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THEORETICAL POPULATfON BIOLOGY 4, 331-356 (1973) 

Competition Between Species: 
Theoretical Models and Experimental Tests* 

FRANCISCO J. AYALA 

Department of Genetics, University of CaIifornia, Davis, Califotnia 9.5626 

MICHAEL E. GILPIN 

Department of Entomology, University of California, Davis, California 95616 

AND 

JOAN G. EHRENFELD 

Department of Biology, City College of New York, New York, New York 10031 

Received August 18, 1972 

Experimental determinations of Drosophila population dynamics cannot be 
explained by the Lo&a-Volterra model of interspecific competition. This paper 
presents other possible mathematical models of competition between species, 
and gives the results of experiments designed to test the validity of such models. 
Eight of the ten new models presented contain the Lotka-Volterra model as 
a special case. The experiments made to test the models are of two kinds. Type 1 
experiments are continuous one- or two-species populations, which permit the 
estimation of the carrying capacity of each species and the numbers of the two 
species at the point of stable equilibrium. Type 2 experiments measure the 
change in numbers over a short time interval in populations started with many 
different initial densities of the two species. Type 2 experiments give information 
on the dynamics of the two-species system in the phase plane whose coordinates 
are the number of individuals of each species. The models accounting best for 
the results are models five and seven (Table II). Each of these two models 
contains one parameter more than the Lotka-Volterra model. Model five adds 
a nonlinear term of self-interaction (-Fiji,*). Model seven has the form, 
dN&ft = rlN/er(K$ - Np - c~~~lv,/K:-a*). The exponential parameter 0 
removes the restriction of the logistic theory of population growth, that each 
individual added to the population decrease the rate of growth of the population 
by a constant amount. With model seven the rate of growth of a population of 
a single species need not have its maximum at K/2, that is when the number of 
individuals is half the carrying capacity of the environment. 

* Research supported by NSF grant GB 20694 and by AEC contracts AT(30-1)3096 
and AT(04-3)-34. 
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1. INTRODUCTION 

Lotka (1924) and Volterra (1931) proposed independently a now widely used 
model of interspecies competition: 

dNJdt = (riNi/Ki)(Ki - Ni - aijNj), i#j 

where Ni is the number of individuals of species i (SJ at time t, ri is the innate 
capacity of increase per individual of the organisms of species i, olij is the 
coefficient of competition of an individual of species j on an individual of 
species i, and I(i is the carrying capacity of the environment for Si, that is, 
the number of Si individuals that satisfies dN,/dt = 0, ri , Ni > 0, when no 
individuals of other competing species are present. 

The Lotka-Volterra model is based on the logistic theory of population 
growth and is subject to the same serious criticisms as the logistic theory since 
it does not take into account the age of organisms, their sex, nor genetic differ- 
ences between them. It also ignores time lags and assumes that competitive 
interactions, both intra- and interspecific, are linear. 

Despite these limitations, the model is widely used. It does give a fair repre- 
sentation of competition between protozoan species (Gause, 1934; Slobodkin, 
1961; Vandermeer, 1969). And MacArthur (1970) has argued that the model is 
always applicable near an equilibrium point. Yet these considerations do not 
explain why the Lotka-Volterra model should be almost the only model of 
competition, when, for predation, there are a host of alternative models (Royama, 
1971; Rosenzweig, 1971). Perhaps the reason for this state of a&airs is that 
with competition models there are always one or more stable equilibrium points 
(including the axial points where only one species exists); and as parameter 
values are changed in a continuous fashion, the location of the stable equilibrium 
point(s) shifts also in a continuous fashion. With predation, however, funda- 
mentally different outcomes are possible: a stable steady state, extinction of one 
or both of the populations, Lotka-Volterra oscillations, or stable limit cycles. 
By changing the parameters in a continuous fashion, it is possible to produce 
a discontinuous change in the outcome of a predator-prey system. 

Because all competition models must have the same kind of behavior, i.e., 
convergence to a stable equilibrium point, it is difficult to distinguish between 
alternative models. When two species compete for the same limiting resources 
in a closed system, one is often at a definite advantage; the other species is then 
eliminated fairly rapidly. Under such conditions it is virtually impossible to 
test the Lotka-Volterra model against any other model, for only a few points 
may be obtained, and the experimental error is often large. Thus the parameters 
of the Lotka-Volterra model may always be fitted to the data within the experi- 
mental accuracy. 
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It is possible, however, to test the validity of the Lotka-Volterra model by 
working with experimental systems where the competing species coexist at an 
equilibrium. One may deduce relationships that must exist between the param- 
eters of the Lotka-Volterra model for a stable coexistence. Obviously, if two 
species are to coexist, each species must be able to increase its population 
density when it is rare (MacArthur, 1972). By assuming that when one species 
is rare the other will be at a density no greater than its carrying capacity, it is 
possible to derive from Eqs. (1) the following inequalities that are necessary 
and sufficient for coexistence (cf. Gause and Witt 1935; Ayala 1970): 

~12 < WK2 1 a21 < K2IK1 - (2) 

From these the following necessary condition may be obtained 

%2"21 < 1. (3) 

It is also possible to derive a second necessary condition, one that has a graphical 
interpretation. On the phase plane of a two species competitive system, the 
equilibrium must occur above the straight line connecting the two carrying 
capacities, that is, the phase plane points (Kl , 0) and (0, K.J. That is, according 
to the Lotka-Volterra model, a stable equilibrium can only occur if the compe- 
tition is only “conditional” (Ayala 1972). 

This experimental approach was followed by Ayala (1969), who worked with 
two species of Drosophila. He showed that a stable coexistence of D. pseudo- 
obscura and D. serrata occurs without satisfying the conditions listed above. 
Since then, we have conducted experiments with different strains of several 
pairs of Drosophila species. The results are summarized in Table I. In all these 
eight combinations a stable equilibrium occurs, yet the necessary condition 
o~i~%i < 1 is false in seven cases. 

