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Genome-wide association studies (GWAS) have successfully  
identified numerous single-nucleotide polymorphisms (SNPs)  
associated with complex human traits and diseases. Despite 

these successes, important problems remain in statistical power and 
biological interpretation of GWAS results2. In particular, the com-
plex architecture of linkage disequilibrium and context-dependent 
regulatory machinery in the genome hinder the ability to accurately 
identify disease genes from GWAS, thereby raising challenges in 
downstream functional validation and therapeutics develop-
ment. Recently, large-scale consortia, such as the Genotype-Tissue 
Expression (GTEx) project3,4, have generated matched genotype 
and expression data for various human tissues. These rich datasets 
have provided great insights into the mechanisms of cross-tissue 
transcriptional regulation and accelerated discoveries for expres-
sion quantitative trait loci (eQTL)4–7. In addition, integrating eQTL 
information in genetic association analysis has become an effective 
way to bridge SNPs, genes, and complex traits. Many methods have 
been developed to co-localize eQTL with loci identified in GWAS 
to identify candidate risk genes for complex traits8–13. Two recent 
studies have addressed this issue through an innovative approach 
that is sometimes referred to as transcriptome-wide association 
analysis. First, on the basis of an externally trained imputation 
model, gene expression is imputed by using genotype informa-
tion in GWAS samples. Next, gene-level association is assessed 

between imputed gene expression and the trait of interest14,15. These  
methods have gained popularity in the past two years, owing to 
their capability to effectively use signals from multiple eQTL with 
moderate effects and to reduce the effect of reverse causality in 
expression–trait association analysis. The applications of these 
methods have led to novel insights into the genetic basis of many 
diseases and traits16–18.

Despite these successes, existing methods have several limita-
tions. First, owing to the tissue-dependent nature of transcription 
regulation, existing methods train separate imputation models for 
different tissues. This practice ignores the similarity in transcrip-
tion regulation across tissues, thereby limiting the effective sample 
sizes for tissues that are difficult to acquire. Second, a hypothesis-
free search across genes and tissues increases the burden of mul-
tiple testing and thus reduces statistical power. Pinpointing a subset  
of tissues according to prior knowledge may resolve this issue  
to some extent. However, for many complex traits, biologically  
relevant tissues are unknown. Further, reports have shown that  
eQTL with large effects tend to regulate gene expression in mul-
tiple tissues4. Genetic correlation analysis has also suggested sub-
stantial sharing of local expression regulation across tissues19.  
This would inevitably result in statistically significant associations 
in tissues irrelevant to the trait of interest, a phenomenon that has 
been extensively discussed recently20. Jointly analyzing data from 
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Transcriptome-wide association analysis is a powerful approach to studying the genetic architecture of complex traits. A key 
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multiple genetically correlated tissues has the potential to resolve 
these issues. Multi-trait analysis has been demonstrated to improve 
the accuracy of genetic risk prediction21–23. Multi-tissue modeling 
has also been shown to improve the statistical power in eQTL dis-
covery24–27 and gene network studies28. In this work, we demonstrate 
that a cross-tissue strategy can also improve transcriptome-wide 
association analysis.

We introduce UTMOST, a principled method to perform cross-
tissue expression imputation and gene-level association analysis. 
We demonstrate its performance through internal and external 
imputation validation, simulation studies, analyses of 50 complex 
traits, a case study on low-density-lipoprotein cholesterol (LDL-C), 
and a multi-stage association study for late-onset Alzheimer’s dis-
ease (LOAD). We show that UTMOST substantially improves the 
accuracy of expression imputation in all available tissues. In the 
downstream association analysis, UTMOST provides a powerful 
metric that summarizes gene-level associations across tissues and 
can be extended to integrate various molecular phenotypes.

results
Model overview. The UTMOST framework consists of three  
main stages (Fig. 1). First, for each gene in the genome, we train a  
cross-tissue expression imputation model by using the genotype  

information and matched expression data from 44 tissues in GTEx. 
Next, we test associations between the trait of interest and imputed 
expression in each tissue. Finally, a cross-tissue test is performed 
for each gene to summarize single-tissue association statistics into 
a powerful metric that quantifies the overall gene–trait association. 
Here, we briefly introduce the UTMOST framework. All the statisti-
cal details are discussed in the Methods.

We formulate cross-tissue expression imputation as a penalized 
multivariate regression problem:

ε= +× × × ×Y X BN P N M M P N P

where N, M, and P denote the sample size in the training data, the 
number of SNPs in the imputation model, and the total number of 
tissues, respectively. Because only a subset of tissues was collected 
from each individual, expression data in matrix Y were incomplete, 
and sample sizes for different tissues were unbalanced. We estimate 
B by minimizing the squared loss function with a lasso penalty on 
the columns (within-tissue effects) and a group-lasso penalty on the 
rows (cross-tissue effects) (Methods).
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where Yi, Xi, and Ni denote the observed expressions, genotypes, 
and sample size of the ith tissue, respectively. Parameters λ1 and λ2 
are tuned through cross-validation. Our cross-tissue imputation 
model does not assume eQTL to have the same effect direction 
across tissues. Instead, UTMOST uses a group-lasso29 penalty term 
to encourage the presence of cross-tissue eQTL and improve the 
estimation of their effects.

