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Eulerian-Lagrangian (EL) models are developed that account for stochasticity and

randomness in tracers of inertial particles forced by a carrier flow phase. Central to the

novelty of the models is a forcing formulation that uses a series expansion with random

coefficients to account for epistemic and aleatoric uncertainties, in lieu of commonly used

stochastic, random-walk processes.

Starting from randomly forced ordinary differential equations that govern the

Lagrangian inertial point-particle tracer dynamics, Lagrangian cloud and Liouville models

are derived. Both cloud and Liouville models are closed and are shown to more accurately
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and computationally efficiently predict the propagation of the forcing randomness into

confidence intervals of the particle phase solution as compared to Monte Carlo sampling

methods.

The closed and predictive particle cloud tracer models the mean motion and

deformation of a cloud of inertial particles at a singular point in space and along its

Lagrangian trajectory in time. The tracer builds upon the Subgrid Particle-Averaged

Reynolds Stress Equivalent (SPARSE) formulation first introduced in Davis et al. (2017)

for the tracing of particle clouds. Using a combination of the forcing models, averaging

and a truncated Taylor series expansion to estimate the statistical correlations in the cloud

region, the SPARSE model is closed and achieves a third convergence for the confidence

interval with respect the number of samples.

The Liouville models are rigorously derived with the method of distributions and do

not require truncation or ad-hoc assumptions. The deterministic PDF models are described

by hyperbolic partial differential equations (PDEs). In Eulerian form, the PDEs are solved

with grid-based spectral methods. To recover the Lagrangian character of the disperse

phase, the method of characteristics is employed to derive a PDF formulation based on

the computation of flow maps, circumventing difficulties of solving high-dimensional PDE

equations. This formulation is local, does not require grid based methods nor sampling,

and offers a complete statistical description. It is shown that the Liouville PDF models may

generalize Langevin and Fokker-Planck descriptions of particle statistics to non-Gaussian

noise of the random walk.

An inverse model to infer stochastic descriptions of particle forcings from noisy

trajectory data using an adjoint formulation is also introduced using a point-particle

approach.
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Chapter 1

Introduction

1.1 Background and motivation

Multiphase flows in which a dispersed phase composed of particles, droplet or

bubbles interacts with a carrier flow are present in many natural and industrial processes.

Examples of applications of these flows are gas and liquid fluidized beds [8, 9], aerosol and

spray flows in combustion engines [10, 11] and medical devices [12], dispersion of snowflakes

in the atmosphere [13], transport and mixing phenomena in oceans [14], sea search and

rescue algorithms [15], volcanic eruptions [16, 17, 18], cavitation in turbomachinery [19] or

kidney stone fragmentation [20] and sedimentation [21].

The Eulerian-Lagrangian (EL) method provides a natural framework for the mod-

eling of such flows. It uses Eulerian continuum models to describe the dynamics of the

ambient flow, and tracks individual particles along their Lagrangian paths. The computa-

tional simulation of gas and liquid flows laden with liquid or solid particles using an EL

approach can be categorized based on the fidelity of the model into firstly a high–resolution

particle–resolved (PR) approach, secondly a point–particle approach and thirdly a point–

cloud approach. The highest fidelity approach models and resolves the flow near a particle’s

surface at scales smaller than the particles’ size. The coupling of the two phases is carried

out by imposing no–slip boundary conditions on the particle’s surface. The hydrodynamic

force on a particle can be computed by directly integrating the pressure and shear stress
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distribution along the boundary. Examples of various implementations include the arbi-

trary Eulerian–Lagrangian technique [22, 23], the deformable–spatial–domain/stabilized

space–time technique [24], the overset grid technique [25], the constrained interpolation

profile method [26, 27], immersed boundary methods [28, 29, 30, 31, 32], lattice Boltzmann

equations [33, 34] or the smoothed profile method [35]. The high computational cost limits

the number of particles that can be simulated. With the current computational resources,

most studies compute hundreds to thousands of particles [1, 31].

In process–scale problems millions of particles must be simulated [36] which for PR

methods are not feasible with current day computer infrastructure. For this problem size,

the reduced point–particle approach that models a particle as a volumeless singular point

has to be the de facto choice. The so–called Particle–Source–In–Cell (PSIC) method [37, 38]

accounts for the particle’s influence introduced in the Eulerian equations that govern

the carrier phase through singular source terms. This model is valid if the smallest

hydrodynamical scale of the flow is several orders of magnitudes larger than the particles’

size. The PSIC method requires modeling for the terms in the governing equations

that couple the mass (if evaporation and condensation are considered), momentum and

heat transfer exchanged between the two phases. For spherical particles in a steady

incompressible, uniform, creeping flow, the drag force is analytically described by the Stokes’

law [39]. If the flow or the particle motion is unsteady, additional forcing terms have to be

considered including the unsteady added–mass and viscous–history forcing effects, which

through Newton’s second law results in a governing equation for the particle’s acceleration

known as the Boussinesq–Basset–Oseen (BBO) equation [40, 41, 42]. The BBO relation

was later modified to include the effects of non–uniform transient ambient flow leading to

the widely used Maxey–Riley–Gatignol (MRG) equation [43, 44]. If compressibility effects

are considered, additional Faxén forces complete the particle equations [45, 46, 47]. Many

physical situations of interest however, lead to particle forcings that can not be described

analytically. The default modus operandi to compute these flows relies on the use of
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empirical and/or data–driven correlations to correct the MRG equation. Examples of

parameters for which empirical correlations are developed include arbitrary Reynolds and

Mach numbers [48, 49, 50, 51], particle density and slip coefficients [52] viscosity rations

for droplets [53] and inhomogeneities in the particle configurations [54] among others. For

the mass and energy exchange, the use empirical correlations is also the most common

practice.

Even with the point-particle approach, the degrees of freedom in a given problem

may exceed the available computational resources. A further problem size reduction is

hence desirable, specially if one is interested in computing on desktop computers for design

purposes. The Cloud-In-Cell (CIC) method [55] addresses the computational cost problem

by amalgamating groups of particles. Unfortunately, the CIC usually does not account for

the second-moment cloud dynamics and statistics but rather just scales a computational

point or parcel with the number of particles within the physical cloud, i.e., a zeroth order

model [56, 57, 58]. A zeroth order model does not account for velocity distribution of

both the carrier phase and the particle phase within the cloud [57, 58, 59, 60, 61, 62]. As

investigated in Ref. [60], the pseudo-turbulent kinetic energy (associated with the velocity

fluctuations) can be as high as 40% for certain conditions in flow over fluidized beds. These

effects can yield rather inaccurate predictions with the zeroth cloud method that does not

account for velocity fluctuations. These also called point-cloud methods [57, 58, 3, 4] have

been less investigated in the literature than classical point-particle methods. Additional

difficulty related to a closure problem that arises from a statistical averaging process

appears.

1.1.1 Computational challenges in particle-laden flows

Despite the broad usage of the point–particle approach, the accuracy, convergence

and stability of the method are affected by its numerical treatment. The computational

approximation of point–particles requires interpolation between the Lagrangian point
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tracer and what is usually a grid based approximation of the Eulerian carrier phase

model [63, 64, 65, 66, 67, 68]. Particles move freely through the domain in locations different

from the computational grid points of the flow, whose tractability in parallel computing is

involved and requires the use of interpolation [69, 70, 71]. Special attention has to be paid to

the treatment of pointwise forcing into the numerical grid to regularize the coupling source

terms and its numerical representation in the computational grid [72, 73, 74, 75, 76, 77, 78].

Another known approximation challenge is a nonphysical numerical self–forcing that is

connected with this interpolation. The point–particle description relies on the knowledge

of the unperturbed flow velocity which is in principle unknown. The use of the flow

velocity interpolated at the particle location instead of the velocity of the unperturbed

flow at that location produces self–motion as a result of a self–induced force that is not

physical [79]. Some of the earliest work to tackle this issue led to the forcing–coupling

method (FCM) [80, 79, 81], while several corrections to the point–particle method have been

recently proposed [82, 75, 77, 83]. The point–particle assumption leads also to convergence

issues related to a strong grid dependence because the forcing is modeled by averaging

in the volume of the computational cell unless the number of particles per cell exceeds a

threshold [76]. These drawbacks have inspired the development of different alternative

approaches for the simulation of particle–laden flows [84, 65]. Some of the recent research

includes the volume averaged method [85, 86, 87, 88, 89, 19], the modeling of interparticle

forcing by the pairwise interaction extended point–particle (PIEP) model [90, 91, 92, 93],

the microstructure–informed probability–driven point–particle (MPP) model [94], the

exact regularized point particle (ERPP) method [76, 95] to tackle convergence issues,

the use of discrete Green’s functions to find the undisturbed velocity and correct the

particle’s self–force [77], and machine learning (ML) models to find closures to reduced

descriptions [96, 97].
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1.1.2 Non-deterministic point-particle forcing laws

If a forcing function is fit empirically to experimental or computational data, the

resulting expression is analytical. Then the function and its related trace do not account

for quantifiable measures of uncertainty such as confidence intervals defined by plus/minus

a standard deviation around the average [98] or confidence intervals defined within a

probability range of the samples. We say that methods that trace (tracers) point–particles

based on these analytical models are deterministic. In an ongoing effort to account for

the confidence interval, several formulations of the disperse phase are presented here, that

assume the point–particles to be randomly forced (rF), i.e., the forcing is considered non–

deterministic. These probabilistic models propagate the confidence intervals of the forcing

into the kinematics, dynamics and heat transfer of the disperse phase [98, 99, 2, 4, 6, 5, 7].

The randomness may originate from confidence intervals, i.e., the fitting error of empirical

or data–driven forcing functions reconstructed from PR simulations [100, 101, 102] as

shown in Fig. 1.1 (left). The randomness can also be stochastic in nature for the subgrid

scale model, in which the forcing function is described by a probability density function

(PDF) according to the dynamics of the subgrid scale [103, 104]. The probabilistic models

enable an assessment of sensitivity to uncertain/unknown forcing models in flows where

the point–particle assumption is used but analytical descriptions for the particle forcing

are not available. The probabilistic macro–model is a natural complement to the multi–

scale data–driven framework proposed in Refs. [100, 101, 102], that connects accurate

high-resolution simulations with the reduced point-particle method through surrogate

models. The latter approximates the interphase force and heat flux with a surrogate model

in a wide parameter space using high-resolution simulations in a data-driven manner.

In regions of the parameter space with a large uncertainty, additional high-resolution

simulations are conducted to improve the accuracy and/or validity range of the surrogate

model. As more high-resolution simulations become available, the multi-scale method is
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updated via a Bayesian procedure. This procedure yields an approximate forcing function

with a computable probability density function. The probabilistic forcing thus propagates

into a PDF solution based on the random point–particle dynamics. The development of

forward models to propagate it becomes crucial, as discussed in Jacobs and Udaykumar

(2019) [98]. This task has motivated this work, where several point–particle models with

random forcing based on different approaches such as Monte Carlo (MC), the method of

moments (MoM) and the method of distributions (MoD) have been introduced.

1.1.3 Stochastic PDF models for particle-laden flow

Stochastic processes are mathematical objects usually defined as a sequence of

random variables in a probability space, where the index of the sequence often has the

interpretation of time. Stochastic processes are used to model systems and phenomena

that appear to vary in a random manner. Stochastic descriptions of particle statistics

of positions and velocities in multiphase flows have its origins in the landmark work

of Buyevich [105, 106, 107]. The derivation of this type of kinetic PDF equation is

analogous to the Maxwell–Boltzmann equation of classical kinetic theory and leads to

unclosed PDF models. Since then, a significant body of literature addresses closure

analytically [108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 103, 119]. A closure may

also be accomplished with numerical approximation. Quadrature–based moment methods,

for example, have been derived by describing finite moment sets of the joint PDF by an

optimal set of quadrature nodes and weights [120, 121, 122, 123, 124, 125, 126, 127, 128].

To reduce the dimensionality of the PDF formulation, the generalized Langevin

model [119] uses stochastic processes, mostly Wiener increments, in the point-particle

equations. This approach stems from their usage in modeling subgrid-scale stochas-

ticity on passive tracers in turbulent flows [129, 130]. Stochastic models of the dis-

perse phase based on the use of Wiener increments have also been used in recent

years [131, 132, 133, 134, 135, 136, 137, 36, 138, 139, 1, 140, 141, 142, 143, 144, 145, 146].
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A drawback of Langevin models is that determination of accurate statistics requires

significant sampling, making the approach computationally prohibitively expensive. An

alternative is to use the corresponding Fokker–Planck equation [140, 146] making use of

the Itô calculus which requires closure and its advection–diffusion character makes its nu-

merical solution a computational challenge that continues inspiring new research [147, 148].

Only under simplified considerations, the Fokker–Planck equation allows constructive

analytical solutions to be found [141], where the temporal evolution of the particle statis-

tics is described analytically. Because of the complexity of the numerical solution of the

Fokker–Planck equation to compute the joint PDF of the particle phase, most studies are

restricted to finding the first and second moments of the joint PDF [141]. The moment

equations also require the development of closures that can be based on gradient models

or learned correlations from PR simulations [143]. None of these models consider the

forcing random, i.e., the consideration of epistemic uncertainty on the point-particle model

itself is not accounted for. The stochastic models consider the particle statistics as the

result of a stochastic process, without including randomness in the forcing, and as such,

they can be considered a subset of randomness. In particular, stochastic models do not

treat uncertainties originated from empiricism in the model used to describe the particles’

dynamics, related to the impossibility of deterministically describe the particles’ force

without fully resolving the near flow. Considering a random forcing model implies the

model itself may be incomplete, as a result of the use of a reduced description not based

on first principles.

A new class of PDF model that starts from an approximation of the random forcing

function based on series expansions involving proper sets of random variables [149, 150]

was introduced in Ref. [99] for the Eulerian phase in EL systems. The model is then

dependent on basis functions, for example Chebyshev polynomials, and random coefficients.

The confidence intervals of the forcing so defined are general and can be caused by either

empiricism or stochasticity of the problem. Following the method of distributions, the

7



randomly forced Lagrangian point–particle model is governed by a closed hyperbolic PDE

for the joint PDF of the particle solution in physical and phase space. The resulting

equation governs a joint PDF that has an augmented dimensionality to include the particle

phase variables and the random coefficients. The moment equations follow naturally

from the PDF approach, but they require closure of the higher moments. The numerical

approximation of the moment model that admits singularities is not trivial [98].

Figure 1.1. Scheme of a randomly forced cloud described by the SPARSE–R method.
On the left, the drag coefficient CD as a function of the particle Reynolds number
Rep = Re∞|a|dp with uncertainty bounds where a is the relative velocity, Re∞ the
reference Reynolds number of the flow and dp the non–dimensional particle diameter. On
the right, the representation of a one–dimensional particle cloud in the domain α−xp−up.
The dots are the point–particles (computed with the PSIC equations) and the ellipsoids
the subclouds or point–clouds (computed with the SPARSE–R equations). The PDFs of
the particle phase variables are also represented where the point–particles and point–clouds
are linked by colors according to a division of the domain in two subclouds per dimension
in α− xp − up.

1.2 Contributions and outline

The primary objective of this thesis is the development of models that propagate

a quantified measure of uncertainty in randomly forced particle-laden systems of single

tracers and groups of tracers. The central novelty to this development is a random forcing
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law based on a series expansion with random coefficients, in lieu of Langevin models.

Probability density function models in both Eulerian and Lagrangian form are derived.

Lagrangian cloud models are derived in closed-form using a method of moments. The

hyperbolic PDF model is shown to be equivalent to classic Langevin and Fokker-Planck

models. Additionally the PDF model can be used for non-Gaussian noise. The predictive

models are intended to be used for inference of non-deterministic forcing descriptions from

sparse and noisy trajectory observations. In ongoing work, an inverse model was developed

that is based on the random forcing formulation that infers a forcing law.

Specific contributions that were made towards these objectives, and where they are

described in the document, include:

• Derivation of a PDF model for a randomly forced particle phase based on the method

of distributions that leads to a high-dimensional hyperbolic PDE. Development of

high-order spectral numerical methods to accurately solve this equation in Eulerian

frame. Chapter 2.

• Implementation and assessment of a regularized Dirac delta functions with vanishing

moments to prescribe deterministic initial conditions to the Eulerian PDF model.

Chapter 2.

• Development of a closure of the point-cloud method SPARSE and its extension to

include second order moments of the particle phase. Derivation of the expected

convergence, which is of the third order of standard deviation of the initial condi-

tion, ensuring computational savings with respect to Monte Carlo based methods.

Chapter 3.

• Derivation of a point-cloud method for the particle phase considering non-deterministic

forcing laws, according to the proposed random forcing model in the first contribution.

This closed method of moments shows also third order convergence rate and can
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provide approximations of moments higher than second as well as the PDFs of the

particle variables. Chapter 4.

• Development of a Lagrangian formulation to solve the hyperbolic PDF equation from

the first contribution by using high-dimensional flow maps, discretized with spectral

methods, compatibles with discontinuous Galerkin fluid solvers. This formulation

recovers the Lagrangian character of the particle phase, and does not require grid

based solvers nor sampling, by virtue of the method of characteristic. Chapter 5.

• Development of an inverse model to infer stochastic descriptions of particle forcings

from noisy trajectory data using an adjoint formulation. A Monte Carlo point-particle

approach is adopted to quantify uncertainty. Chapter 6.

• A generalized hyperbolic PDF model, based on the Liouville theorem, or equivalently

the MoD, is proposed as an alternative to the Fokker-Planck and Langevin approaches

for describing particle statistics in particle-laden flows. This model allows the use of

the method of characteristics, leading to the computational advantages investigated

in previous contributions. Analytical models from the literature are reproduced and

a model for a FHHS is proposed. Chapter 7.

A significant finding presented here, is related to the connection between the PDF

model based on the hyperbolic governing equation, by virtue of the MoD, and classical

alternatives based on the Fokker-Planck and Langevin models. In particular, analytical

descriptions of canonical stochastic processes used in the literature [141], as well as a

model for fluidized homogeneous heating systems (FHHS) [1, 143] are analyzed here with

the hyperbolic model. Because of its hyperbolic character, computational advantages are

also exploited in this work.

Another approach to account for the kinetic effects of a particle phase in a spatial

region, i.e., the stochastic dynamics of the particle phase, is to take a point-cloud perspective
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as initially proposed in Ref. [57]. By ensemble averaging a group of point–particles within

a cloud region and combining that with a Taylor expansion of the forcing function and

carrier phase variables around the average values of the particle phase (particle position

and relative velocity), one–way and two–way coupled point–cloud tracers were presented

in Refs. [57, 58]. This point-cloud method was coined Subgrid Particle–Averaged Reynolds

Stress–Equivalent (SPARSE), as it naturally accounts for stochasticity in the subcloud

scales. However, these formulations are closed a priori, i.e., lacking a closure independent

of previously performed Monte Carlo simulations. This has motivated the extension of

SPARSE to a closed-form formulation [3], where significant computational savings can

be achieved. In SPARSE, the forcing is described analytically and the particle cloud is

said to be deterministically forced (dF). To account for epistemic effects, i.e., randomness

in the forcing, one can assume a random forcing of a single trace that determines the

particle’s path within a confidence interval. This randomness affects the cloud motion

as compared to the deterministic cloud. Notably, the a random forcing can cause the

forcing for two particle that have the same relative velocity to be different. In a stochastic

environment these two forcings have to be the same. Extension of the SPARSE method to

consider randomness in the forcing function in closed-form has also been proposed here.

Furthermore, approximation of higher order moments and the PDFs of the particle phase

can be provided with the proposed SPARSE-R method [4].
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Chapter 2

A Probability density function for-
mulation for randomly forced dis-
persed phases

2.1 Introduction

The empirical corrections employed to describe forcing laws of point-particles

outside of the range of the Stokes drag, depend of plethora of parameters, such as particle

shape and the Reynolds and Mach numbers, that have nonlinear effects on the flow around

a particle. This naturally translates into a prediction error of a point-particle model,

as the momentum and energy exchange are only known within certain bounds. The

presence of such a stochastic forcing in both the empirical and data-driven approaches

renders solutions to the corresponding PSIC model random as well. These solutions are

given in terms of a joint PDF of system states or their ensemble moments. Monte Carlo

(MC) simulations are often used to obtain such solutions. They are easy to implement,

“embarassingly” parallel, and free of distributional assumptions; their only approximation

stems from the practical need to rely on a finite number of MC realizations, Ns, to compute

the sample statistics. A drawback of the MC method is its slow convergence: its sampling

error decays as 1/
√
Ns. This can make MC simulations prohibitively expensive if each

realization takes a long time to compute. Various modifications of the standard MC,
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e.g., multilevel MC, pseudo-MC, or combinations thereof, can significantly accelerate this

convergence rate, but their performance is not guaranteed especially when the goal is to

compute the full PDF rather than its moments [151, 152]. Other sampling-based methods,

such as stochastic collocation, require nontrivial modifications [153] in order to handle

hyperbolic problems with discontinuities. When the stochastic dimension and/or the noise

strength become large, such methods might become slower than the standard MC even for

problems with smooth solutions [154].

Direct numerical alternatives to sampling techniques include methods based on

(generalized) polynomial chaos expansions. These methods represent uncertain inputs

and state variables by orthogonal polynomials of standard random variables, and often

exhibit spectral accuracy. Of direct relevance to high-speed compressible flows described

by the Euler equations with shocks is the multi-element generalized polynomial chaos

method [155, 156, 157], which accommodates the presence of discontinuities in the stochastic

space. Its computational cost might become comparable to sampling methods [158],

especially when the stochastic dimension is large. Like their sampling-based counterparts,

the direct simulation methods do not provide physical insight into the probabilistic behavior

of a system, e.g., the spatiotemporal nonlocality of the statistical moments [159] and

PDFs [160] of the system states.

The method of moments (MoM) alleviates some of these disadvantages by deriving

deterministic equations for the statistical moments of a system state. Since the MoM is

free of polynomial expansions, it does not suffer from the “curse of dimensionality”, but it

often requires closure approximations to be computable. It has been used to derive moment

equations for high-speed flows interacting with a particle phase [98]; the closure terms were

learned from the MC simulations. Practical considerations limit the MoM to the derivation

and solution of equations for the first two moments —mean and (co)variance— of a system

state, which limits its usefulness for highly non-Gaussian phenomena. Specifically, the

MoM cannot capture rare events occurring in such problems, which are characterized by
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fat-tailed PDFs.

The method of distributions (MoD) overcomes this limitation by deriving a deter-

ministic equation for either the joint PDF or the joint cumulative density function (CDF)

of the system states. Having its origins in the statistical theory of turbulence [161], the

MoD has since been used as an efficient uncertainty quantification technique [162]. It

retains all the advantages of the MoM, but might require closure approximations. The

MoD yields a closed-form PDF/CDF equation for nonlinear flows in the absence of a

shock, e.g., those described by the inviscid Burgers equation [99] and the shallow-water

equations [163]. Within the MoD framework, shocks and discontinuities can be treated

either analytically, as was done for the Buckley-Leverett equation [164] and water hammer

equations [165], or by adding the PDF/CDF equation a kinetic defect-like source term

that generally has to be learned from Monte Carlo runs [166]. Numerical solutions of

PDF/CDF equations admit high-order spectral accuracy [99] and can be up to two orders

of magnitude faster than the standard MC [167].

Here we deploy the MoD to describe isothermal particle-laden flows driven by

stochastic forcings [2]. The underlying flow model relies on the Lagrangian point-particle

formulation with one-way coupling between fluid flow and particle transport. The drag

on a particle is modeled as a random variable with a prescribed PDF. The MoD yields

a closed-form partial differential equation for the joint PDF of a particle’s position and

velocity. We consider two canonical flow scenarios, both in one spatial dimension: a uniform

carrier flow and a stagnation carrier flow. These are important in their own right and

can be used as building blocks of more general and multi-dimensional flows; for example,

the stagnation flow is a central component to the dynamic description of attractors and

repellers in dynamic systems [168]. Our PDF solutions are validated against high-fidelity

MC simulations and compared with solutions of the moment equations [98]. The hyperbolic

PDF equation is solved via the Chebyshev collocation method [99]. Discontinuities in its

solution are captured using the filtering techniques [74, 169]. An important contribution
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of this work is the numerical analysis of the use of regularized Dirac delta functions in

the context of deterministic initial conditions for the PDF model. The vanishing moment

condition then governs the accuracy of the description of the joint PDF in a statistical

sense. The number of moments than can be computed (marginalizing the joint PDF)

accurately are directly related to the amount of vanishing moments of the regularized

Dirac delta. A key result of our analysis is also the derivation of analytical expressions

for the position and velocity of a particle moving in deterministic uniform and stagnation

flows. These expressions allow us to generate sufficiently large numbers of MC realizations.

In both flow regimes, the PDF solutions are non-Gaussian and their moments can increase

or decrease depending largely on the time-dependent increase or decrease of the inter-phase

velocity. Moreover, the stochastic solution can develop discontinuities at inflection points

of the inter-phase velocity.

2.2 Lagrangian Problem Formulation

Dynamics of an isothermal collisionless particle phase in a one-way coupled unidi-

mensional Eulerian-Lagrangian system with the point-particle approximation is governed

by[38, 170]

dxp
dt

= up, (2.1a)

dup
dt

= ϕ
u− up
τp

. (2.1b)

Here, t is the non-dimensional time, xp is the non-dimensional particle position, and up

is the non-dimensional particle velocity. The non-dimensional particle response time τp

is a measure of the response of the particle to a change in the carrier velocity u. It is

expressed as τp = d2pRe/(18ϵ), where dp = d∗p/L is the non-dimensional particle diameter,

Re = U∞L/ν is the Reynolds number, L is a characteristic length, U∞ is the reference

velocity, and ϵ = ρ/ρp is the relative density ratio of the two phases.
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The function ϕ is used to correct the Stokes drag force for flow conditions outside

of Stokes assumptions. Such models for the corrected drag coefficient ϕ are empirical and,

therefore, can only be determined within an uncertainty bound [100, 101, 57]. For the

sake of generality, we postulate [57, 99], that ϕ depends on the relative velocity u− up,

ϕ = ag(u− up), (2.2)

without specifying the functional dependence of the function g(·). This function can be

expanded in terms of several random modes. Here, we consider the first of those random

modes, and take ϕ = a. The random coefficient a, with a given PDF fa(A) accounts for

the uncertainty in ϕ stemming from a broad range of sources such as uncertainty in the

particle size, shape or inexactness/empiricism of the drag force, and renders the system of

ordinary differential equations (2.1) stochastic. Its solution is given in terms of the joint

PDF faxpup(A,Xp, Up; t).

Our model formulation ignores inter-particle collisions. This is justified if the

particle phase is dilute, especially in one spatial dimension [171].

2.3 Solution Strategies

2.3.1 Method of Distributions

When applied to (2.1), the MoD yields an exact PDF equation (see Appendix A)

∂faxpup

∂t
+

∂

∂Xp

[
Upfaxpup

]
+

∂

∂Up

[
Ag(U − Up)

τp
(U − Up)faxpup

]
= 0, (2.3)

with A, Xp and Up the deterministic versions of the stochastic variables a, xp and up.

Equation (2.3) describes the evolution of the joint PDF of the particle phase and drag

coefficient, faxpup(A,Xp, Up; t), in the phase space Ω spanned by coordinates (Xp, Up, A).

This space can be either infinite or bounded, Ω = [X0
p , X

1
p ]× [U0

p , U
1
p ]× [A0, A1]. In the
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latter case, (2.3) is subject to boundary conditions for the independent variables Xp and

Up

faxpup(A,X
b
p, Up; t) = fXp

axpup
(A,Up; t), (2.4)

faxpup(A,Xp, U
b
p ; t) = fUp

axpup
(A,Xp; t). (2.5)

The boundary functions on the right hand side of these expressions are specified according

to the corresponding marginal distributions; and using the characteristic velocities of (2.3)

defined as in (2.14) and (2.15), Xb
p = X0

p or Xb
p = X1

p for CX(X
0
p ) > 0 and CX(X

1
p ) < 0,

respectively. Similarly, U b
p = U0

p or U b
p = U1

p for CU (U
0
p ) > 0 and CU (U

1
p ) < 0, respectively.

The PDF equation (2.3) is also subject to the initial condition,

faxpup(A,Xp, Up; 0) = f 0
axpup

(A,Xp, Up). (2.6)

The function form of f 0
axpup

(A,Xp, Up) is determined by the degree of certainty in the

initial state of the system, (xp0 , up0). If it is known with certainty, i.e., deterministic, then

faxpup(A,Xp, Up; 0) = fa(A)δ(Xp − xp0)δ(Up − up0), (2.7)

where δ(·) is the Dirac delta function. We will refer to this as a deterministic initial

condition (dIC). If the initial condition is not know with certainty, then we refer to

it as stochastic (sIC). Once faxpup(A,Xp, Up; t) is computed from (2.3)–(2.6), the PDFs

fxpup(Xp, Up; t), fxp(Xp; t), and fup(Up; t) are computed as its marginals via numerical

integration over the respective variables (see appendix A).

2.3.2 Method of Moments

Solutions of the moment equations have been used to elucidate many salient features

of stochastically forced particle-laden flows [98]. We summarize that analysis and extend
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it to derive third-moment equations in order to understand the degree of non-Gaussianity.

The derivation starts by using the Reynolds decomposition to represent all parameters and

state variables as the sums of their respective ensemble means (denoted by the overbar) and

zero-mean fluctuations (denoted by the prime), e.g., xp = xp+x
′
p with x

′
p = 0. Substituting

these decompositions into (2.1) and take the ensemble average, we obtain equations for

the means

dxp
dt

= up, (2.8)

τp
dup
dt

= ϕ(u− up) + ϕ′u′ − ϕ′u′p, (2.9)

for the variances, σ2
xp

= x′p
2 and σ2

up
= u′p

2,

dσ2
xp

dt
= 2x′pu

′
p, (2.10)

τp
2

dσ2
up

dt
= ϕ(u′u′p − σ2

up
) + ϕ′u′p(u− up) + ϕ′u′u′p − ϕ′u′p

2, (2.11)

and for the third central moments, sxp = x′p
3 and sup = u′p

3,

dsxp

dt
= 3x′p

2u′p, (2.12)

τp
3

dsup

dt
= ϕ(u′u′p

2 − sup) + ϕ′u′p
2(u− up)− σ2

up
(ϕ′u′ − ϕ′u′p) + ϕ′u′u′p

2 − ϕ′u′p
3. (2.13)

As opposed to the exact PDF equation (2.3), these moment equations are not closed

since they contain unknown mixed, higher-order moments. To render them computable,

one has to introduce closure approximations such as the a priori closure [170, 57] used

to analyze the first two statistical moments or a posteriori closure as used in Eulerian

formulations [171, 172].

The moment equations (2.9)–(2.13) provide insight into the deviation of the stochas-

tic solution from its deterministic counterpart and/or general dynamics of the moments.
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For example, the mean dynamics, described by (2.8) and (2.9), differs from the solution

of the deterministic problem (2.1) with the mean value of the random parameter a. The

difference between the deterministic equation and the averaged equation is the correlation

ϕ′u′ and ϕ′u′p. In some special cases, e.g., when the carrier flow is constant and the relative

velocity is zero (u = up), the mean of the solution is the same as the deterministic solution

for a; and the velocity deviation decreases since the right hand side of (2.11) contains only

the damping term.

Finally, we note that the moment equations (2.9)–(2.13) are related to the PDF

equation (2.3) as they represent the evolution of the first three moments of fxp and fup .

2.3.3 Singularities in the Stochastic Solution

The characteristic velocities which can be directly inferred from (2.3),

CX =
dXp

dt
= Up, (2.14)

CU =
dUp

dt
=
Ag(U − Up)

τp
(U − Up), (2.15)

can be different which can lead to a cross-over of the characteristics’ paths at certain

values of A. In general hyperbolic systems when characteristics cross, a discontinuity is

expected to appear in the solution. Depending on the sign of the relative velocity, U − Up,

we identify two settings in which the resulting discontinuities appear in the joint PDF,

faxpup and its marginals. First, for a positive (and constant) relative velocity (Fig. 2.1a),

we consider a cloud of Na particles with uniformly spaced different drag coefficients Ai

(i = 1...Na) such that Ai+1 > Ai. The particle with the greatest forcing, ANa (rightmost

particles), moves fastest, whereas the leftmost particle with a slower response is left behind.

As a result the cloud expands. For a nonlinear relative velocity, the characteristics could

steepen and cross in the expansion, yielding discontinuities (not exhibited in the graph).

For a second setting the same initial cloud is considered but for a negative (and
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(a) (b)

Figure 2.1. Evolution of the PDF of xp of a cloud of particles initially distributed
uniformly in space and traveling at the same initial velocity (from left to right) with
different drag coefficients Ai such that Ai+1 > Ai. Under the influence of positive relative
velocity in (a) and negative relative velocity in (b).

constant) relative velocity, which causes the cloud of particles to compress. At some point,

the leftmost particles overtake the rightmost particles and the cloud concentrates in a

reduced region or even in a singular point. At that instant, the characteristics of the

hyperbolic system (2.3) cross. If all of them cross in a single point, then the PDF solution

becomes the Dirac delta distribution. After this singular event, the cloud expands and

asymmetry can reemerge resulting in steepening of the left side of the PDF fxp and in its

discontinuity, as it did for the positive relative velocity.

Consistent with the formation of discontinuities in the marginal PDF, fxp , discon-

tinuities also arise in the marginal PDF of the particle velocity, fup . In Section 2.5, we

illustrate these phenomena by analyzing the uniform and stagnation carrier flows with

stochastically forced particle dynamics.

2.4 Numerical Implementation

The discontinuities and sharp gradients that can appear in the solution of the

PDF equation (2.3) require special numerical treatment. We use a low-dispersive/diffusive
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Chebyshev collocation method to approximate the derivatives with respect to Xp and

Up. Such spectral treatment was shown to be effective or even necessary to solve similar

moment equations in [98]. We also deploy the filtering and regularization techniques

designed to capture discontinuities and regularize singularities in a spectral solution while

preserving accuracy [73, 98, 169, 36].

2.4.1 Chebyshev collocation method and time integration

The Chebyshev collocation method, extensively described in textbooks [173, 174], is

briefly summarized below for the sake of completeness. We do so for one spatial dimension;

the multi-dimensional formulation builds upon that, as it is defined along lines on a

tensorial grid. In the Chebyshev collocation method, a function y(x) is approximated by a

Chebyshev interpolant as

yNx(x) =
Nx∑
j=0

y(xj)lj(x), lj(x) =
Nx∏

k=0, k ̸=j

x− xk
xj − xk

. (2.16)

Here j = 0, . . . , Nx; and lj(x) is the Lagrange polynomial of degree Nx. The collocation

points are chosen as the Gauss-Lobatto quadrature points,

ξi = − cos(iπ/Nx), i = 0, . . . , Nx (2.17)

such that the L∞ norm of the interpolant is minimized on the interval [−1, 1].

The derivative of the function y(x) at points xi is approximated by

∂y

∂x
(xi) ≈

Nx∑
j=0

y(xj)l
′
j(xi), (2.18)

with l′j the derivative of the corresponding Lagrange polynomial. This approximated
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derivative is recast in the matrix-vector form,

y′ = Dy, (2.19)

where the differentiation matrix D has components Di,j = l′j(xi).

The multi-dimensional PDF equation (2.3) is discretized on a tensorial grid that

spans Xp, Up and A in the domain Ω. The spectral approximation of the distribution

function f̃ = f̃NANXpNUp
(A,Xp, Up) on this grid is governed by the semi-discrete equation

df̃

dt
+DXpFXp +DUpFUp = 0, (2.20)

where the entries of the flux arrays are given by

F
Xp

i,j,k = Upi,j,kf̃i,j,k, (2.21)

F
Up

i,j,k =
Ai,j,kg(Ui,j,k − Upi,j,k)

τp
(Ui,j,k − Upi,j,k)f̃i,j,k, (2.22)

with counters i, j, k along the tensors. The matrices DXp and DUp are the scaled versions

of the matrix D with the following entries

(
DXp

)
m,j

=
∂ξ

∂Xp

(Dm,j) ,
(
DUp

)
m,k

=
∂ξ

∂Up

(D)k,m (2.23)

with ∂ξ/∂Xp=2/(Xmax
p −Xmin

p ) and ∂ξ/∂Up=2/(Umax
p − Umin

p ) for the one-dimensional

case. The matrix-vector multiplication DXpFXp and DUpFUp is performed along grid lines

with the counters j and k, respectively, in (2.21) and (2.22). The carrier flow velocity U

is specified at the particle locations. The semi-discrete system is integrated in time with

the total variation diminishing (TVD) Runge-Kutta scheme [175].

The marginals fxp and fup , are obtained via the numerical integration of faxpup

along A and either Up or Xp, respectively. This is done via Clenshaw-Curtis quadrature in
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Up and Xp, and via the trapezoidal rule in A. Because the distribution equation does not

have terms with derivatives respect to A, the spectral approximation is not necessary in

this direction.

Figure 2.2. Regularization of the Dirac delta function, δm,k
ϵ , in comparison with a

Gaussian PDF.

2.4.2 Regularization of Dirac delta function

The numerical solution of the PDF equation (2.3) with the deterministic initial

state (2.7) requires an approximation of the Dirac delta function δ(·). We rely on the kernel

that regularizes δ(·) with a class of high-order, compactly supported polynomials [73],

δm,k
ϵ (x) =


ϵ−1Pm,k(x/ϵ), x ∈ [−ϵ, ϵ]

0, otherwise,

(2.24)

where ϵ > 0 is the support width or scaling parameter. On the compactly supported

interval the regularized delta function integrates to unity (i.e., the zeroth moment is one).

The polynomial Pm,k is designed to have the first up to the mth moment vanished and

to have k continuous derivatives at the endpoints of the compact support. For it to be

possible for the moments to vanish the regularized delta is permitted to have negative

values on its supported interval. The vanishing moments ensure that the regularized Dirac
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delta kernel (a so-called delta sequence) converges to the exact Dirac delta function at a

rate of O(ϵm+1). This moment property is necessary for the construction of high-order

approximations of singular Dirac delta source terms in spectral approximations of PDEs

as was shown in Ref. [73]. To preserve high-order spatial accuracy it was further shown

that the optimal value for the compact support must be ϵ = N
−k/(m+k+2)
x . The compact

kernel δm,k
ϵ (x) in (2.24) has a maximum at its center. To achieve high-order accuracy, one

has to relax positivity of the kernel, leading to the undershoots in Fig. 2.2.

For the approximation of the initial Dirac delta distribution function in (2.7), the

vanishing moments of the regularized delta function yield an accurate representation of

the zero moments of the deterministic initial state. Thus, in that case the regularized

Dirac delta provides both spatial accuracy and the correct statistical properties of the

distribution function at the initial time.

A naive alternative is to approximate δ(x) via a Gaussian PDF

δ(x) ≈ 1√
2πσx

exp

[
− x2

2σ2
x

]
, (2.25)

with small variance σ2
x. The Gaussian PDF, however, has no vanishing moments and can

thus not yield high-order approximations to the Dirac delta. If the initial state is random,

than the Gaussian distribution does correctly represent uncertainty in the initial state of

the system.

2.4.3 Filtering for capturing discontinuities

Since (2.3) admits singularities we have to regularize these singularities in numerical

approximations to avoid numerical instabilities. To this end, we once again resort to the

regularized Dirac delta kernel (2.24). This time the kernel serves as a convolution filter
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kernel as discussed in Ref. [169] to smoothen a function y(x) as follows

ỹ(x) =

∫ x+ϵ

x−ϵ

y(τ)δm,k
ϵ (x− τ)dτ. (2.26)

Using a quadrature rule for approximation of the convolution integral, the interpolant yNx

is filtered as

ỹNx(x) =

∫ x+ϵ

x−ϵ

δm,k
ϵ (x− τ)

Nx∑
i=0

y(xi)li(τ)dτ =
Nx∑
i=0

y(xi)Si(x). (2.27)

The discrete filter Si is defined as

Si(x) =

∫ x+ϵ

x−ϵ

li(τ)δ
m,k
ϵ (x− τ)dτ. (2.28)

In vector notation, (2.27) and (2.28) take the form

ỹ = Sy. (2.29)

The extension to tensorial form is straightforward. This convolution filter was shown in

Ref. [169] to smoothen shock discontinuities while providing high-order accurate resolution

away from shocks. In some cases a weak exponential filter [99] is needed to remove

high-frequency numerical noise that appears in regions near the boundaries.

2.4.4 Monte Carlo simulations

The PDF and the moments of the PDF can be computed with a MC approach. In

MC, realizations of xp and up are computed by solving (2.1) with random coefficients a

drawn from a given PDF fa(A). Here, we use analytical solutions that will be discussed

in the next section and that allow for a computationally efficient determination of a

significant number of MC realizations, Ns. In all the tests considered, we found Ns = 105
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realizations to be sufficiently accurate yielding a normalized error of the third moment less

than 0.1%. The kernel density estimation, implemented in the MATLAB 2019b subroutine

kdensity, determines the PDFs fxp(Xp; t), fup(Up; t), and fxpup(Xp, Up; t). The unknown

correlation terms in the moment equations (2.8)–(2.13) are closed using MC realizations.

The resulting a priori closed moment equations are integrated in time via the fourth-order

Runge-Kutta (RK4) scheme.

2.5 Two Canonical Particle-Laden Flows

We consider two one-way coupled particle-laden flows—a uniform flow and an

inviscid stagnation flow—for which the carrier phase velocity is described by analytical

expressions. These are both important in their own right and serve as building blocks

for more complex flows. Both flows admit analytical solutions for the corresponding

particle-laden flow with constant deterministic forcing, ϕ=constant. While this particle

solution for the uniform carrier flow is well known, we are not aware of an analytical

solution to the particle-laden stagnation flow. Analytical solutions are derived for both

flows in the two following sections.

2.5.1 Uniform flow

By its definition, a uniform carrier flow is characterized by a constant velocity field

u. To derive the analytical solution, we cast the particle transport equations (2.1) with

the constant u and the initial conditions xp(0) = xp0 and up(0) = up0 into a the following

linear system of ODEs,

d

dt

xp
up

 =

0 1

0 −b


xp
up

+

 0

bu

 , b ≡ a

τp
. (2.30)
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The analytical solution of this system is

xp(t) = xp0 + ut+
1

b
(u− up0)

(
e−bt − 1

)
, (2.31)

up(t) = u+ (up0 − u)e−bt. (2.32)

Details of the derivation are provided in Appendix B.

The solution is plotted in Fig. 2.3 and shows that the response of the particle

initially at rest to a fluid velocity is slower with increasing b, i.e., with increasing effective

inertia. Hence, for a given τp, higher values of the correction parameter a decrease the

particle’s time response. At long times on the order of O(1/b) the particle velocity becomes

equal to the carrier flow velocity u. When the relative velocity between the particle and

the carrier phase (also called interphase velocity) becomes zero, then the particle position

increases linearly at its constant advection rate u.

(a) (b)

Figure 2.3. Time dependence (a) and phase space (b) of the particle dynamics in the
constant uniform carrier flow.
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2.5.2 Stagnation flow

The stagnation carrier velocity field, u = (u, v)⊤, is given by the Hiemenz analytical

solution for an inviscid, irrotational flow [176] in the domain x ∈ [−∞, 0] as follows,

u = −kx, v = ky

where y is the coordinate perpendicular to the flow direction, and k is a constant. The

viscous boundary layer solution near a wall at x = 0 is available as well [177]. It predicts

the boundary layer thickness of δ =
√
ν/k, too thin to affect the particle dynamics.

Along the center line y = 0, the flow is one-dimensional with a stagnation point at

x = 0 and velocity

u = −kx. (2.33)

With the carrier velocity at the particle location xp is u = −kxp (2.1) can be cast

into a linear dynamic system,

d

dt

xp
up

 =

 0 1

−kb −b


xp
up

 . (2.34)

The analytical solution to this system is derived in Appendix B and is characterized by

the eigenvalues of the 2× 2 matrix in (2.34)

λ1 =
−b−

√
b(b− 4k)

2
, λ2 =

−b+
√
b(b− 4k)

2
. (2.35)

Their real and imaginary parts are plotted in Fig. 2.4, for b ∈ [0, 8] and k = 1. For

0 < b < 4k, the eigenvalues are imaginary with negative real part. In that case, the

solution of the system (2.34), i.e.,the particle phase solution, is well-known to tend towards
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an inward spiral in the phase plane as plotted in Fig. 2.5c. Before it reaches the spiral

singularity, however, the particle will have crossed the x = 0 line where the wall is

located. This is, of course, not possible and the particle trace has to terminate at x = 0.

Alternatively, we can interpret the solution as a physical solution of a particle trajectory

in an opposed jet carrier flow. For b > 4k, both eigenvalues are real and negative, in which

case the particle moves towards an inward node in the phase space xp − vp. A bifurcation

in particle dynamics from a spiral to a node occurs at b = 4k. Figure 2.5c shows the

particle phase when the stagnation point is an inward node and an inward spiral, for two

different initial conditions.

Figure 2.4. Imaginary and real part of the eigenvalues λ1 and λ2 in (2.35), for b ∈ [0, 8].
The circle corresponds to b = 0, and the diamond and square to b = 8 for λ1 and λ2,
respectively.

The analytical solutions for the particle’s position and velocity, xp(t) and up(t),

versus time are plotted in Figs. 2.5a and 2.5b. The particle reaches the stagnation point

for any forcing b = a/τp. The collision of the particle with the wall for the stagnation flow

case is indicated by the red dot in the graphs 2.5a, 2.5b and 2.5c.

2.5.3 Impact of stochastic forcing

The effect of a stochastic forcing on the particle-laden uniform and stagnation flows

is studied for the cases and parameters collated in Table 2.1. For both flow regimes, we
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(a) (b) (c)

Figure 2.5. Solutions for particles released at rest (a) and at flow condition (b) in a
stagnation flow with k = 1 for different values of the parameter b. The phase space plot in
(c).

consider particles initialized at rest. For the stagnation flow, we also consider the particles

initialized according to the carrier flow velocity.