In Fig. 1, the phase planes of the same eight cases are shown. Again, in seven 
of the eight cases, the necessary condition that the equilibrium point lie above 
the straight line connecting the carrying capacities is false. That is, in seven 
out of eight combinations, the competition is “unconditional” and yet a stable 
equilibrium occurs. It should be noted that five of the eight combinations of 
two species were replicated several times. Thus, these experiments show that 
the Lotka-Volterra equations are invalid for Drosophila competition, and, there- 
fore, that those equations lack generality. These experiments do not, however, 
suggest different and perhaps more general models of competition. 

An experimental approach to obtain more information about the dynamics 
of the competition consists in estimating the response of the competitive system. 
That is, to measure the dNJdt at various different combinations of Ni and Nj . 
With sufficient replication and wise selection of the initial Ni , Ni points, a fair 
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FIG. 1. Carrying capacities (open circles) and stable two-species equilibrium points 

(closed circles) for eight combinations of two species of Drosophila. The numbers 1 to 8 
refer to the code numbers in Table I. In each case the numbers of the first species listed 
in Table I are given along the ordinate; those of the second species along the abscissa. 
Each division along the coordinates corresponds to 250 flies. In all cases but the last one, 
the point of stable two-species equilibrium falls below the straight line joining the 
carrying capacities. 

estimation of the functional nature of the dynamic response of the system may 
be experimentally obtained. Since it is not experimentally feasible to divide 
time into infinitesimally small units, Eq. (1) may be alternatively put: 

Ni(t + At) = N<(t) + dt(riNi/&)(Ki - J!Vi - O+Nj) (4) 

Similarly, any other models given in the form of differential equations can be 
transformed into difference equations, and tested against the experimental 
measurements. 

This method was used by Ayala (1971), who found that for a particular 
total density (IV6 + N3) the competitive fitnesses of the two competing Drosophikz 
species were inversely related to their relative frequency. Gilpin and Justice 
(1972) used the same data to produce a phenomenological model of Drosophila 
competition. Since then we have used the same method, varying both frequency 
and total density, to obtain a more complete description of the dynamic response 
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of a Drosophila system. These data have been used to test a variety of models 
of competition that have greater generality than the Lotka-Volterra model. 

2. THE MODELS 

A theoretical model is an intellectual construct purporting to describe some 
general phenomenon of nature. A mathematical model contains a set of param- 
eters and state variables mutually interrelated by more or less precisely specified 
functions. Levins (1966) has pointed out that ideally a model should maximize 
generality, realism and precision. It is often not possible to maximize simul- 
taneously those three properties of a model, but the usefulness of a model 
depends on how nearly it maximizes them. We believe that the usefulness of 
a model depends also on its simplicity-it should contain as few parameters 
as possible and yet describe the essential aspects of the reality under considera- 
tion. Our requirement of simplicity implies that all parameters in the model 
should be sufficient in Levins’ sense. An additional requirement of a biological 
model is that the parameters of the model should have a reasonable biological 
interpretation. The Lotka-Volterra model of interspecific competition has 
been shown to be appropriate to describe the competition between certain 
organisms (see above). We then require, as a final constriction, that an acceptable 
model of interspecific competition should preferably reduce to the Lotka- 
Volterra model as a special case. 

A competition model is a set of differential or difference equations whose 
solution gives the time trajectory of the state of the system. Such a model has 
the following general functional form: 

dN,/dt = Di[Ni(t), N,(t); ri , Ki , aij , ,3ii ,... ] 

where Di is an unspecified function giving the population change per unit time, 
Ni and Nj , are respectively the numbers of species i and j at time t, and ri , 
Ki , olij , Bij , etc., are certain parameters whose values are independent of time. 
We assume that some essential environmental resource is limiting, that is, that 
the species cannot grow indefinitely. The competition function must then 
contain at least three such time-independent parameters, since it takes two 
parameters to model single species population growth when the environment 
has a limited carrying capacity, and a third is necessary to account for the com- 
petition. The Lotka-Volterra model- is the simplest model of interspecific 
competition, as it is a linear three-parameter model. 

Table II presents eleven models which we have chosen for various reasons 
and thought worth testing experimentally. There are three models with three 
parameters each, four models with four parameters, an additional three models 
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TABLE II 

Eleven Models of Interspecific Competition 

Model 
number Function 

Number of 
parameters 

1 (riNi/KJ(Ki - Ni - cxuNj) 3 

2 (riNi/log(Ki)>(log(K~) - WNJ - aii WNd 3 

3 (riNi/K;‘“)(K:‘” - N,!la - c~~N~/ic,!‘~) 3 

4 (r&‘JJKJ(& - Ni - d’i - Bd’JNJ 4 

5 (r,Ni/Ki)(Ki - Ni - CQN~ - jiN“) 4 

6 (rgN</Ki)(K‘ - Ni - ~sJN~ - BjNj’) 4 

7 (riNs/K$)(Kfi - Nfd - LQN,/K~-~~) 4 

8 (r,Ns/Ki)(K, - Ni - atiN, - &(l - e-yiN$)) 5 

9 (riN,/Kj)(K, - Nd - oiiN, - fi,(l - e-Wr)) 5 

10 (riNJK<)(Ki - Ni - a,N, - b,jNiNj - B<NsB) 5 

11 (r,N,/KJ(K* - Ni - qjN, - /3,,N,N, - SiNi - nN,*) 6 

with five parameters, and one model with six parameters. The first model in 
Table II is the Lotka-Volterra model of interspecific competition. Models four 
to eleven contain the Lotka-Volterra model as a special case. A variety of models 
besides those in Table II were also tested, most of them being extensions and 
recombinations of the eleven listed. They have not been included in the table 
because they gave no better fit than similar models with fewer parameters. The 
biological interpretation of the parameters in our models will be discussed 
below. Table III summarizes some relevant properties of the models given in 
Table II. 