In the second stage, we test the associations between the trait 
of interest and imputed gene expression in each tissue. We denote 
imputed gene expression in the ith tissue as = ⋅̂E X Bi i i and test asso-
ciations via a univariate regression model:

α γ δ= + +T Ei i i i

where αi is the intercept, γi is the effect size of gene expression, and  
δi denotes the residual. The z scores for gene–trait associations in 
the ith tissue can be denoted as:

∼γ
γ

=
̂

̂
≈ ̂ Γ⋅Z B Z

se ( )i
i

i
i i
T

where ∼Z  denotes the SNP-trait z scores, and Γi is a diagonal  
matrix whose jth diagonal element denotes the ratio between the 
standard deviation of the jth SNP and that of imputed expression 
in the ith tissue (Methods). When there is no SNP–trait association, ∼Z  follows a multivariate normal distribution N(0,D), where D is 
the linkage-disequilibrium matrix for SNPs. The covariance matrix  
of Z = (Z1, Z2, …, ZP)T can be calculated as:

∼Σ = Λ = Λ ΛZ Dcov( )T T

where Λ = ̂ Γ ̂ Γ … ̂ Γ⋅ ⋅ ⋅B B B( , , , )P P1 1 2 2 .
Finally, we combine single-tissue gene–trait association results 

by using a generalized Berk–Jones (GBJ) test, which takes the cova-
riance among single-tissue test statistics into account30. We note 
that this framework allows gene–trait associations to have different 
directions across tissues. Details on the GBJ statistic and P-value 
calculation are discussed in the Methods.
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Fig. 1 | utMOSt workflow. Gray and brown boxes denote input data and 
computed outcomes, respectively.
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Cross-tissue expression imputation accuracy. We first evaluated 
the accuracy of cross-tissue expression imputation through five-
fold cross-validation. We used an elastic net model (that is, the 
model used in PrediXcan14) trained in each tissue separately as the  
benchmark for prediction without leveraging cross-tissue informa-
tion. We used squared Pearson correlation (R2) between the observed 
and predicted gene expression levels to quantify imputation accu-
racy. Cross-tissue imputation achieved higher imputation accuracy 
in all 44 tissues (Fig. 2a). On average, imputation accuracy was 
improved by 38.6% across tissues (Fig. 2b). The improvement was 
particularly high in tissues with low sample sizes in GTEx (N < 150; 
average of 47.4% improvement). Analysis based on Spearman cor-
relation also showed consistent results (Supplementary Fig. 1). 
Next, we calculated the proportion of genes with increased impu-
tation accuracy. In all 44 tissues, substantially more genes showed 
improved imputation performance (Supplementary Table 1). With 
a false discovery rate (FDR) cutoff of 0.05 as the significance thresh-
old, our cross-tissue method achieved 120% more significantly pre-
dicted genes across tissues. Among tissues with low sample sizes, 
the improvement percentage rose even further to 175% (Fig. 2c). 
Furthermore, we compared our method with the Bayesian sparse 
linear mixed-effects model (BSLMM31), the imputation method 
used in TWAS15. Similarly, UTMOST achieved higher imputation 
accuracy in all 44 tissues (Supplementary Fig. 2). On average, the 
imputation accuracy improved by 20.3% across tissues.

Next, we performed external validation, using two independent 
datasets. We first used our imputation model for whole blood in GTEx 
to predict gene expression levels in GEUVADIS lymphoblastoid cell 
lines (LCLs)32 (Methods). The imputation accuracy quantified as R2 
showed substantial departure from the expected distribution under 
the null hypothesis (that is, expression and SNPs are independent), 
thus demonstrating the generalizability of cross-tissue imputation 
(Supplementary Figs. 3 and 4). Compared with single-tissue elastic net, 
cross-tissue imputation achieved significantly higher prediction accu-
racy in different quantiles (P = 3.43 × 10−7; Kolmogorov–Smirnov test), 
in agreement with our findings from cross-validation. Two examples 
of well-predicted genes are illustrated in Fig. 2d,e, showing improved 
concordance between observed (gene expression adjusted for poten-
tial confounding effects; Methods) and predicted expression values 
via cross-tissue imputation. Analysis on CommonMind consortium 
data33 showed similar results (Methods; Supplementary Figs. 5 and 6).

Cross-tissue association test. Another key advancement in the 
UTMOST framework is a novel gene-level association test that 
combines statistical evidence across multiple tissues. We performed 
simulation studies using samples from the Genetic Epidemiology 
Research Study on Adult Health and Aging (GERA; N = 12,637) to 
assess the association test’s type I error rate and statistical power in 
a variety of settings (Methods). We did not observe inflation in the 
type I error rate in two different simulation studies (Supplementary 
Tables 2 and 3). We observed a substantial improvement in statis-
tical power of the multi-tissue joint test when gene expression in 
multiple tissues were causally related to the trait. The improvement 
was also consistent under different simulated genetic architectures 
(Fig. 3). When the trait was affected by expression in only one tis-
sue, the statistical power of the joint test was comparable to that of a 
single-tissue test in the causal tissue. Compared with the naïve test, 
which combines results across tissues while applying an additional 
Bonferroni correction, our joint test was consistently more power-
ful (improvement ranged from 15.3% to 24.1%).

UTMOST identifies more associations in relevant tissues. To 
evaluate the performance of the single-tissue association test based 
on cross-tissue expression imputation, we applied UTMOST to 
the summary statistics from 50 GWAS (Ntotal ≈ 4.5 million without 
adjus ting for sample overlap across studies; Supplementary Table 4) 

and compared the results with those of PrediXcan14 and TWAS15.  
To identify tissue types that are biologically relevant to these complex 
traits, we applied linkage-disequilibrium-score regression34 to these 
datasets and partitioned heritability by tissue-specific functional 
genome predicted by GenoSkyline-Plus annotations35. Tissue-trait  
relevance was ranked on the basis of enrichment P values (Methods). 
Compared with PrediXcan and TWAS, UTMOST identified sub-
stantially more associations in the most relevant tissue for each ana-
lyzed trait, showing 69.2% improvement compared with PrediXcan 
(P = 8.79 × 10−5; paired Wilcoxon rank test) and 188% improvement 
compared with TWAS (P = 7.39 × 10−8, Fig. 4). Such improvement 
was consistently observed across traits (Supplementary Table 5). 
In contrast, for other tissues, UTMOST identified similar num-
bers of genes and showed no significant difference compared with 
PrediXcan (P = 0.52). Comparing tissues that were most and least 
enriched for trait heritability, UTMOST identified significantly more 
associations in tissues strongly enriched for trait heritability than in 
tissues with the least enrichment (P = 0.016), whereas the contrast 
was not significant on the basis of PrediXcan (P = 0.192) or TWAS 
(P = 0.085). Finally, we applied the cross-tissue joint test to these 
traits and compared the number of significant genes with the com-
bined results from 44 UTMOST single-tissue tests. The UTMOST 
joint test identified more associations than single-tissue tests in 43 
out of 50 traits (P = 1.74 × 10−8; Wilcoxon rank test; Supplementary 
Fig. 7), showing improved statistical power in cross-tissue analysis.

