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Abstract 
 

Learning by Thinking and the Development of Abstract Reasoning 
 

by 
 

Caren Michelle Walker 
 

Doctor of Philosophy in Psychology 
 

University of California, Berkeley 
 

Dr. Alison Gopnik, Co-Chair  
 

Dr. Tania Lombrozo, Co-Chair 
 

As adults, we have coherent, abstract, and highly structured causal representations of the world. 
We also learn those representations, as children, from the fragmented, concrete and particular 
evidence of our senses. How do young children learn so much about the world so quickly and 
accurately? One classic answer points to the similarities between children’s learning and 
scientific learning. In particular, researchers have proposed that children, like scientists, 
implicitly formulate hypotheses about the world and then use evidence to test and rationally 
revise those hypotheses. In testing these claims, the vast majority of research in this area has 
investigated children’s developing abilities to draw causal inferences from observed data. However, 
we know much less about the human ability to build abstract knowledge that extends beyond their 
observations, simply by thinking. In the current dissertation, I examine a suite of activities that 
involve learning by thinking in the causal domain, and consider how these activities impose unique, 
top-down constraints on the processes underlying causal learning and inductive inference. First, in 
chapter 1, I situate this work within the theoretical context of rational constructivism that has 
recently emerged in the field of cognitive development. Chapter 2 then presents a series of 
experiments demonstrating very young children’s ability to infer the abstract relations “same” 
and “different” in a novel causal reasoning task. I conclude this chapter by considering the 
implications of these findings for our understanding of the nature of relational and causal 
reasoning, and their evolutionary origins. Chapter 3 extends this paradigm to describe a 
surprising developmental pattern: younger children outperform older children in inferring these 
abstract relations. I provide evidence that this failure may be explained by appealing to the role 
of learned biases in constraining causal judgments. The second part of this chapter explores how 
prompts to explain during learning facilitate children’s ability to override a preference to attend 
to object properties, and instead reason about abstract relations. Chapter 4 presents empirical 
findings further examining the particular effects of explanation on the mechanisms underlying 
causal inference in preschool-aged children. In particular, results demonstrate that explanation 
prompts children to ignore salient superficial properties and consider inductively rich properties 
that are likely to generalize to novel cases. Finally, in Chapter 5, I discuss the implications for 
this body of work as a whole, and suggest a variety of future directions. Taken together, this 
research contributes to our understanding of the cognitive processes that influence early learning 
and inference in early childhood.



i	
  

	
  

 
Acknowledgments 

 
I thank my advisor, Alison Gopnik, who has taught me to be the type of scientist who engages 
with big ideas – the very ideas that inspired me to pursue research in developmental psychology. 
Her mentorship has truly been the highlight of my graduate training at Berkeley. In addition to 
being a leader in the field, she is also a remarkably interesting and genuinely lovable human 
being. I walk away from every conversation with Alison a little wiser. I am equally grateful to 
Tania Lombrozo, whose outstanding mentorship is really the product of two characteristics that, 
in my experience, rarely appear together: she is both a brilliant and productive scholar and an 
extraordinarily attentive and available advisor. Tania’s ability to quickly synthesize abstract 
ideas and help to translate them into concrete and focused research questions has been invaluable 
to my progress. I would also like to thank my other committee members – Fei Xu and John 
Campbell – for their many insightful thoughts and words of guidance throughout the years. I feel 
extremely grateful to have had such an inspiring collection of minds contribute to this work. 
 
I must also thank my various collaborators and labmates, Sophie Bridgers, Josh Abbott, Joseph 
Williams, Elizabeth Bonawitz, Stephanie Denison, Jane Hu, Sara Gottlieb, Azzurra Ruggeri, 
Adrienne Wente, Alex Carstenson, Mike Pacer, Daphna Buchsbaum, and Rosie Aboody (among 
many others) for all of their ideas, honest criticism, enthusiasm, and social support along the 
way. Sophie deserves special thanks for spending countless hours writing with me in coffee 
shops over the years. I have also been extraordinarily lucky to have some of the hardest working, 
independent, brilliant (and generally adorable) undergraduate research assistants during my five 
years at Berkeley. Their willingness to learn and tireless enthusiasm have made this time so 
much easier. It has been my privilege to mentor and learn from each of them.  
 
Nothing about this process would have been possible without the endless love and support from 
my family. I am incredibly lucky to have two parents who never stopped encouraging me to 
continue my (seemingly endless) career as a professional student. The path leading to the 
completion of this dissertation was in no way straightforward – and I would not have made it 
without their guidance. I thank my Mom for always being available to listen to me – in laughter, 
tears, and delirium – and for believing every time, without hesitation, that I would be able to 
accomplish whatever seemingly impossible task I confronted. I thank my Dad for passing along 
his insatiable curiosity and motivation, for all of his advice along the way, and for every time he 
spent hours talking through a problem with me. Thanks to my extraordinary siblings, Michael 
and Lisa, for inspiring me a little bit everyday – each in their own unique way. Finally, I am 
forever grateful to my husband, Rand, who has been a constant source of love and inspiration to 
me…I share this Ph.D. with him. He came with me to Berkeley very early in our relationship and 
has made countless sacrifices to help me along the way, never doubting my ability to succeed 
and always keeping a smile on my face.  
 
Thanks also to the countless participants and their parents and teachers for volunteering both 
their time and brainpower to this research. Lastly, this work would not have been possible 
without the financial support provided by the Lisa M. Capps Graduate award, the McDonnell 
Foundation, the National Science Foundation, and the Elizabeth Munsterberg Koppitz 
Fellowship from the American Psychological Foundation. 



ii	
  

	
  

 
 
 
 

 
To the little boy that I have not met, who has kept me company while I write this. 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



iii	
  

	
  

Table of Contents 
 

List of Figures ............................................................................................................................... vi 
List of Tables ............................................................................................................................... vii 

 
1. Introduction ................................................................................................................................1 

1.1      General introduction .....................................................................................................1 
       1.1.1    Bayesian inference ............................................................................................2 
       1.1.2    Learning abstract hypotheses ............................................................................3 
       1.1.3    Learning by thinking .........................................................................................4 

1.2      Goals of the present dissertation ...................................................................................4 
 

2. Toddlers infer higher-order relational principles in causal learning ...................................7 
2.1      Introduction ...................................................................................................................7 
2.2      Experiment 1 .................................................................................................................8 

       2.2.1    Method ..............................................................................................................9 
                2.2.1.1    Participants .........................................................................................9 

       2.2.1.2    Materials ............................................................................................9 
                2.2.1.3    Procedure ...........................................................................................9 

       2.2.1.4    Coding and Reliability .....................................................................11 
       2.2.2    Results and Discussion ...................................................................................11 

2.3      Experiment 1a .............................................................................................................12 
       2.3.1    Method ............................................................................................................12 
                2.3.1.1    Participants .......................................................................................12 

       2.3.1.2    Materials and Procedure ..................................................................12 
       2.3.2    Results and Discussion ...................................................................................12 

2.4      Experiment 2 ...............................................................................................................12 
       2.4.1    Method ............................................................................................................13 
                2.4.1.1    Participants .......................................................................................13 

       2.4.1.2    Materials ..........................................................................................13 
                2.4.1.3    Procedure .........................................................................................13 
       2.4.2    Results and Discussion ...................................................................................15 

2.5      General Discussion .....................................................................................................16 
	
  
3. The early emergence and puzzling decline of relational reasoning: Effects of knowledge 
and search on inferring abstract concepts .................................................................................18 

3.1      Introduction .................................................................................................................18 
3.2      Experiment 1a .............................................................................................................21 

       3.2.1    Method ............................................................................................................21 
                3.2.1.1    Participants .......................................................................................21 

       3.2.1.2    Materials and Procedure ..................................................................21 
       3.2.2    Results .............................................................................................................22 

3.3      Experiment 1b .............................................................................................................22 



iv	
  

	
  

       3.3.1    Method ............................................................................................................23 
                3.3.1.1    Participants .......................................................................................23 

       3.3.1.2    Materials and Procedure ..................................................................23 
       3.3.2    Results .............................................................................................................23 

3.4      Experiment 2 ...............................................................................................................25 
       3.4.1    Method ............................................................................................................26 
               3.4.1.1    Participants .......................................................................................26 

       3.4.1.2    Materials and Procedure ..................................................................26 
       3.4.2    Results and Discussion ...................................................................................26 

3.5      Experiment 3 ...............................................................................................................27 
       3.5.1    Method ............................................................................................................28 
                3.5.1.1    Participants .......................................................................................28 

       3.5.1.2    Materials and Procedure ..................................................................28 
       3.5.2    Results and Discussion ...................................................................................28 

3.6      General Discussion .....................................................................................................29 
	
  
4. Explaining prompts children to privilege inductively rich properties ................................32 

4.1      Introduction .................................................................................................................32 
           4.1.1    Explanation and Inference ..............................................................................32 

       4.1.2    Inductive generalization: a shift from perceptual to conceptual? ...................34 
                   4.1.3    Overview of experiments ................................................................................35 

4.2      Experiment 1a .............................................................................................................35 
       4.2.1    Method ............................................................................................................36 
                4.2.1.1    Participants .......................................................................................36 

       4.2.1.2    Materials ..........................................................................................36 
       4.2.1.3    Procedure .........................................................................................36 
       4.2.1.4    Coding and Reliability .....................................................................37 

       4.2.2    Results and Discussion ...................................................................................38 
          4.2.2.1    Content of Explanations ...................................................................39 
4.3      Experiment 1b .............................................................................................................41 

       4.3.1    Method ............................................................................................................42 
                4.3.1.1    Participants .......................................................................................42 

       4.3.1.2    Materials ..........................................................................................42 
       4.3.1.3    Procedure .........................................................................................42 
       4.3.1.4    Coding and Reliability .....................................................................43 

       4.3.2    Results and Discussion ...................................................................................43 
       4.3.2.1    Content of Explanations ...................................................................43 

4.4      Experiment 2 ...............................................................................................................44 
       4.4.1    Method ............................................................................................................44 
                4.4.1.1    Participants .......................................................................................44 

       4.4.1.2    Materials ..........................................................................................45 
       4.4.1.3    Procedure .........................................................................................45 
       4.4.1.4    Coding and Reliability .....................................................................45 

       4.4.2    Results and Discussion ...................................................................................45 
   4.4.2.1    Content of Explanations ...................................................................46 
   4.4.2.2    Comparing Experiments 1 and 2 ......................................................47 



v	
  

	
  

4.5      Experiment 3 ...............................................................................................................47 
        4.5.1    Method ...........................................................................................................49 
                 4.5.1.1    Participants ......................................................................................49 

        4.5.1.2    Materials .........................................................................................49 
        4.5.1.3    Procedure ........................................................................................49 
        4.5.1.4    Coding and Reliability ....................................................................50 

        4.5.2    Results and Discussion ..................................................................................50 
        4.5.2.1    Content of Explanations ..................................................................51 

4.6      General Discussion .....................................................................................................52 
4.6.1    Conclusions ....................................................................................................54 

 
5. Conclusions ...............................................................................................................................55 

5.1      Conclusions and implications of the empirical work ..................................................55 
5.2      Remaining questions and future directions from work on analogical reasoning ........56 
5.3      Remaining questions and future directions from work on explanation and learning .58 
5.4      Concluding remarks ....................................................................................................60 

 
References .....................................................................................................................................61 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vi	
  

	
  

List of Figures 
 
 
2.1      Schematic representation of training and test trials in Experiment 1 .................................10 

2.2      Percentage of 21-24 month olds in Experiement 1 and 1a who selected the matched pair 

........................................................................................................................................................11 

2.3      Schematic representation of training and test trials in the same and different conditions of 

the relational match-to-sample task in Experiment 2 ....................................................................14 

2.4      Percentage of toddlers in the same and different conditions in Experiment 2 who selected 

the correct pair during the test trial  ...............................................................................................16 

	
  

	
  

3.1      Schematic representation of training and test trials in the same and different conditions in 

Experiments 1a and 1b ...................................................................................................................24 

3.2      Proportion of correct relations selected following the manipulations in Experiments 1-3 .25 

3.3      Schematic representation of two (of four) training trials in the same condition  ...............26 

 

	
  

4.1      Sample set of objects used in Experiments 1a/1b and Experiment 2 .................................37 

4.2      Average responses in explain and control conditions for Experiment 1a  .........................39 

4.3      Average responses in explain and control conditions for Experiment 2 ............................46 

4.4      Average memory score (out of 4 trials) for each property assessed in Experiment 3 ........51 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



vii	
  

	
  

List of Tables 
	
  
	
  

4.1      Frequency of Explanation Types for Each Set in Experiments 1a, 1b, and 2 .....................40 

4.2      Proportion of Causal Matches in Experiments 1a and 2 as a Function of Child’s Modal 

Explanation Type  ..........................................................................................................................41 

4.3      List of properties for objects used in Experiment 3 ............................................................50 

 
 

 
	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



	
  

	
  

1	
  
 
 
Chapter 1 
 
 

Introduction 
 
 
 
 

 
1.1 General introduction 

 
            The primary project of cognitive development stems from a long-standing question 
regarding the nature of human knowledge: How it is possible that we ever acquire abstract 
knowledge about the world, given that the data that we receive from our sensory experience is so 
unstructured, concrete, and incomplete?  Causal learning is a notorious example of this apparent 
incompatibility. In fact, it was Hume (1748) who originally articulated this difficulty: all we see 
are contingencies between events – one event follows another.  How do we ever know that one 
event actually caused the other?  To make matters more difficult, causal relations are rarely 
limited to just two events. Instead, dozens of different events are related in complex ways.  

Discovering the underlying causal structure in the world is one of the major inductive 
problems that young learners face during development as they construct and revise early intuitive 
theories. Despite the apparent complexity of this problem, there has been a great deal of research 
that suggests that by the age of five, children understand a quite a bit about the causal world, 
including the principles of everyday physics (e.g., Bullock, Gelman & Baillargeon, 1982; Spelke, 
Breinlinger, Macomber, & Jacobson, 1992), biology (e.g., Gelman & Wellman, 1991; Inagaki & 
Hatano, 2006), and psychology (e.g., Gopnik & Wellman, 1994; Perner, 1991).  By 2-years of 
age, children begin to make causal predictions and provide causal explanations for physical 
phenomena in the world (e.g., Legare, Gelman, & Wellman, 2010; Hickling & Wellman, 2001), 
for the actions of others (e.g., Wellman & Liu, 2007), and even for imaginary or counterfactual 
scenarios (e.g., Harris, German, & Mills, 1996; Sobel & Gopnik, 2003).  

Beginning in ancient philosophy, and reinvented in the language of psychology, there 
have been two main solutions to this problem of the origins of human knowledge.  In one camp, 
nativists have proposed that abstract knowledge must exist a priori, and that children build upon 
innate, domain-specific modules, which serve to impose top-down constraints on incoming 
information. This solves the problem of knowledge by removing the necessity to build abstract 
representations from data coming in from the world. In the opposing camp, empiricists have 
simply denied that truly abstract mental representations exist. Instead, they claim that all 
knowledge may be understood as a collection of associations that are acquired in a bottom-up 
manner by domain-general learning mechanisms that track correlations in incoming data. Each 
of these opposing positions has long suffered from a host of inconsistencies – neither appearing 
to account for the full complexity of human learning. Indeed, it has long been assumed that the 
truth lies somewhere between the nativist and empiricist camps.  In order to find this middle 
ground, it is necessary to provide a precise account of learning that provides a means for 
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combining domain-specific prior knowledge (some of which may stem from innate constraints) 
with a domain-general process of learning from evidence.  
 Over the last two decades, developmental psychologists have begun to incorporate formal 
methods from machine learning to provide a rational framework underlying early learning. This 
emerging theoretical perspective, often referred to as “rational constructivism,” offers a middle 
ground between nativist and empiricist perspectives (Xu, 2007; Xu, Dewar, & Perfors, 2009; Xu 
& Griffiths, 2011). The rational constructivist account has grown out of a long tradition in 
developmental psychology that has proposed that the processes underlying children’s knowledge 
acquisition and development may be analogous to scientific theory and revision. This view, the 
“theory theory,” (e.g., Carey, 1985; Gopnik, 1988; Gopnik & Meltzoff, 1997; Wellman, 1990; 
Wellman & Gelman, 1998) proposes that knowledge is represented in coherent, hierarchical, 
causal theories that support prediction, explanation, and control.  
 

1.1.1  Bayesian inference 
 
One feature of the rational constructivist framework is the application of probabilistic 

models in characterizing the mechanisms underlying learning and inference (Chater, Tenenbaum 
& Yuille, 2006, Griffiths, et al., 2010; Pearl, 2000; Glymour, 2003). Many of the ideas about 
probability that underpin these models were first formulated by the philosopher and 
mathematician, Reverend Thomas Bayes, in the 18th century, and are now being successfully 
applied to a very broad set of problems in developmental psychology, including the mechanisms 
underlying early learning (e.g., Glymour, 2003; Gopnik & Schulz, 2007; Tenenbaum, Griffiths, 
& Kemp, 2006), language acquisition (e.g., Chater & Manning, 2006; Tenenbaum & Xu, 2000; 
Xu & Tenenbaum, 2007; Niyogi, 2002; Dowman, 2002; Regier & Gahl, 2004), and the 
development of social cognition (e.g., Goodman, Baker, Bonawitz, Mansinghka, Gopnik, 
Wellman, Schulz, & Tenenbaum, 2006; Baker, Saxe, & Tenenbaum, 2006), among others. This 
work has also provided a solution for the problem of causal induction: how we derive rich, 
abstract representations from the sparse, concrete data that is available in our environment. More 
specifically, these accounts describe a mechanism that allows theory-like knowledge to be 
derived from data in our environment while also explaining how prior knowledge constrains the 
inferences that we make, and the evidence that we choose to attend to.   

The idea that serves as the foundation for all of this work is that learning is based upon 
the assessed probabilities of possibilities: we form rational inferences based upon the fact that 
some possibilities are more likely than others. Bayesian inference provides a formal account of 
how a learner should update her prior belief in some hypothesis, h, in light of new evidence, d 
(e.g., Griffiths et al., 2011; Gopnik et al., 2004; Gopnik & Wellman, 2013). Specifically, the 
learner evaluates the posterior probability of the hypothesis, p(h|d), by applying Bayes’ rule: 
p(h|d)=p(h)*p(d|h)/p(d), where p(d|h) is the “likelihood” of the data given the hypothesis, and 
p(d) is the probability of the data under all hypotheses in question, h, and alternatives, ~h.  

In other words, as we accumulate more evidence about the underlying causal structure of 
the world, we systematically update the likelihood of various hypotheses. As a result, a very 
small amount of evidence can effectively support one hypothesis over another. Similarly, if the 
evidence is strong enough, even the most unlikely possibility can turn out to be true, regardless 
of our previous experience or currently-held theories. According to this perspective, the process 
of learning represents a dynamic movement towards more informed inferences that better 
approximate the truth in a broader range of scenarios. Further, because Bayesian learning uses 
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structured priors and likelihoods that are drawn both from the learner’s background or innate 
knowledge about causal structure, as well as observed or hypothetical data, variations on this 
simple algorithm provides a natural framework for combining the strengths from nativist and 
empiricist accounts of the origins of knowledge. 

 
1.1.2  Learning abstract hypotheses 
 
A related phenomenon that this computational account is able to address is the fact that 

children use very sparse data to infer abstract causal laws that guide subsequent learning. 
Previous research has demonstrated that children as young as 15 months of age can learn specific 
causal relationships from statistical data (Gopnik et al. 2004; Gopnik & Schulz, 2007; Gweon & 
Schulz, 2011; Gopnik & Wellman, 2012). In the current dissertation, I focus on investigating 
when and how children are also able to learn more abstract, general, causal principles or 
“overhypotheses” – that is, hypotheses about which kinds of more specific hypotheses are more 
likely (Kemp et al. 2007).  

