacteria (36)

Aquificae (16)

Ca. CPR3 (3)

Ca. Brennerbacteria

Ca. Yonathbacteria (14)

Anaerolineae (54)

Actinobacteria (990)

Ca. Woesearchaeota

Armatimonadetes (8)

Ca. Kryptonia (21)

Ca. Acetothermia (7)

Thermotogae (35)

Ca. Edwardsbacteria

Chlamydiia (105)

Deferribacteres (7)

Betaproteobacteria (334)

Thermoleophilia (12)

Spirochaetes (135)

Ca. Wolfebacteria (15)

Ca. Coatesbacteria

Ca. Zambryskibacteria (40)

Coriobacteriia (64)

Ca. Buchananbacteria (9)

Ca. Llyodbacteria (11)

Ca. Aerophobetes (3)

Cytophagia (107)

Acidithiobacillia (20)

Ca. Wirthbacteria

Ca. Niyogibacteria

Euryarchaeota_3 (38)

Chloroflexia (12)

Ca. Liptonbacteria (8)

Ca. Melainabacteria (28)

Ca. WOR-1 (26)

Acidobacteriia (22)

Ca. Gottesmanbacteria (25)

Ca. Terrybacteria (8)

Ca. Nealsonbacteria (6)

Ca. NC10 (3)

Tenericutes_1 (46)

Firmicutes_2 (252)

Ca. Yanofskybacteria (42)

Alphaproteobacteria (893)

Ca. Hydrogenedentes (5)

Ca. Atribacteria (3)

Deinococcus-Thermus (41)

Ca. Dadabacteria (2)

Ca. Marinimicrobia (17)

Synergistetes (31)

Ca. YNPFFA (6)

Methanobacteria (34)

Ca. Kaiserbacteria (28)

Ca. Jorgensenbacteria (7)

Methanococci (19)

Ca. Peribacteria (36)

Ca. Cloacimonetes (15)

Firmicutes_1 (1029)

Ca. Tectomicrobia (2)

Methanomicrobia_1 (120)

Saprospiria (13)

Ca. Desantisbacteria

Ca. Pacebacteria (18)

Firmicutes_4 (137)

Negativicutes (73)

Ca. Kuenenbacteria (6)

Ca. Woesebacteria (89)

Ca. Kerfeldbacteria (4)

Ca. Andersenbacteria (9)

Ca. Sungbacteria (24)

Fibrobacteria (22)

Ca. Fraserbacteria

Ca. Blackburnbacteria (7)

Ca. Magasanikbacteria (46)

Ca. Staskawiczbacteria (27)

Cyanobacteria (295)

Ca. Riflebacteria

Ca. Wildermuthbacteria (14)

Ca. Vogelbacteria (5)

Dictyoglomi (3)

Ca. Thorarchaeota (3)

Chitinophagia (55)

Ca. Amesbacteria (32)

Planctomycetia_2 (17)

Ca. Spechtbacteria (6)

Ca. Roizmanbacteria (42)

Ca. Aminicenantes (8)

Ca. Nomurabacteria (67)

Ca. Saccharibacteria (18)

Acidimicrobiia (21)

Ca. Curtissbacteria (19)

Ca. Campbellbacteria

Ca. Dojkabacteria (13)

Ca. Fischerbacteria

Ca. Omnitrophica (35)

Ca. Collierbacteria (34)

Ca. Micrarchaeota (2)

Ca. Moranbacteria (45)

Ca. Fervidibacteria (3)

Opitutae (16)

Elusimicrobia (29)

Ca. Lindowbacteria

Epsilonproteobacteria (110)

Bacteroidia (300)

Ca. Falkowbacteria (31)

Ca. WOR-3 (2)

Calditrichaeota (6)

Firmicutes_6 (60)

Ca. Calescamantes (8)

Marine Group II (13)

Ca. Azambacteria (20)

Gammaproteobacteria (1295)

Flavobacteriia (291)

Ca. KD3-62

Ca. Jacksonbacteria (13)

SAR324 (19)

Nitrospinae (16)

Ca. Eisenbacteria

Ca. Lokiarchaeota

Sphingobacteriia (68)

Tenericutes_2 (26)

Thaumarchaeota (47)

Balneolaeota (7)

Ca. Woykebacteria (10)

Ca. WWE3 (64)

Ca. Diapherotrites

Ca. Poribacteria (3)

Halobacteria (105)

Ca. Bathyarchaeota (12)

