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R. Ferguson, PhD2,4, Richard B. Souza, PT PhD1,3, and Sharmila Majumdar, PhD1

1Department of Radiology and Biomedical Imaging, University of California, San Francisco

2Weill Institute for Neurosciences, Department of Neurological Surgery, Brain and Spinal Injury 
Center, University of California, San Francisco

3Department of Physical Therapy and Rehabilitation Science, University of California, San 
Francisco

4San Francisco Veterans Affairs Medical Center, San Francisco

Abstract

BACKGROUND—Osteoarthritis (OA) is a multifaceted disease with many variables affecting 

diagnosis and progression. Topological Data Analysis (TDA) is a state of the art big data analytics 

tool that can combine all variables into multidimensional space. TDA is used to simultaneously 

analyze imaging and gait analysis techniques.

PURPOSE—To identify biochemical and biomechanical biomarkers able to classify different 

disease progression phenotypes in subjects with and without radiographic signs of hip OA.

STUDY TYPE—Longitudinal study for comparison of progressive and non progressive subjects.

POPULATION—102 subjects with and without radiographic signs of hip osteoarthritis.

FIELD STRENGTH/SEQUENCE—3T, SPGR 3D MAPSS T1p/T2, intermediate-weighted fat-

suppressed fast spin-echo (FSE)

ASSESSMENT—Multidimensional data analysis including cartilage composition, bone shape, 

Kellgren-Laurence (KL) classification of osteoarthritis, Scoring Hip Osteoarthritis with MRI 

(SHOMRI), Hip disability and Osteoarthritis Outcome Score (HOOS)

STATISTICAL TESTS—Analysis done using Topological Data Analysis (TDA), Kolmogorov-

Smirnov (KS) testing and Benjamini-Hochberg to rank P-value results to correct for multiple 

comparisons.

RESULTS—Subjects in the later stages of the disease had an increased SHOMRI score (p < 

0.0001), increased KL (p = 0.0012), and older age (p < 0.0001). Subjects in the healthier group 

showed intact cartilage and less pain. Subjects found in between these two groups had a range of 

symptoms. Analysis of this sub-group identified knee biomechanics (p < 0.0001) as an initial 
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marker of the disease that is noticeable before the morphological progression and degeneration. 

Further analysis of an OA sub-group with femoroacetabular impingement (FAI) showed Anterior 

Labral tears to be the most significant marker (p = 0.0017) between those FAI subjects with and 

without OA symptoms.

DATA CONCLUSION—The data-driven analysis obtained with TDA proposes new phenotypes 

of these subjects that partially overlap with the radiographic based classical disease status 

classification and also shows the potential for further examination of an early onset biomechanical 

intervention.

Keywords

cartilage; osteoarthritis; hip OA; topological data analysis; big data

INTRODUCTION

Osteoarthritis (OA) is a leading joint disorder in America(1). Over 26 million adults in the 

US are affected by OA which can commonly lead to disability, surgery, and hip 

replacement(1). OA is complex and multifactorial; both systemic and local variables have a 

role in the progression of the disease. Radiographic and morphological evidence has been 

used in the past to diagnose hip OA, however these methods are not able to detect the earlier 

stages of the disease. Previous studies have shown the ability of compositional imaging, T1ρ 
and T2 cartilage mapping, to detect the structural properties and early degeneration of 

cartilage(2, 3). Chemical exchange in proteoglycan and water protons was suggested to 

contribute to T1ρ in cartilage, although T1ρ changes in cartilage may be affected by 

hydration and collagen structure as well(4). T2 relaxation times are primarily affected by 

hydration and collagen structure due to dipolar interactions(5).

Kinematics and kinetics of both the hip and the knee are also important for the clinical 

assessment of OA. Previous studies have shown that loading of the knee joint is related to 

the progression of knee OA(6-8), but it has not yet been examined with multidimensional 

factors for the hip. Furthermore, hip OA pathogenesis and progression is also characterized 

by changes in the subchondral and trabecular bone including early-stage increased bone 

remodeling and bone loss, as well as, the late-stage reduced bone remodeling and 

subchondral densification(9, 10).

Given the multifactorial nature of OA, it might be useful to analyze all factors (i.e. 

morphological, compositional, and biomechanical) simultaneously. In this study, we used 

multidimensional data analysis to generate an OA prediction hypothesis built on the 

following variables: morphological and compositional cartilage assessments, gait kinematics 

and kinetics, and bone shape analysis.

Recent advancements in big data analytics and machine learning provide several 

multidimensional visualization methods with which we can compare individual patients as a 

‘point-cloud’ in multidimensional space, overcoming the inherent limitations of single 

endpoints(11). Our approach uses the shape, or topology, of our data(11); topology is a 

branch of applied mathematics aimed at formally analyzing geometric shapes. Topological 
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Data Analysis (TDA) takes a geometric approach to pattern recognition within data. TDA 

extracts patterns from a multi-dimensional data set that can determine relevant sub-groups as 

well as present new insights about the data(11). TDA has shown promising results in several 

varied applications, including exploring stem cell transplant complications(12), phenotyping 

attention-deficit/hyperactivity disorder(13), analyzing FDA drug-target interactions(14), and 

a preclinical study in spinal and traumatic brain injury(15). Recently the first application of 

TDA to study Knee OA was presented(2) showing the usage of the technique as a 

descriptive tool able to identify subject sub populations and key imaging biomarkers able to 

predict disease progression.

We aim to use state of the art big data analytics, imaging and gait analysis techniques to 

simultaneously analyze all the combined variables in multidimensional space in order to 

assist the identification of biochemical and biomechanical biomarkers able to classify 

different disease progression phenotypes in subjects with and without radiographic signs of 

hip OA. We hypothesized that the simultaneous analysis of all the variables, in the context of 

a completely data-driven approach, will allow us to discover new interactions between 

different aspects of the disease, helping to explain the complex mechanism of hip OA 

pathogenesis and progression.