Table 2.1. Flow regimes and parameter values considered in the simulations.

Test case xp0 up0 u τp
Uniform flow, particle launched

at rest (UF)
0 0 1 0.25

Stagnation flow, particle launched
at rest (SFR)

−1 0 −xp 1

Stagnation flow, particle launched
at flow conditions (SFF)

−1 1 −xp 1

For each of these cases, we consider three PDFs, fa(A), for the random variable a in

the drag correction factor defined in (2.2) including a uniform, normal and beta distribution,

all with the same mean µa and standard deviation σa (Fig. 2.6). For the stagnation flow,

fa(A) is selected to have a non-zero probability in the interval 0 < a/τp < 4k to ensure

that all particles reach the wall at a finite time (according to the deterministic solution).

Also investigated is the effect of deterministic versus stochastic initial conditions.
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Figure 2.6. Uniform, normal and beta (U , N , B) PDFs selected for the random
parameter a. All three PDFs have the same mean µa = 1 and standard deviation σa = 0.2,
i.e., a ∼ U [1−

√
12/2, 1 +

√
12/2], a ∼ N [1, 0.2], and a ∼ B[2, 3] + 0.6.

2.6 Simulation Results and Discussion

2.6.1 Uniform flow: Monte Carlo results

The PDFs fxp(Xp; t) and fup(Up; t) obtained via MC solution of (2.1) for the uniform

flow with the uniform forcing distribution fa(A) and deterministic initial conditions are

depicted in Fig. 2.7. Starting from the deterministic Dirac delta initial distribution, both

fxp(Xp; t) and fup(Up; t) first widen over time, while showing a skewness, i.e., a bias,

towards the upper range of the Xp and Up values, where more particles accumulate. This

bias reflects the particles’ asymptotic behavior in the limit of an infinite response time,

τp → ∞, in which case all the particles congregate on a step function in time. After

the initial widening, the velocity distribution narrows with time as the particles’ velocity

settles to the uniform carrier flow velocity. The temporal evolution of the PDFs has a

characteristic time scale on the order O(τp/a). At later times, the velocity distribution

returns to the Dirac delta and the corresponding position distribution is advected at

constant velocity u without changes in time.

The means x̄p(t) and ūp(t), plotted with their corresponding two standard deviation

bandwidths in Fig. 2.8, tell a similar story. The mean particle velocity ūp(t) increases
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(a) (b)

Figure 2.7. PDF of particle position (a) and velocity (b) for the UF test case carried out
with MC with a uniform forcing distribution.

from its zero initial state and settles to the constant carrier velocity at t→∞. Associated

with the acceleration and settling is an initial increase in the velocity bandwidth that

then returns to zero at later times. Consistent with the velocity bandwidth, the position

bandwidth grows initially and then remains constant when the particles settle.

Per definition, and as confirmed by Fig. 2.8, the mean of the solution must be

contained in the interval of deterministic limit trajectories. Moreover, because xp(a) and

up(a) are monotonically increasing with a it follows that

xp ∈
[
min
a
{xp(amin), xp(amax)},max

a
{xp(amin), xp(amax)}

]
,

up ∈
[
min
a
{up(amin), up(amax)},max

a
{up(amin), up(amax)}

]
,

where amin > 0 and amax denote a minimum and maximum value of a. This suggests

that xp ≈ xp(a) and up ≈ up(a), i.e., that the mean solution is equal to the deterministic

solution at the mean stochastic forcing.

The moment equations provide further insight. Because of the correlation terms

ϕ′u′ and ϕ′u′p, the governing equations for the mean position and velocity in (2.8) and (2.9),

respectively, are different from the deterministic equations (2.1) with a = a. But the term
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ϕ′u′ is zero for the uniform flow case because u′ = 0. Moreover, the correlation term

ϕ′u′p in (2.9) is negligible, but not zero. Thus, to a first approximation xp ≈ xp(a) and

up ≈ up(a). For a random solution with a uniform stochastic forcing distribution, the root

mean square difference over the time interval is 0.0073 for the position and 0.0062 for the

velocity.

Figure 2.8. Two standard deviation interval along the mean for the test case UF with a
uniform forcing distribution. In dashed green the particle velocity computed with MoD
and in black with MC. In dashed red the particle position computed with MoD and in
blue with MC. Dark colors indicate dIC whereas light ones sIC.

With a zero carrier phase velocity perturbation, u′ = 0, many of the correlation

terms in the second central moment or variance of the velocity are also zero or negligible.

Significant terms that remain are a damping term −ϕσ2
up

and the source term, ϕ′u′p(u−up).

The latter is positive because the relative velocity is positive, (u− up) > 0, and because

ϕ′ = a′ and u′p have the same sign since the particle velocity up is monotonically increasing

with respect to the forcing ϕ = a. The positive source term is maximum initially and

decreases as the particle velocity settles to the flow conditions. The damping term reduces

the velocity variance to zero in the limit t→∞. Correspondingly, the PDF fup tends to

the Dirac delta distribution (Fig. 2.7b). The combination of the temporal damping and

forcing by the positive source leads to a maximum variance at times that are on the order

of O(τp/a). The particle position variance depicted in Fig. 2.9a shows an initial increase

consistent with the increasing velocity variance and an increased spreading of random
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particle trajectories. When the particles settle to the constant carrier flow condition, then

all trajectories are advected at constant velocity. After that time the particle variance no

longer changes.

In Fig. 2.9a, the variance of the particle velocity and position are plotted versus

time for three different forcing distributions fa (uniform, normal and beta). The temporal

trends for the different stochastic forcing are very similar because the mean forcing and

its variance are chosen to be the same for the three forcing distributions. The damping

term in the velocity variance equation, which depends on the mean forcing and velocity

variance only, is therefore not affected by the shape of the forcing distribution. The source

correlation term, however, is directly dependent the forcing fluctuations, ϕ′, which leads

to differences in the velocity and position variances for different shapes of the forcing

distribution of up to 15%.

(a) (b)

Figure 2.9. Computations for the UF case with MC in color lines and with the MoM in
black dots of the (a) second and (b) third central moments for the particle position and
velocity and the three PDFs considered for a (see Fig. 2.6) and dIC. It is included the
case of sIC for the uniform distribution. The legend in (b) is valid for (a) as well.

The third central particle position and velocity moments evolve in a similar way as

the variances (Fig. 2.9b). The third velocity moment, sup , experiences a negative growth

followed by an asymptotic decay to zero (or the Dirac delta in the PDF sense as observed
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above). The third position moment, sxp , first decreases and then asymptotically evolves to

a constant value. Both the minimum in sup and the plateau in sxp occur at slightly later

times as compared to the minimum in σup and σxp . The difference in the factors 2ϕ/τp

and 3ϕ/τp in equations (2.11) and (2.13) are assumed to be at least partially responsible

for causing this shift in the maximum. The similarity in variance and skewness trends

would suggest that the third moment dynamics might also be primarily affected by a

positive sourcing and a damping. To verify this, the correlation terms in (2.13) are plotted

versus time in Fig. 2.10. Clearly, the damping term −ϕsup has a major influence on the

long term response. However, there is no single dominant source term. While the term

ϕ′u′p
2(u− up) plays a similar role as the positive source term in the variance equation, the

other correlation terms are not negligible and contribute also. Surprisingly perhaps is that

the term with fourth order correlations, −ϕ′u′p
3, is dominant, an indication that the tail

behavior of the solution PDF and tail behavior of the forcing function has a considerable

impact on the higher central moment solution of the solution. This is confirmed by

the deviation in the third central moment evolution of up to 200% for different forcing

distributions. We plan to report further on the tail behavior of the PDF in the near future.

Figure 2.10. Terms in equation (2.13) versus time t for the UF case with dIC.

The solution with stochastic initial condition (sIC) is plotted in Figs. 2.8 and 2.9.

It shows that while the trends in the position and velocity mean and variance are similar
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to those determined with a deterministic initial condition (dIC), the sIC solution is offset

as compared to the dIC solution. The offset is according to the initial position deviation

of σx = 0.05. Time integration of (2.10) from time zero to a time t confirms that exactly

this term σx(t = 0) appears at the initial time, t = 0. The offset in Fig. 2.9 does not

change significantly over the time interval [0, t], which implies that the term x′pu
′
p in (2.10)

is small. MC simulations confirm this and show that the term has a maximum value

of 0.002 over the time interval. Because of the damping term the velocity variance and

third central moment goes to zero in the asymptotic time limit for both deterministic and

stochastic initial conditions.

2.6.2 Uniform flow: Method of Distributions

The solution of the governing equation for the PDF in (2.3) is grid-resolved for the

uniform flow case using a spectral grid with NXp ×NUp = 300 × 300 collocation points

and a uniform grid in A direction with NA = 200. The CFL condition is set to 0.8. The

Dirac delta distribution function for dIC is regularized according to δk,mϵ in (2.24) with an

optimal scaling ϵ = 0.05, and m = 5 zero vanishing moments and smoothness k = 2.

Figure 2.11 shows snapshots of fxpup (contours), fxp (left and bottom axes) and fup

(right and top axes) at three consecutive times. For reference, the mean of the particle

phase solution (black line) is superposed in the contour plot. At time t = 0, the marginals

are initialized according to the regularized Dirac delta as shown in Fig. 2.11a. At a later

time, t = 0.54, the joint PDF fxpup has traveled along the mean in the Xp−Up coordinate

system and has widened and deformed (contours in Fig. 2.11b). The marginal fxp and

fup show that the particles have a bias towards the larger values of the position and the

velocity. That is consistent with the observations in the moments discussed previously;

because the particles with smaller response time, τp/A, travel a distance greater than the

slower responding particles, they cluster at large Xp. Those fast particles furthermore

reach their terminal settling velocity faster and thus there is a similar clustering in fup .
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The convexity of the PDFs is an indication that the clustering is more pronounced towards

larger values. The schematic in Fig. 2.12 underscores this and shows how the characteristic

paths with non-constant advection velocity for different Ai leads to a convex probability

density.

At time t = 1.6, the velocity PDF has evolved towards a Dirac delta function

represented by a narrowly supported distribution centered at Up = 1. The numerical

solution successfully captures this PDF behavior despite showing some minor fluctuations

caused by Gibbs oscillations. The accuracy of the MoD solution at this time relies largely

on the number of vanishing moments m of the regularization of the Dirac delta function at

t = 0. Because the number of vanishing moments are specified to be greater than five, the

first up to the fifth moment are accurately preserved even at times when the distribution

function tends to the singular Dirac delta distribution. This accuracy preservation is

confirmed by the results in Fig. 2.8 that compares the time evolution of the mean and

variance determined with the MoD and MC approach and that shows no discernible

difference between the solutions of the two approaches.

(a) (b) (c)

Figure 2.11. Marginals fxp and fup at t = [0, 0.54, 1.6] in (a), (b) and (c) respectively for
the UF test case with dIC and the uniform distribution for fa. Contour plots of the joint
PDF fxpup superposed with the mean of the particle phase solution.

A few remarks on the accuracy of the numerical solution of the equation (2.3):

Remark 1: Consistent with the findings in [98], the use of high order methods is

necessary to compute an accurate solution of the joint PDF faxpup such that the marginals
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determined according to (A.12)-(A.14), are in good comparison with MC results. To

underscore the importance of numerical discretization, we compare the Chebyshev spectral

discretization with a first and a second order upwind finite difference (FD) schemes.

Fig. 2.13a shows that the FD schemes are overly dissipative as compared to the spectral

method if the same number of grid points are used. The root mean square error (RMSE)

between resolved MC results and the spectral solution is 0.064, whereas the RMSE for the

first and second order FD method is significantly larger at 0.280 and 0.180, respectively.

To mitigate the dissipation and inaccuracy, FD requires an excessive resolution for the

computation of the PDF after marginalization.

Figure 2.12. Schematic evolution in time of the particle phase PDF fxpup for the UF
test case.

Remark 2: The spectral solution shows dispersion errors in the form of high-

frequency oscillations in the distribution function. These are induced by the high-order

approximation of the steep gradients in the PDF that in turn are a result of the steep

gradient in the uniform forcing distribution fa. These dispersion errors, however, average

out and turn out to have no significant effect on the numerical accuracy of the first three

moments (see Fig. 2.13b for the third central moment). The second order FD scheme also

exhibits dispersion errors, but the FD’s oscillations do not average out and the moments

are not accurately captured using this discretization.

Remark 3: For deterministic initial conditions, the regularization of the Dirac delta
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is necessary to accurately compute the moments of the evolving distribution function.

Particularly, the vanishing moment condition ensures that the evolution of the third

moment (Fig. 2.13b) is not affected by the numerical approximation as compared to Dirac

delta regularization with only two vanishing moment m = 2 in (2.24), or a Gaussian

distribution function.

(a) (b)

Figure 2.13. Comparison between the spectral discretization and finite difference upwind
discretization with first and second order for (a) fup at t = 0.24 and (b) sup . Both figures
are for the UF test case with dIC with a uniform forcing distribution.

2.6.3 Stagnation flow

In the particle-laden stagnation flow, the relative (interphase) velocity is not only

affected by the evolution of the particle phase as is the case in the uniform flow but also

by the evolution of the carrier phase velocity along the particle’s path. The temporal

development of the random particle position and velocity therefore displays a considerably

more complex behavior as compared to the uniform flow. Because of the spatial dependence

of the carrier flow, the particle solution is furthermore non-trivially dependent on its initial

condition. We consider two initial conditions described in section 2.1, one with the particles

starting at rest (Case SFR) and another with the initial particle velocity specified at the

carrier flow’s velocity conditions (Case SFF). We discuss the MC and MoD solutions for
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each case below.

SFR case: Monte Carlo results

The mean trends with two standard deviation bandwidth determined with the MC

approach for a uniform forcing distribution are plotted in Fig. 2.14. To discuss the SFR

case three stages of development are identified. In the first stage (t < 0.6) each particle

identified with a counter i accelerates in positive x-direction at a rate ai(−kxpi − kupi)/τp.

Similar to the uniform flow case, the velocity and position variance both increase in this

stage with varying acceleration of the stochastically forced particles. The second central

moment plotted versus time in Fig. 2.15a confirms the growth of the particle variance in

this stage.

In a second stage (0.6 < t < 1.6), the particle with the smallest response time

τp/amax –the fastest responding particle with acceleration rate amax(−kxpmax−kupmax)/τp–

has accelerated to the carrier velocity (t = 0.6). After that, the flow velocity continues to

decrease (stagnates) along this particle’s path. Because of the particle’s inertial response,

the particle’s velocity, however, does not decrease equally fast along the particle’s path.

Effectively, the relative velocity of this particle therefor becomes negative. In other words,

the particle starts to decelerate. As more particles with larger response time reach the

carrier flow conditions, more particles start to decelerate until all particles have a negative

relative velocity. During this second stage the velocity variance of the particle phase

decreases to a minimum at t ∼ 1.6, ( Fig. 2.15a).

In a third stage t > 1.6, when the relative particle velocity is smaller than zero

(up > u(xp)) for all the particles, the cloud decelerates to a decreasing carrier velocity and

the particle velocity variance increases. The variance increase mechanism is similar to the

first stage and the uniform flow, in which a time varying carrier velocity in combination

with a random forcing leads to a variance increase in the particle velocity. In the stagnating

flow, the random particle cloud compresses with a decreasing position variance before the
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wall is reached.

Figure 2.14. Two standard deviation interval along the mean for the test case SFR with
a uniform forcing distribution. In dashed green the particle velocity computed with the
MoD and in black with MC. In dashed red the particle position computed with MoD and
in blue with MC. Dark colors indicate dIC whereas light ones sIC.

As opposed to the uniform flow case the carrier flow’s velocity fluctuation, u′, for

the stagnation flow is non-zero which affects several terms in the moment equations. Even

with these extra terms, just like for the uniform flow, the mean stagnation flow solution

described by (2.8) and (2.9) can also be approximated by the solution of the deterministic

equation for a = a. The latter position and velocity solution have a root mean square

deviation of 0.0073 for xp and 0.0053 for up as compared to the former. Both the terms

ϕ′u′ and ϕ′u′p turn out to be negligible in (2.9).

The evolution of the velocity variance as governed by its moment equation (2.11) is

affected by the second term on the right hand side, i.e.,ϕ′u′p(u−up). At t ∼ 1.6 the relative

velocity (u− up) in this term changes sign when the particle phase begins to decelerate

after its initial acceleration. The sign of ϕ′u′p in this term changes at t ∼ 1.6 also as follows:

in the first stage up is monotonically increasing for all the forcing values of ϕ = a according

to the analytical velocity solution (2.32); in stage two, some particles are accelerating

and others are decelerating which yields different signs for dup/dϕ depending on ϕ. Upon

ensemble averaging it turns out that the mean of dup/dϕ is positive prior to t ∼ 1.6 and

negative after. In the third stage up is monotonically decreasing with respect to ϕ. So, the
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correlation term ϕ′u′p changes sign at t ∼ 1.6 and thus the term ϕ′u′p(u− up) > 0.

In addition to the damping term that was discussed for the uniform flow case, the

first term on the right hand side in the velocity variance equations (2.11) also involves

the term ϕu′u′p for the stagnation flow case. Similar to the sign change of ϕ′u′p at t ∼ 1.6,

the sign of ϕu′u′p is the same as u− up because of a comparable behavior of dup/du and

dup/dϕ. As a result ϕu′u′p is negative before t ∼ 1.6 and positive thereafter. The values of

the term u′u′p are between −0.002 and 0.002 and are thus of the the same order as the

velocity variance σ2
up

(See Fig. 2.15a). The term ϕu′u′p therefor has a significant effect on

the variance dynamics. At early times it reduces the growth of the variance and at later

times it enhances growth as compared to the uniform flow, where the term is zero.

The third order correlation terms (the third and fourth term in (2.11)) are observed

to have a negligible contribution to the particle variance evolution. In comparing the

maximum magnitude of each of the terms in the right hand side of (2.11) with respect to

the left hand side over the time interval, we find that the terms ϕ′u′u′p and u′u′2p have at

most a 3.0% and 1.0% contribution whereas the first and second terms have a significant

120% and 152% contribution to the ”variance acceleration”.

Figures 2.15a and 2.15b include the variance evolution for several distribution

functions of the forcing fa. As in the uniform flow case, the effect of the shape of fa is

small on the order of 5% in the velocity variance and slightly more (order of 10%) in the

position variance. The general trends are not affected by the shape of the forcing PDF.

The third position moment is negative throughout the time interval considered

(Fig. 2.15b) indicating a non-symmetric position distribution that is skewed towards larger

values of the particle coordinate. To understand the evolution of the particle velocity’s third

moment, we differentiate between two stages; firstly, when the mean interphase velocity

u − up is positive and the skewness shows a bias towards higher velocity values similar

to the uniform flow case and as also illustrated in Fig. 2.1. Secondly, when u − up ∼ 0

at first after which it becomes negative, i.e., u− up < 0 with a near zero skewness first
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(a) (b)

Figure 2.15. Computations for the SFR case with MC in color lines and with the MoM
in black dots of the (a) second and (b) third central moments for the particle position and
velocity and the three distributions considered for a (see figure 2.6) and dIC. It is included
the case of sIC for the uniform distribution. The legend in (a) is valid for (b) as well.

and decreasing after showing a bias towards small values of the particle coordinate when

u−up < 0 right before the particles hit the wall. This second stage can be also understood

through the evolution of the PDF that consists of the formation of the singular Dirac

delta distribution for which the skewness is zero and its consequent behavior as illustrated

in Fig. 2.1b with a change of the bias in the PDF.

Like in the uniform flow case, the evolution of the third central moment is affected

by many different terms in the velocity skewness equation (2.13) as shown in Fig. 2.16.

The fourth order correlation terms are important in the stagnation flow also, but because

the velocity fluctuation is non-zero, u′ ̸= 0, the evolution of terms that involve u′ are

non-trivial and require a separate and more in-depth analysis. We feel this is outside the

scope of the current paper and we plan to report on the skewness behavior in more detail

in future work.

Stochastic initial conditions do not only alter the evolution of the mean of the

stagnation flow solution with dIC by a constant offset as was the case for the uniform

flow (see Fig. 2.14), but the difference between the solutions with dIC and sIC changes
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Figure 2.16. Terms in equation (2.13) versus time t for the SFR case with dIC and a
uniform forcing distribution.

considerably over the time interval and specifically at early times. The variance of the

particle position and velocity is initially offset according to its initial values as shown

in Fig. 2.15a, but then the difference with respect to the dIC case decreases as time

evolves. This reduction can be understood by considering the stagnation flow solution

where particles can non-physically cross the wall (i.e.,an opposed jet flow). For this flow

all particles move towards the same final state with xp = 0 and up = 0 in the asymptotic

time limit, t→∞ and thus the position and velocity variance tend to zero.

Between the initial time and the infinite time, the terms x′pu
′
p and u′u′p are respon-

sible for the reduced variances. The contribution of u′u′p which is negative for t < 1.6,

particularly, causes a greater increase in the damping term for sIC as compared to dIC

at early times. When the interphase velocity changes sign at t ∼ 1.6 this term becomes

positive and it will have the opposite effect. A physical interpretation is as follows: a more

energetic initial state with higher velocity variance is more resistant to changes induced by

stochastic forcing resulting in greater damping at early times. The term x′pu
′
p is positive in

the acceleration stage and negative in the deceleration stage and its magnitude is greater

for dIC as compared to sIC consistent with greater values of u′p for sIC.

Another considerable difference between the dIC and sIC is that the minimum in

the velocity variance at t ∼ 1.6 is non-zero for the stochastic case, while it is nearly zero
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for the deterministic case. As a consequence, the singularity in the distribution function

when the relative velocity changes sign can be expected to be less significant and the PDF

can be expected to have a broader support.

SFR case: Method of Distributions

Using the same grid as was used for the uniform flow case, the PDF solution for

the SFR case with a uniform forcing distribution, fa, and dIC are computed and plotted

for three instances in Fig. 2.17 at t = 1.22, t = 1.60 and t = 2.15. At time t = 0 the

initial condition is identical to the uniform flow case plotted in Fig. 2.11a and it is therefor

not repeated in Fig. 2.17. The MC results are also plotted in Fig. 2.17 and they are in

excellent agreement with the MoD results.

During the first stage (t < 0.6) the joint PDF fxpup deforms along the mean of the

particle trajectory (depicted by the black solid line) showing a non-linear clustering of the

particles in the Xp−Up plane towards high values. During the second stage (0.6 < t < 1.6)

some particles accelerate and others decelerate leading to the near singular Dirac delta

distribution at t ∼ 1.6 (Fig. 2.17b). At later times (t > 1.6) the PDF of the particle

velocity increases on the left front (Fig. 2.17c), confirming a bias toward lower velocities

in a deceleration field as discussed in the MC results.

The position PDF solution has an increasing bias towards the large value of Xp

which is consistent with the asymptotic infinite time behavior of the non-physical solution

where particles are permitted to cross the wall and where both the particle velocity and

position distribution evolve to a Dirac delta centered at Xp = 0 and Up = 0.

SFF case: Monte Carlo results

In a final test, the particle velocity is initialized with the carrier phase velocity

at the particle position. The MC results for the mean with a two standard deviation

bandwidth are plotted versus time in Fig. 2.18. In the SFF case, the particle phase only
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(a) (b) (c)

Figure 2.17. Marginals fxp and fup at t = [1.22, 1.60, 2.15] in (a), (b) and (c), respectively,
for the SFR test case with dIC and the uniform distribution for fa. Contour plots are of
the joint PDF fxpup superposed with the mean of the particle phase solution.

decelerates which yields an evolution that is opposite to the uniform flow evolution as

plotted in Fig. 2.1a, or an evolution that is very similar to the third ”deceleration” stage

of the SFR case for t > 1.6. The mean velocity decreases monotonically when the mean

particle position increases towards the wall. This evolution is accompanied by an increase

in the variances of both xp and up.

Figure 2.18. Two standard deviation interval along the mean for the test case SFF with
a uniform forcing distribution. In dashed green the particle velocity computed with the
MoD and in black with MC. In dashed red the particle position computed with MoD and
in blue with MC. Dark colors indicate dIC whereas light ones sIC.

Because the SFF case is similar to the other two cases, the moment evolution results

do not shed any additional light on the evolution of the stochastically forced particle phase.

It is therefor omitted here.
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SFF case: Method of Distributions

(a) (b)

Figure 2.19. Marginals fxp and fup at t = [0.87, 1.17] in (a) and (b) respectively,for the
SFR test case with dIC and a uniform forcing distribution. Contours of the joint PDF
fxpup superposed with the mean of the particle phase solution.

The results for the uniform distribution forcing, fa, for the SFF case are also very

similar to the deceleration stage of the SFR case. Rather than reiterating that discussion,

we choose a different stochastic forcing according to a beta distribution for fa in Fig. 2.6

which does not have steep gradients in fa like the uniform distribution. For a grid with

the same size as described before, the distribution results for two different times are shown

in Figs. 2.19a and 2.19b with a deterministic initial condition. Clearly, the solution does

not show Gibbs oscillations and the MC results and the MoD are in excellent agreement.

As time evolves, the PDF of the particle position is advected with a positive

characteristic velocity (2.14) and the particle velocity with a negative velocity according

to (2.15). The PDFs widen in time as the response times of random particles is different

for different stochastic forcing leading to variations in the particles velocities and positions.

Both the position and velocity PDF display a non-Gaussian (non-symmetric) trend that is

more subtle than for the uniform forcing.
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2.6.4 Deterministic initial condition with regularized Dirac
delta functions

One of the most important findings of this work relies on the use of regularized

Dirac delta functions to compute deterministic initial conditions. Originally developed

for singular source terms that account for the coupling of the Eulerian and Lagrangian

phases in Ref. [73], this technique and its condition of vanishing moments is particularly

convenient to account for dIC described by the Dirac delta function. To numerically

compute equation (2.3), the initial conditions have to be accordingly discretized. As it is

evident, is not possible to prescribe a real Dirac delta function numerically meaning to

include the singularity of an infinite value in a single point and zero in the rest. Alternatively,

the use of a regularization of the initial condition according to Ref. [73] is computationally

doable. A Dirac delta δ(x) function is characterized by a first moment x and zero for any

of the next moments. The vanishing moment condition for its regularization allows to

provide a number m of moments that can be accurately represented by this regularization.

This meas that we can define a regularized Dirac delta δm,k
ϵ that has the first moment x

and up to m zero moments (ideally indefinite zero moments as δ(x)). Where k is related

to the curvature of the polynomial approximation and ϵ is the optimal support interval in

which is defined. It is worth to mention that the parameter m is the number of vanished

moments if m is an even number. On the contrary the number of vanished moments is

m− 1.

To illustrate the power of this technique, we show in Fig. 2.20a and 2.20b the

evolution in time of the second and third moment of the SFR case with dIC and a following

the uniform distribution for different approximations of the Dirac delta function. It is

compared the MC results with the MoD using a Gaussian, and two regularized Dirac

delta functions with m = 2 and m = 3 respectively. For the MoD we use the Chebyshev

collocation method as well and the same grid than in Section (2.6.3).
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For the mean, all the approximations match the MC results (not showing here), as

the Gaussian or the numeric Deltas can accurately be set up to have a certain mean. On

the contrary, the Gaussian can not be defined such that the variance is zero. Consequently,

the results with dIC are not properly represented in this way. The same happens for a

numerical Delta with m = 2, since is an even number and then the vanishing moment

conditions is m− 1 = 1 (only the mean is accurately represented). Note that the initial

variance of the Gaussian and the ϵ for the numeric Deltas are different. To account for

the dIC properly, we use a numeric Delta with m = 3. As opposed to the previous

approximations, the first three moments would match the real Dirac delta function. In

other words, the regularization allows the solution to account up to the moment three

properly. The MoD results for this case match the MC results for the mean, deviation and

third central moment (see Figs. 2.20a and 2.20b). This confirm the regularization of the

Dirac delta function developed in [73] as a suitable tool for stochastic studies in general

when deterministic initial conditions are applied in a numerical context.

(a) (b)

Figure 2.20. Comparison of different numeric approximations of the Dirac delta function
for deterministic initial conditions for the SFR test case when a follows the uniform
distribution for (a) the second central moments and (b) the third central moments.
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2.7 Summary of results

Several techniques and models including a Monte Carlo approach, a method of

moments and a method of distributions are developed and compared for analysis of particle

dynamics with stochastic forcing in one-way coupled Eulerian-Lagrangian formulations.

Random solutions of two canonical flow problems are discussed including a particle phase

accelerated in a uniform carrier flow and a particle phase released in a stagnation carrier

flow with two initial conditions, one at rest and one initialized at the carrier flow velocity.

Starting from the Lagrangian particle equations for position and velocity with

stochastic forcing, a closed PDF formulation is derived. A single hyperbolic partial

differential equation, whose characteristic advection velocities are non-constant, governs

the evolution of the PDF solution. In a single spatial dimension, the PDF depends on

three variables at a given time, including the position, the velocity and a forcing coefficient.

A high-order spectral method with discontinuity regularization is necessary for the

accurate solution of the hyperbolic partial differential equation that admits discontinuities.

A polynomial regularization of a Dirac delta function with m vanishing moments is shown

to accurately capture the first m moments of the PDF solution in time.

Moment equations are derived for the first three moments of the particle position

and velocity, representing the mean, variance and skewness of the PDF. Monte Carlo results

are used to determine correlations terms and to close the system of moment equations.

Analytical solutions are derived for the system of two linear ODEs that govern the

dynamics of particles with a deterministic forcing in a one-dimensional uniform flow and

stagnation flow. The particle solution in the stagnation flow has its final state with a zero

velocity at the wall. Depending on the relative forcing the particle manifolds in the phase

space (position/velocity space) tends to either a node or spiral.

The mean solution with random forcing can be approximated within 1% using a

mere single deterministic solution at the mean forcing for all flow cases considered.
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In flows where all randomly forced particles accelerate or decelerate, the velocity

variance increases driven by a single correlation source term. A damping terms counters

this source term. When the particle velocity settles, the velocity variance reduces to

zero because of this damping. Higher-order correlation terms are generally negligible in

the velocity variance equation. The position variance increases in accelerating flows and

decreases in decelerating flows, i.e.,the random cloud expands and compresses, respectively.

When the relative velocity changes sign, the particle variance approaches zero and the

PDF has a very narrow support.

The skewness of the distribution function has a bias towards the carrier velocity

to which the particle accelerates or decelerates. The bias of the distribution function is

non-linear and more significant towards to the tail ends of the distribution function. The

skewness equation is driven by a sourcing and a damping similar to the variance equation,

but with different response time. High-order correlation terms are significant suggesting a

complicated tail behavior of the PDF.
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Chapter 3

Point-cloud models for particle-laden
flows in closed-form

3.1 Introduction

The reduced point-particle method permits the simulation of millions of particles [36]

that are commonly encountered in large scale problems. The model reduction comes with

limitations both in terms of numerical approximation and physics omissions, that are well

documented in literature [178, 179, 180, 63, 104, 59, 181, 182, 76, 95], including convergence

issues and approximation of the singular point distribution over a grid, considerable

empiricism in particle forcing, omission of physics such as the finite size particle effects

and wake effects, subgrid turbulence-particle interactions and particle-particle interactions,

etc.

Another method for reducing computational degrees of freedom is to use high-order

approximation in the form of smooth macro-particles that distribute the particle influence

over a mesh using a Gaussian distribution or a polynomial distribution function. This

approach was first introduced for discontinuous Galerkin based particle-mesh methods in

Ref. [183] and later for finite difference based methods in Ref. [170]. Much effort has gone

into the development of high-order distribution functions (also referred to as projection

kernels) in the context of EL methods to approximate either a Dirac delta distribution of

a point-particle [73, 184] or to numerically model the flow around a finite sized particle in
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a consistent and convergent manner [185, 75]. However, less efforts have been put towards

ensuring high-order corrections to the point tracer method in physical and phase space

that should naturally accompany a high-order Euler-Lagrange discretization method and

a distribution function that is mathematically smooth up to a certain order. We refer to a

“tracer”, to the Lagrangian algorithm that computes trajectories along the inertial point

particles’ paths or point clouds in time.

To address the shortcomings of CIC and high-order PSIC methods, we coined the

Subgrid Particle-Averaged Reynolds Stress-Equivalent (SPARSE) formulation in Ref. [57].

SPARSE is based on a method of moments to capture the effect of sub-cloud scales in

one-way coupled simulations. The method of moments derives governing equations for the

moments of the variables of interest by using a Reynolds decomposition of the variables in

average plus fluctuations as η = η + η′ where η′ = 0. The method of moments reduces

the computational cost in comparison to sampling methods but requires closure. We refer

to the literature for a review of the method of moments in the context of particle-laden

flows (see for example Refs. [186, 187, 171, 2, 98] and references therein). By combining a

Reynolds averaging with a truncated Taylor expansion of the forcing correction within a

cloud, SPARSE augments the CIC method in two ways. Firstly, it provides a second order

correction to the forcing. Secondly, it accounts for interphase, drift, kinetic energy and

stresses. In Ref. [58], SPARSE was extended for the simulation of two-way coupled and

non-isothermal particle-laden flows by modeling the cloud deformation with a bivariate

Gaussian function whose principle strains depend on the subgrid scale strain tensor. In

tests of a shock interaction with a particle cloud it was shown that SPARSE captures

the same physics as the point-particle model, but requires two orders of magnitude fewer

degrees of freedom [58]. This is because SPARSE allows to compute clouds of point-

particles as a single points, reducing the amount of equations to solve. So far, the SPARSE

tracer has been closed a priori with data from PSIC simulations.

Here, we propose a closed SPARSE algorithm [3] that makes the tracer predictive.
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Following the SPARSE approach [57, 58], covariance terms are closed using a combination

of averaging and Taylor expansion of the carrier phase variables around the mean cloud

location. To enable the closure, the SPARSE tracer presented in Ref. [57] is first extended

to account for position, velocity and temperature covariances, i.e., to account for second

moments of the particle phase. The resulting particle cloud tracer has a second order

correction to the motion and deformation caused by the carrier phase velocity field along

its mean trajectory. We perform a variety of one-way coupling computations, suitable

for dilute flows, to verify accuracy and convergence including one-dimensional tests with

prescribed velocity fields, the two dimensional stagnation flow, and the three dimensional

ABC flow. We also validate SPARSE with a simulation of an isotropic turbulence flow,

where the gas is simulated with a Direct Numerical Simulation (DNS) solver and the

SPARSE particles are traced in the DNS flow field.

3.2 Closed SPARSE: Governing Equations

3.2.1 Point-Particle Method

For completeness, we start the derivation of SPARSE from the dimensional point-

particle equations that describe the kinematics, dynamics and heat transfer of a small

spherical particle immersed in a carrier flow as follows [38, 188, 170]

dx̃p

dt̃
= ũp, (3.1a)

m̃p
dũp

dt̃
=

1

2
CD

πd̃2p
4
ρ̃ |ũ− ũp| (ũ− ũp) , (3.1b)

m̃pc̃p
dT̃p

dt̃
= Nuk̃πd̃p

(
T̃ − T̃p

)
, (3.1c)

where x̃p, ũp, T̃p, m̃p and c̃p are the particle’s position vector, velocity vector, temperature,

mass and specific heat (at constant pressure), respectively. The carrier flow at the particle

position is described by the velocity vector ũ, density ρ̃, temperature T̃ , conductivity k̃
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and dynamic viscosity µ̃. The mass of a spherical particle is related to its diameter d̃p, and

density ρ̃p, as m̃p = ρ̃pπd̃
3
p/6. The CD is the drag coefficient and Nu the Nusselt number

that describes the ratio of convective to conductive heat transfer at the particle’s boundary

Nu = hd̃p/k̃ where h is the convective heat transfer coefficient. For a small particle

Reynolds number, Rep = ρ̃ |ũ− ũp| d̃p/µ̃ and incompressible flow, the drag coefficient

and Nusselt number are described analytically as CD = 24/Rep and Nu = 2. For

higher particle Reynolds numbers and/or other flow parameters, these can be empirically

corrected [48, 49, 50, 52, 53] with the functions f1 and f2 as

CD =
24

Rep
f1, (3.2a)

Nu = 2f2. (3.2b)

Using the non-dimensional variables t = t̃/τf , u = ũ/U∞, ρ = ρ̃/ρ∞, T = T̃ /T∞,

µ = µ̃/µ∞, k = k̃/k∞, c = c̃/c∞, xp = x̃p/L∞, up = ũp/U∞, Tp = T̃p/T∞, ρp = ρ̃p/ρ∞,

cp = c̃p/c∞, dp = d̃p/L∞, where the ∞ subscript identifies reference scales, we arrive at

the non-dimensional formulation

dxp

dt
= up, (3.3a)

dup

dt
=
f1
St

(u− up) , (3.3b)

dTp
dt

=
2cr
3Pr

f2
St

(T − Tp) , (3.3c)

where St = τp/τf is the Stokes number, i.e. the ratio of the characteristic particle time scale,

τp = ρ̃pd̃
2

p/ (18µ̃) to the convective carrier phase time scale, τf = L∞/U∞. The Prandtl

number is denoted by Pr = µ̃c̃/k̃, and the specific heat ratio of the particle to the carrier

phase with cr = cp/c. Defining a carrier phase, reference Prandtl number Pr∞ = µ∞c∞/k∞

and Reynolds number Re∞ = ρ∞U∞L∞/µ∞, we express the particle Reynolds number,
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Stokes number and Prandtl number in terms of non-dimensional variables as follows

Rep = Re∞
ρ

µ
|u− up| dp, St = Re∞

ρpd
2
p

18µ
, Pr = Pr∞

µc

k
. (3.4)

Without loss of generality, we take the dynamic viscosity, conductivity and specific heat

ratio of the carrier phase to be constant so that µ = k = c = 1.

3.2.2 SPARSE Particle Cloud Tracer

SPARSE was derived in Refs. [57, 58] for one- and two-coupled formulations in

non-closed form, respectively. Here, we review the derivation for reference and to introduce

notation. For a detailed description of the model derivation, we refer to the interested

reader to Refs. [57, 58].

SPARSE models a cloud of particles using a method of averaging starting with

the Reynolds decomposition of any instantaneous particle variable η into its average and

fluctuating component according to η = η+η′, where the average is defined by its ensemble

average

η =
1

Np

Np∑
i=1

ηi, (3.5)

for Np particles within a cloud. We define the relative velocity a and the relative

temperature b as

a = u− up, (3.6a)

b = T − Tp, (3.6b)

In SPARSE, we extend the functionality of the correction functions in (3.2a) and (3.2a)

beyond the forcing correction for flow conditions outside the Stokes regime, to account for

the variation of the forcing within the cloud region and associated velocity (phase) space
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on the governing equations of the statistical moments. To do so, we start by assuming that

the correction functions of the forcing depend on the relative velocity so that f1 = f1(a)

and f2 = f2(a), which can be interpreted as a particle-phase in which the particle’s inertial

effects are dominant and Boussinesq number is small following our previous work on the

interaction of a curtain of particles with a moving shock [170, 189, 171, 58]. Consequently,

we Taylor expand this function around the mean velocity of the cloud to account for

fluctuations in the cloud region, e.g. for f1 this leads to

f1 (a+ a′) = f1 (a) + a′i
∂f1
∂ai

∣∣∣∣
a

+
1

2
a′ia

′
j

∂2f1
∂ai∂aj

∣∣∣∣
a

+O
(
a′3
)
. (3.7)

Here, we use index notation for brevity with indexes i = 1, 2, 3 and j = 1, 2, 3. Substituting

this into (3.3) and Reynolds decomposing one finds

dxpi
dt

+
dx′pi
dt

= upi + u′pi, (3.8a)

dupi
dt

+
du′pi
dt

=
1

St

(
f1 (a) + a′j

∂f1
∂aj

∣∣∣∣
a

+
1

2
a′ja

′
k

∂2f1
∂aj∂ak

∣∣∣∣
a

)
(ai + a′i) , (3.8b)

dT p

dt
+
dT ′

p

dt
=

2cr
3PrSt

(
f2 (a) + a′i

∂f2
∂ai

∣∣∣∣
a

+
1

2
a′ia

′
j

∂2f2
∂ai∂aj

∣∣∣∣
a

)(
b+ b′

)
. (3.8c)

Averaging of this system leads to the non-dimensional SPARSE equations for the mean

particle position, velocity and temperature [57]

dxpi
dt

= upi, (3.9a)

St
dupi
dt

= aif1 (a) + a′ia
′
j

∂f1
∂aj

∣∣∣∣
a

+
ai
2
a′ja

′
k

∂2f1
∂aj∂ak

∣∣∣∣
a

+
1

2
a′ia

′
ja

′
k

∂2f1
∂aj∂ak

∣∣∣∣
a

, (3.9b)

3PrSt

2cr

dT p

dt
= bf2 (a) + b′a′i

∂f2
∂ai

∣∣∣∣
a

+
b

2
a′ia

′
j

∂2f2
∂ai∂aj

∣∣∣∣
a

+
1

2
b′a′ia

′
j

∂2f2
∂aiaj

∣∣∣∣
a

. (3.9c)

Through the combination of Taylor expansion of the forcing and averaging, these governing

model equations accounts for moments of velocity distribution in the cloud region on the
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mean cloud dynamics. In previous work, we closed this system a priori with Monte-Carlo

sample.

Note that we previously omitted the third term on the right hand sides of (3.9b)

and (3.9c) as they pertain to derivatives of order higher than one of the forcing function

which generally turns out to be smaller than the gradient. However, because this term

after averaging is O
(
a′2
)
and thus potential similar in order of terms, we retain it here

for completeness.

3.2.3 SPARSE with Second-Order Moments

In order to close the SPARSE equations, we must first extend the model (3.9) to

include equations that govern the second order moments. These can be obtained following

a standard method of moments procedure [57, 58, 98, 2], i.e., first obtain equations for

the fluctuating variables by subtracting the averaged equations from the instantaneous

equations; then multiplying or taking the inner product of the resulting system with the

fluctuating variables and vectors, respectively; finally, averaging and neglecting terms on
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the order of fluctuations to the third power or higher, we arrive at the following

dxpi
dt

= upi, (3.10a)

St
dupi
dt

= ai

(
f1 (a) +

1

2
a′ja

′
k

∂2f1
∂aj∂ak

∣∣∣∣
a

)
+ a′ia

′
j

∂f1
∂aj

∣∣∣∣
a

, (3.10b)

3PrSt

2cr

dT p

dt
= b

(
f2 (a) +

1

2
a′ia

′
j

∂2f2
∂ai∂aj

∣∣∣∣
a

)
+ b′a′i

∂f2
∂ai

∣∣∣∣
a

, (3.10c)

d

dt

(
x′pix

′
pj

)
= x′piu

′
pj

+ x′pju
′
pi
, (3.10d)

St
d

dt

(
u′piu

′
pj

)
=
(
a′iu

′
pj

+ a′ju
′
pi

)
f1 (a) + aiu′pja

′
k

∂f1
∂ak

∣∣∣∣
a

+ aju′pia
′
k

∂f1
∂ak

∣∣∣∣
a

, (3.10e)

3PrSt

4cr

dT ′
p
2

dt
= T ′

pb
′f2 (a) + bT ′

pa
′
i

∂f2
∂ai

∣∣∣∣
a

, (3.10f)

d

dt

(
x′piu

′
pj

)
= u′piu

′
pj

+
1

St

(
x′pia

′
jf1 (a) + ajx′pia

′
k

∂f1
∂ak

∣∣∣∣
a

)
, (3.10g)

d

dt

(
x′piT

′
p

)
= u′piT

′
p +

2cr
3Pr

1

St

(
x′pib

′f2 (a) + bx′pia
′
j

∂f2
∂aj

∣∣∣∣
a

)
, (3.10h)

St
d

dt

(
u′piT

′
p

)
= a′iT

′
pf1 (a) + aiT ′

pa
′
j

∂f1
∂aj

∣∣∣∣
a

+
2cr
3Pr

(
b′u′pif2 (a) + bu′pia

′
j

∂f2
∂aj

∣∣∣∣
a

)
. (3.10i)

Because we have retained only terms on the order of fluctuations squared, this SPARSE

formulation is a second order CIC model.