3. EXPERIMENTAL TESTS 

To test our models we have used the two types of experiments described 
above. Type 1 experiments consist of populations which are started under 
specified conditions, and allowed to follow their own course for many genera- 
tions. We have chosen two Drosophila species and a set of environmental condi- 
tions which permit stable competitive coexistence between them. Type 1 
experiments started with single species provide estimates of K1 and K, . Popula- 
tions started with two species estimate the values, m1 and Ns , at which a stable 
equilibrium between the two species occurs. 
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TABLE III 

Analysis of the Eleven Models of Interspecific Competition 

Model 
number 

Is the Lotka-Volterra Can the model be fitted Do all the terms of 
model a special case with linear regression the model have bio- 

of this model ? techniques ? logical significance ? 

1 Yes 

2 No 

3 No 

4 Yes 

5 Yes 

6 Yes 

7 Yes 

8 Yes 

9 Yes 

10 Yes 

11 Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Type 2 are short-time experiments. Flies of the two species are placed together 
at variable densities. The change in numbers after a fixed time interval estimates 
the vector describing the dynamics of the system at the initial densities. In the 
plane defined by coordinates which represent the numbers of each species, 
experiments of Type 2 permit a division of the first quadrant into four areas 
according to whether the growth of one or the other species, both species or 
none is positive. 

The two species used in our experiments are Drosophila pseudoobscura, 
strain 211 and D. willistoni strain Ml1 (Mourfo and Ayala, 1971). All experi- 
ments were conducted at 21.5”C, in half-pint (0.24 liter) milk bottles, with 30 cc 
of standard Spassky’s medium as food. For Type 1 experiments we use the 
“serial transfer” technique (Ayala 1965). Adult flies are introduced into a 
culture bottle with food; egg laying is allowed for seven days, then the surviving 
adults are counted under anesthesia and transferred to a fresh culture bottle 
for another seven days. The process is repeated every seven days. When adult 
flies begin to emerge in the cultures where eggs were laid, they are collected 
and counted under anesthesia, and then added to the culture with the adult 
population. The newly emerged flies are collected and counted on the same 
day in which the surviving flies in the adult population are counted and trans- 
ferred to a fresh culture. The cultures are discarded five weeks after the adult 
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I 33 70 I 105 I 140 175 210 245 
280 

1 
315 350 

DAYS 

FIG. 2. Percent frequency of Drosophila pseudoobscura in competition with D. 
willistoni in three populations (Type 1 experiments) started with different frequencies. 

TABLE IV 

Mean Numbers of Flies and Standard Errors in Three “Type 1” Competition 
Populations (Means are calculated for measurements from day 70 to 364) 

Initial Population 
Species densities Survivorship Recruitment size 

D. willistoni 200 372 f 17 318 + 17 690 30 f 
D. pseudoobscura 800 265 -+ 16 115 f 10 380 18 f 

D. willistoni 500 361 f 19 311 * 20 672 33 f 
D. pseudoobscura 500 284 f 17 126 5 10 410 18 f 

D. willistoni 800 347 i 20 260 f 14 608f31 
D. pseudoobscura 200 277 & 16 130 f 12 407% 19 

D. willistoni Mean 360+ 11 297 f 10 657 18 f 
D. pseudoobscura 275 f 9 123 + 6 399 11 f 

flies are first introduced. A population consists, then, of five cultures. One 
culture bottle contains the ovipositing flies, whereas the four other bottles 
contain eggs, larvae, pupae, and newly emerged adults. The parameters measured 
are: the number of flies surviving after one week in the culture containing the 
adult flies (“survivorship”), and the number of flies emerging per week (“recruit- 
ment”). The sum of the number of flies surviving from the previous week plus 
the number that has emerged during the week (“total”) constitutes the initial 
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number for the new week. The “total” number is what is considered the size 
of the population. 

Nine populations of Type 1 were established. Three were “competition” 
populations. They were started with a total of 1,000 flies. The initial frequency 
of D. pseudoobscura was 20% in one population, 507; in a second, and 8076 in 
a third. The other species was D. willistoni. The populations were studied for 
one year, or about 15 generations. The frequency of D. pseudoobscura among the 
total number of flies is shown in Fig. 2. It is clear that competitive fitness is 
frequency-dependent. D. pseudoobscura rapidly increases in frequency in the 
populations where its initial frequency is 20%, but decreases where its initial 
frequency is 80 %. The frequencies of D. pseudoobscura rapidly converge. From 
about day 90 until the end of the experiment, the frequency of D. pseudo- 
obscura oscillates around a mean value of about 38%. The mean numbers of 
flies in each of the three populations and their averages are given in Table IV. 
The three populations can be treated as replicates since they are not significantly 
heterogeneous. 

TABLE V 

Mean Numbers of Flies and Standard Errors in Three “Type-l” Single-Species 
Populations (Means are calculated for measurements from day 70 to 364) 

Species 
Initial 

density Survivorship Recruitment 
Population 

size 

D. willistoni 
D. willistoni 
D. willistoni 
D. willistoni 

D. pseudoobscura 
D. pseudoobscura 
D. pseudoobscura 
D. pseudoobscura 

200 903 f 25 
500 881 + 31 
800 790 f 39 
Mean 858 * 21 

200 607 f 27 
500 616 f 31 
800 598 i 26 
Mean 607 i 16 

587 * 31 
576 * 28 
527 * 25 
564 + 16 

169 jz 14 
163 * 13 
163 * 13 
165 f 8 

1490 + 54 
1457 f 48 
1317 f 59 
1421 f 32 

776 f 35 
779 f 38 
761 f 34 
772 f 20 

Three Type 1 populations were established with D. pseudoobscura and three 
others with D. willistoni. In each set, one population was started with 200 flies, 
another with 500, and a third with 800 flies. Within each set the numbers of 
flies in the three populations converge rapidly. The mean numbers of flies for 
each population and the averages for each species are given in Table V. 