THEORY AND METHODS

Subjects

The subjects included in the analysis are part of a case-control study aimed to study the 

longitudinal changes in cartilage, biochemical composition, using magnetic resonance 

imaging (MRI), in subjects with and without radiographic hip OA. A total of 102 subjects 

were recruited. The inclusion criteria for OA patients (n=34) included definite radiographic 

evidence of hip OA (Kellgren-Lawrence(16) [KL>1]), while controls were classified as 

those subjects (n=68) without radiographic evidence of OA [KL<2]). Patients were excluded 

if they were involved in concurrent use of an investigational drug, had a history of fracture 

or surgical intervention on the studied hip, or had contradictions to MRI.

Demographic information including age, gender, body mass index (BMI), and race were 

collected at the time of recruitment (age: 44.0±13.7 years, BMI: 23.8±3.0 kg/m2, 58 males 

(56%), 72 Caucasians (69%)). Study subjects were brought in for an MR-exam and gait 

analysis at baseline, 18 months and 36 months follow-up. The Hip Disability and 

Osteoarthritis Outcomes Score (HOOS) (17) was used to assess hip joint pain, symptoms, 

stiffness, function and quality of life and used a scale of 0 to 100 to indicate severe or no 

clinical symptoms, respectively. Evaluation of radiographs were performed using the KL 

grading(16) assigned by a musculoskeletal radiologist with 20 years of experience (TL). All 

examiners involved in grading, including KL, SHOMRI, and biomechanical examination 

were blinded to others’ results.

MR Imaging and Image Processing

Unilateral hip MR images were acquired with a 3 Tesla MR-scanner (GE MR750; GE 

Healthcare, Waukesha, WI) using an 8-channel receive-only coil (GE Healthcare, Waukesha, 
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WI). MRI protocol and sequences are described by Gallo et al(18). The MRI protocol 

included intermediate-weighted fat-suppressed fast spin-echo (FSE) sequences in the 

sagittal, oblique coronal, and oblique axial orientations described in Wyatt et. al (3). These 

sequences were used for semi-quantitative clinical grading of hip joint abnormalities using 

the Scoring Hip Osteoarthritis with MRI (SHOMRI) scoring system which provides 52 

morphological variables described in detail in Lee et al (19, 20). A combined T1ρ/T2 

mapping sequence using a 3D segmented SPGR acquisition was used to assess cartilage 

proteoglycan content(T1ρ) and collagen orientation(T2), where an increase in T1ρ and T2 

relaxation times indicated reduced proteoglycan content and altered collagen structure, 

respectively(21). All image processing was performed using an in-house program developed 

in MATLAB (The Mathworks, Na tick, MA)(22). Femoral and acetabular cartilage 

compartment segmentation was done with an edge-based, semi-automatic method previously 

described and evaluated(3), to obtain T1ρ and T2 relaxation times in various subregions as 

described in Pedoia et al (23-25).

The proximal femur bone of all the subjects were segmented automatically on the T1p-

weighted image with TSL = 0 using an atlas-based method refined by active contours. All 

the segmentations underwent a strict protocol of quality control and a single user that 

manually adjusted the bone segmentation in case of failure of the automatic procedure. Bone 

shape analysis was performed using 3D-statistical shape modeling as previously described 

and evaluated(26), where 20 modes of variation describing the 3D shape of the proximal 

femur were extracted and considered for the analysis.

Kinematics and Kinetics

Biomechanical data acquisition used in this study is similar to previous work(27) and is 

briefly described below. A 10-camera motion capture system (VICON, Oxford Metrics, 

Oxford, UK) was used to obtain 3D position data at a sampling rate of 250 Hz, while ground 

reaction forces (GRF) were obtained simultaneously using two embedded force platforms 

(AMTI, Watertown, MA, USA) at a sampling rate of 1000 Hz. Forty-one retroflective 

markers were placed at anatomical landmarks and used to track segment position, while 

subjects walked at a fixed speed (1.35m/s) (27). The Visual3D (C-Motion, Germantown, 

MD) software was used to calculate lower extremity joint kinematics and moments by using 

an unweighted least squares method(28) and inverse dynamics, respectively. Joint angels 

were normalized to a static calibration trial obtained prior to the gait trials. External hip and 

knee joint moments were normalized by body mass and height (Nm/kg*m). Joint moment 

impulses were computed as the integral of the moment with respect to time (Nm*ms/kg*m). 

GRF data was normalized by body weight (BW). GRF, hip and knee joint kinematic and 

kinetic variables (Supplementary Table 1) were computed for each subject during four 

successful gait trials, as described in Samaan et al (23) and were used to obtain the subject’s 

average measures which were used for analysis.

Multi-Dimensional Data

From our processing pipeline we obtain a description for each patient consisting of 181 

variables including: demographics (8 variables), PROMs (Patient Reported Outcome 

Measures) (29 variables), X-rays (1 variable), morphological MRI (52 variables), 
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compositional MRI (26 variables), gait kinematics and kinetics (42 variables), and bone 

shape analysis (20 variables). Supplementary Table 1 includes a data dictionary of all 

variables. All baseline data was used to build the topological shape, but the progression 

variables were built from baseline, 18 month and 36 month data. Three progression variables 

(two compositional progression and one clinical HOOS pain progression) were added in 

order to examine change over time in compositional T1ρ and T2 variables as well as HOOS 

pain change over time (Table 1):

Compositional Progression Definition (Femoral and Acetabular)—Subjects who 

showed no cartilage lesion progression over three years (ΔSHOMRI total cartilage grade = 

0) and had a KL grade of <2 (n = 27) were considered to be the stable reference control 

cohort. This cohort was used to study the distribution of both T1ρ and T2 changes over time 

unrelated with disease progression but reflecting technical repeatability and normal aging of 

the study population. The average (AVGnorm) and standard deviation (SDnorm) of the 

longitudinal changes (3 Year-Baseline) within the reference control cohort were computed 

for each of the acetabular and femoral cartilage subcompartments. Subjects with longitudinal 

T1p and T2 changes (3 Year-Baseline) in any of the cartilage sub compartment values that 

were within AVGnorm+2*SDnorm were considered part of the “compositional non 

progression” cohort. All remaining subjects with longitudinal T1p and T2 changes (3 Year-

Baseline) that exceeded the AVGnorm_2*SDnorm within any of the cartilage sub 

compartment values were considered part of the “compositional progression” cohort. Study 

subjects with T1p/T2 femoral cartilage progression (n=28) and T1p/T2 acetabular cartilage 

progression (n=27) were separated for analysis.