3.2.4 Closed SPARSE

The second-order SPARSE formulation in (3.10) is not yet closed as many of the

terms have the form of a covariance of particle variables with carrier phase variables or

a covariance between two carrier phase variables, and the carrier phase has an unknown

distribution within the cloud region. To highlight those terms more explicitly, we make

use of (3.6a) and (3.6b) to unroll terms related to the relative velocity and temperature
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as follows

ai = ui − upi, (3.11a)

b = T − T p, (3.11b)

a′ia
′
j = u′iu

′
j + u′piu

′
pj
− u′iu

′
pj
− u′ju

′
pi
, (3.11c)

b′a′i = T ′u′i + T ′
pu

′
pi
− T ′u′pi − T ′

pu
′
i , (3.11d)

x′pia
′
j = x′piu

′
j − x′piu

′
pj
, (3.11e)

u′pia
′
j = u′piu

′
j − u′piu

′
pj
, (3.11f)

T ′
pa

′
i = T ′

pu
′
i − T ′

pu
′
pi
, (3.11g)

b′x′pi = T ′x′pi − T
′
px

′
pi
, (3.11h)

b′u′pi = T ′u′pi − T
′
pu

′
pi
, (3.11i)

b′T ′
pi
= T ′T ′

pi
− T ′

p
2, (3.11j)

where the boxed terms need closing. To be consistent with the SPARSE framework, we

need to account for the influence of the carrier phase at the mean location. We will rely

on averaging and Taylor series expansions once more by expanding the carrier velocity

and temperature in (3.11a) and (3.11b) around the mean cloud location, xp, as follows

ui ≈ ui (xp) + x′pj
∂ui
∂xj

∣∣∣∣
xp

+
1

2
x′pjx

′
pk

∂2ui
∂xj∂xk

∣∣∣∣
xp

= ui (xp) +
1

2
x′pjx

′
pk

∂2ui
∂xj∂xk

∣∣∣∣
xp

, (3.12a)

T ≈ T (xp) + x′pi
∂T

∂xi

∣∣∣∣
xp

+
1

2
x′pix

′
pj

∂2T

∂xi∂xj

∣∣∣∣
xp

= T (xp) +
1

2
x′pix

′
pj

∂2T

∂xi∂xj

∣∣∣∣
xp

. (3.12b)

Note that the second term on the right hand side are zero after averaging.
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We close the second moments in a similar way. For example,

u′iu
′
j = u′i (uj − uj) ≈ u′i

(
uj (xp) + x′pk

∂uj
∂xk

∣∣∣∣
xp

− uj

)
= u′ix

′
pk

∂uj
∂xk

∣∣∣∣
xp

, (3.13a)

T ′u′i = T ′ (ui − ui) ≈ T ′

(
ui (xp) + x′pj

∂ui
∂xj

∣∣∣∣
xp

− ui

)
= T ′x′pj

∂ui
∂xj

∣∣∣∣
xp

, (3.13b)

T ′2 = T ′
(
T − T

)
≈ T ′

(
T (xp) + x′pi

∂T

∂xi

∣∣∣∣
xp

− T

)
= T ′x′pi

∂T

∂xi

∣∣∣∣
xp

, (3.13c)

close the Reynolds stress and the heat flux on the sub-cloud scale. Further closures of

covariances are as follows

x′piu
′
j ≈ x′pix

′
pk

∂uj
∂xk

∣∣∣∣
xp

, u′piu
′
j ≈ u′pix

′
pk

∂uj
∂xk

∣∣∣∣
xp

, (3.14a)

T ′
pu

′
i ≈ T ′

px
′
pj

∂ui
∂xj

∣∣∣∣
xp

, x′piT
′ ≈ x′pix

′
pj

∂T

∂xj

∣∣∣∣
xp

, (3.14b)

u′piT
′ ≈ u′pix

′
pj

∂T

∂xj

∣∣∣∣
xp

, T ′
pT

′ ≈ T ′
px

′
pi

∂T

∂xi

∣∣∣∣
xp

. (3.14c)

Substituting (3.11)–(3.14) into (3.10) closes the model. The resulting system of model

equations is shown in Ref. [3].

Error Estimates

Because SPARSE uses a combination of a Taylor series and higher-moment trun-

cation, naturally the model accuracy depends on these truncation errors. These errors

intuitively depend on the spatial cloud size over which the Taylor series is expanded and

over which the moments are determined.

To formalize through basic analysis, we consider the Taylor expansion of the carrier

flow velocity around the average location of the particle cloud for the one-dimensional
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model, as follows

u(x) = C0 + C1 (x− xp) + C2 (x− xp)2 + C3 (x− xp)3 +O
(
(x− xp)4

)
= C0 + C2x′p

2 + C3x′p
3 +O

(
x′p

4
)
,

(3.15)

where the constants are given by

C0 = u(xp), C1 =
∂u

∂x

∣∣∣∣
xp

, C2 =
1

2

∂2u

∂x2

∣∣∣∣
xp

, C3 =
1

6

∂3u

∂x3

∣∣∣∣
xp

. (3.16)

Using the standard deviation σxp to express the two central moments we have x′p
2 = σ2

xp

and x′p
3 = γxpσ

3
xp
, where γxp is the Pearson’s coefficient of the third moment (or coefficient

of skewness). Finally, the average of the carrier flow velocity is

u(x) = C0 + C2σ
2
xp

+ C3γxpσ
3
xp

+O
(
x′p

4
)
, (3.17)

which indicates that the leading order term not included in the SPARSE formulation is

proportional to the standard deviation of the macro-particle’s location to the third power.

This procedure can be applied similarly to the rest of the truncated terms. For example,

for the term u′2 that is closed using expressions (3.13a) and (3.14a) we have

u′2 = C1u′x′p + C2u′x′p
2 +O

(
u′x′p

3
)
= C2

1x
′
p
2 + C1C2x′p

3 +O
(
x′p

4
)

= C2
1σ

2
xp

+ C1C2γxpσ
3
xp

+O
(
x′p

4
)
,

(3.18)

and for the term u′pu
′ that is closed with (3.14a) one has

u′pu
′ = C1u′px

′
p + C2u′px

′
p
2 +O

(
u′px

′
p
3
)
= C1ρxpupσxpσup + C2γxpupσ

2
xp
σup +O

(
u′px

′
p
3
)
,

(3.19)

where ρxpup is the Pearson’s correlation coefficient of xp and up and γxpup the Pearson’s
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coefficient of the third moment u′px
′
p
2.

To summarize, each term in SPARSE and therefor the SPARSE model is expected

to be on the order of the third moment of the cloud location variance in the asymptotic

range. Effectively, for this third-order model we thus have assumed a symmetric probability

density distribution of the particle statistics in the cloud. The Pearson’s coefficients is the

proportionality constant on this error. It depends on the probability density function in

space and velocity phase space.

Adaptivity and Splitting

The third-order error estimates indicates that the error reduces if the clouds size is

reduced. This can be accomplished by adapting the cloud size through splitting of large

clouds into smaller clouds. Associated with this splitting we expect a convergence of the

SPARSE method with respect to subdivisions of the particle cloud along the variables xp

and up of the third order.

To illustrate the splitting of a particle cloud, here, we uniformly divide the particle

phase’s computational domain at initial conditions as defined by the limits of the physical

and phase space of the particle variables according to Mp = M
xp
p M

up
p , where Mp is the

total number of macro-particles and M
xp
p and M

up
p are the number of divisions in physical

and phase space along xp and up, respectively, that here we have considered to be equal

M
xp
p = M

up
p . The weight of each macro-particle is computed as the ratio of the point-

particles contained in the macro-particle to the total number of particles Np. The first

two moments of the macro-particles are computed initially for each macro-particle. The

splitting of the initial cloud is schematically illustrated in Figure 3.1. The Figure represents

the initial time (left) and a later time (right) of a particle cloud represented by PSIC

particles (points) and SPARSE macro-particles (ellipses).

Considering uniform splitting, the reduction in the standard deviation implies that

each macro-particle has a fraction of the one of the initial cloud. This is σxpk
∼ σxp/M

xp
p

63



for the k-th macro-particle. Then, the constants C0k, C2k and C3k for each macro-particle

differ by the ones of the original cloud C0, C2 and C3 for being evaluated at a small

distance of the center. Each macro-particle is located at xpk where the distance to the

center of the total cloud is the small quantity |xp − xpk| with k = 1, . . . ,Mp. According to

this C0 ∼ C0k, C2 ∼ C2k and C3 ∼ C3k.

Additionally, the averaged coefficient of skewness γxp and γxpup and the Pearson’s

coefficient ρxpup can be assumed to be on the same order than the one of the initial cloud,

provided that the gradients within the cloud are small which is needed for the Taylor

series to be in the asymptotic range. Therefore, The leading order terms in (3.17)–(3.19)

when splitting the initial cloud are

Mp∑
k=1

wkC3kγxpk
σ3
xpk
∼ C3γxp

(
σxp

M
xp
p

)3

, (3.20a)

Mp∑
k=1

wkC1kC2kρxpupk
γxpk

∼ C1C2γxp

(
σxp

M
xp
p

)3

, (3.20b)

Mp∑
k=1

wkC2kγxpupk
σ2
xp
σupk

∼ C2γxp

(
σxp

M
xp
p

)2 σup

M
up
p
. (3.20c)

The reader is referred to Ref. [3] for additional insights on the derivation SPARSE model.

Figure 3.1. Splitting of the initial cloud of point-particles at t = 0 and a later time into
Mp = 4 macro-particles for a one-dimensional case. Each of the four macro-particles are
described with SPARSE and later joined using the relations (3.21).
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3.3 Verification Tests

For verification purposes, we repeat the one-dimensional numerical tests with

constant and linear forcings as described in Ref. [57]. We consider an additional one-

dimensional test with a known empirical forcing that includes a more realistic dependence

of the forcing correction with respect to the relative velocity. We note that these tests are

intended to be numerical exercises to test consistency. They are not necessarily intended

to have physical meaning. The analytical flow velocities u and forcing functions f1 are

selected arbitrarily to evaluate the accuracy of the SPARSE formulation with different

levels of complexity. The parameters of the resulting four test cases, including the carrier

phase velocity fields, Stokes numbers and correction factor functions are summarized in

Table 3.1.

All test cases are computed with a total number of particles of Np = 10, 000 and

with initial conditions for position and velocity given according to the uniform density

distributions xp(0) ∼ U(−1, 1) and up(0) ∼ U(−5, 15). Here, U denotes a uniform

distribution function and the arguments give the minimum and maximum value of the

distribution. PSIC simulations are conducted to obtain the reference solution. For each

test case, we compare the closed SPARSE method with the SPARSE method from [57]

which was closed a priori and only traces the averages of the particle cloud. We refer

to this model as ”SPARSE a priori”. We did not use subdivisions of a global group of

particles into sub-clouds for this a priori closed model. For predictions with the closed

SPARSE formulation, however, we have subdivided into Mp number of sub-clouds to

ensure accuracy and convergence. The global averages and variances of the combined set
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of sub-clouds are given by

ϕ =

Mp∑
k=1

wkϕk, (3.21a)

η′θ′ =

Mp∑
k=1

wkη′θ′k +

Mp∑
k=1

wk(ηk − η)(θk − θ), (3.21b)

for arbitrary solution variables ϕ, η and θ. The weight wk, of the k-th cloud represents

the number of particles per cloud. Here, we take it as the ratio between the number of

point-particles in the cloud k denoted by Npk and the total number of particles so that

wk = Npk/Np.

SPARSE reduces the computational expense as compared to PSIC simulations when

tracing a cloud of point-particles as a point. The PSIC description in three-dimensions of a

non-isothermal cloud with Np particles requires the solution of 7Np equations according to

the system (3.3). For the same case, the closed SPARSE method with Mp macro-particles

solves 35Mp equations as described by the system (3.10). Generally,Mp ≪ Np to reproduce

accurate mean and variances of the cloud and the computational savings is on the order

of 35Mp/(7Np). In general, a measure of the reduction of degrees of freedom when using

SPARSE as compared to PSIC can be defined making use of the variables d, that takes the

values 1, 2 or 3 depending of the dimensions of the problem and e, that takes the value 0

for an isothermal simulation or 1 for a non-isothermal one. The ratio of the computational

cost of SPARSE as compared to a PSIC method is

r =

(
3d+ 2d2 + 2e+ 2de

2d+ e

)
Mp

Np

. (3.22)

To determine the difference between PSIC and SPARSE methods, we normalize
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the L2 norm of the moment difference with the L∞ norm of the PSIC result as follows

ε(·) = ∥(·)
SPARSE − (·)PSIC∥2
∥(·)PSIC∥∞

. (3.23)

The convergence rate of SPARSE is affected by the moment accuracy, and thus the inverse

square root of the sub-cloud sample size, as well as the second order Taylor truncation of

the forcing and the carrier phase field.

Table 3.1. Summary of the one-dimensional carrier flow velocity fields, u(x), Stokes
number, St, and forcing correction factor function, f1(u− up) for four one-dimensional
test cases.

Case Number u(x) St f1(u− up)
1 10 10 u− up
2 10 10 |u− up|
3 x+ 5 + cos(π(x+ 5)) 1/24 1

4 9 + cos(πx/10) 1/2 1 + 0.15 (0.9487(|u− up|))0.687

3.3.1 Linear Forcing in Constant Carrier Velocity Field, Case
1

In Case 1 the carrier phase velocity is taken constant u(x) = 10. The Stokes

number is set to St = 10, and the correction factor of the forcing is linearly dependent

on the relative velocity. In the constant carrier phase velocity field, the fluctuations of

the velocity field are zero. Thus the sub-cloud carrier phase fluctuations are zero, u′ = 0,

and the covariance terms involving the carrier phase variables in the SPARSE formulation

are zero also and cannot affect the (SPARSE) solution. The first derivative of the linear

correction factor function, f1(u− up), with respect to the relative particle velocity is unity

and the second derivative is zero. Therefore, terms with a second derivative of the forcing

in (3.10b) and thus the the Taylor series expansion has no effect on the model accuracy

for this case. In the constant carrier flow velocity, the cloud accelerates towards this

velocity (Fig. 3.2a) and translates and widens correspondingly in the positive x-coordinate
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(Figs. 3.2a and 3.2b, respectively). The averages and variances of the particle position

and velocity determined with Np = 104 PSIC particles are in excellent comparison with a

SPARSE results that uses only Mp = 16 clouds. Moreover, a comparison of the moment

differences (Fig. 3.2c) between the PSIC and SPARSE show a monotonic error reduction

with an increasing number of clouds, providing evidence of a consistent convergence.

3.3.2 Positive Linear Forcing in Constant Carrier Velocity
Field, Case 2

Case 2 differs from Case 1 only in the forcing function, which is is selected to

be proportional to the absolute value of the relative velocity. This results in a more

realistic positive (drag-like) forcing for negative relative velocities. The first and second

moment trends for Case 2 are generally similar to Case 1 as shown in Figures 3.2d and 3.2e.

Differences, such as the smaller position variance, x′p
2, for Case 2 as compared to Case

1, can be easily attributed to the changes in the positive forcing function, which moves

all particles in the positive x-coordinate. The ”SPARSE a priori” method is showing

visible inaccuracies in the mean trace (Fig. 3.2d), whereas the SPARSE result compares

well with PSIC. This is related to the subdivisions into sub-clouds for the closed SPARSE

method. The ”SPARSE a priori” method results are generated for a single global cloud

without subdivisions. The closed SPARSE method’s subdivision reduces the magnitude of

the truncated third order correlation terms per sub-cloud in (3.10) and thus improves the

accuracy of the global mean. Without the subdivision the third-order correlation leads to

the difference observed in the ”SPARSE a priori” model.

3.3.3 Constant Forcing in a Harmonically Varying Carrier
Velocity Field, Case 3

In a third one-dimensional test, Case 3, we take the correction factor constant (f1 =

1) and specify the carrier phase velocity field according to a growing, oscillating function,

which lets us investigate the effect of the velocity variance in the carrier phase velocity
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.2. Comparison of the first (first column) and second (second column) moment
results versus time between the closed SPARSE method with Mp=16, SPARSE a priori,
and PSIC for the four, one-dimensional test cases, Case 1 (a,b), Case 2 (d,e), Case 3 (g,h)
and Case 4 (j, k) as summarized in Table 3.1. The third column of figures show the error,
ϵ, as defined in (3.23) versus the number of sub-divisions, M

xp
p , for SPARSE.
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field. Specifically, in zeroth order models, the average flow field is poorly approximated

at the average particle location such that u(xp) ≃ u(xp), as discussed in Ref. [190]. In

the closed SPARSE formulation, these fields are determined according to the closure

model (3.11)–(3.14).

The particle velocity variance trend in Figure 3.2h shows a sharp initial drop in a

time interval that is on the order of the Stokes number, after which it gradually grows while

the particle phase is accelerated in the increasing carrier phase velocity field. At later times

(t > St), the variance trends also show a dominant harmonic mode of similar frequency

as the the oscillating carrier flow velocity. This oscillatory effect can also be observed in

the particle location variance. The average particle velocity trend in Figure 3.2g closely

follows the carrier flow velocity field at the average particle location because of the small

Stokes number and the inherent particles’ fast response to the carrier flow.

The results are in excellent agreement with the PSIC and the SPARSE a priori

results. The error trends in Figure 3.2i show a monotonic convergence, an indication that

the truncated terms in the Taylor expansion in (3.12)–(3.14) are smaller with an increased

number of sub-clouds (per expectation).

3.3.4 Empirically Forced Particle Tracers in a Harmonically
Varying Carrier Velocity Field, Case 4

In a final, most demanding, one-dimensional test, Case 4, we assume both the

forcing function and the velocity field to have non-trivial, non-linear dependencies (see

Table 3.1). The forcing is set by the well-known function of Schiller and Naumann ([191])

f1 = 1 + 0.15Re0.687p , (3.24)

which is accurate for particle Reynolds numbers of Rep = Re∞|u − up|dp < 103. The

reference Reynolds number is set to Re∞ = 102, the Stokes number to St = 1/2, the relative
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Figure 3.3. Drag coefficient correction factor f1 in terms of the particle Reynolds number
Rep with the sign of the relative velocity.

particle density to ρp = 103 and the non-dimensional particle diameter as dp = 9.478×10−3

(according to (3.4)). For this case both the forcing and statistical truncation affect the

accuracy of the SPARSE solution.

Before we discuss the SPARSE results, we make a few remarks on the Schiller and

Naumann correction factor which is plotted versus the particle Reynolds number multiplied

by the sign of the relative velocity in Figure 3.3. Also plotted are its first two derivatives

with respect to the relative velocity ax = u−up. The second derivative shows a singularity

in the zero limit of the particle Reynolds number. This singularity can negatively affect

accuracy through the terms that involves a second derivative in (3.10). This can occur if a

SPARSE cloud experiences a change from acceleration to deceleration along its trajectory.

To avoid the singularity we neglect the drag force correction effect and its derivatives by

setting f1 to unity for Rep < 0.1 leading to the Stokes drag.

The particle phase’s mean and variance trends are plotted in Figures 3.2j and 3.2k,

respectively, and show that the particle cloud accelerates initially over a time proportional

to the particle response time, until it reaches an oscillating plateau. Coinciding with this

acceleration, the particle velocity variance reduces from its initial value to an oscillating

trend with minima of approximately zero. The cloud size, proportional to the particle

location variances, changes with the changes in the average relative velocity u− up: the
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cloud grows when u − up > 0 and shrinks when u − up < 0. In transitioning from

acceleration to deceleration, the front of the cloud decelerates faster than the tail, causing

a switch in the relative velocity of the particles in the front with respect to the ones in the

tail. Eventually, the cloud reaches a state in which the average relative velocity of the

cloud is zero and the deviation of the particle velocity experiences a minimum, associated

with a zero rate of change of the cloud size for that instant of time.

The SPARSE results are in excellent agreement with PSIC and SPARSE a priori,

verifying the closed SPARSE method. The error reduces once again monotonically with

an increase number of subdivisions of the cloud as shown in Figure 3.2l. The convergence

rate is slightly smaller as compared to previous cases, as the Case 4 requires convergence

of both the truncated Taylor series terms and the truncated, higher-order moment terms,

where the accuracy for Case 1-3 is impacted by only one of the two truncations.

3.4 Two- and Three-Dimensional, One-Way Cou-

pled, Particle-Laden Flow Tests

3.4.1 Stagnation Flow

To test the two-dimensional closed SPARSE formulation, we first consider a cloud

traced in a carrier phase velocity field according to the analytical stagnation flow solution

of [176] for an inviscid irrotational flow, in the domain x ∈ [−∞, 0] as follows

u = −kx, (3.25a)

v = ky, (3.25b)

where y is the coordinate perpendicular to the flow direction, and k is constant set to

unity k = 1. To initialize a cloud of particles at rest, we sample from a uniform probability

density distribution function with average location xp = −1 and yp = 0 and with deviations

in space given by σxp = σyp = 0.05. Because the particles are initialized at rest, the average
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and variance of the vertical and horizontal velocity components are zero, as well as any

other moment involving a velocity component. Particles in the cloud are forced according

to the Stokes drag corrected with the Schiller and Naumann correlation in (3.24). The

reference Reynolds number in (3.4) is set to Re∞ = 104. The Stokes number is selected to

be unity St = 1 and the particle to fluid density ratio is set to ρp = 103.

A PSIC computation is performed for reference to determine the error of the closed

SPARSE formulation. Because of the sampling error, well known to be proportional to

1/
√
Np, the moments of the sampled cloud differ from the uniform distribution used

for the seeding. The average location of the sampled initial condition is xp = −0.998,

yp = 1.23 × 10−3 and the deviations σxp = 4.98 × 10−2 and σyp = 4.95 × 10−2. The

correlation is x′py
′
p = 2.927× 10−5 at time zero. The remainder of the moments are zero

because the cloud is at rest initially. To initialize a single SPARSE cloud (Mp = 1) we

specify the initial condition according and consistently with the PSIC moments. With

this initial condition, inaccuracies in the evolution of the third moment mostly affect the

comparison between PSIC and closed SPARSE (see third bullet point in the Remarks on

pp. 7), not in the least because the Taylor expansion of the linear velocity field in the

stagnation flow case is exact and errors in the truncation of the Schiller and Naumann

function are relatively small.

The traces of PSIC particles (red dots) and SPARSE clouds (green ellipses) are

compared in Figure 3.4 for several instances of time. The radii of the ellipse and its

orientation are set according to the eigenvalues and eigenvectors of the covariance matrix

of the cloud’s location in x- and y-direction computed from the SPARSE variables. The

cloud compresses and expands in x- and y-direction, respectively, as it traverses the

stagnating velocity field. The evolution of the first two moments computed with both

approaches are depicted in Figure 3.5.

The trends of the x-location of the cloud can be divided into three stages (see [2]

for a detailed discussion). In a first stage, all the point-particles in the cloud accelerate
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Figure 3.4. Evolution of the particle cloud immersed in the stagnation flow for different
instants of time t = [0, 0.5, 1.65, 2.2]. The red dots represent the point-particles inside the
cloud traced by a PSIC simulation and the green macro-particle is given by the SPARSE
method. The background is colored according to the modulus of the stagnation flow field
u = (u, v)⊤.

with a positive relative velocity ui − upi > 0 for 1 ≤ i ≤ Np towards a linearly decreasing

carrier flow velocity. At some point the carrier flow velocity becomes less as compared to

the velocity of some of the particles in the cloud. In this second stage, the cloud changes

from having all the particles accelerating to all decelerating, producing a maximum in the

average particle velocity up at approximately t = 1 (see Figure 3.5a). Correspondingly,

the average horizontal particle location trend changes from a parabolic increase to a

linear increase. After all the particles have crossed the zero relative velocity, all particles

in the cloud decelerate towards the stagnation point, defining the third stage where xp

describes a parabolic downward trend. The variances of the particle phase velocity in the

x-direction follow a similar trend of increase and decrease as shown in Figure 3.5c as its

average counterpart. The range of horizontal velocities grows as the cloud accelerates and

decreases in the third stage when decelerating, showing a maximum in the second stage.

The horizontal size of the particle σxp decreases from its initial value as the cloud reaches

the stagnation point. Second order correlations are depicted in Figures 3.5d–3.5f. The

three stages are once again observed.

Figures 3.4 and 3.5 show that closed SPARSE is accurate within 1.5% compared
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(a) (b) (c)

(d) (e) (f)

Figure 3.5. Averages (a) and deviations (b) of the particle phase for the closed SPARSE
method and the PSIC method.

to the PSIC results for a time period on the order of at least three characteristic time

scales. The relative error between the PSIC and SPARSE computations is related to the

truncation of the third moments in the SPARSE equations and the Taylor expansion of

the correction factor of the drag force f1 given by (3.24). The matching between both

approaches leads to a relative error less than 1% for all moments except for the maximum

relative error of u′pv
′
p which is 1.5%, which indicates that the most sensitive variable to

third order moments in the cloud is the correlation between the velocity components. The

maximum relative error of the averages is 0.3% for vp and the one of the deviations is

0.8% for σvp . Because of the very good match for a single SPARSE cloud with a small

number of PSIC particles, we do not investigate the effect of splitting clouds for this case.
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3.4.2 ABC flow

Closed SPARSE is tested in three-dimensions by tracing clouds in the three-

dimensional analytical velocity field of the so-called ABC flow. The ABC flow was

introduced by [192] as part of the family of Beltrami flows satisfying that ∇∧u = u. Any

ABC flow is an exact steady solution of the Navier-Stokes equations

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u+ f , (3.26a)

∇ · u = 0, (3.26b)

where without loss of generality the density is assumed to be the unity, p is the pressure,

ν the dynamic viscosity and the forcing f is giving by

f = ν (A sin z + C cos y, B sinx+ A cos z, C sin y +B cosx) , (3.27)

where for small Reynolds number, i.e., ν ≫ 1, the only stable solution is given by the

ABC flow field u = (u, v, w)⊤ with

u = A sin z + C cos y, (3.28a)

v = B sinx+ A cos z, (3.28b)

w = C sin y +B cosx. (3.28c)

The ABC flow has been extensively used to study chaotic effects in turbulence ([193, 194])

and non-linear dynamics ([195, 196, 197]). Here, we use it to test SPARSE clouds immersed

in the ABC carrier phase flow. The carrier phase flow is independent of time, i.e., steady,

and is specified according to (27). In other words, this field is not used as an initial

condition to a time-dependent numerical prediction of the carrier-flow field.

We set the constants of the carrier flow field to A =
√
3, B =

√
2 and C = 1. Ten
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thousand particles (Np = 104) are released at rest with initial location xp = yp = zp = π and

standard deviations σxp = σyp = σzp = 0.08 according to a uniform distribution where all

variables are statistically independent at the initial time. The initial velocity averages and

variances are zero since all point-particles are at rest initially. The correction factor f1 used

is taken according to (3.24) and the SPARSE simulation is computed with different levels of

splitting, i.e., the single cloud is uniformly divided into Mp = [1, 2, 3, 4, 5, 6]3 number of

smaller clouds along xp, yp and zp such that Mp =M
xp
p M

yp
p M

zp
p with M

xp
p =M

yp
p =M

up
p .

Similar to the stagnation flow test case, the sampled initial condition for PSIC is used as

initial condition for the closed SPARSE simulation. The reference Reynolds number is set

to Re∞ = 250 and the density ratio is ρp = 104. Four clouds with different Stokes numbers

St = [1, 2, 5, 10] are traced for 8 time units, during which the carrier flow was verified

with Navier-Stokes simulations (not shown here) to not have a significant time-dependent

change as compared to the initial velocity field. The non-dimensional particle diameters

according to (3.4) for the four different clouds simulated are dp = [2.68, 3.8, 6, 8.49]×10−3.

This leads to volume fractions of [0.91, 2.57, 10.15, 28.70](%) at the initial time. The

larger volume fractions are nonphysical because collisions can be expected to affect the

dynamics, but despite this the tests can still be used for purpose of assessing the formal,

numerical accuracy and correct implementation of the 3D SPARSE model against PSIC

as they both assume a non-collisional particle phase.

The average trajectories (solid black lines) of the four clouds are visualized in

Figures 3.6a–3.6d. Three-dimensional prolates, whose axes are scaled with the principle

strains, depict the cloud size. Single point-particles traced with the PSIC method are

depicted as points for different instances of time. The cloud trajectories are in large

determined by the the coherent structures of the ABC flow as visualized by the vorticity

contours in each plane of the boundaries of Figures 3.6a–3.6d. The x component of the

particle velocity initially increases as the particle cloud is accelerated by one of these

large flow structures. After the initial acceleration, the clouds are transported primarily
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in x-direction and its lateral motion is affected only in a secondary manner by smaller

vortices in the x − y and x − z planes. Therefore, the velocity and locations along x

are greater (see Figures 3.7a and 3.7b), whereas the average particle phase solutions in

the perpendicular directions remain on the same order of magnitude. As evidence of the

excellent match between PSIC and the closed SPARSE method we select the case for

St = 2 to show the results of all moments of the cloud in Figure 3.7. The averages of the

cloud location and velocity in Figures 3.7a and 3.7b show no visible difference between

both approaches. The particle phase variances are captured with the SPARSE method

as shown in Figures 3.7c and 3.7d. We note that at later time t > 7, the variances show

visible errors that are on the order of percentages, an indication that at that instance

the truncation errors are no longer negligible. The terms that correlate sub-cloud scale

position and velocity fluctuations in multiple directions can be either positive or negative,

indicating the combined grow of the cloud in the mixed direction. These correlated second

moments combining position and velocity are shown in Figures 3.7e–3.7i and show also

relative error on the order of percentages for later times.

To evaluate the convergence of the SPARSE solution with an increase number of

clouds, we perform computations for each case and subdivide (or split) in each spatial

dimension up to six subdivisions, meaning a total of Mp = 63 macro-particles for the

maximum level of splitting. The results in Figures 3.7a–3.7i correspond to the maximum

level of splitting. To obtain a measurement of the particle averages we use the modulus of

the average particle location and velocity and for a measure of the cloud’s deviation in

locations and velocities we use a geometrical average as follows

|xp| =
√
x2p + y2p + z2p, |up| =

√
u2p + v2p + w2

p, (3.29a)

δxp =
(
σxpσypσzp

)1/3
, δup =

(
σupσvpσwp

)1/3
. (3.29b)

The convergence of those measurements is shown in Figure 3.8 according to the error
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(a) (b)

(c) (d)

Figure 3.6. Results of the ABC flow test case. Four SPARSE cloud trajectories carried by
an ABC flow for Stokes numbers St = [1, 2, 5, 10] are depicted in Figures (a), (b) , (c) and
(d) respectively. Along the trajectory, the the SPARSE macro-particles are depicted with
prolates scaled by the principle strains given by the second moments and the point-particles
traced with PSIC are depicted as points for different instants of times t = [0, 2.67, 5.33, 8].
The carrier flow is visualized with the vorticity component corresponding to each plane
superposed with velocity vector fields.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7. Results of the SPARSE method compared with PSIC computations of the
ABC flow for the average particle location (a), particle velocity (b), deviations in particle
position (c) and particle velocity (d) as well as cross-terms in particle location (e) and in
particle velocity (f) for St = 2.
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Figure 3.8. Convergence of the SPARSE method as compared with the PSIC approach
for the average modulus of the particle location and velocity and representative particle
deviation in position and velocity computed as the averages of the magnitudes in (3.29)
when splitting into Mp = M

xp
p M

yp
p M

zp
p macro-particles where M

xp
p = M

yp
p = M

zp
p . The

error ε(·) of the magnitudes shown in the legend (defined in (3.23)) shows a third order
convergence rate. The Figure includes the results for the four clouds represented in
Figure 3.6 with St = [1, 2, 5, 10].

defined in (3.23) where the colors of the plots match with the clouds as depicted in

Figure 3.6. These trends show the expected convergence of the SPARSE method when the

initial condition is subdivided in macro-particles as derived in Section 3.2.4. The errors

are generally smaller for clouds with a greater Stokes number. This is consistent with the

proportionality of the right hand side of the system of closed SPARSE equations (3.10)

with 1/St. The truncated terms are also proportional to 1/St and thus reduced with an

increase in St. A physics analogy that intuitively explains this error behavior, is that

clouds with more inertia are more reticent to deformation according to the fluid flow and

the eventual grow of high order moments (or errors) within the cloud.

3.4.3 Isotropic turbulence

To test the three-dimensional SPARSE formulation in a non-analytical, computed

and complex velocity field, we revisit the simulation of a decaying isotropic turbulence

([198, 199]) performed in Ref. [57]. The isotropic turbulence simulation is performed in

a cube with periodic boundary conditions on all sides with the validated discontinuous
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Galerkin code as described in Ref. [200] and references therein, where the initial condition

is adopted from Ref. [201].

Computations are performed on a domain Ω spanned by coordinates (x, y, z), defin-

ing a cube of size 2π so that Ω = [0, 2π]× [0, 2π]× [0, 2π]. The reference Reynolds number

is Re∞ = 2357 and the initial turbulent Mach number Ma0 = 0.05 [201]. The physical

particles are initialized over a cubic domain of size l0 = 0.1 stretching approximately 3

grid cells in each direction with Np = 27, 000 total point-particles uniformly distributed in

each direction. The particles are released at rest and according to a one-way coupling,

assuming that the flow is dilute, the particles have small but not negligible inertia with a

Stokes number St = 0.5 but the flow is not perturbed by them. The temperature of all

point-particles is unity at t=0. The non-dimensional particle diameter is dp = 2× 10−3

and the ratio of densities ρp = 103. The drag and heat transfer correction factors for this

case are adopted from Refs. [48, 188] and read as

f1 =

(
1 + 0.38

Rep
24

+
Re0.5p

6

)[
1 + exp

(
−0.43
M4.67

p

)]
, (3.30a)

f2 = 1 + 0.3Re0.5p Pr0.33. (3.30b)

The computed carrier phase velocities are used to determine the particle Reynolds as

defined in (3.4) and the particle Mach numberMp = |u−up|/
√
Tf , in the forcing correction

factors (3.30). The Prandtl number is Pr = 0.7 and the relative heat capacity is set to

unity cr = 1.

The result of the computations for a thousand macro-particles Mp = 103, uniformly

distributed in space is shown in Figure 3.9 for several instants of time where the 27, 000

point-particles computed with the PSIC method are shown as points and the SPARSE

clouds as ellipsoids using the covariance matrix of the cloud location in three dimensions.

Contours of the turbulent kinetic energy k visualize the carrier phase’s turbulent structures
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on the boundaries of the cube. The particles initially at rest react to the carrier flow. As

compared to the fluid tracers (not shown), the inertial tracers have a smoother response.

After some time, the initial cube of particles is dispersed and the macro-particles are

advected and deformed according to the carrier flow.

The average particle location and velocity defined in (3.29a) computed with the

PSIC and SPARSE methods are compared in Figure 3.10a. The plots show that the mean

location and velocity initially change according to the dynamics of the eddies at the cloud

location. As the cloud spreads and the fluid velocity is sampled over a larger area, the

fluid velocity through the cloud approaches zero after an initial acceleration because the

turbulence is isotropic, making the average velocity in the box to evolve towards zero. The

deviations of the cloud’s location is plotted versus time in Figure 3.10b and show a general

increase in all three dimensions consistent with turbulent diffusion mechanisms [202]. The

particle standard deviations of the sub-cloud scale velocity increase from an initial rest

state in which the standard deviations are zero towards a trend that correlates with the

decaying carrier phase turbulence as seen in Figure 3.10d. The temperature average

is almost constant and the standard deviation of the temperature small as shown in

Figure 3.10c because the turbulence Mach number is low and the flow is near isothermal.

The standard deviation of the particle temperature of the cloud behaves similar to the

one of the particle velocity, starting from an initial value zero according to a uniform

temperature in the cloud to increase with an oscillating trend governed by the changes

in the carrier phase flow temperature. The results by PSIC and SPARSE methods are

in an excellent agreement for the average magnitudes of the particle cloud as well as for

its deviations. The rest of the second moments not shown in Figure 3.10 are also well

captured by the SPARSE method. The maximum discrepancy in the first two moments

when comparing SPARSE with PSIC show a relative error of 3% or smaller validating the

closed SPARSE tracer.

The computational efficiency of the SPARSE tracer versus the point particle tracer
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9. Locations of the particles and macro-particles tracked with PSIC and
SPARSE methods for the isotropic decaying turbulence case at times (a) t = 0, (b) t = 0.8,
(c) t = 1.6, (d) t = 2.4, (e) t = 3.2 and (f) t = 4. The contours show the turbulent kinetic
energy in the boundaries of the domain. The point-particles are represented with points
and the macro-particles with ellipsoids.
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depends on a number of factors for this three-dimensional isotropic turbulence simulation.

Firstly, the number of ODEs of the SPARSE model as compared to PSIC is 1/0.1852 larger.

Despite this near factor five increased number of equations, SPARSE is computational far

more efficient, because secondly each macro-particle models hundreds of point particles

which leads to saving according to (3.22) and thirdly because SPARSE has a third order

convergence rate (Figure 3.11) of the statistics whereas PSIC converges according the

inverse of the square root of the number of samples, i.e., number of particles. To obtain

accurate estimates of the increased computational efficiency, a combination of these factors

determine the computational efficiency. For an accurate estimate of code, the algorithms

have to be optimized with various computer languages, which is beyond the scope of the

current paper.

3.5 Summary of results

A closed SPARSE tracer is developed that predicts the dynamics of the first two

statistical moments of groups of particles and traces them as a single point. This cloud

or macro-particle approach accounts for the effects of carrier phase velocity distribution

and the sub-cloud’s second moments of the particle phase and carrier phase. The tracer

combines a truncated Taylor expansion of the forcing correction factors around the cloud’s

mean relative velocity and a Reynolds decomposition of the ensemble averages of the

particle variables within the cloud. Using a Taylor expansion, averaging and truncation,

the extended SPARSE formulation provides a closed set of equations for the first two

moments of the particle cloud. The closure expresses unknown combined moments of both

phases in terms of those known moments of the disperse phase that are traced with the

SPARSE method. This closes the SPARSE tracer method that so far has been used with

an a priori closure.

The SPARSE method reduces the computational expense for the tracing of the first
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(a) (b)

(c) (d)

Figure 3.10. Statistics of the inertial particle cloud in the three-dimensional decaying
isotropic turbulence case computed with PSIC and SPARSE methods; (a) average module
of the particle cloud location and velocity, (b) spatial deviations of the particle cloud, (c)
temperature mean and deviation and (c) deviations of the particle cloud velocity.
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Figure 3.11. Convergence of the SPARSE method as compared with the PSIC approach
for the average modulus of the particle location and velocity and representative particle
deviation in position and velocity computed as the averages of the magnitudes in (3.29)
and average and standard deviation of the particle temperature.

two statistical moments of a cloud as compared to a simulation with the PSIC method by

reducing the required degrees of freedom. It improves upon the accuracy of commonly

used zeroth order Cloud-in-Cell models through a second order moment correction by

expanding the forcing function in the surroundings of the cloud. The error of the SPARSE

tracer is a function of the truncated terms of the Taylor expansions and the truncation of

higher-order statistical moments that are shown in test cases to converge with the size of

the macro-particle to the third power.

The closed SPARSE method is verified and validated against PSIC results for

analytical one-, two- and three-dimensional flows where the relative errors are either

negligible or small percentages in all the test cases.

The SPARSE tracer is accurate for finite time and will require merging and join of

macro-particles to adapt the number of macro-particles needed depending on the error of

the model as the simulation evolves.
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Chapter 4

SPARSE-R: A point-cloud tracer
with random forcing

4.1 Introduction

Here, the SPARSE–R method [4] is introduced, that accounts for both randomness

of the empirical or data–driven forcing functions and/or stochasticity of the subcloud

dynamics, extending the SPARSE model described in Chapter 3. We define the random

forcing function via series expansions involving proper sets of random as proposed in

Ref. [99] to trace randomly forced (rF) particle clouds. The SPARSE–R method is

designed to capture the first two moments of the particle phase by computing a closed

set of equations in Lagrangian form combining Taylor expansions around the average

magnitudes of the cloud with Reynolds averaging. The SPARSE–R method exhibits a

third order convergence rate with respect to the standard deviations of the particle phase

variables. By subdividing or splitting the particle cloud into subclouds (see Fig. 1.1 right)

the accuracy of the method is ensured. Using a mixture distribution (MD) of Gaussians,

SPARSE–R approximates higher order moments and enables the reconstruction of the

PDF of the of the underlying point–particle population. The computational savings as

compared with Monte Carlo (MC) simulations using the PSIC description (MC–PSIC), is

proportional to the number of point–clouds or subclouds divided by the total number of

point–particles. Because of the slow convergence of MC, the number of samples (point–
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particles) is several order of magnitudes larger than the number of subclouds needed for an

accurate SPARSE–R simulation, ensuring computational savings. The SPARSE–R method

computes the moments and the PDF of the particle phase in a closed and computationally

efficient manner that makes it scalable to complex flows. It combines the advantages of

the MoM in a closed form, reduction of the computational cost as compared to sampling

methods, with the advantages of PDF methods, full statistical description able to capture

rare events linked to fat-tailed PDFs in the solution. Considering the MC–PSIC simulations

the ground truth, we compare the SPARSE–R method with the MC–PSIC method in

a variety of verification tests on dilute, one–way coupled particle–laden flow problems

with prescribed velocity fields, and a numerical simulation of an isotropic turbulence flow,

where the gas is simulated with a compressible discontinuous Galerkin (DG) DNS solver.

4.2 SPARSE–R: point–cloud model with random

forcing

4.2.1 Point–particle model

The non–dimensional governing point–particle equations for a small spherical

particle immersed in a carrier flow where the inertial effects are dominant is given by

dxp

dt
= up, (4.1a)

dup

dt
=
f1
St

(u− up) , (4.1b)

dTp
dt

=
2cr
3Pr

f2
St

(T − Tp) , (4.1c)

where xp, up and Tp are the non–dimensional particle location, velocity and temperature

and u and T are the non–dimensional velocity and temperature of the carrier flow evaluated

at the particle location. The Prandtl number Pr = µ̃c̃/k̃ is defined with the dimensional

dynamic viscosity µ̃, specific heat capacity c̃ and conductivity k̃ of the flow. The Stokes
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number St = τp/τf is defined with the characteristic time of the particles τp = ρ̃pd̃
2

p/ (18µ̃)

where ρ̃p and d̃p are the dimensional density and diameter of the particles and τf = L∞/U∞

is the characteristic time of the flow defined with a reference length and velocity. Making

use of reference values denoted with subscript infinite, we define the reference Prandtl

number Pr∞ = µ∞c∞/k∞ and Reynolds number Re∞ = ρ∞U∞L∞/µ∞, one can rewrite

the non–dimensional numbers in terms of the reference values

Rep = Re∞
ρ

µ
|u− up|dp, St = Re∞

ρpd
2
p

18µ
, Pr = Pr∞

µc

k
(4.2)

using the non–dimensional variables ρ = ρ̃/ρ∞, µ = µ̃/µ∞, k = k̃/k∞, c = c̃/c∞,

ρp = ρ̃p/ρ∞, cp = c̃p/c∞ and, dp = d̃p/L∞. The specific heat ratio of the two phases is

defined as cr = cp/c.

The correction factors of exchanged momentum and energy are given by the

functions f1 and f2 which correct the analytical laminar solution for the drag coefficient

CD and Nusselt number Nu (based on the particle diameter) as

CD =
24

Rep
f1, (4.3a)

Nu = 2f2. (4.3b)

These functions, are also denoted the forcing functions, typically correct for higher particle

Reynolds and Mach numbers and/or other flow parameters [48, 49, 50, 51, 52, 53, 54].

4.2.2 Point–cloud SPARSE model

Following the SPARSE approach as described in Refs. [57, 58, 3], we model a cloud

of particles with the MoM using a Reynolds decomposition of any instantaneous scalar

particle variable ϕ into its average and fluctuating component according to ϕ = ϕ + ϕ′,
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where the average is defined by its ensemble average

ϕ =
1

Np

Np∑
i=1

ϕi, (4.4)

for Np point–particles within a cloud. Using the Reynolds decomposition for the variables

of the two phases including the forcing functions f1 and f2, the system of equations for

the kinematics, dynamics and thermodynamics of a stochastic cloud of point–particles can

be written as

dxp

dt
+

dx′
p

dt
= up + u′

p, (4.5a)

dup

dt
+

du′
p

dt
=

1

St

(
f1 + f ′

1

) (
u+ u′ − up − u′

p

)
, (4.5b)

dT p

dt
+

dT ′
p

dt
=

2cr
3PrSt

(
f2 + f ′

2

) (
T + T ′ − T p − T ′

p

)
, (4.5c)

that after manipulation and averaging leads to the equations for the first two moments of the

particle phase

dxpi
dt

= upi, (4.6a)

St
dupi
dt

= f1

(
ui − upi

)
+ f ′

1u
′
i − f ′

1u
′
pi
, (4.6b)

3PrSt

2cr

dT p

dt
= f2

(
T − T p

)
+ f ′

2T
′ − f ′

2T
′
p, (4.6c)

d

dt

(
x′pix

′
pj

)
= x′piu

′
pj

+ x′pju
′
pi
, (4.6d)

St
d

dt

(
u′piu

′
pj

)
= f1

(
u′iu

′
pj

+ u′ju
′
pi
− 2u′piu

′
pj

)
+ f ′

1u
′
pi

(
uj − upj

)
+ f ′

1u
′
pj

(
ui − upi

)
, (4.6e)

3PrSt

4cr

dT ′
p
2

dt
= f2

(
T ′T ′

p − T ′
p

)
+ f ′

2T
′
p

(
T − T p

)
, (4.6f)

d

dt

(
x′piu

′
pj

)
= u′piu

′
pj

+
1

St

[
f1

(
x′piu

′
j − x′piu

′
pj

)
+ f ′

1x
′
pi

(
uj − upj

)]
, (4.6g)

d

dt

(
x′piT

′
p

)
= u′piT

′
p +

2cr
3PrSt

[
f2

(
x′piT

′ − x′piT
′
p

)
+ f ′

2x
′
pi

(
T − T p

)]
, (4.6h)

d

dt

(
u′piT

′
p

)
=

1

St

[
f1

(
u′iT

′
p − u′piT

′
p

)
+ f ′

1T
′
p

(
ui − upi

)]
+

2cr
3PrSt

[
f2

(
u′piT

′ − x′piT
′
p

)
+ f ′

2u
′
pi

(
T − T p

)]
,

(4.6i)
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where index notation with i = 1, 2, 3 and j = 1, 2, 3 is used to present a compact

version of the equations. Note that for any two vectorial variables η and ξ, the term

η′iξ
′
j is a component of a three by three tensor, whereas ηi is a the component of a three–

dimensional vector. For the general three–dimensional case we have xp = (xp yp zp)
⊤ and

up = (up vp wp)
⊤. For a combined moment of a scalar ϕ and a vectorial magnitude η, the

term ϕ′η′i represent the i−th component of a vector. Note that the system of equations (4.6)

truncates moments that are greater than third order while the equations for the first

moments (4.6a)–(4.6c) are not truncated. In the second moment equations (4.6d)–(4.6i)

high–order terms are neglected.

4.2.3 Random forcing SPARSE–R model

The dependencies of both correction functions f1 and f2 correct for physics that

deviate from the case of creeping flow over a spherical particle. In the PSIC model,

those functions have generally been used as exact force models that depend only on the

particle phase and the carrier phase. In practice, however, they can be known only within

confidence intervals as they are approximate curve fits to experimental and computational

data that have sources of systematic uncertainty or epistemic uncertainty. Alternatively,

the forcing function can be interpreted in the context of stochastic models to account for

stochasticity of subgrid scales. In other words, the function may be used to account for

aleatoricism in the particle forcing.