Integrating external QTL resource. We applied UTMOST to the 
meta-analysis summary data of LDL-C from the Global Lipids 
Genetics Consortium (N = 173,082)36. Results based on four different  
analytical strategies, that is, single-tissue test using liver tissue in 
GTEx (N = 97), single-tissue test using liver eQTL from STARNET37 
(N = 522), cross-tissue joint test combining 44 GTEx tissues, and 
cross-tissue joint test combining 44 GTEx tissues and the liver eQTL 
from STARNET, were compared. We identified 57, 58, 185, and 203 
significant genes in the four sets of analyses, respectively (Fig. 5a).

Among the identified genes in the cross-tissue joint test of 44 
GTEx tissues and STARNET liver, SORT1 had the most significant 
association (P = 3.4 × 10−15). SORT1 is known to causally mediate 
LDL-C levels, even though the GWAS association signal at this locus 
is clustered around CELSR2 (ref. 38,39). Of note, liver was not impli-
cated as the relevant tissue for SORT1 in the association analysis, and 
moreover the association signal at SORT1 was completely absent in 
the single tissue test based on GTEx-liver, owing to its low imputa-
tion quality (FDR = 0.064). The limited sample size of liver tissue in 
GTEx (N = 97) restrained the imputation performance of SORT1 and 
consequently reduced the statistical power in the association test. In 
contrast, UTMOST successfully recovered the association signal at 
SORT1 (P = 3.4 × 10−15). Additionally, the UTMOST cross-tissue asso-
ciation test is flexible in incorporating external QTL resources along  
with GTEx data (Methods). Through integrating single-tissue asso-
ciations in all 44 GTEx tissues and a large external liver dataset 
(STARNET; N = 522), we successfully recovered the association of 
SORT1 (Fig. 5b). Furthermore, we performed pairwise conditional 
analyses between SORT1 and other significant genes at the SORT1 
locus, and we found that SORT1 remained statistically significant in 
all analyses, thus showing that its association signal is not shadowed 
by other genes (Supplementary Table 6). Further, when correlations 
between gene expression were moderate, SORT1 was more signifi-
cant than all other tested genes in conditional analysis. Even when the  
correlation was substantial (for example, CELSR2 and PSRC1 both 
had correlation of 0.9 with SORT1 in STARNET), SORT1 remained 
statistically significant. We compared association based on STARNET 
only and found that SORT1 was not the top signal in the locus in 
single-tissue analysis, and the cross-tissue approach did not increase 
the false-positive rate (Supplementary Note). These results suggest 
that integrative analysis of transcriptomic data from multiple tissues 
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and multiple QTL resources can effectively increase statistical power 
in gene-level association mapping. UTMOST is a flexible framework 
and is not limited to GTEx tissues only. Integrating relevant external 
QTL studies via UTMOST may further improve downstream asso-
ciation analysis.

UTMOST identifies novel risk genes for Alzheimer’s disease. 
Finally, to demonstrate UTMOST’s effectiveness in real association 
studies, we performed a multi-stage gene-level association study for 

LOAD. In the discovery stage, we applied UTMOST to the stage I  
GWAS summary statistics from the International Genomics of 
Alzheimer’s Project40 (IGAP; N = 54,162). A number of recent studies  
have suggested that functional DNA regions in liver and myeloid 
cells are strongly enriched for LOAD heritability35,41,42. In addition, 
alternative splicing has also been suggested to be a mechanism for 
many risk loci of LOAD43. Therefore, in addition to 44 tissues from 
GTEx, we also incorporated liver eQTL from STARNET and both 
eQTL and splicing (s)QTL data in three immune cell types (that 
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is, CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells)  
from the BLUEPRINT44 consortium in our analysis (Methods). 
Single-tissue association tests were performed and then combined 
by using the GBJ test. In total, our cross-tissue analysis identified  
68 genome-wide-significant genes in the discovery stage (Supple-
mentary Table 7 and Supplementary Fig. 8).

Next, we replicated our findings in two independent datasets: 
using GWAS summary statistics based on samples in the Alzheimer’s 
Disease Genetics Consortium (ADGC) that were not used in the 

IGAP stage I analysis (N = 7,050) and summary statistics from the 
GWAS by proxy45 (GWAX; N = 114,564). Despite the moderate 
sample size in the ADGC dataset and the ‘proxy’ LOAD pheno-
type based on family history in GWAX analysis, the replication rate  
was high (Supplementary Table 7). Out of 68 genes, 17 and 15 were 
successfully replicated under the Bonferroni-corrected significance 
threshold in ADGC and GWAX, respectively. The numbers of  
replicated genes rose to 41 and 30 under a relaxed P-value cutoff of 
0.05. Twenty-two out of 68 genes had P values below 0.05 in both 
replication datasets. We then combined P values from all three anal-
yses via Fisher’s method. A total of 69 genes, including 12 genes 
that were not significant in the discovery stage, reached genome-
wide significance in the meta-analysis (Fig. 6 and Supplementary 
Table 7 and 8). These 69 genes were significantly enriched for 
seven gene ontology terms (Supplementary Table 9), and ‘very-
low-density-lipoprotein particle’ was the most significant (adjusted 
P = 5.8 × 10−3).

Most significant genes are from previously identified LOAD 
risk loci40,46–51. These include the CR1 locus on chromosome 1, 
BIN1 locus on chromosome 2, HBEGF locus on chromosome 5,  
ZCWPW1 and EPHA1 loci on chromosome 7, CLU locus on 
chromosome 8, CELF1, MS4A6A, and PICALM loci on chromo-
some 11, and APOE region on chromosome 19. Among these  
loci, AGFG2 rather than ZCWPW1, the previously suggested 
index gene at this locus40, was significant in the meta-analysis 
(P = 7.19 × 10−7). Similarly, BIN1 was not statistically significant in 
our analysis. However, LIMS2, a gene 500 kb upstream of BIN1, was 
significantly associated (P = 9.43 × 10−12). SNPs in the 3′ untrans-
lated region of LIMS2 have been suggested to associate with cogni-
tive decline52. GWAS index genes for the rest of the loci were all 
statistically significant in our analysis.