Piaget (1930, 1953) originally proposed that children construct abstract laws over 
extended periods of time, following the acquisition of sufficient evidence. Intuitively, it seems 
very likely that more abstract hypotheses would be acquired after lower-level, concrete ones that 
are based on specific features of objects. Indeed, a variety of recent accounts continue to be 
based on similar claims (e.g., Christie & Gentner, 2014; Gentner, 2010). On the contrary, 
however, many cases have been documented in which abstract causal laws appear to precede the 
data. For example, decades of evidence from developmental studies of psychological 
essentialism (e.g., Gelman, 2005; Keil, 1989) has demonstrated that children assume that animals 
from similar species are likely to share internal structures. More impressively, they use this 
assumption in classifying novel cases well before they have any substantial biological 
knowledge. Children frequently grasp these general principles at the same time, or even before 
they grasp the specific causal relations underlying them (Gelman & Gottfried, 1996; Kemp et al., 
2007; Mansinghka et al., 2006; Leher & Schauble, 1998; Rozenblit & Keil, 2002; Schulz, 
Goodman, Tenenbaum, & Jenkins, 2008; Tenenbaum & Niyogi, 2003; Tenenbaum et al., 2006). 
This type of observation has led many to posit the existence of innate knowledge.  
              However, theoretical advances drawing on Bayesian accounts of the “blessing of 
abstraction” (Goodman et al., 2011) combined with empirical research on early learning (Dewar 
& Xu, 2010; Schulz, Goodman, Tenenbaum & Jenkins, 2008) suggest that children’s ability to 
learn abstract principles does not necessarily depend upon extensive prior experience. In 
particular, the application of hierarchical Bayesian models has provided a method for learning at 
multiple levels of abstraction simultaneously (e.g., Tenenbaum, Griffiths, & Kemp, 2006). As a 
result, abstract learning need not progress in a bottom-up manner. In fact, computational analyses 
indicate that a learner who is able to simultaneously learn abstract and specific knowledge is 
nearly as efficient as one who is equipped with an innate theory.  
              These higher-order generalizations, “framework theories” (Gopnik & Wellman, 1992), 
or “overhypotheses” (Goodman, 1955), provide the learner with information about the types of 
specific hypotheses that are likely to be true. Having an overhypothesis, or general principle, 
leads the learner to assign a higher prior probability to certain types of specific hypotheses, and 
so constrains children’s interpretation of new data (Kemp et al., 2007). This ability to learn 
abstract and specific relations in tandem helps to explain how it is that children acquire the 
impressive amount of causal knowledge evident in their early intuitive theories about the world.  
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1.1.3  Learning by thinking   
 

In testing the claims of this model of learning, the vast majority of research conducted has 
investigated children’s developing abilities to draw causal inferences from their observations, from 
their physical exploration of the world, and from social information from other people. However, 
we know much less about how even very young learners are able to acquire abstract representations 
that extend beyond their experiences, simply by thinking. One of the distinguishing features of 
human cognition is our ability to generate new ideas by thinking alone. How is learning by thinking 
possible? What is the role of internal processes in causal learning and reasoning? What does this 
phenomenon tell us about the nature of mental representations and how they change? Accepting the 
claim that new learning can occur in the absence of new data acknowledges the incompleteness 
of current the models, and their inability to account for the full nature of mental representations 
and how they change.   

To begin to answer these questions, it is necessary to first isolate the contributions of our 
observations from the mechanisms that underlie learning. To this end, the present dissertation 
focuses on learning contexts that are particularly widespread in childhood, emphasizing learning by 
analogy, by explanation, and the intersection of the two. The chapters that follow will examine these 
phenomena as a means to explore the mechanisms underlying children’s ability to reason about 
abstract properties. In particular, I will examine how these activities influence the nature of their 
developing knowledge representations by imposing unique, top-down constraints on the processes 
underlying early learning and inference in the causal domain. 
 
1.2      Goals of the present dissertation 

 
The current dissertation investigates the mechanisms underlying children’s early capacity 

to overcome a bias to attend to perceptual features and infer abstract properties. The first line of 
work (examined in Chapters 2 and 3) focuses on the early development of analogical reasoning, 
which is characterized by the ability to consider the abstract similarities between objects and 
events. Analogical reasoning is essential for building abstract knowledge. Children learn to 
reason about categorical relations (e.g., X is edible), causal relations (e.g. X causes Y), and 
spatial relations (e.g., X is above Y), to name a few. These relational concepts are critical for 
inductive inference, and some have speculated that they may be a major contributor to species-
specific intelligence (Penn, Holyoke, & Povinelli, 2008). However, relational concepts are not 
easily accessible among young children, and previous research has shown that analogical 
reasoning develops gradually (Gentner, 1998). Part of the reason for this difficulty is the fact that 
learning relations often involves overcoming a bias to attend to objects to consider higher-order 
properties. For example, thinking about how an atom is like a solar system requires that you set 
aside the surface properties of the individual objects – like their size – and instead focus on the 
underlying or abstract structural similarities that exist between the two.  

The cognitive ability that forms the foundation of this type of analogical reasoning is the 
capacity to consider the abstract relations “same” and “different.” Chapter 2 will describe three 
experiments examining 18- to 30-month-olds’ relational inferences in a causal version of a 
relational match-to-sample task that is typically conducted with non-human primates (Premack, 
1983). The findings reported in this chapter will suggest that very young children are already 
able to infer “sameness” and “difference” as relational causal principles from just a few 
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observations, and use this inference to guide their subsequent actions to bring about a novel 
causal outcome. The results of this chapter indicate that the seeds of analogical reasoning are in 
place surprisingly early, emerging spontaneously a few months after the first evidence of the 
ability to learn about specific causal properties. I will conclude the chapter by considering the 
implications of these findings for understanding the nature of relational and causal reasoning, 
and their evolutionary origins.  

The results of Chapter 2 appear to contrast with a large literature and long-standing 
theory that relational reasoning may be late developing, since older children notoriously have 
difficulty inferring abstract relations (e.g., Gentner, 1998). In Chapter 3, I will therefore explore 
this apparent incompatibility by examining both the developmental trajectory and underlying 
mechanisms of children’s ability to engage in abstract relational reasoning. In particular, Chapter 
3 will describe a surprising developmental pattern: Younger learners are better than older ones at 
inferring abstract causal relations. Across several experiments, I manipulate both the data that 
children’s observe and their search procedure to assess the influence of each of these factors on 
relational reasoning. To do so, I present the same causal relational task reported in Chapter 2 to 
both toddlers and older, preschool-aged children. Results of the first experiment reported in 
Chapter 3 will demonstrate that while younger children (18-30-month-olds) have no difficulty 
learning these relational concepts, older children (36-48-month-olds) fail to draw this abstract 
inference. To address this puzzling decline, I will then describe a series of studies assessing the 
claim that older children have learned the bias to attend to properties of individual objects. In 
particular, I will test whether the difference in performance found between younger and older 
children might be the result of an overhypothesis that individual kinds of objects lead to effects. I 
will discuss these findings in light of recent computational theories of learning, and in particular, 
that younger children may be more flexible in their commitments about causal systems than 
older ones. 

The final experiment reported in Chapter 3 will explore the extent to which the act of 
generating explanations may serve as one route to facilitate children’s recognition of the 
relevance of higher-order relations. There is strong theoretical support for a relationship between 
explanation and abstraction. Within philosophy and psychology, “subsumption” accounts 
suggest that a good explanation shows how a phenomenon is an instance of a unifying pattern 
that encompasses a wide range of diverse cases (e.g., Kitcher, 1989; Friedman, 1974; Williams 
& Lombrozo, 2010). Such patterns will tend to be general, and hence abstract away from the 
details of individual cases. In previous work, I have found that children tend to discover broad 
patterns and underlying regularities when prompted to explain in a causal learning task (Walker, 
Williams, Lombrozo, & Gopnik, 2012; Walker, Lombrozo, Williams, & Gopnik, under review). 
Explanation may therefore be a particularly valuable tool for guiding children away from 
appearances to privilege properties that highlight abstract structure. Indeed, the findings reported 
in the final experiment of Chapter 3 will support the hypothesis that explanation influences how 
children exercise their representational abilities, potentially scaffolding the transition from a 
preoccupation with salient surface properties to considering higher-order properties.  

Chapter 4 will further assess the claim that the particular constraints imposed by 
explanation lead children to generate hypotheses that appeal to broad generalizations that 
highlight abstract structure. In particular, I explore the hypothesis that generating explanations 
scaffolds the transition from a preoccupation with salient surface properties to considering 
properties that are more “projectible,” i.e., have greater inductive potential to generalize to novel 
cases. To do so, Chapter 4 reports the results of four experiments with preschool-aged children 
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testing the hypothesis that engaging in explanation promotes inductive reasoning on the basis of 
shared causal properties as opposed to salient (but superficial) perceptual properties. First, 3- to 
5-year-old children are prompted to explain during a causal learning task to assess whether they 
are more likely to override a tendency to generalize according to perceptual similarity and 
instead extend an internal feature to an object that shared a causal property. A second experiment 
will seek to replicate this effect of explanation in a case of label extension (i.e., categorization). 
Finally, a third experiment will examine whether explanation improves memory for clusters of 
causally relevant (non-perceptual) features, but impairs memory for superficial (perceptual) 
features. In other words, I explore whether the effects of explanation extend to impact lower-
level processes, influencing the features children attend to and recall. The data reported in 
Chapter 4 will support the proposal that engaging in explanation influences children’s reasoning 
by privileging inductively rich, causal properties. This suggests that 3-year-olds already have the 
conceptual resources to reason on the basis of non-obvious properties, and that explaining 
facilitates their access to the inductive relevance of those properties. 

Collectively, these studies are designed to examine how thinking imposes constraints on 
learning, impacting the development of abstract knowledge.   
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Chapter 2 
 
 

Toddlers infer higher-order relational principles in 
causal learning 
 
 
 
 

 
2.1 Introduction 
 

Learning about causal relationships is one of the most important and challenging 
problems young humans face.  Causal knowledge allows you to act on the world – if you know 
A causes B, you can act on A to bring about B.  Studies show that children as young as 16 to 24 
months of age can quickly learn causal properties of objects from patterns of statistical 
contingency and can act on that knowledge to bring about effects (e.g., Sobel & Kirkham, 2006; 
Meltzoff, Waismeyer & Gopnik, 2012; Gweon & Schulz, 2011; for reviews see Gopnik, 2012; 
Gopnik & Wellman, 2012). 

 Much of this research on early causal learning has used a “blicket detector” paradigm 
(Gopnik & Sobel, 2000), in which children learn which objects activate a novel machine.  
Children’s inferences in these tasks go beyond associative learning, revealing the distinctive 
profile of causal inference.  For example, children will use these inferences to design novel 
interventions – patterns of action they have never observed – to construct counterfactuals and 
make explicit causal judgments, including judgments about unobserved features (e.g. Gopnik & 
Sobel, 2000; Gopnik et al. 2004; Schulz, Gopnik, & Glymour, 2007; Sobel, Yoachim, Gopnik, 
Meltzoff, & Blumenthal, 2007).   

However, we know much less about the development of children’s ability to infer higher-
order relational causal principles.  According to “theory theorists” of cognitive development, 
children are not only learning particular causal relationships, but also higher-order 
generalizations about causal structure (e.g., Carey, 2010, Wellman & Gelman, 1992, Gopnik & 
Meltzoff, 1997).  Recent computational work also suggests that higher-order generalizations can 
help children learn new specific relationships from perceptual data more quickly (e.g., Griffiths 
& Tenenbaum, 2007; Goodman, Ullman, & Tenenbaum, 2011; Kemp, Perfors & Tenenbaum, 
2007).    

Causal inferences might be more or less abstract, higher-order, or relational in many 
different ways.  Here we focus on just one contrast: between object properties, such as shape or 
color, and higher-order relations between those properties, such as whether they are the same or 
different.  For example, very young children can learn that red blocks activate a toy.  When can 
they learn that two blocks that are the same (regardless of their color) can do so? 
 Empirical research using looking-time measures suggests that human infants may be able 
to recognize patterns of data that involve higher-order relations such as “same” (Dewar & Xu, 
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2010; Ferry, Hespos & Gentner, 2015; Tyrell, Stauffer & Snowman, 1991).  However, there is 
no evidence to date that infants can use those patterns to make causal inferences or guide 
subsequent actions.   

In fact, earlier studies indicate that even preschoolers have difficulty making inferences 
in higher-order relational reasoning tasks (e.g., Christie & Gentner, 2007, 2010; Gentner, 2010). 
Children succeeded only when given labels or linguistic scaffolding to point out the pattern of 
similarity.  Indeed, even when explicitly instructed to objects, 3-year-olds’ performance was 
tenuous, dropping significantly below chance when test items were presented sequentially, rather 
than simultaneously (Christie & Gentner, 2010).   

These findings might lead to the conclusion that learning higher-order relations and using 
them to guide actions depends on direct instruction, language, and cultural input (e.g., Christie & 
Gentner, 2007; Gentner, 2003, 2010; Gentner, Anggoro, & Klibanoff, 2011).  However, these 
tasks often relied on verbal categorizations of complex, multi-dimensional stimuli (e.g., Christie 
& Gentner, 2010).  One study by Smith (1984) provides a hint that children might do better in a 
more goal-directed task with simpler materials.  In particular, 2½-year-olds showed some 
understanding of identity matching in a non-verbal game. 

Higher-order relational reasoning has also been studied extensively in non-human 
animals.  Chimpanzees, like young infants, are able to spontaneously detect a relational pattern 
in habituation tasks (Oden, Thompson, & Premack, 1990).  However, they have more difficulty 
with a relational match-to-sample task (Premack, 1983; Oden, Premack, & Thompson, 1988).  In 
these tasks, animals observe a relational pattern – AA’, BB’, and CC’ all lead to a reward.  Then 
they are given a choice between AB (object match) and DD’ (relational match).  Although A and 
B have each been associated with the reward, an animal who has inferred the higher-order 
relational pattern should choose DD’.  Premack and colleagues have found that chimpanzees 
could not solve this relational task without hundreds of trials with feedback (Premack, 1988) or 
training to use linguistic symbols for “same” (Premack, 1976; 1983; Premack & Premack, 1983; 
2002).   

Additional comparative studies confirm that this task is especially difficult for non-
human primates and other animals (see Penn, Holyoak, & Povinelli, 2008). Moreover, when non-
human animals, such as baboons, do solve this task, they require extended training and thousands 
of trials, which may indicate the use of simpler perceptual strategies such as minimizing entropy 
in a perceptual array (Fagot, Wasserman, & Young, 2001; Wasserman, Fagot, & Young, 2001).  

 Do human children always require linguistic cues or extensive training to solve relational 
tasks like the preschoolers and primates in earlier studies?  We designed a non-verbal “blicket 
detector” task to explore when children could use higher-order relations to make causal 
inferences.  In contrast to previous studies of causal inference, the causal effect depended on 
whether the objects were the same or different, rather than on properties of the objects 
themselves.  
 
2.2     Experiment 1 

 
In Experiment 1, 21- to 24-month-olds were introduced to a novel toy that played music 

and 3 unique pairs of identical blocks: AA’, BB’, and CC’.  The experimenter placed blocks on 
the toy and the toy either activated or did not.  Although individual blocks failed to activate the 
toy alone, pairs of identical blocks produced the effect.  Immediately after this brief training, we 
examined whether children learned the novel relational property (i.e., “same”) by asking them to 
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activate the toy.   
 
2.2.1  Method 

 
2.2.1.1  Participants 
 
A total of 23 21- to 24-month-old toddlers participated in Experiment 1 (M = 23.0 

months; SD = 1.05 months; range = 20.9-25.0 months; 13 girls).  Three additional children were 
tested but excluded for fussiness or for failing to respond.  Children were recruited from daycare 
centers and museums, and a range of ethnicities resembling the diversity of the population was 
represented.   

 
2.2.1.2  Materials 
 
The toy was a 10” x 6” x 4” opaque white cardboard box containing a wireless doorbell.  

When a block “activated” the toy, the doorbell played a melody.  In fact, the toy was 
surrepticiously activated by a remote control.  Six painted wooden blocks in assorted colors and 
shapes (3 unique pairs of 2 identical blocks) were placed on the toy during the training phase.  
Six additional blocks were used during the test phase, including 2 novel pairs of identical blocks 
and 2 novel individual blocks.  

 
2.2.1.3  Procedure 
 

 The procedure for Experiment 1 is illustrated in Figure 1.  Following a warm-up, the toy 
was placed on the table.  The experimenter said, “This is my toy.  Some things make my toy play 
music and some things do not make my toy play music.” Children then observed while the 
experimenter placed 6 blocks (3 unique pairs of “same” objects: AA’, BB’, CC’) on the table in 
front of the toy.  She said, “Let’s try one!”, selected a block (A) and placed it on top of the toy.  
No effect was produced.  After a pause, the experimenter again said, “Let’s try one!”, selected 
the paired block (A’) and placed it next to the first block (A) on top of the toy.  This pair of 
objects (AA’) activated the toy.  The experimenter smiled and said, “Music!”, removed the 
blocks and returned them to the pile of 6.  This procedure was repeated with the two remaining 
pairs (BB’ and CC’).  The order of the pairs was randomized.  Following all three 
demonstrations, all blocks were removed. 

Next, the experimenter produced 3 test blocks (1 novel paired block (D), 1 familiar block 
(A), and 1 novel distractor block (E) and placed them in a row on the table.  The order of 
presentation was randomized.  She said, “Let’s try one!”, produced the target block (D’), and 
placed it on top of the toy.  No effect was produced.  The experimenter then pushed the toy and 
all 3 test blocks towards the child, and asked, “Can you pick one of these (pointing to the test 
blocks) to make my toy play music?”   

The first test block that the child placed on the toy was recorded.  The toy activated if the 
child correctly selected the novel paired block (D).  If the child selected the familiar block (A) or 
the novel distractor block (E), the toy failed to activate.  After this feedback, this procedure was 
repeated in a second test trial with a new set of test blocks.   

If toddlers were acting based on the previous association between the block and effect, 
they should choose the familiar block (A).  If they simply preferred to try novel blocks they 
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should pick the novel distractor block (E) as often as the novel paired block (D).  However, if 
toddlers were able to learn the higher-order relation, they should select the novel paired block 
(D).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 Schematic representation of training and test trials in Experiment 1.  On each training 
trial, a single block was placed on the toy (no activation) and then an identical block was added, 
activating the toy. This was repeated for all 3 training pairs.  On each test trial, 3 test blocks 
(novel paired block, familiar block, novel distractor block) were presented.  The experimenter 
then placed the target block on the toy, yielding no effect.  The child was asked to select one test 
block to activate the toy.  
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2.2.1.4  Coding and Reliability 
 
Children received 1 point for selecting the novel paired block and 0 points for selecting 

either of the other blocks in each trial.  Responses were recorded by a second researcher during 
the testing session, and all sessions were recorded for independent coding by a third researcher 
who was naïve to the the hypotheses of the experiment.  Interrater reliability was very high; the 
two coders agreed on 99% of the children’s responses.  Two minor discrepancies were resolved 
by a third party.   

 
2.2.2  Results and Discussion 
 

Across the two test trials, children inferred the relational property and selected the novel 
paired block (D) more often than expected by chance (M = 1.13, SD  = .82), 𝜒2(2) = 19.07, p < 
.001.  Fischer exact test revealed no order effects for test trials 1 and 2, p = .39.  Children chose 
the novel paired block (61%) significantly more often than the novel distractor block (20%), 
𝜒2(2) = 14.15, p < .001 and significantly more often than the familiar block (15%), 𝜒2(2) = 
14.09, p < .001.  A minority of children (4%) placed more than one block on the toy 
simultaneously, and were scored as incorrect.  

Previous proposals have suggested that children are unable to reason relationally because 
they tend to focus on the identity of objects that have been previously associated with the 
outcome (e.g., Gentner, 2010).  We show no evidence of this.  In fact, only 39% of participants 
who answered incorrectly on a given trial selected the familiar block, with no difference in their 
selection between the familiar block and the novel distractor, 𝜒2(2) = 2.43, p = .30.  This is 
particularly surprising, given that this block had been associated with the effect during training.  

Results suggest that by 21-24 months of age, toddlers are able to infer the causal principle 
– “same” – from just a few pieces of evidence and use this inference to bring about a novel 
causal outcome.  However, children might have succeeded on this task by imitating the 
experimenter’s selection or because they preferred to match, regardless of training.  Experiment 
1a was designed to address these alternatives. 
 

 

 
 

Figure 2.2  Percentage of 21-24 month olds in Experiement 1 and 1a who selected the matched 
pair (chance = .33). 
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2.3 Experiment 1a 

 
 The procedure for Experiment 1a was identical to Experiment 1, but the second object in 
the pair was occluded.  Because children only observed the first item in each pair, they were 
given no evidence for the relational property.  If children were simply imitating the experimenter 
or had a preexisting preference for matching, then children’s performance should not differ from 
Experiment 1.   
 
2.3.1  Method 

 
2.3.1.1  Participants 
 
Twenty 21-24-month-olds participated (M = 22.4 months; SD = 1.8 months; range =  

20.8-25.6 months; 8 girls).  Two additional children were tested but excluded for failing to 
respond.  Recruitment procedures and demographics were identical to Experiment 1.   