To model confidence intervals, we follow Refs. [57, 58, 3], and consider the functions

f1 and f2 to be dependent on the relative velocity a = u−up and the random coefficients

αi and βi with i = 1, . . . , N where N is the number of modes considered. First proposed

in Ref. [99] and then later also used in Ref. [6], the correction functions with quantified
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uncertainty can be described with a series expansion as

f1(a) =
∞∑
i=1

αiψi(a) ≈
N∑
i=1

αiψi(a), f2(a) =
∞∑
i=1

βiζi(a) ≈
N∑
i=1

βiζi(a), (4.7)

where the variables αi and βi are correlated or uncorrelated random coefficients that

quantify the uncertainty in the forcing defined by the joint PDF fαβ(α1, . . . , αN , β1, . . . , βN )

and the orthogonal basis functions ψi and ζi. We assume f1 and f2 to have compact

support on a ∈ [amin, amax]. We take both ψi and ζi as a Chebyshev polynomial of the

first kind. Because the forcing function is approximated by a polynomial, it can only be

accurate within the interval of the independent variable that the polynomial depends on,

i.e., a. In SPARSE the forcing function and its derivative are evaluated only at the mean

relative velocity a. So, if the SPARSE solution predicts a mean relative velocity outside

of the accurate polynomial range, then the forcing function will need to be approximated

within a new interval.

Using (4.7) and decomposing the stochastic variables in average plus fluctuation,

the mean and variance of the forcing functions are given by

f 1 =
N∑
i=1

αiψi (a) , (4.8a)

σ2
f1

=

(
N∑
i=1

α′
iψi (a)

)2

=
N∑
i=1

α′
i
2ψ2

i (a) +

N(N−1)/2∑
i ̸=j

2α′
iα

′
jψi (a)ψj (a) , (4.8b)

and equivalently for f2. The variance of the forcing function is then described by the

second moments of the coefficients and captures the uncertainty in the forcing functions

by combining N modes. As an example consider an empirical forcing that is based on the

Schiller and Naumann (SN) correlation [203] given by

g1 = 1 + 0.15Re0.687p . (4.9)

94



In Figure 4.1a, this forcing is plotted with an unknown confidence interval modeled by

the first five Chebyshev modes ψ1, . . . , ψ5 where the random coefficients α1, . . . , α5 are

considered uncorrelated. Two standard deviation bounds are depicted when considering

the standard deviation of all modes zero except for the modes one σi ̸=0 = 0, third σi ̸=3 = 0

and fifth σi ̸=5 = 0 in dashed, dash–dotted and dotted lines respectively. The number

of random modes is chosen such that the series expansion can accurately approximate

complex dependencies of the confident interval with the relative velocity. Considering only

the first mode to be random (i.e., only α1 is given by a PDF and the rest α2, . . . , αN are

deterministic) the standard deviation σf1 does not change with respect to the relative

velocity (Fig. 4.1a dashed line). By combining modes, more complex functions and

confidence interval can be approximated by (4.8b). In Figure 4.1b (dashed line), we show

a combination of only two modes that localizes a particle Reynolds number where the

forcing is defined with a smaller confidence interval.

We consider a representation of the random function by a single mode as

f1(a) = αg1(a), f2(a) = βg2(a), (4.10)

where g1 and g2 carry the dependencies with the relative velocity and the random coefficients

are reduced to α and β with given PDFs fα(α) and fβ(β). For the Schiller and Naumann

correlation this yields f1 = α(1+0.15Re0.687p ) which corresponds to the dash–dotted line in

Figure 4.1b. This confidence interval for a single mode representation with the Reynolds

number is consistent with trends reported in literature (see for example [204]).

The average of the random coefficients, α and β, in (4.10) is unity, α = β = 1. The

second moments of the coefficients α′2, β′2 and α′β′ are the measures that quantify the

uncertainty in this forcing function. The second moments propagate non–linearly into the

solution of the SPARSE–R cloud. For a deterministic forcing the moments are zero.
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(a) (b)

Figure 4.1. Two bandwidth representation of the random forcing function f1 when
the SN correlation is fitted with the first five modes; (a) considering random only in the
first (dashed line), third (dash–dotted line) and fifth (dotted line) modes; (b) combining
the random modes first and second (dashed line) and taking f1 = α(1 + 0.15Re0.687p )
(dash–dotted line). The particle Reynolds number is Rep = Re∞|a|dp according to (4.2)
where constant density and viscosity are considered.

4.2.4 Closure model

The SPARSE–R equations in (4.6) are not yet closed for terms that are on the

order of fluctuations squared and that are function of a combination of particle phase and

flow variables, and correction functions. To close (4.6), we follow the procedure in Ref. [3].

The carrier flow velocity u and temperature T fields are Taylor expanded around the

average particle location truncating terms of order greater than two. By using a Taylor

expansion, we obtain an estimate of the carrier flow field at the particle locations within

the cloud region and can be interpreted as interpolation within the cloud region. The

forcing functions f1 and f2 are also expanded around the average values of the relative

velocity and random coefficients of the particle cloud. For completeness, we review the

closure approach and discuss it for random forcing.

Starting with the interpolation of the mean carrier flow velocity and temperature,

we Taylor expand at the average particle location of the cloud. Let ϕ be a flow variable
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(for example, a velocity component ui or the temperature T ), then

ϕ ≈ ϕ (xp) + x′pi
∂ϕ

∂xi

∣∣∣∣
xp

+
1

2
x′pix

′
pj

∂2ϕ

∂xi∂xj

∣∣∣∣
xp

= ϕ (xp) +
1

2
x′pix

′
pj

∂2ϕ

∂xi∂xj

∣∣∣∣
xp

, (4.11)

which relates the solution evaluated at the averaged cloud’s location, the second derivative

of the carrier phase at the averaged cloud’s location and the covariances of the locations

of the particle cloud x′pix
′
pj

which are governed by equation (4.6d).

To close second moments, we proceed similarly by Taylor expanding the flow

variables. Depending on the type of term to close, the Taylor expansion has to be applied

once or twice to find a closure. If the term involves two variables different from the particle

phase variables (particle position, velocity or temperature), it has to be applied twice

whereas if it contains a combination of a flow variable or forcing function with a particle

variable, it has to be applied only once. For example, for a term involving a generic particle

variable ξp and carrier phase variable η, it follows that

ξ′pη
′ = ξ′p (η − η) ≈ ξ′p

(
η (xp) + x′pi

∂η

∂xi

∣∣∣∣
xp

− η

)
= ξ′px

′
pi

∂η

∂xi

∣∣∣∣
xp

, (4.12)

where ξp can be any of the components of the particle location xp, velocity up or temperature

Tp and η can be any component of the flow field u or temperature T . A second moment,

however, that combines two flow variables ξ and η (components of the flow field or

temperature), has to be Taylor expand twice to close it as follows

ξ′η′ ≈ ξ′x′pi
∂η

∂xi

∣∣∣∣
xp

≈ x′pi

(
ξ(xp) + x′pj

∂ξ

∂xj

∣∣∣∣
xp

− ξ

)
∂η

∂xi

∣∣∣∣
xp

= x′pix
′
pj

∂ξ

∂xj

∣∣∣∣
xp

∂η

∂xi

∣∣∣∣
xp

,

(4.13)

where the approximation in (4.12) has been applied first to expand η and then to ξ.
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To account for uncertainties in the forcing functions f1 and f2 we expand as follows

f 1 ≈ f1|α,a + α′ ∂f1
∂α

∣∣∣∣
α,a

+ a′i
∂f1
∂ai

∣∣∣∣
α,a

+
α′2

2

∂2f1
∂α2

∣∣∣∣
α,a

+
α′a′i
2

∂2f1
∂α∂ai

∣∣∣∣
α,a

+
a′ia

′
j

2

∂2f1
∂ai∂aj

∣∣∣∣
α,a

= f1 (α,a) +
1

2
α′a′i

∂g1
∂ai

∣∣∣∣
α,a

+
1

2

(
u′iu

′
j − u′iu′pj − u

′
ju

′
pi
+ u′piu

′
pj

) ∂2f1
∂ai∂aj

∣∣∣∣
α,a

,

(4.14)

where f1 depends linearly on the random coefficient α according to (4.10) and the identity

a′ia
′
i = u′iu

′
j − u′iu′pj − u

′
ju

′
pi
+ u′piu

′
pj

has been used. Note that, the procedure is easily

extendable to N randomly weighted modes according to (4.7) by adding the partials

of the functions ψi and ζi. It can also applied to determine the correction function f2.

The resulting expression in (4.14) contains the terms u′iu
′
pj

and u′iu
′
j that need to be

closed using the relations (4.12) and (4.13), respectively. The terms that correlate random

coefficients and particle variables quantify epistemic uncertainty. In the limit that the

standard deviations of the PDFs of the random coefficients go to zero, the random and

deterministic forcing functions coincide and SPARSE–R model simplifies to SPARSE.

For the second moments involving the forcing functions with any particle variable

ξp, the closure is applied as follows

ξ′pf
′
1 = ξ′p

(
f1 − f 1

)
≈ ξ′p

(
f1 (α,a) + α′ ∂f1

∂α

∣∣∣∣
α,a

+ a′i
∂f1
∂ai

∣∣∣∣
α,a

− f 1

)

= α′ξ′pg1 (α,a) +
(
ξ′pu

′
i − ξ′pu′pi

) ∂f1
∂ai

∣∣∣∣
α,a

,

(4.15)

where the identities ∂f1/∂α = g1, according to (4.10), and ai = ui − upi have been used.

The resulting expression in (4.15) contains the unclosed term ξ′pu
′
i that can be closed using

the relation (4.12). For the term α′ξ′p however (combinations of particle variables with

random coefficients), we can not apply the closure procedure because the gradients of

the random coefficients within the cloud are unknown, preventing its Taylor expansion.
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Rather, we use the MoM to derive moment equations that govern these terms

d

dt

(
α′x′pi

)
= α′u′pi, (4.16a)

St
d

dt

(
α′u′pi

)
= f 1

(
α′u′i − α′u′pi

)
+ α′f ′

1

(
ui − upi

)
, (4.16b)

3PrSt

2cr

d

dt

(
α′T ′

p

)
= f 2

(
α′T ′ − α′T ′

p

)
+ α′f ′

2

(
T − T p

)
, (4.16c)

where α can also be substituted by β. If we considered an expansion with N modes,

relations (4.16) have to be solved for each of the N random coefficients for αix′pj, αiu′pj

and αiT ′
p with i = 1, . . . , N .

In equations (4.16), terms combining the random coefficients and the forcing

functions are expressed as

α′f ′
1 ≈ α′2g1 (α,a) +

(
α′u′i − α′u′pi

) ∂f1
∂ai

∣∣∣∣
α,a

, (4.17a)

α′f ′
2 ≈ α′β′g2

(
β,a

)
+
(
α′u′i − α′u′pi

) ∂f2
∂ai

∣∣∣∣
β,a

, (4.17b)

following a similar Taylor expansion. Finally, the only remaining terms that require closure

in (4.17) combine the random coefficients with the fluid phase (as for example α′u′i). Those

terms, generally expressed as α′η′ where α is exchangeable with β and η is any scalar flow

variable, close as follows

α′η′ ≈ α′x′pi
∂η

∂xi

∣∣∣∣
xp

, (4.18)

that relates again to the system of equations (4.16).

For closure of correlations of the forcing functions and a flow variable, the procedure

has to be applied twice. Generalizing, η for any flow variable (velocity components or
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temperature), it follows that

η′f ′
1 ≈ x′pif

′
1

∂η

∂xi

∣∣∣∣
α,a

≈

[
α′x′pig1 (α,a) +

(
x′piu

′
j − x′piu

′
pj

) ∂f1
∂aj

∣∣∣∣
α,a

]
∂η

∂xi

∣∣∣∣
α,a

, (4.19)

where the term x′piu
′
j is closed using the relation (4.12) and α′x′pi is closed with (4.16a).

Equations (4.11)–(4.19) represent the closed form of the randomly forced SPARSE–

R model. Its solution depends on inputs of the averages of the carrier flow fields and

forcing functions. The accuracy of the SPARSE was shown to be of third order for the

deterministic model consistent with the order of the truncations of the Taylor series and

moment equations. Similarly here, the accuracy of the randomly forced model depends

on: (a) the truncation of terms on the order of statistical correlations of order greater

than two and (b) the truncation of the Taylor series terms greater than second order.

The SPARSE–R method is closed and thus predictive. It converges with a third order

expected rate with the size of the initial particle cloud given by the standard deviations in

phase space consequently with the retained terms in the SPARSE–R formulation. The

analysis of the leading order truncated terms in SPARSE–R is added in the Appendix C

for completeness.

4.2.5 Numerical implementation

Tracing

The numerical solution of the governing system of equations (4.6) and (4.11)–(4.19)

requires four stages including (1) locating the host grid or carrier flow domain of the

point–cloud, (2) interpolating the flow variable and gradients at the point–cloud’s location

(because this is a point–cloud, there is only one location, that happens to be the mean

location), (3) determining the forcing gradients at the cloud’s mean location and (4)

integrating in time. The first stage requires algorithms that are similar to the PSIC

method. We locate host cell as described in Ref. [71] if needed. For the second stage, we

100



either use analytical solutions or interpolations [71, 183] that are consistent with the carrier

phase solver. A third order total variation diminishing (TVD) Runge–Kutta scheme [175]

is used for time integration.

For the third (interpolation) stage we need to compute the first and second deriva-

tives of the forcing functions f1 and f2 with respect to the relative velocity components and

similarly the first and second derivatives of the carrier flow velocity and temperature with

respect to space. The derivatives of an analytical forcing function can be precomputed

and evaluated at the average values during the time integration in the fourth stage. A

polynomial approximation of the forcing function requires the numerical evaluation of the

derivative. At each location, this derivative is interpolated at the required average values

during the time integration. In a similar fashion, for analytically prescribed carrier phase

flows, the derivatives are precomputed analytically and evaluated at the average cloud’s

location during the time integration. If the carrier phase is computed numerically, the

derivatives of velocity and temperature field with respect to space are numerically deter-

mined and interpolated at the average cloud’s location during the fourth (time integration)

stage.

Splitting and convergence

To compare point–cloud tracer results with MC–PSIC results in the tests below, we

define the initial state of a point–particle cloud by its first two moments computed from

the point–particles contained in the cloud. As an example, for any two particle variables

ξp and ηp, a first moment ηp and second moment ξ′pη
′
p are computed as

ηp =
1

Np

Np∑
i=1

ηpi, (4.20a)

ξ′pη
′
p =

1

Np

Np∑
i=1

(
ξpi − ξp

) (
ηpi − ηp

)
, (4.20b)
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for a cloud containing Np point–particles.

Figure 4.2. Illustration of a cloud of Np = 103 point–particles represented by its point–
particles depicted as points and subclouds (point–clouds) as ellipses at the initial time
t = 0 and a later time t > 0. The initial cloud is split into Mp subclouds whose moments
are computed from the PSIC particles according to the splitting algorithm [4].

SPARSE was shown to be third–order accurate for a union of computational clouds

with respect to the standard deviations in each independent (physical and phase space)

dimension in Ref. [3]. To improve accuracy, a splitting algorithm was proposed that

converges the solution according to this rate by reducing the cloud’s sizing and increasing

the number of clouds along each independent dimension. To split, we divide the cloud

of point–particles at the initial time into a union of uniform sets. For example for a

one–dimensional case we divide the cloud in α−xp−up, which leads to Mp =Mα
p M

xp
p M

up
p

subclouds with Mα
p , M

xp
p and M

up
p the number of divisions along α, xp and up respectively.

Considering uniform splitting along all dimensions, in the general three–dimensional non–

isothermal case one has Mp =MN+d+e where N is the number of modes considered in the

random forcing, d = 1, 2, 3 is the dimension of the problem and e = 1 for non–isothermal

and e = 0 for isothermal flow. We identify M as the level of splitting of the cloud. The
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splitting algorithm is schematically illustrated in Figure 4.2, which visualizes the sampling

of a group of point particles and its division into Mp = 1, Mp = 23 and Mp = 33 subclouds,

corresponding to the levels of splitting M = [1, 2, 3], in the three dimensional space

spanned by the particle’s coordinate xp, its velocity up and the random forcing coefficient

α. Once the cloud is split, the moments of each subcloud are computed using the relations

in (4.20). For further details of the algorithm, we refer to [3, 4].

The moments of the cloud composed by the total number of point–particles, i.e.,

without splitting, are post–processed by joining each subcloud k, with k = 1, . . . ,Mp as

follows

ϕ =

Mp∑
k=1

wkϕk, (4.21a)

ξ′η′ =

Mp∑
k=1

wkξ′η′k +

Mp∑
k=1

wk(ξk − ξ)(ηk − η), (4.21b)

for any three solution variables ϕ, η and ξ. We will refer to this as the Cumulative Cloud

throughout the paper, i.e., a multivariate Gaussian description of the accumulation of the

subclouds where the moments of each of them have been computed with SPARSE–R and

then joined with (4.21). The moments of the Cumulative Cloud converge to the Monte

Carlo results using (4.20) with the level of splitting. The relations (4.21) are exact and do

not add any approximation error to the computation.

The Cumulative Cloud can be visualized as an ellipsoid or a prolate spheroid for

any three variables of the particle phase and ellipse for any two variables by scaling the

principle axis, in the directions of the eigenvectors of the covariance matrix, with the

eigenvalues of the covariance matrix in the N + d+ e dimensional space. For example, for

103



three particle variables ϕ, ξ and η, one has the following covariance matrices

Kϕξη =


ϕ′2 ϕ′ξ′ ϕ′η′

ϕ′ξ′ ξ′2 ξ′η′

ϕ′η′ ξ′η′ η′2

 , Kϕξ =

ϕ′2 ϕ′ξ′

ϕ′ξ′ ξ′2

 , Kϕη =

ϕ′2 ϕ′η′

ϕ′η′ η′2

 , Kξη =

 ξ′2 ξ′η′

ξ′η′ η′2

 .

(4.22)

Note that this representation may be also performed for a set of samples of the variables

ϕ, ξ and η in a discrete manner from MC–PSIC results.

In approximation, moments greater than second of the Cumulative Cloud can also

be computed as follows

ϕ′ξ′η′ =

Mp∑
k=1

wk

(
ϕk − ϕ

) (
ξk − ξ

)
(ηk − η) , (4.23)

which is the equivalent of a Monte Carlo sampling of point–particles, but for the SPARSE–

R subclouds. In (4.23) ϕ, ξ and η are the average values of the Cumulative Cloud and k is

an index that loops over all subclouds. The PDF of the Cumulative Cloud is non–Gaussian

and can be reconstructed using a mixture distribution by adding weighted Gaussians that

are defined with the two moments of each subcloud for a given level of splitting. The PDF

of any particle variable ϕ of a cloud split into Mp subclouds can be computed as

fϕ(ϕ) =

Mp∑
k=1

wk√
2πϕ′

k
2
exp

(
−
(
ϕ− ϕk

)2
2ϕ′

k
2

)
. (4.24)

Error measurement

The computational savings of using SPARSE–R can be estimated by determining

the reduction of degrees of freedom as compared with MC–PSIC, i.e., the number of

variables to solve along time. The ratio of computational cost of SPARSE–R as compared
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to a MC–PSIC when considering N modes to define the forcing functions is

r =
2N (d+ e (d+ 1)) + 2d2 + 3d+ 2e (d+ 1)

2d+ e

(
Mp

Np

)
. (4.25)

The factor multiplyingMp/Np in the above expression is equal to 7 for a three–dimensional

d = 3 non–isothermal e = 1 simulation or smaller if simplified to less dimensions or

isothermal when considering a single mode N = 1. Generally, we find that Np ≫Mp to

reproduce accurate results by the SPARSE–R method, ensuring computational savings.

To measure the errors of the SPARSE–R method, we normalize the L2 norm of the

difference between the MC–PSIC and SPARSE–R results of a given variable with the L∞

norm of the MC–PSIC result as follows

ε(·) = ∥(·)
SPARSE–R − (·)MC–PSIC∥2
∥(·)MC–PSIC∥∞

. (4.26)

We also define averaged magnitudes of the first and second moments µ1 and µ2 respectively

that for a SPARSE–R computation with Nvar number of variables ϕj with j = 1, . . . , Nvar,

are given by

µ1 =

(
Nvar∑
j=1

ϕ
2

j

)1/2

, µ2 =

∣∣∣∣∣∣∣∣∣∣
ϕ′
1
2 . . . ϕ′

Nvar
ϕ′
1

...
. . .

...

ϕ′
1ϕ

′
Nvar

. . . ϕ′
Nvar

2

∣∣∣∣∣∣∣∣∣∣
, (4.27)

that combined with (4.26) provides an error measure for all Nvar dependent solution

variables in (4.6).
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4.3 Numerical experiments

4.3.1 One–dimensional sinusoidal velocity field

To test the accuracy of SPARSE–R as compared to MC–PSIC, we consider a cloud

of point–particles carried by an isothermal one–dimensional sinusoidal flow velocity field

given by

u(x) = 1 +
1

2
sin (2x), (4.28)

where the forcing f1 is defined according to (4.10) and g1 according to the the Schiller and

Naumann correlation such that

f1 = α
(
1 + 0.15Re0.687p

)
. (4.29)

This test is not necessarily physical, but the sinusoidal velocity field is typical and

representative of a modal (Fourier) analysis in chaotic flows. The simple one–dimensional

flow enables testing and verification of accuracy. Moreover, it provides fundamental insights

into the behavior of cloud dynamics that can serve as a reference for physically relevant

simulations.

The initial condition is set according to a uniform distribution U to sample the

initial locations xp0 and velocities up0 such that

xp0 ∼ U
[
xp0min

, xp0max

]
, up0 ∼ U

[
up0min

, up0max

]
. (4.30)

We test the formulation for both, dF and rF particles with α = 1 and

α ∼ U [αmin, αmax] , (4.31)
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respectively. The uniform distributions U are defined by the limit values αmin and αmax,

which are directly related to its average and standard deviation as αmin = α−
√
3σα and

αmax = α+
√
3σα with α = 1 and σα = 0.3. We also initialize the particle locations and

velocities, according to the uniform distributions (4.30), with xp0 = up0 = 0, σxp0
= 0.2

and σup0
= 0.1. Initially, the variables α, xp0 and up0 are statistically independent and

uncorrelated and therefore, the following moments are zero

α′x′p0 = α′u′p0 = x′p0u
′
p0

= 0. (4.32)

The particle response time is set to St = 0.5, i.e., the particle time scale is similar to

the carrier flow convective time scale, such that the inertial effects are significant and of

influence to test. We also set the reference Reynolds number to Re∞ = 104 so that the

relative particle Reynolds number is greater than unity and the forcing of the particles lies

in a regime beyond the Stokes drag. The non–dimensional particle density is ρp = 250 and

the non–dimensional particle diameter dp = 2× 10−3.

To develop a general understanding of the effect of the deterministic and random

forcing functions on the solution behavior of clouds of particles in a sinusoidal carrier field,

we first discuss the traces of three groups of PSIC point–particles that are computed with

a deterministic forcing function according to three values of α, including αmin, αmax, and

α = (αmin + αmax)/2 = 1. We will refer to these deterministic forced cloud traces as dF

clouds throughout the rest of the paper. The groups for each α contain Np = 105 particles

to ensure a converged MC moment error that scales according to 1/
√
Np.

The locations of the point–particles so computed are visualized in Fig. 4.3a for

different instants of time in the phase space xp − up. Initially, all clouds coincide. As

time progresses, each group accelerates in positive direction because the carrier velocity

(black line) is positive, which combined with negligible particle velocities at early times

yields a positive relative particle velocity. The relative velocity has the same sign as the
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acceleration, and thus is positive at each particle location also. Each point–particle cloud

accelerates proportionally to the magnitude of its forcing coefficient, α. For α→∞ the

particle time response St/α → 0 and the trajectory tends to that of a particle without

inertia (a tracer). For small α, the time response increases. In the limit α→ 0, the time

response tends to infinity St/α→∞ and its movement is asymptotically zero. At later

times, the clouds accelerate and decelerate successively around the average unity value of

the carrier phase velocity. Because of its inertia, each particle’s trajectory has a phase delay

and decrease of amplitude as compared to those of the carrier flow velocity field (4.28).

Initially uniformly distributed around the average location (xp0, up0) = (0, 0), the particle

clouds stretch and rotate in phase space while they are simultaneously advected by the

flow.

A more detailed understanding of the groups’ rotation and deformation characteris-

tics can be obtained by the four quadrant depiction of the three tracers (first three rows) in

time (four columns) in Fig. 4.3b. In each quadrant the particles are colored according to a

shade of a color scheme. Moreover, the mean location, the principle stretching and rotation

of the clouds in each quadrant and of a Cumulative Cloud can be represented by the mean

location, the principle axes and the rotation of an ellipse, based on the average (xp, up)

and the eigenvalues and eigenvectors of the covariance matrix Kxpup . These moments

are of course precisely the moments that are modeled by SPARSE and the MC–PSIC

moment results can thus be used for comparison and assessment of the predictive accuracy

of SPARSE. The ellipses and groups of point–particles show that particles in different

quadrants align naturally in phase space over a time interval that is on the order of St/α

as the velocities of all particles are damped towards the carrier velocity. The particle

clouds are straining in the xp − up plane consistently with the velocity gradient of the

carrier phase and the particles’ inertia. At the initial time this velocity gradient is positive

and thus the particle cloud widens in the physical space. A particle group with a smaller

response time, St/α stretches more along the velocity gradient. In phase space the cloud
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compresses as it settles to the carrier velocity.

(a) (b)

(c) (d)

Figure 4.3. Particle phase solution of the sinusoidal one–dimensional test case for: (a) dF
particle clouds for three deterministic values of the random coefficient αmin, α and αmax

for four instants of time computed with MC–PSIC divided in quadrants by colors; (b)
point–particle clouds at four instants of time for the cases in (a) and (c) in zoomed xp−up
axis divided in quadrants by colors and with ellipses representing the total set of particles
(second row) or subsets (first row); (c) rF cloud considering α ∼ U for four instants of
time with coloring according to quadrants in xp− up, i.e., each quadrant has a distribution
of values of α; and (d) SPARSE–R solution with M = 2 of the same case than in (c) with
ellipses with continuous border line for the lower range of α and dot-dashed border line
for the larger range of α. The times in (a), (c) and (d) are t = [0, 0.35, 1.75, 2.98] and
for (b) t = [0, 0.1, 0.35, 1.75]. The flow is depicted with a black continuous line in (a),
(c) and (d). For a better visualization, 500 point–particles are depicted from the Np = 105

used for the computations.

A randomly forced cloud tracer with α ∼ U does not concentrate along a line like
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the dF cloud, but distributes over a region according to the probability of the forcing

coefficient and of the associated deterministic tracers (Fig. 4.3c). This distribution is

a measure of the uncertainty in the solution. The footprint of the distributed particles

in phase space for an rF cloud is the confidence interval that concisely visualizes this

uncertainty. The rF cloud’s dispersion can be understood qualitatively as a summation of

the dF tracers that are determined with forcing coefficients that randomly span the range

of the PDF forcing coefficient. Roughly this can be seen as a summation of the locations

of the dF clouds in rows 1 to 3 in Fig. 4.3b. In addition to this increased dispersion, the

distributions of rF clouds in each quadrant overlap and can thus be said to be more mixed

at later times. The driving mechanisms for this enhanced mixing and increase in the

associated confidence intervals is the virtual stress correlation between the random forcing

and the flow field fluctuations that appears in the SPARSE–R formulation and that drives

the uncertainty in the rF cloud’s solution. The dF cloud that is forced according to the

average value of ᾱ compares closely with the mean solution of a rF cloud (compare second

and fourth row in Fig. 4.3b). A comparison of the second moments between the rF cases

and dF cases shows that with an increased randomness interval [αmin, αmax] in the forcing

function, the confidence interval as measured by second moments in the particle solution

increases. The randomness is directly proportional to the range of particle response times

(or inertia) as defined by St/α. A larger response time range naturally yields an increased

dispersion as measured by the second moments.

Using the SPARSE–R point–cloud tracer we can compute the dispersion of the

clouds of point–particles depicted in Figs. 4.3a– 4.3c at a reduced computational cost.

Splitting the cloud in quadrants so that M = 2, i.e., two divisions along α, xp and up,

we specify the first two moments of each subdivision (subset of point–particles) as initial

conditions for the point–cloud simulation (see Fig. 4.2). The resulting phase space depicted

with an ellipse for each subcloud is represented in Fig 4.3d for different instants of time.

The solution in each quadrant is now represented by two ellipses along the α dimension
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that coincide initially in phase space. At later times the two ellipses are located at different

positions and are deformed differently because they are forced differently. The point clouds

show the same trends in terms of advection, straining and rotation as compared to the

groups of MC–PSIC particles.

Figure 4.4. Particle phase solution of the sinusoidal one–dimensional test case for the rF
(green) and dF (red) computed with SPARSE–R withM = 7 as ellipses for the Cumulative
Cloud at different instants of time along the average particle phase (green dashed line
for rF and red dot-dashed line for dF). The point–particles are depicted as points with
the corresponding coloring. The flow is depicted with a black continuous line. The time
instants are t = [0, 1.43, 2.85, 4.28, 5.73, 7.15, 8.5, 10]. For a better visualization, 500
point–particles are depicted from the Np = 105 used for the computations.

We assess the accuracy of the point–cloud tracer by comparing computational results

for different levels of splitting M = 1, . . . , 7, such that the total number of subclouds is

Mp = M2 for the dF case (along xp and up) and Mp = M3 for the rF case (along α, xp

and up) respectively. Figure 4.4 compares the Cumulative Cloud solution for the rF and

dF case with M = 7 and shows that the deterministic and random solutions while different

are strongly correlated. In fact, a comparison of their average trajectories in Fig. 4.6a in

phase space shows that they are within 3% of each other. They match so surprisingly well,

because the second moments on the right hand side of the first moment equations are

negligible as compared to the dominant acceleration term f 1(u− up). This is however not

the case for the second moment equations and their solution that depend on the second

and third moments [2] as plotted in Figures 4.6a– 4.7f. The maximum difference between

111



the rF and dF solution for the second moments is 20% in σup (see Fig. 4.6c) in the initial

acceleration stages. The standard deviations and correlations show an oscillatory trend.

The solutions for the rF cloud are mostly different from the dF cloud near its maxima.

The second moments α′x′p and α′u′p can be interpreted as ”virtual” stresses that

cause the mixing of the random cloud. We dub these stresses virtual, because they are

not physical and only affect the random sample space. The two correlations of the force

coefficients with location and velocity are oscillatory and in phase with their respective

position and velocity standard deviation trends. This phase-locked behavior indicates

that the virtual stress cross-correlations are greater if the principle strain of the random

cloud is greater in the related physical or phase space dimension (in general physics, the

stress-strain relation is well-known [202]). Note that these terms have a zero value for the

dF case because α′ = 0 and they are thus not included the figure.

Figure 4.5 shows the MC–PSIC and Cumulative Cloud solution from a different

perspective in the f1 − Rep plane. The dF cloud follows the line described by the

deterministic forcing function. The rF cloud is distributed in the space spanned by the

forcing and the relative velocity and can be visualized and computed with SPARSE–R

using the ellipsoidal approximation. The results show that the particle’s relative Reynolds

number is initially high (on the order of 20) when the clouds accelerate. Later, the particle

cloud oscillates around moderate values of Rep associated with a lower correction of the

Stokes drag and a forcing function closer to unity despite the randomness in α.

Figure 4.6f confirms the theoretical third–order convergence rate of SPARSE–R

with respect to the level of splitting M . We find that for M = 7 the maximum relative

error of all first and second moments of the rF particle cloud computed with SPARSE–R as

compared to MC–PSIC is 1% for the variable σ2
up
. For the rest of variables of the particle

phase the error is lower than that, which denotes good agreement between the SPARSE–R

and MC–PSIC results. The relative error for the other second moments involving α is

at most 1.5% (for α′x′p). For the dF case, the maximum relative error occurs also in the
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Figure 4.5. Forcing of the Cumulative Cloud of the sinusoidal one–dimensional test
case for three instants of times computed with SPARSE–R (M = 7) depicted as ellipses
in f1 −Rep space and point–particles computed with MC–PSIC depicted as points. For
a better visualization, 500 point–particles are depicted from the Np = 105 used for the
computations.

variance of the particle velocity with a value of 0.1%. The computational savings are

significant even for M = 7. The ratio of computational cost of SPARSE–R as compared to

MC–PSIC defined as in (4.25) that takes into account the reduction of degrees of freedom

is r = 1.7 · 10−3 for the dF case and r = 1.2 · 10−2 for the rF case, that translates to a

0.17% and a 1.2% of the computational cost respectively as compared to MC–PSIC. We

conduct tests at three different wavenumbers (not shown here). We expect that with an

increasing wave number, it is necessary to increase the number of clouds while reducing

the compact support of each cloud. This so–called splitting as described in Ref. [3] ensures

that the solution is in the asymptotic convergence range of the model. For example, for a

case with a wavenumber of 4, we confirm that the theoretical convergence rate is observed

if we split the domain into M > 5 number of clouds per dimension.

Using multiple clouds, we can compose the PDF of the Cumulative Cloud with the

sum of weighted Gaussians as defined in (4.24). In Figure 4.8 we show these PDFs and

compare them to the MC–PSIC method for the rF case. Clearly, the PDF is not trivial,

i.e. not symmetric or Gaussian and SPARSE–R accurately predicts it. The evolution of

PDF of the particle location in time computed with MC–PSIC (Fig. 4.8a) compares well
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(a) (b) (c)

(d) (e) (f)

Figure 4.6. First and second moments of the one–dimensional sinusoidal velocity field test
case for stochastic and deterministic forcing computed with SPARSE–R and MC–PSIC.
Figure (a) shows the average particle location and velocity, (b) standard deviation of
the particle location, (c) standard deviation of the particle velocity, (d) combined second
moment of the particle phase, (e) combined second moments of the random coefficient
and particle phase variables and (f) expected convergence of SPARSE.

with SPARSE–R (Fig. 4.8b). In a similar manner, for the PDF of the particle velocity, we

show in Figures 4.8d–4.8f contour maps of the PDF along time computed with MC–PSIC

(Fig. 4.8d) and SPARSE–R (Fig. 4.8e) and compare both at the same time instant in

Figure 4.8f. The mixture distribution composed by Gaussians shows oscillations related

to the underlying Gaussian representation of each subcloud. The results are within a 5%

agreement and SPARSE–R uses two order of magnitudes fewer degrees of freedom than

the MC–PSIC approach. Additionally, third order moments computed according to (4.23)

are depicted in Fig. 4.7 for the dF and rF cases computed with SPARSE–R and MC–PSIC

showing also agreement.
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(a) (b) (c)

(d) (e) (f)

Figure 4.7. Third moments of the one–dimensional sinusoidal velocity field test case for
rF and dF cases computed with SPARSE–R and MC–PSIC using the relation (4.23); (a)
shows the skewness of the particle position; (b) the particle velocity; (c) and (d) combined
third moments of the particle phase; and (e) and (f) combined third moments of the
random coefficient and particle phase variables.

4.3.2 Stagnation flow

The two–dimensional stagnation flow is analytically described according to [176]

for an inviscid irrotational fluid, in the domain (x, y) ∈ [−∞, 0]× [−∞,∞] by

u = −kx, (4.33a)

v = ky, (4.33b)

where y is the coordinate perpendicular to the flow direction, and k is a constant. Point–

particles carried by this flow admit an analytical solution for their trajectories as well [2].

These analytical descriptions are helpful for testing and understanding of the basic

characteristics and canonical behaviour of the solutions of dF and rF clouds of particles.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8. PDFs of the components of the particle location fxp and velocity fup for
the rF case computed with MC–PSIC and SPARSE–R methods for the one–dimensional
sinusoidal velocity field test case. The Figure shows: PDF of xp computed with (a)
MC–PSIC and (b) SPARSE–R and (c) comparison of both methods at time t = 0.3 and
the corresponding results for up in (d)–(f). The legend in (c) also corresponds to (f).

Moreover, because there is symmetry with respect to the horizontal axes, the equations

decouple by coordinates and similarities between rF and dF clouds under symmetry

conditions can be analyzed. Closure terms that depend on the linear flow velocity field

are exact because the Taylor expansion of the linear field is exact.

Following [2], we reduce the complexity of the test further by assuming a forcing

function that sets f1 = α with g1 = 1 in (4.10), i.e. the forcing function is random but not

dependent on the relative velocity, so that the only the truncation of non–zero terms is

that of the third moments in the second moment equations (4.6e), (4.6g) and (4.16). For

reference, we present the complete closed system of equations for this form of the forcing

function in Appendix D.

We specify initial conditions for the cloud’s location and velocity by sampling from
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uniform distributions according to

xp0 ∼ U
[
xp0min

, xp0max

]
, yp0 ∼ U

[
yp0min

, yp0max

]
, (4.34a)

up0 ∼ U
[
up0min

, up0max

]
, vp0 ∼ U

[
vp0min

, vp0max

]
. (4.34b)

With the particle cloud initially at rest, both components of the velocity up and vp are

zero for all point–particles contained in the cloud. For the rF case the random coefficient

α is also sampled from an uniform distribution

α ∼ U [αmin, αmax] , (4.35)

whereas for the dF case the coefficient α is deterministic with α′ = 0. The averages of

the distribution functions are xp = −1, yp0 = up0 = vp0 = 0, and the standard deviations

σxp0
= σyp0 = σup0

= σvp0 = 0.08. For the rF case, we also define α = 1 and σα = 0.3

whereas for the dF all point–particles have the same value of α with zero fluctuations

so that α = α = 1, σα = 0. Second moments combining any of the variables α, xp0,

yp0, up0 and vp0 are zero initially because the variables are considered uncorrelated at

t = 0. However, because in computational practice we can only use the limited number

of samples, Np = 105, these moments include sampling errors that converge at the rate

1/
√
Np with respect to the averages and second moments described above. The initial

condition for the SPARSE–R method is determined by sampling the point–particles as

described in Section 4.2.5. We set the Stokes number and the constant k in (4.33) to unity

so that St = k = 1.

Figure 4.9 shows the solutions of the rF and dF cases identified with green and red

colors, respectively. The particle cloud is advected by the flow field in the time interval

t ∈ [0, 2.52] in which the average location of the dF cloud reaches the wall located at x = 0.

The solution is presented in the three–dimensional space α − xp − yp in Figure 4.9a for
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(a) (b)

Figure 4.9. Evolution of the particle cloud immersed in the stagnation flow for different
instants of time t = [0, 0.5, 1.65, 2.2]. The dots represent the point–particles traced by
the MC–PSIC method and the Cumulative Cloud traced with the SPARSE–R method is
represented by an ellipsoid for the rF case (red) and dF case (green). The projections of
the SPARSE–R solution are represented in the background planes.

three instants of time t = [0, 1.26, 2.52]. The point–particles (computed with MC–PSIC)

are depicted as points and the point–cloud (computed with SPARSE–R) is represented

by either a ellipse in the dF case (because α = 1 for all particles then the α collapses

in a single point) or a prolate spheroid for the rF case with a magnitude and direction

of the principle axes that are equal to eigenvalues and direction of the eigenvectors of

the covariance matrices. The two covariance matrices used to represent the SPARSE–R

solution for the rF case in Figure 4.9 are Kαxpyp and Kαxpup whose eigenvalues are given

by the following Characteristic polynomials

λ3 −
(
x′p

2 + y′p
2 + α′2

)
λ2 +

(
α′2
(
x′p

2 + y′p
2
)
+ x′p

2 y′p
2 − x′py′p

2 − α′x′p
2 − α′y′p

2
)
λ

+ x′p
2α′y′p

2
+ y′p

2α′x′p
2
+ α′2x′pyp

′2 − x′p2 y′p2 α′2 − 2x′py
′
p α

′x′p α
′y′p = 0,

(4.36)
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and

λ3 −
(
x′p

2 + u′p
2 + α′2

)
λ2 +

(
α′2
(
x′p

2 + u′p
2
)
+ x′p

2 u′p
2 − x′pu′p

2 − α′x′p
2 − α′u′p

2
)
λ

+ x′p
2α′u′p

2
+ u′p

2α′x′p
2
+ α′2x′pup

′2 − x′p2 u′p2 α′2 − 2x′pu
′
p α

′x′p α
′u′p = 0,

(4.37)

respectively. The projections of the solution onto the planes xp− yp, α− xp and α− yp are

also plotted in Figure 4.9a. Accordingly, in Figure 4.9b the projections in planes xp − up,

α − xp and α − up are also plotted. For the rF case, the projections are represented by

ellipses in all those planes. For the dF case the projections simply lead to lines. We also

show the first two moments of both dF and rF clouds computed with the MC–PSIC and

SPARSE–R methods in Figure 4.10 for comparison. The solution shown in Figures 4.9

and 4.10 corresponds to a level of splitting M = 5. Note that the initial condition is

split along the random parameters α and the two components of the particle velocity and

location. According to this, for the dF case the total number of subclouds is related to

the level of splitting Mp =M4 and for rF Mp =M5.

The clouds approach the stagnation point along the x−axis as depicted in Figure 4.9a

in the xp − up plane. The average horizontal location and velocity trends show three

different stages in time, including a first stage of acceleration, a second transitional stage

and a third deceleration stage. These stages are observed for both the rF and dF clouds.

Because the front of the cloud decelerates while the tail is still increasing its velocity, the

standard deviations of the horizontal velocity σup in the second stage show a minimum at

t ≈ 1.6 (see Figure 4.10d) for the rF case. The dF case does not exhibit this minimum in

σup , but decreases monotonically over the entire time interval and plateaus only at that

time instant. In the third stage all point–particles in the cloud region decelerate towards

the stagnation point. Because of the symmetry of the problem, the mean vertical location

and velocity should be zero. The results, however, show a slight initial motion in the
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negative y direction as a result of the Monte Carlo sampling error that is on the order of

10−4 for Np = 105 (see Figure 4.10b). Over time this non–zero initial condition leads to

vertical motion that is consistent with the three stages.

To assess the uncertainty in the rF point–cloud tracer, we compare the dF and the

rF SPARSE cloud prediction in the phase space xp − up in Figure 4.9b. The three stages

can once again be observed in the evolution of σxp , but are notably different for dF and rF

as follows: in the first stage σxp decreases for the dF cloud (see also Fig. 4.10c) whereas

for the rF cloud it increases. The latter increase is a result of the mix of fast and slow

responses to the fluid velocity of the point–particles in the rF cloud. This mix is consistent

with the range of the random force coefficients, α, and the resulting range in the time

responses of the point–particles as given by St/α. In fact, the enhanced mixing of the rF

cloud in space is a result of the virtual stress per the correlation of the coefficient α and

the particle phase variables xp and up (as was also the case for the sine field test discussed

above) as it appears in the equations (D.1e) that govern x′pu
′
p. This term in turn is the

only driving source term in the dynamics of σxp in (D.1c). The magnitude of the term

α
(
kx′p

2 + x′pu
′
p

)
in equation (D.1e) is approximately the same for rF and dF with α = 1,

whereas the second term on the right hand side, α′x′p (kxp + up), is initially on the order

of α′x′p, which in turn is governed by equations (D.1f)–(D.1g). In (D.1f)–(D.1g) the only

term that is initially different from zero is α′2 (kxp + up) and it is therefor the root cause

for the increase of σxp in the rF cloud.

In vertical direction the solution is symmetric and it turns out that because of this

symmetry that σyp evolves identically for rF and dF. This can be understood using the

simplification of the point–cloud equations in the y–direction for the y–symmetric Hiemenz

flow (Appendix D), which shows that the term −α′y′p in equation (D.2e) is multiplied

by the average vertical relative velocity which is zero over the simulated time interval

(assuming no sampling errors). Ergo, the random forcing does not change the vertical

stress or strain (Figure 4.9a), which suggests that the uncertainty in solution is zero in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.10. First two moments for of the stagnation flow test case for the rF and dF
particles computed with the SPARSE–R and MC–PSIC methods. Including (a) horizontal
and (b) vertical averages of the phase, (c) and (d) deviations of the particle phase, (e)–
(g)combined moments of the particle variables and (h)–(i) combined moments of the
particle variables and the random coefficient α. The superscript ‘S’ indicates rF and ‘D’
dF.

vertical direction. This results generalizes to any particle–laden that is symmetric and

is randomly forced according to a symmetric PDF. We conclude that in these case the

uncertainty in the forcing does not propagate into the solution. A closer inspection of

σyp in Figure 4.10c shows trends on the order of the sampling errors. These trends as in

x–direction are governed by the intrinsic interaction of correlation terms in the governing
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system in y–direction.

(a) (b)

Figure 4.11. Errors, ε(·), plotted versus number of clouds per dimension, M , show a
third convergence rate of the moment of the SPARSE (dF) and SPARSE–R (rF) method
for the (a) stagnation flow case and (b) isotropic turbulence test case.

In Figure 4.11a we plot the relative error versus splitting levels in the range

M = 1, . . . , 5. The third order convergence rate is once more validated. The dF test cases

reaches machine precision and does not require splitting to reduce the errors. We find

that for the maximum level of splitting (M = 5) considered which leads to Mp = 3, 125

and Mp = 625 for the rF and dF cases respectively, the greatest relative error of all first

and second moments of the particle phase computed with SPARSE–R as compared to

MC–PSIC is 3% and it occurs σ2
up
. The remaining variables of the cloud show smaller

relative errors as compared to MC–PSIC, validating the SPARSE–R method. The ratio

of computational cost of SPARSE–R as compared to MC–PSIC defined as in (4.25) is

r = 0.022 for the dF case and r = 0.141 for the rF case. This shows that using SPARSE–R

implies only a 14.1% of the computational effort that takes to solve the problem with the

MC–PSIC method for the rF case and a 2.2% for the dF case.

Consistent with the observations made for the sine test case, we confirm that the

solution converges with third order accuracy for all three Stokes numbers (not shown) and

that the difference in confidence interval between rF and dF increases with a larger range
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of randomness, and thus particle response times as proportional to St/α.

4.3.3 Isotropic turbulence

Following the validation of the dF clouds as presented in Ref. [3], we test the

randomly forced SPARSE–R formulation in a decaying isotropic turbulence velocity field.