Type 2 experiments are conducted as follows. Adult flies in given densities 
are placed in a culture with medium as above. After seven days the survivors 
are counted and discarded. The flies emerging from that bottle until the end 
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TABLE VI 

“Type 2” Experiments of 1969-1970 (Mean numbers of flies and standard error for 
survivorship, recruitment, and total, at various initial densities of 

two species of Drosophila. rz is the number of replications) 

Species 
Initial Survivors after 

number n one week Recruitment 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

200 
800 

500 
500 

800 
200 

200 
0 

500 
0 

800 
0 

1000 
0 

0 
200 

0 
500 

0 
800 

0 
1000 

54 

52 

54 

24 

24 

24 

20 

24 

24 

24 

20 

101 * 4 168 & 10 
563 * 11 164 f 15 

277 * 8 315 f 19 
359 & 8 183 f 14 

465 f 14 501 f 23 
152 f 2 168 f 11 

154 f 5 491 f 25 
- - 

287 f 3 
727 f 8 

592 f 2 
541 f 9 

966 f 41 
320 + 8 

645 f 25 
- 

363 & 14 725 I-t 38 
- - 

547 f 26 728 f 55 
- - 

650 f 26 768 f 28 
- - 

1088 f 39 
- 

1276 f 59 
- 

1419 f 38 
- 

- - 

161 f 4 306 f 21 

- - 

397 f 7 260 f 22 

- - 

606 f 16 231 f 24 

- 

467 2~ 20 

- 

656 f 23 

- 

837 & 28 

759 f 20 172 f 18 931 & 27 

Total 

of week five are also counted. The sum of the number of survivors plus the 
number of flies emerging from the bottle estimates the total number of flies 
after one week in populations of Type 1 which at a certain point in time would 
have the initial densities of the Type 2 populations. In other words, we are 
estimating dNildt for a period of one week, at given initial values of Ni and N, . 
It should be pointed out that the flies used for each Type 2 experiment were 
developed in cultures where the two species competed at precisely the densities 
used in the experiment. 



342 AYALA, GILPIN AND EHRENFELD 

TABLE VII 

“Type 2” Experiments of 1970-1971 (Mean numbers of flies and standard errors for 
survivorship, recruitment, and total, at various initial densities of 

two species of Drosophila. n is the number of replications) 

Initial Survivors after 
Species number n one week Recruitment Total 

- 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistom’ 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

D. willistoni 
D. pseudoobscura 

100 
1400 

200 
400 

200 
600 

200 
1000 

200 
1200 

200 
1400 

400 
400 

400 
600 

400 
800 

800 
600 

800 
800 

1200 
60 

1200 
200 

1200 
400 

1600 
loo 

15 

15 

20 

20 

15 

18 

15 

21 

20 

21 

14 

20 

19 

20 

18 

34 * 2 
777 f 28 

116+5 
294 f 7 

104 f 6 
404 f 15 

94 f 6 
636 f 36 

19 * 7 
670 f 50 

6Of6 
644 f 48 

235 i 11 
291 I 7 

214 f 12 
413 f 16 

196 f 13 
496 f 21 

406 zt 26 
369 f 22 

332 zt 26 
445 f 35 

741 5 28 
44Yttl 

721 zt 39 
134 21 6 

679 f 35 
243 f 13 

805 f 39 
68 zt4 

35 & 7 68 f 7 
153 f 10 930 f 28 

172 i 21 287 + 21 
252 f 14 545 f 14 

136 f 19 240 f 21 
135 f 15 539 f 25 

122 f 21 216 & 24 
107 f 11 743 f 24 

73 f 15 151 f 20 
98 i: 11 768 f 53 

45 f 12 105 f 15 
87 f 10 731 f 47 

356 & 34 591 f 40 
157 rt 21 448 i 24 

180 f 25 394 & 27 
118 f 14 531 f 26 

186 f 26 382 f 32 
109 f 15 605 f 28 

241 i 29 647 i 41 
85 f 10 455 f 29 

175 A 23 507 f 42 
82 f 13 527 f 43 

499 f 26 1240 -+ 40 
42 f 5 86 f 5 

416 +I 37 1137 f 55 
70 f 8 204 f 13 

362 f 30 1041 f 52 
56 f 6 298 f 17 

340 f 17 1145 f 47 
68 f 8 136 f 8 

(Table contimsed) 



COMPETITION: MODELS AND EXPERIMENTS 343 

TABLE VII (continued) 

Initial 
Species number 

D. willistoni 1600 
D. pseudoobscura 300 

D. willistoni 1800 
D. pseudoobscura 100 

D. willistoni 2200 
D. pseudoobscura 100 

D. willistoni 2600 
D. pseudoobscura 100 

D. willistom’ 1400 
D. pseudoobscura 0 

D. willistoni 1600 
D. pseudoobscura 0 

Survivors after 
n one weak 

17 749 + 28 
167 f 7 

15 950 f 36 
68 * 4 

10 1090&96 
62 * 5 

10 1216 f 100 
52 f 6 

20 910 f 47 
- 

21 922 f 45 
- 

Recruitment Total 

262 i 22 1011 f 31 
50 f 5 217 rt 10 

326 & 24 1277 h 45 
58 f 8 126 f 11 

581 f 57 1671 f 138 
21 f 5 83 f 6 

519 f 50 1735 f 143 
29 f 6 81 f 9 

556 f 22 1466 f 55 
- - 

434 f 28 1356 f 56 
- - 

A wiNisfoni 

FIG. 3. Computer-drawn displacement vectors showing the change in numbers of 
flies from 19 different initial densities of two species, Drosophila pseudoobscura and 
D. willistoni (Type 2 experiments). The dots indicate the initial densities; the tip of the 
vector indicates the density after one week. Each division along the coordinates corresponds 
to 200 flies. 