Further, new associations at known risk loci provide novel 
insights into LOAD etiology. We identified a novel gene, IL10, 
for LOAD risk (P = 1.77 × 10−7). IL10 is 700 kb upstream of CR1, a 
strong and consistently replicated locus in LOAD GWAS40,51,53. CR1 
was also significant in our analysis (P = 3.71 × 10−7). Although some 
SNPs near the promoter region of IL10 were moderately associ-
ated with LOAD in all three datasets (Supplementary Fig. 9), the 
IL10–LOAD association was mostly driven by SNPs near CR1 
(Supplementary Table 10). An interesting observation is that even 
when a key SNP is missing—the most significant SNP in IGAP and 
ADGC (that is, rs2093761:A>G) was not present in GWAX—other 
predictors (for example, rs6690215:C>T in GWAX) still helped to 
recover the association signal at the gene level, thus leading to a 
genome-wide-significant association at IL10. To investigate whether 
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IL10 is simply a companion association signal due to co-regulation 
with CR1, we performed a cross-tissue conditional analysis using 
UTMOST with both significant genes CR1 and IL10 included in the 
model (Methods). Only IL10 remained significant (P = 1.4 × 10−7 
for IL10 and P = 0.11 for CR1, Supplementary Table 11) in the con-
ditional analysis. In addition to the strong statistical evidence, the 
biological function of IL10 also supports its association with LOAD. 
IL10 is associated with multiple immune diseases54–57. Moreover, it 
is known to encode one of the main anti-inflammatory cytokines 
associated with the occurrence of Alzheimer’s disease and has the 
therapeutic potential to improve neurodegeneration58,59. Its protein 
product is also known to physically interact with the Tau protein60.

CLU is another well-replicated risk gene for LOAD. Two inde-
pendent association peaks at this locus, one at CLU and the other at 
PTK2B, have been identified in GWAS (Supplementary Fig. 10)40,51. 

In our analysis, in addition to CLU (P = 1.66 × 10−10), we identified 
two more significant genes at this locus, ADRA1A (P = 1.29 × 10−9) 
and EXTL3 (P = 5.08 × 10−12). PTK2B showed marginal association 
(P = 1.72 × 10−4) with LOAD but did not reach genome-wide signifi-
cance. Interestingly, EXTL3 expression is predicted by a SNP in the 
LOAD association peak at CLU, whereas ADRA1A is regulated by 
SNPs at both CLU and PTK2B (Supplementary Table 12). ADRA1A 
has been implicated in gene–gene interaction analysis for LOAD61. 
Its protein product physically interacts with amyloid precursor pro-
tein (APP)60, and an α1-adrenoceptor antagonist has been shown 
to prevent memory deficits in APP23-transgenic mice62. EXTL3 
encodes a putative membrane receptor for regenerating islet-
derived 1α (Reg-1α), whose overexpression and involvement in the 
early stages of Alzheimer’s disease has been reported63. Further, the 
effect of Reg-1α on neurite outgrowth is mediated through EXTL3. 
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Our results provide additional evidence that IL10, ADRA1A, and 
EXTL3 may be involved in LOAD etiology.

Finally, we identified five novel loci for LOAD, each repre-
sented by one significant gene: NICN1 (P = 2.23 × 10−7), RAB43 
(P = 1.98 × 10−6), VKORC1 (P = 3.53 × 10−9), HPR (P = 3.02 × 10−7), 
and PARD6G (P = 3.60 × 10−11). The Rab GTPases are central regu-
lators of intracellular membrane trafficking64. Although RAB43 
has not been identified in previous LOAD GWAS, USP6NL, which 
encodes a GTPase-activating protein for RAB43, has been identi-
fied to associate with LOAD in two recent studies45,50. USP6NL also 
showed suggestive association with LOAD in the discovery stage of 
our analysis (P = 0.004). However, the associations at RAB43 and 
USP6NL were not strongly supported by the ADGC or GWAX data-
sets. Further, the RAB43–LOAD association was driven by SNPs 
near RPN1, a gene 400 kb downstream of RAB43 (Supplementary 
Fig. 11 and Supplementary Table 13). This locus is associated with 
a variety of blood cell traits including monocyte count65,66. VKORC1 
is a critical gene in vitamin K metabolism and is the target of warfa-
rin67, a commonly prescribed anticoagulant. The APOE ε4 allele is 
known to affect the efficacy of warfarin68. HPR has been identified 
to strongly associate with multiple lipid traits69 and interact with 
APOE60. NICN1 is known to associate with inflammatory bowel 
disease70 and cognitive function71. These results provide potential 
target genes for functional validations in the future. The cross- 
tissue imputation models of these genes are listed in Supplementary 
Tables 14–20.

Discussion
Despite the many improvements of UTMOST over existing methods,  
researchers must be cautious when interpreting findings from 
UTMOST analyses. First, the gene-level associations identified in 
UTMOST do not imply causality. It has been recently discussed 
that correlations among the imputed expression of multiple genes 
at the same locus may lead to apparent associations at non-causal 
genes20, which is comparable to the effect of linkage disequilibrium 
on SNP-level associations in GWAS. Consequently, TWAS-type 
approaches have limitations in both inferring functional genes and 
relevant tissues. When eQTL of different genes at the same locus 
are shared or are in linkage disequilibrium, irrelevant genes may 
be identified through significant associations. Similarly, for a given 
gene, if eQTL for the same gene in different tissues are shared or 
are in linkage disequilibrium, irrelevant tissues may show signifi-
cant association signals. UTMOST cross-tissue conditional analysis 
can resolve the issue of gene prioritization to some extent, but fine-
mapping of gene-level association remains challenging, especially in 
regions with extensive linkage disequilibrium. We performed simu-
lations to show that the true associations in the causal tissue were 
consis tently stronger than those in the non-causal tissue in most  
scenarios, thus indicating that single-tissue association analyses have 
the potential to enable causal tissue to be inferred (Supplementary 
Note and Supplementary Fig. 12). However, as the proportion of 
shared eQTL increased, P values for associations in the non-causal 
tissue became increasingly significant. Even when two tissues did 
not share eQTL, associations in the non-causal tissue still frequently 
passed the significance threshold, probably because of linkage dis-
equilibrium between eQTL. These results are consistent with our 
experience and discussions in the literature20,72. We also note that 
these issues may become even more complex when sample sizes and 
imputation power vary across tissues. Further, we emphasize one of 
the principles in hypothesis testing—one should not conclude the 
null hypothesis when an association is not statistically significant. 
UTMOST is a general framework that involves many analytical 
steps, and technical issues might mask true gene–trait associations. 
For example, SPI1 from the CELF1 locus has been causally linked to 
LOAD risk42. We identified multiple significant associations at this 
locus, but SPI1 was not a significant gene in our analysis. Possible 