For a detailed description of the test setup we refer to that article. Summarizing for

completeness, the isotropic turbulence simulation is performed in a cube with periodic

boundary conditions with the validated discontinuous Galerkin code as described in

Ref. [200] and references therein. Initial conditions are adopted from Ref. [201]. The

simulation is performed on a domain Ω spanned by coordinates (x, y, z), defining a cube

of size 2π so that Ω = [0, 2π]× [0, 2π]× [0, 2π].

As in the previous test cases, we seed a cloud of Np = 105 Monte Carlo point–

particles in the flow. The particles in the cloud are initially at rest and therefore the

cloud’s average velocity is up = vp = wp = 0. The cloud’s temperature is set constant such

that T ′
p = 0 for the cloud with T p = 1. The locations of point–particles are sampled from

the uniform distribution functions

xp0 ∼ U
[
xp0min

, xp0max

]
, yp0 ∼ U

[
yp0min

, yp0max

]
, zp0 ∼ U

[
zp0min

, zp0max

]
. (4.38)

The random momentum and energy coefficients, α and β are also sampled from an uniform

distribution

α = β ∼ U [αmin, αmax] . (4.39)

The average and standard deviation values are xp = yp = zp = π, α = 1, σxp0
= σyp0 =

σzp0 = 0.05 and σα = 0.3. For the dF case σα = 0.

The drag and heat transfer correction factors for this case are adopted from [48]
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and [188] respectively and read as

f1 = α

(
1 + 0.38

Rep
24

+
Re0.5p

6

)[
1 + exp

(
−0.43
M4.67

p

)]
, (4.40a)

f2 = α
(
1 + 0.3Re0.5p Pr0.33

)
. (4.40b)

The computed carrier phase velocities are used to determine the particle Reynolds as

defined in (4.2) and the particle Mach numberMp = |u−up|/
√
Tf , in the forcing correction

factors (4.40). The Prandtl number is Pr = 0.7, the relative heat capacity is set to unity

cr = 1 and the density ratio of the two phases is ρp = 250. We also set the Stokes number

to be St = 0.5 such that the inertia is dominant in the dynamics of the point–particles.

The non–dimensional particle diameter is dp = 4 · 10−3 according to (4.2). The isotropic

turbulence case is set up with a reference Reynolds Re∞ = 2, 357 and Mach number

M∞ = 0.05 [201].

Using splitting along the particle locations and the random parameter α for the

point–cloud simulation, it follows that for the rF case the total number of subclouds

is Mp = M
xp
p M

yp
p M

zp
p Mα

p = M4 with superscripts indicating the dimension where the

divisions are performed. For the dF case then we have Mp = M3. We consider several

levels of splitting M = 1, . . . , 8 that correspond to a maximum number of subclouds of

Mp = 4, 096 and Mp = 512 for rF and dF cases respectively. Note that in this test case, all

relative errors should be expected to be non–zero because the flow is non–linear and the

correction functions of the forcing depend on the relative velocity of the particles through

the particle Reynolds and Mach numbers and so all Taylor and moment truncation affect

the accuracy of SPARSE–R.

In Figure 4.12 we show the rF test case results for three equispaced instants of

times in the interval t ∈ [0, 4]. The MC–PSIC particles are depicted as points and the

SPARSE–R clouds as prolate spheroids for a level of splitting with M = 4 which defines
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four subclouds along the variables xp, yp, zp and α. We select this somewhat coarser level

of splitting for the clarity of the visualization in Figures 4.12a–4.12c. The SPARSE–R

subclouds are colored according to the spatial four divisions along each coordinate to

identify the point–particles that correspond to each point–cloud. The same color has been

used for a given subcloud and its corresponding point–particles in the Figures 4.12a–4.12c.

The background planes represents contours of the turbulent kinetic energy of the carrier

phase’s turbulent structures for each instant of time. The ellipsoids for each subcloud

computed with SPARSE–R are represented using the eigenvalues and eigenvectors of the

covariance matrix of the locations xp, yp and zp. To enhance clarity of the visualization, in

Figures 4.12d–4.12f we show the evolution in time of the point–particles and point–clouds

that intersect a plane passing through the center of the domain where only one slice of

4 × 4 clouds is represented. The particles initially at rest respond to the carrier flow

producing a deformation of the initial cube where the cloud of point–particles is defined.

Governed by the inertial effects, the response is smoother as compared with the changes in

the carrier flow. As time evolves, the particle cloud is dispersed occupying an increasingly

larger domain.

In Figure 4.13, we show the results of first and second moments for the rF and dF

where the level of splitting corresponds to the maximum division in the convergence study

M = 8 (see Figure 4.11b). In particular, to concisely show the agreement between the

MC–PSIC and the SPARSE–R results we group moments into vectors and matrices and

compute their modulus and determinant, respectively. The first moments of the average

location and velocity are entries in the vectors with the following moduli

|xp| =
(
x2p + y2p + z2p

)1/2
, |up| =

(
u2p + v2p + w2

p

)1/2
, (4.41)

which are plotted in Figures 4.13a and 4.13b. The average temperature T p is depicted

in Figure 4.13c. For the second moments of the particle phase, we define the following
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12. Locations of the point–particles and point–clouds computed with MC–PSIC
and SPARSE–R methods respectively for the isotropic turbulence case with St = 0.5
for a level of splitting of M = 4 at times (a) t = 0, (b) t = 2, (c) t = 4. The contours
show the turbulent kinetic energy of the flow in the boundaries of the domain. The PSIC
particles are represented with dots and the SPARSE–R clouds with ellipsoids. In (d)–(f)
the projection of the clouds to a x− y plane passing through the center of the cloud for
St = 0.5. In (g)–(i) the evolution of a point–cloud (and the corresponding point–particles)
used to split for (g) St = 0.1 (h) St = 0.5 and (i) St = 2.

matrices
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Kxp =


x′p

2 x′py
′
p x′pz

′
p

x′py
′
p y′p

2 y′pz
′
p

x′pz
′
p y′pz

′
p z′p

2

 , Kxpup =


x′pu

′
p x′pv

′
p x′pw

′
p

y′pu
′
p y′pv

′
p y′pw

′
p

z′pu
′
p z′pv

′
p z′pw

′
p

 , Kup =


u′p

2 u′pv
′
p u′pz

′
p

u′pv
′
p v′p

2 v′pw
′
p

u′pw
′
p v′pw

′
p w′

p
2

 ,

(4.42)

whose determinants are depicted in Figures 4.13d, 4.13e and 4.13g. The following vectors

are defined based on correlations between particle locations, velocities, temperatures and

the random coefficient α

kxpTp =


x′pT

′
p

y′pT
′
p

z′pT
′
p

 , kupTp =


u′pT

′
p

v′pT
′
p

w′
pT

′
p

 , kαxp =


α′x′p

α′y′p

α′z′p

 , kαup =


α′u′p

α′v′p

α′w′
p

 . (4.43)

The moduli are shown in Figures 4.13f, 4.13h, 4.13j, and 4.13k. Finally, the standard

deviation of the particle temperature σTp and second moment of the random coefficient

and temperature α′T ′
p are presented in Figures 4.13i and 4.13l. In this manner, the twelve

scalars plotted in Figure 4.13 combine all 42 moments of the particle phase (including

the moments that relate to the random coefficient α) and it so admits a comparison of

MC–PSIC and SPARSE–R results for the complete statistical description of the particle

clouds. Note that for the dF case kαxp , kαup and α′T ′
p are not shown because α′ = 0.

The first moments of the particle cloud (Figures 4.13a–4.13c) show that the the

mean cloud motion for the rF and dF case are in close agreement within 3%. For an

analogous reason that was used to explain that stagnation flow solutions are identical

for the dF and the rF test case in the symmetrical vertical direction, the first moments

solutions for dF and rF are similar because of the near–isotropy in this turbulent flow

also. Note while the carrier flow is isotropic in the periodic box, the cloud is initialized in

only a portion of it, and the carrier phase in this portion is not precisely isotropic. This
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means that the uncertainty in the forcing can and does propagate in the dispersed solution,

as witnessed by the small deference in dF and rF. Specifically, fast and slow responding,

randomly forced particle trajectories average such that the resulting two moments match

those of the dF solution with the average time response of the rF case. The velocity

average (Figure 4.13b) reaches a maximum in an initial acceleration of the cloud to reach

the decreasing carrier phase velocity field. After that, a decrease in velocity of the particle

cloud follows the decay of turbulence in the flow and the inertia in the particle phase

somewhat smoothens the response as compared with fluid tracers (that move at the flow

velocity). This effect is related to the Stokes number as seen in Figures 4.12g–4.12i. For

large values of St, the response of the cloud to the carrier flow fluctuations, is slow. In

that sense, the cloud’s average trajectory dissipates the fluctuations along the path. For

small values of St, the opposite is true and carrier flow variations results in changes of the

average trajectory of the cloud. The average temperature of the cloud oscillates around

the initial and average value during the entire simulation (unity). The maximum relative

error in the first moments of the particle phase is 0.9% and 0.7% for the average modulus

of the particle velocity |up| for the rF and dF cases respectively.

The second moment trends are shown in Figures 4.13d–4.13i. Figure 4.13d plots

the determinant, |Kxp|, which is equal to product of the eigenvalues of Kxp . This metric

can thus be interpreted a measure of the spatial spread of the particle cloud because it

is equal to the product of principle strains (eigenvalues) of the cloud. It shows that the

turbulent field mixes (or diffuses) the dispersed phase which leads to a increase in the

cloud’s footprint in space. This spatial growth is similar for the dF and rF case because

of the near isotropic flow conditions. At later times the cloud occupies a larger portion

of the computational domain and thus the conditions are more isotropic then, and the

dF and rF moments are mostly in closer agreement. The trends of the determinants in

Figures 4.13g–4.13i for the remaining second moments exhibit a rather complex behavior.

Its discussion is beyond the scope of the current article that aims to present and validate
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the rF point–cloud model. It can be concluded, however, that all moments show a very

good comparison between rF SPARSE–R and MC–PSIC. The maximum relative error in

|Kxpup | for the rF and dF case are 4.5% and 8% respectively. Note that the accuracy for

the governing equations of the moments of the point–cloud tracer in Kxpup are directly

dependent on truncated statistical moments of order greater than two. In Figure 4.11b

we plot the convergence of the SPARSE errors with respect to the level of splitting M ,

confirming once again the theoretical third order convergence rate.

One might expect that the particle response to the fluid changes is slower and thus

particles disperse less for larger Stokes numbers. However, comparing the cloud size at

the final time t = 4 for a Stokes number of St = 2, (Figure 4.12i) with the smaller Stokes

numbers, St = 0.5 (Figure 4.12g) and St = 0.1 (Figure 4.12h) shows that the magnitude

of second moments (and thus the dispersion) in one of the principle directions is increased

for the largest Stokes number. As we already discussed for the sine and the stagnation

test cases, this can be explained to some extent by the larger randomness and associated

larger range in response times. More research is needed to understand why the dispersion

is larger in one direction only in this homogeneous turbulent flow. We plan to report on

that in future work.

As a final validation and illustration of the capability of SPARSE–R, we present

PDFs of the Cumulative Cloud in Figures 4.14 and 4.15. We compare the evolution of the

PDF contours computed with MC–PSIC with the SPARSE–R method. For three specific

instants of time t = [0.75, 2, 4], the PDFs are computed using (4.24) and plotted versus

the random variable only. These figures illustrate that SPARSE–R predicts the PDF with

same level of detail as MC–PSIC. For example, the shift of the PDF from a single peak to

a double peak in fxp is captured at time t = 4.
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4.4 Summary of results

A closed-form Lagrangian point–cloud model is coined that determines the first

and second statistical moments of groups of randomly forced particles within a cloud

region at a single (singular) point in a computationally efficient manner. The union of

several point–clouds can determine the PDF and higher order statistical moments of the

union, which we dub a Cumulative Cloud. The model propagates the uncertainty in the

forcing function, as described by series expansion, that can be either the confidence interval

in data–driven and/or empirical forcing models or the stochastic force variance on the

sub–cloud scales, into its solution.

Like its deterministically forced sibling, the model is derived using the SPARSE

approach, which combines a truncated method of moments and a truncated Taylor series

expansion of the forcing function and the carrier flow variable at the points–cloud’s mean

location and relative velocity. The randomly forced SPARSE–R method is also closed, i.e.,

the formulation is self-contained, independent of Monte Carlo results to close higher order

correlations of variables in principle unknown. The convergence of these truncated terms

is proportional to the standard deviation of the particle variables to the third power. This

third–order convergence rate is verified in numerical tests.

The second moments of the variables in the Taylor expanded cloud and its influence

on the acceleration of the cloud are relatively small as compared to the first moments. As

a result a point–cloud that is deterministically forced with the mean of the random forcing

function provides a reasonable estimate of the mean of the randomly forced point–cloud

for the three test cases considered.

The difference of the second moments determined with SPARSE–R approach and

the deterministic SPARSE solution provides an accurate estimate of propagation of the

uncertainty of the forcing function into confidence intervals of the solution. It is observed

that the propagation of randomness in the forcing into the confidence interval of the
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particle solution grows with the Stokes number.

A virtual stress that correlates the random coefficients of the series expansion, with

the dispersed phase fluctuations mixes the samples of the randomly forced particle solution

in phase space. These stresses are correctly and accurately modeled by SPARSE–R and

thus SPARSE–R gives direct insight in the fundamental driving mechanics of uncertainty

propagation in a solution by inspection and comparison of the magnitudes of the moments

on the rights hand side of the closed systems of dynamic, SPARSE–R ordinary differential

equations.

The virtual stress is negligible in directions of symmetry or in isotropic flows,

because correlations with respect to the fluctuations forcing coefficients multiply with zero

mean field solutions. Then randomness does not affect the footprint of the clouds because

fast and slow responding particles cancel each other’s motions. This was illustrated in

stagnation flow and an isotropic turbulence.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.13. Statistics of the rF and dF inertial particle clouds in the three–dimensional
decaying isotropic turbulence case with St = 0.5 computed with MC–PSIC and SPARSE–R
model; (a)–(c) average values of the first moments of the particle phase, (d)–(i) average
values of second moments of the particle phase and (j)–(l) average values of second moments
combining the particle phase and random coefficient α.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.14. PDFs of the components of the particle locations fxp , fyp and fzp for the
rF case computed with MC–PSIC and SPARSE–R methods for the isotropic turbulence
test case with St = 0.5. The Figure shows: PDF of xp computed with (a) MC–PSIC and
(b) SPARSE–R and (c) comparison for different times and the corresponding result for yp
in (d)–(f) and for zp in (g)–(i). The legend in (c) also corresponds to (f) and (i) where the
solution is plotted at times t = [0.75, 2, 4] for both methods.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.15. PDFs of the particle velocity components and temperature for the rF
case computed with MC–PSIC and SPARSE–R methods for the isotropic turbulence test
case with St = 0.5. The Figure shows: PDF of up computed with (a) MC–PSIC and (b)
SPARSE–R and (c) comparison for different times, and the equivalent for vp in (d)–(f),
for wp in (g)–(i) and for Tp in (j)–(l).
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Chapter 5

Lagrangian PDF models of multi-
phase flows with randomly forced
inertial particles

5.1 Introduction

Within the EL framework, the scale of interest determines the selection of a

particular model. Large-scale problems typically rely on the point-particle assumption [37,

38] and trace deterministic Lagrangian paths of individual volumeless particles according

to an analytical or empirical forcing law [205, 66]. Thus, at any time t, a particle’s location,

xp(t), and velocity, up(t), satisfy deterministic equations of motion,

dxp

dt
= up, (5.1a)

dup

dt
= f(u,up; ξ). (5.1b)

The sum of the forces acting on the particle, f , includes the undisturbed flow force,

the added mass force, the quasi-steady drag force, the viscous history force and the

gravitational force. These forces might depend on the carrier flow field u(x, t) and its

derivatives, and involve a set of Nξ parameters, ξ = {ξn : n = 1, . . . , Nξ}, such as the

Stokes number, the fluid to particle density ratio, particle diameter, particle shape and
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flow viscosity among others [104].

The Maxey-Riley-Gatignol (MRG) equation for f [44, 43] is an example of the

analytical forcing laws for a spherical particle; it is the default approach for most deter-

ministic point-particle methods [66, 67], even though its applicability range is limited. Its

derivation assumes a single particle in the limit of zero particle Reynolds number. The

failure to account for the influence of neighboring particles results in a mismatch between

predictions of the point-particle model and PR–DNS, especially for moderate-to-high par-

ticle mass loads [1, 206, 207].1 And the low Reynolds number limit condition is not met in

compressible particle-laden flows at high speeds and for large particle diameter [58]. These

shortcomings of the MRG relation are ameliorated by using empirical factors to fit either

experimental data or PR-DNS results. Examples of such factors are the [48] correction for

high Reynolds and Mach numbers, the particle-agglomerate correction [209, 210, 211] and

correction factors non-spherical shapes [204, 212, 213].

These and other curve-fitted empirical correctors are subject to uncertainty, es-

pecially when “discovered” via machine-learning techniques [6, 214]. Quantifying this

uncertainty in a probabilistic manner improves the validity range of the resulting stochastic

point-particle methods [98, 2]. Another motivation for the adoption of a probabilistic frame-

work is that the deterministic Lagrangian paths described by Eq. (5.1) ignore apparent

randomness in particle dynamics. This randomness stems from unresolved forces in, e.g., a

deterministic drag relation assigned to a point-particle; stochastic Lagrangian approaches

account for this phenomena by treating some of the forces in f as random [215, 216]. Finally,

deterministic treatment of Eq. (5.1) assumes carrier flow velocity u(x, t) to be deterministic.

For turbulent flows, the carrier flow field is routinely computed via large-eddy simulations

(LES) or the Reynolds-averaged Navier-Stokes (RANS) equations. The unresolved, subgrid

fluctuations in such computations can be included in the particle description stochastically

1Models that do consider inter-particle forces include the pairwise interaction extended point-particle
(PIEP) model [90, 91, 92, 93] and the microstructure-informed probability-driven point-particle (MPP)
model [94, 97, 208].
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in either Eulerian [87, 217, 171] or Lagrangian [132, 133, 134, 135, 136, 137, 36] models.

While stochastic carrier-velocity fluctuations influence a particle’s motion, the par-

ticle’s kinetics at the subgrid level induces carrier-velocity fluctuations. This phenomenon

is variously referred to as pseudo-turbulence kinetic energy (PTKE) fluctuations [60] or

subgrid particle-averaged Reynolds-stress equivalent [57]. The SPARSE method and its

subsequent enhancements [58, 3, 4] provide a closed point-cloud approach to describe parti-

cle ensembles by a set of statistical moments. The SPARSE method can also accommodate

randomness in the forcing f due to uncertainty in its empirical description [4]. These and

other stochastic descriptions of the particle path [131, 138, 139, 1, 141, 143, 144] replace

the deterministic Eq. (5.1) with its stochastic (Langevin-type) counterpart [119],

dXp = Updt+ bxdW x, (5.2a)

dUp = F(U ,Up;Ξ) dt+ budW u. (5.2b)

Here, the uppercase quantities denote random counterparts of the corresponding determin-

istic (lowercase) quantities in Eq. (5.1); bx and bu are (generally unknown) diffusion tensors;

and dW x and dW u are Wiener increments of, respectively, the particle’s position Xp(t)

and velocity Up(t) for the time interval dt. This general formulation of stochastic particle

dynamics encompasses multiple models. The position-Langevin (PL) approach [141],

originally developed for fluid tracers, includes dW x, while setting dW u ≡ 0 and using the

deterministic f and ξ from Eq. (5.1) in place of their random counterparts F and Ξ. The

velocity Langevin (VL) approach [141] uses dW u to account for unknown/undescribed

forces by the deterministic point-particle method, related to particle collisions and influ-

ence of neighboring particles, in addition to the deterministic part of the forcing given

by f in lieu of the random counterpart F , and sets dW x ≡ 0. The force-Langevin (FL)

model [141, 143] adds Wiener increments to the hydrodynamical force, described by an

additional Langevin equation, not included in (5.2), and added to the deterministic part
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f while setting dW x = dW u ≡ 0.

A solution to the Langevin Eqs. (5.2) is the joint probability density function (PDF)

fXU(xp,up, t), whose temporal evolution in the phase-space (xp,up) is described by a

Fokker-Planck equation [e.g., 218]. In general, the derivation of such equations requires

closure approximations, which can be empirically obtained by, e.g., analyzing PR-DNS

results [143]. This procedure is computationally expensive, because of the slow convergence

of sampling techniques used to solve the Langevin equations and the high dimensionality of

the Fokker-Plank equation. (If the particle-laden flow takes place in d spatial dimensions,

then the Fokker-Plank equation for fXU is solved in 2d phase-space dimensions, plus time.)

This high cost is a reason why most studies in this framework are limited to the second

moments of fXU (xp,up, t), rather than the full PDF [1, 141, 143, 144].

A way to obviate the need for closure construction is to derive an exact (2d+Nξ)-

dimensional deterministic (Liouville-type) equation for the joint PDF fXUΞ(xp,up, ξ, t)

for the particle’s position and velocity, Xp(t) and Up(t), and random model parameters

Ξ [2]. While a high-order spectral method can be deployed to solve this high-dimensional

parabolic partial-differential equation (PDE) [2], this solution covers the entire (2d+Nξ)-

dimensional augmented phase-space over the entire time horizon of interest, i.e., spans

the Eulerian domain with near-zero solution values in sub-domains far away from the

regions with high concentrations of particles. That renders this Eulerian solution strategy

computationally intensive.

To take advantage of the localized nature of PDF solutions, we propose to deploy

the Lagrangian-Charpit method [219, 220, 221, 222, 223, 224, 225, 226]. It is developed

for nonlinear hyperbolic PDEs and reduces to the method of characteristics (MoC) for

linear equations, such as the Liouville equation. In addition to localization, this Lagrangian

approach offers several other advantages over classical high-order PDE solvers. First, the

use of high-order methods and filtering techniques to solve a high-dimensional hyperbolic

PDE would compromise the solution’s non-negativity to maintain stability. Second, many
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numerical methods for hyperbolic PDEs suffer from Gibbs oscillations and singularities,

which are absent in the MoC. Third, the MoC provides a deterministic flow map to track

individual points in the high-dimensional phase space, i.e., each solution of the particle

phase associated to a probability for it to occur, may be computed independently; this

allows rare events to be traced independently.

We present a novel Eulerian-Lagrangian methodology to model particle-laden flows

with randomly forced point-particles. To accommodate data-driven (equation-free) forcing

functions, the methodology deploys a polynomial chaos expansion (PCE) to represent

stochastic forcings F [99, 2, 6, 4]; the random constants in these expansions form a set of

random coefficients Ξ. Then, the method of distributions [227] is used to derive a Liouville

equation for the joint PDF fXUΞ(xp,up, ξ, t). Next, this high-dimensional PDE is solved

via the MoC, resulting in a set of ordinary differential equations that comprise a flow map

for the joint PDF and its support. Finally, we modify the quadrature technique [228, 229],

which is compatible with discontinuous-Galerkin discretization of DNS solvers, to compute

the marginals fX(xp, t) and fU (up, t) and their moments via marginalization of the joint

PDF fXUΞ(xp,up, ξ, t).

5.2 Liouville equation for particle-laden flows

To simplify the method’s exposition, we consider d-dimensional particle-laden flows

with one-way coupling between the carrier fluid and particle dynamics, i.e., flows in a dilute

regime wherein the inertia is dominant. The incompressible carrier fluid has density ρ and

dynamic viscosity µ; its flow velocity, u(x, t) : Rd × [0,∞)→ Rd, is known with certainty,

i.e., deterministic. The random forces acting on a small particle of diameter D, F(·) in

Eq. (5.2), reduce to the inertial (drag) force, which depends on the difference between the

(random) particle velocity Up(t) and the carrier velocity at the (random) particle location,

Xp(t), i.e., F = F(u(Xp(t), t)−Up(t)). For carrier flow with characteristic length L and
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non-zero velocity component u∞ aligned with the x1 direction, and for particle density ρp,

the characteristic times for carrier flow and particle dynamics are

τf = L∞/u∞ and τp = ρpD
2/(18µ),

respectively. The average flow dynamics is characterized by the Reynolds numbers for

carrier flow and particle dynamics, Re∞ and Rep, and by the Stokes number St, defined as

Re∞ =
ρu∞L

µ
, Rep =

ρ∥u−Up∥2D
µ

= Re∞∥ũ− Ũp∥2D̃, St =
τp
τf

= Re∞
ρ̃pD̃

2

18
,

(5.3)

where ũ(X̃p(t̃), t̃) = u(Xp(t), t)/u∞, X̃p = Xp/L, t̃ = tu∞/L, Ũp = Up/u∞, and

D̃ = D/L. In terms of these dimensionless numbers, the dimensionless drag force is

written as

F̃ =
ũ− Ũp

St
ϕ(Rep).

The function ϕ(Rep) : R+ → R+ represents a random correction to the classical Stokes

drag force, such that ϕ(Rep) ≡ 1 for small spherical particles in incompressible laminar

flow. Rather than relying on an uncertain empirical functional form of ϕ(·), we represent

it via orthogonal polynomials ψi(·) [99, 4, 6],

ϕ(Rep;Ξ) =

Nξ∑
i=1

Ξiψi(Rep), (5.4)

where the random coefficients Ξi (i = 1, . . . , Nξ) form a vector Ξ ∈ RNξ of length Nξ.

These coefficients have the domain of definition ΩΞ ∈ RNξ are characterized by a joint

PDF fΞ(ξ) : ΩΞ → R+.

In addition to the possible uncertainty in the particle’s initial state, the uncertainty

in the correction factor ϕ is the sole source of randomness affecting the particle dynamics
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in the dilute regime. Hence, Langevin Eqs. (5.2) reduce to

dXp

dt
= Up, (5.5a)

dUp

dt
=

u−Up

St
ϕ(Rep;Ξ). (5.5b)

Note that, here and below, all the physical quantities are dimensionless, even though

we drop the tildes ·̃ to simplify the notation. While the general formulation of particle

dynamics is given by stochastic ODEs (5.2), the model in Eqs. (5.5) is an example of

ODEs with random coefficients. Regardless of this distinction, its solution are random

processes Xp(t) and Up(t), which are described by either their joint PDF fXU (xp,up; t)

or, equivalently, by the joint cumulative distribution function FXU (xp,up; t) ≡ P[Xp(t) ≤

xp,Up(t) ≤ up], where xp and up are coordinates in the domain of definition of Xp(t)

and Up(t), (xp,up) ∈ ΩXU ⊂ Rd × Rd. The derivation of a deterministic PDE for

FXU(xp,up; t) or fXU(xp,up; t) would require a closure approximation [e.g., 218, 230].

Instead, we use the method of distributions to derive an exact deterministic (Liouville-type)

PDE for the joint PDF, fXUΞ(xp,up, ξ; t) : ΩXU × ΩΞ × R+ → R+, between the model’s

random inputs Ξ and outputs Xp(t) and Up(t):

∂fXUΞ

∂t
+ up · ∇xpfXUΞ +

1

St
∇up ·

[
(u− up)fXUΞ

Nξ∑
i=1

ξiψi(∥u− up∥2)
]
= 0. (5.6)

We refer the reader to [2] for a complete derivation. It is worthwhile emphasizing that xp,

up, and ξ are deterministic coordinates spanning the domain ΩXU × ΩΞ. Thus, Eq. (5.6)

is a deterministic linear PDE with variable coefficients, in which the derivatives are taken

with respect to xp and up, and ξ plays the role of a parameter.

Equation (5.6) is subject to the initial condition

fXUΞ(xp,up, ξ; 0) = f in
XUΞ(xp,up, ξ) = f in

XU (xp,up)fΞ(ξ), (5.7)
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with the latter equality reflecting the statistical independence between the initial state of

the particle, Xp(0) and Up(0), and the model parameters Ξ. A functional form of f in
XU (·)

reflects the degree of uncertainty in the initial state. If the latter is known with certainty,

Xp(0) = xin
p and Up(0) = uin

p , then f
in
XU (xp,up) = δ(xp − xin

p )δ(up − uin
p ), where δ(·) is

the d-dimensional Dirac delta function.

Let y = (xp,up, ξ) ∈ Ω ≡ ΩXU ×ΩΞ denote a point in the augmented phase space

Ω ∈ RN , which has dimension N = 2d+Nξ. At any time t, the joint PDF fXUΞ(y; t) in

(5.11) and (5.12) has the following properties:

fXUΞ(y; t) ≥ 0, ∀ y ∈ Ω;

∫
Ω

fXUΞ(y; t)dy = 1. (5.8)

The joint PDF fXUΞ(y, t) typically has a compact support Ωϵ ⊂ Ω,

Ωϵ(t) = {y : fXUΞ(y, t) ≤ ϵ}, (5.9a)

where the small positive constant ϵ is selected such that

∫
Ωϵ

fXUΞ(y; t)dy ≈ 1, (5.9b)

with a prescribed accuracy.

5.3 Lagrangian solution of Liouville equation

We introduce a deterministic Lagrangian PDF formulation that traces the joint

PDF and its support along characteristic lines of the Liouville equation. The MoC solution

of Eq. (5.5) starts by treating the independent coordinates xp and up as functions of time,
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xp(t) and up(t), so that the full time-derivative of fXUΞ(xp(t),up(t), ξ; t) is

dfXUΞ

dt
=
∂fXUΞ

∂t
+

dxp

dt
· ∇xpfXUΞ +

dup

dt
· ∇upfXUΞ. (5.10)

Comparing (5.10) with (5.6), we obtain equations for characteristics,

dxp

dt
= up, (5.11a)

dup

dt
= h(xp,up), h(xp,up) ≡

1

St
(u(xp, t)− up)

Nξ∑
i=1

ξiψi (∥u(xp, t)− up∥2) ,

(5.11b)

along with

dfXUΞ

dt
= −[∇up · h(xp,up)]fXUΞ. (5.11c)

The system of ODEs (5.11) is subject to the initial conditions

xp(0) = ηx, up(0) = ηu, fXUΞ(xp(0),up(0), ξ, 0) = f in
XU (ηx,ηu)fΞ(ξ), (5.12)

where values of (ηx,ηu) ∈ R2d label individual characteristics, with ξ ∈ RNξ acting as a

parameter.

A flow-map representation of Eqs. (5.11) is presented in Appendix E. Numerical

procedures used to solve these ODEs and to compute the marginals and moments of the

joint PDF fXUΞ are outlined below.

5.4 Numerical implementation

Let Y = {y1, . . . ,yMtot
} denote a collection of Mtot grid points used to discretize

the hypercube Ω. To simplify the presentation, we use the same number of points in each
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dimension, M , so that

Mtot =MN .

In Cartesian coordinates, for the ith component of vector y defined on the interval

ymin
i ≤ yi ≤ ymax

i , this tensorial grid is defined using, e.g., equispaced nodes

yiji = ymin
i + (ymax

i − ymin
i )

ji − 1

M − 1
, (5.13a)

or the scaled Chebyshev-Gauss-Lobato (CGL) nodes

yiji = ymin
i + (ymax

i − ymin
i )

1

2

[
1− cos

(
ji − 1

M − 1
π

)]
, (5.13b)

with i = 1, . . . , N and ji = 1, . . . ,M for any i. The (N +1)-th tensor yiji has NM
N entries

and its rank is (N + 1).

In this notation, the initial condition in Eq. (5.12) is discretized as

yijk ≡


ηxjk

for i = 1, . . . , d

ηujk
for i = d+ 1, . . . , 2d

ξjk for i = 2d+ 1, . . . , N

(5.14a)

and

fXUΞjk
= f in

XU (yijk ; i = 1, . . . , 2d)fΞ(yijk ; i = 2d+ 1, . . . , N), (5.14b)

with i, k = 1, . . . , N and jk = 1, . . . ,M for any k.

In the Eulerian framework, the size of the hypercube Ω, i.e., the values of ymin
i

and ymax
i for i = 1, . . . , N , are determined by the (truncated) domain of definition of the

random variables Xp(t), Up(t), and Ξ. The size of Ω is sufficiently large to accommodate
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the compact support of fXUΞ(y; t), Ωϵ(t) ∈ Ω in (5.9). At any time t, Ω includes regions

of zero or negligibly small values of fXUΞ(y; t), e.g., along the up [2] and xp coordinates as

particles in turbulent environments exhibit preferential concentration [231] that are linked

to attractors [232]. In the Lagrangian framework, we track the spatial evolution of Ωϵ(t)

by updating the support of the joint PDF given by the discrete locations stored in the

tensor yiji and evolved in time with (5.11a)–(5.11b), and use Ωϵ(t) as the computational

domain. With the flow map notation introduced in the Appendix E, the time evolution of

Ωϵ(t) is given by the flow map F t
t0
. This localization reduces the simulation cost since the

size of Ωϵ(t) is significantly smaller than the size of Ω. This saving alleviates the curse of

dimensionality, which plagues numerical solutions of high-dimensional Eulerian PDEs like

Eq. (5.6).

On the discretized domain Ωϵ, we use the third-order total variation diminishing

(TVD) Runge-Kutta method [175] to solve ODEs (5.11) with the initial condition (5.14).

Post-processing of the resulting solution fXUΞ(y; t) yields statistical moments of Xp(t)

and Up(t) and marginal PDFs, e.g., fX(xp; t) and fU (up; t).

5.4.1 Computation of moments

A numerical solution to Eqs. (5.11a) and (5.11b) yields the flow map y(t) =

F t
0(ηx,ηu, ξ), while a numerical solution to Eq. (5.11c) yields the flow map fXUΞ(y; t) =

Z t
0(y(t), f

in
XU , fΞ) (see Appendix E). Given these maps, the ensemble averages of the
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particle position and velocity, X̄p(t) and Ūp(t), are evaluated as

X̄pi =

∫
Ωϵ

xpifXUΞ(y; t)Jdηxdηudξ

≈
M∑

j1=1

· · ·
M∑

jN=1

wj1 · · ·wjNy
n
i,j1,...,jN

Jn
j1,...,jN

fn
XUΞj1,...,jN

,

(5.15a)

Ūpi =

∫
Ωϵ

upifXUΞ(y; t)Jdηxdηudξ

≈
M∑

j1=1

· · ·
M∑

jN=1

wj1 · · ·wjNy
n
i+d,j2,...,jN

Jn
j1,...,jN

fn
XUΞj1,...,jN

,

(5.15b)

for i = 1, . . . , d, and jk = 1, . . . ,M for any k = 1, . . . , N . Time has been discretized by

tn = n∆t, with n = 0, . . . , Nt and ∆t = t/(Nt − 1). The weights wjk correspond to the

trapezoidal rule. Here, J is the determinant of the Jacobian of the mapping of the initial

grid, y(0) = (ηx,ηu, ξ), onto its counterpart at time t, y(t) = (xp(t),up(t), ξ):

J = |J | =
∣∣∣∣ ∂y(t)∂y(0)

∣∣∣∣ , (5.16)

Its finite-differences approximation for interior points is

Jn
jk
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

yn1,j1+1,j2,...
−yn1,j1−1,j2,...

y01,j1+1,j2,...
−y01,j1−1,j2,...

· · ·
ynk,j1+1,j2,...

−ynk,j1−1,j2,...

y01,j1+1,j2,...
−y01,j1−1,j2,...

· · ·
ynN,j1+1,j2,...

−ynN,j1−1,j2,...

y01,j1+1,j2,...
−y01,j1−1,j2,...

...
. . .

...

yn1,...,jk+1,...−yn1,...,jk−1,...

y0k,...,jk+1,...−y0k,...,jk−1,...

ynk,...,jk+1,...−ynk,...,jk−1,...

y0k,...,jk+1,...−y0k,...,jk−1,...

...
. . .

yn1,...,jN+1,...−yn1,...,jN−1

y0N,...,jN+1−y0N,...,jN−1
· · ·

ynN,...,jN+1,...−ynN,...,jN−1

y0N,...,jN+1−y0N,...,jN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(5.17)

with a proper modification for points on the boundaries of Ωϵ(t). The discrete values of

the support and joint PDF in (5.15) are advected with the flow maps F tn
0 and Z tn

0 in

tonsorial form from the initial time to the posterior time tn.
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5.4.2 Computation of marginals

The computation of marginals consist in reducing the dimensionality of the joint

PDF along the marginalized dimensions. We particularly describe here the marginalization

along the k-th dimension of the joint PDF. Then, the resulting marginal PDF depends on

the reduced phase space vector, defined by ŷ = (y1, . . . , yk−1, yk+1, yN) ∈ Ωk
ϵ , with Ωk

ϵ ∈

RN−1. The marginal along the k-th dimension can be defined as fŷ(ŷ; t) : Ω
k
ϵ ×R+ → R+.

The integration to marginalize the joint PDF is performed by defining first an interpolator

operator I(y, fXUΞ,y) : Ωϵ × R+ × Ωϵ → R+ that takes a Lagrangian solution given by

y and fXUΞ, evolved in time with the corresponding flow maps (see Appendix E), and

interpolates it to a new tensorial grid that is aligned with the coordinate system. This

new tensorial grid is defined by

ynCiji
= min(yniji) +

[
max(yniji)−min(yniji)

] ji − 1

M − 1
, (5.18)

which is equispaced, and contains the support of the joint PDF given in the scattered

discrete grid yniji and also has M points along each dimension. Then, the joint PDF is

interpolated to the new tensorial grid by

fnXUξji
= I(yniji , f

n
XUξji

, ynCiji
), (5.19)

and the marginal along the k-th dimension is computed as

fn
ŷ jm

(ynCijm
; tn) ≈

∫ max(ynkji
)

min(ynkji
)

fXUΞ(y; t)dyk ≈
M∑

jk=1

wjk f
n
XUΞj1,...,jk,...,jN

, (5.20)

where m = 1, . . . , N − 1 and ji = 1, . . . ,M , for any i = 1, . . . , N ; with the trapezoidal rule

applied in the grid aligned with the coordinates along the k-th dimension. We note that

the interpolator I can be for example the linear staggered interpolant defined in griddata
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or scatteredInterpolant in MATLAB or griddata in the SciPy Python library. The

interpolated values of the joint PDF in the new grid that lie outside of the hypercube

defined by the grid yniji are assigned to zero because they are outside of the compact support

of the joint PDF (5.9). By successively integrating along the remaining dimensions, other

marginals can be computed.

5.4.3 Spectral methods to compute moments and marginals

To compute the moments and marginals with high-order schemes we use the method

described in [229, 233] where high-order computations of FTLE were presented. We start

by defining tensorial Lagrange interpolant of order, Q =M − 1, in N dimensions on an

orthogonal unit hypercube as follows

PQ(ζ) =
M∑

j1=1

· · ·
M∑

jN=1

lj1(ζ1) · · · ljN (ζN) = 1, (5.21)

with ζk ∈ [0, 1] with k = 1, . . . , N and jk = 1, . . . ,M for any k. In (5.21), each lj is the

one-dimensional Lagrange polynomial defined by

lj(ζ) =
M∏

i=1, i̸=j

ζ − ζi
ζj − ζi

. (5.22)

Notice that by construction
∑M

jk=1 ljk(ζk) ≡ 1 for any k. As before, we have used the same

number of points M along each dimension.

For a two- and three-dimensional augmented phase space, i.e., for N = 2 with

y = (y1, y2) = (xp, up) or N = 3 with y = (y1, y2, y3) = (xp, up, ξ) respectively, a single

element D ⊂ Ωϵ(t) is mapped into the unit square or cube respectively by the mapping

y = Θ(ζ) : RN → RN ,
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which are given in the Appendix F for both cases. At the initial time, the element

is initialized with the tensorial grid (5.13b) which map to the quadrature points in

computational space by yiji = Θ(ζiji). See Appendix F for N = 2 and N = 3. For

readability and clearness, we remove the first index in the notation by expressing the

symbol in bold and consider hereafter N = 3 such that the mapping of the grid points can

be expressed as yijk = Θ(ζijk), with i, j, k = 1, . . . ,M . Then, we define Q-th polynomial

approximation of y in the element D at the time t by

y ≈ yQ(ζ; t) =
M∑
i=1

M∑
j=1

M∑
k=1

yijkli(ζ1)lj(ζ2)lk(ζ3), (5.23)

where the explicit notation of time has been dropped but the nodal values yijk are the

corresponding quadrature nodes in physical space at the current time t, computed with

the flow map F t
0. Similarly, the joint PDF mapped with the flow map Z t

0 is approximated

by

fXUΞ ≈ fQ
XUΞ(ζ; t) =

M∑
i=1

M∑
j=1

M∑
k=1

fXUΞijkli(ζ1)lj(ζ2)lk(ζ3). (5.24)

At the initial time, points in the phase space are initialized at the quadrature nodes,

y0ijk, corresponding to ζijk in computational domain with the mapping y0ijk = Θ(ζijk)

(see Figs. 5.1a and 5.1c for the case N = 2). For a later time t, the points in physical

domain are mapped with yijk = F t
0(y0ijk) (see Fig. 5.1b). To find the corresponding points

in computational space to yijk, we apply the inverse of the transfinite mapping function Θ

with the Newton-Raphson method using the quadrature nodes as initial guess because the

map Θ does not have analytical explicit inverse. The result may be expressed formally

as ζ ′
ijk = Θ−1(yijk), where the locations in computational space do not coincide with

the quadrature nodes such that ζ ′
ijk ≠ ζijk except along the boundaries. The quadrature

points in physical space at time t denoted by y′
ijk have to be found via iteration using
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the interpolant defined with the unknown quadrature nodes y′
ijk evaluated at the known

locations yijk which map to ζ ′
ijk such that one has

ylnm =
M∑
i=1

M∑
j=1

M∑
k=3

y′
ijkli(ζ

′
1lmn)lj(ζ

′
2lmn)lk(ζ

′
3lmn), (5.25)

with l,m, n = 1, . . . ,M indices along the evaluation and i, j, k = 1, . . . ,M to construct

the interpolant. In matrix-vector form this can be expressed as

ŷq = ŷ′pIpq, (5.26)

where Ipq is the interpolation matrix

Ipq = li(ζ1lmn)lj(ζ2lmn)lk(ζ3lmn), (5.27)

and ŷp and ŷ′p are contiguously aligned so that p = iM2 + jM + k and q = lM2 +mM +n.

By inverting (5.26) we have

ŷ′p = I−1
pq ŷ

′
q. (5.28)

The locations ŷ′p are based on an orthogonal, tensorial, quadrature grid and forms the

basis at time t. Similarly, we interpolate the map of the joiont PDF by applying the same

interpolation matrix

f̂ ′
XUΞp = I−1

pq f̂XUΞq, (5.29)

where both ŷ′p and f̂ ′
XUΞq are defined at the quadrature nodes and thus suited for the

computation of the Jacobian J = |∂y/∂ζ| with the use of the mapping function Θ.

The moments and marginals for N = 3 are computed in Appendix G, following the
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same procedure from Sections 5.4.1 and 5.4.2 adapted for our high-order technique. The

latter’s use to compute the Jacobian for N = 2 and N = 3 is described in [229, 233]; the

quadratures using the single-element high-order descriptors are our innovation.

Figure 5.1. Computation of flow maps in (a) an element at initial time t = 0, (b) the
element at a later time t > 0, and (c) the mapped element to computational space for
N = 2. The mapped points in computational space for time t = 0, ζij , are the quadrature
nodes. At t > 0, the element in physical space is mapped by yij = F t

0(y0ij); except for the
boundary points, the mapped points in the computational space are not the quadrature
points. They are found using the Newton-Raphson method to invert the mapping function
Θ, such that ζ ′

ij = Θ−1(yij), with ζ ′
ij ̸= ζij. The quadrature nodes at the later time in

physical space y′
ij are found via the interpolation scheme from [229, 233].

The number of degrees of freedom to march in time when using the MoC is

DL = (N + 1)MN . In the Eulerian formulation, the number of degrees of freedom is

DE = MN . However, the localized Lagrangian domain Ωϵ(t) is much smaller than the

Eulerian domain Ω. Hence, for similar accuracy, the number of points per dimension in

the Lagrangian approach (ML) is smaller than that in the Eulerian approach (ME). If

ME = cML with the constant c > 1, the number of degrees of freedom in both approaches

is related by

DE =
cN

N + 1
DL.

The numerical experiments presented below and in in [2] show an order of magnitude

difference between ME and ML i.e., c ≈ 10. Additionally, our Lagrangian method requires

a numerical solution to ODEs, whereas the corresponding Eulerian formulation solves a

high-dimensional hyperbolic PDE; the latter needs filtering and regularization techniques,
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which increase the computational effort.

5.5 Numerical experiments

We conduct a series of numerical experiments to demonstrate the salient features

of our Lagrangian PDF method.

5.5.1 Deterministically forced particles

Test 1: smooth functions.

The first test case is dedicated to study the numerical properties of the Lagrangian

approach for cases with periodic smooth functions. We define the initial condition with

Gaussian distributions corresponding to a Maxwellian state of the particles in phase space

xp − up, in a one-dimensional problem d = 1 with deterministic forcing ϕ = 1. This

two-dimensional augmented phase space N = 2 suffices for this purpose, whose numerical

characteristics are applicable for solutions described by smooth periodic functions in higher

dimensions. The particle phase solution is then fully described by the joint PDF fXU .

Deterministic Stokes drag forcing is suitable for a particle phase with low particle Reynolds

numbers. The chosen flow corresponds to the stagnation flow as defined by [176] for which

the MoC admits analytical solution of the Lagrangian PDF model (see Appendix H). In the

horizontal direction x, the stagnation flow is defined by u = −κx, with κ a constant taken

to be unity here. We test the Lagrangian framework for low-order (linear for interpolation,

second order for integration) and high-order (spectral for interpolation and integration)

schemes. Additionally, for validation and comparison, we use the MC-PSIC method and

the Eulerian solver developed in [2] based on Chebyshev spectral collocation method to

solve the Eulerian PDF equation.