 
2.3.1.2  Materials and Procedure 
 
Materials and procedures were identical to Experiment 1.  However, children did not 

observe the second object during the training trials.  Instead, the second object was occluded by a 
4” x 4” square piece of cardboard.  Additionally, only one test trial was administered in order to 
avoid providing feedback.  Therefore, children could receive 0 or 1 points.  Interrater reliability 
for Experiment 1a was 100%.   
 
2.3.2  Results and Discussion 
 

In the absense of evidence for the relational principle, only 40% of participants selected 
the paired block, [exact binomial test, p = .65, ns], which was significantly different from the 
percentage of children (61%) of the same age on their first trial in Experiment 1, p < .05 by 
Fischer’s exact test (see Figure 2).  Childrens’ selections were evenly distributed: 40% of 
children selected the novel paired block, 35% of children selected the familiar block, and 25% of 
children selected the novel distractor.  These results show that the findings from Experiment 1 
could not have been the result of imitation or a bias to match.  

 
2.4 Experiment 2 

 
 In the earlier primate studies, the canonical relational match to sample tasks presented 

pairs simultaneously during training (e.g., the relation “same” was taught using pairs AA’ and 
BB’), and the animals had to choose between test pairs illustrating “same” (CC’) and “different” 
(DE).  Chimpanzees were unable to spontaneously succeed on this task – and had great difficulty 
even after engaging in trial and error over hundreds of trials.  However, chimpanzees were able 
to solve a simpler match-to-sample task. In these tasks, the animals were first taught to match a 
test object (A) to a target object (A’) through multiple positive and negative reinforcement trials 
over several weeks.  They then generalized this pattern to novel objects without additional 
training (Premack, 1976; Premack & Premack, 1983; 2003; Oden et al, 1988).  
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Our task in Experiment 1, like the simple primate match to sample task, presented the 

training objects sequentially, and this may have made the task easier.  However, Experiment 1 
also differed in several ways from the primate task.  Children learned by observation – they did 
not initially make the responses themselves – and they spontaneously chose the novel paired 
block after observing only three trials.  Additionally, they never observed that the mismatching 
block would “not” produce the effect, so the association between the incorrect familiar block and 
the effect should have continued to be high.  

In order to make the comparison to the primate tasks clearer, we designed a causal task 
that was more directly analogous to the primate relational match to sample tasks, in which both 
“same” and “different” objects are presented in pairs. This task also allowed us to explore 
whether children would infer the “different” relation as well as “same.”  We included toddlers 
from a broader age range to explore possible developmental differences, recruiting children aged 
18 to 30 months.   

Participants were randomly assigned to one of two conditions: same or different.  In the 
same condition, children were given two pieces of evidence that pairs of “same” objects (AA’, 
BB’) simultaneously placed on the toy produced the effect.  We also provided two pieces of 
evidence that pairs of “different” objects (DE, FG) failed to produce the effect.  In the different 
condition, children were given the same four pieces of evidence but “different” pairs (DE, FG) 
produced the effect, while “same” pairs (AA’, BB’) failed to do so.  
 
2.4.1  Method 

 
2.4.1.1  Participants 
 
Thirty-eight 18-30-month-olds participated (M = 25.8 months; SD = 3.8 months; range =  

18.0-30.6 months; 21 girls), with 19 children randomly assigned to each condition (same and 
different).  Seven additional children were tested but excluded: 4 due to failure to complete the 
study and 3 due to experimenter error.  Recruitment procedures and demographics were identical 
to Experiments 1-1a.   
 

2.4.1.2  Materials  
 
The same toy from Experiments 1 and 1a was used.  Eight painted wooden blocks in 

assorted colors and shapes (2 pairs of “same” blocks and 2 pairs of “different” blocks) were 
placed on the toy in pairs during training.  The “same” blocks were identical in color and shape, 
and the “different” blocks were distinct in color and shape (see Figure 3).  Four additional blocks 
were used during the test phase, including 1 novel pair of “same” blocks and 1 novel pair of 
“different” blocks.  The pairs of test blocks were placed on 4” x 4” plastic trays. 

 
2.4.1.3  Procedure 
 

 The procedure for Experiment 2 is illustrated in Figure 3.  Following a warm-up, the toy 
was placed on the table.  The experimenter said, “This is my toy.  Some things make my toy play 
music and some things do not make my toy play music.”  Children then observed while the 
experimenter placed all 8 training blocks (A, A’, B, B’, E, F, G, H) in a random arrangement on 
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the table in front of the toy.  The experimenter said, “Look at these things!  We will try them on 
my toy.”  

 
 

Figure 2.3 Schematic representation of training and test trials in the same and different conditions of 
the relational match-to-sample task in Experiment 2.  On each training trial, a pair of blocks were 
placed on the toy.  In the same condition, the pairs of identical objects activated the machine.  In the 
different condition, the pairs of distinct objects activated the machine.  Participants observed four pairs 
(two causal and two inert).  On each test trial, 2 pairs of test blocks were presented (“same” and 
“different”).  The child was asked to select the pair that would activate the toy. 
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Then, the experimenter removed all objects from view, selected the first pair of blocks 

(e.g., AA’), and placed the blocks simultaneously on the toy.  Children in the same condition 
observed the pair of “same” objects activate the toy.  The experimenter smiled and said, “Music!  
Let’s try that again!”, picked up the pair of blocks, and placed them back on the toy a second 
time, and children again observed the outcome.  After this second demonstration, the 
experimenter removed the pair, selected another pair – a “different” pair (e.g., EF) – and placed 
it on the toy.  This time, children in the same condition observed no effect.  As with the first pair, 
this was demonstrated a second time before moving on to the third pair.  This procedure was 
repeated for all 4 pairs: 2 pairs of “same” objects and 2 pairs of “different” objects.  All pairs 
were placed on the toy twice.  Therefore, children observed a total of 8 outcomes (4 positive and 
4 negative).   

Children in the different condition observed the same set of evidence as children in the 
same condition, with one critical change: pairs of “different” objects (e.g., EF) caused the toy to 
play music, while the pairs of “same” objects (e.g., AA’) failed to activate the toy.  There were 
no other differences in procedure.  The particular objects included in each pair was randomized, 
as well as the order that the pairs were presented during training.   

Following the training phrase in both conditions, the experimenter said, “Now it is going 
to be your turn.  I want you to help me pick the ones that will make my toy play music!”  The 
experimenter produced 2 pairs of test blocks (1 novel “same” pair [JJ’], 1 novel “different” pair 
[KL]).  In order to avoid a novelty preference, both test pairs were composed of novel objects. 
The pairs were presented to the child on plastic trays.  The experimenter held up the two trays, 
shook them to get the child’s attention, and asked, “Can you pick the ones that will make my toy 
play music?”  She then placed the trays on opposite sides of the table in front of the child.  The 
side on which the correct pair was placed was randomized between subjects.  The first tray that 
the child selected was recorded.  Correct selections included pointing to the tray, reaching to the 
tray, or picking up the objects on the tray.  

If they learned the relational property, then children in the same condition should 
correctly select the tray with the novel “same” objects (AA’), while children in the different 
condition should correctly select the tray with the novel “different” objects.  Correct selections 
were given a score of “1” and incorrect selections were given a score of “0”.  Coding and 
recording procedures were identical to Experiments 1-1a.  Interrater reliability was very high; the 
two coders agreed on all but one of the children’s responses to the test questions.  
 
2.4.2  Results and Discussion 
 

Results of Experiment 2 appear in Figure 4.  Children inferred the relational property and 
selected the correct pair more often than expected by chance (M = .79, SD = .41; chance = .5), 
[exact binomial test], p<.02] in both same and different conditions.  In fact, performance was 
identical in the same and different conditions, with 15 out of 19 children in each condition 
selecting the test pair that corresponded with the relation learned during the training trials.  
Additionally, logistic regression revealed no significant developmental change in performance 
between 18 and 30 months of age, 𝜒2(1, 38) = .11, p = .74 (ns). The fact that children responded 
differentially in the otherwise identical same and different conditions also allowed us to rule out 
superficial explanations for the results, such as imitation or a preference for same or different 
pairs – each condition acted as a control for the other condition.   

Experiment 2 indicates that toddlers are able to infer the relational causal principles 
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“same” and “different” from a just few pieces of evidence, and use this inference to intervene to 
bring about a novel causal outcome.  

 
 

 
 
 
Figure 2.4  Percentage of toddlers in the same and different conditions in Experiment 2 who selected 
the correct pair during the test trial (chance = .50). 
 
 
2.5 General Discussion 
 

These findings show that human toddlers as young as 18 months can succeed on a causal 
relational match-to-sample task after only a few trials and without explicit linguistic cues, 
instruction, or reward.  This study has implications for our understanding of both causal and 
relational reasoning.  Using this method, toddlers are able to quicky learn higher-order relational 
causal principles and use them to guide their actions.  This ability appears to be in place 
surprisingly early -- only a few months after the first evidence of the ability to learn about 
specific causal properties from contingency -- and it may be in place even earlier.  This may help 
explain how children acquire the impressive causal knowledge evident in early “intutive 
theories” (Gopnik & Wellman, 2012; Carey, 2010).  

These findings also contrast with the striking failure of non-human primates to solve 
similar tasks, even when the relation is associated with a strong pattern of positive and negative 
reinforcement, and even after hundreds (or thousands) of trials. This finding might support the 
suggestion that an ability to quickly learn relational causal concepts is a dimension on which 
humans differ from other primates.  This might in turn reflect the broader evolution of higher-
order relational cognition (Penn, Holyoak & Povinelli, 2008) or causal cognition in general 
(Heyes & Frith, 2012; Byrne, 1995; Buchsbaum et al., 2012).  

Several questions for further study remain.  One is whether the causal nature of this task 
was critical, or whether other aspects of the task, such as the fact that it involved goal-directed 
actions, might have made it easier for the children than relational tasks in other studies.  It is also 
possible that children could succeed on this particular task by basing their causal inference on  
the observed association between the higher-order relational features and the effects.  In other 
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“blicket detector” studies children’s inferences go beyond association, but those studies would 
have to be replicated with the current relational design.   

Further, it is possible that the children’s success was due to a perceptual heuristic, as has 
been suggested for non-human primates (Penn et al., 2008; Fagot, et al., 2001; Wasserman, et al., 
2001).  According to this argument, it is possible to solve relational match-to-sample tasts using 
the perceptual cue, entropy (i.e., the Shannon entropy of AA’ is 0, while that of AB is 1).  
Several features of the children’s behavior weigh against this possibility: children saw pairs of 
objects (rather than multi-element displays), they observed only two positive and two negative 
trials, they never acted on the object, and their behavior was never reinforced.  Indeed, no other 
species has come close to demonstrating the first-trial performance of these human children after 
so few observations (see Penn, et al., 2008).  Additionally, although human participants have 
been shown to be sensitive to entropy, findings suggested that additional processes of 
categorization likely play a role in the human conceptualization of “same-different” relations 
(Fagot, et al., 2001).  Nevertheless, future research examining this possibility would be 
informative.  

Finally, it will be important to replicate this particular task with non-human primates to 
determine if, like children, they show greater success, or continue to have difficulty.  Our 
protocol did not require a verbal response, so it may be useful in examining reasoning capacities 
in both pre-verbal human infants and possibly in non-human animals.  

However, the current study does suggest that the ability to infer causal higher-order 
relations, an ability which could play a crucial role in further learning, is in place in humans from 
a very early age and does not depend on explicit linguistic cues or cultural scaffolding. 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 



	
  

	
  

18	
  
 
 
Chapter 3 
 
 

The early emergence and puzzling decline of relational 
reasoning: Effects of knowledge and search on 
inferring abstract concepts  
 
 
 
 

 
3.1 Introduction 
 

A growing literature indicates that children as young as 16 months of age are able to learn 
specific causal properties from contingency information and can act on that knowledge to bring 
about novel effects in the world (e.g., Gopnik & Wellman, 2012). But when and how can 
children learn more abstract principles about causal structure? Higher-order generalizations, 
“framework theories” (Gopnik & Wellman, 1992), or “overhypotheses” (Goodman, 1955), 
provide the learner with information about the types of specific hypotheses that are likely to be 
true. Recent computational work suggests that these generalizations about likely causal structures 
might help children learn new specific causal relationships from perceptual data more quickly 
and accurately (e.g., Goodman, Ullman, & Tenenbaum, 2011; Kemp, Perfors & Tenenbaum, 
2007). The ability to quickly learn abstract and specific relations in tandem might explain how 
children acquire the impressive amount of causal knowledge evident in their early intuitive 
theories about the world.  

In the current chapter, we examine children’s developing ability to infer an abstract 
causal principle – a relation between objects (i.e., “same” and “different”) that causes an effect – 
from a limited set of observations. Walker and Gopnik (2014) recently demonstrated that 
toddlers (18-30-month-olds) are surprisingly adept at learning and using the relational concepts 
“same” and “different” in a causal relational match-to-sample (RMTS) task. In this study, 
children were assigned to same or different conditions, and observed as four pairs of objects (two 
“same” pairs and two “different” pairs) were placed on a toy that played music. In the same 
condition, pairs of identical objects activated the toy while pairs of different objects did not. This 
pattern of activation was reversed for the different condition. During test, children were given a 
choice between two novel pairs: one pair of “same” and one pair of “different” objects, and 
asked to select the pair that would activate the toy. Children overwhelmingly selected the pair 
that was consistent with their training. These results suggest that the ability to reason about 
abstract relations is in place very early – emerging spontaneously only a few months after the 
first evidence of children’s ability to learn about specific causal properties.  

However, Walker and Gopnik’s (2014) results with toddlers contrast with a large body of 
research demonstrating that older, preschool-aged children consistently demonstrate a bias to 
attend to individual object kinds (e.g., Christie & Gentner, 2007, 2010, 2014; Gentner, 1998 
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Gentner & Medina, 1998). These robust findings have led some to conclude that active and 
explicit reasoning about relations tends to develop after the establishment of more concrete, 
object-based representations (e.g., Christie & Gentner, 2010, 2014). This epistemological 
account indicates that, in general, object-based concepts are likely to be formed before relational 
concepts when learning in a new domain. 

How might we interpret this apparent developmental reversal in which abstract reasoning 
seems to emerge in the first two years of life, but then disappear in early childhood? First, it is 
possible that older children failed to engage in relational reasoning in previous studies because of 
methodological problems – the tasks were simply too difficult. The toddlers in Walker and 
Gopnik (2014) may have succeeded because the novel causal procedure simply made the task 
easier. In Experiment 1a, we therefore present participants with exactly the same reasoning task 
used in Walker and Gopnik (2014). In addition to replicating this previous work with 18-30-
month-olds, we also assess performance in older children (ranging from 30-48-month-olds) to 
detect the presence of a linear developmental trajectory. If the toddlers in Walker and Gopnik 
(2014) succeeded because of the particular methodological features of the task, then we would 
expect that older children would succeed as well.  

Alternatively, it is possible that younger children succeed because they are relying on 
some simpler, more perceptual strategy that has been abandoned by older children, rather than 
making a genuine causal inference (Fagot, Wasserman & Young, 2001; Penn et al., 2008; 
Wasserman, Fagot & Young, 2001). In Experiment 1b, we therefore assess 18-30-month-olds a 
second time, using an even more stringent test of toddlers’ causal understanding of the relational 
concepts. In addition to coding which pair of blocks the children selected (by pointing) to 
activate the machine in the causal RMTS task, we also coded whether the children themselves 
put the correct novel pair of blocks on top of the toy. This ability to design a new intervention, 
and to act on a cause in order to produce its effect has been argued to be one benchmark of true 
causal understanding (Pearl, 2000; Woodward, 2003). 

There is at least one reason, however, why younger children might indeed genuinely 
outperform older children in learning these causal relational concepts. It may be that 3-year-olds 
have difficulty inferring such relations because they have learned a different “overhypothesis,” 
namely, that individual kinds of objects, rather than relations between them, have causal power. 
Intuitively, it might seem plausible that more abstract hypotheses would be acquired later than 
lower-level, concrete ones based on specific features of objects (e.g., Christie & Gentner, 2010, 
2014). However, theoretical advances drawing on Bayesian accounts of the “blessing of 
abstraction” (Goodman et al., 2011) combined with empirical research on early learning (Dewar 
& Xu, 2010; Schulz, Goodman, Tenenbaum & Jenkins, 2008) suggest that children’s ability to 
learn abstract principles does not necessarily depend on extensive prior experience.  In fact, 
children frequently grasp these general principles at the same time, or even before they grasp the 
specific causal relations underlying them (Kemp et al., 2007; Mansinghka et al., 2006; Schulz et 
al., 2008; Tenenbaum & Niyogi, 2003; Tenenbaum, Griffiths, & Kemp, 2006).  

Hierarchical Bayesian models formalize how it is possible to draw relations among 
multiple levels of abstraction simultaneously (Tenenbaum et al., 2006). According to these 
accounts, learning at the most abstract level is surprisingly fast when compared with learning at 
lower, or more specific levels. As a result, abstract learning need not progress in a bottom-up 
manner. In fact, computational analyses indicate that a learner who is able to simultaneously 
learn abstract and specific knowledge is nearly as efficient as one who is equipped with an innate 
theory (Goodman et al., 2011).  
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According to Bayesian probabilistic models of cognitive development, learners explain 

newly observed evidence by searching through a space of potential hypotheses and testing these 
hypotheses against the data (e.g., Gopnik & Wellman, 2012). To do this, learners combine two 
probabilities: the “prior” – the probability of a particular hypothesis being true before any data 
are observed, and the “likelihood” – the probability of the observed data given that a particular 
hypothesis is true. Combining these two probabilities with Bayes rule produces the “posterior” – 
the probability of the hypothesis being true given the data. A learner can then compare the 
posteriors of different hypotheses, settling on the ones with the highest probabilities.  

These models predict that if the prior probability of one hypothesis is high, then it will 
take stronger data to overturn it in favor of another hypothesis. Having an overhypothesis, or 
general principle, leads the learner to assign a higher prior probability to certain types of specific 
hypotheses, and so constrains children’s interpretation of new data (Kemp et al., 2007). As a 
result, in order for the learner to consider a specific hypothesis that is inconsistent with the 
overhypothesis, the learner would need more evidence supporting this competing hypothesis than 
if she began with no prior expectations and instead assigned all possible hypotheses an equal 
prior probability (i.e., a “flat” prior).  

For example in the case of Walker and Gopnik’s (2014) causal reasoning task, an abstract 
principle of simplicity such as the “Bayesian Occam’s razor” (Jefferys & Berger, 1992) might 
lead toddlers to initially prefer the relational hypothesis, since it proposes fewer causes to 
account for the data. Indeed, previous work demonstrates that young children show such 
simplicity preferences (Bonawitz & Lombrozo, 2012). However, if older children have also 
learned the general principle that individual object kinds are more likely to be causal (which is a 
robust bias even in adult learners [e.g., Lucas, Bridgers, Griffiths, & Gopnik, 2014]), this may 
serve to constrain their interpretation of the data, leading them to privilege individual properties 
over relational ones, in spite of simplicity considerations.  

In other words, with increasing knowledge, learners develop expectations that constrain 
the set of hypotheses they consider. Although this allows learners to more quickly and accurately 
acquire information consistent with the general principles they have already inferred, it makes 
learning new information that is inconsistent with these general principles more difficult (see 
Gopnik et al., 2015). In fact, some recent research suggests that in some cases, apparent 
limitations in children’s knowledge and cognitive abilities may lead younger children to be better 
learners than older children and even adults (Gopnik, Griffiths & Lucas, in press; Lucas et al., 
2014; Seiver, Gopnik & Goodman, 2013).   

In Experiment 2, we therefore adapt the causal RMTS procedure to test the proposal that 
older children are able to reason about abstract relations, but have learned the overhypothesis 
that individual kinds of objects are more likely to be causal. To do so, Experiment 2 provides 
older children with explicit negative evidence for the causal efficacy of individual objects. 
Because this evidence is inconsistent with the individual cause hypothesis, it might serve to 
lower the probability of this alternative. In other words, observing evidence against the 
individual cause hypothesis may lead older children to reject it, even though it is more consistent 
with their prior knowledge.   

Finally, in Experiment 3, we aim to scaffold the relational inference using a different 
mechanism. Rather than changing the data, we change the way that children search through the 
hypothesis space. In particular, previous work has demonstrated that asking children to explain 
patterns of events imposes top-down constraints on their search procedure, leading them to 
privilege more general and inductively rich hypotheses (e.g., Lombrozo, 2012; Walker, 
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Lombrozo, Legare & Gopnik, 2014; Walker, Williams, Lombrozo & Gopnik, 2012, under 
review; Williams & Lombrozo, 2013). If preschool-aged children are already able to reason 
about relational properties, but assign a higher probability to individual object kind hypotheses, 
then introducing a prompt to explain may impose the opposite constraint, leading children to 
privilege abstract properties instead.  