reasons for this finding include insufficient imputation quality on 
the basis of the current model, non-availability of causal tissue  
in the training data, key eQTL missing from the GWAS summary 
statistics, causal mechanisms (for example, alternative splicing)  
not well-represented in our analysis, or insufficient sample sizes.  
In practice, these issues must be carefully investigated before any 
candidate gene is ruled out.

Overall, UTMOST is a novel, powerful, and flexible framework 
to perform gene-level association analysis. It integrates biologi-
cally informed weights with GWAS summary statistics via modern  
statistical techniques. If interpreted with caution, its findings may 
provide insights into disease and trait etiology, motivate down-
stream functional validation efforts, and eventually benefit the 
development of novel therapeutics. It is also exciting that statisti-
cal and computational methodology in this field evolves rapidly. 
Several methods of mediation analysis and functional gene fine-
mapping in the context of transcriptome-wide association study 
have been proposed recently73,74. Data-adaptive SNP weights have 
been shown to effectively improve statistical power at the cost of 
clear interpretation of associations75. Extension of these methods 
into multi-tissue analysis is an interesting possible future direction. 
As high-throughput data continue to be generated for more indi-
viduals, cell types, and molecular phenotypes, UTMOST promises 
to show even better performance and provide greater insights for 
complex disease genetics in the future.

URLs. UTMOST software, https://github.com/Joker-Jerome/
UTMOST/; BLUEPRINT, ftp://ftp.ebi.ac.uk/pub/databases/blue-
print/blueprint_Epivar/qtl_as/; STARNET, https://github.com/
Wainberg/Vulnerabilities_of_TWAS/; AlzData, http://alzdata.org/ 
index.html; GLGC, http://lipidgenetics.org/; IGAP: http://web.
pasteur-lille.fr/en/recherche/u744/igap/igap_download.php/; 
TWAS summary statistics, ftp://ftp.biostat.wisc.edu/pub/lu_group/
Projects/UTMOST/; GEUV, https://www.ebi.ac.uk/arrayexpress/
experiments/E-GEUV-1/; GWAX, http://gwas-browser.nygenome.
org/downloads/; GTEx, https://www.gtexportal.org; ADGC2 sum-
mary statistics, https://www.niagads.org/datasets/ng00076.
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Methods
Penalized regression model for cross-tissue expression imputation. Given a 
gene, we use genotype information to predict its covariate-adjusted expression 
levels in P tissues. We use SNPs between 1 Mb upstream of the transcription 
start site and 1 Mb downstream of the transcription end site of the given gene as 
predictor variables in the model. This is denoted as an N × M matrix X, where N is 
the total number of individuals, and M denotes the number of SNPs. Throughout 
the paper, we assume each column of X to be centered but not standardized.  
Of note, expression data may not be available for all individuals, because only a  
subset of tissues were collected from each individual. For the ith tissue, we use Ni 
to denote its sample size. We further use an Ni-dimensional vector Yi to denote the 
observed expression data in the ith tissue, and we use an Ni × M matrix Xi to denote 
the genotype information for the subset of individuals. Then, cross-tissue gene 
expression imputation can be formulated as the following regression problem:

ε= + = …⋅Y X B i P, 1, ,i i i i

Here, the M × P matrix B summarizes SNPs’ effects on the given gene with its 
ith column ⋅Bi denoting the effect sizes of SNPs in the ith tissue and the jth row ⋅Bj  
denoting the effect sizes of the jth SNP in all P tissues. To effectively select biologically 
relevant and statistically predictive SNPs, accurately estimate their effects across 
tissues, and address technical issues including shared samples and incomplete data, we 
propose the following penalized least-squares estimator for genetic effects matrix B:
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Here, ║·║1 and ║·║2 denote the l1 and l2 norms, respectively (that 
is,║xv×1║1= ∑ ∣ ∣= xv

V
v1  and ║xv×1║2= ∑ = xv

V
v1
2). The first term in the loss  

function is the standard least-squares error. We use the l1 penalty to select predictive 
variables and impose shrinkage in effect-size estimation. The penalty on each  
tissue is set adaptively on the basis of the sample sizes, thus reflecting the idea 
that models for tissues with a larger sample size are more robust to overfitting and 
therefore are penalized less. To integrate information across multiple tissues, we 
introduced the third term—a group-lasso penalty on the effect sizes of one SNP29. 
By imposing this joint penalty across tissues, UTMOST encourages eQTL that 
are shared across tissues, but it still keeps tissue-specific eQTL with strong effects. 
Although the penalty on tissue-specific eQTL may cause the model to exclude  
some true predictors, recent evidence76 has suggested that tissue-specific eQTL  
have substantially weaker effect sizes and will probably not have major influences 
on association analysis (Supplementary Note). Tuning parameters λ1 and λ2  
control the within-tissue and cross-tissue sparsity, respectively. They are selected 
through cross-validation. Details of the optimization can be found in the 
Supplementary Note.