A particle particle cloud is initialized with a bivariate Normal distribution at the

average particle location and velocity (X̄p0, Ūp0) = (−1, 1) with standard deviations

σXp0
= σUp0

= 0.05. At the initial time, the particle position and velocity are statistically
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independent such that f in
XU(xp, up) = f in

X (xp)f
in
U (up), with Xp0 ∼ N (X̄p0, σ

2
Xp0

) and simi-

larly for Up0. The Stokes number is St = 1 such that the inertial effects are dominant in

the particle dynamics. In the Lagrangian approach, the definition of the compact support

requires clipping of the initial condition to an interval defined by [−5σ, 5σ] per dimension.

Figure 5.2. Joint PDF fXU for Test 1 computed with MC-PSIC, the Eulerian PDF
approach and the Lagrangian PDF approach with high-order schemes for three different
times t = [0 0.6 1.2]. At the initial time, the MC-PSIC solution is represented for a
reconstructed solution with 30× 30 bins. At the second time the Eulerian solver is used
to plot the solution, defined in the domain Ω with a 401× 401 Chebyshev grid (see [2]).
At the final time, the Lagrangian PDF solution is depicted with a spectral interpolant
based on a 31× 31 grid (also depicted in the previous times). The time evolution of the
maximum is analytically traced with the MoC (green continuous line).

In the MC-PSIC method, a sampled initial condition composed by Ns = 106 point-

particles is evolved in time with (5.5). The convergence error is known to be proportional

to 1/
√
Ns, requiring a high number of samples to be reduced. At any given time, the joint

PDF is reconstructed by dividing the domain in cells or bins and counting the particles per

cell. However, the solution is conditioned to minimum amount of particles per cell required.

We ensure that there are at least ten particles per cell. For a given sampled solution, this

leads to solution dependency on the number of cells employed. Without the use of kernels

to smooth the resulting PDF, which are dependent on an optimal bandwidth [234, 235],

the solution is discontinuous (see Figure 5.2).
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As an alternative to MC-PSIC that does not rely on sampling, we solve the

Eulerian PDF equation (5.6). This particularly requires the use of high-order discretization

techniques as discussed in [2]. The PDF equation admits discontinuous solutions for two

distinct reasons. The initial condition may include discontinuities as for example if

deterministic initial conditions or Uniform distributions are considered, or independently

of the initial condition, the solution may evolve to situations in which particles concentrate

in a small region in phase space and/or travel at a similar (or equal) speed, leading to high

gradients in the PDFs. Because of these reasons, filtering and regularization techniques

may be needed to solve the PDF equation in Eulerian form. In Figure 5.2, we show

the Eulerian PDF solution at an intermediate time where the domain Ω is defined to

cover all possible trajectories form initial to final time. Because the joint PDF is smooth

enough, filtering and regularization are not needed in this particular test case to keep the

solution stable. For the same reason, Gibbs oscillations do not condition the accuracy of

the solution.

The Lagrangian framework offers additional advantages. In addition to the inde-

pendence of sampling errors, it improves upon its Eulerian counterpart because of the

simplification of the governing equations from PDEs to ODEs. As a result, it is unaffected

by the CFL stability condition for time integration according to a given grid. The spatial

accuracy however when evaluating the interpolant is subjected to interpolation errors de-

spite the fact that for traced points the only error to consider is related to time integration.

We show in Figure 5.2 at the final time, the interpolated solution in a refined grid and the

nodes that compose the spectral interpolant. The solution in Lagrangian form follows the

particle cloud with its movement, reducing the size of the domain Ωϵ(t) needed to compute

the solution at a given time, that only covers the region surrounding non–zero values of

the joint PDF. Moreover, events of interest may be traced independently along time in the

phase space. A comparison of the time evolution of the maximum and minimum of the

joint PDF with the three approaches used is shown in Figure 5.3a. The MC-PSIC method
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leads to noisy solutions and dependency on the number of cells used to reconstruct the

joint PDF. The Eulerian approach, provides an accurate solution particularly when the

solution is smooth. For comparison, we also show a filtered solution where overshoots

and undershoots appear compromising the local accuracy of the solution and violating

the non-negativity condition of PDFs. The Lagrangian approach however, may be used

to track that single event instead, reducing the problem to the computation of a single

ODE which gives the exact analytical solution. For example the point with maximum

probability is fmax
XU = f in

X (−1)f in
U (1)et/St depicted also in Figure 5.2.

(a) (b) (c)

Figure 5.3. Numerical results for Test 1. In (a) the time evolution of the maxima and
minima of the joint PDF fxpup computed with MC-PSIC, the Eulerian solver with and
without filtering and regularization, and the Lagrangian solver; in (b) the comparison of
the joint PDF along the line Xp = 0 at the final time t = 1.2 for the different methods and
in (c) the convergence of the interpolant of the joint PDF for the Lagrangian approach
with a linear and spectral scheme.

The evaluation of the joint PDF along lines provides also additional insights.

Figure 5.3b shows the solution at the final time along the line xp = 0. The MC-PSIC

solution is discontinuous with constant values of the joint PDF within each cell as opposed

to the PDF approaches. The Eulerian solution is shown for both cases, with and without

filtering where the effect of the filter is shown to smoothen the function, reducing its

maximum and minimum (see also Figure 5.3a). The Lagrangian solution with a spectral

scheme is shown to accurately reproduce the results of the Eulerian solver with a grid

composed by only 21× 21 points in the xp − up space. When using the linear interpolant
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however, the matching is less accurate and straight lines near the maximum where

the curvature of the solution is larger can be appreciated. However, considering the

computational savings as compared with the Eulerian solver that employs a 401 × 401

grid, the Lagrangian approach is more convenient computationally. The convergence of

the interpolated Lagrangian solution with the different numerical schemes is as expected,

linear and spectral accordingly (Figure 5.3c). For very low number of nodes, M < 7, the

linear interpolant exhibits less error than the spectral interpolant. The use of only a few

nodes in the spectral interpolant causes the global representation the solution to be given

by a polynomial of not enough order and oscillations between nodes are expected when

evaluating the interpolant. However, forM > 7, the spectral interpolation is more accurate

as a result of its rapid convergence. For only M = 21 nodes, the spectral interpolant is

already several orders of magnitudes more accurate than the linear for the same amount

of points. This global representation leads to an error distribution within the domain, as

it can be seen in Figure 5.4, as opposed to linear case where the error is localized near

areas of high curvature in the solution.

Figure 5.4. Errors for Test 1 for the Lagrangian approach using a spectral interpolant
(a)–(c) and linear interpolant (d)–(f) for times t = [0 0.6 1.2]. The red dots represent
the grid aligned with the axis used for the marginalization step where the solution is
interpolated from the non-aligned grid (white dots).
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Concerning the computation of marginals, we proceed by defining a container

element aligned with the axis (Fig. 5.4) and interpolating the solution to it to later

integrate. For a marginally resolved case, with only M = 11, we observe good agreement

between MC-PSIC and the linear interpolant, whereas the spectral one shows discrepancies

(see Figure 5.5a). This is also the case for the marginal fU (not shown). However, for

a small increase of the number of nodes to M = 21 (Fig. 5.5b), the spectral interpolant

is already much more accurate as a result of its exponential convergence, similar to the

analysis to the two-dimensional interpolant of fXU (see Figures 5.3c and 5.4). It is worth

mentioning that the trapezoidal rule also experiences exponential convergence at low

number of points (Fig. 5.5c), related to the periodicity of the solution [236], for which

its convergence is given by the convergence of the Fourier approximation of the function

to integrate with the number of modes considered. This unusual situation enhances the

general second order convergence of the trapezoidal rule which is shown after the number of

nodes exceeds a threshold (about M ≈ 11 in this case). The Clenshaw Curtis quadrature

on the other hand, shows exponential convergence once the asymptotic regime is reached,

leading to a better approximation than the trapezoidal rule for M > 21.

(a) (b) (c)

Figure 5.5. Results for deterministically forced test case with periodic functions.
Marginals computed with (a) M = 11 nodes and (b) M = 21 nodes with the Lagrangian
approach using the linear and spectral interpolants compared with MC-PSIC, and in (c)
the convergence with the number of nodes of both interpolants. The linear interpolant is
combined with the Trapezoidal rule and the spectral with Clenshaw Curtis to perform the
integrals to marginalize.
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The first and second moments of the joint PDF may also be computed with the

different approaches presented. If they are computed with the MC-PSIC method, the

convergence of the moments with the number of samples scales at the slow rate of 1/
√
Ns.

The Eulerian PDF approach may also be used to compute moments where if filtering

is used, the vanishing moment condition of the regularized Dirac delta employed in the

kernels of the filter [74], conditions the amount of moments that the solution accurately

preserves along time [2]. In the Lagrangian framework, we compute the moments with both,

a low and high-order scheme. In the Lagrangian approach, the computation of moments is

performed by integrating along all dimensions using the corresponding Jacobian. We find

that the trapezoidal rule also exhibits exponential convergence for low nuumber of points

and second order convergence after a threshold. The Clenshaw Curtis quadrature maintains

spectral convergence once the asymptotic regime is reached until machine precision error

is found (Figure 5.6). The clipping of the initial condition prevents the periodicity of the

solution because the derivatives on the extremes of the Gaussian functions are not exactly

zero. According to that, if less clipping is applied to the initial condition, the trapezoidal

rule is expected to be more accurate. Extending the interval in which we clip the initial

condition to [−7σ, 7σ], the exponential convergence of the trapezoidal rule is consistently

extended and becomes more accurate for increasing number of nodes (Fig. 5.6, dark red

curve). For low number of nodes however, the errors are higher as compared to the more

clipped solution as a result of the extension of the interval to approximate the solution

(for the same amount of points per direction).

Test 2: non-smooth functions.

The second test case is dedicated to solutions with high gradients or in general

non-smooth functions. We select the same setup as for the previous case but the initial
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Figure 5.6. Convergence of the moments with the number of nodes for the determinis-
tically forced case for periodic functions computed with the Lagrangian approach with
linear and spectral schemes combined with the Trapezoidal Rule and Clenshaw Curtis
respectively.

condition is defined with Uniform distribution functions such that

Xp0 ∼ U(X̄0 −
√
3σXp0

, X̄p0 +
√
3σXp0

),

and similarly for the velocity, with the same average values and standard deviations

σXp0
= σU0

= 0.1. The initial condition then is defined with compact support in the

interval where the Uniform distributions have a non-zero value. Therefore, the initial

element is defined without clipping the joint PDF.

For the non-smooth initial condition that presents sharp gradients, the Eulerian

PDF approach requires filtering and regularization to be stable. At any given time, the

solution is smoothen by the filtering operation and as a result of the high gradients, Gibbs

oscillations appear, where overshoots and undershoots compromise the local accuracy of

the solution. A full review in detail of the Eulerian approach was carried out in [2]. The

convergence of the filtered solution far from regions of sharp gradients, is defined by the

vanishing moment conditions of the kernels used in the filtering [73, 74]. When using

MC-PSIC, the solution can also be reconstructed similarly to the previous test case by

dividing the domain in cells and reconstructing the PDF. The presence of gradients are
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related to adjacent cells with a high disparity of samples. For the Lagrangian approach, the

interpolants are affected by the smoothness of the solution when the solution is interpolated

or integrated. However, the tracing of single events in the parameter space is not affected

by the presence of high gradients, being possible to trace analytically the solution for this

test case as for the previous one. In Figure 5.7a, the tracing of the maximum and minimum

of the joint PDF is compared with MC-PSIC and the Eulerian solver. The MC-PSIC

solution is dependent on the number of samples. The Eulerian filtered solution locally

modifies the joint PDF, preventing the solution to preserve the non-negativity condition

of PDFs. This leaves the Lagrangian approach as the only alternative to maintain local

accuracy with independence of the presence of high gradients in the solution.

This also translates to the evaluation of the interpolants traced with the Lagrangian

approach. The comparison along a line xp = 0 at the final time of the joint PDF is shown

in Figure 5.7b. The Eulerian solution (with regularization and filtering) shows oscillations

near the high gradients. The MC-PSIC solution is in qualitatively agreement with the

other methods with no major complication than the fact that the solution is non-smooth

within its support. The Lagrangian solution offers an exact description of the solution. In

this particular case, as the joint PDF stays constant within its support at a given time,

the linear interpolant is already exact. The interpolant is affected by the geometry of the

support, that in this case is described by straight lines, and the smoothness of the function

defined in the support (the joint PDF), constant in this case. For this reason, the linear

and spectral interpolants are equally accurate.

The marginalization of non-smooth solutions is highly affected by presence of high

gradients in the solution. In particular, we show in Figures 5.8a and 5.8b the marginal

of the particle position for M = 11 and M = 41 nodes computed with the MoC with

linear and spectral interpolants. For a marginally resolved case with low number of points,

both solutions show oscillations as interpolation errors. These errors are minimized for an

increase number of nodes but because of the presence of gradients, the convergence rate is
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(a) (b)

Figure 5.7. Numerical results for Test 2. In (a) the time evolution of the maxima and
minima of the joint PDF fXU computed with MC-PSIC, the Eulerian approach with
filtering and regularization and the Lagrangian approach; in (b) the comparison of the
joint PDF along the line xp = 0 at the final time t = 1.2 for the different methods.

limited by a M−1 rate (Figure 5.8c).

(a) (b) (c)

Figure 5.8. Numerical results for Test 2. Marginals computed with (a)M = 11 nodes and
(b) N = 21 nodes with the Lagrangian approach using the linear and spectral interpolants
compared with MC-PSIC, and in (c) the convergence with the number of nodes of both
interpolants. The linear interpolant is combined with the Trapezoidal rule and the spectral
with Clenshaw Curtis to perform the integrals to marginalize.

The computation of the moments when gradients are present in the solution is also

affected by it as compared to the smooth case. In particular, we find that the computation

of first moments with the linear interpolant with Trapezoidal rule and spectral interpolant

with Clenshaw Curtis quadrature provide machine precision errors (see Fig. 5.9). This
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occurs because the integrand is a constant as a result of a linear mapping with constant

Jacobian and the fact that the joint PDF stays constant within its support. However, for

the second moments, the integrand contains not only the joint PDF and the Jacobian

but also the term (xp − X̄p)
2 which is second order in xp (and similarly for other second

moments) that makes the integrand non-linear. For this reason, the linear interpolant plus

Trapezoidal rule exhibits second order convergence whereas the spectral plus Clenshaw

Curtis is exact for M > 3. This behavior is observed also in the rest of the first and second

moments not shown in Figure 5.9.

Figure 5.9. Convergence of the moments with the number of nodes for Test 2, computed
with the Lagrangian approach with linear and spectral schemes combined with the Trape-
zoidal rule and Clenshaw Curtis quadrature, respectively.

5.5.2 Randomly forced particles

Test 3: stagnation flow.

The consideration randomness in the forcing function described by (5.4) implies

that the random coefficients Ξi with i = 1, . . . , Nξ follow PDFs different from Dirac delta

distribution, i.e., the variables Ξi are not provided deterministically, and account for

uncertainties in the forcing model. As an example, a combination of Nξ = 10 Chebyshev

modes ψi(Rep) suffices to accurately represent the Schiller and Naumann correlation

1+0.15Re0.687p in the interval Rep ∈ [0, 50], where the joint PDF of the random coefficients

fΞ(ξ) governs the stochasticity in the forcing. In Figure 5.10, we show such approximation
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of the Schiller and Naumann where only the first coefficient is random and the rest

deterministic according to (5.4), so that Ξ1 ∼ fΞ1(ξ1) and Ξi ∼ δ(Ξi − 1) for i = 2, . . . , 10.

We then rename the only random coefficient as Ξ = Ξ1. The variance of such forcing is

constant along the particle Reynolds number as the first Chebyshev mode ψ1(Rep) is a

constant. The general forcing model (5.4) may describe any general dependency of the

forcing with the particle Reynolds number (see for example [6] and [4]). We also depicted

the Stokes drag with constant standard deviation along Rep where simply ϕ = Ξ.

Figure 5.10. Two standard deviation bounds of random forcing models defined with (5.4).
In black, the Stokes drag with a constant confidence interval defined by ϕ = Ξ with
Ξ ∼ N (1, 0.12). In green, the Schiller and Naumman correlation with a constant confidence
interval defined with ten modes where

∑10
i=1 ψi(Rep) ≃ 1 + 0.15Re0.687p and the first

coefficient is Ξ1 ∼ N (1, 0.12) and the rest unity Ξi = 1, with i = 2, . . . , 10.

In this test case, we analyze the evolution of the PDFs of the particle phase

when groups of particles are released in the stagnation flow [176] as in the previous

three test cases. Point-particles carried by this flow admit an analytical solution for

their trajectories as well [2]. As in the previous cases, we choose St = 1. The particle

parameters are dp = 2.7 · 10−3 and ρp = 250 that when considering Re∞ = 104 leads to

particle Reynolds larger than unity such that a correction of the Stokes drag is suitable

to be applied. We release a particle cloud defined by Gaussian distribution functions

such that the average values of the particle position and velocity are (X̄p0, Ūp0) = (−1, 1)

and the standard deviations σXp0
= σUp0

= 0.05. The initial location and velocity as
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well as the random coefficient are statistically independent such that at the initial time

one has fXUΞ(xp, up, ξ; 0) = f in
X (xp)f

in
U (up)fΞ(ξ). For the random coefficient we consider

Ξ ∼ N (1, 0.12) for both, the Stokes and the Schiller and Naumann correction represented

in Figure 5.10.

In the MC-PSIC approach, each sampled particle exhibits a delayed and damped

trajectory as compared to a fluid tracer (without inertia) which is governed by its sampled

value of the random forcing. The evolution in time of a cloud of particles when the forcing

is consider random is distinctly different than that of considering deterministic forcing,

described by significantly different PDFs. In Figure 5.11a, samples for three different

values of the random coefficient Ξ, namely Ξ̄− σΞ, Ξ̄ and Ξ̄ + σΞ are shown. A sampled

particle group or cloud with a deterministic value of the coefficient, Ξ∗, for all particles,

corresponds to realizations with an effective inertia St/Ξ∗ for the whole particle cloud (see

Fig. 5.11a left and Fig. 5.11c first three rows). In that case, with a single deterministic

value of the random coefficient, the cloud behaves coherently. Notice that the divisions by

quadrants in Figure 5.11c (first three rows) in phase space remain during the time evolution.

After times larger than the Stokes number, changes in the flow may produce transport of

particles from one quadrant into another as the cloud is advected and deformed and this

distinction according to the initial quadrants may disappear over time. However, in the

case of considering random forcing, this distinction disappears in a time frame smaller

than the average Stokes number of the cloud St/Ξ̄. Particles from different quadrants

quickly mix with each other as the particle cloud is advected by the flow. Also, there is a

change in the topology of the cloud in phase space as compared to the deterministically

forced cases. For deterministically forced clouds, the phase space topology corresponds

to a joint PDF that is approximately a multivariate Gaussian for most of the simulation

(times on the order of the Stokes number) as opposed to the randomly forced cloud where

non-Gaussianity appears quickly as a result of the randomness in the forcing. Both,

variations of the flow within the cloud region and the consideration of random forcing
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originate non-Gaussianty but the randomness in the forcing has an almost immediate

effect in third and higher moments. This leads to non-Gaussian effects in the solution

related to random forcing occurring in a much faster time scale as compared to considering

deterministic forcing.

In Figure 5.11b we represent the samples of the randomly forced cloud in the

augmented phase space. The parametric effect of the random coefficient shows that

particles with high values of the random coefficient have low inertia whereas samples with

low values of the random coefficient have high inertia. The the mixing between quadrants

for the randomly forced case (Fig. 5.11c fourth row) is related to a cloud with a distribution

of inertia governed by the PDF of the random coefficient and therefore, a mix in time

responses of particles.

(a) (b) (c)

Figure 5.11. Solutions based on the MC-PSIC method for Test 3. In (a), three
deterministically forced samples depicted at three different times in phase space (left)
and the corresponding randomly forced solution (right). In (b), The randomly forced
solution in the augmented phase space xp − up − ξ for the initial and final time. In (c),
the four cases depicted in (a) by rows for three different times (columns) with a quadrant
distinction according to the initial condition. The forcing model is based on the Stokes
drag in 5.10.

In the Lagrangian approach, the deterministic characteristic lines link particles

with their probability to occur, and each particle becomes a possible event with known

probability traced along a deterministic characteristic line in phase space. As a difference

with Langevin approaches, these samples are not fictitious particles [129] but possible
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particles, as its equations and properties are deterministic. In fact, they do not need to

be sampled but selected to specifically cover the region of phase space that defined the

support of the joint PDF. In Figure 5.12, we show the mapping of the joint PDF from the

initial to final time of the randomly forced particle cloud with a correspondence one-to-one

of each point. The probability of each particle (event) is known in the initial condition

and can be mapped to a later time in a deterministic manner as opposed to samples of the

MC-PSIC approach (see Fig. 5.11b). This way, the full statistical description of the cloud

is deterministically traced in the augmented phase space. The values of the joint PDF

of each event is represented with a colormap in Fig. 5.12. The marginalization over the

three different dimensions, leading to bidimensional marginals is shown projected in the

corresponding planes after having interpolated to the container element and integrated

numerically. This can be performed with the linear and/or spectral schemes analyzed

previously, where the analysis of the numerical properties of both approaches for periodic

functions holds for this particular case as well. The convergence analysis (not shown) for

this case is qualitatively the same than the one described in Section 5.5.1 when evaluating

the interpolants and the integrations to marginalize and compute moments.

The comparison of the joint PDF fXU for a deterministic and random forcing is

shown in Figures 5.13a and 5.13b respectively, particularly for the consideration of the

Stokes limit (Rep small). The trajectories of the particles conforming the mapping of

the support of the joint PDF depend non-linearly on ξ (see Appendix H). This causes

tails (associated with non-zero high moments) to appear on the joint PDF when the

vertical component in Fig. 5.12 is integrated, i.e., when marginalizing along ξ. This results

on a significant difference of the marginal fXU when the forcing includes uncertainty

as opposed to being described deterministically. The PDF equation gives the means to
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Figure 5.12. Joint PDF for Test 3, computed with the Lagrangian approach. The
solution is depicted at the initial and final time where the joint PDF is represented in the
augmented phase space xp − up − ξ and the two–dimensional marginals and projected
in the corresponding planes. The marginal fXU is depicted in the plane xp − up, fXΞ in
xp − ξ and fUΞ in up − ξ. The random forcing used is the Stokes model in 5.10.

directly quantify this difference which resides formally in the term

∫ ∞

−∞
ξfXUΞdξ, (5.30)

that does not participate in the PDF equation for a deterministically forced cloud. In

fact, such term is the only difference between the Liouville equation of a deterministically

forced case with the randomly forced case after marginalizing along ξ. It is important

to highlight here that despite the relatively simple choices of the test case, i.e., initial

condition defined by Gaussian distributions and linear flow as well as Stokes forcing (ϕ = 1

for deterministically forced and ϕ = Ξ for randomly forced, see Fig. 5.10), the output of

the system in highly non-Gaussian at shorter times than the Stokes number, presenting a

joint PDF with a convoluted shape in the xp−up phase space that would not be accurately
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described by Gaussian models.

(a) (b)

Figure 5.13. Solution of the PDF fXU for Test 3 with (a) deterministic and (b) random
forcing computed with the Lagrangian approach. The random forcing used is the Stokes
model in Fig. 5.10.

The general random forcing model as described in (5.4) allows to account for finite

Reynolds number, correcting the Stokes drag (green curve in Fig. 5.10). We evaluate for

this case the consideration of Stokes drag or the Schiller and Naumann (SN) correction for

both, deterministic and randomly forced particle clouds. The SN forcing has a value of

approximately two for a finite particle Reynolds number of order ten. With the current

parameters of the test case, the particle cloud exhibits values of the particle Reynolds on

the interval Rep ∈ [0 25]. Therefore, we report a significant influence in the statistics by

the consideration of finite particle Reynolds number in the forcing. Particles that deviate

from the trajectory of tracers in the xp − up phase space and therefore have non-zero

relative velocity (and Rep), are forced at higher values that those at the speed that a

tracer would have at that location. As a result, despite the flow is linear, the support of

the joint PDF is non-linearly mapped and the evolution of the joint PDF is also affected

by it (see equations (5.11c)).

With respect to the first moments (Fig. 5.14a), the consideration of randomness

in the forcing as a result of empirical uncertainty does not change considerably the
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solution. However, correction of the Stokes drag for finite particle Reynolds numbers

has an appreciable impact in the averages of the particle solution. The second and third

moments however (Figs. 5.14b and 5.14c), are affected by both, the consideration of

uncertainty in the forcing as well as the particular forcing model used, Stokes or Schiller

and Naumann. Only the consideration of deterministic Stokes drag leads to statistics

that can be accurately described by a Gaussian model as the skewness remains zero along

time (Fig. 5.14c). The importance of quantifying the uncertainty in the forcing function

and introducing it in the model is crucial to accurately predict the evolution of particle

statistics even for simple flows and Gaussian initial conditions. Non-linear effects of the

uncertainty in the forcing and corrections for finite particle Reynolds of the forcing affect

the evolution of the joint PDF in a non-trivial manner, here fully described by the PDF

approach in Lagrangian form.

(a) (b) (c)

Figure 5.14. Time evolution of the (a) first (b) second and (c) third moments for Test
3. Deterministic forcing (dF) and random forcing (rF) are considered as well as Stokes
and Schiller and Naumann (SN) forcing models as presented in Fig. 5.10. The skewness

is normalized using the corresponding standard deviation such that sXp = X ′
p
3/σ3

Xp

equivalently for the particle velocity.

Test 4: flow around a cylinder.

The von Kármán vortex street [237] has been used in several studies of coherent

Lagrangian structures and particle laden flows [238, 239, 240, 241]. We chose the same

parameters that in the cited studies, that have been shown to approximate the solution
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of the Navier-Stokes equations for this geometry for Re∞ ≈ 250. We release a quiescent

particle deterministically located at (xp, yp) = (−2, 0.2) at t = 0, with Stokes number

St = 0.5 and randomly forced. Because the Reynolds of the flow is relatively low, the

particle Reynolds number is smaller than unity and the Stokes approximation holds, for

particle parameters in concordance with the point-particle assumption. Because of that,

we chose the Stokes drag with uncertainty presented in Fig. 5.10. We consider Ξ given by

a Normal distribution Ξ ∼ N (1, 0.12) and Uniform distribution Ξ ∼ U(0.8, 1.2).

A single particle randomly forced describes a curve in the augmented phase space

parametrized with the random coefficient shown in Figure 5.15a for five equidistant instants

of time in the interval t = [0 1.5]. For a given time, the solution describes possible particle

positions for inertia St/ξ, such that high values of the random coefficient are associated

with a fast response and low values of the random coefficient to a slow inertial response.

Using the Lagrangian approach in this two-dimensional flow, the link of the probability

of those events is traced in time and linked to particle movement as it is advected by

the flow (Fig. 5.15b). High values of the random coefficient are also linked to rapid

growth of the probability of such events, that can be traced independently. The method

of characteristics can be used to trace the evolution of single particles with the use of flow

maps without spatial numerical approximation, capturing accurately the discontinuities in

the solution. The equivalent computation using an Eulerian approach is a hard task that

requires convoluted numerical techniques. Equivalently for the MC-PSIC method, the

reconstruction of PDFs defined along a parametrized curve may lead to under predictions

related to the reconstruction process of the joint PDF by cell divisions.

5.6 Summary of results

A deterministic Lagrangian PDF framework to trace the evolution in time of the

randomly forced particle phase is developed. The procedure is based on the method of
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(a) (b)

Figure 5.15. Temporal evolution of a randomly forced particle in a cylinder flow given by
the model in [237] with either Gaussian (red) or uniformly (greed) distributed α, for five
instants of time in the interval t = [0 1.5]. In (a), the mapping of the particle locations
(blue) and in (b) the corresponding mapped probability.

characteristics to solve the Liouville governing PDF equation derived with the method of

distributions, taking advantage of its hyperbolicity. The method considers randomness in

the particle forcing as a result of empirical uncertainty in non-analytical forcing models.

It is then suitable for scenarios in which forcing models are not available analytically

and have been learned either by experiments or numerical computations in a data-driven

manner.

This approach circumvents previous reported difficulties in solving the governing

PDE equation in Eulerian form that requires the use of high-order numerical methods

combined with filtering and regularization. In particular, the mapping of single events

with the computation of ODEs can be performed with no spatial approximations in an

inexpensive manner. Local computation of the solution is possible such that the domain

of computation can be defined where the particles lie, saving computational effort as

compared to Eulerian methods.

We presented both low- and high-order schemes to compute moments and marginals

of the joint PDF with expected convergences and numerical properties. We particularly
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find that in the case of smooth periodic solutions, a linear discretization scheme provides

also spectral convergence as the Trapezoidal rule converges as fast as the Fourier coefficients

for periodic functions.

The test cases verify the proposed framework comparing with previously developed

grid-based methods and MC-PSIC computations. Considering random forcing as a result of

the use of uncertain drag correlations introduces a distinctly different dynamical response

of particle groups as opposed to considering analytical drag laws where the forcing is

deterministic. The solution of the joint PDF becomes non-Gaussian even for relatively

simple settings where initial conditions and random coefficients are considered Gaussian,

i.e., the outputs of the system become non-Gaussian with independence of the inputs; in

shorter times than the Stokes number. The evolution in time of the averages of the particle

phase remain similar for small variations in the flow within the cloud region for a limited

time, smaller than the characteristic time of the particles. Moments higher than the first

differ significantly, resulting in an under predicted particle statistics when uncertainty in

the drag model is not considered, i.e., when using deterministic drag models.
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Chapter 6

Particle forcing reconstruction from
limited observation with quantified
uncertainty

6.1 Introduction

The physics of dispersed particles in unsteady and turbulent flow fields is intricate.

This has been and continues to be the inspiration for a significant amount of research on

the modeling of particle-laden flow. While several textbooks [178, 242, 243] and review

articles [67] have summarized a large number of approaches and an even larger number

of models, a key issue in constructing robust and accurate computational models for the

dynamic behavior of the dispersed particle fields remains the formulation of accurate

particle forcing models. The primary objective of this work is to establish a methodological

framework for physics-based inverse modeling of particle forcing dynamics, coupled with

uncertainty quantification. This framework is designed to address scenarios where sparse

and noisy measurement data along particle trajectories are available.

6.1.1 Particle Forcing Models

The forcing of a small single smooth spherical object in a flow is well-known

and described analytically for low Reynolds and Mach numbers by the Maxey-Riley

equation [44]. Resolution requirements and the complexity of the interactions between
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wakes, boundary layers, turbulence, and shocks, however, limit the accurate measurement

and prediction for flow conditions outside of that range. At higher Reynolds numbers,

the flow separates and can become unstable and the forcing depends on subtle linear

and non-linear instabilities that can be sensitive to small changes in the flow conditions.

For scenarios with high-Reynolds number effects, for example, simulations of explosively

dispersed particle fields originating from a high-speed moving source, basic empirical

forcing models have been used [170, 189]. However, it is clear that the accuracy of such

models is affected by unsteady forcing [59] and unsteady carrier-phase effects [244]. In fact,

high-speed particle flow has spurred model development over the last decade [245, 189]

and led to studies that determine either theoretically, experimentally, or through machine

learning the particle forcing of single particles affected by moving shocks and arrays of

particle affected by shock diffraction [246].

In addition to the impact of flow conditions, a range of geometric parameters can

affect the particle forcing. For example, micro- and meso-scopic, but crucial geometric

imperfections and deformation of (condensed) particles’ surfaces impact momentum and

energy exchange with a carrier flow. A harmonic perturbation of cylindrical shape for

example can change the dominant vorticity generation by shear to a baroclinic mecha-

nism [247] and yield different forcing. Just these few examples show how many parameters

and flow conditions can affect forcing models, and it should not be surprising that an

accurate and comprehensive forcing model has eluded the community and realistically is

not feasible for all conditions.

As an alternative to understanding the effect of more flow conditions (free-stream

turbulence, free-stream velocity profile, stratification, etc.) or particle geometry and the

formulation of even more additional and new forcing corrections, we might consider the

forcing problem from an inverse perspective and resolve the limitations of modeling and

experiment through inference and optimization from observational and simulated data

using analytical relations and inputs and outputs of simulation and experiment. Could we,
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for example, infer the forcing from limited trajectory data? Or might it be possible to

assume a random forcing model with a confidence interval and improve this forcing with a

limited amount of high-resolution data? To this end, an intelligent framework is required

that systematically and robustly improves forcing models and associated macro-response

protocols with a robust uncertainty quantification using limited, experimental data.

6.1.2 Inverse methods

The inference of particle forcing from sparse measurements can be accomplished

from an inverse-problem perspective. The dependence of particle trajectory data onto the

forcing law is highly nonlinear, obtained from solving the physical governing equations. In

general, for such nonlinear physics-constrained inverse problems, both data-based methods

and physical model-based approaches can be considered. Data-based methods aim at

learning a massive amount of data as a distribution, often in reduced-order latent space.

Methods such as Generative adversarial networks (GANs), Auto-encoders, or Long-Short-

Term Memory (LSTM) [248, 249] can successfully discover the intrinsic coordinates of the

data and take into account the effect of observing by evaluating the probability distribution

conditioned on those observations. However, given the efficiency and practicality of these

methods, a thorough physical analysis of the results is often difficult because the foundation

is not the governing equation. Model-based methods, on the other hand, initiate from the

governing equation and often need to solve the adjoint equations to obtain the gradient

of the cost function [250]. To maintain consistency with the forward solver and ensure

numerical stability during optimization, the discrete adjoint operator is often derived and

implemented [251]. Furthermore, the adjoint fields by solving the adjoint equations give a

clear interpretation of the physical meaning [252] as the domain of dependence.

Although uncertainty quantification is straightforward under probabilistic frame-

works for data-based methods, for model-based methods such as adjoint methods, it is

generally more difficult. For nonlinear dynamics, the distribution of the control vector
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deviates from Gaussian and samples of the probability distribution can be drawn from

Hamiltonian Monte Carlo (HMC) using the gradient Langevin dynamics [253].

To account for parametric, empirical, and structural uncertainty fluctuations in

forcing models, a probabilistic (stochastic), point-particle, and multi-scale perspective as

was taken in Refs. [98, 2, 4]. Starting from known empirical models and/or surrogate

forcing models from high-resolution simulations [102], that account for Reynolds, Mach

number, and other parameters, we can describe the forcing and its dependencies within

confidence intervals according to a probability density function. Stochastic dynamic

models are formulated that propagate this distribution into the stochastic solutions of

trajectories [2].

Here, we infer forcing models using a combination of governing dynamic equations

that govern the location and velocity of a particle modeled as a singular point with an

unknown forcing and adjoint formulations. We develop a theoretical framework that

determines forcing for one-way coupled passive particles, under the assumption that the

ambient velocity fields are known. The remainder of the paper is organized as follows: firstly

we delve into point-particle and its forcing models, deriving the optimization framework

by employing adjoint dynamics. Subsequently, we apply this framework to two distinct

test cases: the Arnold–Beltrami–Childress (ABC) flow and a decaying isotropic turbulence

flow.

6.2 Problem Formulation

Consider the motion of a single particle with trajectory xp(t) and velocity up(t).

The non-dimensional governing equations for the particle read

dxp

dt
= up,

dup

dt
=

f

St
(u− up) , (6.1)
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where u is the ambient velocity at the particle location xp. The Stokes number St is

defined as the ratio between the characteristic time of the flow and the particle phase,

expressed in terms of the reference Reynolds number as St = Re∞
ρpd2p
18

. Here dp is the

non-dimensional particle diameter and ρp is the density ratio of the two phases. The

unknown forcing f is assumed to be a function of the slip velocity, a = |u− up|.

Our objective is to infer the particle forcing from limited observations of particle

location collected along the trajectory. The measurement is generated by employing

the forcing model for Stokes flow, which incorporates a correction for high Reynolds

numbers [189]. The model is described as follows:

f(a) =

(
1 + 0.38

Rep
24

+
1

6

√
Rep

)
, (6.2)

where the particle Reynolds number is defined as Rep = Re∞adp. This forcing is considered

the unknown ground truth by the inverse model and is also utilized to validate the inferred

forcing obtained through inverse modeling techniques.

To facilitate numerical optimization, the forcing function is projected onto a finite-

dimensional space by discretizing it as a linear combination of basis functions, represented

by the following decomposition:

f(a) =
∑
i

αiψi(a), ψi(a) = cos

(
i
2πdpRe∞
2Rep,max

a

)
, (6.3)

where Rep,max is set to be slightly more than the maximum particle Reynolds number

encountered in the simulation. We denote the parameters α as our control vector for

dimension reduction of the forcing model. Inference of the forcing function f is simplified

to determining the values of α.
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6.2.1 Adjoint optimization algorithm

We focus on a special case, where the measurement of the particle location is only

available at a single measurement time tm. In this case, information about the forcing

function is related to the observation in an indirect and nonlinear manner. To address this,

we formulate a minimization problem where the cost function is defined as the difference

between the computed and observed particle locations, namely,

J =
1

2
||xm − xp(tm)||2. (6.4)

For more general cases where measurements are available for several different tm, a

simple summation of the individual cost functions can be adopted the derivation is still

valid.

To satisfy the governing equations 6.1 while minimizing the cost function 6.4, we

augment the cost function with the Lagrange multiplier x†
p, u

†
p, resulting in the Lagrangian

L,

L = J +

∫
t

[
x†
p ·
(
dxp

dt
− up

)
dt+ u†

p ·
(
dup

dt
− f

St
(u− up)

)]
dt. (6.5)

If the forcing parameters α are perturbed by ∆α, the change of forcing would result

in a deviation of xp and up from its original trajectory, perturbed by the amount ∆xp

and ∆up, respectively. The perturbation of the ambient velocity u
∣∣
xp

can be described as

a function of ∆x using a Taylor expansion,

∆u
∣∣
xp

= ∇u
∣∣
xp
·∆xp. (6.6)
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The change of forcing f(a) can be evaluated as,

∆[f(a)] = ∆

[∑
i

αiψi(|u− up|)

]

=
∑
i

∆αiψi(|u− up|) +
f ′(a)

a

(
∇u
∣∣
xp
·∆xp −∆up

)
· (u− up) .

(6.7)

The perturbation of the cost function can be evaluated as,

∆L =
∂J

∂xp

∆xp +
∂J

∂up

∆up +

∫
t

x†
p ·
(
d∆xp

dt
−∆up

)
dt

+

∫
t

u†
p ·

{
d∆up

dt
− 1

St
f(a) (∇u ·∆xp −∆up)−

1

St
∆[f(a)] (u− up)

}
dt.

(6.8)

Through integration by parts, the adjoint equations are derived,

∆L =

∫
t

∆xp ·

[
−
dx†

p

dt
− 1

St
(∇u)T ·

[
f(a)u†

p +
f ′(a)

a

[
(u− up) · u†

p

]
(u− up)

]
+

∂J

∂xp

]
︸ ︷︷ ︸

=0, adjoint equations

dt

+

∫
t

∆up ·

[
−
du†

p

dt
− x†

p +
1

St

[
f(a)u†

p +
f ′(a)

a

[
(u− up) · u†

p

]
(u− up)

]
+

∂J

∂up

]
︸ ︷︷ ︸

=0, adjoint equations

dt

− 1

St

∫
t

∑
i

∆αiψi(|u− up|) u†
p · (u− up) dt.

(6.9)

In the case of the single measurement at tm, the derivatives of the cost function are,

∂J

∂xp

= (xp(tm)− xm) δ(t− tm),
∂J

∂up

= 0. (6.10)

in backward time axis τ = tm − t. The initial conditions of the adjoint simulations are

defined as,

x†
p = u†

p = 0, τ = 0. (6.11)

Although the source term of the adjoint equation, ∂J/∂xp can be taken into account in
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the initial condition instead, we here retain the most general form so that the adjoint

equations apply to a general cost function. Also notice that the adjoint equation involves

a singularity around a = |u − up| = 0, corresponding to the vanishing forcing when

u− up = 0 in the forward equation.

By solving the adjoint equations backward in time, we obtain the final gradients as,

∂L
∂αi

= − 1

St

∫
t

ψi(|u− up|)u†
p · (u− up) dt. (6.12)

In the current study, the discretization of the adjoint equations is derived from summation

by parts using the discretized forward equations. The discrete adjoint calculates the

gradient directions ∂H/∂α accurately to machine zero and guarantees the convergence of

the optimization algorithm.

6.2.2 Hamiltonian Monte Carlo

Hamilitonian Monte Carlo (HMC) is an efficient Markov Chain Monte Carlo

(MCMC) method rooted in Hamiltonian dynamics. Suppose the posterior distribution of

the unknown forcing parameters α follows this distribution:

p(α) ∼ exp

(
−J(α)

σ2

)
. (6.13)

Given that the cost function J is quadratic in the deviation of particle locations, the

above expression allows for sampling from the posterior distribution of α when measure-

ments follow a Gaussian distribution. To sample from this posterior, HMC constructs a

Hamiltonian system with a fictitious momentum variable r:

H(α, r) =
J

σ2
+

1

2
rTM−1r, (6.14)
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and we will sample from the joint distribution

π(α, r) ∼ exp

(
−J(α)

σ2
− 1

2
rTM−1r

)
, (6.15)

for which we ignore the part for the momentum and obtain the marginal distribution for α.

The sampling is done by selecting r from its Gaussian distribution and integrating equation

(6.14) using symplectic algorithms such as leapfrog. Additionally, a Metropolis-Hastings

step is incorporated to enhance the efficiency of the sampling [254]. Algorithmically, this

approach extends the original adjoint-based gradient descent algorithm to a probabilistic

framework by introducing randomness.

The pseudocode in algorithm 1 summarized the procedure of HMC. The gradient

of the cost function, ∇α is evaluated from adjoint simulations and using equation (6.12).

Importantly, the computational cost for solving the adjoint equation is comparable to

solving the forward problem and does not depend on the number of unknown parameters,

such as the size of α. In this study, the parameters for HMC are selected to optimize

both the efficiency of equation solving and the convergence behavior of the Monte Carlo

sampling process.

6.3 Applications

6.3.1 Forcing inference in the ABC flow

We first consider the Arnold–Beltrami–Childress (ABC) flow, a three-dimensional

steady analytical solution of the Euler equation, with the constants of the carrier flow

field chosen as A =
√
3, B =

√
2 and C = 1. The forcing function is expanded using

Fourier modes, as illustrated in equation (6.3). A total number of seven Fourier modes is

enough to efficiently represent the forcing function in (6.2). The particle is initialized at

location xp = yp = zp = 2π at rest. The reference Reynolds number and Stokes number

are Re∞ = 250 and St = 1, respectively. The particle density ratio is ρp = 500 and the
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Input: A starting parameter α0 and step size δt
Output: Samples of the parameter αi drawn from its posterior distribution.
for i← 1 to N do

Draw ri−1 from N (0,M)
(α̃0, r̃0)← (αi−1, ri−1)
for j ← 0 to L− 1 do

r̃j ← r̃j − 1
2
δt∇αJ (α̃j)

α̃j+1 ← α̃j + δtM−1r̃j

r̃j ← r̃j+1 − 1
2
δt∇αJ (α̃j+1)

end
Metropolis-Hasting algorithm:
p← min{1, exp(−H(α̃L, r̃L) +H(αi−1, ri−1))}
Draw β from uniform distribution in [0, 1]
if β ≤ p then

αi ← α̃L

end
else

αi ← αi−1

end

end
Use αi as samples of α

Algorithm 1: Hamiltonian Monte Carlo.

non-dimensional particle diameter dp = 0.012. The initial location of the particle at rest is

known, and the observations of the three coordinates of the particle location are available

at tm = 8. These observations are made at a non-dimensional time of eight Stokes time

units, ensuring that the particle trajectory is dominated by an inertial response to changes

in the flow field.

Using the gradient of the cost function, following equation (6.12), we adopted the

Quasi-Newton iterative algorithm to infer the forcing parameters. The initial guess is

a constant forcing f = α0, i.e., α1 = α2 = . . . = α6 = 0. We start from initial guesses

with α0 ranging from 0 to 4 and arrive at different solutions of the forcing that drives

the cost function sufficiently small, namely J < 10−6. Results of various inferred forcing

functions are plotted in figure 6.1(a) in grey colors, darker color represents larger α0 in the

initial guess and the red line marks the true forcing function. The collection of inferred

forcing demonstrates the ill-posedness of the problem, where an infinite number of possible
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Figure 6.1. (a) Collection of inferred forcing starting from different initial guesses
f = α0 ∈ [0, 4], darker color marks higher values of α0 in the initial guess. The red line
marks the true forcing. (b) Top view of the collection of inferred particle traces. The
locations of the particle at the initial t = 0 and observation time t = 8 are known and
marked by the red circle. The colors of the particle traces correspond to the ones in (a).
Colored contours show the vorticity ωz of the background flow field at z = 0.

solutions exist. However, the particle trajectories from the inferred forcing are plotted in

figure 6.1(b) follow only slightly different paths that coincide at t = 8 before they further

deviate. This also implies that even with a large range of function f , the form of the

forcing can only permit a limited reachable region for the particle.

To further quantify the uncertainty of the forcing function f , the HMC algorithm

is adopted. The noise level σ influences the efficiency of the algorithm: A noise level too

large would result in an unconstrained forcing function with an unreasonable range. A

noise level too small would cause large curvatures in the landscape of the cost function

and invite extra difficulty for sampling. With the noise level σ = 0.01, the posterior

distribution for the coefficients αi of these modes is evaluated using HMC and shown in

figure 6.2.