Clinical HOOS Pain Progression Definition—Changes in HOOS pain, symptoms, 

stiffness, function, and quality of life score over the three year period (3 Year – Baseline) 

were computed. Subjects that exhibited a decrease of >10, indicating a worsening of HOOS 

related sub-scores, in any of the 5 HOOS sub-scales were considered part of the 

“symptomatic progression” cohort (n = 19).

Topological Data Analysis

The Topological Data Analysis (TDA) method involves mapping each patient as a 

multidimensional point into the “OA syndromic space” as described in Pedoia et al (2). TDA 

is a data driven tool that allows researchers to project all variables simultaneously into an 

interconnected network, in order to derive a hypothesis from the generated network shape.

The data analysis was performed using Ayasdi cloud-based platform (Ayasdi, Inc.v.3.0). The 

TDA network was built by integrating the multi-dimensional data described above, such as 

MRI morphological grading, MRI compositional analysis, biomechanical data, and bone 

shape analysis. The workflow automatically renders cross correlations across all selected 

variables and places individuals into a multidimensional point cloud space viewed through a 

mathematical ‘lens’ used for dimensionality reduction. The extracted network was built on 

two lenses of Metric principal component analysis (PCA) (resolution = 30, gain = 5) and a 

third lens of Total Cartilage Score (resolution = 12, gain = 5).
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TDA iteratively clusters subjects based on their similarity where similar individuals were 

grouped into nodes. At each iteration, the clusters are randomly defined in terms of shape 

and level of overlap. The topological net is the results of the combination of all the iterations 

resulting in robustness of the technique.

Further details about the TDA pipeline and theory are reported in Lum et al (11). The 

mapping of subjects based on the selected variables into this hip OA network is referred to 

as the hip OA syndromic space. The results of TDA is a network in which each ‘node’ 

represents a cluster of subjects that share similar patterns between quantitative variables 

used to build the network. A single subject can fall in two or more clusters at different 

iterations of the algorithm, in which case the two nodes are connected by an ‘edge’. By 

iterating this process, we obtain a network in which the length of the path along the edges 

between two nodes represents the similarity of the subjects included in the nodes. Figure 1 

shows an example of the specific TDA network that we obtained; this network is color coded 

for number of subjects per node.

The two phases of TDA are 1) hypothesis generation: which includes visual inspection of 

the color-coded network and identification of subpopulations within the network and 2) 

hypothesis evaluation: which includes formal statistical Kolmogorov-Smirnov (KS) testing 

and regression to evaluate the validity of the subpopulations identified in the first phase. The 

Benjamini-Hochberg method is used to rank the P-value results from the KS test; this will 

correct for multiple comparisons.

RESULTS

The topology extracted from the data, including morphological, compositional, 

biomechanical, and shape analysis, produced a network with a clear separation between 

subjects with radiographic OA (red nodes) in the upper region and subjects without OA 

(blue nodes) in the lower right; this is an indication of network validity when analyzing OA 

(Figure 2). Based on visual assessment of Figure 2 there is a relationship between 

subnetwork1 and the presence of radiographic signs of hip OA. Of the 102 subjects 

analyzed, 34 showed radiographic signs of osteoarthritis (KL > 1) with an average age of 

51.31±13.40 compared to the 68 subjects without radiographic OA (KL < 2) with an average 

age of 40.98±12.30. KS testing was performed on subjects in subnetwork1 (n=32) and we 

observed age 53.1±11.8 years (p=2.77E-07) and cartilage score 7.6±4.6 (p=4.09E-10) to be 

the top predictors of membership into subnetwork1 compared to the rest of the network (age: 

39.8±12.4 years, Cartilage Score: 1.4±1.7) which was significantly lower in both age and 

cartilage lesion scores. The results of the KS test, Table 2a, shows the top statistically 

significant variables between subnetwork1 and the remaining subjects. (Full list of ranked 

variables found in Supplementary Table 2a). Morphological variables (Figure 2b) were able 

to separate subnetwork1 from the rest of the network, but were unable to differentiate 

between the wider KL range in Figure 2a.

Progression color-coded networks for hip joint pain and T1ρ/T2 Acetabular and Femoral 

compositional progression were computed using longitudinal data in order to investigate the 

effects over time compared to all the baseline variables used to build the network. Average 
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and standard deviation of the reference groups for each cartilage subcompartment as 

described in Gallo et al (15):

(Femoral T1ρ subcompartments: 2 = −0.61±4.4, 3 = −0.29±4.1, 4 = 1.12±3.5, 5 = 

0.94±2.3, 6 = 0.31±2.3, 7 = −0.05±3.5),

(Femoral T2 subcompartments: 2 = −0.08±4.1, 3 = 0.18±3.5, 4 = 1.22±3.0, 5 = 

0.77±2.9, 6 = 0.19±2.9, 7 = 0.03±3.1),

(Acetabular T1ρ subcompartments: 2 = 0.39±3.1, 3 = 0.89±3.7, 4 = 0.11±3.3, 5 = 

−0.52±2.4, 6 = 1.18±3.4),

(Acetabular T2 subcompartments: 2 = 0.68±4.4, 3 = 1.58±5.0, 4 = 1.27±3.6, 5 = 

1.16±3.6, 6 = (not enough data))

T1p/T2 Femoral progression (n = 28) and T1p/T2 Acetabular progression (n = 27) were 

separated. “Symptomatic progression” cohort (decrease in HOOS pain <10) was instead 

made by 19 subjects. Table 1 reports demographics of all the subgroups.