Across studies, we test the hypothesis that older children’s “failure” on traditional 
relational reasoning tasks is due to the development of an overhypothesis about the importance 
of individual object kinds, rather than the inability to represent and reason about relations. 
 
3.2 Experiment 1a 
 
3.2.1  Method 

 
3.2.1.1  Participants 
  
A total of 141 children participated in Experiment 1a, including 56 36-48-month-olds (M 

= 41.6 months; range = 36.0 - 48.2 months), 40 30-36-month-olds (M = 33.6 months; range = 
30.1 - 35.8 months), and 45 18-30-month-olds (M = 25.1 months; range = 18.9 - 29.9 months). 
Half of the children in each age group were randomly assigned to one of two between subject 
conditions: same and different. An additional 10 participants were tested, but excluded. Six 
children were excluded due to experimenter error or toy failure, and 4 were excluded due to 
participants’ failure to complete the experiment. Children were recruited from local preschools 
and museums, and a range of ethnicities resembling the diversity of the population was 
represented. 

 
3.2.1.2  Materials and Procedure 
 
The procedure for Experiment 1a was an exact replication of the procedure used in 

Experiment 2 of Walker and Gopnik (2014) (see Figure 1).  
Children were tested individually in a small testing room, seated at a table across from 

the experimenter. During the training phase, children saw 4 pairs of painted wooden blocks (2 
same and 2 different) placed on top of the toy. The toy was a 10- x 6- x 4-in. opaque white 
cardboard box that appeared to play music when certain blocks were placed on top. In reality, the 
box contained a wireless doorbell that the experimenter activated by surreptitiously depressing a 
button.  

In the same condition, the pairs that activated the toy consisted of two identical blocks, 
while in the different condition the pairs that activated the toy consisted of two blocks that 
differed in both shape and color. The experimenter started the training phase by introducing the 
toy to the child, saying, “This is my toy! Sometimes it plays music when I put blocks on top and 
other times it does not. Should we try some and see how it works?” The experimenter then took 
out two blocks, saying, “Let’s try these ones!” and placed both blocks simultaneously on the toy, 
and the toy played music. The experimenter responded to the effect by saying, “Music! My toy 
played music!” The experimenter then placed the two blocks on the toy a second time and said, 
“Music! These ones made my toy play music!” Next, the experimenter took out a new pair of 
blocks in the opposite relation as the first pair. The experimenter placed these two blocks 
simultaneously on the machine, and the toy did not activate. In response, the experimenter said, 
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“No music! Do you hear anything? I don’t hear anything.”  The experimenter placed this pair on 
the machine again and said, “No music. These ones did not make my toy play music.” The 
experimenter then repeated this with two more pairs of blocks, one pair that activated the toy and 
one pair that did not.  

The test phase began after all 4 pairs of blocks had been demonstrated on the toy. In both 
conditions, the child was given a choice between a novel same pair and a novel different pair to 
activate the toy herself. The pairs of blocks children observed on the machine and the pairs they 
were asked to choose between in the test phase were the same across conditions; the only 
difference between the two conditions was which relation activated the toy. The experimenter 
said, “Now that you’ve seen how my toy works, I need your help finding the things that will 
make it play music. I have two choices for you.” The experimenter took out two trays, one 
supporting a novel same pair and one supporting a novel different pair, saying, “I have these,” 
(holding up one tray) “and I have these” (holding up the other tray). Once the child looked at 
both trays, the experimenter continued, saying, “Only one of these trays has things that will make 
my toy play music. Can you point to the tray that has the things that will make it play?” The 
experimenter then placed both trays on opposite sides of the table just out of reach of the child, 
and prompted the child to point. The side of the correct pair was counterbalanced between 
children.   

Children’s first point or reach was recorded. Children received 1 point for selecting the 
pair of novel test blocks in the relation that matched their training (same or different) and 0 
points for selecting the pair of test blocks in the opposite relation. A second researcher who was 
naïve to the purpose of the experiment recorded all responses. Inter-rater reliability was very 
high; the two coders agreed on 94% of the children’s responses.  
 
3.2.2  Results  
 

Replicating the results reported by Walker and Gopnik (2014), 18-30-month-olds in 
Experiment 1a selected the test pair that was consistent with their training, in both same (78%), p  
=  .01 (two-tailed binomial) and different (77%), p = .02 (two-tailed binomial) conditions (see 
Figure 2). By contrast, however, the older children (3-year-olds) failed to select the correct test 
pair in either same (46%), p = .85 or different (43%), p = .57 conditions (see Figure 3), with 
younger children outperforming older children in both cases (same: χ2(1) = 5.37, p = .02; 
different: χ2(1) = 5.99, p = .02). As predicted, the performance of 30-36-month-olds fell between 
these younger and older groups, selecting the correct test pair marginally above chance (70%) in 
the same condition, p = .06 (one-tailed binomial) and at chance (50%) in the different condition, 
p = 1.0.  

These results demonstrate a surprising decline with age on the causal RMTS task. To 
provide additional support for this developmental trajectory, we combined children across age 
groups and conducted a logistic regression, treating age as a continuous factor and correct 
selection (collapsing across same and different) as the dependent variable. Results of the logistic 
regression show a significant decline between 18 and 48 months, χ2(N = 141, df = 1) = 3.88 
(Wald), p < .05.  
 
3.3     Experiment 1b 
 

Experiment 1a suggests a surprising decline in older children’s ability to learn the 
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abstract relations “same” and “different.” However, one possible explanation for this finding 
may be that younger children rely upon a simpler strategy, rather than a genuine causal 
inference, that is later abandoned by older children. In Experiment 1b, we sought to assess 18-
30-month-olds a second time, using a more stringent test of causal reasoning: In addition to 
replicating 18-30-month-olds’ selections (by pointing), we also examined the outcome of their 
own interventions to produce the novel effect. This ability to intervene with the appropriate pair 
of objects and to act on a cause in order to produce its effect is one benchmark of causal 
understanding (Pearl, 2000; Woodward, 2003). Would the children who pointed to the correct 
pair of blocks also actively intervene to activate the toy with those blocks? 
 
3.3.1  Method 

 
3.3.1.1  Participants  
 
Forty 18-30-month-olds (M = 23.6 months; range = 17.9 -31.0 months) were randomly 

assigned to one of two conditions: same (n = 20, M = 24.3 months, range = 17.9 – 30.0 months) 
and different (n = 20, M = 23.1 months, range = 17.9 – 31.0 months). An additional 8 
participants were excluded for failing to complete the study. Recruitment methods and 
participant population was identical to Experiment 1a. 

 
3.3.1.2  Materials and Procedure  
 
The procedure for Experiment 1b was nearly identical to Experiment 1a (refer to Figure 

1), except for the following critical change to the test trial. After the child pointed to the selected 
tray, the experimenter pushed both trays within reach and asked the child to intervene to make 
the toy play music. When necessary, children were encouraged to use the objects to activate the 
toy. 

As in Experiment 1a, the experimenter recorded children’s first point or reach. In 
addition, the experimenter coded the child’s intervention. All children placed a block on the 
machine at least once. The experimenter coded whether the child initially placed two different 
blocks or two similar blocks on the machine, or whether they only placed one block on the 
machine.  
 
3.3.2  Results 

 
In Experiment 1b, 18-30-month-olds again pointed to the test pair that was consistent 

with their training, in both same (80%), p = .02 (two-tailed binomial) and different (75%), p = 
.04 (two-tailed binomial) conditions, replicating the results in Experiment 1a and Walker and 
Gopnik (2014).  

Sixteen children in the same condition pointed to the correct tray during their initial 
selection.  Eleven (69%) of these children intervened with a pair of “same” novel blocks (rather 
than intervening with either the “different” pair or a single block), while only 3 (19%) of the 
children in the different condition did so, with a significant difference between conditions, p = 
.01 (two-tailed Fisher exact test). Similarly, 15 children pointed to the correct tray in the different 
condition and 10 (67%) of those children intervened with a pair of “different” blocks (rather than 
intervening with either the “same” pair or a single block), while only 3 (19%) of children in the 
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same condition did so, with a significant difference between conditions, p = .01 (two-tailed 
Fishers exact test).  
 

 

 
 
Figure 3.1.  Schematic representation of training and test trials in the same and different 
conditions in Experiments 1a and 1b. Participants observed four training trials (two causal and 
two inert). On each test trial, a novel pair of “same” blocks and a novel pair of “different” blocks 
were presented. The child was asked to select the pair that would activate the toy.  

 
These results demonstrate that children are indeed making a causal inference when 

selecting between the test pairs of blocks – they select the pair they believe will make the toy 
play music. Children’s intervention behavior indicates that they have learned that the relations 
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between the blocks in our experiment and not the individual blocks themselves carry causal 
power. These data lend support to the idea that toddlers are using a conceptual strategy, rather 
than a simplified perceptual one, to solve the causal RMTS task. We discuss this further in the 
General Discussion.  

 
 

 
 

Figure 3.2.  Proportion of correct relations selected following the manipulations in Experiments 
1-3.   
 
 
3.4     Experiment 2 
 

Results of Experiments 1a and 1b replicate Walker and Gopnik’s (2014) findings that 
young children are already equipped with the capacity to infer relational properties, though older 
children fail. We hypothesize that older children may be expressing a learned bias to attend to 
individual object properties and ignore abstract relations between them. In an effort to assess this 
claim directly in Experiment 2, we manipulated the data that children observe to provide 
evidence against the individual object kind hypothesis. In particular, Experiment 2 provided 
older children with explicit negative evidence that would lower the probability of an individual 
object kind hypothesis. To do so, 3-year-olds observed the same procedure described in 
Experiment 1a, with one important change: Before the experimenter placed the pairs of blocks 
on the toy simultaneously, she first placed each block on the toy one at a time, and children 
observed that the toy failed to activate (see Figure 3). By providing evidence against an 
individual object cause, these negative observations may prompt older children to override that 
hypothesis, even though it is more consistent with their prior knowledge, and instead consider 
the abstract relational principle that is more consistent with the evidence observed. 
 
3.4.1  Method 
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3.4.1.1  Participants  
 
A total of 56 3-year-olds (M = 41.9 months; range = 35.9 - 49.9 months) were randomly 

assigned to one of two conditions (same, n = 28, M = 41.7, range = 34.9 – 48.9 and different, n = 
28, M = 42.2 months, range = 36.0 – 49.6 months). An additional 4 participants were excluded 
for failure to complete the study. Recruitment methods and participant population was identical 
to Experiment 1a and 1b. 

 
 

 
 

Figure 3.3. Schematic representation of two (of four) training trials in the same condition.  The 
pattern of activation was reversed for the different condition.  All test trials were identical to 
those used in Experiment 1a. 

 
 
3.4.1.2  Materials and Procedure  
 
The materials were identical to Experiment 1a and the procedure included the following 

critical changes. For each pair of blocks, the experimenter first placed each block on the machine 
sequentially, before placing them both on simultaneously (see Figure 3). Therefore, in addition to 
observing positive evidence that pairs of same or different blocks (depending upon the child’s 
condition) activated the toy together, children also observed negative evidence for the causal 
efficacy of individual blocks (i.e., each block failed to activate the toy on its own). This training 
phase was immediately followed by a test phase, which was identical to the test phase in 
Experiment 1a. Inter-rater reliability was very high; the two coders agreed on 93% of children’s 
responses to the test questions.  

 
3.4.2  Results and Discussion 

 
Results of Experiment 2 are consistent with the proposal that older children have 

developed a learned bias to attend to individual objects (see Figure 2). Once 3-year-olds were 
provided with negative evidence for the individual object kind hypothesis, they selected the 
correct relation significantly more often than chance (64%), p = .045 (exact binomial). However, 
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this overall effect was due to the improved performance of children in the same condition, in 
which 79% of children selected the correct pair, p = .005 (exact binomial). This performance was 
significantly better than children of the same age in the same condition in Experiment 1a, χ2(1) = 
6.17, p = .01, and no different than the 18-30-month-olds (78%). Children in the different 
condition did not differ from chance performance (50%), p = 1.0 (exact binomial), leading to a 
significant difference between same and different conditions, χ2(1) = 4.98, p = .03. 

How might we explain this emerging asymmetry between the “same” and “different” 
conditions in older children?  It is possible that the data patterns observed in these two 
conditions interacted differently with the strength of children’s beliefs in the “relational” vs. 
“individual” overhypothesis, leading to differences in how children’s beliefs in these hypotheses 
were updated in light of the evidence. If older children 1) have developed the overhypothesis 
that individual kinds of objects are causal, 2) assume that the experimenter is randomly 
sampling blocks, and 3) assume that some fixed proportion of block types activate the toy, then 
the pattern of data that they observe in the “same” condition has a lower likelihood of occurring 
than the pattern of data in the “different” condition. Given assumptions 1-3, the probability that 
the toy will activate on any given trial should be higher when two different kinds of blocks are 
placed on the toy (i.e., when there are two potential activators), than when two of the same kind 
of block are placed on the toy (i.e., when there is only one potential activator). In other words, 
given that there is only one kind of block presented in each positive evidence training trial in the 
“same” condition, these data offer stronger counterevidence to the individual object kind 
overhypothesis than the pattern of data in the “different” condition. 

However, this asymmetry might not be evident in children who think either that the 
“relational” or “individual” overhypothesis is much more likely than the alternative. According 
to Bayes rule, if the prior probability for one overhypothesis is well below the threshold for 
acceptance and the other is well above it, the difference in likelihoods might have little effect. In 
an intermediate case, however, where one overhypothesis is slightly more probable than the 
other, the difference in the likelihood of the two data patterns might lead to a difference in the 
posterior probabilities for these hypotheses (after observing the data pattern) and thus a 
difference in performance. In particular, the presentation of negative evidence for individual 
blocks in Experiment 2 would provide stronger support for the relational inference in the “same” 
condition than in the “different” condition.   

Interestingly, the performance of the 30-36-month-olds in Study 1 also suggests the 
asymmetry between same and different, although (due to small sample sizes) the difference 
between the two conditions did not reach significance (p = .16). Future work will test this 
interpretation using a Bayesian model that formalizes the assumptions outlined above. 
 
3.5     Experiment 3 
 

In Experiment 3, we examined whether we could induce relational reasoning another way 
– not by manipulating the data that children observe, but by introducing a prompt to explain the 
evidence children observed during the training trials. Experiment 3 contrasted two conditions in 
which we asked 3- and 4-year-olds to either report whether the toy activated in each training trial 
or to explain why the toy did or did not activate in each case. We hypothesized that generating an 
explanation may motivate a different search procedure (e.g., Lombrozo, 2012; Walker et al., 
2014; Walker et al., 2012, under review; Williams & Lombrozo, 2013), increasing the chance 
that children will accept the relational hypothesis.  
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3.5.1  Method 

 
3.5.1.1  Participants  
 
Forty-eight 3- and 4-year-olds (M = 45.1 months; range = 36.5 -58.9 months) were 

randomly assigned to one of two conditions (explain: n = 24, M = 45.9 months, range = 37.0 – 
58.9 months; report: n = 24, M = 44.2 months, range = 37.2 – 58.5 months). Half of the children 
in each condition (12 per condition) observed evidence that was consistent with the same relation 
and the other half observed evidence that was consistent with the different relation. An additional 
3 participants were excluded for failing to complete the study. Recruitment methods and 
participant population was identical to the previous experiments. 

 
3.5.1.2  Materials and Procedure   
 
The procedure for Experiment 3 was nearly identical to Experiment 1a (see Figure 1), 

except for the following changes. Children in the explain condition were prompted for an 
explanation after the second placement of each training pair on the toy, asking, “Why do you 
think these ones made/did not make my toy play music?” In the report condition, the 
experimenter asked, “What happened to my toy when I put these ones on it? Did it play music?” 
(prompting a yes/no response).  As in previous work, reporting was selected as a control task 
because it shares several commonalities with explanation: it draws children’s attention to the 
causal relationship, it requires them to verbalize in a social context, and it roughly matches 
children’s time engaging with each outcome.   

In addition to coding children’s selections, all explanations were categorized into 3 
mutually exclusive types: (1) object-focused (e.g., “because it’s red”, “because it has 
batteries”), (2) relation-focused (“because they are the same,” “because they are not the 
same”), and (3) uninformative (“I don’t know,” “because it played music”). Inter-rater 
reliability was again very high; the two coders agreed on 96% of children’s responses to the test 
questions, and 89% of the explanation categories.  

 
3.5.2  Results and Discussion 

 
Three- and 4-year-olds who were prompted to explain during the training trials selected 

the correct relation significantly more often than chance (79%), p = .007 (exact binomial) (see 
Figure 2). Children in the report condition did not differ from chance (42%), p = .54, and there 
was a significant difference between explain and report conditions, p = .017. Unlike in 
Experiment 2, there was no significant overall difference between same (58%) and different 
(63%) relations, p = .76. There were also no differences found between same and different within 
each condition (explain: same = 75%, different = 83%; report: same = 42%, different = 42%). 
Comparing the overall pattern of responses of 3- and 4-year-olds who explained to the 18-30-
month-olds in Experiment 1a, reveals no significant difference, χ2(1) = 0.02, p = .88, while 3- 
and 4-year-olds in the report condition performed significantly worse than the 18-30-month-olds, 
χ2(1) = 9.0, p = .003, and no differently from the 3-year-olds in Experiment 1a, χ2(1) = 0.06, p = 
.81, replicating the developmental pattern in Experiment 1a.  
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In order to analyze whether the content of children’s explanations mattered for this 

pattern of responses, we classified the type of explanation (i.e., object-focused, relation-focused, 
uninformative) that each child produced most often, and analyzed their performance on the 
relational task. Children who provided relation-focused explanations as their modal response 
(N=6) – the most relevant explanation for the task – always selected the correct relational pair 
(100%). Children who provided object-focused explanations (N=9) were also highly likely to 
select the correct relational pair (89%). However, children who provided uninformative 
explanations or failed to provide an explanation at all (N=9) selected the fewest number of 
correct relational pairs (56%). The children who provided relevant relational or object-focused 
explanations were significantly more likely to choose the correct relational pair than children 
who provided no explanation or uninformative ones (p = .047, 2-tailed Fishers exact test). These 
data indicate that providing a meaningful explanation (regardless of its content) is sufficient to 
improve relational reasoning, but that simply being prompted for an explanation may not be. 

 
3.6     General Discussion 
 

Across four experiments, we assessed the influence of both the data that children 
observed (Experiments 1a, 1b, and 2), as well as their search procedure (Experiment 3) on their 
abstract reasoning. In Experiment 1a, we replicated Walker and Gopnik’s (2014) finding that 18-
30-month-olds are able to infer the abstract relations “same” and “different” from very few 
observations in a causal task. We also included an intervention prompt in Experiment 1b, in 
which 18-30-month-olds further demonstrated their causal understanding of the relational 
concept. We also contrasted toddlers’ performance with a group of 30-36-month-olds and a 
group of 3-year-olds. As in previous work, older children failed to learn the relation. In fact, we 
found evidence for a linear decline in relational reasoning between 18 and 48 months of age.  

The findings of Experiment 2 help to further explain this decline. They suggest that 
children may learn to privilege individual kinds of objects: When provided with evidence against 
this hypothesis, 3-year-olds were able to infer the relation in the same condition. Finally, in 
Experiment 3, we demonstrated that prompting children to explain during learning leads 3- and 
4-year-olds to privilege the abstract relational hypothesis in both the same and different 
conditions. These results are consistent with previous work indicating that generating 
explanations prompts generalization and abstraction in causal reasoning (e.g., Legare & 
Lombrozo, 2014; Walker et al., 2014). 

Discovering when and how children learn relational concepts is important for 
understanding the processes underlying early causal learning, but it is also important for 
understanding the development of relational reasoning, both in ontogeny and phylogeny. First, 
these results indicate that these abilities are in place surprisingly early – emerging spontaneously 
only a few months after the ability to learn specific causal properties. Although older children 
often fail to infer the relational hypothesis, this failure can be explained by appealing to the role 
of prior knowledge in constraining their judgments (see also Gopnik et al., in press).  

The earlier literature on the development of relational reasoning invokes a “relational 
shift” from attending to individual, concrete object features to attending to more abstract, 
relations between objects. This literature attributes the shift to a number of factors, including an 
increase in relational knowledge (e.g., Gentner & Rattermann, 1991), exposure to relational 
language (e.g., Christie & Gentner, 2014), and various maturational variables (Halford, 1992; 
Richland, Morrison & Holyoak, 2006; Thibaut, French & Vezneva, 2010).  Our results suggest 
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that the developmental trajectory of relational reasoning may be better characterized as a “u-
shaped curve,” in which early reasoning abilities are overshadowed by children’s development of 
conflicting hypotheses (see e.g., Karmiloff-Smith & Inhelder, 1974-1975). In other words, the 
“relational shift” may not reflect an initial inability or difficulty to formulate or use relational 
concepts. Instead, it reflects a shift in the probabilities assigned to the individual object kind and 
relational hypotheses.  