To estimate the forcing uncertainty, we start from the true forcing parameters and

throw away the first hundred iterations of the HMC. This procedure is coined “burn-in”

and allows HMC to explore the parameter space and reach the typical set before taking

samples. The HMC-estimated posterior probability distribution of the forcing is plotted

as colored contours in figure 6.2(a). The mean and standard deviation of the inferred

183



Figure 6.2. (a): Logarithm of the Probability Density Function (PDF) depicting the
distribution of the forcing f during the HMC process. The solid line represents the
distribution of the particle Reynolds number Rp along the particle trajectory. (b) The
shaded region highlights the forcing function within one standard deviation. The red solid
line represents the true forcing, while the black dashed line shows the mean of the inferred
forcing. (c) Evolution of the averaged standard deviation of the forcing distribution
as more iterations are performed during HMC. (d) Probability distribution of the cost
function during HMC. Dashed lines mark the theoretical prediction of the PDF for the
cost function.
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Figure 6.3. (a): Logarithmic of the Probability Density Function (PDF) of the forcing f
inferred using HMC. The solid line shows the distribution of the particle Reynolds number
Rep along the particle trajectory. (b) Dashed lines represent the mean (expected values)
of the forcing while the shaded region marks the forcing function within one standard
deviation. The true forcing is shown by the red solid line.

forcing are plotted in figure 6.2(b). Convergence is measured by the mean standard

deviation ⟨σ⟩ shown in panel (c), and the distribution of the cost function during the

HMC sampling shown in panel (d), where the dashed lines mark the theoretical results of

P (J) ∼ exp(−J/σ2). The forcing inference is much more accurate in the range 1 < Rep < 5

than at other particle Reynolds numbers. This trend can be attributed to two underlying

reasons. Firstly, the accuracy of the forcing inference is influenced by the frequency of

Rep along the particle trajectory. The history of Rep shown in the background of figure

6.2(a) is compared with the confidence interval of the inferred forcing, indicating that the

forcing with lower uncertainty coincides with the high frequency of Rep along the particle

trajectories. Secondly, as the particle’s speed relative to the ambient fluid increases, the

momentum effect becomes more significant. For larger Rep, inertia plays a more dominant

role, and the impact of the forcing becomes almost negligible, making the determination

for large Rep significantly more challenging.

6.3.2 Homogeneous Isotropic Turbulence

The algorithm is also tested in three-dimensional homogeneous isotropic turbulence

in a cubic domain Ω = [0, 2π] × [0, 2π] × [0, 2π]. The flow fields are obtained with a

discontinuous Galerkin compressible DNS solver ([200] and references therein). For the
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definition of the initial condition of the flow field, we adopted the one used in [201,

3]. The particle is initialized at location (xp, yp, zp)
⊤ = (π, π, 2π/3)⊤ with velocity

(up, vp, wp)
⊤ = (0, 0, 1.5)⊤. The Reference Reynolds number is Re∞ = 2, 357, the Stokes

number is unity St = 1, the particle density ratio is ρp = 250 and the non-dimensional

particle diameter dp = 0.0055. The observation is taken when the particle travel for six

Stokes time units, i.e. tm = 6.

The results of uncertainty quantification using 15 Fourier modes are shown in figure

6.3. The probability of occurrence for different Reynolds numbers, P (Rep) along the

trajectories during the HMC sampling are also plotted in figure 6.3(a). The uncertainty

of the forcing function f is the smallest for the Rep with the most occurrence along the

particle trajectory. This result is very similar to that in the ABC flow. Once again large

Rep yields a more important role of inertia, rendering the determination of forcing much

more challenging.

6.4 Summary of results

A data assimilation framework is established, to estimate the forcing of particles

as a function of the relative velocity a = |u− up| based on sparse, noisy measurements

of particle locations. This optimization framework relies on the adjoint dynamics of

the particles, coupled with Hamiltonian Markov Chain (HMC) methods for uncertainty

quantification when measurements are affected by Gaussian noise.

The efficacy of this algorithm is demonstrated in both the Arnold–Beltrami–Childress

(ABC) flow and isotropic turbulence with a Stokes number of unity. The results show

that the algorithm efficiently identifies forcing functions, enabling accurate guidance of

particles to their observed locations. Importantly, the uncertainty quantification provided

by HMC highlights the ill-posed nature of the problem when observations are noisy. The

accuracy of the inferred forcing is found to depend on the history of the particle Reynolds
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number along the trajectory, with the most accurate results observed for 1 < Rep < 5 in

both flows.

The implications of the research extend beyond the confines of this study. This

work represents a crucial initial step in the field of data assimilation for particle forcing

determination, employing adjoint particle dynamics. It not only provides valuable insights

into the kinematics of particle-laden flows using experimental data but also contributes

significantly to the development of data-driven reduced-order models for particle-flow

interactions.
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Chapter 7

Fokker-Planck, Langevin and Liou-
ville models of particle statistics

7.1 Introduction

Typical models of turbulent particle-laden flows involve spatial scales ranging

from tens of meters (the application scale) to microns (the smallest scales of turbulence

and particulates). Consequently, a predictive simulation based on “first principles” is

not practical and a portion of the smaller scales has to be treated empirically through

stochastic “subgrid-scale” models, as it is done in, e.g., large-eddy simulations (LES) or

Reynolds-averaged Navier-Stokes (RANS) models. In the context of particle-laden flows,

this stochasticity stems from either turbulence of a carrier gas/liquid (subgrid velocity

fluctuations) or from random particle kinetics.

Classical kinetic theory [105, 106, 107] deals with stochasticity on the particle phase

through an equation for the joint probability density function (PDF) in the six–dimensional

phase space composed by particle position and velocity. This equation requires a closure

approximation, which can be derived either analytically or numerically [108, 109, 110,

111, 112, 255, 256, 113, 114, 115, 116, 117, 118, 103, 119]. The high–dimensionality of

this formulation leads to the so–called curse of dimensionality, which has inspired reduced

formulations based on a number of moments of the joint PDF [120, 121, 123, 124, 125,

126, 127, 128].
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Equivalent stochastic differential equations (SDEs), which in this field are referred

to as a generalized Langevin model [119], can be used to reduce the dimensionality of

this PDF equation. The model relies on Wiener increments and random walks to account

for stochasticity in particle trajectories [129, 130]; more recent versions of such stochastic

models of the dispersed particle phase have been proposed in the literature [131, 132, 133,

134, 135, 136, 137, 36, 138, 139, 256, 1, 140, 141, 142, 143, 145, 146]. A representative

formulation of this Langevin approach, in d spatial dimensions, describes the temporal

evolution of an inertial point particle’s location, Xp(t) ∈ Rd, and velocity, Up(t) ∈ Rd, by

adding Wiener increments to the particle position and velocity to Newton’s second law

dXp = Updt+ bx(Xp,Up, t) dW x, (7.1a)

dUp = µa(Xp,Up, t)dt+ bu(Xp,Up, t) dW u. (7.1b)

The particle’s slow-varying average acceleration, µa ∈ Rd, might depend in general

on Up and Xp through the evaluation of the bulk-flow velocity at the particle position,

u(Xp, t) ∈ Rd and the relative velocity of the two phases, time, and other model parameters.

The particle’s fast-varying dynamics is represented by the (random) Wiener process

W u(t) ∈ Rm, whose strength is encapsulated in the (deterministic) diffusion tensor

bu ∈ Rd×m that, in general, varies with Xp, Up, and time t. Similarly, Wiener increments

W x(t) ∈ Rm are usually added to the particle position with diffusion tensor bx ∈ Rd×m

(see for example Refs. [141, 257]). The joint PDF of the particle position and velocity,

fXU (xp,up; t), in the case of Gaussian white-noise in (7.1), satisfies the (2d)-dimensional

Fokker-Planck equation

∂fXU

∂t
+∇xp · (upfXU ) +∇up · (µa(xp,up, t)fXU ) = ∇ · (D∇fXU ), (7.2)

with the diffusion tensor D = bb⊤/2 ∈ R2d×2d and ∇ = (∇xp ,∇up)
⊤ ∈ R2d.
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At least two major challenges hinder the development of consistent Langevin models

for particle-laden flows. First, since the Wiener process is Gaussian and white noise, it

gives rise to the Gaussian PDF fXU (xp,up; t). Yet, empirically observed (and numerically

simulated) single-point statistics of particles are rarely Gaussian [258, 259, 182, 260, 2],

which suggests that models like (7.1) provide ad hoc (and possibly inaccurate) represen-

tations of subgrid particle dynamics. Second, closure models for diffusion coefficients in

turbulent flows, let alone particle-laden turbulent flows, remain one of the open problems

in fluid mechanics. In addition to having these foundational issues, the Langevin approach

is also computationally expensive when Monte Carlo methods are used to estimate the

tails of joint PDFs.

A way to overcome these limitations is to replace the Wiener increments in (7.1)

with random forcings, which are represented via series expansions involving proper sets

of random variables [149, 150, 2, 4, 5]. This approach replaces (stochastic) Langevin

equations (7.1) with a coupled system of 2d ordinary differential equations with random

coefficients,

dXp

dt
= Up +

N∑
i=1

Zi ◦φi(Xp,Up, t), (7.3a)

dUp

dt
= µa(Xp,Up, t) +

N∑
i=1

Ξi ◦ ϕi(Xp,Up, t). (7.3b)

Here, ◦ is the Hadamard product, Zi ∈ Rd and Ξi ∈ Rd are the vectors of random

coefficients in the Nth-order polynomials with orthogonal bases φi ∈ Rd and ϕi ∈ Rd

respectively, defined deterministically. While the Wiener process, W x(t) or W u(t) in (7.1),

is a random function, an infinite-dimensional object that necessitates the use of stochastic

calculus, the parameters Zi and Ξi are random variables; hence, for any realization zi

and ξi of Zi and Ξi, (7.3) are deterministic differential equations amenable to a standard

numerical or analytical treatment. Moreover, the joint PDF of the random inputs and
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outputs in (7.3) defined in an augmented phase space that includes the random coefficients,

fXUΞZ(xp,up, ξ, z; t), satisfies the Liouville equation

∂fXUΞZ

∂t
+∇xp · [(up +

N∑
i=1

zi ◦φi(xp,up, t))fXUΞZ ]

+∇up · [(µa(xp,up, t) +
N∑
i=1

ξi ◦ ϕi(xp,up, t))fXUΞZ ] = 0,

(7.4)

a hyperbolic partial-differential equation that admits a solution via the method of char-

acteristics (MoC) [5]. This solution might or might not be Gaussian, depending on, e.g.,

the PDF of the initial data or the random coefficients. Alternatively, (7.3)–(7.4) can be

used to learn the series in (7.3) from data, making the Liouville approach adequate for

developing stochastic models using data assimilation techniques [6]. We point out that the

functions φi and ϕi do not need to act as basis functions necessarily for the formulation

to be valid.

Our analysis pursues two goals. The first is to elucidate that the Liouville model of

particle-laden flows, i.e., Eq. (7.4), amounts to a generalization of the Langevin approach.

We show it in two canonical examples in which the former reduces to the latter when the

random variables Zi and Ξi are Gaussian and the source terms are found to fit the solution

of the Fokker-Planck equivalent model. An analytical generalization for non-Gaussian

systems is provided with the Liouville model. The second goal is to show the potential of

the Liouville approach for developing stochastic models of the particle phase. By adjusting

the random coefficients to fit data, the Liouville approach can be framed in a data-driven

manner. We propose an analytical model for fluidized homogeneous heating systems

(FHHS) based on the Liouville approach. The accuracy of this model is established via

comparison with the predictions of both particle-resolved direct numerical simulations

(PR-DNS) and previous models proposed in the literature [261, 1, 141, 144, 143].
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7.2 Stochastic Models of Particle Dynamics

If (the sum of) forces g(xp,up, t) acting on a particle were known with certainty,

then its trajectory xp(t) and velocity up(t) would be deterministic and computable from

Newton’s second law,

dxp

dt
= up,

dup

dt
= g. (7.5)

In particle-laden flows, these forces are unresolved/uncertain, e.g., due to multi-particle

interactions or drag on particles of non-canonical shapes. When treated probabilistically,

this uncertainty gives rise to stochastic dynamics, such that the deterministic functions

xp(t) and velocity up(t) are replaced with the random processes Xp(t) and velocity Up(t).

7.2.1 Particle trajectory

A reduced-complexity model of particle dynamics superimposes stochastic fluctu-

ations onto a given deterministic drift velocity up(t). This model is used for example

in the literature to compute Lagrangian Coherent Structures (LCS) of fluid particles for

uncertain fluid velocity field [262], also denoted particle Langevin model [141] for inertial

particles with unresolved drag.

Langevin approach

For deterministic drift velocity up(t) and dispersion tensor bx, the Langevin ap-

proach is to replace (7.5) with stochastic ODEs [262, 141]

dXp = updt+ bx(Xp, t)dW x. (7.6)
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A single-point PDF of the stochastic trajectory Xp(t) in the Langevin equation (7.6),

fX(xp; t), satisfies the Fokker-Planck equation [263],

∂fX
∂t

+∇xp · (upfX) = ∇xp · (D∇xpfX), D =
bx b

⊤
x

2
. (7.7)

Liouville approach

Instead of using the Wiener process W x(t), the Liouville approach accounts for

stochasticity of the particle dynamics using time-invariant random variables Zi, character-

ized by the joint PDF fZ(z). Specifically, the stochastic ODE (7.6) is replaced with an

ODE with random coefficients,

dXp

dt
= up +

N∑
i=1

Zi ◦φi(Xp, t), (7.8)

where φi(Xp, t) is a prescribed vector function conforming a basis, for example Chebyshev

polynomials. While the derivation of the PDF equation for fX(xp; t) requires a closure

approximation [227], the equation for the joint PDF fXZ(xp, z; t) of the model input Zi

and output Xp(t) is exact:

∂fXZ

∂t
+∇xp ·

[(
up +

N∑
i=1

zi ◦φi(xp, t)

)
fXZ

]
= 0. (7.9)

This result can be derived via either the Liouville theorem [264, 265] or the method of

distributions [227, 2, 5].

Since fX(xp; t) is the marginal of fXZ(xp, z; t), i.e.,

fX(xp; t) =

∫
fXZ(xp, z; t)dz,
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the integration of (7.9) yields

∂fX
∂t

+∇xp · (upfX) = −∇xp ·

(∫ N∑
i=1

zi ◦φifXZ dz

)
. (7.10)

As mentioned above, the derivation of a PDF equation for fX requires a closure to

approximate the right hand side term. Comparison of (7.10) and (7.7) indicates that the

Langevin and Liouville approaches yield the identical predictions of the PDF fX(xp; t) if

∇xp ·

(
D∇xpfX +

∫ N∑
i=1

zi ◦φifXZ dz

)
= 0. (7.11)

If a solution of a Fokker-Planck equation is known, the above identity may be used to

develop an equivalent Liouville model. Taking moments of (7.7) and (7.9), similar relations

can be found for each moment, adding constrains to the Liouville approach to match an

equivalent Langevin model. A moment model based on the Liouville approach is provided

in Appendix J.

7.2.2 Particle velocity

A class of models of particle-laden flows takes g in (7.5) to represent the drag force

acting on a particle (see Ref. [104] and references therein). This force is proportional to

the difference between the carrier flow velocity at the point xp occupied by the particle,

u(xp, t), and the particle velocity, up(t), so that (7.5) is replaced with

dxp

dt
= up,

dup

dt
=
F
τp

(u− up) . (7.12)

The coefficient of proportionality comprises the correction factor F , which accounts for

a possible deviation from the Stokes drag (due to, e.g., finite particle-Reynolds number,

particle Mach number, volume fraction of the particles), and the particle’s response time

τp.
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Langevin approach

A probabilistic treatment of (7.12), which is referred to velocity Langevin model [141],

uses Wiener increments to account for velocity fluctuations

dXp = Updt, (7.13a)

dUp =
F
τp

[u(Xp, t)−Up] dt+ bu(Xp,Up, t) dW u. (7.13b)

The Fokker-Planck equation for the joint PDF fXU (xp,up; t) is given by

∂fXU

∂t
+∇xp · (upfXU ) +∇up ·

[
F
τp
(u− up)fXU

]
= ∇up · (D∇upfXU ), (7.14)

with prescribed functions u = u(xp, t) and D(xp,up, t) = bub
⊤
u /2.

Liouville approach

Our Liouville model relies on random variables Zi and Ξi, with PDFs fZ(z) and

fΞ(ξ), and basis functions given by ϕi(Xp,Up, t) and φi(Xp,Up, t) to represent the

stochastic particle dynamics

dXp

dt
= Up +

N∑
i=1

Zi ◦φi(Xp,Up, t), (7.15a)

dUp

dt
=
F
τp

[u(Xp, t)−Up] +
N∑
i=1

Ξi ◦ ϕi(Xp,Up, t). (7.15b)

The corresponding Liouville equation for the joint PDF fXUZΞ(xp,up, z, ξ; t) is

∂fXUZΞ

∂t
+∇xp ·

[(
up +

N∑
i=1

zi ◦φi(xp,up, t)

)
fXUZΞ

]

+∇up ·

[(
F
τp

(u(xp, t)− up) +
N∑
i=1

ξi ◦ ϕi(xp,up, t)

)
fXUZΞ

]
= 0.

(7.16)
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Since fXU is the marginal of fXUZΞ, the integration of (7.16) over the coefficients yields

an unclosed PDF equation for fXU . Comparing that equation with the Fokker-Planck

equation (7.14) yields a compatibility condition,

∇xp ·

[∫ N∑
i=1

zi ◦φi

(∫
fXUZΞ dξ

)
dz

]
+

∇up ·

[
D∇upfXU +

∫ N∑
i=1

ξi ◦ ϕi

(∫
fXUZΞ dz

)
dξ

]
= 0,

(7.17)

for the Langevin and Liouville approaches. Relation (7.17) can be used to compare

both Fokker-Planck and Liouville approaches. We note that the Liouville approach has

additional degrees as compared to the Fokker-Planck approach. By comparing moments

of both approaches, additional relations can be found.

7.3 Analytical solutions to Liouville models

7.3.1 Particle trajectory

Lattanzi et al. [141] considered a one-dimensional version of the Fokker-Planck

equation (7.7) with constant velocity up and diffusion tensor bxij =
√
2Dδij,

∂fX
∂t

+ up
∂fX
∂xp

= D
∂2fX
∂x2p

, (7.18)

subject to the deterministic initial condition, fX(xp; 0) = δ(xp). Its solution,

fX(xp; t) =
1√
4πDt

exp

(
−(xp − upt)2

4Dt

)
, (7.19)

provides a probabilistic prediction of the particle trajectory, Xp(t), within the Langevin

framework. As expected, this solution is Gaussian.

In the corresponding one-dimensional Liouville approach, we search for relations
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to define the random forcings such that the solution of the Fokker-Planck equation and

the Liouville equation coincide. Starting from (7.18) and (7.19), we take the first moment

of the Fokker-Plank solution and compare that with the first moment of the Liouville

approach. In particular, if we employ the law of the unconscious statistician (LOTUS) [266]

to the characteristics of the Liouville equation (7.9),

dx̂p
dt

= up +
N∑
i=1

ziφi(t), (7.20)

to find the first moment of the particle position which according to (7.19) is X̄p = upt, we

find

X̄p = upt+

∫ ( N∑
i=1

zi

∫ t

0

φi(t
′)dt′

)
fZ(z)dz, (7.21)

where we have applied the deterministic initial condition Xp(0) = 0, according to the heat

kernel solution (7.19). The second term in the right hand side of (7.21) must be zero to

match the solution of the Fokker-Planck equation. We therefore find a condition to match

the first moment

∫ ( N∑
i=1

zi

∫ t

0

φi(t
′)dt′

)
fZ(z)dz = 0. (7.22)

Then, looking at the second moment of the solution (7.19), X ′
p
2 = 2Dt, using the same

procedure we find the condition

∫
[upt+

N∑
i=1

zi

∫ t

0

φi(t
′)dt′ − X̄p]

2fZ(z)dz = 2Dt. (7.23)

Conditions (7.22) and (7.23) can be fulfilled by considering a single random coefficient
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Ξ ≡ Zi, for i = 1, . . . , N , which when used in (7.22) leads to

Ξ̄
N∑
i=1

∫ t

0

φi(t
′)dt′ = 0, Ξ̄ = 0. (7.24)

Then, applying this to also (7.23) gives

σΞ

N∑
i=1

∫ t

0

φi(t
′)dt′ =

√
2Dt, (7.25)

that can be fulfilled by considering a single function φ ≡ φi such that

φ =

√
D

2t
, σΞ = 1. (7.26)

Note that in general, basis function may be used to approximate the source by a finite

number of terms
∑N

i=1 φi(t) ≈
√
D/(2t). The random source term can be simply described

by a single term Ξφ(t) such that (7.9) reduces to

∂fXΞ

∂t
+

(
up + ξ

√
D

2t

)
∂fXΞ

∂xp
= 0. (7.27)

Since the initial position of the particle, Xp(0) = 0 is known with certainty, i.e., determin-

istic, this Liouville equation is subject to the initial condition fXΞ(xp, ξ; 0) = fΞ(ξ)δ(xp).

Its solution, obtained via the method of characteristics in Appendix L, is

fXΞ(xp, ξ; t) = fΞ(ξ)δ(xp − upt− ξ
√
2Dt). (7.28)

The PDF of the particle position, fX(xp; t), is the marginal of fXΞ computed by inte-

grating (7.28) over ξ, while accounting for the properties of the the Dirac delta function

198



δ(−x) = δ(x) and |γ|δ(γx) = δ(x) for a given scalar γ,

fX(xp; t) =
1√
2Dt

fΞ

(
xp − upt√

2Dt

)
. (7.29)

Figure 7.1. Particle position PDF fX at times t = [0, 0.05, 0.8] given by (7.29) with
D = 2.5 and up = 5 for normal and triangular distributions of the parameter Ξ. The
uniform distribution has been omitted for clarity (see Fig. 7.2b).

If fΞ(ξ) is standard normal, Ξ ∼ N (0, 1), then the Liouville solution (7.29) reduces

to the Gaussian solution (7.19) predicted by the Langevin approach. Otherwise, the PDF

fX in (7.29) is non-Gaussian (Fig. 7.1). The temporal evolution of the particle-trajectory

PDF fX(xp; t) is depicted in Figure 7.2 for the normal, N (0, 1); uniform, U(−
√
3,
√
3);

and triangular, T (−2
√
2,
√
2); distributions of the parameter Ξ. These three distributions

have the same mean, 0, and variance, 1, but different higher moments. The normal

distribution gives rise to the Gaussian fX(xp; t), associated with the Wiener process. On

the other hand, the triangular distribution translates into a skewed (non-Gaussian) PDF

of the particle trajectory. The uniform distribution provides the same statistics than the

normal up to the second moments, despite both PDFs differ at any given time (Figs. 7.2a

and 7.2b).

The compatibility condition (7.11) may be employed to obtain the diffusion tensor

D for the Fokker-Planck equation from the results obtained with the Liouville approach.
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(a) (b) (c)

Figure 7.2. Temporal evolution of fX(xp; t), PDF of the particle trajectory Xp(t),
predicted by the Liouville solution (7.29) for (a) normal, (b) uniform and (c) triangular
distributions of the parameter Ξ. The deterministic parameters are set to D = 2.5 and
up = 5.

In fact, the substitution of (7.28) and (7.29) into (7.18) proves the identity, showing

consistency between the Langevin and Liouville approaches.

7.3.2 Particle velocity

The so-called velocity Langevin model [141] deals with a one-dimensional version

of (7.13),

dXp = τpUpdt, dUp = −Updt+
√
2DdW, (7.30)

in a reference frame moving at the average particle velocity [141]. The corresponding

Fokker-Planck equation for the joint PDF fXU(xp, up; t) of the particle trajectory Xp(t)

and velocity Up(t) is

∂fXU

∂t
+ τpup

∂fXU

∂xp
− ∂

∂up
(upfXU) = D

∂2fXU

∂u2p
. (7.31)

If the initial particle position and velocity are known with certainty, Xp(0) = 0 and

Up(0) = v0, then (7.31) is subject to the initial condition fXU (xp, up; 0) = δ(xp)δ(up − v0).

Integration of this equation over xp yields the Fokker-Planck equation for the marginal
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fU(up; t).

∂fU
∂t
− ∂

∂up
(upfU) = D

∂2fU
∂u2p

, (7.32)

subject to the initial condition fU (up; 0) = δ(up − v0). This problem admits the Gaussian

solution [263, 202, 267, 141]

fU(up; t) =
1√

2πD(1− e−2t)
exp

[
−(up − v0e−t)2

2D(1− e−2t)

]
. (7.33)

Our Liouville approach replaces the Langevin model (7.30) with the one-dimensional

version of (7.15). To find the random forcings that make coincide both approaches, we

proceed similar as in the previous case (see Section 7.3.1). Equivalently to the use of

the LOTUS with the characteristics of the Liouville equation to obtain moments, the

model developed in Appendix J, can also be used to find expressions for the moments

using the Liouville approach. In essence, we compare the moments of the solution of the

Fokker-Planck equation (7.31) to find the random forcings in the Liouville approach. As

in the previous example, we assume a single random coefficient can be used Ξ ≡ Ξi = Zi

and the basis functions reduce to a deterministic function of time, φ(t) and ϕ(t) for the

position and velocity equations respectively. Then, using the moment equations (K.2.5)

derived in Appendix K.2, one can find the closed-form functions

φ =
dσX
dt
− τpσU = τp

√
D

(
1− 2e−t + e−2t

√
2t− 3 + 4e−t − e−2t

−
√
1− e−2t

)
, (7.34a)

ϕ =
dσU
dt

+ σU =

√
D

1− e−2t
, (7.34b)

where we have taken as in the previous example, Ξ̄ = 0, and σΞ = 1. The functions σX(t)

and σU(t) are the standard deviations of Xp(t) and Up(t) according to the Fokker-Planck
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equation (7.31), given by [141]

σX =
√
τ 2pD (2t− 3 + 4e−t − e−2t), (7.35a)

σU =
√
D (1− e−2t). (7.35b)

In general, data-driven techniques can be used to adjust the random forcings

in (7.3) by defining an optimization problem. See for example Ref. [6] where the PDF of

the random coefficients are learned from DNS with an adjoint-based data assimilation

procedure using Fourier series as basis functions.

With the random forcings defined by the random coefficient Ξ and the functions

in (7.34), our Liouville approach replaces the Langevin model (7.30) with

dXp

dt
= τpUp + Ξφ,

dUp

dt
= −Up + Ξϕ, (7.36)

The Liouville equation for the joint PDF fXUΞ(xp, up, ξ; t) is

∂fXUΞ

∂t
+

∂

∂xp
[(τpup + ξφ) fXUΞ] +

∂

∂up
[(−up + ξϕ) fXUΞ] = 0, (7.37)

subject to the initial condition fXUΞ(xp, up, ξ; 0) = δ(xp)δ(up − v0)fΞ(ξ), which gives rise

to the solution (Appendix L)

fXUΞ = etfΞ(ξ)δ[xp − τpv0(1− e−t)− ξσX ] δ[et(up − ξσU)− v0]. (7.38)

The marginals of (7.38) are the PDFs of the particle position and velocity,

fX(xp; t) =
1

σX
fΞ

(
xp − X̄p

σX

)
, (7.39)
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and

fU(up; t) =
1

σU
fΞ

(
up − Ūp

σU

)
, (7.40)

where X̄p(t) and Ūp(t) are the means of Xp(t) and Up(t), respectively (given in (K.2.6)).

Solutions (7.39) and (7.40) are generalizations of the velocity Langevin model [141],

with (7.40) reducing to (7.33) when the random variable Ξ is standard normal, Ξ ∼ N (0, 1).

The temporal evolution of the PDFs fX(xp; t) and fU(up; t) is depicted in Figure 7.3,

for the normal, uniform and triangular distributions of Ξ. The spatial variations of the

PDFs of particle positions and velocity related to non-Gaussian effects (Figs. 7.3b– 7.3c

and 7.3e– 7.3f) can not be represented by the Fokker-Plank model (7.31) (Figs. 7.3a

and 7.3d). The Liouville approach may be used then to formulate non-Gaussian stochastic

models.

When applied to (7.37), the method of characteristics provides a geometric in-

terpretation of the dynamics of the joint PDF fXUΞ(xp, up, ξ; t) and its marginals. The

joint PDF fXUΞ is transported along the characteristics y(t) = [x̂p(t), ûp(t), ξ]
⊤, defined

by (L.0.4). This process defines a flow map [5] and is akin to mapping the initial state

fXUΞ(xp, up, ξ; 0) onto its counterpart at time t via the method of transformations [265]

fXUΞ(xp, up, ξ; 0) = J(t)fXUΞ(xp, up, ξ; t), J =

∣∣∣∣ ∂ y(t)∂ y(0)

∣∣∣∣ , (7.41)

where J(t) the determinant of the transformation Jacobian. Its direct evaluation from

the characteristics equation (L.0.4a) yields J(t) = exp(−t), which is consistent with (7.38)

and (L.0.4b). Numerical evaluation of the Jacobian and the use of the method of transfor-

mations, i.e., using (7.41), provides an alternative to computing the solution of (L.0.4b).
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(a) (b) (c)

(d) (e) (f)

Figure 7.3. Temporal evolution of fX(xp; t) and fU (up; t), PDFs of the particle trajectory
Xp(t) and velocity Up(t), predicted by the Liouville solutions (7.39) and (7.40) for normal
(left column), uniform (middle column) and triangular (right column) distributions of the
parameter Ξ. The deterministic parameters are set to τp = 10, v0 = 1 and D = 1/50.

7.4 A Liouville model for fluidized homogeneous

heating systems

In a fluidized homogeneous heating system (FHHS), particles with diameter dp are

released into a current of carrier-fluid (with density ρf and viscosity µf). As time increases,

the particle velocity Up(t) deviates from the fluid velocity in such a way that the variances

of the particle velocity along each component reach a steady value. The quantities

T =
1

3
U ′

p ·U ′
p and ReT =

ρf dp
µf

√
T (7.42)

are referred to as the granular temperature and the thermal Reynolds number, respec-

tively [143]. Notice that a Reynolds decomposition is used for Up = Ūp + U ′
p. They
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have been studied analytically via kinetic theory [261] or empirical treatment of Langevin

models [144] and numerically via PR-DNS [1] or Langevin equations [143]. We use these

results to ascertain the veracity of a new model based on our Liouville approach.

In a reference frame moving with the average particle velocity [141, 143], a one-

dimensional Liouville model of the random particle velocity Up(t) is

dUp

dt
= − 1

τp
Up + Ξϕ, (7.43)

such that T = σ2
U/3. The random variable Ξ has zero mean, Ξ̄ = 0, and standard deviation

σΞ = σΞ(Rem), which depends on the mean Reynolds number in the PR-DNS [143],

Rem = (1− ω)ρfdp
µf

|V |,

where V is the average relative velocity, and ω is the average particle solid volume fraction.

The deterministic function,

ϕ =
1

τp

(
1− e−C1t/τp

)C2−1 [
1 + (C1C2 − 1) e−C1t/τp

]
(7.44)

is chosen phenomenologically, with the constants C1 and C2 characterizing the behavior of

the granular temperature T at early and late times, respectively. Both constants depend

on Rem, ρp/ρf and ω, and are adjusted to match the PR-DNS results [1, 144, 143].

The Liouville equation for the joint PDF fUΞ(up, ξ; t) is

∂fUΞ

∂t
+

∂

∂up

[(
− 1

τp
up + ξϕ

)
fUΞ

]
= 0. (7.45)

Its solution is (Appendix L)

fUΞ = f 0
UΞe

t/τp = et/τpfΞ(ξ)δ[(up − ξη)et/τp ] =
1

η
fΞ(ξ)δ

(
up
η
− ξ
)
, (7.46a)
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where

η(t) = (1− e−C1t/τp)C2 . (7.46b)

The marginalization along ξ gives the PDF of the particle velocity Up(t) in FHHS,

fU(up; t) =

∫
1

η
fΞ(ξ)δ

(
up
η
− ξ
)
dξ =

1

η
fΞ

(
up
η

)
. (7.47)

In accordance with (7.42), the variance of this PDF, σ2
U(t), is proportional to granular

temperature T (t). If Ξ were Gaussian, fΞ ∼ N (0, σ2
Ξ), then

Ūp(t) = Ūp(0)e
−t/τp and σ2

U(t) = σ2
Ξ(1− e−C1t/τp)2C2 . (7.48)

Figure 7.4. Temporal evolution of the thermal Reynolds number ReT (t) alternatively
predicted with our model (7.48) (solid lines with square symbol), the model of Ref. [144]
(dotted lines with triangle symbol) and the Langevin approach of Ref. [143] (dashed lines
with diamond symbol), for several values of the mean Reynolds number Rem. The open
circles indicate the PR-DNS data [1, 143], to which σΞ = σΞ(Rem) and C1 = C1(Rem)
are fitted (Fig. 7.5). The average volume fraction and density ratio are ω = 0.1 and
ρp/ρf = 100 respectively. For all cases C2 = 1.2 and τp = 0.14.

Figure 7.4 exhibits the granular temperature predicted with this solution, T (t) =

σ2
U/3, for τp = 0.14, ρp/ρf = 100 and ω = 0.1 [143]. The functional dependencies
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σΞ = σΞ(Rem) and C1 = C1(Rem) are obtained by fitting the predictions of T (t) from (7.48)

to the PR-DNS data from Ref. [1] This fitting reveals that both σΞ and C1 depend linearly

in a log-log scale on Rem (Fig. 7.5), whereas C2 is constant (C2 = 1.2). Our model matches

the PR-DNS data better than its Langevin alternatives [143, 144]. It captures both

the early growth and asymptotic values of T (t), while the models of Refs. [144, 143]

underestimate the steady values of T (t) and predict the unphysical/unobserved long-term

fluctuations in T (t), respectively.

Figure 7.5. Functional dependencies of the model parameters σΞ and C1 on the mean
Reynolds number Rem. The squares and circles indicate the values of σΞ and C1 obtained
via fitting (7.48) to the PR-DNS data [1] for ρp/ρf = 100 and ω = 0.1. These data are
represented by log(σΞ) = 0.06258 log(Rem) + log(0.7866) and log(C1) = 2.446 log(Rem) +
log(0.5411), with the coefficient of determination R2 = 0.998.

7.4.1 Phenomenology of granular-temperature dynamics

It has been argued that granular temperature in a FHHS, T (t), exhibits the

source-and-sink dynamics [261, 1, 144],

dT

dt
= S(T )− Γ(T ). (7.49)

In Ref. [261], the source is taken to be S ∼ T−1/2, which is singular at T = 0, i.e., at

initial time t = 0. In contrast, the ensemble averaging of our Liouville model (7.43) gives
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rise to the source S(T ) and sink Γ(T ) (see Appendix J for detail),

S =
2√
3
σΞϕT

1/2 and Γ =
2

τp
T, (7.50)

that behave well at T = 0. Figure 7.6 exhibits the curves S(T ) and Γ(T ) given by (7.50)

and by the model in Ref. [261]] in comparison with PR-DNS data [1]. While the mismatch

between both models and the data is noticeable, our model exhibit the correct qualitative

behavior, while the model in Ref. [261] does not.

Figure 7.6. The source, S(T ), and sink, Γ(T ), terms in the granular-temperature
model (7.49). Our model (7.50) yields the solid and dashed green lines for S(T ) and Γ(T ),
respectively. The model of Ref. [261] has S(T ) and Γ(T ) depicted by the dash-dotted
and dotted black lines, respectively. The PR-DNS estimates of S(T ) and Γ(T )[1] are
represented by the non-filled and filled red triangles, respectively. The parameter values
are Rem = 20, ρp/ρf = 100 and ω = 0.1.

7.4.2 Particle-velocity distributions

A Langevin counterpart to our Liouville model (7.43) is a stochastic ODE dUp =

−(1/τp)Updt+
√
2DdW , which gives rise to the Fokker-Planck equation for the particle

velocity PDF, fU(up; t),

∂fU
∂t
− ∂

∂up

(
1

τp
upfU

)
=

∂

∂up

(
D
∂fU
∂up

)
. (7.51)
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Many studies focus on the numerical determination of the diffusion coefficient D(up, t)

using the standard deviation of particle acceleration and its integral time scale [143] or

directly fitting a correlation from PR-DNS data [1]. Our Liouville approach provides an

alternative means to accomplish this task analytically. Substituting fU(up; t) from (7.47)

into (7.51) yields a second-order ODE for D(up, ·), whose solution is

D = ηϕσ2
Ξ +

K

up
exp

(
u2p

2η2σ2
Ξ

)
, (7.52)

with K an integration constant whose value is not constrain by the compatibility condition

(see (7.11) and (7.17)), and it is an extra degree of freedom of the model. Here we choose

K = 0, such that the diffusion coefficient is simply D = ηϕσ2
Ξ. Using the analytical

relations derived previously, the diffusion tensor can be expressed in terms of the granular

temperature as

D =
3

τp

[
(1− C1C2)T +

C1C2σ1/C2
Ξ

31/(2C2)
T 1−1/(2C2)

]
. (7.53)

Models in the literature [1, 143] and, in general, numerical approximations of the

diffusion coefficient in the Langevin approach are not consistently linked to Fokker-Planck

equations and an equivalent PDF formulation is seldom investigated. Moreover, the full

statistical description is provided by a PDF description (7.46a). The model presented here

with the Liouville approach leads to equivalent Langevin and Fokker-Planck formulations.

In Fig 7.7 we compare the derived diffusion coefficient (7.53) with the model proposed

in Ref. [1], showing agreement at lower values of the granular temperature, linked to the

evolution at the early times of the FHHS. The model in Ref. [1] is based on a correlation

that contains 8 constants fitted from PR-DNS data.
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Figure 7.7. Diffusion coefficient in terms of the granular temperature in the model
presented in Ref. [1] and the one developed here, equation (7.53), for Rem = 20, ω = 0.1,
ρp/ρf = 100 and τp = 0.14.

7.5 Discussion

The advantage of the Liouville approach is obvious, the source and sink terms for

the evolution of the granular temperature can be proposed starting from defining the

standard deviations of the particle velocity (7.48) based on phenomenology. Then, we

proceed to find the source term ϕ going back to the characteristics that can be analytically

described. The model also leads a diffusion coefficient that can be computed accordingly

by comparing the Fokker-Planck equation with the marginalized Liouville equation. Trying

to formulate the problem from the Langevin perspective without previous knowledge of the

diffusion coefficient and arrive at the expression in (7.52) is a hard task. The procedure

can be used to develop a model based on the time evolution of T reported in PR-DNS

results by adjusting the parameters σΞ, C1 and C2.

The temporal evolution of the granular temperature in FHHS is characterized by

a source and sink behavior [1] stabilizing at a constant value after an initial growth. To

this purpose, the parameter σΞ is responsible for the steady value, and the coefficients

C1 and C2 characterize the growth of the granular temperature at two distinguished time

scales, at early and later times respectively. The Langevin models in Ref. [141] correspond
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to ODE systems with a random coefficient in the Liouville approach with source terms

not defined at the initial time, making the solution singular at t = 0, corresponding to an

initial infinite impulse of the particles (events moving in phase space). See the previous

Sections 7.3.1 and 7.3.2 that reproduce results reported in Ref. [141]. Another model

where the solution is not defined at the initial time is the one presented in Ref. [261],

where the granular temperature grows infinitely at the initial time. In our model, the

initial impulse in the granular temperature is bounded and governed by the parameter C2,

leading to an ODE system whose solution is bounded at t = 0.

7.6 Summary of results

A framework to formulate stochastic descriptions of particle-laden flows based on a

Liouville PDF governing equation introduced. A connection between Langevin dynamical

systems and the new Liouville approach allows to analytically treat the solution with

the method of characteristics and circumvent numerical difficulties related to Itô calculus

and the numerical resolution of the Fokker-Planck equation. The Liouville approach is

based on expressing stochastic processes with random coefficients constants in time and

additional source terms. The problem is then governed by the Liouville equation that

can be derived with the method of distributions in an augmented dimensionality that

includes the added random coefficients, the particle position and particle velocity. With

proper selection of the random coefficients and source terms, both Langevin and Liouville

approaches coincide. This implies that the Liouville equation marginalized along the extra

dimension of the random coefficients leads to the Fokker-Planck equation of an equivalent

Langevin system.

The Liouville approach is compared with canonical Eulerian-Lagrangian models of

particle-laden flows formulated with Langevin equations used to obtain the time evolution

of particle dispersion and granular temperature in the literature. We develop a full
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description of the statistics with the Liouville approach, that analytically describes exact

results of the PDFs of the particle position and velocity as well as their moments.

The potential of the Liouville approach to develop modeling of particle statistics

is assessed by proposing a phenomenological model to FHHS. Based on the analytical

character of the Liouville approach, the sink and source terms that govern the time evolution

of the granular temperature can be represented in the Liouville approach by selecting a

source term that depends on the non-dimensional parameters of the problem. This leads

to matching of PR-DNS results more accurately than previous proposed numerical and

analytical models based on the Langevin approach. The FHHS model presented here

also eliminates the singularity at the initial time in the granular temperature equation,

that leads to an ill-posed problem that contains an initial infinite impulse. Previous

models in the literature did not offer descriptions of the granular temperature without

such singularity. This singularity at the initial time can be interpreted as an initial infinite

impulse by virtue of the Liouville approach that links events with possible particles. Such

events are associated with deterministic characteristic equations that are derived from the

Liouville equation with the method of characteristics. The hyperbolicity of the Liouville

equation is therefore advantageous as opposed to the advection-diffusion character of the

Fokker-Planck equation. The model presented here is well posed at the initial time and

describes the early evolution of the granular temperature accurately as compared with

PR-DNS. Additionally, the Liouville approach may be used to find the diffusion coefficient

and with it other descriptions of the same problem based on the Fokker-Planck or Langevin

equations.

The Liouville approach may be used to describe other Langevin dynamical systems

in general, making its numerical treatment simpler. It is not bounded by Gaussianity and

does not rely on sampling nor requires closure. It opens new possibilities in proposing

reduced models that capture statistics obtained with PR-DNS. Moreover, because events

and their probability to occur are traced deterministically, each event has a deterministic

212



equation given by the characteristics that can be physically interpreted as a possible

particle in the system. Then each event is associated with a physical particle and how

likely to occur is that particle in the system. Therefore it provides a connection between

the statistics and the particle physics.

Additionally, moment equations provide a reduced description, which may lead to

closure challenges depending on the non-linearity of the particle equations. In the results

presented here, the moment equations are found in closed form.
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Chapter 8

Concluding remarks

8.1 Conclusions

The influence of randomness in a point-particle forcing on the statistical description

of particle-laden flow is modeled with Monte Carlo methods, a method of moments, and a

method of distributions. The PDF and a cloud perspective provide confidence intervals in

the solution over finite times.

A center piece of the formulations is the random forcing model that relies on

series expansions to express uncertainty in the particle forcing, as a result of deviations

of the physical conditions from a Stokes flow over a spherical particle. By assuming a

random forcing law, both the effect of epistemic and aleatoric uncertainty can be modeled.

Stochastic models should therefor be considered a subset of the random models, which

do not account for incomplete descriptions of the particle dynamics not based on first

principles, as it is the case of empirical forcing laws.

As compared to Monte Carlo, the cloud model offers computational efficiency in

computing a reduced statistical description such as the first two moments of the particle

phase variables. We build upon the previously presented SPARSE description in Davis

et al. (2017) by including second moments of the particle variables in the cloud region;

including a closure model; including the consideration of randomness in the forcing in

its extended SPARSE-R version; and approximating moments higher than second and
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PDFs of the particle phase variables. A third order convergence rate with the standard

deviations of the initial condition is shown, ensuring computational savings as compared

to Monte Carlo simulations by splitting the initial condition. The SPARSE-R model then

propagates the confidence intervals in the forcing function into quantifiable measures of

uncertainty of the particle phase variables (second moments) in closed-form. It provides a

scalable method suitable for complex three-dimensional flows, shown to compute accurately

the first two moments by a fraction of the computational cost of Monte Carlo.

Using the method of distributions, a deterministic Eulerian (hyperbolic) PDF model

is derived that provides a complete statistical description of the randomly forced particle

phase. It does not use truncation or closure approximations as it was done in SPARSE

and SPARSE-R. This model accounts for both, aleatoric and epistemic uncertainties in

the forcing. The Eulerian PDF solution computed with a high-order spectral method

preserves moment accuracy of the PDFs, which lower-order finite difference methods

do not. The description of deterministic initial conditions in the Eulerian formulation

numerically, requires the use of regularized Dirac delta functions, originally developed

to approximate singular source terms in EL systems. The vanishing moment condition

of such approximations conditions the accuracy of the Eulerian model regardless of the

discretization scheme in space and time. This PDF model requires more computational

resources than SPARSE and SPARSE-R methods, as it involves the solution of a high-

dimensional hyperbolic PDE with high-order methods instead of ODE systems. However,

it offers full a statistical description.

Exploiting the hyperbolic character of the developed Eulerian PDF model, a

deterministic Lagrangian PDF framework for its accurate numerical resolution is proposed,

based on the application of the method of characteristics to the governing PDF equation.

This novel framework provided an alternative to traditional Eulerian models, offering

analytical tractability and a deeper understanding of particle dynamics in fluid flows.

Isolated (rare) events in the parameter space can be traced independently. Moreover,
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sampling techniques are not required and yet, the Lagrangian character of the model is

preserved, as opposed to Langevin methods. The curse of dimensionality is alleviated by

the use of flow maps which trace only the surroundings of groups of particles in Lagrangian

form, reducing the computational domain of consideration as compared to the Eulerian

counterpart. Several orders of magnitudes in computational savings have been reported

in this work for canonical examples. Additionally, only the domain of influence of the

initial conditions has to be prescribed at the initial time, which will evolve in time in

a Lagrangian sense. On the contrary, the Eulerian model requires to prescribe the full

domain that the particle phase in position and velocity space will occupy at any later time.

This might not be known a priori, which becomes a difficulty to provide initial conditions

to the Eulerian model.

A method of inference of a particle forcing law from sparse, noisy measurements

is also introduced that uses the adjoint equations to a randomly forced particle model.

By integrating adjoint particle dynamics with Hamiltonian Markov Chain methods, we

demonstrated the framework’s effectiveness in accurately identifying forcing functions and

quantifying uncertainty. This data-driven approach represented a significant advancement

in our ability to infer particle behavior from limited observational data, opening new

avenues for predictive modeling and analysis.