Upon analysis of the progression colored networks (Figure 3) the upper portion contains 

subjects with both pain and T1ρ/T2 progression which is consistent with our previous 

findings of subnetwork1 being the portion of the cohort with more severe radiographic 

evidence of hip OA. The lower right of the progression colored networks in Figure 3 show a 

relationship with healthy controls with low pain progression and low T1ρ/T2 progression 

(shown in blue). Further visual assessment shows an inverse relationship between pain 

progression and compositional progression in subnetwork2 which is inconsistent with the 

remaining subjects shown in Figure 4:

Subnetwork 2a: Age: 46.8 ±13.8 years, (7 Female, BMI: 23.3±3.0) No T1ρ/T2 

Progression: n=34 (59.65%), HOOS Pain Progression: n=12 (21.05%)

Subnetwork 2b: Age: 43.8 ±12.8 years, (11 Female, BMI: 23.4±3.7) T1ρ/T2 

Progression: n=23 (40.35%), No Pain Progression: n=45 (78.95%)

The simultaneous analysis of compositional and symptomatic progression performed by 

TDA suggested different grouping characterized by an inverse relationship between 

symptomatic and compositional progression: subnetworks 1 and 3, that include subjects at 

the edge of disease spectrum, radiographic hip OA controls and subjects with clear signs of 

hip OA for which TDA analysis suggest a direct relationship between increase in symptoms 

and cartilage degeneration; and subnetwork2 for which this relationship appeared inverted, 

subjects that progress in cartilage degeneration show a regression in symptoms and vice 

versa. This hypothesis was verified by stratifying the patients based on the subnetwork 

memberships and testing direct Pearson correlations between compositional MRI and HOOS 

pain longitudinal variation. Both tests resulted in one statistically significant global pattern 

and the other approaching significance and, as hypothesized using TDA, showing inverse R-

value: subnetwork 1 and 3 relationship between 3 Year pain and global delta T1ρ (R-value = 

−0.64, p-value = 0.0005) and T2 (R-value = −0.36, p-value = 0.07); subnetwork 2 T1ρ (R-

value = 0.28, p-value = 0.076) and T2 (R-value = 0.35, p-value = 0.019).
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As a second step, KS statistical analysis was performed to assess the main variables 

separating subnetwork2 and the rest of the network. Table 2b shows the top statistically 

significant differences between subnetwork2 and the remaining subjects; knee joint 

kinematics and kinetics were observed to be the top predictors for membership within 

subnetwork2. (Full list of ranked variables found in Supplementary Table 2b). Subjects 

within subnetwork2 exhibited a reduced peak knee flexion angle −16.63 ±4.1° (p=0.000485) 

and first peak knee flexion moment −0.49±0.2 Nm/kg*m (p=4.91E-08) compared to the rest 

of the subjects (−21.27±4.2°, −0.72±0.2 Nm/kg*m). Biomechanical variables were able to 

separate subnetwork2 from the rest of the network, but unable to separate subnetwork1 (OA 

group) from the rest of the network or differentiate between the healthy controls and the rest 

of the network.

Upon examination of Table 2a and Table 2b, it is important to mention that while this is a 

long list of significant variables, some of the variables are strongly correlated with each 

other. For example, in Table 2a, “TotalCartilageScore” is a SHOMRI variable made up of all 

the SHOMRI “Cartilage Lesion” scores combined; in this way, each “CartilageLesion” 

variable in Table 2a makes up a portion of the TotalCartilageScore. These variables could 

potentially be reduced to simple, TotalCartilageScore, SHOMRI_Total, age, 

KneeKinetics_ExMImp2, and KL. Similarly, with Table 2b, all significant variables listed 

can be narrowed to Flexion and Extension moment impulses, flexion and extension peak 

moments, SHOMRI CartilageScore, etc. Each stage of gait is connected, so it is not a 

surprise that a collection of similar variables is found significant.

In order to sub-classify specific OA phenotypes, patients with radiographic 

femoroacetabular impingement (FAI) were analyzed using this model. Once the network 

was color coded for group during recruitment, those FAI subjects can be seen in Figure 5a 

within the yellow nodes. This figure shows FAI subjects falling in both subnetwork1 (OA 

symptomatic group) and subnetwork3 (healthy, asymptomatic group). Statistical analysis 

and TTest was done on the FAI subjects within these two subgroups to see what separated 

these two distinct subnetworks. The variable separating the groups with the lowest P-value 

(0.0017) was SHOMRI Labrum Oblique Axial in the Anterior Labrum(AL) followed by 

SHOMRI Total (p=0.005) and then Hoos Pain Score (p=0.006). Upon examination of the 

TDA model, color coded for SHOMRI scored labral damage, the separation is visibly 

noticeable. Total Labrum Score (Figure 5b) and specifically Anterior Labrum Score (Figure 

5c) shows a similar coloring with that of the radiographic KL separation (Figure 2a). The 

other SHOMRI scoring for Labrum, the posterior and anterior superior, were not significant.

DISCUSSION

It is necessary to characterize particular OA traits or phenotypes from available data in order 

to classify and diagnose patients. A common approach in the past has been to use single-

variable analysis in order to classify traits or phenotypes of OA. TDA overcomes these 

single-variable limitations by allowing for a multidimensional analysis of all available data 

simultaneously. The TDA tool allows for visualization of every subpopulation within a 

dataset which leads to novel hypothesis generation otherwise unavailable if done with 

single-variable investigation.
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Previous studies have looked at the association between T1ρ and T2 relaxation times and 

presence of cartilage lesions and found that compositional MRI data could be a potential 

biomarker for OA(18, 29). In addition, further studies have correlated acetabular cartilage 

defects with higher patient reported pain(30). We could expect, therefore, to see a pattern of 

OA disease progression which includes increased T1p relaxation times, increased cartilage 

defects, and increase in pain outcome. However, it has yet to be proven that increased pain 

and increased T1p are correlated despite this suggested pattern. We would expect to see this 

similarity in the hip, however it was only found in two out of the three subnetworks. Within 

subnetwork1, subjects with characteristics suggesting disease progression, showed the 

expected relationship between pain and T1ρ/T2 values. Within subnetwork3, those subjects 

who were classified as non-progressors with healthy cartilage exhibited no pain or 

compositional progression. However, subjects within subnetwork2 increased in pain while 

showing no change in cartilage composition and the other half showed no change in pain 

while increasing compositional progression. As there was no radiographic or morphological 

evidence of disease progression within subnetwork2, it would be extremely difficult to 

diagnose these patients as potential disease progressors using standard radiographic and 

MR-based assessments of hip joint morphology, yet with TDA we are able to observe other 

factors that may play a role in disease progression within subnetwork2. Our analysis showed 

that the defining characteristics separating subnetwork2 from the rest of the network were 

knee joint mechanics.