91

50

76

70

92

71

98

59

60

77

81

80

71

79

99

95

88

99

79

85

56

82

75

56

55 62

93

99

92

60

92

60

99

80

63

64

63

66

98

73

50

50

85

73

85

92

96

50

73

98

60

81

79

95

99

94

99

99

98

66

98

99

94

53

95

85

68

54

99

96

75

54

62

88

84

99

56

71

83

53

99

57

80

92

82

86

60

98

81

96

88

90

60

96

91

71

64

50

65

92

72

85

97

99

69

99

52

Chloroflexi

Bacteroidetes_1

Fibrobacteres

Ignavibacteriae

non-CPR Bacteria

Verrucomicrobia

Firmicutes_3

Acidobacteria

Parcubacteria group

Bacteria

Asgard group

Ca. Peregrinibacteria

Planctomycetes

Archaea

Crenarchaeota

Actinobacteria

Chlamydiae

Euryarchaeota_1

Proteobacteria_1

Microgenomates group

CPR

Proteobacteria_2

CPR

Parcubacteria group

Microgenomates group

Asgard group

Euryarchaeota

TACK group

Crenarchaeota

Archaea

DPANN group

non-CPR Bacteria

Terrabacteria group

Spirochaetes

Firmicutes

FCB group

Proteobacteria

Chloroflexi

PVC group

Actinobacteria

Bacteroidetes

Chlamydiae

Cyanobacteria

substitutions per site: 0.1

Figure F.6: The RAxML concatenation tree based on the 100 randomly selected sites per gene,
rendered in rectangular layout, collapsed to class level. Node labels represent rapid bootstrap
support values (out of 100). Labels are omitted at fully-supported branches. See Supplementary
Fig. F.4’s caption. Source data are provided as a Source Data file.
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Figure F.7: Comparison of topologies of species trees built using explicit and implicit methods.
a. Heatmap of RF distance matrix. b. Hierarchical clustering of RF distance matrix. “taxonomy”:
NCBI taxonomy hierarchy; “minhash”: neighbor-joining (NJ) tree based on the Jaccard distance
matrix calculated using the MinHash signature of genomes; “marker”: NJ tree based on the
Jaccard distance matrix calculated using the presence / absence of the 400 marker genes in
genomes; “concat”: phylogenetic trees built using the conventional gene alignment concatenation
strategy; “astral”: phylogenetic tree built using the gene tree summary method ASTRAL; “cons”:
100 most conserved amino acid sites per each of the 381 marker genes; “rand”: 100 randomly
selected sites per gene; “fasttree”: all sites, but tree was inferred using FastTree (the other concat
trees were inferred using RAxML); “rpls”: 30 ribosomal proteins instead of the 381 marker
genes. Source data are provided as a Source Data file.
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Figure F.8: The consistency score (y-axis) is the proportion of internal nodes in tree 1 that can
be matched to a node in tree 2 which has exactly the same set of descendants. We measured the
phylogenetic depth (x-axis) using two metrics: a. the total number of splits in the clade. This
metric was introduced in 96 as the “split depth”. The x-axis was binned on a roughly logarithmic
scale, as determined by Python code: sorted(set(int(math.exp(x/5)) for x in list(range(40)))).
Bins with population size (number of nodes) less than five were merged into the next bin. b.
the maximum number of splits from any tip to the node. The x-axis was binned by Python
code: sorted(set(int(math.exp(x/5)) for x in list(range(20)))). The per-bin population sizes are
indicated by the red dashed lines. Source data are provided as a Source Data file.
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Figure F.9: Back-to-back comparison between the ASTRAL tree (left) and the CONCAT tree
(right). Both used the conserved site sampling. Low-support branches were collapsed from the
two trees to retain the same number of internal nodes per tree. The two trees were then collapsed
to 50 shared clades with 50 or more descendants each. A tanglegram was generated to align
the clades. Non-full branch support values (local posterior probability for ASTRALand rapid
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Figure F.10: Comparison of ASTRAL species trees built from differential quantity and quality
of gene trees. a, c. Series of numbers of gene trees randomly sampled from all 381 gene trees.
a,d. All gene trees, built and selected using different methods: “ft”: gene trees inferred using
FastTree; “raft”: gene trees inferred using RAxML, with the FastTree trees as the starting trees;
“best”: for each marker gene, select one tree which has the highest likelihood score from three
RAxML runs: one by the FastTree starting tree and other two by random seeds. a, b. RF
distance from the full-scale reference tree (i.e., “381” in a or “best” in b). c, d. Distribution of
branch support values (local posterior probabilities, or lpps). The red lines represent means. The
y-axis is in exponential scale. Source data are provided as a Source Data file.
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Figure F.11: Comparison of CONCAT trees built using different site sampling strategies. a.
Heatmap and hierarchical clustering of RF (blue) and tip (orange) distance matrices. The tip
distance measures the discorrelation between the two phylogenetic distance matrices among
taxa in two trees (see Methods). The full-length marker gene alignments were subsampled based
on maximum conservation, at a series of: PhyloPhlAn default (“def”), which approximately
yielded 12 sites per gene, and 4.5k sites in total; then 25 sites per gene (9.5k in total), 50 sites
per gene (19k in total), and 100 sites per gene (38k sites in total). For def and 25, we were able
to perform RAxML tree search under the Gamma model, so the resulting trees were included in
this comparison, but for 50 and 100, the use of Gamma model was prohibited by computational
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challenge. For comparison, we included a tree built on alignments randomly subsampled to 100

sites per gene (“random”), and a tree built on all sites without subsampling, but using FastTree

(“all”). Finally, we included the ASTRAL tree, based on gene trees built using all sites, as a

reference for comparing topology, but it was not included in the comparison of distances, as the

branch lengths inferred by ASTRAL are not comparable to those by CONCAT. b and c. PCoAs

of RF and tip distance matrices, respectively. Source data are provided as a Source Data file.
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Figure F.12: Comparison of species trees built using FastTree and the robust strategy. The
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“robust strategy” refers to RAxML + CAT for tree topology, and IQ-TREE + Gamma for branch-

lengths. A series of taxon sets downsampled from the original 10,575 genomes (same as shown

in Supplementary Fig. F.13) were tested. a and b. Distances between pairs of FastTree vs. robust

trees on the same dataset. c. Distances among FastTree trees on different datasets. d. Distances

among robust trees on different datasets. e. PCoA on RF distance matrix among all trees. f. PCoA

on tip distance matrix among all tree. Pairs of FastTree (diamond) and robust (circle) trees on the

same dataset are connected by a line. Source data are provided as a Source Data file.
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Figure F.13: Comparison of species trees built on a series of downsampled taxa. The original
10,575 taxa were subsampled to retain given number (5,000, 2,000, 1,000, 500, 200, and 100) of
taxa representative of deep, large clades, as determined using the RED metric (see Methods).
Three methods: ASTRAL, CONCAT (using most conserved or randomly selected sites) were
evaluated. a. RF distance matrices of trees among taxon sets and within each method. b. RF
distance matrices of trees across methods and within each taxon set. Source data are provided as
a Source Data file.
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Figure F.15: Consistency of taxonomic units with phylogeny. Two taxonomy systems were
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Figure F.16: The ASTRAL summary tree annotated using the GTDB taxonomy, collapsed to
class level. The tree is identical to that in Supplementary Fig. F.4, except for the taxonomic
annotations and the alternative collapsing pattern based on taxonomy. The three major groups
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discussed in this study: Archaea, CPR and non-CPR Bacteria, were colored following Fig. 6.4a,

b. But note that in GTDB, CPR is classified as phylum Patescibacteria. The triangles represent

collapsed clades, with length equal to the longest branch in the clade. Node labels represent local

posterior probability (lpp) of the corresponding branch. Labels are omitted at fully-supported

(lpp = 1.0) branches. Source data are provided as a Source Data file.
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381 global markers