Type 2 experiments were conducted in two sets. The first set of experiments 
was conducted during 1969-1970; the second set was conducted one year 
later and by a diierent person. The results are given in Tables VI and VII. 
We have kept these results separately. As it will be shown later the results of 
both sets are not perfectly mutually consistent. We obtain a better fit of the 

6531413-7 
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data to our models when the results of the second set of experiments alone are 
used, than when both sets are used. The results of the second set of experiments 
(except those in which the initial frequency of one species is zero) are graphically 
represented in Fig. 3. The vectors indicate the change in numbers in the phase 
plane. 

4. GRAPHICAL INVESTIGATION OF THE DATA 

The per week population displacement vectors shown on the system’s phase 
plane (Fig. 3) contain a great deal of information. The “phase plane niche” of 
each species may be interpolated by eye. The phase plane niche is that area 
of the system’s phase plane in which the growth of a species is positive. Thus, 
for Drosophila willistoni, whose density is plotted along the abscissa, this is the 
area where the x-component of the population displacement vector is positive. 
For D. pseudoobscura, the phase plane niche is that area where the y-component 
of the population displacement vector is positive. The line that delimits a phase 
plane niche is the zero isocline for that population; on this line, the growth of 
that population is zero. Figure 4 shows that approximate shape of the two 
phase plane niches. To avoid unnecessary confusion, the population displace- 
ment vectors have been reduced to a third of their true length. 

Given this figure, the carrying capacities of the two populations and their 
equilibrium point are determined. The carrying capacities, K, and K, , occur 

D. wi/iisfoni 

FIG. 4. Zero isociines containing the points at which the growth of one species is zero. 
The length of the vectors (Type 2 experiments) has been reduced to one third of their 
actual length for clarity. The isoclines have been fitted by visual inspection of the vectors. 
Each division along the coordinates corresponds to 200 flies. NW, N,, , and K, and K, 
are respectively the equilibrium point and the carrying capacities as estimated by Type 1 
experiments. 



COMPETITION: MODELS AND EXPERIMENTS 345 

where a zero isocline intersects the species axis. The equilibrium point is where 
the two zero isoclines cross. It is obvious that this equilibrium point is stable, 
since the population displacement vectors in the four zones about the equilibrium 
all point towards the equilibrium point. That the two populations will coexist 
can be inferred another way. A sufficient condition for coexistence is that when 
a species is rare it must have a wider niche than its competitor. In a narrow 
strip along the abscissa in Fig. 4, D. psezrdoobsczlra, which is rare, has a wider 
niche (it extends further) than D. willistoni. The converse holds along the 
ordinate. From the overall point of view of the competition system, this of 
course implies that the competitive fitnesses of the species are inversely related 
to their frequencies, at least in the areas near the zero isoclines. 

In Fig. 4 we have also indicated the two carrying capacities K, and K, , 
and the equilibrium point NW , RS as determined by the Type 1 experiments. 
The agreement between the two types of experiments is good, which substan- 
tiates that the Type 2 experiments give a good idea of the dynamics of the 
system. This also establishes a kind of ergodic principle for experimental 
population biology. That is, for genetically similar populations, a time average 
for a single population is equivalent to an ensemble average over sets of replicate 
populations. 

5. DATA FITTING 

To be able to evaluate the various competition models, each model must be 
fitted to the data. For a particular model, the parameters that produce an optimal 
fit to the data are found by minimizing the expression 

(Dfk - D,(Ni, , Niti ; yj , Ki , oldj ,... ))” 

where Dik is the k-th experimental population displacement for the i-th species, 
where ofk is the variance of this K-th displacement for the i-th species, and 
where Di(Nik , Njk ; yi , Ki , 01~ ,...) is the i-th competition function whose 
parameters are to be determined. 

For models 1, 2, 3, 4, 5, 6, 10, and 11, the parameters are in a form for which 
linear regression techniques can be used, that is, where the minimization of Qi 
follows from a matrix inversion. To allow this, the parameters are transformed 
to a purely linear form. For example, with model 1, the Lotka-Volterra model, 
the transformation is X, = Y, X, = Y/K, and X, = rat/K, which gives the 
linear model 

dN,/dt = X,N, - XzNlz - X,N,N, , 

and similarly for the second species. 
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Models 7, 8 and 9 have parameters that occur as exponents. For these, 
gradient, or hill climbing, techniques must be used. There were no insur- 
mountable difficulties with this, for each functional surface had but a single 
hill, to whose summit convergence was rapid. 

From either fitting technique, goodness of fit can be tested with a multiple 
regression correlation coefficient for the whole model, R2, which is defined as 

R2 = 1 - Qi/; & (D&)“. 
Ik 

(7) 

Essentially, this statistic tells us how much of the experimental variance is 
explained by each model. 

Re should be as close to unity as possible. It appeared, however, that experi- 
mental errors prevented R2 from going above about 0.95, since models with 
more parameters than the models given in Table II did not increase the value 
of R2. For this reason, these more complex models are not listed. 