Subjects in subnetwork2 ambulated with a more extended knee joint compared to the rest of 

the network and may potentially affect hip joint mechanics as well. Although we did not 

observe any differences in hip joint mechanics between subnetwork2 and the rest of the 

cohort, previous work has showed reduced peak hip extension and external hip flexion 

moment in (27, 31) subjects with hip OA and suggests sagittal plane hip joint mechanics 

may be an important factor in disease progression. Similar to the results of our study, 

previous work (31) has demonstrated reduced knee joint excursions in patients with hip OA. 

We found knee range of motion to be the most prevalent factor separating subnetwork2 from 

both the healthy subjects (subnetwork3) and those with strong signs of OA (subnetwork1). 

Because walking speed was controlled, less flexion and extension at the knee would force a 

shorter stride length with a higher stride rate. This change in gait may be responsible for the 

inversion of pain and T1p progression in subnetwork2. These altered knee joint mechanics 

observed in subjects within subnetwork2 may be early indicators of hip joint pain worsening 

or early signs of hip joint degeneration. Reduced knee range of motion, which may lead to 

reduced hip range of motion, could be one method used to adapt for pain in the early stages 

of the disease before radiographic or morphological signs are present.

The biomechanical separation in subjects within subnetwork2 suggest that knee joint 

mechanics may be a contributing factor in the early signs of hip joint pain progression or 

degeneration. Subnetwork2a and subnetwork2b both share the change in gait pattern 

mentioned above, but their inversion of T1p and pain progression is visibly separated by age. 

It is possible that knee joint mechanics in subjects within subnetwork2 may be aimed at 

reducing pain but this in turn may be altering the loading patterns within the hip joint, which 

may cause alterations in cartilage composition. On the other hand, subjects within 

subnetwork2 that exhibit longitudinal alterations in cartilage composition without 
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progression of pain may be performing tasks, such as jumping and cutting, on a more 

frequent basis, due to a lack of pain and thereby applying larger loads to the hip joint. 

Intervention programs targeted at adjusting knee joint mechanics in these subjects may help 

to reduce or prevent the progression of pain and/or alterations in cartilage composition. 

Future studies should perform longitudinal gait analyses in the subjects described within 

subnetwork2 in order to determine whether or not a clear change in lower extremity 

mechanics occurs that may help to further explain the inverse relationship between 

progression of hip joint pain and cartilage composition.

According to previous studies, it is well known that FAI is heavily associated with the 

progression of OA (32-34). The bony cam outcropping causing the impingement of FAI can 

result in both symptomatic and asymptomatic patients. Those patients whose FAI leads to 

OA commonly report symptoms of pain; whether this is a result of either the impingement, 

the OA, or both is essential in diagnosing as well as classifying each individual. Labral tears 

are also known to be commonly associated with FAI symptomatic patients (32, 33, 35). 

While it is not yet proven that labral tears are the cause of pain in FAI or that those subjects 

with labral tears might progress to OA faster or more easily than those FAI patients without 

labral tears, there is still some literature supporting these hypotheses (36, 37). Those subjects 

with greater symptoms of OA, most notably high KL scores, and greater pain also show 

significantly higher labral tears; further investigation is needed, however this model gives 

strong evidence towards the idea that labral scores are able to stratify patients similarly to 

pain progression as well as KL scores.

Although this data shows promising results, there are study limitations that need to be 

addressed. The short follow-up time and small sample size require further investigation in 

order to confirm the results of this study. The design of this study included various levels of 

osteoarthritis and a different study design could take into account this variety of disease as 

well as age. In addition, our results were limited by the use of longitudinal hip joint cartilage 

composition and pain progression analysis and the use of cross-sectional biomechanics data. 

A morphological progression variable was unable to be accurately predictive or useful given 

the short time frame and the sample size of the study. This means that particular 

morphological features attributed to OA might have been overlooked given the design of the 

study and that overall variables such as Total Cartilage Score and Total SHOMRI Score took 

precedent over more specific morphological scorings. In the future, the study design could 

be adjusted to include the ability to observe longitudinal changes in hip joint morphology.

In conclusion, by use of multidimensional TDA, we were able to map all variables 

simultaneously into the OA syndromic space and observe a visual separation of 

subnetworks. This separation is characterized by common traits leading to different stages of 

hip OA. We showed the importance of including all data upon diagnoses including 

morphological, patient reported pain, compositional, and biomechanics data and 

demonstrated the ability to classify different phenotypes of OA based off of multiple 

variables as opposed to single reference points.

Rossi-deVries et al. Page 10

J Magn Reson Imaging. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

• Conception and design: Sharmila Majumdar.

• Collection and processing of data: Jasmine Rossi-deVries, Valentina Pedoia, Michael Samaan

• Analysis and interpretation of the data: Jasmine Rossi-deVries, Valentina Pedoia, Michael Samaan, 
Sharmila Majumdar, Thomas Link, Alan Zhang

• Biomechanics Expertise: Richard B. Souza and Michael Samaan

• Drafting of the article: Jasmine Rossi-deVries and Valentina Pedoia

• Obtaining funding: Sharmila Majumdar and Valentina Pedoia

• Final approval of the article: All the authors

Grant Support: P50 AR060752 (SM), R01AR046905 (SM), K99AR070902 (VP)

References

1. Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med. 2010; 26(3):355–69. DOI: 
10.1016/j.cger.2010.03.001 [PubMed: 20699159] 

2. Pedoia V, Haefeli J, Morioka K, Teng HL, Nardo L, Souza RB, et al. MRI and biomechanics 
multidimensional data analysis reveals R2-R1rho as an early predictor of cartilage lesion 
progression in knee osteoarthritis. J Magn Reson Imaging. 2017; doi: 10.1002/jmri.25750