Tree-
building method

Gene and site
conserved

381 global markers
random

30 ribosomal proteins
sampling

CONCAT

Figure F.17: Dimensions and separation of domains Archaea and Bacteria. This extends
Fig. 6.4a, b (with the same color code) to all six trees using different methods (ASTRAL or
CONCAT), gene sampling (381 global markers or 30 ribosomal proteins) and site sampling (most
conserved or randomly selected). The three top panels are the same topology (the ASTRAL
tree), with branch lengths re-estimated using different concatenated alignments. The three
bottom panels are different trees separately reconstructed using the corresponding concatenated
alignments. Note that in the CONCAT tree by ribosomal proteins, the placement of CPR could
not be resolved, thus not depicted as a sister group to non-CPR Bacteria. All trees were drawn
to scale, without collapsing or downsampling. Source data are provided as a Source Data file.
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Figure F.18: Domain-level phylogenetic distances indicated by trees without CPR taxa. The
normalized Archaea-Bacteria branch length (a) and the relative Archaea-Bacteria distance (b)
(see Fig. 6.4e, f) of each tree are shown. “Pruned” are the same trees from the main results (Fig.
6.4e, f), with the CPR clade pruned; “de novo” are trees reconstructed from CPR-free sequence
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Figure F.19: Test for amino acid substitution saturation using conserved or random sites.
The pairwise phylogenetic distances (sum of branch lengths) among 100 randomly sampled
genomes from each domain are plotted. AA and BB represent intra-domain (Archaea-Archaea
and Bacteria-Bacteria, respectively) distances while AB represents inter-domain (Archaea-
Bacteria) distances. a-d: Scatter plots of Hamming distances determined based on pairwise
sequence alignments vs. phylogenetic distances. Linear regression lines for the three groups
are depicted respectively, with their slopes annotated. e-f: Phylogenetic distances were binned
at equal intervals where each group has a sample size of five or larger. Error bars represent
95% confidence intervals computed from 1,000 bootstraps. The sequence alignments used
for computing the Hamming distances were the most conserved sites for a, b and e, and the
randomly selected sites for c, d and f. Panels b and d are zoom-in views of a and c to show the
phylogenetic distance ranges where all three groups are populated. Source data are provided as
a Source Data file.
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Figure F.20: Concordance among individual gene trees and the ASTRAL species tree. a. metric
multidimensional scaling (mMDS) plot based on the quartet distance (1 - quartet score) between
each pair of the 381 gene trees plus the species tree. The center of the red cross indicates the
position of the species tree. b. mMDS plot based on the Robinson–Foulds (RF) distances.
c. Linear regression between the quartet score and the RF distance. d. Linear regression
between the quartet score and the number of genomes in which the corresponding gene was
detected. e. Linear regression between the RF distance and the number of genomes in which
the corresponding gene was detected. The squared Pearson correlation coefficient (R2) and
two-tailed p-value are displayed for each linear regression. f. Histogram and kernel density plot
of the quartet scores of the 381 gene trees vs. the species tree. g. Quantile-quantile (Q-Q) plot
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showing how well the quartet scores (y-axis) fit a normal distribution (x-axis). h. Histogram and

kernel density plot of the RF distances of the gene trees vs. the species tree. i. QQ plot showing

the fitness of the RF distances to a normal distribution. The coefficient of determination (R2) is

displayed for each Q-Q plot. Source data are provided as a Source Data file.
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Figure F.21: mMDS plot by pairwise quartet distances among the 381 gene trees and the
ASTRAL species tree. This is an enlarged view of Fig. 6.5d and Supplementary Fig. F.20a.
If a marker gene was annotated with an official gene name from the UniProt database (see
https://www.uniprot.org/help/gene name for rules), the corresponding gene tree is labeled with
that name. Source data are provided as a Source Data file.
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Figure F.22: Comparison of species trees built using marker genes subsampled by quartet score.
The 381 marker genes (all) were downsampled to subsets in which the quartet score of the
corresponding gene tree is at least 0.5 (322 genes), 0.67 (171 genes), 0.75 (93 genes) and 0.8
(64 genes), respectively. Three methods: ASTRAL (blue), CONCAT by most conserved sites
(orange) or randomly selected sites (green) were tested. a-c: Topological discrepancy between
pairs of trees, as measured by the Robinson–Foulds (RF) distance. a. RF distance from tree on
each subset to the fullscale tree (“all”) by method. b. Hierarchical clustering of the RF distance
matrix. c. PCoA of the RF distance matrix. d. Violin plots of distribution of ASTRAL tree
branch supports (lpp) on each subset. The red lines represent means. The y-axis is in exponential
scale. Source data are provided as a Source Data file.
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Figure F.23: Comparison of CONCAT trees on downsampled 1,000 taxa and alternative site
models. The 1,000-taxon set is the same as shown in Supplementary Fig. F.13. Three models
are compared: “+G”: the conventional Gamma model, i.e., the rate heterogeneity across sites
is subject to a Gamma distribution; “+R”: the FreeRate model, which relaxes the assumption
of Gamma distribution of rates; “PMSF”: the posterior mean site frequency model, which
operates on site profiles determined by the profile mixture model C60 (selected in a model
test). As controls, the 10,575-taxa full-scale CONCAT trees were truncated to the 1,000 taxa for
comparison (“full+G”). Blue: RF distances. Orange: tip distances. a. Distances between trees
by differential site sampling: most conserved or randomly selected sites. b. Distances between
trees by differential taxon sampling: 10,575 (full) or 1,000 taxa, both using the Gamma model.
c. Distances among trees by different site models. d. Distances among trees based on the 381
global marker genes or the 30 ribosonal proteins. Note (*) that the tip distances illustrated in
this panel were divided by three, otherwise they would be too dark to allow other panels being
distinguishable. e. PCoA of RF distance matrix. A special comparison between the impact of
site sampling vs. that of taxon sampling was highlighted by grey lines, and the corresponding
RF distances were annotated. f. PCoA of tip distance matrix. g. Hierarchical clustering of RF
distance matrix. h. Hierarchical clustering of tip distance matrix. For e and g, the ASTRAL tree
(red) was included as a reference, but it was not included in f and h because ASTRAL does not
directly compute branch lengths in unit of substitutions per site. Source data are provided as a
Source Data file.
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Figure F.24: Domain-level phylogenetic distances indicated by the 1,000 downsampled taxa.
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(b) (see Fig. 6.4f) of each tree are shown. Being compared are trees reconstructed based on the
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in Fig. 6.4e, f, due to taxon downsampling. Source data are provided as a Source Data file.
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Figure F.25: Chronogram of microbial evolution inferred using maximum likelihood with a
strict clock model. The evolutionary times were inferred based on the ASTRAL tree with
branch lengths re-estimated using the conserved sites, and calibrated by the predicted emergence
of the photosynthetic cyanobacteria (indicated by a red circle). For display purpose, clades
representing phyla with at least 25 descendants were preserved and collapsed as triangles. Node
labels represent the time in Ga (billion years ago) estimated by the run with the best likelihood
score out of 10 replicates. The color scheme is consistent with Fig. 6.1. Source data are provided
as a Source Data file.
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Figure F.26: Chronogram of microbial evolution inferred using Bayesian with a relaxed clock
model. One hundred taxa by 5,000 randomly sampled sites were included in this analysis. The
tree topology is identical to the ASTRAL tree. The node where time constraint (using the “wide”
prior distribution) was placed on is indicated by a red circle. Node ages were estimated using
BEAST, with an uncorrelated lognormal relaxed clock model (UCLD). Taxon labels are the
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Latin species names, wherever available, omitting strain names, or the higher rank (usually