Our requirement that the model has as few parameters as possible suggests 
an additional test of goodness of fit, namely a t-value where the significance 
of each parameter, 7, can be tested (H, : r = 0). t-values smaller than 2 are 

TABLE VIII 

Statistical Analysis of Eleven Models of Interspecific Competition: 
32 Data Points 

Drosophila willistoni Drosophila pseudoobscura 

Least Least 
Model Explained Lowest significant Explained Lowest significant 

number variance t-value parameter variance t-value parameter 

1 .810 5.66 a .790 6.24 a 

2 could not be fitted 

3 could not be fitted 

4 .827 1.60 B .861 3.79 s 

5 .912 5.70 B .917 6.42 B 

6 .811 .052 B .813 1.89 B 

7 could not be fitted 

8 .916 1.10 K .940 5.90 K 

9 .815 1.21 

; 

.822 2.06 r 

10 .913 0.52 .923 1.75 B 

11 .926 2.08 B .924 0.31 B 
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below the 95% significance level; thus any parameter associated with such 
a value cannot be deemed different from zero. If any parameter of the model 
is below this level, the entire model is considered unacceptable. 

Table VIII shows the statistical tests for goodness of fit for the models, 
when all 32 data points from Type 2 experiments are used. Models 2, 3, and 7 
could not be fitted; the computer programs “blew up” because of the inclusion 
of points with one or the other species at zero density. A second fit was made 
using just 19 data points, the points off the axes from the second set of Type 2 
experiments. That is, excluding the displacements from the points (800, 200), 
(500, 500) and (200, 800), made by the other researcher, and all points with 
No or N, equal to zero. All models could then be fitted. The results are given 
in Table IX. The R2 statistic is consistently higher when only these 19 points 
are used. 

TABLE IX 

Stathtical Analysis of Eleven Models of Interspecific Competition: 
19 Data Points 

Model 
number 

Drosophila willistoni Drosophila pseudoobscura 

Least Least 
Explained Lowest significant Explained Lowest significant 
variance t-value parameter variance t-value parameter 

1 .883 4.80 

2 ,784 - 

3 .926 8.18 

4 .898 2.07 

5 .959 7.21 

6 .884 0.45 

7 .930 9.91 

8 .959 6.41 

9 .886 0.93 

10 .965 2.31 

11 .967 1.01 

r .a40 5.71 

.823 - 

.917 9.68 

.923 4.99 

.949 7.75 

.870 2.59 

.953 8.94 

.960 3.45 

.904 3.21 

.950 0.81 

.950 0.22 

A third test of goodness of fit is possible. Once the parameters of a model 
are estimated, the carrying capacity of each species and the two-species equilib- 
rium point can be calculated. These may then be compared to the mean densities 
in the continuous populations with one or two species. Table X gives the K’s 
and the equilibrium points estimated from the various models. Only the 19 data 
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points have been used. The goodness of fit is tested by a statistic, “Total Error” 
(T.E.), defined as 

T.E. = 1 Kzbs - K;=“I + 1 KibS - KFP ] 

+ ((Rb” _ R;~P>” + (qh3 _ ~~P)z)~\z, 

where the K’s are the carrying capacities, the m’s are the numbers at the two 
species equilibrium points, the subscripts p and w refer to the species, the 
superscript “ohs” refers to the observed number, and the superscript “exp” to 

FIG. 5. Computer-drawn zero isoclines for each of the first eight models given in 
Table II. Abscissa: Drosophila willistoni; ordinate: D. pseudoobscura. Each division along 
the coordinates correspond to 200 flies. The solid circles are the carrying capacities 
predicted by each model. 
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the number predicted by the model. Finally, there is a nonquantitative measure 
by which the models may be evaluated. Once the parameters of a model are 
determined, the zero isocline which delimits the phase space niche may be 
drawn. In Fig. 5 this has been done for the first eight models in Table II. The 
zero isoclines should be similar in shape and position to those drawn by eye in 
Fig. 4. 

TABLE X 

Carrying Capacities and Equilibrium Population Densities Predicted by the Models. 
19 Data Points 

Drosophila willistoni Drosophila pseudoobscura 

Model 
number 

Experimental 
values 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Carrying Equilibrium 
capacity density 

1421 f 32 657 f 18 

1277 237 

13752 230 

1334 539 

1392 439 

1314 708 

1317 no equilibrium 

1332 616 

1310 653 

1488 700 

1257 770 

1297 642 

Carrying Equilibrium Total 
capacity density error 

772 f 20 399 f 11 

800 687 

9965 480 

806 520 

990 553 

711 434 

934 no equilibrium 

791 441 

750 430 

1260 330 

750 408 

743 508 

681 

21958 

290 

513 

229 
- 

166 

164 

636 

300 

263 

6. RESULTS 

Tables VIII, IX and X contain the results of fitting the models to the experi- 
mental observations. In Table VIII we have used all data from the two sets of 
Type 2 experiments (Tables VI and VII), or a total of 32 points. In Table IX 
only data from the second set of Type 2 experiments (Table VII) were used, 
a total of 19 points (points on the axes were excluded, see above). Yet the 
explained variance, R2, is lower for every model when 32 rather than 19 points 
are used. This indicates that the two sets of data are not mutually consistent. 
The two sets of experiments were carried out by two different researchers and 
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about one year apart. Although every effort was made to keep the techniques 
identical, it appears that this was not perfectly so. This is confirmed by exami- 
nation of the data since the displacement vectors from the points (200, SOO), 
(500, 500), and (800, 200) are clearly at odds with the general pattern of the 
other 19 points off the axes. 

If we compare the models using the R2 statistic we find that the relative 
differences between the models are approximately the same in Table VIII as in 
Table IX. Moreover, if the models are ranked according to the R2 statistic, 
the rankings are identical for D. pseudoobscura, while for D. willistoni only the 
second and third ranking models are interchanged. It seems, then, preferable 
to ignore the results of Tables VI and VIII. The following comments are based 
on the results of Tables IX and X. 

Model 2 fits the data very poorly. Furthermore, the shapes of the isoclines 
in Fig. 5 are highly implausible. It can be summarily dismissed. 