3. Wyatt C, Kumar D, Subburaj K, Lee S, Nardo L, Narayanan D, et al. Cartilage T1rho and T2 
Relaxation Times in Patients With Mild-to-Moderate Radiographic Hip Osteoarthritis. Arthritis 
Rheumatol. 2015; 67(6):1548–56. DOI: 10.1002/art.39074 [PubMed: 25779656] 

4. Li X, Cheng J, Lin K, Saadat E, Bolbos RI, Jobke B, et al. Quantitative MRI using T1rho and T2 in 
human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology. 
Magn Reson Imaging. 2011; 29(3):324–34. DOI: 10.1016/j.mri.2010.09.004 [PubMed: 21130590] 

5. Nieminen MT, Rieppo J, Toyras J, Hakumaki JM, Silvennoinen J, Hyttinen MM, et al. T2 relaxation 
reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and 
polarized light microscopic study. Magn Reson Med. 2001; 46(3):487–93. [PubMed: 11550240] 

6. Souza RB, Kumar D, Calixto N, Singh J, Schooler J, Subburaj K, et al. Response of knee cartilage 
T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee 
osteoarthritis. Osteoarthritis Cartilage. 2014; 22(10):1367–76. DOI: 10.1016/j.joca.2014.04.017 
[PubMed: 24792208] 

7. Souza RB, Baum T, Wu S, Feeley BT, Kadel N, Li X, et al. Effects of unloading on knee articular 
cartilage T1rho and T2 magnetic resonance imaging relaxation times: a case series. J Orthop Sports 
Phys Ther. 2012; 42(6):511–20. DOI: 10.2519/jospt.2012.3975 [PubMed: 22402583] 

8. Calixto NE, Kumar D, Subburaj K, Singh J, Schooler J, Nardo L, et al. Zonal differences in 
meniscus MR relaxation times in response to in vivo static loading in knee osteoarthritis. J Orthop 
Res. 2016; 34(2):249–61. DOI: 10.1002/jor.23004 [PubMed: 26223430] 

9. Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B. Computed tomography-
osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of 
long-term mechanical adaptation in individual joints. Skeletal Radiol. 1989; 18(7):507–12. 
[PubMed: 2588028] 

10. Muller-Gerbl M, Putz R, Kenn R. Demonstration of subchondral bone density patterns by three-
dimensional CT osteoabsorptiometry as a noninvasive method for in vivo assessment of individual 
long-term stresses in joints. J Bone Miner Res. 1992; 7(Suppl 2):S411–8. DOI: 10.1002/jbmr.
5650071409 [PubMed: 1485549] 

Rossi-deVries et al. Page 11

J Magn Reson Imaging. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11. Lum PY, Singh G, Lehman A, Ishkanov T, Vejdemo-Johansson M, Alagappan M, et al. Extracting 
insights from the shape of complex data using topology. Sci Rep. 2013; 3:1236.doi: 10.1038/
srep01236 [PubMed: 23393618] 

12. Lakshmikanth T, Olin A, Chen Y, Mikes J, Fredlund E, Remberger M, et al. Mass Cytometry and 
Topological Data Analysis Reveal Immune Parameters Associated with Complications after 
Allogeneic Stem Cell Transplantation. Cell Rep. 2017; 20(9):2238–50. DOI: 10.1016/j.celrep.
2017.08.021 [PubMed: 28854371] 

13. Kyeong S, Kim JJ, Kim E. Novel subgroups of attention-deficit/hyperactivity disorder identified by 
topological data analysis and their functional network modular organizations. PLoS One. 2017; 
12(8):e0182603.doi: 10.1371/journal.pone.0182603 [PubMed: 28829775] 

14. Lin HH, Zhang LL, Yan R, Lu JJ, Hu Y. Network Analysis of Drug-target Interactions: A Study on 
FDA-approved New Molecular Entities Between 2000 to 2015. Sci Rep. 2017; 7(1):12230.doi: 
10.1038/s41598-017-12061-8 [PubMed: 28947756] 

15. Nielson JL, Paquette J, Liu AW, Guandique CF, Tovar CA, Inoue T, et al. Topological data analysis 
for discovery in preclinical spinal cord injury and traumatic brain injury. Nat Commun. 2015; 
6:8581.doi: 10.1038/ncomms9581 [PubMed: 26466022] 

16. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957; 
16(4):494–502. [PubMed: 13498604] 

17. Nilsdotter AK, Lohmander LS, Klassbo M, Roos EM. Hip disability and osteoarthritis outcome 
score (HOOS)–validity and responsiveness in total hip replacement. BMC Musculoskelet Disord. 
2003; 4:10.doi: 10.1186/1471-2474-4-10 [PubMed: 12777182] 

18. Gallo MC, Wyatt C, Pedoia V, Kumar D, Lee S, Nardo L, et al. T1rho and T2 relaxation times are 
associated with progression of hip osteoarthritis. Osteoarthritis Cartilage. 2016; 24(8):1399–407. 
DOI: 10.1016/j.joca.2016.03.005 [PubMed: 26973330] 

19. Lee S, Nardo L, Kumar D, Wyatt CR, Souza RB, Lynch J, et al. Scoring hip osteoarthritis with 
MRI (SHOMRI): A whole joint osteoarthritis evaluation system. J Magn Reson Imaging. 2015; 
41(6):1549–57. DOI: 10.1002/jmri.24722 [PubMed: 25139720] 

20. Schwaiger BJ, Gersing AS, Lee S, Nardo L, Samaan MA, Souza RB, et al. Longitudinal 
assessment of MRI in hip osteoarthritis using SHOMRI and correlation with clinical progression. 
Semin Arthritis Rheum. 2016; 45(6):648–55. DOI: 10.1016/j.semarthrit.2016.04.001 [PubMed: 
27162009] 

21. Li X, Majumdar S. Quantitative MRI of articular cartilage and its clinical applications. J Magn 
Reson Imaging. 2013; 38(5):991–1008. DOI: 10.1002/jmri.24313 [PubMed: 24115571] 