phylum or superphylum) name if underclassified. Node heights represent the median of sampled

age estimates of the node. Node bars indicate 95% confidence intervals. Source data are provided

as a Source Data file.
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Figure F.27: Consistency of reconstructed evolutionary relationships with newly discovered
microbial diversity. Both trees were built using ASTRAL on the 381 marker genes, and the
branch lengths were estimated using up to 100 most conserved sites per gene. Color codes of
clade shadows are consistent with Fig. 6.1. The trees are drawn-to-scale, with all taxa displayed.
a. Tree of 10,575 genomes, which is the same as shown in Figs. 1, 3a and S5. b. Tree of the
same 10,575 genomes plus 187 new genomes as of May 2019, representing previously missing
or underrepresented NCBI and GTDB phyla. Clades constituted of the new genomes are colored
red. Source data are provided as a Source Data file.
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F.3 Supplementary Tables

Name Date Publication Domain(s) Phylogenetic tree Character matrix Related worksTaxa Gene(s) Method Taxa Characters Unit
Woese and Fox 1977-11-01 270744 A, B, E 13 SSU “comparative” N/A N/A bp 2112744
Barns et al. 1996-08-20 8799176 A, B, E 64 SSU fastDNAml 64 N/A bp 9115194
Ciccarelli et al. 2006-03-03 16513982 A, B, E 191 31 PhyML 181 999,326 aa
LTP rel. 93 2008-08-09 18692976 A, B 6,727 SSU RAxML 9,975 14,576,220 bp
AMPHORA 2008-10-13 18851752 B 578 31 PhyML 578 4,033,260 aa 20033048
Cox et al. 2008-12-23 19073919 A, B, E 40 45 P4 40 N/A aa 24336283
Greengenes rel. 13 5 2013-05-20 22134646 A, B 203,452 SSU FastTree 203,452 260,068,849 bp
Lang et al. 2013-04-25 23638103 A, B 841 24 BUCKy 840 3,601,341 aa
GEBA-MDM 2013-07-14 23851394 B 2,229 38 RAxML 2,228 16,304,266 aa
PhyloPhlAn 2013-08-14 23942190 A, B 3,737 400 RAxML 3,139 10,399,954 aa
Hug et al. 2016-04-11 27572647 A, B, E 3,083 16 RAxML 3,080 6,532,247 aa 29522741
1,003 GEBA genomes 2017-06-12 28604660 A, B 1,003 56 RAxML 1,039 17,750,144 aa
Schulz et al. 2017-10-17 29041958 B 12,400 SSU RAxML 926 1,343,426 bp
GTDB rel. 80 2018-08-27 30148503 B 21,943 120 FastTree 21,547 650,103,222 aa 28894102

this work N/A N/A A, B 10,575 381
RAxML

10,474 273,417,890 aa
10,485 265,218,697 aa

ASTRAL 10,575 1,162,421,084 aa

Table F.1: A summary of previous and current trees of microbial life.

The table summarizes representative phylogenetics studies that featured the global taxon

sampling of one or multiple domains of microbial life forms. Only works involving de novo

phylogenetic reconstructions based on the entire datasets were selected (thus excluding synthesis

studies such as the Open Tree of Life [132] ). The name of each work is either the project name

plus the release version, if applicable, or in the “authors (year)” format. “Date” is the date of the

release (if applicable) or the publication. “Publication” is the NCBI PMID of the article. For

one work containing multiple trees, only one tree that was based on the largest dataset, built

using the most expensive method, or recommended by the authors was recorded. For one series

of closely related works, only one work that was most relevant in the context of “tree of life”

was recorded, while the others were mentioned in the “related works” field. “Domain(s)” codes

are (A)rchaea, (B)acteria and (E)ukaryota. In some works (such as GEBA-MDM and GTDB),

because taxa from different domains were subjected to separate phylogenetic reconstructions,

only the largest domain (Bacteria) was recorded. Whenever possible, the actual dimensions of

the phylogenetic tree and the supporting character matrix (i.e., a multiple sequence alignment,

excluding duplicates) were recorded. “Characters” is the sum of non-missing, non-gap characters

(unit: bp (basepair) or aa (amino acid)). Note that the numbers of taxa in the tree and in the matrix
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may be different due to filtering and clustering operations.
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1. Pre-tree-building steps
Marker extraction (x10575)

(PhyloPhlAn)
Alignment (x381)
(PASTA / UPP)

Model selection (x381)
(RAxML) Total

runtime (hr) CPU hrs (x32) runtime (hr) CPU hrs (x3) runtime (hr) CPU hrs (x4) CPU hrs
17.78 568.96 772.12 2316.36 932.90 3731.60 6616.92

2. Tree-building-summary Gene tree building (x381)
(starting tree) (FastTree)

Gene tree building (x381)
(RAxML / IQ-TREE)

Gene tree summarization
(ASTRAL) Total

runtime (hr) CPU hrs (x4) runtime (hr) CPU hrs (x24) runtime (hr) CPU hrs (x28) GPU hrs (x4) CPU hrs GPU hrs
213.39 853.56 3980.87 95540.88 9.96 278.85 39.84 96673.29 39.84

3. Tree-building-concatenation Starting tree building
(FastTree)

Tree topology search
(RAxML + CAT)

Tree optimization
(IQ-TREE + Gamma)

Rapid bootstrap (x100)
(RAxML + CAT) Total

site sampling runtime (hr) CPU hrs (x3) runtime (hr) CPU hrs (x24) runtime (hr) CPU hrs (x24) runtime (hr) CPU hrs (x24) CPU hrs
conserved 6.79 20.37 143.20 488.88 1.55 37.27 1362.58 32701.80 33248.32
random 7.03 21.09 156.45 506.16 1.37 32.93 1487.49 35699.69 36259.87

Table F.2: Computational expenses for building the phylogenies of 10,575 microbial genomes
based on 381 marker genes.