This novel proposal also provides an explanation for the well-documented influence of 
scaffolding on relational abilities. For example, previous research has demonstrated that the use 
of labels (Christie & Gentner, 2007; Gentner & Rattermann, 1991; Loewenstein & Gentner, 
2005; Namy & Gentner, 2002; Ratterman & Gentner, 1998; Son, Doumas & Goldstone, 2010; 
see also Premack, 1983; Thompson & Oden, 2000; Thompson, Oden & Boysen, 1997 for similar 
findings in chimpanzees) and prompts to compare (e.g., Christie & Gentner, 2014; Gentner et al., 
2011; Gick & Holyoak, 1983; Kotovsky & Gentner, 1996) support relational competence. 
Similarly, we demonstrate (in Experiments 2 and 3) that the individual object kind hypothesis 
may be overcome in both the same and different conditions with relatively minimal intervention.  

Our findings, however, suggest a different interpretation of these results. In particular, 
Gentner (2010) has argued that symbolic language abilities support a process of structure 
mapping, in which close, object-based comparisons potentiate more distant, purely relational 
ones, through a process of progressive alignment. While we agree that relations are learned 
through experience, we propose that this learning need not proceed from local properties to more 
abstract ones. Explicit relational language, comparison, and explanations are not prerequisites for 
relational reasoning. Instead they serve to make the individual object kind overhypothesis less 
probable.   

These findings are also relevant to the broader evolution of relational reasoning (Penn et 
al., 2008) and causal cognition in general. There is an ongoing debate in the comparative 
literature regarding whether differences in relational reasoning indicate a qualitative difference, 
or merely a quantitative gap between humans and their primate relatives (see Penn et al., 2008). 
The fact that very young human children already show the relational reasoning advantage, with 
no explicit prompting or cultural tutelage, may indicate that this is indeed a significant 
phylogenetic difference. Although it is possible that the younger children’s success is due to the 
use of a perceptual heuristic, as has been suggested for nonhuman primates (e.g., Wasserman et 
al., 2001), several features of the study design weigh against this possibility: children saw pairs 
of objects (rather than multi-element displays), they observed only two positive and two negative 
trials, they never acted on an object, and their behavior was never reinforced. Indeed, no other 
species has come close to demonstrating the first-trial performance of these human children after 
so few observations (see Penn et al., 2008). In addition, the inclusion of an intervention task in 
Experiment 1b provides evidence for a genuine causal understanding of the abstract property.  
However, additional research is in progress to rule out the possibility that younger children are 
relying upon a different strategy during learning.   

Finally, we propose that these results are consistent with other cases in which younger 
children are more flexible learners than older ones (Defeyter & German, 2003; Kuhl, 2004; 
Lucas et al., 2014; Seiver et al., 2013; Werker, et al., 2012). The very fact that children know less 
to begin with may, paradoxically, make them better (or at least more flexible) learners. In 
particular, as we acquire abstract knowledge about causal structure, this experience provides a 
set of inductive biases that are usually quite helpful, allowing the learner to draw quick and 
accurate conclusions when a new situation is consistent with their past experiences. However, 
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this experience can also be a double-edged sword – occasionally leading learners away from the 
correct hypothesis, particularly in cases in which the correct hypothesis is unusual or less 
consistent with previous observations.  

In Bayesian terms, children’s flexibility results from a “flatter” initial prior than older 
children and adults. This flexibility may also reflect different search procedures, as well as 
different kinds of prior knowledge. For example, in Experiment 3, shifting older children’s 
search procedure by asking them to explain the data led to better performance. There may be a 
general shift from broader to narrower search procedures as children grow older, independent of 
their specific knowledge. Developmental differences in both prior knowledge and search 
procedures may help to explain why very young children are such extraordinarily powerful 
learners. 
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Chapter 4   
 
 

Explaining prompts children to privilege inductively 
rich properties 
 
 
 
 
 
4.1  Introduction 
 

The challenge of causal reasoning is to discover the underlying structure of the world to 
facilitate prediction and action.  This is non-trivial task.  Despite the often strong correlation 
between what an object looks like and its causal properties (see Gelman & Medin, 1993), it is not 
uncommon to observe dissociations.  In fact, perceptually similar objects can be endowed with 
very different causal properties: Poison hemlock may look identical to wild carrot, but it is 
certainly not good to eat.  Learning how and when to override perceptual properties as a basis for 
judgment and action, and to instead favor inductively rich properties (such as causal 
affordances), is thus an important step in cognitive development.   

We propose that the process of seeking, generating, and evaluating explanations plays an 
important role in encouraging children to recognize and privilege inductively-rich properties as a 
basis for reasoning, even when those properties are not perceptually salient.  In particular, 
engaging in explanation could help children appreciate causal properties and subtle but reliable 
cues to causal structure, such as internal parts and category membership.  For example, trying to 
explain why consuming hemlock generates one outcome (namely death) while consuming wild 
carrots generates another (perhaps pleasure) could help children appreciate that each plant has 
important internal properties, and that these internal properties are correlated with causal 
consequences they may wish to prevent (e.g., death) or to predict (e.g., pleasure).  

In what follows, we first outline our proposal for the effects of explanation, motivating 
our hypothesis that explaining leads children to privilege inductively rich properties (i.e., those 
that facilitate a broad set of useful inferences).  We then provide a brief review of prior research 
on children’s inductive generalizations in tasks that require choosing between a salient 
perceptual property (e.g., an object’s color and shape) and a causal property (e.g., activating a 
machine).  This body of research helps lay out the methods and developmental changes that 
motivate the current experiments.  
 
 
4.1.1  Explanation and Inference 
 

Accounts of explanation from both philosophy and psychology suggest that explaining 
past and present observations can foster the acquisition of information that supports future 
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actions and predictions (e.g., Craik, 1943; Friedman, 1974; Gopnik, 2000; Heider, 1958; Kitcher, 
1989; Lombrozo, 2012; Lombrozo & Carey, 2006; Walker, Williams, Lombrozo, & Gopnik, 
2012; Walker, Lombrozo, Williams, & Gopnik, under review).  These ideas about the functions 
or consequences of explanation are consistent with several accounts of the form and content of 
explanations.  In particular, according to subsumption and unification theories, explanations 
appeal to regularities that subsume what’s being explained under some kind of law (e.g., Hempel 
& Oppenheim, 1948) or explanatory pattern (e.g., Friedman, 1974; Kitcher, 1989).  In so doing, 
they relate the particular fact or observation to a generalization that supports further inferences 
(Lombrozo, 2006, 2012; Wellman & Liu, 2007).  For example, by explaining Socrates’ death by 
appeal to the consumption of a poisonous chemical contained within hemlock (i.e., coniine), one 
implicitly invokes the generalization that the chemical can cause death in humans.  This 
generalization in turn supports predictions about the consequences of future coniine 
consumption, provides guidance about how to avoid a particular kind of death (i.e., don’t 
consume hemlock), and even supports counterfactuals about how things could have been 
otherwise (e.g., if Socrates hadn’t consumed hemlock, or if he’d had an antidote to coniine, he 
would have lived to see another day).   

If explanations typically subsume what is being explained under some generalization, 
then engaging in explanation could influence learning and inference by driving reasoners to form 
broad generalizations and to consult them as a basis for further reasoning (Lombrozo, 2012). 
Consistent with this idea, research with adults has shown that prompts to explain can promote the 
discovery and extension of broad patterns that govern membership in novel categories (e.g., 
Williams & Lombrozo, 2010, 2013; Williams, Lombrozo, & Rehder, 2013; see also Chi, 
DeLeeuw, Chiu, LaVancher, 1994).  Recent developmental work likewise suggests that when 
prompted to explain, even young children are more likely to favor broad patterns (Walker et al., 
2012, under review) and to develop abstract theories, such as a theory of mind (Amsterlaw & 
Wellman, 2006), that can accommodate otherwise-puzzling observations (e.g., a character 
looking for an object in the wrong location).  For example, Walker et al. (2012; under review) 
found that when prompted to explain why particular types of objects activate a machine while 
others do not, preschool-aged children were more likely to rely on a feature that accounted for all 
observations (as opposed to a subset) in deciding which new objects were likely to activate the 
machine. 

Many of the most far-reaching and useful generalizations are those that involve causal 
relationships, as they support interventions in addition to predictions.  Generalizations relating 
hemlock and death (in the example with Socrates), or beliefs and behaviors (in theory of mind), 
are cases in point.  Some accounts of explanation require that explanations be causal (e.g., 
Strevens, 2008; Woodward, 2005, 2011), but one need not subscribe to a strictly causal theory of 
explanation to accommodate the observation that explanation and causation are often closely 
linked: the view that explanations privilege broad and useful generalizations is enough to support 
the idea that causation will often (if not always) be central to explanations.  In line with this idea, 
previous research with adults has demonstrated that explanations help guide causal inferences 
(Heit & Rubinstein, 1994; Rehder, 2006; Sloman, 1994).  There is also indirect evidence that 
causation is central to children’s explanations (e.g., Hickling & Wellman, 2001).  For example, 
young children’s explanations often posit unobserved causes (Buchanan & Sobel, 2011; Legare, 
2012; Legare, Wellman, Gelman, 2010; Legare, Wellman, & Gelman, 2009), and Legare and 
Lombrozo (2014) found that children who explained learned a novel toy’s causal (functional) 
mechanism (i.e., interlocking gears make a fan turn), but not other superficial properties (i.e., the 
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color of the gears), more readily than children who did not.  In the experiments that follow, we 
focus on causality as a canonical, inductively-rich property that’s likely to be privileged in 
explanation, and we investigate the prediction that prompting young children to explain will help 
them appreciate and use causal similarities as a basis for learning and inference. 
 
4.1.2  Inductive generalization: a shift from perceptual to conceptual? 
 

A large body of research has examined the role of obvious (perceptual) properties versus 
non-obvious (hidden or abstract) properties, such as causal affordances, in guiding children’s 
inductive inferences (e.g., Gelman, 2003; Gelman & Markman, 1986, 1987; Gopnik & Sobel, 
2000; Keil, 1989; Keil & Batterman, 1984; Nazzi & Gopnik, 2000; Newman, Herrmann, Wynn, 
& Keil, 2008).  This research demonstrates that even young children are able to use both 
perceptual and non-perceptual properties in categorizing objects (e.g., Gelman & Markman, 
1987; Gopnik & Sobel, 2000).  Nonetheless, young children tend to spontaneously focus on 
highly salient surface features.  Specifically, while older children and adults often group objects 
according to complex cues such as common internal properties, labels, and causal affordances, 
regardless of perceptual similarity (Carey, 1985; Keil, 1989; Medin, 1989; Rips, 1989), young 
children tend to group objects based on perceptual similarity, and only later shift to favoring 
other properties (e.g., Gelman & Davidson, 2013; Gentner, 2010; Keil & Batterman, 1984).   

To illustrate, consider the findings from Nazzi and Gopnik (2000).  In this study, children 
observed four objects placed on a toy, one at a time.  Two of these objects were shown to be 
causally effective – they made the toy play music – and two were inert.  One of the causal 
objects was then held up and labeled (e.g., “This is a Tib”), and children were asked to give the 
experimenter the other object with the same label (e.g., the other “Tib”).  In conflict trials, the 
same perceptual properties appeared across causal and inert objects, and performance on such 
trials revealed a developmental shift: when generalizing the novel label, 3.5-year-olds relied on 
perceptual cues over causal cues, while 4.5-year-olds relied on causal cues over perceptual cues.  

Between the ages of 3 and 5, children also shift how they generalize internal or hidden 
parts. For example, Sobel, Yoachim, Gopnik, Meltzoff, and Blumenthal (2007) used a procedure 
similar to that of Nazzi and Gopnik (2000) to demonstrate that older children (4-year-olds), but 
not younger children (3-year-olds), are more likely to infer that objects have shared internal parts 
when they share causal properties than when they share external appearance.  These examples – 
and many others (e.g., see evidence from research on psychological essentialism: Keil, 1989; 
Gelman, 2003) – demonstrate that by 5 years of age, children begin to reliably favor inductively 
rich properties, such as common causal affordances, over perceptual similarity when 
generalizing from known to unknown cases.  

There have been a variety of proposals for how best to characterize and explain this shift 
in children’s inductive generalizations.  For example, one possibility is that children first 
categorize objects by relying on perceptual or “characteristic” properties, and then shift to a 
different basis for categorizing objects, one based on more complex or “defining” properties (see 
Keil & Batterman, 1984).  Another possibility is that the basic mechanism underlying children’s 
judgments remains constant, but that the exercise of this mechanism results in different 
judgments as children gather new evidence.  Specifically, properties are often encountered in 
correlated clusters, with perceptual information serving as a reliable indicator of other properties. 
As a result, perceptually-based judgments may be quite reasonable until sufficient evidence has 
been amassed to suggest an alternative (Gopnik & Nazzi, 2000; Gopnik & Sobel, 2000; Keil, 
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1989; Boyd, 1999; Sobel et al., 2007).  From this perspective, even very young children may 
already be equipped with the conceptual resources to reason on the basis of non-perceptual 
properties, including causal affordances, even though performance on various tasks can change 
in the course of development.  Consistent with this idea, Gopnik and Sobel (2000) found that 
when presented with conflicting cues, younger children produced a variety of memory errors that 
indicated an assumed correlation between different types of properties (i.e., perceptual and 
causal), even when no such correlation existed in the data.  Even looking-time data from infants 
suggests that by 14- to 18-months, children differentially attend to various perceptual and non-
perceptual properties in different tasks (Booth & Waxman, 2002; Mandler & McDonough, 1996; 
Newman et al., 2005).    

In four experiments, we examine the possibility that by 3 years of age, children already 
have the conceptual resources to generalize on the basis of inductively rich properties, and that 
their failure to do so often results from a failure to access or apply what they know.  (For related 
arguments in other tasks and domains, see, e.g., Hood, Cole-Davies & Dias, 2003; Kirkham, 
Cruess & Diamond, 2003; Munakata, 2001; Sobel & Kirkham, 2006; Walker & Gopnik, 2013; 
Zelazo, Frye, & Rapus, 1996.)  We investigate whether the process of seeking or generating 
explanations facilitates access to and application of causal knowledge, supporting children’s 
ability to reason on the basis of non-obvious but inductively rich causal properties as opposed to 
salient but superficial perceptual properties.  
 
4.1.3  Overview of experiments 
 

In the following experiments, we use a method similar to Nazzi and Gopnik (2000) and 
Sobel et al. (2007) to examine whether generating explanations makes children more likely to 
infer that an object’s internal parts will be shared by other objects with common causal 
affordances as opposed to similar appearances (Experiments 1a and 1b), and more likely to 
believe that objects belong to the same category when they share common causal affordances as 
opposed to perceptual appearances (Experiment 2).  In Experiment 3, we examine whether 
effects of explanation extend to lower-level cognitive processes, such as attention and memory, 
and whether they derive from a special relationship between explanation and inductively rich 
properties or from a global boost in performance.  Together, these experiments provide insight 
into the role of explanation in causal inference in early childhood.  

 
4.2 Experiment 1a 
 

Experiment 1a examines whether explanation influences preschoolers’ extension of a 
hidden, internal property to other objects that share either perceptual or causal properties.   
Children observed four sets of three objects that were individually placed on a toy that played 
music when “activated” (see Gopnik & Sobel, 2000).  Each set contained three objects: one that 
activated the toy (target object), one that was perceptually identical to the target object, but 
failed to activate the toy (perceptual match), and one that was perceptually dissimilar to the 
target object, but successfully activated the toy (causal match).  After each outcome was 
observed, children were asked to either explain (explain condition) or report (control condition) 
that outcome.  Next, children received additional information about the target object: an internal 
part was revealed.  Children were asked which one of the two other objects in the set (i.e., the 
perceptual match or causal match) shared the internal property with the target object.  This 
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method pit highly salient perceptual similarity against shared causal properties; children could 
base their generalizations on either one, but not both.   

Given the hypothesis that generating explanations encourages learners to favor broad 
generalizations, and thus to focus on inductively-rich properties such as causal affordances, we 
predicted that children who were asked to explain each outcome would be more likely than 
children in the control condition to select the causal match over the perceptual match. 
 
4.2.1  Method 

 
4.2.1.1  Participants  
 
A total of 108 children were included in Experiment 1a, with 36 3-year-olds (M = 40.9 

months; SD = 3.7, range:  35.8 – 47.7), 36 4-year-olds (M = 53.3 months; SD = 3.6, range: 48.5 – 
59.8), and 36 5-year-olds (M = 64.4 months; SD = 3.0, range: 60.1 – 70.4).  Eighteen children in 
each age group were randomly assigned to each of the two conditions (explain and control).  
There was no significant difference in age between the conditions, and there were approximately 
equal numbers of males and females assigned to each group.  Five additional children were 
tested, but excluded due to failure to attend to the experimenter or complete the study.  Children 
were recruited from urban preschools and museums, and a range of ethnicities resembling the 
diversity of the population was represented.   
  

4.2.1.2  Materials   
 
The toy was similar to the “blicket detectors” used in past research on causal reasoning 

(Sobel & Gopnik, 2000), and consisted of a 10” x 6” x 4” opaque cardboard box containing a 
wireless doorbell that was not visible to the participant.  When an object “activated” the toy, the 
doorbell played a melody.  The toy was in fact surrepticiously activated by a remote control.   

Twelve wooden blocks of various shapes and colors were used (see Figure 1).  A hole 
was drilled into the center of each block.  Eight blocks contained a large red plastic map pin 
glued inside the hole; the remaining four blocks were empty. All of the holes were covered with 
a dowel cap, which covered the opening to conceal what was inside.  Each of the four sets of 
blocks was composed of three individual blocks.  Within each set, two blocks were identical in 
color and shape, and one of these (the target object) contained a map pin.  The other block (the 
perceptual match) did not. The third block (the causal match) was perceptually dissimilar to the 
other two.    

 
4.2.1.3  Procedure   
 
Children participated in a brief warm-up game with the experimenter. Following this 

warm-up, the toy was placed on the table.  The child was told, “This is my toy.  Some things 
make my toy play music and some things do not make my toy play music.”  Then the first set of 
three blocks was brought out and placed in a row on the table.  The order of presentation of the 
three blocks was randomized.  One at a time, the experimenter placed a block on the toy.  Two of 
the three blocks in each set (the target object and the causal match) caused the toy to activate 
and play music.  The perceptual match did not.  After children observed each outcome, they 
were asked for a verbal response.  In the explain condition, children were asked to explain the 
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outcome: “Why did/didn’t this block make my toy play music?”  In the control condition, 
children were asked to report the outcome (with a yes/no response): “What happened to my toy 
when I put this block on it?  Did it play music?”  After all three responses had been recorded, the 
experimenter demonstrated each of the three blocks on the toy a second time to facilitate recall.   

Next the experimenter pointed to the set of objects and said, “Look!  They have little 
doors.  Let’s open one up.”  The experimenter selected the target object and removed the cap to 
reveal the red map pin that had been hidden inside.  The experimenter said, “Look! It has a little 
red thing inside of it.  Can you point to the other one that also has something inside?”  Children 
were then encouraged to point to one of the two remaining objects (i.e., the perceptual match or 
the causal match) to indicate which contained the same inside part, and this selection was 
recorded.  Children could either select the block that was perceptually identical to the target or 
the object that shared the causal property, but not both.  

Following their selection, children were not provided with feedback, nor were they 
allowed to explore the blocks.  Instead, all blocks were removed from view, and the next set was 
produced.  This procedure was repeated for the three remaining sets. Each child participated in a 
total of four trials, including a total of four unique sets of objects.   

 
 

 
 
Figure 4.1 Sample set of objects used in Experiments 1a/1b (top) and Experiment 2 (bottom). 
Each of the objects in Experiment 1a/b included a door (indicated by a black circle), which 
covered the internal part contained inside. Each row corresponds to a single set of items.  There 
were a total of four sets of stimuli. 