The Lotka-Volterra (model 1) can explain about 86 percent of the variance, 
but it gives a bad prediction of the equilibrium point. Moreover, it cannot 
explain the obvious curvature of the zero isoclines. This model does not permit 
a stable equilibrium below the straight line joining the two carrying capacities, 
while in seven out of eight combinations of two species of Drosophila a stable 
equilibrium occurred below that line. The addition of a single parameter to 
this model gives a significantly better fit, accounts for the curvature of the zero 
isoclines and predicts well the equilibrium point. 

Model 3, which is a special case of model 7, is also a three parameter model. 
It fits the data surprisingly well and accurately models the shape of the zero 
isoclines. The exponent of l/2 appears highly artificial, although it may have 
some biological meaning that we have not yet recognized. 

From examining models 6 and 9, which fit the data poorly, it is clear that 
nonlinearities in the interspecific interaction are of little or no importance. We 
conclude that the competitive effect of one species on the growth of another 
is linearly proportional to the density of the first. 

Model 4 introduces a multiplicative interaction between the species. It fits 
the data better than models 6 and 9, which posit nonlinear competition. But 
it does not fit the data as well as models 5, 7, and 8, in which the nonlinearities 
are solely involved in single species growth. Additionally, in the inclusive 
models, 10 and 11, the significance of the multiplicative interaction term 
(@VJV,) is low. 

Model 5 adds to the Lotka-Volterra model a term, -/3iN22, which is a non- 
linear term of self-interaction. This self-interaction will be cooperative when p 
is negative, and competitive when /l is positive. This model fits the data very 
well, but it has some mathematical difficulties. It predicts a parabolic zero 
isocline. If /3 is negative, as in our case, at sufficiently high densities, the parabola 
will reenter the positive quadrant of the phase plane, which implies that at 
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high densities the positive feedback from synergistic self-interactions will make 
the population grow despite the effects of intra- and interspecific competition. 
This feature of the model runs counter to all biological reason. An additional 
undesirable feature of this model is that the K’s do not represent the carrying 
capacities. 

Model 8 fits the data also very well. Like model 5, it can account for about 
95 percent of the variance. The R2 statistic for D. willistoni is in fact identical 
in the two models, and it is not very different for D. pseudoobscura. Despite 
appearances to the contrary model 8 and model 5 are very similar to each other. 
The reason for this is as follows. The term /3$(1 - emyiN*) can be expanded in 
a power series to give 

Ml - 1 + YiNi - (YiNJ2/2 + .*.) 

When this term is added to the remaining terms in model 8, this becomes (to 
second order) 

which has the same mathematical form as model 5. Model 8, however, does not 
have the unfortunate feature of predicting growth at very high densities. Yet it 
is less desirable than model 5 (and model 7) in that it has one more parameter. 
Furthermore it is not clear in model 8 what the biological meaning of some 
parameters may be. 

Model 7 is a four parameter model which fits the data very well. It explains 
about 95 percent of the variance, like model 5; moreover, all parameters are 
highly significant. In terms of total error, model 7 is somewhat better than 
model 5. The prediction of the equilibrium numbers and of the carrying 
capacities is indeed quite accurate (the best, together with model 8). Moreover, 
it does not have the mathematical weaknesses of model 5, and all its terms have 
biological interpretation. All in all, model 7 is the best of the models considered 
in this paper. 

Model 10 is an inclusive combination of models 4 and 5; model 11 includes 
also model 6. Models 10 and 11 explain slightly more than 95 percent of the 
variance, but they are in this respect not much better than models 5 and 7, 
although these contain only four parameters. Both models 10 and 11 have the 
same undesirable features as model 5. The prediction of the equilibrium point 
and carrying capacities of models 10 and 11 is not as good as that of model 5, 
and definitely worse than that of model 7. The terms in the parentheses of the 
Lotka-Volterra model can be recognized as equivalent to a first order Taylor’s 
expansion, and were obtained in this manner by Lotka. The terms in the 
parentheses of model 11 are equivalent to a second order Taylor’s expansion. 
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7. BIOLOGICAL SIGNIFICANCE OF THE MODELS 

Model 1, the Lotka-Volterra model, is a well-known extension to inter- 
specific competition of the logistic theory of population growth. The terms 
of this model enter in all the models suggested in this paper (although they 
do not have the same biological meaning in every model) and have obvious 
biological interpretation. In the Lotka-Volterra model, 

Ni is the number of individuals of species i (SJ at a given time; 

yi is the innate capacity for increase per individual, which results from the 
difference between birth and death rates; 

Ki is the carrying capacity of the environment for species i, when no other 
species is present. The exponential rate of growth r&Vi is decreased by a 
factor of l/K, by each individual of Si ; l/K, measures intraspecific com- 
petition. 

aii measures interspecific competition; the exponential rate of growth of 
species i is decreased by a factor of olij/Ki by each individual of species j. 

Model 2 has been suggested by Coleman and Gomatan (in press) and is 
included here for completeness. It has the interesting feature that it can be 
solved analytically. It can account for the curvature of the zero isoclines, but 
it gives the worst fit of all the models tested. We do not find any clear biological 
interpretation for it. The only interpretation that we can suggest is that the 
realized intensity of the competition increases logarithmically. 

Model 3 is a special case of model 7, discussed below. 
Model 4 adds to model 1 a term for multiplicative interaction between the 

species (--,3,N,Ni). In this model, the a’s can be interpreted as measuring 
competition due to sharing of resources, while the /3’s would measure interactions 
between the individuals, either directly and/or through their effects on the 
environment other than use of resources. For instance, adult Drosophila of one 
species may interfere with those of the other species through collision, handicap 
of the egg laying process, etc. The interaction described by the /I term can be 
cooperative (synergistic) if p is negative, or disoperative (antagonistic) if B is 
positive. 