For each procedure, the runtime (wall-clock time) is listed, and the charged time (CPU

hours or GPU hours) was obtained by multiplying the runtime by the number of CPU cores or GPU

units allocated (shown in parentheses). Times for procedures that were inexpensive or not directly

relevant to the tree-building have been omitted. Several steps consisted of multiple independent

jobs that can be effectively parallelized. The number of jobs is indicated in parentheses after

the procedure title. Several steps actually consisted of multiple trials (e.g., we did three runs per

maximum likelihood tree building and selected the one with the highest Gamma likelihood), but

in this table we only report the times of the selected trials. Thus, this table indicates the minimum

time required for building the phylogenies we present.
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Rank Same Add Change Delete Empty
phylum 10000 158 50 177 190
class 7900 304 90 90 2191
order 7625 439 183 104 2224
family 7074 423 299 251 2528
genus 6655 159 350 624 2787
species 10229 0 247 99 0

Table F.3: Summary of NCBI taxonomy curated based on phylogeny.

“Same”: validated the original assignment; “Add”: assigned a taxon to an originally

unassigned rank; “Change”: modified an originally incorrectly assigned taxon; “Delete”: deleted

an originally incorrectly assigned taxon; “Empty”: unassigned in both original and curated

taxonomy.
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Gene Site A-B Norm A-B A A-B B A-B Mean Mean Mean Relative
sampling sampling Method Radius branch branch depth branch/ depth branch/ A-A B-B A-B A-B

length length A depth B depth distance distance distance distance
global conserved ASTRAL 0.971 0.122 0.126 0.9 0.136 0.91 0.134 1.527 1.604 1.957 1.563
global conserved CONCAT 0.992 0.126 0.127 0.873 0.144 0.932 0.135 1.514 1.639 1.99 1.596
global random ASTRAL 1.773 0.152 0.086 1.405 0.108 1.717 0.089 2.343 3.015 3.274 1.517
global random CONCAT 1.801 0.159 0.088 1.436 0.111 1.739 0.091 2.356 3.079 3.35 1.547
r-proteins all ASTRAL 3.018 2.528 0.838 1.589 1.591 1.767 1.431 2.449 3.068 5.815 4.501
r-proteins all CONCAT 3.333 2.324 0.697 1.823 1.275 2.2 1.057 2.51 3.218 6.348 4.99
global all FastTree 1.941 0.21 0.108 1.393 0.151 1.858 0.113 2.509 3.233 3.522 1.529

Table F.4: Evolutionary proximity between Archaea and Bacteria by differential gene, site
sampling and method.

Letters “A” and “B” refer to Archaea and Bacteria, respectively. Two metrics were

assessed: the length of the branch connecting LCA of Archaea and LCA of Bacteria, either

original or normalized by the tree radius (calculated as the median of root-to-tip distances of

all taxa); and the relative Archaea-Bacteria distance, calculated as: mean(A-B)2 / (mean(A-A)

× mean(B-B)), in which each distance is the sum of lengths of branches connecting one tip to

another. In addition, the depths of the Archaea and Bacteria clades, calculated as the median of

root-to-tip distances of all taxa in each clade, and the length of the branch connecting the two

LCAs divided by the clade depth, are provided, to reflect the proximity between Archaea and

Bacteria as compared to the dimension of each clade.
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Gene Site A-B Norm A-B A A-B B A-B Mean Mean Mean Relative
sampling sampling Method Radius branch branch depth branch/ depth branch/ A-A B-B A-B A-B

length length A depth B depth distance distance distance distance
CPR clade pruned from tree
global conserved ASTRAL 0.923 0.181 0.196 0.9 0.201 0.827 0.219 1.527 1.497 1.937 1.642
global conserved CONCAT 0.958 0.16 0.167 0.873 0.184 0.878 0.183 1.514 1.53 1.972 1.679
global random ASTRAL 1.744 0.249 0.143 1.405 0.177 1.637 0.152 2.343 2.907 3.287 1.587
global random CONCAT 1.804 0.201 0.112 1.436 0.14 1.722 0.117 2.356 2.983 3.369 1.615
r-proteins all ASTRAL 2.966 2.623 0.884 1.589 1.65 1.656 1.584 2.449 2.867 5.783 4.764
r-proteins all CONCAT 3.272 2.324 0.71 1.823 1.275 2.134 1.089 2.51 3.023 6.271 5.183
de novo tree from CPR-free alignment
global conserved ASTRAL 0.956 0.204 0.213 0.871 0.234 0.853 0.239 1.556 1.512 1.946 1.61
global conserved CONCAT 0.98 0.141 0.144 0.888 0.159 0.91 0.155 1.543 1.566 2.009 1.67
global random ASTRAL 1.795 0.298 0.166 1.361 0.219 1.671 0.178 2.381 2.931 3.307 1.567
global random CONCAT 1.827 0.197 0.108 1.436 0.137 1.747 0.113 2.394 3.031 3.401 1.593
r-proteins all ASTRAL 3.308 3.115 0.942 1.563 1.993 1.769 1.761 2.593 3.046 6.361 5.123
r-proteins all CONCAT 3.272 2.511 0.767 1.87 1.343 2.039 1.232 2.54 3.064 6.358 5.193

Table F.5: Evolutionary proximity between Archaea and Bacteria by differential gene, site
sampling and method.