Model training and evaluation. We trained our cross-tissue gene expression 
imputation model by using genotype and normalized gene expression data from 
44 tissues in the GTEx project (version V6p, dbGaP accession code phs000424.
v6.p1)3. The sample sizes for different tissues ranged from 70 (uterus) to 361 
(skeletal muscle). SNPs with ambiguous alleles or minor allele frequency 
(MAF) <0.01 were removed. Normalized gene expression was further adjusted to 
remove potential confounding effects from sex, sequencing platform, the top three 
principal components of genotype data, and the top probabilistic estimation of 
expression residuals (PEER) factors77. As previously recommended17, we included 
15 PEER factors for tissues with N <150, 30 factors for tissues with 150 ≤ N < 250, 
and 35 factors for tissues with N ≥250. All covariates were downloaded from 
the GTEx portal website (see URLs). We applied a fivefold cross-validation for 
model tuning and evaluation. Specifically, we randomly divided individuals into 
five groups of equal size. Each time, we used three groups as the training set, one 
as the intermediate set for selecting tuning parameters, and the last one as the 
testing set for performance evaluation. The squared correlation between predicted 
and observed expression (that is, R2) was used to quantify imputation accuracy. 
For each model, we selected gene–tissue pairs with FDR <0.05 for downstream 
testing. External validation of imputation accuracy was performed by using 
whole-blood expression data from 421 samples in the 1,000 Genomes Project 
(GEUVADIS consortium)32 and the CommonMind consortium33, which collected 
expression in across multiple regions from >1,000 postmortem brain samples 
(mainly corresponding to Brain_Frontal_Cortex_BA9 in GTEx) from donors 
with schizophrenia or bipolar disorder, and individuals with no neuropsychiatric 
disorders. For CommonMind data, we focused our analysis on 147 controls with 
no neuropsychiatric disorders. Average improvements in R2 in both external 
validation datasets are shown in Supplementary Fig. 4. Although not statistically 
significant, owing to the limited sample size, the accuracy of the cross-tissue 
method was consistently higher than that of the single-tissue approach in different 
quantiles. Furthermore, comparing the tissue–tissue similarity on the basis of the 
observed and imputed gene expressions indicated that cross-tissue imputation 

removed stochastic noises in the expression data without losing tissue-specific 
correlational patterns (Supplementary Note and Supplementary Figs. 5 and 6).

Gene-level association test. We combined GWAS summary statistics with SNP 
effects estimated in the cross-tissue imputation model (that is, ̂B) to quantify gene–
trait associations in each tissue. For a given gene, we modeled its imputed expression 
in the ith tissue (that is, = ⋅̂E X Bi i i) and the phenotype T by using a linear model:

α γ δ= + +T Ei i i i

Then, the association statistic for effect size in the ith tissue (that is, γi) on the 
trait of interest is:
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where γ ̂i denotes the point estimate for effect size, and (s.e.m.γ ̂i) denotes its standard 
error of the mean. From the linear model, we have:
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where Γi is an M × M diagonal matrix with the jth term equal to σ

η
j

i
, where σj is 

the standard deviation of the jth SNP, and ηi is the standard deviation of imputed 
gene expression in the ith tissue. These parameters could be estimated by using a 
reference panel. ∼β  denotes the SNP-level effect-size estimates acquired from GWAS 
summary statistics. Regarding the standard error of the mean of γ ̂i, we have:
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Here, σY denotes the standard deviation of phenotype T, and NGWAS is the 
sample size in GWAS. The approximation δ σ≈var( )i Y

2 is based on the empirical 
observation that each gene explains only a very small proportion of phenotypic 
variability78. The same argument can be extended to association statistics at the 
SNP level. For the jth SNP in the model, we have
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Combining the derivations above, we can denote the gene-level z score as:
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Under the null hypothesis (that is no SNP-trait association), ∼Z  follows a 
multivariate normal distribution ∼≈Z N D(0, ), where D is the linkage-disequilibrium 
matrix for SNPs and could be estimated by using an external reference panel. 
Denoting the cross-tissue gene–trait z scores as Z = (Z1, Z2, …, ZP)T, the covariance 
matrix of Z could be calculated as:

∼Σ = Λ = Λ ΛZ Dcov( )T T

where Λ = ̂ Γ ̂ Γ … ̂ Γ⋅ ⋅ ⋅B B B( , , , )P P1 1 2 2 .
To combine gene–trait associations across multiple tissues, we applied the 

GBJ test with single-tissue association statistics Z and their covariance matrix Σ as 
inputs. This approach provides powerful inference results while explicitly taking 
the correlation among single-tissue test statistics into account even under a sparse 
alternative (that is, biologically meaningful associations are present in only a small 
number tissues)30. The GBJ test statistic can be calculated as:
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where |Z|(i) denotes the ith order statistic of the absolute value of gene–trait z scores  
in an increasing order; = ∑ ∣ ∣ ≥=S t Z t( ) 1( )i

P
i1  denotes the number of gene–trait z 

scores with absolute value greater than a threshold t; μî denotes the corresponding 
value of E(Z) that maximizes the probability of event S(|Z|(P−i + 1)) = i; and 
Φ = −Φt t( ) 1 ( )  is the survival function of the standard normal distribution.  
The GBJ test statistic can be interpreted as the maximum of a series of one-sided 
likelihood-ratio test statistics on the mean of S(t), where the denominator denotes 
the maximum likelihood when no gene–trait association exists in any tissue (all  
z scores have zero mean), and the numerator denotes the unconstrained maximum 
likelihood. Of note, calculating the exact distribution of S(t) is difficult when z 
scores are correlated. As previously suggested, we calculate G by approximating 
the distribution of S(t) with an extended beta-binomial (EBB) distribution. As a 
maximum-based global statistic, the P value of the GBJ test could be written as:

= − ≤ − ∀ = … ∣ ~ ΣP S b d i i P Zvalue 1 Pr( ( ) ( ), 1, 2, , MVN(0, ))i

where 0 ≤ b1 ≤ b2 ≤ … ≤ bP are ‘boundary points’ derived from inversion of the 
test statistic, which depends on G, P, and Σ. MVN denotes multivariatte normal 
distribution. The last quantity in the equation can be calculated recursively with the 
EBB approximation30.

P-value cutoffs for gene-level association tests were determined by Bonferroni 
correction. For each method, we used 0.05 divided by the total number of genes 
tested across 44 tissues (that is, 5.76 × 10−7 for TWAS, 2.44 × 10−7 for PrediXcan, and 
1.28 × 10−7 for UTMOST, respectively) as the significance threshold. As more genes 
can be accurately imputed (R2 significantly larger than zero with FDR <0.05) in our 
cross-tissue imputation, the significance cutoff was the most stringent in UTMOST.