Model 5 adds also one term to the Lotka-Volterra model. This additional 
term (-/$A$“) can be interpreted to mean self-interactions among members of 
the same species, other than sharing of resources. The value of p can be either 
positive or negative, depending on whether the interactions are disoperative 
or cooperative, respectively. The /3 term could, for instance, account for harmful 
collisions between adult individuals, which would increase with the square of 
the density; and/or interference with egg laying, the effect of accumulation of 
catabolites, etc. Cooperative interactions could be due to conditioning of the 
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food medium, to decreasing the negative effects of the catabolites or behaviors 
of the competing species, etc. In model 4, the /I term accounted only for inter- 
actions between individuals of d;fferent species, but not between individuals 
of the same species. The opposite is true for model 5. 

Model 6 is similar to model 5, except that the second order term (--j3JV,“) 
is due to interactions between individuals of the competing species, S, . The 
term could represent behavior or effects of Sj other than resource sharing, 
which would affect the growth of Si . The effect on Si could be cooperative 
or disoperative, as above, depending on the sign of fl. 

Model 7, as pointed out above, gives the best fit to the data. It has also an 
attractive biological interpretation, which extends to the logistic growth of 
a single species as well. All parameters, except 8, have the same interpretation 
as in the Lotka-Volterra model. The exponent, 0, changes the function relating 
rate of growth to density. In the logistic growth that function is symmetrical 
around K/2; with the use of 8, that restriction is removed. The maximum rate 
of growth will be at a density smaller (greater) than K/2 if 0 is smaller (larger) 
than one. It is well known that the rate of population growth often increases 
faster when density is relatively low, and reaches its maximum well below half 
the carrying capacity of the environment. These features can be approximated 
with model 7. We are planning further theoretical and experimental work to 
explore this model. 

Model 8 incorporates the function of the law of diminishing returns as used 
in economics. It has some interesting mathematical properties, and gives a very 
good fit, although at the expense of one more parameter than models 5 and 7, 
which also fit the data very well. It has no obvious biological interpretation 
except as it reduces to model 5. Its advantage over model 5 is that model 8 
establishes an upper bound for the second order interaction whose maximum 
value is p and is reached when Ni is large. Model 9 was included for complete- 
ness. As seen above, it gives a very poor fit. 

Models 10 and 11 incorporate the terms of models 4,5, and 6. Their biological 
interpretations can be made as suggested above. For instance, the /3, y, and 6 
terms of model 11 would represent the second order interactions between all 
individuals of the same or of different species. 

8. DISCUSSION AND CONCLUSIONS 

The widely used Lotka-Volterra model of competition between species 
cannot account for the process of competition as studied in experimental 
systems with Drosophila species. That model, then, lacks generality. We have 
explored other possible models that could have greater generality, and perhaps 
be also more precise and realistic. 
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If we exclude model 2, which does not seem worth further consideration, 
the models investigated fall into two groups. One group comprises the Lotka- 
Volterra model and models 4, 5, 6, 10 and 11 (and by reduction models 8 and 9) 
given in Table II. These models can be considered as an extension of the 
Lotka-Volterra model by adding to it some or all of the second order terms of 
a Taylor’s expansion. Model 11 is the most inclusive, and could perhaps be 
chosen as the general model of this group. Not all the parameters in this model 
are necessarily significant in every case of interspecific competition. Experimental 
studies should permit to ascertain which ones, if any, of the terms can be dropped 
in each case. The Lotka-Volterra model, without any of the second order 
terms, has been shown to be sufficient to account for the competition process 
among protozoan species (Gause, 1934; Slobodkin, 1961; Vandermeer, 1969). 
In the present study, two of the second order terms can be dropped without 
loss of precision or reality. 

The second group of models includes model 7 and its particular case, model 3. 
Model 7 has some attractive mathematical and biological features which make 
it worth further investigation. We hope that other investigators will test its 
validity with other systems, including organisms other than Drosophila. Our 
experimental method can be used with other organisms. Experiments of Type 2 
provide a great deal of information with a manageable amount of work. The 
direction and length of displacement vectors in the phase plane of the two 
species can provide the crucial information to test our models or any others 
of the same general form. Measuring the carrying capacities for each species 
and the two-species point(s) of stable equilibrium, if such exist(s) provide 
additional tests. 

It is, of course, difficult to ascertain the bearing that any of our models may 
have on the competition process as it occurs in nature. In the field, more than 
two species may often compete for the same resources, and additional com- 
plexities are likely to occur which do not exist in the laboratory. Experimentally 
tested models, however, may help in the understanding of natural processes. 

A widely accepted notion states that two competing species can stably coexist 
only if their competition is conditional, as defined by Ayala (1972); that is, 
only if the point of equilibrium in the phase plane is above the diagonal joining 
the carrying capacities of the two species. We have shown that this requirement, 
although a necessary condition in the Lotka-Volterra model, is not a necessary 
requirement of other competition models. Experiments have shown that two- 
species stable equilibria can also occur below the diagonal joining the carrying 
capacities of the two species; that is, when the competition between the species 
is unconditional. 

The Lotka-Volterra model permits no more than one equilibrium point, 
whether stable or unstable, since the zero isoclines are straight lines. This 
restriction does not occur in our models where the isoclines are curved. It is 
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thus possible for the zero isoclines to cross twice; one of the equilibria will 
then be stable, the other unstable, depending on the sign of the difference 
between the first derivatives of the isoclines at the points where they cross 
(Gilpin and Justice, 1972). 0 ur Type 1 experiments were started at three 
different frequencies of the two species which nevertheless converged to the 
same point of stable equilibrium. Our Type 2 experiments confirm that in the 
Drosophila experimental system, there is only one point of stable equilibrium 
with both species present. Whether there are any points of unstable equilibrium 
cannot, by definition, be determined by experiments of Type 1. The evidence 
from our Type 2 experiments does not suggest any such points of unstable 
equilibrium. 
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