The results of two experimental groups are shown. Upper: The CPR clade was pruned

from the trees discussed in Fig. 6.3 and Supplementary Table F.4. Lower: The CPR sequences

were removed from the dataset, and trees were re-built. The definitions of column names follow

Supplementary Table F.4.
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Gene No. of Site Radius A-B Norm A-B A A-B B A-B Mean Mean Mean Relative
sampling genes sampling branch branch depth branch/ depth branch/ A-A B-B A-B A-B

length length A depth B depth distance distance distance distance
qts >0.5 322 conserved 0.863 0.132 0.153 0.859 0.154 0.795 0.166 1.426 1.387 1.801 1.641
qts >0.5 322 random 1.788 0.184 0.103 1.474 0.125 1.713 0.108 2.4 2.969 3.349 1.574
qts >0.67 171 conserved 0.887 0.241 0.272 0.928 0.26 0.756 0.319 1.538 1.328 1.929 1.822
qts >0.67 171 random 1.905 0.349 0.183 1.621 0.215 1.742 0.2 2.606 3.029 3.667 1.704
qts >0.75 93 conserved 0.831 0.278 0.334 0.917 0.303 0.679 0.409 1.5 1.2 1.888 1.98
qts >0.75 93 random 2.029 0.48 0.237 1.708 0.281 1.793 0.268 2.713 3.127 3.952 1.841
qts >0.8 64 conserved 0.812 0.276 0.34 0.957 0.288 0.663 0.416 1.494 1.186 1.886 2.007
qts >0.8 64 random 2.02 0.47 0.233 1.803 0.261 1.784 0.264 2.804 3.112 4.006 1.839

Table F.6: Evolutionary proximity between Archaea and Bacteria by differential gene, site
sampling and method.

The 381 gene trees were subsampled based on their quartet scores (qts) vs. the species

tree. Larger qts indicates higher topological concordance. The definitions of column names

follow Supplementary Table F.4.

337



Gene Site Site A-B Norm. A-B A A-B B A-B Mean Mean Mean Relative
sampling sampling model Radius branch branch depth branch/ depth branch/ A-A B-B A-B A-B

length length A depth B depth distance distance distance distance
global all CONCAT 1.333 0.17 0.128 1.047 0.162 1.26 0.135 1.856 2.225 2.518 1.535
global conserved Gamma 0.706 0.11 0.155 0.669 0.164 0.65 0.169 1.171 1.162 1.475 1.598
global conserved FreeRate 0.615 0.094 0.153 0.59 0.159 0.566 0.166 1.02 1.012 1.29 1.614
global conserved PMSF 0.982 0.168 0.171 1.049 0.16 0.885 0.19 1.833 1.66 2.197 1.586
global random Gamma 1.323 0.141 0.107 1.043 0.135 1.264 0.112 1.852 2.212 2.483 1.505
global random FreeRate 1.441 0.149 0.104 1.147 0.13 1.379 0.108 2.012 2.419 2.714 1.514
global random PMSF 2.203 0.259 0.118 1.836 0.141 2.083 0.125 3.268 3.67 4.234 1.495
r-proteins all Gamma 2.079 1.719 0.827 1.201 1.432 1.22 1.409 1.716 2.092 4.184 4.874
r-proteins all FreeRate 1.939 1.554 0.802 1.119 1.389 1.163 1.337 1.583 1.923 3.86 4.894
r-proteins all PMSF 4.048 4.237 1.047 1.775 2.387 1.934 2.191 2.857 3.286 8.016 6.845

Table F.7: Evolutionary proximity between Archaea and Bacteria with 1,000 taxa.

The original 10,575 genomes were downsampled to 1,000 (see Methods), which allowed

for phylogenetic reconstruction using the more expensive site heterogeneous model PMSF, as

compared to the simpler site homogeneous models Gamma and FreeRate. The definitions of

column names follow Supplementary Table F.4.
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Gene & Method Reps. LUCA CPR split Archea Non CPR Bacteria CPR
sites passed from Bacteria diversification diversification diversification

General results

conserved
ASTRAL 9 4.228 ± 0.046 (4.206) 3.958 ± 0.043 (3.937) 3.9 ± 0.043 (3.879) 3.32 ± 0.036 (3.302) 3.772 ± 0.041 (3.752)
CONCAT 8 4.181 ± 0.063 (4.147) 3.894 ± 0.058 (3.862) 3.855 ± 0.058 (3.824) 3.398 ± 0.051 (3.371) 3.736 ± 0.056 (3.705)

random
ASTRAL 8 3.631 ± 0.054 (3.618) 3.494 ± 0.052 (3.482) 3.295 ± 0.049 (3.284) 3.229 ± 0.048 (3.218) 3.276 ± 0.049 (3.265)
CONCAT 7 3.654 ± 0.021 (3.7) 3.515 ± 0.02 (3.56) 3.28 ± 0.019 (3.321) 3.419 ± 0.02 (3.463) 3.299 ± 0.019 (3.341)

r-proteins
ASTRAL 10 7.068 ± 0.113 (7.174) 4.053 ± 0.065 (4.113) 3.470 ± 0.056 (3.522) 3.542 ± 0.057 (3.595) 3.945 ± 0.063 (4.004)
CONCAT 9 7.012 ± 0.120 (6.963) 4.219 ± 0.072 (4.185) 3.689 ± 0.063 (3.659) - 3.441 ± 0.059 (3.413)

Moving root on ASTRAL tree

conserved
25% 7 4.211 ± 0.01 (4.213) 3.881 ± 0.009 (3.882) 3.986 ± 0.01 (3.987) 3.3 ± 0.008 (3.301) 3.716 ± 0.009 (3.718)
75% 10 4.218 ± 0.066 (4.185) 4.043 ± 0.064 (4.013) 3.829 ± 0.06 (3.8) 3.337 ± 0.052 (3.311) 3.831 ± 0.06 (3.802)

random
25% 8 3.635 ± 0.058 (3.598) 3.456 ± 0.055 (3.421) 3.379 ± 0.054 (3.345) 3.216 ± 0.051 (3.184) 3.252 ± 0.052 (3.219)
75% 10 3.589 ± 0.035 (3.568) 3.21 ± 0.031 (3.191) 3.21 ± 0.031 (3.191) 3.22 ± 0.031 (3.201) 3.279 ± 0.032 (3.26)

r-proteins
25% 10 7.131 ± 0.109 (7.066) 3.936 ± 0.06 (3.9) 3.638 ± 0.056 (3.605) 3.507 ± 0.054 (3.475) 3.848 ± 0.059 (3.813)
75% 9 6.87 ± 0.056 (6.853) 4.186 ± 0.034 (4.177) 3.328 ± 0.027 (3.32) 3.558 ± 0.029 (3.55) 4.044 ± 0.033 (4.035)