22. Carballido-Gamio J, Bauer J, Lee KY, Krause S, Majumdar S. Combined image processing 
techniques for characterization of MRI cartilage of the knee. Conf Proc IEEE Eng Med Biol Soc. 
2005; 3:3043–6. DOI: 10.1109/IEMBS.2005.1617116 [PubMed: 17282885] 

23. Carballido-Gamio J, Bauer JS, Stahl R, Lee KY, Krause S, Link TM, et al. Inter-subject 
comparison of MRI knee cartilage thickness. Med Image Anal. 2008; 12(2):120–35. DOI: 
10.1016/j.media.2007.08.002 [PubMed: 17923429] 

24. Carballido-Gamio J, Link TM, Li X, Han ET, Krug R, Ries MD, et al. Feasibility and 
reproducibility of relaxometry, morphometric, and geometrical measurements of the hip joint with 
magnetic resonance imaging at 3T. J Magn Reson Imaging. 2008; 28(1):227–35. DOI: 10.1002/
jmri.21411 [PubMed: 18581346] 

25. Pedoia V, Gallo MC, Souza RB, Majumdar S. Longitudinal study using voxel-based relaxometry: 
Association between cartilage T1rho and T2 and patient reported outcome changes in hip 
osteoarthritis. J Magn Reson Imaging. 2017; 45(5):1523–33. DOI: 10.1002/jmri.25458 [PubMed: 
27626787] 

26. Pedoia V, Samaan MA, Inamdar G, Gallo MC, Souza RB, Majumdar S. Study of the interactions 
between proximal femur 3d bone shape, cartilage health, and biomechanics in patients with hip 
Osteoarthritis. J Orthop Res. 2017; doi: 10.1002/jor.23649

27. Samaan MA, Teng HL, Kumar D, Lee S, Link TM, Majumdar S, et al. Acetabular cartilage defects 
cause altered hip and knee joint coordination variability during gait. Clin Biomech (Bristol, Avon). 
2015; 30(10):1202–9. DOI: 10.1016/j.clinbiomech.2015.08.003

Rossi-deVries et al. Page 12

J Magn Reson Imaging. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



28. Spoor CW, Veldpaus FE. Rigid body motion calculated from spatial co-ordinates of markers. J 
Biomech. 1980; 13(4):391–3. [PubMed: 7400168] 

29. Liebl H, Joseph G, Nevitt MC, Singh N, Heilmeier U, Subburaj K, et al. Early T2 changes predict 
onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Ann Rheum Dis. 
2015; 74(7):1353–9. DOI: 10.1136/annrheumdis-2013-204157 [PubMed: 24615539] 

30. Kumar D, Wyatt CR, Lee S, Nardo L, Link TM, Majumdar S, et al. Association of cartilage 
defects, and other MRI findings with pain and function in individuals with mild-moderate 
radiographic hip osteoarthritis and controls. Osteoarthritis Cartilage. 2013; 21(11):1685–92. DOI: 
10.1016/j.joca.2013.08.009 [PubMed: 23948977] 

31. Eitzen I, Fernandes L, Nordsletten L, Risberg MA. Erratum: Sagittal plane gait characteristics in 
hip osteoarthritis patients with mild to moderate symptoms compared to healthy controls: a cross-
sectional study. BMC Musculoskelet Disord. 2015; 16:52.doi: 10.1186/s12891-015-0483-8 
[PubMed: 25887966] 

32. Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the 
acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J 
Bone Joint Surg Br. 2005; 87(7):1012–8. DOI: 10.1302/0301-620X.87B7.15203 [PubMed: 
15972923] 

33. Anderson LA, Peters CL, Park BB, Stoddard GJ, Erickson JA, Crim JR. Acetabular cartilage 
delamination in femoroacetabular impingement. Risk factors and magnetic resonance imaging 
diagnosis. J Bone Joint Surg Am. 2009; 91(2):305–13. DOI: 10.2106/JBJS.G.01198 [PubMed: 
19181974] 

34. Ganz R, Leunig M, Leunig-Ganz K, Harris WH. The etiology of osteoarthritis of the hip: an 
integrated mechanical concept. Clin Orthop Relat Res. 2008; 466(2):264–72. DOI: 10.1007/
s11999-007-0060-z [PubMed: 18196405] 

35. Samaan MA, Pedoia V, Zhang AL, Gallo MC, Link TM, Souza RB, et al. A novel mr-based 
method for detection of cartilage delamination in femoroacetabular impingement patients. J 
Orthop Res. 2017; doi: 10.1002/jor.23667

36. Suarez-Ahedo C, Gui C, Rabe SM, Walsh JP, Chandrasekaran S, Domb BG. Relationship Between 
Age at Onset of Symptoms and Intraoperative Findings in Hip Arthroscopic Surgery. Orthop J 
Sports Med. 2017; 5(11) 2325967117737480. doi: 10.1177/2325967117737480

37. Kim YH. Acetabular dysplasia and osteoarthritis developed by an eversion of the acetabular 
labrum. Clin Orthop Relat Res. 1987; 215:289–95.

Rossi-deVries et al. Page 13

J Magn Reson Imaging. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Combined network of morphological MRI, biomechanics, compositional MRI, and 
bone shape analysis
Each circle, or ‘node’, represents a subject or a collection of subjects. If two subjects are 

similar they are put together in the same node and if two nodes have enough in common they 

are connected by a line, or an ‘edge.’ The proximity of each node to another as well as the 

number of edges between two nodes represents the relative similarity of the subjects 

contained in each node. This network is color coded by subjects per node: Single subject 

nodes are expressed in blue and scale upwards towards red if a node has more subjects.
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Figure 2. Combined network of morphological MRI, biomechanics, compositional MRI, and 
bone shape analysis
a–c The same network is colored by KL grade, Total Cartilage Score, and Age. The 

combined network shows a pattern of standard signs of OA in the upper section of the 

network. Figure 2d shows severe patients appearing in the upper portion subnetwork1 
(circled with a blue line) and less severe in the lower portion based on the visual inspection 

of the combination of the three images a-c.
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Figure 3. Combined network of morphological MRI, biomechanics, compositional MRI, and 
bone shape analysis
The same network is colored by (A) T1ρ and T2 Acetabular Progression, (B) T1ρ and T2 