 
 
4.2.1.4  Coding and Reliability   
 
For each set of objects, children were given a score of “1” for selecting the causal match 

and a “0” for selecting the perceptual match.  Each child could therefore receive between 0 and 4 
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points across the 4 trials.  The explanations that children provided were also coded into five 
mutually-exclusive types: 1) appearance (e.g., “It made the toy play music because it’s purple,” 
“…because it’s round,” “…because it looks like an apple”), 2) internal parts (e.g., “…because it 
has something inside of it,” “…because it has a red thing in it,” “…because it has batteries,” 
“…because it has a motor”), 3) kind (e.g., “…because it’s the right kind,” “…because it’s a 
music-maker,” “…because it’s musical”), 4) other/non-informative (e.g., “…because it’s 
magic,” “…because it wants/likes to,” “…because it’s special”), and 5) no guess (e.g., “I don’t 
know”).  For the few participants who provided explanations that included both perceptual and 
internal properties, explanations were coded as appealing to internal properties.  Because many 
of the children’s explanations were quite minimal (only a couple of words in some cases), we did 
not examine the quality of children’s responses beyond classifying them as belonging to 
particular explanation type.   

Children’s responses to the test questions were recorded by a second researcher during 
the testing session, and all sessions were video recorded for independent coding by a third 
researcher who was naïve to the the hypotheses of the experiment.  Interrater reliability was very 
high; the two coders agreed on 99% of the children’s responses to the test questions and on 
91.8% of children’s explanations. Disagreements were resolved by a third party.   

 
4.2.2  Results and Discussion 
 

Preliminary analyses revealed no trial-by-trial learning across the four sets of objects; 
children were no more likely to select the causal match on later trials than on earlier trials, 
Cochran’s Q(3) = 5.36, p = .148.  The data from the four trials were therefore combined to yield 
a single combined score that ranged from 0 to 4, and the data were analyzed with a 2 (condition) 
x 3 (age group) ANOVA (see Figure 2). The ANOVA revealed main effects of condition, F(1, 
102) = 50.70, p < .001, and age, F(2, 102) = 7.34, p < .01, with no significant interaction.  
Overall, children who were asked to explain (M = 2.98, SD = 1.23) were more likely than 
children in the control condition (M = 1.61, SD = 1.58) to generalize the internal part of the 
target object to the causal match as opposed to the perceptual match. To better understand the 
main effect of age, we conducted pairwise comparisons between age groups, which revealed no 
difference in performance between 3- and 4-year-olds, p = .86, but that 3- and 4-year-olds each 
selected the causal match significantly less often than 5-year-olds, p < .01.  

We also conducted one-sample t-tests comparing performance to chance to assess 
whether explaining prompted children to override a preference to generalize on the basis of 
perceptual similarity.  The 3-year-olds and 4-year-olds in the control condition selected the 
perceptual match significantly more often than chance, t(17) = -3.69, p < .01, and t(17) = -2.53, 
p < .05, respectively, while those in the explain condition selected the causal match significantly 
more often than chance, t(17) = 3.01, p < .01, and t(17) = 2.48, p < .05, respectively.  Five-year-
olds in the control condition performed no differently from chance (M = 2.61, SD = 1.72), t(17) = 
1.51, p = .15, while 5-year-olds in the explain condition selected the causal match significantly 
more often than expected by chance (M = 3.39, SD = 1.29), t(17) = 4.57, p < .001.   

These data suggest that in the absence of an explanation prompt, children relied primarily 
on the target object’s salient perceptual features to predict whether a novel object would share an 
internal property.  However, when children of the same age were asked to generate an 
explanation, they instead privileged the target object’s causal efficacy in making inferences 
about internal properties.   
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Figure 4.2 Average responses in explain and control conditions for Experiment 1a. Higher 
numbers indicate a larger number of trials (of 4) on which an internal part was generalized in line 
with a shared causal property over perceptual similarity.  Error bars correspond to one SEM in 
each direction.  

 
 
4.2.2.1  Content of Explanations   
 
The frequencies with which children produced explanations of different types are 

reported in Table 1.  
Baseline explanations for the first set of objects (before receiving any information about 

the internal properties) most often appealed to appearance (38%), with a minority (5%) appealing 
to internal properties.  After observing the presence of the internal property for the first set of 
objects, explanations for the second set of objects appealed to appearance (33%) and internal 
properties (32%) equally often.  By the final set, explanations most often appealed to internal 
parts (38%).  An exact McNemar’s test comparing the proportion of explanations that appealed 
to internal parts across the first and last trials revealed a significant difference, p < .0001.   

Although we did not code the “quality” of children’s explanations, we did examine the 
relationship between explanation type and performance.  To do so, we identified the type of 
explanation that each child produced most often (i.e., the modal explanation for each child; see 
Table 2) and analyzed generalizations as a function of this designation. Overall, children who 
provided internal explanations as their modal response – arguably the most relevant explanation 
in this task – were significantly more likely to select causal matches than the aggregate of other 
children (80% versus 60%), t(79) = 1.99, p = .05. Despite the limitations associated with 
combining all other explanation types in a single group (which was necessary due to the small 
sample sizes), these results suggest that children who provided the most relevant explanation 
may have benefited most from the explanation prompt. We also found that 4- and 5-year-olds 
were each more likely to provide modal explanations that appealed to internal parts (20% and 
19% of explanations, respectively) than 3-year-olds (6% of explanations), χ2 (54, 1) = 5.25, p < 
.05 and χ2 (54, 1) = 4.29, p < .05, respectively. 
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Table 4.1  Frequency of Explanation Types for Each Set in Experiments 1a, 1b, and 2. 
           Set 1          Set 2          Set 3          Set 4         Total 
Exp. 1a      
Appearance 61 53 38 41 193 
Internal 8 51 55 61 175 
Kind 8 4 10 11 33 
Other 32 23 26 16 97 
No Guess 53 31 33 33 150 
Exp. 1b      
Appearance 17 14 - - 31 
Internal 2 17 - - 18 
Kind 3 4 - - 7 
Other 16 9 - - 25 
No Guess 16 10 - - 26 
Exp. 2      
Appearance 50 41 45 44 180 
Internal 36 15 24 12 87 
Kind 13 15 12 11 51 
Label 0 9 14 17 40 
Other 26 44 40 52 162 
No Guess 38 39 28 23 128 

 
 
We also found evidence that the prompt to explain impacted children’s inferences even 

when the explanations that were generated did not appeal to internal properties.  For example, 
the two children who provided no modal explanation (i.e., children who provided distinct 
explanation types for each set) and the two children who provided a modal explanation of “no 
guess” were (numerically) the most likely to select the causal match (88% each).  In fact, each 
category of modal explanation, regardless of type (appearance: 53%, kind: 63%, other: 45%), 
was associated with a higher proportion of causal matches than that observed of children in the 
control condition (40%).  Combining all of the children who provided modal explanations other 
than insides into a single group and comparing their responses to those of children in the control 
condition revealed a significant difference, t(54) = -2.19, p = .03. These data suggest that 
although children who provided the “correct” (internal) explanation were more likely to 
generalize according to causal as opposed to perceptual similarity, simply receiving an 
explanation prompt was enough to impact children’s reasoning in this task.   

In sum, our data support the proposal that prompts to explain increase children’s reliance 
on inductively rich properties (as opposed to merely perceptual ones) as a basis for inference, 
and further suggest that effects of explanation are not restricted to children who happen upon the 
“correct” explanation for the task.  There is an alternative explanation for our findings, however, 
that should be addressed.  It is possible that explanation promoted greater projection to the 
causal match because the experimenter revealed the internal property immediately after children 
were prompted for an explanation, encouraging them to interpret the reveal as the experimenter’s 
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means of providing an answer to the ‘why” question the child had attempted to answer.  Thus, 
the design of the task may have signaled to children that the internal part was the reason why the 
blocks made the toy play music (even if this information was not then reflected in all children’s 
explicit explanations).  In Experiment 1b we therefore investigate whether children generalized 
the internal property to the causal object because the timing and context of the explanation 
prompt supported a particular pragmatic inference, or because the process of explaining itself 
directed children to posit or privilege causality as a basis for generalization. 
 
 
Table 4.2  Proportion of Causal Matches in Experiments 1a and 2 as a Function of Child’s 
Modal Explanation Type.  
Modal Explanation Frequency % Causal Matches 
Exp. 1a     
Appearance                              13 53% 
Internal        24 80% 
Kind          9 63% 
Other          4 45% 
No Guess          2 88% 
No Mode          2 88% 
Exp. 2     
Appearance 16 33% 
Internal 6 33% 
Kind 2 88% 
Label 4 100% 
Other 14 48% 
No Guess 11 48% 
No Mode 1 75% 

 
Note: The number of children designated in each category is reported under “frequency.”   
 
 
4.3 Experiment 1b 
 

The purpose of Experiment 1b was to rule out a pragmatic account of the findings from 
Experiment 1a. The procedure in Experiment 1b involved a critical modification from 
Experiment 1a: the addition of a second experimenter.  Rather than having the same 
experimenter request explanations and reveal the internal properties of the objects, one 
researcher (R1) demonstrated the causal properties of the objects and provided the explanation 
prompt, and a second researcher (R2) (who had not observed the previous demonstration or 
explanation) revealed the internal part and solicited the generalization judgment.  

If children in Experiment 1a who were prompted to explain preferentially generalized on 
the basis of causal properties because they took the researcher’s revelation of the internal 
property as a potential answer to that researcher’s why-questions, then changing researchers in 
this way should block the relevant pragmatic inference, and lead to performance comparable to 
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the control condition.  In contrast, if something about the process of explaining prompts children 
to privelege causal similarity over perceptual appearance in our task, then this change in task 
pragmatics should not change children’s generalization judgments. 

Because we planned to compare children’s performance in Experiment 1b to performance 
in Experiment 1a, and because we found no age differences between 3- and 4-year-old children, 
we only included one subgroup of children: 4-year-olds in the explain condition.  By comparing 
the performance of this new group of children with that of 4-year-olds in the explain and control 
conditions from Experiment 1a, we can assess whether the results of Experiment 1a were 
plausibly an artifact of the pragmatics of the task. 
 
4.3.1  Method 

 
4.3.1.1  Participants  
 
Eighteen 4-year-olds were included in Experiment 1b (M = 53.14 months; SD = 3.1, 

range: 48.8 – 59.4).  All children were assigned to the explain condition.  There was no 
significant difference in age between the 4-year-old children included in Experiments 1a and 1b, 
p = .84, and there were approximately equal numbers of males and females.  Two additional 
children were tested, but excluded due to experimenter error.  Recruitment procedures and 
demographics were identical to Experiment 1a.   
  

4.3.1.2  Materials   
 
Matericals were identical to those used in Experiment 1a. 
 
4.3.1.3  Procedure   
 
The procedure was similar to the one used in the explain condition in Experiment 1a, 

with two exceptions.  First, one researcher (R1) provided explanation prompts, while a different 
researcher (R2) revealed the hidden properties and solicited the generalization judgments.  
Second, there were only two trials (rather than four) to avoid the concern that repeatedly 
switching experimenters could make the experimental situation too implausible or complex.  

After children observed the first set of three objects placed on the toy and provided 
explanations for each one to R1, R2 entered the testing room.  R2 said, “Hey, cool!  Can I look at 
those?”  R1 consented and walked away from the table.  R2 examined the blocks on the table, 
saying, “Look!  They have little doors.  Let’s open one up.”  R2 then selected the target object 
and removed the cap to reveal the red map pin that had been hidden inside, saying, “Look! It has 
a little red thing inside of it.  Can you point to the other one that you think also has something 
inside?”  As in Experiment 1a, children were encouraged to point to one of the two remaining 
objects (i.e., the perceptual match or the causal match) to indicate which contained the same 
inside part, and this selection was recorded.  Following their selection, children were not 
provided with feedback, nor were they allowed to explore the blocks.  Instead, R1 returned to the 
table, R2 departed from the testing room, and all blocks were removed from view.  This two-
experimenter procedure was repeated for one additional set of blocks.  

 
4.3.1.4  Coding and Reliability   
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For each set of objects, children were given a score of “1” for selecting the causal match 

and a “0” for selecting the perceptual match.  Each child could therefore receive between 0 and 2 
points across the two trials.  Explanation coding procedures were identical to Experiment 1a.  
Two coders agreed on all of the children’s responses to the test questions and on 94.4% of 
children’s explanations; disagreements were resolved by a third party. 
 
4.3.2  Results and Discussion 
 

As in Experiment 1a, children in Experiment 1b did not perform significantly differently 
across trials, Cochran’s Q (1) = .143, p = .705.  Data from both trials were therefore combined 
into a single score from 0 to 2, and the scores from this group were compared with the combined 
score from the first two trials of the 4-year-old participants in the explain and control conditions 
from Experiment 1a.   

A univariate analysis of variance (ANOVA) with combined score as the dependent 
variable and condition (3: Exp. 1a control, Exp. 1a explain, Exp. 1b explain) as the independent 
variable revealed a main effect of condition, F(2, 54) = 7.79, p = .001.  Children who were asked 
to explain in both Experiments 1a (M = 1.3, SD = .77) and 1b (M = 1.56, SD = .62) were each 
more likely than controls (M = .61, SD = .85) to generalize the internal part of the target object 
to the causal match as opposed to the perceptual match, p < .01 and p < .001, respectively.  
Pairwise comparisons revealed no difference in performance between 4-year-olds in the explain 
conditions of Experiments 1a and 1b, p = .379. We also conducted a one-sample t-test comparing 
children’s performance to chance.  Children in Experiment 1b selected the causal match 
significantly more often than chance, t(17) = 3.83, p < .01.  

These data suggest that children in Experiment 1a were not simply interpreting the 
experimenter’s revelation of the internal property as an answer to the “why?” question that the 
experimenter had previously posed.  In Experiment 1b, the experimenter who provided the 
explanation prompt was different from the experimenter who revealed the hidden property, so 
the relevant pragmatic inference was disrupted.  Instead, it appears that children in the explain 
condition privileged the target object’s causal efficacy in making inferences about internal 
properties as a consequence of something about the very process of explaining.    

 
4.3.2.1  Content of Explanations   
 
Frequency data for each explanation type are reported in Table 1.  Explanations were 

divided into the same five categories as in Experiment 1a. Baseline explanations for the first set 
of objects (before receiving any information about the internal properties) most often appealed to 
appearance (32%), with a minority (4%) appealing to internal properties.  After observing the 
presence of the internal property, explanations for the second set of objects most often appealed 
to internal properties (32%), with explanations appealing to appearance dropping slightly (30%).  
An exact McNemar’s test comparing the proportion of explanations that appealed to internal 
parts across the first and second (last) trials revealed a significant effect, p < .0001.  Because 
there were only two trials, an analysis of children’s modal explanation was not conducted.  
 
 
4.4 Experiment 2  
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The purpose of Experiment 2 was two-fold.  First, we were interested in whether the 
effect of explanation on children’s inferences is restricted to generalizations concerning the 
relationship between causal properties and internal (or hidden) parts, or whether it extends to 
other properties as well.  Second, we were specifically interested in whether explanation would 
affect how children extend novel labels.  An effect of explanation on label extension would 
suggest that the process of explaining changes how children form categories, potentially shifting 
them from categories formed on the basis of perceptual properties to those tracking non-obvious, 
inductively rich causal properties.  The ability to override perceptual similarity is an important 
hallmark of both scientific and everyday categories, as highly salient perceptual properties can be 
good predictors of category membership, but they can also be deceptive.  For example, a dolphin 
may resemble a large fish, but dolphins are actually warm-blooded mammals.  When such 
properties appear in conflict with one another, category membership is often based on non-
obvious cues (e.g., internal biological properties) rather than surface appearance (e.g., having a 
tail).   
  Previous research demonstrates the importance of labels as indicators of category 
membership and guides to inference (e.g., Carey, 1985; Diesendruck, Markson, & Bloom, 2003; 
Gelman, 2003; Gelman & Markman, 1987; Gelman & Medin, 1993; Keil, 1989; Legare, 
Gelman, & Wellman, 2010; Medin, 1989; Nazzi & Gopnik, 2000; Rips, 1989).  For example, 
Gelman and Coley (1990) found that in some cases, even 2-year-old children answered questions 
in line with category membership over appearances when labels were provided.  But in the 
absence of labels, judgments are typically dominated by perceptual similarity.  In fact, some 
have argued that children’s categories are driven by low-level perceptual mechanisms that lead 
them to focus on object shape and other surface features (e.g., Landau, Smith, & Jones, 1988; 
Smith, 1999).  However, other findings suggest that children extend labels differently depending 
on their intuitions about the kinds of object being classified, or on the nature of the task, and that 
classification is not always perceptually driven (e.g., Carey, 1985; Diesendruck, Markson, & 
Bloom, 2003; Keil, 1989).  Finding that a prompt to explain leads children to extend labels on 
the basis of common causal properties would further suggest that even young children are able to 
form categories that disregard appearances, and that explaining helps them do so. 

In sum, Experiment 2 used a method similar to Experiment 1a to examine whether the 
effects of explanation would extend to children’s generalization of a novel label from a target 
object to an object that was either perceptually similar or causally similar. We predicted that 
explaining would make children more likely to attend to the causal powers of objects, which in 
turn would make it more likely for children to use causal properties as a basis for extending 
category labels to novel objects.  
 
4.4.1  Method 
 

4.4.1.1  Participants  
 
A total of 108 children were included in Experiment 2, with 36 3-year-olds (M = 42.1 

months; SD = 3.8, range: 35.9 – 48.0), 36 4-year-olds (M = 54.0 months; SD = 3.0, range: 48.4 – 
59.9), and 36 5-year-olds (M = 65.0 months; SD = 3.8, range: 60.6 – 70.9).  Eighteen children in 
each age group were randomly assigned to each of the two conditions (explain and control).  
There were no significant differences in age between the conditions, and there were 
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approximately equal numbers of males and females in each.  Eight additional children were 
tested, but excluded due to failure to complete the study or failure to respond to the 
experimenter.  Two more children were excluded due to experimenter error.  Children were 
recruited from urban preschools and museums, and a range of ethnicities resembling the diversity 
of the population was represented.   

 
4.4.1.2  Materials   
 
The toy from Experiment 1 was again used in Experiment 2. Twelve wooden blocks of 

various shapes and colors were also used.  There were a total of four sets of objects, each 
containing three blocks.  As in Experiment 1, two of these blocks (the target object and the 
perceptual match) were perceptually identical (same color and shape) and one of these blocks 
(the causal match) was distinct (see Fig. 1).  

 
4.4.1.3  Procedure   
 
The procedure for Experiment 2 was identical to Experiment 1, with one exception: 

Instead of revealing a hidden internal property, the experimenter held up the target object and 
labeled it, saying, “See this one?  This one is a blicket!  Can you point to the other one that is 
also a blicket?”  

 
4.4.1.4  Coding and Reliability   
 
Coding for Study 2 was identical to Study 1, with children receiving a “0” for 

generalizations to the perceptual match and a “1” for generalizations to the causal match, 
resulting in a score of 0-4 points across the four sets.  Interrater reliability was very high; the two 
coders agreed on > 99% of the children’s responses to the test questions and 96.8% of children’s 
explanations  The few minor discrepancies were resolved by a third party.  
 
4.4.2  Results and Discussion 
 

Preliminary analysis revealed no significant differences across trials, Cochran’s Q (3) = 
.60, p = .896.  Data from all four trials were therefore combined into a single score from 0 to 4 
and analyzed with a 2 (condition) x 3 (age group) ANOVA (see Figure 3).  This analysis 
revealed a main effect of condition, F(1, 102) = 13.51, p < .001, and no additional significant 
effects.  Overall, children who were asked to explain (M = 1.91, SD = 1.83) were more likely 
than children in the control condition (M = .72, SD = 1.47) to generalize the label to the causal 
match as opposed to the perceptual match, regardless of age.  

We next considered the data against chance responding. One-sample t-tests revealed that 
3-, 4-, and 5-year-olds in the control condition selected the perceptual match significantly more 
often than chance, t(17) = -2.93, p < .01, t(17) = -3.69, p < .01, and  t(17) = -3.10, p < .01, 
respectively.  In the explanation condition, the average of children’s selections did not differ 
significantly from chance, t(17) = .12, p = .90, t(17) = -1.26, p = .23, and t(17) = .375, p = .712, 
respectively.  However, examining the distribution of selections across the four trials revealed 
that approximately half of the children in the explanation condition selected the causal match on 
three or more trials (50% for 3-year-olds, 44% for 4-year-olds, and 56% for 5-year-olds).  This 
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distribution differed significantly from that expected by chance in all age groups, χ2(4) = 84.26, 
p < .001, χ2(4) = 66.49, p < .001, and χ2(4) = 83.97, p < .001, respectively.   

Because responses in Experiment 2 were not normally distributed, we conducted a non-
parametric test comparing the performance of children across conditions.  Children who selected 
the causal match on three or four trials were designated as “causal reasoners,” and all others as 
“perceptual reasoners” (see Sobel et al., 2007).  Results of a chi-square test replicate the findings 
reported in the parametric tests above, revealing a significant effect of condition, χ2(1) = 8.28, p 
< .01, with children in the explanation condition more likely to be designated “causal reasoners” 
(50%) than children in the control condition (19%). 