PMSF vs. Gamma on 1k taxa
all Gamma 10 3.744 ± 0.017 (3.74) 3.525 ± 0.016 (3.521) 3.398 ± 0.016 (3.393) 3.271 ± 0.015 (3.267) 3.168 ± 0.015 (3.164)

conserved
Gamma 10 4.503 ± 0.02 (4.517) 4.156 ± 0.018 (4.168) 4.165 ± 0.019 (4.178) 3.509 ± 0.016 (3.52) 3.841 ± 0.017 (3.853)
PMSF 10 4.553 ± 0.02 (4.543) 4.158 ± 0.019 (4.148) 4.265 ± 0.019 (4.255) 3.271 ± 0.015 (3.264) 3.869 ± 0.017 (3.86)

random
Gamma 10 3.718 ± 0.015 (3.712) 3.541 ± 0.014 (3.536) 3.419 ± 0.013 (3.414) 3.253 ± 0.013 (3.248) 3.205 ± 0.013 (3.2)
PMSF 10 3.682 ± 0.015 (3.673) 3.486 ± 0.015 (3.477) 3.408 ± 0.014 (3.399) 3.192 ± 0.013 (3.185) 3.166 ± 0.013 (3.158)

r-proteins
Gamma 10 7.487 ± 0.03 (7.463) 4.416 ± 0.018 (4.402) 4.038 ± 0.016 (4.025) 4.224 ± 0.017 (4.211) 4.218 ± 0.017 (4.204)
PMSF 10 9.219 ± 0.034 (9.19) 4.565 ± 0.017 (4.55) 3.939 ± 0.014 (3.926) - 4.349 ± 0.016 (4.336)

Table F.8: Divergence time estimation results by maximum likelihood using one calibration.

The Cyanobacteria/Melainabacteria split was constrained to 2.5-2.6 Ga. For each setting,

ten replicates were executed and the number of replicates that passed the gradient check was

reported, and the means and standard deviations were calculated based on those replicates. The

run with the best likelihood in all replicates was reported separately in parentheses. Estimated

ages of five early evolutionary events were reported. The “non-CPR Bacteria diversification” field

was left blank if the corresponding tree topology did not support the monophyly of non-CPR

Bacteria.
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Site sampling conserved random
Name Node Range Pass LUCA Non-CPR Bacteria Pass LUCA Non-CPR Bacteria

diversification diversification
Cyanobacteria LCA 7 4.252 ± 0.076 (4.355) 3.338 ± 0.059 (3.419) 8 3.639 ± 0.06 (3.73) 3.237 ± 0.053 (3.318)

Photosynthetic Alphaproteobacteria LCA 9 4.232 ± 0.055 (4.201) 3.323 ± 0.043 (3.298) 6 3.589 ± 0.004 (3.587) 3.193 ± 0.004 (3.191)
eukaryotes Alphaproteobacteria origin >1.03 9 4.242 ± 0.065 (4.201) 3.33 ± 0.051 (3.298) 9 3.625 ± 0.059 (3.728) 3.225 ± 0.052 (3.316)

Cyanobacteria LCA and
Alphaproteobacteria LCA 9 4.25 ± 0.068 (4.203) 3.337 ± 0.053 (3.3) 7 3.664 ± 0.071 (3.713) 3.259 ± 0.063 (3.303)

Cyanobacteria LCA and
Alphaproteobacteria
origin

10 4.228 ± 0.054 (4.215) 3.32 ± 0.042 (3.309) 10 3.618 ± 0.058 (3.73) 3.218 ± 0.052 (3.318)

Akinetes-

Nostocales origin

>1.2 10 5.534 ± 0 (5.534) 4.339 ± 0 (4.339) 7 4.695 ± 0 (4.695) 4.169 ± 0 (4.169)
forming >1.5 10 6.253 ± 0 (6.253) 4.903 ± 0 (4.903) 7 5.302 ± 0 (5.302) 4.707 ± 0 (4.707)
cyanobacteria >1.9 10 7.163 ± 0 (7.163) 5.615 ± 0 (5.615) 9 6.084 ± 0 (6.084) 5.401 ± 0 (5.401)

>2.1 10 7.594 ± 0 (7.594) 5.953 ± 0 (5.953) 7 6.459 ± 0 (6.459) 5.735 ± 0 (5.735)
Aphid-Buchnera Buchnera/Wigglesworthia >0.084 6 4.202 ± 0.002 (4.201) 3.299 ± 0.002 (3.298) 8 3.622 ± 0.057 (3.73) 3.222 ± 0.051 (3.318)
symbiosis split >0.164 7 4.301 ± 0.076 (4.203) 3.376 ± 0.059 (3.299) 8 3.606 ± 0.05 (3.59) 3.208 ± 0.044 (3.193)

Cyanobacteria LCA and
Alphaproteobacteria
origin

>1.03
9 4.241 ± 0.058 (4.297) 3.33 ± 0.045 (3.373) 8 3.593 ± 0.011 (3.588) 3.196 ± 0.01 (3.191)Photosynthetic

eukaryotes and
Aphid-Buchnera Buchnera/Wigglesworthia >0.164
symbiosis split

Table F.9: Divergence time estimation results by maximum likelihood using alternative calibra-
tions.

One or more calibrations were included in addition to the Cyanobacteria/Melainabacteria

calibration, as described in each row. The definitions of column names follow Supplementary

Table F.8.
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Genes Constraint Prior
dist.

Clock
model

MCMC Age of LUCA (Ga) Clock rate CV
States Burn-in ESS mean median 95% 95% ESS mean ESS mean
(M) (M) low high

global narrow norm strict 10 1 1100 3.759 3.759 3.627 3.889 1337 0.288 - -
narrow norm ucld 50 5 431 3.821 3.816 3.56 4.089 526 0.289 449 0.176
wide ln strict 10 1 5666 3.71 3.625 3.379 4.264 6996 0.293 - -
wide ln ucld 20 2 1007 3.768 3.7 3.312 4.351 1320 0.295 173 0.175

r-proteins

narrow norm strict 10 1 1390 7.45 7.448 7.127 7.765 1230 0.22 - -
narrow norm ucld 100 10 283 7.389 7.35 6.08 8.782 206 0.226 171 0.254
wide ln strict 10 1 7645 7.347 7.198 6.64 8.455 7249 0.224 - -
wide ln ucld 50 10 250 7.362 7.254 5.782 9.142 296 0.229 157 0.255

Table F.10: Divergence time estimation results by Bayesian inference.