Femoral, (C) HOOS Pain Progression. Based on visual inspection of a-c: Figure 3d 
shows inconsistent progression patients appearing in the lower left portion subnetwork2 
(circled with a blue line) and consistent progression patients in the upper part of the 

network.
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Figure 4. Final subdivision of the network
Subnetwork1 is made up of cohorts with high radiographic, morphological, compositional 

and symptomatic characteristics typical of OA. Subnetwork3 is made up of cohorts with 

low radiographic, morphological, compositional, and biomechanical characteristics typical 

of a healthy cohort. Subnetwork2 is made up of cohorts with typically lower knee kinetics 

and kinematics as well as (a)high symptomatic progression and (b)high compositional 

progression.
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Figure 5. Combined network of morphological MRI, biomechanics, compositional MRI, and 
bone shape analysis
The same network is colored by (a) Group During Recruitment, (b)Total Labrum Score, 
(c) Anterior Labrum Score. Based on visual inspection of Figure 5a: FAI patients are 

spread in both subnetwork1 and subnetwork3. Figure 5b and Figure 5c show similar 

coloring pattern to the KL colored network in Figure 2a.
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Table 1

Demographics

Demographic characteristics (n=102)

T1ρ/T2 Acetabular : Non Progressor (n=69) Progressor (n=27) P-value

 Age (avg±std) 43.1±13.4 years 47.0±14.1 years 0.25

 Gender (F/M, %) 36 male (52%) 16 male (59%) 0.49

 BMI (avg±std) 23.8±2.9 kg/m^2 24.1±3.5 kg/m^2 0.63

T1ρ/T2 Femoral : Non Progressor (n=72) Progressor (n=28) P-value

 Age (avg±std) 43.5±13.3 years 46.9±13.5 years 0.21

 Gender (F/M, %) 37 male (52%) 15 male (54%) 0.90

 BMI (avg±std) 23.7±2.9 kg/m^2 23.8±3.4 kg/m^2 0.94

HOOS Pain : Non Progressor (n=83) Progressor (n=19) P=value

 Age (avg±std) 42.6±13.3 50±13.8 0.03

 Gender (F/M, %) 45 male (54%) 11 male (58%) 0.77

 BMI (avg±std) 23.8±3.1 kg/m^2 23.8±2.7 kg/m^2 0.98
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Table 2

a Subnetwork 1 compared to rest of cohort

ID Variable P-value KS Score Mean sub network1-rest

75 t0_SHOMRI_TotalCartilageScore 4.09E-10 0.7125 5.9

90 t0_SHOMRI_Total 2.12E-08 0.646428571 15.1

2 age 2.77E-07 0.598214286 13.4

41 t0_Coronal_SHOMRI_CartilageLesion.FL 3.10E-07 0.595535714 0.879

39 t0_Coronal_SHOMRI_CartilageLesion.ASL 3.66511E-06 0.547321429 0.829

42 t0_Coronal_SHOMRI_CartilageLesion.FSL 3.66511E-06 0.547321429 0.752

61 t0_Coronal_SHOMRI_ligamentumteres 6.09737E-06 0.535714286 1.01

63 t0_Sagittal_SHOMRI_CartilageLesion.AA 1.80376E-05 0.513392857 0.749

89 t0_SHOMRI_MiscTotal 3.50739E-05 0.498214286 1.34

65 t0_Sagittal_SHOMRI_CartilageLesion.FA 3.85077E-05 0.496428571 0.653

43 t0_Coronal_SHOMRI_CartilageLesion.FSM 0.000125043 0.467857143 0.689

138 t0_KneeKinetics_ExMImp2 0.000349274 0.458333333 22.7

81 t0_SHOMRI_TotalLabrumScore 0.000571268 0.430357143 4.3

44 t0_Coronal_SHOMRI_CartilageLesion.FIM 0.000619218 0.428571429 0.46

80 t0_Labrum_SHOMRI_ObliqueAxial.PL 0.000920998 0.416964286 0.809

9 KL GRADE 0.001256214 0.417888563 1.04

62 t0_Coronal_SHOMRI_SLL 0.001356221 0.40625 1.69

40 t0_Coronal_SHOMRI_CartilageLesion.ASM 0.001578859 0.402678571 0.516

b Subnetwork 2 compared to rest of cohort

ID Variable P-value KS Score Mean subnetwork2-rest

131 t0_KneeKinetics_PeakFlexM1 4.91E-08 0.613553114 0.25

133 t0_KneeKinetics_FlexMImp1 5.40E-07 0.56959707 −0.434

138 t0_KneeKinetics_ExMImp2 5.51162E-06 0.522893773 −31.4

41 t0_Coronal_SHOMRI_CartilageLesion.FL 1.34834E-05 0.486549708 −0.753

134 t0_KneeKinetics_FlexMImp2 1.63767E-05 0.5 −32.3

75 t0_SHOMRI_TotalCartilageScore 5.57266E-05 0.45497076 −3.87

137 t0_KneeKinetics_ExMImp1 6.68772E-05 0.470695971 −16.9

144 t0_KneeKinetics_PeakERM 0.000193187 0.445970696 0.0578

122 t0_KneeKinematics_PeakFlexAngle 0.000485635 0.423076923 5.38

127 t0_KneeKinematics_PeakAbduction 0.002467246 0.379120879 2.32

125 t0_KneeKinematics_FlexInitialContact 0.004691266 0.358974359 3.08

63 t0_Sagittal_SHOMRI_CartilageLesion.AA 0.008082509 0.330994152 −0.412

135 t0_KneeKinetics_PeakExM1 0.009223018 0.33974359 0.0798

65 t0_Sagittal_SHOMRI_CartilageLesion.FA 0.009223018 0.326315789 0.437

90 t0_SHOMRI_Total 0.011208835 0.320467836 −8.55

123 t0_KneeKinematics_SagExcursion 0.011952043 0.330586081 −2.3
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b Subnetwork 2 compared to rest of cohort

ID Variable P-value KS Score Mean subnetwork2-rest

145 t0_HipKinematics_PeakFlex 0.013573266 0.326007326 −3.64
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