Cross-tissue conditional analysis. Genes that are physically close to the true risk gene 
may be identified in marginal association analyses, owing to co-regulation of multiple 
genes by the same eQTL and linkage disequilibrium between eQTL of different 
genes. To prioritize gene-level associations at the same locus, we expand UTMOST to 
perform cross-tissue conditional analysis. There are two major steps in this framework.

First, at any pre-defined locus, we can derive the formula of conditional 
analysis on the basis of marginal associations. T denotes the trait of interest. The 
goal is to perform a multiple regression analysis using K imputed gene expressions 
in the ith tissue (that is, Ei1,…, EiK) as predictor variables:

γ δ= +T E * * *i i i

Here, we use = …E E E* ( , , )i i iK1  to denote an N × K matrix for K imputed 
gene expressions in the ith tissue. Regression coefficients γ γ γ= …* ( , , )i i iK1

T are the 
parameters of interest. To simplify the algebra, we also assume that trait T and all 
SNPs in the genotype matrix X are centered so there is no intercept term in the model, 
but the conclusions apply to the general setting. Similarly to univariate analysis, gene 
expression levels Ei1,…,EiK are imputed from genetic data via linear prediction models:

=E XB* *i i

where B*i  are imputation weights assigned to SNPs. The kth column of B*i  denotes 
the imputation model for gene expression Eik. Then, the ordinary least-squares 
estimator γ *̂ and its variance–covariance matrix can be denoted as follows:

γ ̂ = −E E E T* (( *) *) ( *)i i i i
T 1 T

γ ̂ ≈ −T E Ecov( *) var( )(( *) *)i i i
T 1

The approximation is based on the assumption that imputed gene expression 
levels Ei1, …, EiK collectively explain little variance in T, which is reasonable in 
complex gene expression genetics if K is not large. We further denote:
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All elements in matrix Ui can be approximated by using a reference panel ∼X . 
Therefore, the z score for γik(1 ≤ k ≤ K) is:

γ
γ

=
̂
̂

Z
se( )ik

ik

ik

=
I U B X T
N U T

( *)
( ) var( )

k i i

i kk

T T T

∼= Θ
U

I U B Z1
( )

( *)
i kk

k i i
T T

where Ik is the K × 1 vector with the kth element being 1 and all other elements 
equal to 0, Θ is an M × M diagonal matrix with the jth diagonal element being 

Xvar( )j , and, similarly to the notation in univariate analysis, ∼Z  is the vector 
of SNP-level z scores from the GWAS of trait T. Importantly, we note that given 
imputation models for K gene expressions (that is, B*i ), GWAS summary statistics 
for trait T (that is, ∼Z ), and an external genetic dataset to estimate Ui and Θ, 
conditional analysis can be performed without individual-level genotype and 
phenotype data.

In the second step, we combine the conditional analysis association statistics 
across different tissues by using the GBJ test. Of note, this is different from the final 
stage of UTMOST, which combines the marginal gene–trait-tissue associations. 
Through these two steps, linkage disequilibrium between eQTL and co-regulation 
across tissues has been taken into account in the test. Specifically, under the null 
hypothesis (that is, no SNP-trait association), ∼Z  follows a multivariate normal 
distribution ∼~Z N D(0, ), where D is the linkage-disequilibrium matrix for SNPs 
and could be estimated by using an external reference panel. By denoting the  
cross-tissue gene–trait z scores for gene k as Zk = (Z1k,Z2k,…,ZPk)T, the covariance 
matrix of Zk could be calculated as:

∼Σ = Λ = Λ ΛZ Dcov( )k k k k
T T
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Simulation settings. Genotype data from 12,637 individuals in the GERA dataset 
(dbGaP accession phs000674), including 7,432 type 2 diabetes cases (phenotypic 
information not used) and 5,205 healthy controls, were used in the simulation 
studies. We removed SNPs with missing rate above 0.01 and individuals with 
genetic relatedness coefficients above 0.05. The genotype data were imputed to 
the 1,000 Genomes Project Phase 1v3 European samples by using the Michigan 
Imputation Server79. After imputation, we further removed SNPs with MAF <0.05. 
After quality control, 5,932,546 SNPs remained in the dataset.

We performed two different simulation studies to evaluate the type I error rate 
of our cross-tissue association test. First, we directly simulated quantitative traits 
from a standard normal distribution independent from the genotype data, and  
we then performed single-tissue association tests for 44 tissues in GTEx and the 
GBJ cross-tissue association test for all genes, by using the simulated data. In the 
second setting, we simulated genetically regulated expression components and  
then simulated the GWAS trait on the basis of gene expression values. For each 
gene, we simulated its expression in three tissues, namely skeletal muscle (N = 361), 
skin from sun-exposed lower leg (N = 302) and whole blood (N = 338). Within  
the ith tissue, the cis component of gene expression was generated as = ⋅̂E X Bi i i.  
We used real effect sizes ⋅̂Bi estimated in our joint imputation model so that the 
genetic architecture of gene expression was preserved in the simulations. Next, the 
quantitative trait value was simulated as Y = w1E1 + w2E2 + w3E3 + ε, where wi is 
the effect of gene expression on the trait in the ith tissue. To evaluate type I error, 
we set w1 = w2 = w3 = 0, that is, none of the three tissues are relevant to the trait.

To simulate data under the alternative hypothesis, we generated diverse disease 
architectures by considering different numbers of causal tissues (that is, 1, 2, or 3 
causal tissues) and two heritability settings (that is, 0.01 and 0.001). Specifically, 
we fixed the total variance explained by E1, E2, and E3 and varied wi to simulate 
different levels of tissue specificity of the trait. We generated traits by using the 
following three settings:

Setting 1. w1 = 1,w2 = w3 = 0. Only the first tissue contributes to the disease;  
the other two tissues are not relevant.
Setting 2. = = =w w w, 01 2

1
2 3 . Both the first and the second tissue contribute 

equally to disease; the third tissue is irrelevant to the disease.
Setting 3. = = =w w w1 2 3

1
3
. All three tissues contribute equally to the disease.