Input data were 100 taxa and 5,000 randomly sampled amino acid sites. Comparative

analysis was performed using two clock models: strict clock or uncorrelated lognormal relaxed

clock (ucld); two prior distributions of the time constraint of the Cyanobacteria/Melainabacteria

split: “narrow”: a normal distribution which is narrower and based on previous estimates, and

“wide”: a lognormal distribution which is wider and based on palaeobiological and geological

evidence. We reported the estimated age of LUCA, the clock rate and its coefficient of variance

(C.V., only for the relaxed clock model), which is a measurement of the “clock-likeness” of data

(smaller is better).
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Gene Site A-B Norm. A-B A A-B B A-B Mean Mean Mean Relative
Method Radius branch branch depth branch/ depth branch/ A-A B-B A-B A-B

length length A depth B depth distance distance distance distance
global conserved ASTRAL 0.975 0.124 0.127 0.902 0.137 0.914 0.135 1.536 1.609 1.973 1.575
global conserved CONCAT 1.007 0.126 0.125 0.882 0.143 0.95 0.133 1.533 1.654 1.999 1.576
global random ASTRAL 1.787 0.151 0.085 1.406 0.108 1.734 0.087 2.35 3.025 3.3 1.531
global random CONCAT 1.809 0.163 0.09 1.391 0.117 1.759 0.093 2.354 3.069 3.321 1.526

Table F.11: Evolutionary proximity between Archaea and Bacteria with 187 extra genomes.

The original 10,575 genomes sampled in March 2017 plus the 187 new genomes sampled

in May 2019 which represent previously missing or underrepresented NCBI and GTDB phyla

were included in this analysis. The definitions of column names follow Supplementary Table F.4.
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Doré, Piotr Dworzynski, Francisco Guarner, Torben Hansen, Falk Hildebrand, Rolf S
Kaas, Sean Kennedy, Karsten Kristiansen, Jens Roat Kultima, Pierre Léonard, Florence
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Rooting the domain archaea by phylogenomic analysis supports the foundation of the new
kingdom proteoarchaeota. Genome biology and evolution, 7(1):191–204, 2015.
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[264] Pere Puigbò, Yuri I Wolf, and Eugene V Koonin. Search for a’tree of life’in the thicket of
the phylogenetic forest. Journal of biology, 8(6):1–17, 2009.
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Jörg Peplies, and Frank Oliver Glöckner. The SILVA ribosomal RNA gene database project:
improved data processing and web-based tools. Nucleic acids research, page gks1219,
2012.

366



[267] Maryam Rabiee and Siavash Mirarab. Forcing external constraints on tree inference using
ASTRAL. BMC Genomics, 21(S2):218, 4 2020.

[268] Maryam Rabiee and Siavash Mirarab. INSTRAL: Discordance-Aware Phylogenetic
Placement Using Quartet Scores. Systematic Biology, 69(2):384–391, 8 2020.

[269] Andrew Rambaut, Alexei J Drummond, Dong Xie, Guy Baele, and Marc A Suchard.
Posterior summarization in bayesian phylogenetics using tracer 1.7. Systematic biology,
67(5):901–904, 2018.

[270] Andrew Rambaut and Nicholas C. Grass. Seq-Gen: an application for the Monte Carlo
simulation of DNA sequence evolution along phylogenetic trees. Bioinformatics, 13(3):235–
238, 06 1997.

[271] Andrew Rambaut and Edward Holmes. The early molecular epidemiology of the swine-
origin a/h1n1 human influenza pandemic. PLoS currents, 1:RRN1003–RRN1003, Aug
2009.

[272] Hemalatha Golaconda Ramulu, Mathieu Groussin, Emmanuel Talla, Remi Planel, Vincent
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[328] G J Szöllõsi, E Tannier, Vincent Daubin, and Bastien Boussau. The inference of gene trees
with species trees. Systematic Biology, 64(1):e42–e62, 7 2014.

[329] Shinichi Takaichi, Takashi Maoka, Kazuto Takasaki, and Satoshi Hanada. Carotenoids of
gemmatimonas aurantiaca (gemmatimonadetes): identification of a novel carotenoid,
deoxyoscillol 2-rhamnoside, and proposed biosynthetic pathway of oscillol 2, 2‘-
dirhamnoside. Microbiology, 156(3):757–763, 2010.

[330] Hideyuki Tamaki, Yasuhiro Tanaka, Hiroaki Matsuzawa, Mizuho Muramatsu, Xian-Ying
Meng, Satoshi Hanada, Kazuhiro Mori, and Yoichi Kamagata. Armatimonas rosea gen.
nov., sp. nov., of a novel bacterial phylum, armatimonadetes phyl. nov., formally called the
candidate phylum op10. International journal of systematic and evolutionary microbiology,
61(6):1442–1447, 2011.

371



[331] Koichiro Tamura, Fabia Ursula Battistuzzi, Paul Billing-Ross, Oscar Murillo, Alan Fil-
ipski, and Sudhir Kumar. Estimating divergence times in large molecular phylogenies.
Proceedings of the National Academy of Sciences, 109(47):19333–19338, 11 2012.

[332] Koichiro Tamura, Qiqing Tao, and Sudhir Kumar. Theoretical Foundation of the RelTime
Method for Estimating Divergence Times from Variable Evolutionary Rates. Molecular
Biology and Evolution, 35(7):1770–1782, 03 2018.

[333] Ge Tan, Matthieu Muffato, Christian Ledergerber, Javier Herrero, Nick Goldman, Manuel
Gil, and Christophe Dessimoz. Current Methods for Automated Filtering of Multiple
Sequence Alignments Frequently Worsen Single-Gene Phylogenetic Inference. Systematic
Biology, 64(5):778–791, 9 2015.

[334] R. Tarrı́o, F. Rodrı́guez-Trelles, and F. J. Ayala. Tree rooting with outgroups when
they differ in their nucleotide composition from the ingroup: the Drosophila saltans and
willistoni groups, a case study. Molecular phylogenetics and evolution, 16(3):344–349,
2000.

[335] James E Tarver, Mario dos Reis, Siavash Mirarab, Raymond J Moran, Sean Parker,
Joseph E. O’Reilly, Benjamin L King, Mary J. O’Connell, Robert J Asher, Tandy Warnow,
Kevin J Peterson, Philip C.J. Donoghue, and Davide Pisani. The Interrelationships of
Placental Mammals and the Limits of Phylogenetic Inference. Genome Biology and
Evolution, 8(2):330–344, feb 2016.
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