In sum, like the younger children in Experiment 1a, children in the control condition in 
Experiment 2 relied primarily on a target object’s salient perceptual features to predict whether a 
novel object would share a category label.  This is particularly surprising given that the same 
label was provided across all four trials, during which the perceptual features of the target object 
varied from trial to trial.  However, when children of all ages were asked to generate an 
explanation for the evidence that they observed, they considered the target object’s causal 
efficacy significantly more often in making inferences about shared labels.  

 

 
 

Figure 4.3 Average responses in explain and control conditions for Experiment 2.  Higher 
numbers indicate a larger number of trials (of 4) on which a label was generalized in line with a 
shared causal property over perceptual similarity.  Error bars correspond to one SEM in each 
direction. 
 

4.4.2.1  Content of Explanations   
 
Explanations were coded as in Experiments 1a and 1b, with one additional explanation 

type for those children who appealed to the label (e.g., “It’s a blicket”) (see Table 1).  
Appearance explanations were most common overall (28% of all explanations); however, there 
was an increase in explanations that explicitly mentioned the label across trials, with 0% in the 
first set and 11% in the final set.  An exact McNemar’s test comparing the proportion of label 
explanations across the first and last sets revealed a significant difference, p<.0001.   

To analyze the relationship between explanation type and performance in Experiment 2, 
we again calculated a modal explanation for each child, reflecting the most common explanation 
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type that the child provided (see Table 2).  Children who most often provided an explanation that 
referred to the label also privileged causality in generalizing the label more often (100% versus 
39%).  However, so few children appealed to labels as their modal explanation (N=4) that there 
were no significant differences in performance as a function of modal explanation type.  

Also as found in Experiment 1a, simply being prompted for an explanation was enough 
to affect children’s inferences.  Each modal explanation, regardless of type (appearance: 33%; 
internal: 33%; kind: 88%; other: 48%; no guess: 48%), was associated with a greater probability 
of selecting the causal match than in the control condition (18%).  Combining all of the children 
who provided modal explanations other than labels into a single group and comparing their 
responses to those of children in the control condition revealed a significant difference, t(90) = 
2.39, p = .02.  As in Experiment 1a, these data suggest that although providing the most relevant 
explanation type (in this case, an appeal to the category label) leads to a special boost in 
performance, simply receiving an explanation prompt is enough to influence reasoning. 

 
4.4.2.2  Comparing Experiments 1 and 2  
 
To examine differences across our two experiments, we analyzed the data from 

Experiments 1a and 2 in an ANOVA with experiment as a between-subjects factor.  This 
analysis revealed a significant difference in children’s performance in Experiments 1a and 2, 
with a greater number of causal responses in Experiment 1 (M = 2.3; SD = 1.6) than Experiment 
2 (M = 1.31; SD = 1.8), F(1) = 22.41, p <.001.  There were also significant effects of age, F(2) = 
4.74, =p<.02, and condition, F(1) =  38.0, p<.001, but no significant interactions.  In other 
words, despite a greater baseline tendency to privilege perceptual features when reasoning about 
labels than about insides, the effect of explanation – increasing causal responding – did not differ 
across our two experiments, nor across age groups.   

The observed difference in children’s baseline responding across our two experiments is 
in line with previous research (Gopnik & Sobel, 2000; Sobel et al., 2007), which has found that 
children are more willing to privilege causality over appearances when extending internal parts 
than when extending labels.  This pattern could also reflect a tension between more conceptual 
uses of labels, such as reference to essences or causes, and the more perceptually-based “shape-
bias” found in noun labeling (e.g., Gelman & Markman, 1986; Gelman, 2003; Landau, Smith, & 
Jones, 1988; Jones & Smith, 1993; Imai, Gentner, & Uchida, 1994; Smith, Jones, & Landau, 
1996).  Nevertheless, explanation has a similar effect in promoting more conceptual (as oppose 
to perceptual) generalizations for both insides and labels.  In effect, children in Experiment 2 
were categorizing differently, depending on whether they explained or not.  These results show 
that explanation guides children to attend to causal properties as an important but non-obvious 
basis for category membership. 

 
4.5 Experiment 3 
 

The findings from Experiments 1a, 1b, and 2 confirm our prediction that explanation 
encourages children to favor inductively rich properties (i.e., causality) as a basis for 
generalization.  In Experiment 3 we hoped to bolster and further develop our interpretation of 
these novel findings by investigating three specific questions.  First, the previous experiments 
demonstrate that explanation encourages children to privilege causal properties over perceptual 
properties when it comes to generalizing insides or labels.  We propose that this is because the 
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process of generating explanations prompts learners to seek broad, generalizable patterns, and 
that this in turn should privilege properties that feature in such generalizations – by definition, 
those that are inductively rich.  In Experiment 3, we investigate whether effects of explanation 
are restricted to inductive generalizations, or additionally manifest in lower-level processes that 
might be prerequisites to inductive inference, such as memory for object properties.  In 
particular, might prompting children to explain make them more likely to attend to, and therefore 
effectively remember, an object’s causal properties? And will benefits for memory be restricted 
to causal properties, which is directly related to what’s being explained (i.e., an effect or its 
absence), or will they extend to other inductively rich properties that might figure in the 
explanations themselves, such as insides and category label?   

Second, if we do find that explanation improves memory for properties such as insides 
and labels, it raises a question about the selectivity of explanation’s effects (see also Legare & 
Lombrozo, 2014).  In particular, the findings from the preceding experiments are consistent with 
the idea that prompts to explain result in an indiscriminate increase in children’s overall attention 
or engagement, which could potentially account for more adult-like performance without 
needing to posit a special relationship between explanation and inductively rich properties.  This 
account, like ours, would predict that children who are prompted to explain would have better 
memory for object insides and labels than those in a control condition, but would additionally 
predict that children who explain should have better memory for a property that is not 
inductively rich.  In Experiment 3, we introduce such a property in the form of a sticker that is 
not correlated with any other object properties.  Our hypothesis suggests that effects of 
explanation are selective – as opposed to indiscriminate – and predicts improved memory for 
object insides and labels (which are correlated with causal properties in both the task and in the 
world), but not for an uncorrelated perceptual property like the sticker.  

A final question addressed by Experiment 3 is whether explanation-induced advantages 
for inductively rich properties come at the expense of memory for other kinds of properties.  In 
particular, it could be that explainers simply fail to remember an uncorrelated sticker any better 
than controls, or that they actually show impairment in memory for this feature relative to 
controls.  The latter possibility is consistent with previous research involving both children (e.g., 
Legare & Lombrozo, 2014) and adults (e.g., Hegarty, Mayer, & Monk, 1995; Needham & Begg, 
1991) in which increased focus on an important abstract principle decreases memory for surface 
features. 

To test these ideas, children in Experiment 3 were asked to explain or report causal 
outcomes after observing four unique objects, two of which activated the toy.  After each object 
was placed on the toy, three properties were revealed: an internal part, a label, and a sticker 
(added to the object).  The internal parts and the labels correlated with the toy’s activation (i.e., 
all and only objects that activated the toy had a particular inside part and label) while the sticker 
did not.  Children then completed a memory task in which they were asked to report the 
properties of each object.  Because we did not observe age differences in the effects of 
explanation in Experiments 1-2, Experiment 3 was restricted to 4-year olds. 
 
4.5.1  Method 

 
4.5.1.1  Participants  
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A total of 36 4-year-olds were included in Study 3 (M = 53.8 months; SD = 3.7 months; 

range = 47.9 – 59.7).  Eighteen children were randomly assigned to each of two conditions 
(explain and control).  There were no significant differences in age between the conditions, and 
there were approximately equal numbers of males and females in each.  Three additional 
children were tested but excluded due to experimenter error.  Children were recruited from urban 
preschools and museums, and a range of ethnicities representative of the diversity of the 
population participated.   

 
4.5.1.2  Materials   
 
Experiment 3 used the same toy as in the previous experiments.  A different set of test 

blocks was used, however, which consisted of 4 unique blocks – i.e., each block was distinct in 
color and in shape (see Table 4).  As in Experiments 1a and 1b, all blocks had a hole drilled into 
the center.  Two of the blocks had a red, round plastic map pin glued inside and two of the blocks 
had a white, square eraser glued inside the hole.  Four stickers were used during the experiment 
(two heart stickers and two star stickers).  Several small cards were constructed as memory aids 
for use during the test phase of the experiment.  Half of the cards had an image of a black music 
note (placed in front of the objects that children believed activated the toy), and half of the cards 
had an image of a black music note crossed out with a red “X” (placed in front of the objects that 
children believed did not activate the toy).  Four additional cards were constructed: one with a 
red circle, one with a white square, one with a heart sticker, and one with a star sticker.  These 
cards were used to facilitate the forced-choice test. 

 
4.5.1.3  Procedure   
 
As in the previous experiments, the experimenter introduced the toy. The experimenter 

then produced a single block and placed it on the toy.  The child observed as the block did or did 
not cause the toy to play music.  As before, children in the explain condition were asked to 
explain the outcome for each of the blocks and children in the control condition were asked to 
report the outcome with a “yes/no” response.  After the response was recorded, the experimenter 
repeated the demonstration a second time.  

The experimenter then provided three additional pieces of information about the object: 
the type of internal part was revealed (“Look!  It has a little door on it!  Let’s open it up.  Look, 
there is a [red]/[white] thing inside.”), a label was provided (“See this one?  This one here?  This 
one is a [Fep]/[Toma]!”), and a sticker was placed on the bottom (“Now I am going to put a 
sticker on it!  I am going to put a [heart]/[star] sticker on the bottom, see?”).  The experimenter 
repeated each property twice, and then the block was removed from view.  The entire procedure 
was repeated for the three remaining blocks, one at a time.  All children observed the causal 
property first.  The order of the remaining three properties was counterbalanced. 

Next, the experimenter placed all four objects on the table in front of the child in random 
order, and told the child that they would now play a “memory game.”  Children were asked a 
baseline causal memory question first, and then three additional property memory questions in 
randomized order.  To assess baseline recall for the causal property of each object, the 
experimenter produced two cards – one with a music note, and one with a crossed out music 
note.  The experimenter asked the child to point to the card that indicated whether the block did 
or did not play music.  The child responded once for each of the four objects.  Depending upon 
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the child’s response, the experimenter would then place an additional card (with a music note or 
a crossed-out music note) in front of the object, which would remain throughout.   

To assess recall for the internal part, the experimenter produced two cards – one with a 
red circle and one with a white square.  The experimenter asked the child to point to the card that 
indicated the type of thing inside the block.  The child responded once for each of the four 
objects.  To assess recall for the label, the experiment said, “Some of these blocks were called 
‘Tomas’ and some of these blocks were called ‘Feps’.  What was this one called, a ‘Toma’ or a 
‘Fep’?”  The child responded once for each object.  The order of presentation was 
counterbalanced across trials.    

Finally, to assess recall for the type of sticker added to the block, the experimenter 
produced two cards – one with a heart sticker and one with a star sticker.  The experimenter 
asked the child to point to the card that indicated the type of sticker added to the bottom of the 
block.  The child responded once for each of the four objects.   

 

Table 4.3   List of properties for objects used in Experiment 3.   

  Object 1 Object 2 Object 3  Object 4 
Causal Yes No Yes  No 
Internal Red  White  Red  White 
Label “Toma” “Fep” “Toma”  “Fep” 
Sticker Heart Heart Star  Star 

 
 
4.5.1.4  Coding and Reliability   
 
Memory for internal parts, labels, and stickers was solicited in the same order as the 

corresponding properties were presented to that child in the demonstration phase of the 
experiment.  For each property, children were given a score of “1” for accurate recall and a “0” 
for inaccurate recall.  Because there were a total of four objects, each child could receive 
between 0 and 4 points for each property. 
 
4.5.2  Results and Discussion 
 

Because the causal property was always presented first during the observation phase, and 
always assessed first during the testing phase, memory for the objects’ causal properties was 
analyzed separately with a one-way ANOVA.  Results of this ANOVA revealed that while the 
majority of children in both conditions were able to recall the causal property of each object, 
children in the explain condition were significantly more accurate (M = 3.93, SD = .24) than 
controls (M = 3.39, SD = .78), F(1, 34) = 8.42, p < .01.   

A repeated measures ANOVA with the other object properties (internal part, label, 
sticker) as the repeated measure and condition (explain, control) and order of presentation (label-
sticker-insides, insides-label-sticker, sticker-insides-label) as the between subjects variables 
revealed a main effect of object property, F(2, 60) = 7.05, p < .01, as well as the predicted 
interaction between object property and condition, F(2, 60) = 8.23, p<.002 (see Figure 4). 
Children who were prompted to explain were significantly more accurate than controls in 
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reporting the labels, F(1, 34) = 9.34, p<.01, but less accurate than controls in recalling the sticker 
type, F(1, 34) = 5.16, p<.05.  Although children who explained were numerically more accurate 
in recalling the internal part than controls (M = 3.06, SD = 1.3 and M = 2.78, SD = 1.0, 
respectively), this difference was not significant, F(1) = .536, p = .47.  

These data address all three of the questions raised in Experiment 3. First, explanation 
does have an influence on memory for different object properties, and is not limited to inductive 
generalizations. Second, the findings challenge the idea that engaging in explanation simply 
improves overall engagement or attention in an indiscriminate manner. Instead, these data 
support the proposal that children who explain are more likely to selectively recall inductively 
rich, correlated cluster of properties (causality, internal part, label). Finally, we also found that 
children who were prompted to explain were significantly less likely to recall a superficial, 
perceptual property that did not correlate with other features, suggesting that benefits of 
explanation can come at a cost.  

It is noteworthy that children who explained could not have been simply ignoring 
superficial perceptual features altogether, since the only way to track which properties 
corresponded to which objects in our task was to recall the unique color and shape of each of the 
blocks.  Instead, explanation appears to impair memory for uncorrelated properties – those that 
are unrelated to other properties and therefore unlikely to support generalizations.  

 

 
 
Figure 4.4  Average memory score (out of 4 trials) for each property assessed in Experiment 3. 
Error bars correspond to one SEM in each direction. 
 
 

4.5.2.1  Content of Explanations.  
 
Children's explanations were coded according to the categories generated in Experiment 

2, with the addition of a new possible category: appeal to the sticker.  Combining explanation 
data from all four objects (a total of 76 individual explanations), there were a total of 24 
explanations that appealed to appearance, 27 explanations that appealed to the internal part, 4 
explanations that appealed to the kind of object, and 2 explanations that appealed to the label.  
Notably, however, none of the children’s explanations appealed to the presence of the sticker.  
This provides additional support for the claim that explanation selectively increased attention to 
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those properties that were inductively rich.  An exact McNemar’s test comparing the proportion 
of internal property explanations across the first (0%) and last sets (53%) revealed a marginally 
significant difference, p=.06 (one-tailed). 
 
4.6  General Discussion 
 

Our data demonstrate that prompting young children to explain makes them more likely 
to privilege inductively rich, non-obvious causal properties over salient surface similarity in 
making novel inferences.  Children in the control conditions, who were not prompted to explain, 
instead based their judgments on perceptual similarity.  These effects of explanation cannot be 
explained by the pragmatics of the task, as explanation produced the same effect when a two-
experimenter design was employed (Experiment 1b).  Moreover, these effects of explanation 
were not restricted to a particular kind of inference, as comparable effects were observed across 
two quite different judgments: the generalization of hidden, internal parts (Experiment 1a) and 
inferences about category membership (Experiment 2). Finally, these effects were not restricted 
to a particular age group: we found comparable effects of explanation across our 3-, 4-, and 5-
year-old participants. 

The results of Experiment 3 provide additional support for the idea that explanation 
privileges inductively rich properties, demonstrating improved memory for a correlated cluster of 
such properties (not just for causal affordances) in children prompted to explain.  Importantly, 
Experiment 3 also provides evidence that effects of explanation are selective: Children who 
explained had impaired memory for an uncorrelated superficial property (the sticker).  This 
challenges one possible alternative interpretation of the results: that explanation produces a 
general benefit for learning by globally and indiscriminately increasing engagement or 
motivation (see also, Legare & Lombrozo, 2014; Legare, 2012), and additionally suggests that 
the benefits of explanation are not without costs (see also Williams, Lombrozo, & Rehder, 2013).  

The present findings suggest that children as young as 3 years of age have the conceptual 
resources to reason on the basis of non-obvious properties, such as causal affordances.  These 
findings are therefore consistent with others suggesting children’s early competence (e.g., Booth 
& Waxman, 2002; Gopnik & Sobel, 2000; Mandler & McDonough, 1996; Newman et al., 2005). 
Nonetheless, young children tend to privilege perceptual features over these less obvious 
alternatives under most conditions (e.g., Gelman, 2003; Keil, 1989; Wellman & Gelman, 1992; 
Sobel et al., 2007), and our findings go beyond prior work to identify a novel process that helps 
children overcome this tendency: namely engaging in explanation.  In other words, engaging in 
explanation appears to facilitate children’s access to (or ability to use) knowledge concerning the 
inductive relevance of causal properties. 

Our findings have additional potential implications for our understanding of conceptual 
development.  Experiments 1 and 2 deliberately spanned the age range (3 to 5 years) over which 
prior studies – which involved no explanation prompts – found developmental changes in 
children’s tendency to generalize on the basis of perceptual versus causal properties (Nazzi & 
Gopnik, 2000; Sobel et al., 2007). While we did find age-related changes in children’s baseline 
tendency to generalize one way or the other, the effects of explanation were uniform across ages. 
That is, we did not find interactions between the explanation manipulation and age group.  One 
possibility is that the differences within age-groups observed across our experimental groups 
were driven by distinct mechanisms from those governing the changes observed across age-
groups in our study and in others.  For example, while the experimental effects were driven by 
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explanation, the developmental effects could have been driven by general improvements in 
executive function or inhibitory control, or by different intuitive theories at different points in 
development.  Another possibility, however, is that older children were more likely than younger 
children to engage in explanation spontaneously (i.e., in the absence of a prompt), shifting 
performance towards causal inferences in the control condition, and to generate more effective 
explanations when prompted to explain, leading to a comparable shift in the explanation 
condition.  Consistent with these ideas, Legare and Lombrozo (2014) found that older children 
were more likely than younger children to generate explanations in response to an ambiguous 
verbal prompt, suggesting that self-initiated explanation increases over this age range.  And in 
Experiment 1, we found that older children were more likely than younger children to provide 
explanations that appealed to internal parts, suggesting an age-related boost in explanation 
quality. Age-related changes in explanation frequency and quality could be driving part of the 
developmental shift in children’s baseline tendency to generalize according to perceptual versus 
non-perceptual properties.  The current data cannot adjudicate between these possibilities, but do 
raise them as promising hypotheses for future research. 

We have discussed effects of explanation in Experiments 1 and 2 as favoring causal 
similarity over perceptual similarity, however, it is worth returning to the ideas about explanation 
that motivated our initial predictions, as they suggest a more nuanced view.  We propose that 
explanations tend to subsume what is being explained under a pattern or regularity, and that in so 
doing, the act of explaining could lead children to recognize or formulate broad generalizations 
that in turn support inference to new cases (Legare, 2014; Lombrozo, 2012; see also Walker et 
al., 2012, under review; Wellman & Liu, 2007; Williams & Lombrozo, 2010, 2013; Williams, 
Lombrozo, & Rehder, 2013).  On this view, explanation drives learners towards broad 
generalizations, not towards causal properties (or away from perceptual properties), per se.  
However, children may already have formed higher-level generalizations (Dewar & Xu, 2010; 
Kemp, Perfors, & Tenenbaum, 2007) suggesting that certain types of properties, such as insides 
and category labels, are more likely to track common causal properties than superficial 
perceptual ones.   

Consistent with this idea, some existing findings support the proposal that internal 
properties have a special status relative to a superficial perceptual property, such as a sticker, 
even when their correlational structure is matched within the context of a specific task.  Beyond 
our own findings from Experiments 1a and 2, Sobel et al. (2007, Experiment 3) report an 
experiment in which the researcher presented a target object that produced an effect and revealed 
two properties of the object: an internal part and a sticker affixed to its back.  Four-year-olds, but 
not 3-year-olds, inferred that another object with the same internal part was more likely to 
produce the effect than an object that shared the same sticker.  In other words, older children 
spontaneously favored an internal property over a temporary perceptual one as a basis for 
generalizing a causal property, even in the absence of explicit evidence that the internal property 
was more likely to be correlated with causality in the context of the experimental task.  This 
suggests that children form and apply higher-order generalizations about the kinds of properties 
that are likely to be inductively rich.  In fact, recent computational formulations of the “theory 
theory” of cognitive development have proposed that learners represent generalizations at 
multiple levels of abstraction, creating “overhypotheses” (Goodman, 1983/1955) that enable 
learners to learn quickly and generalize effectively to novel cases.  Building on these ideas, the 
act of explaining could encourage children not only to favor properties that support broad 
generalizations in a given task, but also the kinds of properties that are typically reliable guides 
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to particular inferences.  