Single-tissue and cross-tissue gene–trait associations were then estimated 
by using the UTMOST framework. We repeated the entire procedure on 200 
randomly selected genes. For each gene, we further replicated five times. Statistical 
power was calculated as the proportion of test P values reaching the significance 
threshold, that is, 0.05/15,000 for both single-tissue and cross-tissue tests and 
0.05/45,000 for single-tissue tests while accounting for the number of tissues.

GWAS data analysis. We applied UTMOST to GWAS summary statistics for 
50 complex diseases and traits. Details of these 50 studies are summarized in 
Supplementary Table 4. GWAS summary statistics for LDL-C were downloaded 
from the Global Lipids Genetics Consortium website (see URLs). Summary 
statistics from the IGAP stage I analysis were downloaded from the IGAP website 
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(see URLs). The GWAX result for LOAD was downloaded from the New York 
Genome Center website (see URLs). ADGC phase 2 summary statistics were 
generated by first analyzing individual datasets by using logistic regression 
adjusting for age, sex, and the first three principal components in the program 
SNPTest v.2 (ref. 80). Meta-analysis of the individual dataset results was then 
performed by using the inverse-variance weighted approach in METAL81.

To identify trait-related tissue, we first used GenoSkyline-Plus, an unsupervised 
learning framework trained on various epigenetic marks from the Roadmap 
Epigenomics Project82, to quantify tissue-specific functionality in the human 
genome83. We then estimated the enrichment for trait heritability in each tissue’s 
predicted functional genome by using linkage-disequilibrium-score regression34. 
More specifically, annotation-stratified linkage-disequilibrium scores were 
estimated by using the 1,000 Genomes samples of European ancestry and a 1-cM 
window. GenoSkyline-Plus annotations for 27 tissues that can be matched between 
Roadmap and GTEx were included in the linkage-disequilibrium-score regression 
model together with 53 baseline annotations, as previously suggested34. For each 
tissue-specific annotation, partitioned heritability was estimated, and enrichment 
was calculated as the ratio of the proportion of explained heritability and the 
proportion of SNPs in each annotated category. Tissue-trait relevance was then 
ranked according to enrichment P values. We used the term ‘most enriched tissues’ 
to denote the tissues that were most significantly enriched for heritability of each 
trait. Finucane et al.84 have also applied LD-score regression (LDSC) with tissue-
specific annotations based on GTEx data to infer trait-related tissues. Because 
UTMOST was based on GTEx data, we used independent data from the Roadmap 
project to infer trait-relevant tissues for the purpose of fair comparison.

In the UTMOST analytical framework, multiple parameters must be estimated 
by using an external reference panel (for example, linkage disequilibrium). We 
used samples with European ancestry from the 1,000 Genomes Project for this 
estimation85. When performing cross-tissue association tests, we combined single-
tissue statistics from tissues that passed FDR <0.05 criteria to reduce noise in the 
analysis. Genome-wide significance was defined as 3.3 × 10−6 (that is, Bonferroni 
correction based on 15,120 genes that passed the quality control steps). For 
heritability enrichment analysis, we applied LDSC to 27 GenoSkyline-Plus tissue-
specific annotations with matched tissue types in GTEx (Supplementary Table 21). 
The 53 LDSC baseline annotations were also included in the model, as previously 
recommended34. The most and least relevant tissues were selected according to the 
enrichment-test P values. Gene ontology enrichment analysis was performed by 
using DAVID86. Protein–protein-interaction information was acquired from the 
AlzData website (see URLs)60. Locus plots for SNP-level GWAS associations were 
generated by using LocusZoom87. Manhattan plots were generated by using the 
qqman package in R88.

Additional QTL data. The imputation model for liver tissue in the STARNET 
study (N = 522) was downloaded from the Github page (see URLs). Predictor 
effects were trained by using an elastic net model with variants within a 500-kb 
range of the transcription start site. Details of the quality control procedure have 
been previously reported20. We also collected additional eQTL and splicing QTL 
(sQTL) data for three immune cell types (CD14+ monocytes, CD16+ neutrophils, 
and naive CD4+ T cells; 169–194 samples per tissue) from the BLUEPRINT 
consortium (see URLs). eQTLs with FDR <0.01 and sQTLs with FDR <0.05 were 
used in the gene-level association analysis for LOAD.

We also downloaded monocyte eQTL summary statistics from the Immune 
Variation Project89 for comparison with BLUEPRINT results in LOAD. We first 
compared the monocyte eQTL identified in BLUEPRINT with what was identified 
in this dataset (denote as ImmVar). Only a very low fraction (3.5%) of the eQTLs 
was replicated in ImmVar. We further performed single-tissue analysis on LOAD 
with weights constructed from ImmVar and compared the identified associations 
with those identified by using BLUEPRINT data (Supplementary Tables 22 and 23).  
Significant genes did not match between the two analyses, probably because of 
the small overlap of eQTLs between the two datasets. However, UTMOST uses 
the GBJ statistic to combine associations across datasets and therefore has the 

flexibility to incorporate single-tissue associations based on external eQTL studies. 
As we demonstrated in the case study of LDL-C at the SORT1 locus, incorporating 
STARNET liver eQTL significantly increased the statistical power although liver 
was an available tissue in GTEx. As sample sizes and tissue types in QTL studies 
continue to grow, UTMOST will be able to incorporate additional data sources and 
provide better results.

Statistical tests. We tested the difference in R2 across genes with one-sided 
Kolmogorov–Smirnov test, which calculates the largest distance between the 
empirical cumulative distribution functions and uses it to test whether two 
distributions are identical (Supplementary Fig. 3 and 4). Furthermore, we used a 
paired Wilcoxon rank test to compare the number of genes identified in different 
tissues between different methods, which is a non-parametric test used to compare 
two matched samples to access whether their population means differ (Fig. 4 and 
Supplementary Fig. 7).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data used in the manuscript are publicly available (see URLs). GTEx and  
GERA data can be accessed by application to dbGaP. CommonMind data are 
available through formal application to NIMH. ADGC phase 2 summary statistics 
used for validation are available through the NIAGADS portal under accession 
number NG00076.
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