One open question – both in experimental and real-world contexts – relates to the role of 
pedagogical cues in fostering the benefits of explanation on inductive inference.  Although the 
two-experimenter paradigm used in Experiment 1b ruled out certain pragmatic inferences that 
might have occurred as a direct result of the experimental procedure, children may have still 
interpreted the interactions pedagogically.  Pedagogical learning does not necessarily require 
formal teaching, but rather a teacher’s intent to communicate information to a learner in a 
context in which there exists some epistemic distance between those individuals (Shafto, 
Goodman, & Frank, 2012).  Recent research suggests that children’s interpretation of evidence 
may vary depending on whether learning occurs in pedagogical or non-pedagogical contexts 
(Bonawitz et al., 2011; Buchsbaum, Gopnik, Griffiths, & Shafto, 2011; Rhodes, Gelman, & 
Brickman, 2010; Shafto, et al., 2012).  In particular, previous research has shown that, like 
explanation, pedagogical cues can promote attention to inductively rich features (Csibra & 
Gergeley, 2006; 2009).  While the pedagogical cues in the current studies were well matched 
across explain and control conditions, it is certainly possible that both explanation and 
pedagogical cues may play a role in the effects reported here. The role of natural pedagogy in 
mediating or moderating effects of explanation on learning represents an important and novel 
avenue for future research.   

 
4.6.1  Conclusions  

 
Our data demonstrate that children as young as 3 years of age have the conceptual 

resources to reason on the basis of inductively rich properties, and that explanation facilitates 
their ability to avoid perceptually-bound judgments.  In the current experiments, children had to 
decide whether to favor causal similarity or perceptual similarity in generalizing a hidden 
property or category membership from one object to another.  Perceptual properties are often a 
reasonable basis for generalization, however, “insides” and category membership (labels) are 
more reliably associated with causal properties than with superficial, perceptual ones across 
many real-world cases.  We propose that the process of explaining supports the construction and 
consultation of higher-order generalizations concerning such clusters of associated properties, in 
turn supporting inferences to new cases.  By prompting children to favor inductively rich 
regularities, explanation encourages children to look beyond immediate observations to consider 
higher-order generalizations that support abstract knowledge.  
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Chapter 5 
 
 

Conclusions 
 
 
 
 
 
5.1     Conclusions and implications of the empirical work 
 

Together, these empirical studies illustrate children’s ability to build abstract 
representations that extend beyond their direct experience. By isolating the contributions of 
various learning mechanisms from the data that children observe, this work provides a novel 
perspective on the early development of causal reasoning and inference.  

First, Chapter 2 demonstrates that children as young as 18 months are able to successfully 
learn the abstract relations “same” and “different” in a causal learning task from very few trials 
and without explicit instruction. This set of studies carries important implications for our 
understanding of the development of both causal and relational reasoning. First, the ability to 
learn abstract relations appears to be in place very early. Combined with recent computational 
work on the “blessing of abstraction” (Goodman, et al., 2011), this early competence may help to 
explain how children acquire complex causal representations that are early “intutive theories” 
(Gopnik & Wellman, 2012; Carey, 2010). These findings also contrast with previous research 
demonstrating the failure of non-human primates to solve these type of tasks, suggesting that 
relational reasoning may be a dimension along which humans differ from other primates (Penn, 
Holyoak & Povinelli, 2008).  

In Chapter 3, I first replicated the success of toddlers in the relational reasoning task, and 
then contrasted this performance with an older group of preschool-aged children, who failed to 
infer the abstract relations they observed. The remaining experiments then assessed the influence 
of older children’s observations, as well as their search procedure, on their abstract reasoning. 
When these older children were provided with evidence against the hypothesis that individual 
object properties are causal, they were able to infer the easier of the two relations: “same”. In 
addition, simply providing older children with a prompt to explain their observations during 
training trials led them to override their bias to privilege object properties and to infer both of the 
abstract relations. Therefore, although older children often initially fail to infer relational 
hypotheses (in these experiments and others), this failure may be explained by appealing to the 
role of prior knowledge and learned overhypotheses in constraining their subsequent causal 
judgments (see also Gopnik et al., in press). This suggests that young children are equally able to 
reason about higher-order relations and object properties—they begin with a flat prior. However, 
as children learn more about the causal powers of objects, they form a general principle, or 
overhypothesis, such that hypotheses concerning objects take priority over those concerning 
relations. Later, over the course of development, this priority changes again, and children come 
to realize that relations also have predictive powers. 
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The experiments outlined in Chapters 2 and 3 carry important implications for our 

interpretation of the previous literature on relational reasoning.  For instance, the vast majority of 
the earlier literature on the development of relational reasoning proposes that children shift from 
an initial focus on object properties to more abstract concepts, following processes of knowledge 
acquisition (e.g., Genter & Rattermann, 1991), language learning (e.g., Christie & Gentner, 
2014), and other maturational advances (Halford, 1992; Richland, Morrison & Holyoak, 2006; 
Thibaut, French & Vezneva, 2010). Instead, the results outlined here suggest that the 
development of relational reasoning need not proceed in this bottom-up manner, from local 
properties to more abstract ones. The reason that relational language (Christie & Gentner, 2007, 
2010) prompts to compare (Christie & Gentner, 2014), and other types of scaffolding have 
proven effective may be reinterpreted as a means for overriding a learned overhypothesis to 
attend to individual object properties. In fact, taken together, the results of Chapters 2 and 3 are 
consistent with research in other domains in which the relative lack of prior knowledge and 
flexibility sometimes results in infants and younger children being better learners than older 
children and adults (Defeyter & German, 2003; Kuhl, 2004; Lucas et al., 2014; Seiver et al., 
2013; Werker, et al., 2012).  

Finally, in Chapter 4, findings further demonstrate that simply prompting children to 
explain leads them to override attention to highly salient perceptual cues in favor of causal 
properties that are more inductively rich. In these studies, 3-year-olds who explained were more 
likely to infer that two objects with a common causal function, as opposed to common 
appearance, would share internal parts and category membership. These effects also extend to 
impact lower-level processes, influencing the object features that children attend to and 
subsequently recall. This suggests that 3-year-olds already have the conceptual resources to 
reason on the basis of non-obvious properties, and that explaining facilitates their access to the 
inductive relevance of those properties. These findings not only support the general proposal that 
prompts to explain can systematically change learning and inference, but also shed light on the 
underlying mechanisms by which explanation may produce these effects.  In particular, these 
results suggest that explaining serves to direct learners to those hypotheses and aspects of their 
environment that support good or satisfying explanations. The act of explaining encourages 
children to not only favor those properties that support broad generalizations in a given task, but 
also the kinds of properties that tend to be reliable guides to particular inferences, and as a result, 
allows them to discover a novel inference.  

In sum, Chapter 4 sheds light on the mechanisms by which explanation informs and 
constrains causal learning in early childhood.  First, our findings help us to understand prior 
work demonstrating that generating explanations can influence belief revision. In addition, these 
data have important implications for our understanding of the nature of conceptual development 
during the preschool years. Like the data presented in Chapters 2 and 3, we demonstrate in 
Chapter 4 that even very young children already have the conceptual resources to reason on the 
basis of more inductively rich properties: they are not perceptually-bound. In this case, the 
cognitive process that is prompted by explaining supports the construction and consultation of 
higher-order generalizations, supporting inductive inference.  

Across all chapters, the empirical findings demonstrate that applying a particular 
framework to the process of knowledge construction and causal inference results in changing the 
nature of the representation.  Given this theoretical picture, knowledge is constructed due in large 
part to the constraints that are imposed on the learning problem, and therefore often carries 
unique implications for the learning outcome.   
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5.2     Remaining questions and future directions from work on analogical 
reasoning 
 

Together, the results of Chapters 2 and 3 suggest a surprising decline in children’s ability 
to learn the abstract relations “same” and “different” over the course of early development. 
These data provide evidence that this apparent decline is likely the result of a learned bias to 
attend to object properties in causal reasoning tasks. However, there are a variety of open 
questions that remain, prompting different avenues for future work.  

For example, one possible alternative explanation for this decline may be that younger 
children (unlike older children) are relying upon a simpler or more implicit strategy, rather than 
forming a genuine causal inference or performing operations over abstract relational 
representations. Indeed, infant research using looking time methods (Dewar & Xu, 2010; Ferry, 
Hespos, & Gentner, 2015) provides some evidence for the existence of implicit mechanisms 
supporting the early development of relational reasoning. It is possible, therefore, that a 
perceptual strategy relying upon simple featural proxies for “same” and “different” that allows 
toddlers to succeed on this task is later abandoned.  

While the data presented in the current dissertation are unable to completely rule out this 
alternative, several features of the study design serve to lower the possibility of the use of a 
perceptual strategy. For example, much of the previous research on the use of perceptual 
strategies has been conducted in non-human primates (Penn et al., 2008; Fagot, et al., 2001; 
Wasserman, et al., 2001), and relies upon the perceptual cue of entropy in the presented stimuli 
(i.e., “same” stimuli are lower in entropy than “different” stimuli). However, in the current 
studies, children observed pairs of objects across very few trials, rather than the type of large, 
multi-element arrays typically used in perceptual entropy research. In addition, children’s pattern 
of intervention behavior in Chapter 3 indicates that they have learned that the relations between 
the blocks in our experiment and not the individual blocks themselves carry causal power. These 
data lend support to the idea that toddlers are likely using a conceptual strategy, rather than a 
simplified perceptual one, to solve the causal RMTS task. Nevertheless, it remains an intriguing 
possibility the toddler’s success might be due to the use of a perceptual heuristic (e.g., 
Wasserman et al., 2001). In future research, it will be important to test this possibility directly. 
As a result, in ongoing work, I am currently exploring this alternative in a causal relational 
match-to-sample paradigm that controls for the amount of perceptual entropy that appears in the 
sets of stimuli that younger children observe.  

In future work, it will also be important to explore the specific role played by the 
simplicity bias in children’s ability to infer an abstract, relational hypothesis. The developmental 
decline that is described in Chapter 3 relies upon the idea that younger children lack a bias to 
privilege object properties, and are therefore left with a “flat prior.” However, if this is the case, 
then toddlers should weigh both the relational and object hypotheses with equal probability. How 
might we explain younger children’s tendency to privilege the relational hypothesis?  

It is possible that an abstract principle of simplicity such as the “Bayesian Occam’s 
razor” (Jefferys & Berger, 1992) might lead toddlers to initially prefer the more abstract 
hypothesis, since it proposes fewer causes to account for the data. Indeed, previous work 
demonstrates that young children (as well as adults [Pacer & Lombrozo, under review]) express 
this type of preference for fewer causes (Bonawitz & Lombrozo, 2012). I speculate in Chapter 3 
that this initial bias is likely overridden in older children who have also learned the general 
principle that individual object kinds are more likely to be causal. This would lead them to 
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privilege individual properties over relational ones, in spite of simplicity considerations. 
However, future work should test this claim directly, and consider how the overhypothesis for 
simplicity may interact with the development of other early biases. 

A third area of future research should further explore the role of language in the 
development of abstract relational reasoning – both the role of linguistic abilities in general, as 
well as relational language in particular. For example, some researchers have proposed that 
language is essential for the ability to engage in relational reasoning (e.g., Gentner, 2010). In line 
with this proposal, it has been demonstrated that language-trained chimpanzees that are taught to 
use the linguistic symbols for “same” and “different” are better able to succeed at relational 
match to sample tasks (Premack & Premack, 2003). Similarly, previous work with human 
children has shown that the use of labels scaffolds the ability to achieve relational insight 
(Christie & Gentner, 2007, 2010).  

In ongoing work, I am currently addressing whether infants’ developing linguistic 
representations are linked to the early acquisition of these relational concepts. This exploration is 
based upon a proposal regarding the close relationship between semantic and cognitive 
development: a variety of connections have been found between specific linguistic and 
conceptual achievements (e.g., Gopnik 1981, 1982, 1984; Gopnik & Meltzoff, 1987). For 
example, previous research suggests that children often use the word “more” to indicate 
similarity between objects and events (Gopnik, 1981). It is therefore possible that infant 
production of the word “more” may correlate with the appearance of early relational reasoning 
abilities. Preliminary work indicates the presence of a relationship between language production 
and relational reasoning in 14-15-month-olds (Walker, Hubacheck, & Gopnik, in prep). Future 
work will aim to strengthen the claim that abstract concepts may be reflected in, and linked to 
specific linguistic representations. 
 
5.3     Remaining questions and future directions from work on explanation 
and learning 
 

The work presented in the Chapters 3 and 4 provide evidence that the act of explaining 
prompts children to consider hypotheses at higher levels of abstraction. However, one interesting 
open question is whether this is the result of explanation influencing whether children behave in 
a manner that is more or less optimally Bayesian. For example, in related work, I have found that 
explanation leads children to consider hypotheses with broad scope, which results in (at least) 
two distinct effects on learning: explanation can make learners more sensitive to evidence, or 
more likely to rely on prior beliefs (Walker, et al., 2012, under review). Depending on which 
effect dominates, explanation can lead to either an increase (e.g., Brown & Kane, 1988; Rittle-
Johnson, 2006; Siegler, 1995; Wellman, 2011) or a decrease (Bonawitz, van Schijndel, Friel, & 
Schulz, 2012; Chi et al., 1994; Chinn and Brewer, 1998; Lombrozo, 2006) in belief revision, 
relative to children who don’t explain.  

Whether explaining indeed serves to increase fidelity to Bayesian conditionalization or 
not, it may nonetheless be possible to provide a formal account of explanation’s effects in 
Bayesian terms. For example, as noted above, the process of explaining may recruit a set of 
evaluative criteria for what constitutes a good explanation (Lombrozo, 2012; Walker, et al., 
under review; Williams & Lombrozo, 2010). As a result, explaining could encourage learners to 
formulate and privilege hypotheses that exhibit certain features, or “explanatory virtues” (Lipton, 
2001, 2004), that they may not have otherwise considered. These explanatory considerations 
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may then influence how Bayesian inference is approximated, even if it does not always lead to 
greater accuracy.  

In particular, recent work has explored the idea that, at an algorithmic level, both children 
and adults approximate ideal Bayesian inference by using various “sampling” procedures. In 
these procedures, learners generate a few hypotheses to test at a time, adjusting the probabilities 
of those hypotheses as they acquire more data (Bonawitz et al 2014a, b). Explaining could 
potentially influence how this sampling process occurs, especially at the stage of hypothesis 
generation, which can lead to systematic effects on Bayesian inference (e.g., Bonawitz & 
Griffiths, 2010; Gopnik & Wellman 2012; Schulz, 2012; Ullman, Goodman & Tenenbaum, 
2012). In future work, I hope to develop more formal approaches to the effects documented in 
our studies (see also, e.g., Pacer et al., 2013; Schupbach, 2011; Schupbach & Sprenger, 2011).  

Relatedly, future research should explicitly consider how these findings relate to previous 
proposals regarding the role of explanation for learning. Much of the evidence for the benefits of 
explanation comes from research on the “self-explanation effect,” the finding from educational 
psychology that prompting students to explain can improve learning (e.g., Fonseca & Chi, 2010) 
and foster transfer to novel problems (e.g., Nokes, Hausmann, VanLehn & Gershman, 2011; 
Renkl, Stark, Gruber & Mandl, 1998; Rittle-Johnson, 2006; Roy & Chi, 2005). Researchers have 
proposed a variety of plausible mechanisms that could underlie the effect. For example, Siegler 
(2002) suggests (among other things) that one consequence of explaining is a general increase in 
attention and engagement, and several researchers have suggested that explanations invoke prior 
beliefs (e.g., Ahn, Brewer & Mooney, 1992; Chi, 2000; Chi et al., 1989, 1994; Lombrozo, 2006; 
Williams & Lombrozo, 2013). Additional proposals include the ideas that explaining improves 
metacognitive monitoring, encourages learners to draw novel inferences, and helps learners form 
effective procedures (e.g., Chi, 2000; Chi et al., 1989, 1994; Fonseca & Chi, 2010; Johnson-
Laird, Girotto & Legrenzi, 2004; Siegler, 2002).  

The work that is outlined in the current dissertation builds upon these accounts by 
demonstrating how explaining can moderate type of hypotheses that are considered, changing the 
nature of children’s representations. In particular, I propose that by highlighting generalizable 
patterns, explanation also serves to abstract away individual details. Explanation therefore 
appears to be a particularly valuable tool for guiding children away from appearances to consider 
properties with greater inductive potential. In ongoing and future work, I plan to extend this 
examination to other areas of learning. For example, although children’s literature is often used 
as a pedagogical tool in early childhood, the ability to spontaneously extract underlying themes 
from narrative develops late. Research in education has proposed that children fail to represent 
the problem at the optimal level of representation – one that prioritizes abstract generalizations 
and understates surface features (van den Broek, et al., 2003). Given the current work 
demonstrating that explaining leads children to privilege hypotheses that highlight abstract 
structure, explanation may facilitate children’s ability to extract the underlying moral of a story.   

A related question relates to the role of pedagogical cues in fostering the benefits of 
explanation on inductive inference. Research suggests that children’s interpretation of evidence 
may vary substantially depending on whether learning occurs in pedagogical or non-pedagogical 
contexts (Bonawitz et al., 2011; Buchsbaum, Gopnik, Griffiths, & Shafto, 2011; Rhodes, 
Gelman, & Brickman, 2010; Shafto, et al., 2012), and, like explanation, pedagogical cues can 
promote attention to inductively rich features (Csibra & Gergeley, 2006; 2009).  Future work 
should therefore examine the role of pedagogical context in mediating and moderating the 
influence of explanation.  
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Finally, the interpretation outlined thus far has focused primarily on the impact of 

prompts to explain on the formation of children’s causal inferences. However, if it is the case 
that children already have the conceptual resources necessary to reason on the basis of abstract 
and inductively rich properties, it is also worthwhile to consider the performance of children who 
were not prompted to explain. Williams and Lombrozo (2013) suggest that explanation can guide 
learners to effectively consult prior knowledge that would otherwise remain inert or under-
utilized. These results of Chapters 3 and 4 can also be interpreted in line with Rozenblit and 
Keil’s (2002) “illusion of explanatory depth,” or the bias to overestimate one’s own explanatory 
understanding of causal mechanisms (e.g., how a bicycle works), which has also been found in 
young children (Mills & Keil, 2004).  If children erroneously believe that they already possess an 
adequate explanation, they may not feel it necessary to explain presented observations, and 
therefore fail to capitalize on the resources that are recruited by explaining.  

Another possibility, of course, is that explaining may not always be beneficial. In fact, the 
work described in Chapter 4 has suggested that explanation can have associated costs: children 
prompted to explain why blocks activate a machine are less likely to remember superficial 
properties of each block than are those in a control condition. Related work suggests that, under 
some conditions, explaining may actually result in causal inferences that are less appropriate than 
those that children make in the absence of explanation (Walker et al., under review), and children 
prompted to explain how a gear toy works are less likely than controls to remember the colors of 
particular gears (Legare & Lombrozo, 2014). With adults, Williams, Lombrozo, and Rehder 
(2013) report cases in which prompting adults to explain can impair learning by leading to errors 
of overgeneralization. Future work should consider whether children are indeed selective when 
choosing to which phenomena to explain.   
 
5.4     Concluding remarks 
 

The results of the research presented above provide a more complete picture of how 
children learn and form abstract representations, with theoretical implications for developmental 
and cognitive sciences and practical implications for education and artificial intelligence. These 
findings may therefore be useful in informing educational practices and policies, which are 
increasingly moving towards a model of early childhood education that incorporates child-
directed and inquiry-based learning.  

While the current findings contribute to our understanding of the role of abstract 
reasoning and explanation for learning in particular, they also shed light on the nature of learning 
in general. When “learning by thinking,” the learner gains new knowledge by engaging with 
information that they already have. This phenomenon therefore challenges a simple data-driven 
view of knowledge acquisition, one in which children’s learning is simply a function of 
observations, exploration, and social information.	
  Instead, the current findings provide evidence 
for a more complex picture of learning, one in which processes such as explaining to oneself – 
which does not involve new data or testimony from others – influence the way in which data and 
currently-held theories inform judgments. Understanding how these processes influence early 
learning therefore contributes to a more complete understanding of how knowledge is acquired 
and revised. 
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