Finally, a Liouville PDF approach is introduced, offering an alternative to Langevin

dynamical systems and Eulerian PDF models such as the Fokker-Planck model. This

approach, characterized by its simplicity and analytical tractability, holds promise for

advancing modeling capabilities and understanding particle-laden flows. Most notably, it

allows the use of the method of characteristics, offering a geometrical interpretation of the

statistical description of particle systems. Generalization for non-Gaussian systems become

natural to this description, where non-Gaussian analytical solutions to particle models based

on Wiener increments are extended for non-Gaussianity analytically. The development of

reduced stochastic models from limited data may benefit from the mathematical properties
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of this approach, as demonstrated by proposing a stochastic model for FHHS from reported

statistics in the literature.

8.2 Future work

Future works include extension of the methods here developed to two-way coupling

regime. In ongoing work, a two-way coupled PDF framework is developed that quantifies

uncertainty related to the use of non-deterministic point-particle models. Different depen-

dencies of the random particle forcing, not based on the relative velocity, such as particle

shapes, may also be an avenue of future research.

Extension of SPARSE and SPARSE-R to account for higher order statistics in each

kernel (subcloud) are also future research work. In ongoing efforts, the adjoint formulation

is derived for both PDF and moment descriptions of the particle statistics.
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Appendix A

Derivation of the PDF equation us-
ing the method of distributions

Here, a PDF equation is developed to solve the stochastic system defined by (2.1)

with the so-called method of distributions. Firstly, we define the fine-grained JPDF Π as

Π(A, a;Xp, xp;Up, up; t) = δ(A− a)δ(Xp − xp(t))δ (Up − up(t)) , (A.1)

where A, Xp and Up are deterministic magnitudes and δ(·) is the Dirac delta function.

Taking the derivative of Π with respect to time and using the chain rule and the Dirac

delta properties we find

∂Π

∂t
=
dxp
dt

∂Π

∂xp
+
dup
dt

∂Π

∂up
= −dxp

dt

∂Π

∂Xp

− dup
dt

∂Π

∂Up

, (A.2)

where we can make use of (2.1) for writing

∂Π

∂t
+ up

∂Π

∂Xp

+
ag (u− up)

τp
(u− up)

∂Π

∂Up

= 0, (A.3)

that in conservative form is

∂Π

∂t
+

∂

∂Xp

(upΠ) +
∂

∂Up

[
ag(u− up)

τp
(u− up)Π

]
= 0. (A.4)
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Defining the ensemble mean of an integrable function h(a, xp, up) with the joint

PDF faxpup as

E[h(a, xp, up)] =

∫∫∫ ∞

−∞
h(A′, X ′

p, Up)faxpup(A
′, X ′

p, U
′
p; t)dA

′dX ′
pdU

′
p, (A.5)

the ensemble of the function Π for a particular set of the deterministic variables is obtained

as

E[Π] =

∫∫∫ ∞

−∞
Π(A,A′;Xp, X

′
p, Up, U

′
p; t)faxpup(A

′, X ′
p, U

′
p; t)dA

′dX ′
pdU

′
p

=

∫∫∫ ∞

−∞
δ(A− A′)δ(Xp −X ′

p)δ(Up − U ′
p)faxpup(A

′, X ′
p, U

′
p; t)dA

′dX ′
pdU

′
p

= faxpup(A,Xp, Up; t).

(A.6)

This procedure suggests how to obtain a partial differential equation for faxpup from (A.4)

taking the ensemble mean each term. To do so, we need to use the property that allows us

to exchange expectation with derivatives respect to deterministic variables. For example,

for the deterministic variable time, one has

E

[
∂h(a, xp, up)

∂t

]
=
∂E[h(a, xp, up)]

∂t
. (A.7)

Using this property, the ensemble mean of the first term in (A.4) is trivial

E

[
∂Π

∂t

]
=
∂faxpup

∂t
. (A.8)
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The second is calculated as

E

[
∂ (upΠ)

∂Xp

]
=

∂

∂Xp

E [upΠ]

=
∂

∂Xp

[∫∫∫ ∞

−∞
U ′
pΠ(A,A

′;Xp, X
′
p;Up, U

′
p; t)faxpup(A

′, X ′
p, U

′
p; t)dA

′dX ′
pdU

′
p

]
=

∂

∂Xp

[∫∫∫ ∞

−∞
U ′
pδ(A− A′)δ(Xp −X ′

p)δ(Up − U ′
p)faxpup(A

′, X ′
p, U

′
p; t)dA

′dX ′
pdUp

]
=

∂

∂Xp

(
Upfaxpup

)
.

(A.9)

In the same way, the third term is

E

[
∂

∂Up

(
ag (u− up)

τp
(u− up)Π

)]
=

∂

∂Up

(
Ag (U − Up)

τp
(U − Up)faxpup

)
, (A.10)

where for coherence we make use of U as the deterministic value of the carrier flow. In

this study, the carrier flow is considered deterministic and therefore u = U .

Finally, the deterministic equation that governs the joint probability density function

of the solution is

∂faxpup

∂t
+

∂

∂Xp

(
Upfaxpup

)
+

∂

∂Up

(
Ag(U − Up)

τp
(U − Up)faxpup

)
= 0. (A.11)

This equation has to be solved with deterministic or stochastic initial conditions defined

by (2.7) or (2.6), and also be marginalized according to

fxpup(Xp, Up; t) =

∫ ∞

−∞
faxpup(A,Xp, Up; t)dA, (A.12)

fxp(Xp; t) =

∫ ∞

−∞
fxpup(Xp, Up; t)dUp, (A.13)

fup(Up; t) =

∫ ∞

−∞
fxpup(Xp, Up; t)dXp. (A.14)
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We also define here the nth moment about c of a continuum random variable x with PDF

fx(x) as

µn =

∫ ∞

−∞
(x− c)nfx(x)dx, (A.15)

where if n = 1 and c = 0 we obtain the mean µx, and if c is selected to be the mean, we

find the nth central moment of fx.
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Appendix B

Deterministic analytical solution of
the test cases

B.1 Uniform flow

For the uniform flow where u is constant, the system of equations (2.1) can be

expressed as a first order ODE system with constant coefficients for xp(t) and up(t)

d

dt

xp
up

 =

0 1

0 −b


xp
up

+

 0

bu

 , (B.1)

a second order ODE for xp(t)

d2xp
dt2

+ b
dxp
dt

= bu, (B.2)

a first order ODE for up(t)

dup
dt

+ bup = bu, (B.3)
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or as a differential equation of separable variables for the phase space up(xp) as the system

(2.1) becomes autonomous

dup
dxp

=
b (u− up)

up
. (B.4)

The analytical solution of xp(t) and up(t) is trivially obtained solving any of the above

options as

xp(t) = xp0 + ut+
1

b
(u− up0)

(
e−bt − 1

)
, (B.5)

up(t) = u+ (up0 − u)e−bt. (B.6)

The time can be removed combining the last two equations to find the solution in the

particle phase as up(xp).

B.2 Stagnation flow

For the center line of the stagnation flow y = 0, the carrier flow is u = −kx = −kxp

after interpolating at the particle location according to Hiemenz solution [176]. The system

(2.1) can be described as a first ODE system of constant coefficients

d

dt

xp
up

 =

 0 1

−kb −b


xp
up

 , (B.7)

a second order ODE for xp(t)

d2xp
dt2

+ b
dxp
dt

+ kbxp = 0, (B.8)
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or an integrable equation for the particle phase up(xp)

dup
dxp

= −b (kxp + up)

up
. (B.9)

Writing the system (B.7) as z′(t) = Bz(t), with the initial condition z(0) = z0,

where

z′(t) =

xp(t)
up(t)

 , z0 =

xp0
up0

 , B =

 0 1

−bk −b

 , (B.10)

the analytical solution is given by

z(t) = eBtz0. (B.11)

Using the eigen decomposition B = SΛS−1, the exponential matrix can be obtained as

eBt = SeΛtS−1, (B.12)

with

S =

−1+
√
b−4k

2k
√
b

−1−
√
b−4k

2k
√
b

1 1

 , Λ =

λ1 0

0 λ2

 , (B.13)

and

λ1 =
−b−

√
b (b− 4k)

2
, λ2 =

−b+
√
b (b− 4k)

2
. (B.14)

224



Finally, the exponential matrix is

eΛt =

eλ1t 0

0 eλ2t

 , (B.15)

and the analytical solution can be expressed as

xp(t) = e−
bt
2

[
bxp0 + 2up0

γ
sinh

(
tγ

2

)
+ xp0 cosh

(
tγ

2

)]
, (B.16)

and

up(t) =
1

2γ
e−

t(γ+b)
2

[
up0γ

(
eγt + 1

)
− b

(
eγt − 1

)
(2kxp0 + up0)

]
, (B.17)

where γ =
√
b
√
b− 4k.

Just for completion, in the case b = 4k, the matrix S is singular, and the Jordan

decomposition B = MJM−1 is required [268] to find the exponential matrix defined as

eBt =MeJtM−1 with

M =

−1/(2k) −1/(4k2)
1 0

 , J =

−2k 1

0 −2k

 , (B.18)

so that one has

eJt =

e−2kt e−2ktt

0 e−2kt

 , (B.19)
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and the analytical solution changes to

xp(t) = e−2kt [xp0 + t (2kxp0 + up0)] , (B.20)

up(t) = e−2kt [up0 − 2kt (2kxp0 + up0)] . (B.21)
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Appendix C

Expected convergence of SPARSE-R

Here, the expected convergence rate of the SPARSE–R formulation with respect

to the size of the initial cloud is derived. Consider the Taylor expansion of the forcing

function f1 around the average values of the particle cloud in a one–dimensional setting,

we can find the next term omitted in the SPARSE–R method by tracking the leading order

term of the Taylor series that were neglected previously in the SPARSE formulation (4.6)

and (4.11)–(4.18). Looking at the approximation of the average forcing f1 given in (4.14)

and retaining terms on the order to fluctuations to the third power one has

f1(α, a) ≈ A00 +A10α′ +A01a′ +A20α′2 +A11α′a′ +A02a′
2 +A30α′3 +A21α′2a′ +A12α′a′2 +A03α′3

= A00 +A11α′a′ +A02a′
2 +A12α′a′2 +A03a′

3 (C.1)

where we have considered that ∂2f1/∂α
2 = ∂3f1/∂α

3 = 0 and the constants Aij are

defined by

Aij =
∂(i+j)f1
∂α(i)∂a(j)

∣∣∣∣
α,a

, (C.2)

where the superscript in parenthesis indicates the order of the partial derivative.
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Then, using the definition of the relative velocity a = u− up we arrive to

f (α, a) ≈ A00 + A11

(
α′u′ − α′u′p

)
+ A02

(
u′2 − 2u′u′p + u′p

2
)

(C.3)

+ A12

(
α′u′2 − 2α′u′u′p + α′u′p

2
)
+ A03

(
u′3 + 3u′u′p

2 − 3u′2u′p − u′p3
)
,

that can be related to variables of the particle phase using the closure (4.11)–(4.18)

f (α, a) ≈ A00 + A11

[(
B1α′x′p +B2α′x′p

2
)
− α′u′p

]
+ A02

[(
B2

1x
′
p
2 + 2B1B2x′p

3
)
− 2

(
B1x′pu

′
p +B2x′pu

′
p
2
)
+ u′p

2
]

+ A12

[
B2

1α
′x′p

2 − 2B1α′x′pu
′
p + α′u′p

2
]

+ A03

(
B3

1x
′
p
3 + 3B1x′pu

′
p
2 − 3B2

1x
′
p
2u′p − u′p3

)
,

(C.4)

where the constants are B1 and B2 are defined as

B1 =
∂u

∂x

∣∣∣∣
xp

, B2 =
∂2u

∂x2

∣∣∣∣
xp

, (C.5)

and reordering one has

f (α, a) ≈

Terms included in SPARSE︷ ︸︸ ︷
A00 + A11

(
B1α′x′p − α′u′p

)
+ A02

(
B2

1x
′
p
2 − 2B1x′pu

′
p + u′p

2
)
+A11B2α′x′p

2

+ 2A02

(
B1B2x′p

3 −B2x′pu
′
p
2
)
+ A12

(
B2

1α
′x′p

2 − 2B1α′x′pu
′
p + α′u′p

2
)

+ A03

(
B3

1x
′
p
3 + 3B1x′pu

′
p
2 − 3B2

1x
′
p
2u′p − u′p3

)
.

(C.6)

The leading order term of the error is proportional to third order moments of the particle

phase that can be related to the standard deviations of the particle phase variables

by making use of the coefficient of skewness γ of a given third order central moment.

Additionally, the terms included in the SPARSE–R formulation (up to second moments)

can be also related to the standard deviation of the particle phase variables by the use of
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the Pearson’s coefficient ρ of two given magnitudes. In this way, one can write the average

forcing as

f1(α, a) ≈
Terms included in SPARSE–R︷ ︸︸ ︷

A00 +A02B
2
1σ

2
xp

+A02σ
2
up
− 2A02B1ρxpupσxpσup +A11B1ραxpσασxp −A11ραupσασup

+ 2A02B1B2γx3
p
σ3
xp
−A03γu3

p
σ3
up

+ (3A03B1 − 2A02B2) γxpu2
p
σxp

σ2
up
− 3A03B

2
1γx2

pup
σ2
xp
σup

+
(
A11B2 +A12B

2
1

)
γαx2

p
σασ

2
xp

+A12γαu2
p
σασ

2
up
− 2A12B1γαxpup

σασxp
σup

,

(C.7)

where we can see that the leading order term of the error is proportional to the standard

deviations of the particle phase variables α, xp and up in combinations of order three with

the form σnα
α σ

nxp
xp σ

nup
up where the integer exponents are nα+nxp +nup = 3 with 0 ≤ nα ≤ 3,

0 ≤ nxp ≤ 3 and 0 ≤ nup ≤ 3. Then, when using splitting, i.e., dividing the domain of the

cloud in uniform sets that define subclouds, the number of divisions can be expressed as

Mp =Mα
p M

xp
p M

up
p =M3 for a one–dimensional case where the same number of divisions

M per dimension (α, xp and up) is considered. Every subcloud k, with k = 1, . . . ,M3 is

solved with the SPARSE–R equations (4.6) jointly with the closure (4.11)–(4.19). Each

subcloud has a reduced standard deviation in the particle phase magnitudes such that for

the k-th subcloud σxpk
∼ σxp/M and similarly for α and up. Also, the constants Aij and

Bi in (C.2) and (C.5) for each subcloud differ for the ones of the cloud without splitting

in that they are evaluated at average locations of the different subclouds, for example

B1k =
∂u
∂x

∣∣
xpk

, is evaluated at xpk instead of the average location of the total cloud with

no splitting xp. However, because the cloud has to be small enough for the Taylor series

to be consider accurate, we can assume that the constants remain on the same order of

magnitude Aijk ∼ Aij and Bik ∼ Bi as a result of assuming xpk ≃ xp. Additionally, and

also based on the same assumption of having a small enough cloud, i.e., having smooth

gradients within the cloud, the average coefficient of skewness of the different subclouds

remains on the same order of magnitude that the one of the cloud without splitting. This

is
∑Mp

k=1wkγx3
pk
∼ γx3

p
and similarly for other third moments, where wk is the weight of

229



the k-th subcloud.

With these considerations, the average forcing when using splitting can be written

as

f1(α, a) =
M3∑
k=1

wkf1(α, a)k, (C.8)

where the leading order terms of the error are

2

M3∑
k=1

wkA02kB1kB2kγx3
pk
σ3
xpk
∼ 2A02B1B2γx3

p

(σxp

M

)3
, (C.9a)

M3∑
k=1

wkA03kγu3
pk
σ3
upk
∼ A03γu3

p

(σup

M

)3
, (C.9b)

M3∑
k=1

wk (3A03kB1k − 2A02kB2k) γxpu2
pk
σxpk

σ2
upk
∼ (3A03B1 − 2A02B2) γxpu2

p

(σxp

M

)(σup

M

)2
,

(C.9c)

3
M3∑
k=1

wkA03kB
2
1kγx2

pupk
σ2
xpk

σupk
∼ 3A03B

2
1γx2

pup

(σxp

M

)2 (σup

M

)
, (C.9d)

M3∑
k=1

wk

(
A11kB2k +A12kB

2
1k

)
γαx2

pk
σαkσ

2
xpk
∼
(
A11B2 +A12B

2
1

)
γαx2

p

(σα
M

)(σxp

M

)2
, (C.9e)

M3∑
k=1

wkA12kγαu2
pk
σαkσ

2
upk
∼ A12γαu2

p

(σα
M

)(σup

M

)2
, (C.9f)

M3∑
k=1

wkA12kB1kγαxpupk
σαkσxpk

σupk
∼ A12B1γαxpup

(σα
M

)(σxp

M

)(σup

M

)
(C.9g)

that shows the proportionality of the errors with M−3. The SPARSE–R method is

therefore expected to converge with a third order rate with the number of divisions per

dimension M or level of splitting. Note that the analysis performed for the term f1(α, a)

can be extended to all the terms included in the closure (4.11)–(4.19). We refer the reader

to [3] where a similar derivation was performed for other terms in the closure (4.11)–(4.19).
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Appendix D

SPARSE–R equations for the SF
test case

The closed SPARSE–R equations for the stagnation flow (4.33) when the Stokes’

law is considered (f1 = α and g1 = 1) are presented here. The interpolation of the flow

velocity at the average particle location is simplified to u = −kxp and v = kvp. The

SPARSE–R equations for x−direction read as

dxp
dt

= up, (D.1a)

St
dup
dt

= α (−kxp − up)− kα′x′p − α′u′p, (D.1b)

dx′p
2

dt
= 2x′pu

′
p, (D.1c)

St
du′p

2

dt
= 2α

(
−kx′pu′p − u′p2

)
+ 2α′u′p (−kxp − up) , (D.1d)

d

dt

(
x′pu

′
p

)
= u′p

2 +
1

St

[
α
(
−kx′p2 − x′pu′p

)
+ α′x′p (−kxp − up)

]
, (D.1e)

d

dt

(
α′x′p

)
= α′u′p, (D.1f)

St
d

dt

(
α′u′p

)
= α

(
−kα′x′p − α′u′p

)
+ α′2 (−kxp − up) , (D.1g)
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for the y−direction

dyp
dt

= vp, (D.2a)

St
dvp
dt

= α
(
kyp − vp

)
+ kα′y′p − α′v′p, (D.2b)

dy′p
2

dt
= 2y′pv

′
p, (D.2c)

St
dv′p

2

dt
= 2α

(
ky′pv

′
p − v′p2

)
+ 2α′v′p

(
kyp − vp

)
, (D.2d)

d

dt

(
y′pv

′
p

)
= v′p

2 +
1

St

[
α
(
ky′p

2 − y′pv′p
)
+ α′y′p

(
kyp − vp

)]
, (D.2e)

d

dt

(
α′y′p

)
= α′v′p, (D.2f)

St
d

dt

(
α′v′p

)
= α

(
kα′y′p − α′v′p

)
+ α′2

(
kyp − vp

)
, (D.2g)

and for the variables that combine directions one has

d

dt

(
x′py

′
p

)
= x′pv

′
p + y′pu

′
p (D.3a)

d

dt

(
x′pv

′
p

)
= u′pv

′
p +

1

St

[
α
(
kx′py

′
p − x′pv′p

)
+ α′x′p

(
kyp − vp

)]
, (D.3b)

d

dt

(
y′pu

′
p

)
= u′pv

′
p −

1

St

[
α
(
kx′py

′
p + y′pu

′
p

)
+ α′y′p (kxp + up)

]
, (D.3c)

St
d

dt

(
u′pv

′
p

)
= α

(
−kx′pv′p + ky′pu

′
p − 2u′pv

′
p

)
+ α′u′p (−kxp − up) + α′v′p

(
kyp − vp

)
,

(D.3d)

where the directions are decouple and the horizontal magnitudes can be computed inde-

pendently of the vertical ones and vice versa. The moments that combine magnitudes of

different directions (equations in (D.3)) can be solved after system (D.1) and (D.2).

Considering that the variables xp, up and α are uncorrelated at the initial time

t = 0, for infinite samples Np → ∞, the initial conditions (4.34) set all moments of the

particle variables to be zero initially but the initial average location xp = −1 and standard

deviations of the particle location σxp = σyp = 0.3 as described in Section 4.3.2. This means
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that the only average relative velocity different from zero at the initial time t = 0 is on the

horizontal direction ax = u− up = k with zero in the vertical direction ay = v − vp = 0.

Note that under this circumstance, the input of uncertainty in the vertical equations (D.2)

occurs in the term α′2
(
kyp − vp

)
that is zero because the relative velocity initially is set to

zero ay = 0. Taking into account this initial condition, some moments remain zero for the

entire simulation since the right hand side terms of its corresponding equations are all zero

for any later time. In particular, the SPARSE–R equations in the horizontal components

are the same as in (D.1). However, in the vertical component the system (D.2) simplifies

to

dy′p
2

dt
= 2y′pv

′
p, (D.4a)

dv′p
2

dt
=

2α

St

(
ky′pv

′
p − v′p2

)
, (D.4b)

d

dt

(
y′pv

′
p

)
= v′p

2 +
α

St

(
ky′p

2 − y′pv′p
)
, (D.4c)

yp = vp = α′y′p = α′v′p = 0, (D.4d)

and the equations for the moments combining directions (D.3) simplify to

d

dt

(
x′py

′
p

)
= x′pv

′
p + y′pu

′
p (D.5a)

d

dt

(
x′pv

′
p

)
= u′pv

′
p +

2α

St
x′py

′
p, (D.5b)

d

dt

(
y′pu

′
p

)
= u′pv

′
p −

2α

St
x′py

′
p, (D.5c)

St
d

dt

(
u′pv

′
p

)
= α

(
−kx′pv′p + ky′pu

′
p − 2u′pv

′
p

)
+ α′u′p (−kxp − up) . (D.5d)

It is important to notice that the solution of the moments in the vertical com-

ponent (D.4) when the average relative velocity is zero ay = 0 and the variables are

uncorrelated between them initially α′y′p = α′v′p = 0, that the solution simplifies to the

deterministic case, i.e., the deterministic SPARSE equations considering α = α, with
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α′ = 0. This can be seen in Figures 4.10c, 4.10d and 4.10e where the moments y′p
2, v′p

2

and y′pv
′
p are plotted for the rF and dF coinciding for the computed time interval.
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Appendix E

Flow map representation of the Liou-
ville equation

For a time interval between the initial time t0 and a later time t, we define the flow

map of the augmented particle phase space F t
t0
by considering the N–dimensional smooth

function g(x, t) on a N–dimensional domain Ω that satisfies

dy

dt
= g (y, t) , g = (up, h(xp,up), 0)

⊤ , y = (xp, up, ξ)
⊤ ∈ Ω ⊂ RN , y(t0) = y0,

(E.0.1)

with 0 a Nξ–dimensional vector of zeros. The function g is defined by the right hand

side of equations (5.11a) and (5.11b). Notice that the last Nξ components of g are zero

because the random coefficients are constant in time. Trajectories y(t;y0, t0) in phase

space of the dynamical system (E.0.1) define the flow map F t
t0
that is computed as

F t
t0
: y0 7−→ y(t;y0, t0) = y0 +

∫ t

t0

g(y(τ ;y0, t0), τ)dτ. (E.0.2)

According to (E.0.2), F t
t0
maps an initial condition y0 of the augmented particle phase

space vector at time t0 to its position y at a later time t.

Accordingly, we also define a flow map Z t
t0
for the joint PDF fXUΞ. We rewrite
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equation (5.11c) as

dfXUΞ

dt
= q(fXUΞ,y, t), fXUΞ(t0) = fXUΞ0. (E.0.3)

We therefore define equivalently the flow map for the joint PDF as

Z t
t0
: fXUΞ0 7−→ fXUΞ(t; fXUΞ0, t0) = fXUΞ0 +

∫ t

t0

q(fXUΞ(τ ; fXUΞ0, t0), F τ
t0
, τ)dτ.

(E.0.4)

The function q is defined by the right hand side of equation (5.11c). Then, Z t
t0
maps an

initial condition fXUΞ0 of the joint PDF at time t0 defined with support y0, to its later

value fXUΞ defined on y. Therefore, the flow map Z t
t0
is a function of the flow map F t

t0
.

Notice that according to the description in Section 5.3, we have that y0 = (ηx,ηu, ξ)
⊤.

Also, fXUΞ0 = f in
XU (ηx,ηu)fΞ(ξ).
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Appendix F

Isoparametric maps in the augmented
phase space

Following [229, 233], we present here the isoparametric mapping given by y = Θ(ζ)

for N = 2, that is given by

y = (1− ζ2)Γ1(ζ1) + ζ2Γ3(ζ1) + (1− ζ1)Γ4(ζ2) + ζ1Γ2(ζ2)

− (1− ζ1)(1− ζ2)y1 − ζ1(1− ζ2)y2 − ζ1ζ2y3 − (1− ζ1)ζ2y4,

(F.0.1)

and for N = 3 by

y = −(1− ζ2)Σ1(ζ1, ζ3)− ζ2Σ2(ζ1, ζ3)Σ3(ζ1, ζ2)− ζ1Σ4(ζ2, ζ3)− ζ3Σ5(ζ1, ζ2)− (1− ζ1)Σ6(ζ2, ζ3)

+ (1− ζ2)(1− ζ3)Γ1(ζ1) + ζ1(1− ζ2)Γ2(ζ3) + (1− ζ2)ζ3Γ3(ζ1) + (1− ζ1)(1− ζ2)Γ4(ζ3)

+ ζ2(1− ζ3)Γ5(ζ1) + ζ1ζ2Γ6(ζ3) + ζ2ζ3Γ7(ζ1) + (1− ζ1)ζ2Γ8(ζ3) + (1− ζ1)(1− ζ3)Γ9(ζ2)

+ ζ1(1− ζ3)Γ10(ζ2) + ζ1ζ3Γ11(ζ2) + (1− ζ1)ζ3Γ12(ζ2)− y1(1− ζ1)(1− ζ2)(1− ζ3)

− y2ζ1(1− ζ2)(1− ζ3)− y3ζ1ζ2(1− ζ3)− y4(1− ζ1)ζ2(1− ζ3)− y5(1− ζ1)(1− ζ2)ζ3

− y6ζ1(1− ζ2)ζ3 − y7ζ1ζ2ζ3 − y8(1− ζ1)ζ2ζ3.

(F.0.2)

The representation in computational space of the mappings are shown in Fig F.1. In (F.0.1),

the corners are defined by yr, with r = 1, . . . , 4. The edges are represented by Γr, which
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is its polynomial approximation given by

Γr(s) =
M∑
j=1

yr
j lj(s), (F.0.3)

that applied to the different boundaries gives Γr with r = 1, . . . , N . Notice that Γr

represents a vector with the coordinates of points along the boundary despite it is not

represented with a bold symbol. In (F.0.3), yr
j , with j = 1, . . . ,M are the points along the

boundary labeled r, and s is changed to ζ1 for r = 1, 3 and ζ2 for r = 2, 4. For the case

N = 3 in (F.0.2), the corners are yr with r = 1, . . . , 8, and the edges are also computed

with (F.0.3) accordingly. The faces Σr are defined by also a polynomial approximation

using the points in each face by

Σr(s1, s2) =
M∑
i=1

M∑
j=1

yr
ijli(s1)lj(s2), (F.0.4)

with yr
ij, the coordinates of the points composing the face r. Then, the variables in

computational space ζ1, ζ2 or ζ3 are substituted in (F.0.4) by s1 and s2 accordingly to the

corresponding face. In concordance with the definition of the edges, Σr evaluated gives a

vector with the coordinates of points contained in the face, despite it is not represented by

a bold symbol.
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(a)

(b)

Figure F.1. Mapping from the physical space to the computational space for (a) N = 2
and (b) N = 3 following [229, 233].
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Appendix G

High-order computation of moments
and marginals

The computation of moments is performed via integration of the mapped solution

along the parameters using the Jacobian in theN -dimensional domain Ωϵ. The computation

of the average particle position and velocity computed in Lagrangian form for N = 3 using

the spectral approach described in Section 5.4.3 are as follows

X̄p(t) =

∫
Ωϵ

xpfXUΞ(y; t)J dζ ≈
M∑
i=1

M∑
j=1

M∑
k=1

wiwjwky
n
1ijkJ n

ijkf
n
XUΞijk, (G.0.1a)

Ūp(t) =

∫
Ωϵ

upfXUΞ(y; t)J dζ ≈
M∑
i=1

M∑
j=1

M∑
k=1

wiwjwky
n
2ijkJ n

ijkf
n
XUΞijk. (G.0.1b)

The numerical quadratures in (G.0.1) involve the nodal values of the mapped solution y

and fXUΞ, which are distinguished with the superscript prime ()′ in Section 5.4.3. These

primes are dropped here for readability. The weights wi correspond to the M -point

Clenshaw-Curtis (CC) quadrature rule that takes advantage of the nodes distribution used

and it is exact for polynomials of order equal or less than Q =M − 1. The weights can be

computed with the fast Fourier transform [269, 270].

To compute the marginals of the joint PDF with the high-order technique, we

will follow the next procedure at any given time, where the joint PDF has been already

computed with the flow maps F t
0 and Z t

0,
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1. Compute Cartesian-aligned container element in the phase space, yC .

2. Interpolate the function fXUΞ(y; t) to fXUΞ(yC ; t), where the subscript C stands for

container.

3. Compute the integrals using Clenshaw–Curtis quadrature on every tensorial line of

the container element yC .

For simplicity, we describe the procedure for N = 2, with y = (xp, up). Take the

two–dimensional flow map y = F t
t0
(y0) to be the spectral element defined by discrete

points yij in the phase space (physical space in Fig. G.1), with edges Γr and corners yr,

with r = 1, . . . , 4. The computational space is defined with the conformal map in (F.0.1).

The corners of the unitary square map to yr, and points along its edges map to Γr, via

y = Θ(ζ). The unitary local spectral element with a nodal distribution given by ζij (black

box in computational space, Fig. G.1).

Figure G.1. Conformal mapping y = Θ(ζ) applied to the single element and the container
element for the computation of marginals.

The container element, composed by discrete points yCij, is defined as the axis-

aligned element, that strictly contains yij in the physical space (red box), and which

241



corners are defined by the points yCr, with r = 1, . . . , 4. To find the locations of these

corners, the global minima and maxima of points along the edges given by Γr should

be found using a optimization technique, e.g., the Newton-Raphson method, together

with (F.0.1), so that

yC1 = [min(Γr)(1), min(Γr)(2)], xC2 = [max(Γr)(1), min(Γr)(2)],

yC3 = [max(Γr)(1), max(Γr)(2)], xC4 = [min(Γr)(1), max(Γr)(2)].

(G.0.2)

The size of the the container element per component is the vector

SC = max(Γr)−min(Γr), (G.0.3)

so that the container element discrete representation is found by scaling the computational

space

yCij = min(Γr) + SC ⊙ ζij, (G.0.4)

with ⊙ defining a pointwise operation.

Now, to perform the interpolation of the joint PDF evaluated on yij to the discrete

points of the container element yCij, we use the following

fXU lm =
M∑
i=1

M∑
j=1

fXUijli(ζC1lm)lj(ζC2lm), (G.0.5)

with l,m = 1, . . . ,M . Lastly, if ζCij is outside the unitary box, i.e., if

(
1 ≤ ζC1ij ∨ 0ζC1ij

)
∧
(
1 ≤ ζC2ij ∨ 0 ≤ ζC2ij

)
, (G.0.6)
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then

fXU lm = 0, (G.0.7)

because it lies outside of the compact support (5.9). Then, with the interpolated values to

the container element, the maginalization along the velocity dimension for example, can

be performed by simply

fn
Xi ≈

∫ max(yn2 ij)

min(yn2 ij
)

fXU(y; t)dy2 ≈ JC

M∑
j=1

wjf
n
XU ij, (G.0.8)

with i = 1, . . . ,M and wj being the weights of the Clenshaw–Curtis quadrature and JC

being the Jacobian of the container element mapped to computational space which is

simply

JC =

∣∣∣∣∣∣∣
SC1 0

0 SC2

∣∣∣∣∣∣∣ ,
because the element is aligned with the axis.
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Appendix H

Analytical solution for stagnation
flow

In the stagnation flow, the particles in the center line y = 0 see the carrier flow

field velocity u = −κx, that when interpolating at the particle location simply becomes

u = −κxp. If we consider the Stokes drag, the correction function becomes unity for

deterministically forced particles ϕ(Rep) = 1. Therefore, the basis functions ψi with

i = 1, . . . , Nξ are zero, with the exception of the first one which is unity ψ1 = 1 and

therefore only the first stochastic mode has influence in the solution such that one has

for randomly forced particles ϕ = Ξ. This is the forcing model in Figure 5.10 depicted in

black if Ξ follows a Gaussian distribution. The system of equations according to the MoC

is given by

dxp
dt

= up, (H.0.1a)

dup
dt

= − ξ

St
(κxp + up) , (H.0.1b)

dfXUΞ

dt
=

ξ

St
fXUΞ, (H.0.1c)
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whose analytical solution is given by

xp = e−
ξ

2St
t

[
ξηx + 2Stηu

γ
sinh

( γ

2St
t
)
+ ηx cosh

( γ

2St
t
)]

, (H.0.2a)

up =
1

2γ
e−

ξ+γ
2St

t
[
γηu

(
e

γ
St

t + 1
)
− ξ (2κηx + ηu)

(
e

γ
St

t − 1
)]
, (H.0.2b)

fXUΞ = f in
XU(ηx, ηu)fΞ(ξ)e

ξ
St

t, (H.0.2c)

with γ =
√
ξ (ξ − 4κSt).
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Appendix I

Non-periodic functions

The Trapezoidal rule exhibits exponential convergence for periodic functions, where

its convergence is determined by the Fourier approximation of the function to integrate.

This special case is not necessarily the most common in PDF descriptions of the particle

phase. The PDF solution of a particle cloud may be arbitrary, including non-periodic

functions. We dedicate this test to a non-symmetric, non-periodic definition of an initial

condition which serves to analyze non-periodic solutions. In particular, the initial state of

the particles is governed by a Beta distribution such that the different numerical schemes

can be analyzed. The Beta distribution has a sharp gradient in one side, and a smooth tail

in the opposite side. The initial condition is then selected such that Xp0 ∼ B(2, 3) + 0.6

and Up0 ∼ B(2, 3) − 1.5 such that (X̄p0 , Ūp0) = (−1, 1) and σXp0
= σUp0

= 0.2. The

initial condition then is defined with compact support in the intervals [−1.4, −0.4] along

xp and [0.6, 1.6] along up without clipping of the joint PDF.

The interpolation errors in this case are significantly different between the linear

and spectral interpolants when using the Lagrangian approach. The spectral scheme

exhibits machine precision for a very low number of points M = 5 (see Fig. I.1). For the

computation of marginals however, the convergence is affected by the integration step

between the deformed element to the one aligned with the axis in phase space. In this

case, because the Beta distribution has high gradients in one of the limits of its support,
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Figure I.1. Convergence of the interpolant of the joint PDF for the Lagrangian approach
with a linear and spectral scheme.

the integral performed along lines in the marginalization step contains sharp gradients.

Despite initially the support is defined such that this gradient is not part of the grid

because the support is defined in a compact form, the deformation of the element in time

and its interpolation to the aligned element eventually results in the inclusion of gradients

in the domain. This can be seen in Figure I.2, where the error distribution as well as both

grids (the aligned and the non-aligned) are shown. The convergence of the marginals is

then affected by such gradients and when integrating along lines, some of them would

lead to integrations limited by the first order convergence as in the case of non-smooth

functions, whereas some others not containing such gradients will converge with either

second order (for linear interpolant and Trapezoidal Rule) or exponentially (for spectral

interpolant and Clenshaw Curtis quadrature). The convergence of the marginals is shown

in Figures I.3a and I.3b with convergence rates ranging from N−1 to N−2. For the initial

condition however, where there are no discontinuities in the interpolated element as both

are aligned initially, the convergence rates are as expected, second order for the linear

interpolant combined with Trapezoidal rule and exponential for the spectral interpolant

combined with Clenshaw Curtis (Fig. I.3a).

When computing the moments of the joint PDF, the deformed element is integrated

without the use of a container element where an interpolation has been carried out. Because
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Figure I.2. Errors of test case for deterministic forcing and non-periodic functions for
the Lagrangian approach using a spectral interpolant (a)–(c) and linear interpolant (d)–(f)
for times t = [0 0.6 1.2]. The red dots represent the grid aligned with the axis used for the
marginalization step where the solution is interpolated from the non-aligned grid (white
dots).

(a) (b)

Figure I.3. Convergence rates of the marginals for the deterministically forced test case
with non–periodic functions. Marginals computed with the linear interpolant combined
with the Trapezoidal rule and spectral interpolant combined with the Clenshaw Curtis
quadrature for (a) the initial time and (b) the final time.

of this, discontinuities in the element are not present and the integration is not limited by

a first order convergence rate. In fact, the spectral scheme combined with Clenshaw Curtis

quadrature converges to machine precision with low number of nodes and the linear scheme
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combined with Trapezoidal rule shows second order convergence as expected (Fig. I.4).

Figure I.4. Convergence of the moments with the number of nodes for the deterministically
forced case for non–periodic functions computed with the MoC with linear and spectral
schemes combined with the Trapezoidal Rule and Clenshaw Curtis respectively.
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Appendix J

Moment Models

With the Liouville approach, descriptions of moments of the particle phase variables

may also be derived using the systems (7.8) or (7.15). These include the variance of particle

positions (particle dispersion), the variance of particle velocity (granular temperature) and

higher moments as the third and fourth moment of the particle position less reported in

the literature. To write a general moment model based on the systems of ODEs with a

random coefficient described previously, we first rewrite the ODE systems in terms of the

vector of state variables q. Then, both systems (7.8) and (7.15) can be written as

dq

dt
= g(q), (J.0.1)

where q = (xp, Ξ) ∈ R4 for the model in (7.8) and q = (xp, up, Ξ) ∈ R7 for (7.15) with

the corresponding function with right hand side terms here taken as g, and considering a

single random coefficient Ξ. Then, we employ a Reynolds decomposition of the random

variables (·) = (·) + (·)′. Substituting in (J.0.1) and averaging, we arrive to the first two

moment equations

dqi
dt

= gi, (J.0.2a)

dq′iq
′
j

dt
= q′jg

′
i + q′ig

′
j, (J.0.2b)
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where unclosed terms appear as the average of the non-linear function g is in principle

unknown, as well as second order moments involving it. Closures for such terms may be

based on a priori computations [57] or expansions [3, 4]. If the right hand side of the

ODE system is composed by a product of non-linear functions of the state variables, q,

statistical moments of order higher appear in each moment equation, defining a classic

closure problem. Take for exmaple g(q) = r(q)◦h(q), then the system (J.0.2) is rewritten

as

dqi
dt

= rihi + r′ih
′
i, (J.0.3a)

dq′iq
′
j

dt
= q′jh

′
iri + q′jr

′
i hi + q′ih

′
jrj + q′ir

′
j hj + q′jh

′
ir

′
i + q′ih

′
jr

′
j, (J.0.3b)

with r and h two non-linear functions. This is for example is the case if a correction of

the Stokes drag F based on the relative velocity is used in (7.15). By combining closures

based on expansions with truncation of higher order terms and a splitting algorithm, in

Ref. [4], the first two moments were computed in closed form.

When applied to (7.43), the method of moments yields

dT

dt
= − 2

τp
T +

2

3
Ξ′U ′

pϕ, (J.0.4a)

dΞ′U ′
p

dt
= − 1

τp
Ξ′U ′

p + σ2
Ξϕ. (J.0.4b)

The solution of the second ODE is

Ξ′U ′
p = σ2

Ξ(1− e−C1t/τp)C2 . (J.0.5a)

Since T = σ2
U/3, with σ

2
U given by (7.48), substituting this result into (J.0.4a), yields the

source S and sink Γ terms in (7.50).
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Appendix K

Analytical solutions based on the
moment model

K.1 Particle trajectory

The moment equations of the one-dimensional version of (7.8) with a single random

variable Z = Ξ read as

dXp

dt
= up + Ξφ, (K.1.1a)

dX ′
p
2

dt
= 2X ′

pU
′
p + 2Ξ′X ′

pφ, (K.1.1b)

dΞ′X ′
p

dt
= Ξ′2φ. (K.1.1c)

Considering constant and deterministic velocity up, one has up = up and u′p = 0. The

impulse initial condition, given by a Dirac delta function located at zero, gives Xp0 =

X ′
p
2

0
= 0. Also, initially the random coefficient and the particle locations are statistically

independent such that Ξ′X ′
p0

= σΞσXp0
= 0. With this initial condition, the system (K.1.1)
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leads to the following solution

Xp = upt+ Ξ
√
2Dt, (K.1.2a)

X ′
p
2 = 2Ξ′2Dt, (K.1.2b)

Ξ′X ′
p = Ξ′2

√
2Dt, (K.1.2c)

where if Ξ = 0 and Ξ′2 = 1, in concordance with the classic heat kernel solution where

Ξ ∼ N (0, 1), the solution (K.1.2) leads to the classic result for the particle dispersion

X ′
p
2 = 2Dt. The average position grows linear in time Xp = upt, and the correlation of

position with the random coefficient is Ξ′X ′
p = σXp . The characteristic in equation (L.0.2a)

can be recasted in the form x̂p = Xp + ξσXp according to (K.1.2). This linear relation

indicates that for each value of ξ, a quantity ξσXp is added to the average path and causes

that corresponding trajectory to deviate from the average.

The general expression for the average particle position can be also obtained by

averaging of the characteristic equation x̂p(ξ, t) with respect to ξ, which corresponds to

the application of the law of the unconscious statistician (LOTUS) [266]. Making use

of (L.0.2a), with the impulse located at zero x̂0p = 0, one has

Xp =

∫
x̂p(ξ, t)fΞ(ξ)dξ =

∫ (
x̂0p + upt+ ξ

√
2Dt

)
fΞ(ξ)dξ = upt+ Ξ

√
2Dt (K.1.3)

and for the n-th central moment

X ′
p
n =

∫
(x̂p(ξ, t)−Xp)

nfΞ(ξ)dξ = Ξ′n (2Dt)n/2 , (K.1.4)

for n ≥ 2. Notice that the even moments are non-zero for any of the chosen distributions

for Ξ (N , U or T ) whereas the odds moments are zero for symmetric distributions. These

result generalize those reported in Ref. [141] for non-Gaussian white noise.
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K.2 Particle velocity

The moment equations of the system (7.36) read as

dXp

dt
= τpUp + Ξφ, (K.2.5a)

dUp

dt
= −Up + Ξϕ, (K.2.5b)

dX ′
p
2

dt
= 2τpX ′

pU
′
p + 2φΞ′X ′

p, (K.2.5c)

dX ′
pU

′
p

dt
= τpU ′

p
2 −X ′

pU
′
p + φΞ′U ′

p + ϕΞ′X ′
p, (K.2.5d)

dU ′
p
2

dt
= −2U ′

p
2 + 2ϕΞ′U ′

p, (K.2.5e)

dΞ′X ′
p

dt
= τpΞ′U ′

p + Ξ′2φ, (K.2.5f)

dΞ′U ′
p

dt
= −Ξ′U ′

p + Ξ′2ϕ, (K.2.5g)

where the equations are closed because in this reference frame the flow velocity does not

appear in the average velocity equation and the Stokes drag has been assumed, F = 1. The

solution to the system (K.2.5) considering Ξ = 0 and σΞ = 1, according to Ξ ∼ N (0, 1),

and all other first and second moments zero at the initial time except Up0 = v0, as well as
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statistical independence of the variables initially, is given by

Xp = τpv0
(
1− e−t

)
, (K.2.6a)

Up = v0e
−t (K.2.6b)

X ′
p
2 = τ 2pD

(
2t− 3 + 4e−t − e−2t

)
, (K.2.6c)

X ′
pU

′
p = τpD

√
(1− e−2t) (2t− 3 + 4e−t − e−2t), (K.2.6d)

U ′
p
2 = D

(
1− e−2t

)
, (K.2.6e)

Ξ′X ′
p =

√
τ 2pD (2t− 3 + 4e−t − e−2t), (K.2.6f)

Ξ′U ′
p =

√
D (1− e−2t). (K.2.6g)

The averages particle position and velocity as well as the variances of particle positions X ′
p
2

and velocities U ′
p
2 is exact to the results reported in Ref. [141] for the velocity Langevin

model (see Figure K.1a). In addition, the solution (K.2.6) includes the second moments

of variables combined such as the correlation of particle positions and velocities, X ′
pU

′
p,

which have not been previously reported in the literature for this particular model. For

completeness, we show in Figure K.1b the rest of the second moments of the particle

phase which are related to the standard deviation of the particle position and velocity by

X ′
pU

′
p = σXσU , Ξ′X ′

p = σΞσX and Ξ′U ′
p = σΞσU .

The general system (K.2.5), may be used for any other initial conditions or cor-

relations of the fluctuations by selecting Ξ and Ξ′2 differently. For example, if the

particle velocity is initialized with a Maxwellian distribution N (0, D), such that U ′
p
2

0
= D,

the system (K.2.5) reproduces the classic ballistic–diffusive result of Taylor [271] where

X ′
p
2 = 2τ 2pD (t− 1 + e−t). This is also for Ξ = 0 and Ξ′2 = 1.

Higher moments are also found with this moment model. Using the characteristics

equations (L.0.4a) and applying the LOTUS, one may find the following general expressions
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for the n-th central moments

X ′
p
n = Ξ′n

[
τ 2pD

(
2t− 3 + 4e−t + e−2t

)]n/2
, (K.2.7a)

U ′
p
n = Ξ′n

[
D
(
1− e−2t

)]n/2
. (K.2.7b)

(a) (b)

Figure K.1. Moments of the particle position and velocities according to the solu-
tions (K.2.6). In (a) solutions of the particle position and velocity variance which coincides
with solutions reported in Ref. [141] and (b) additional moments correlating particle
positions with velocities and the random coefficient with particle variables. The cases
correspond to particle time constants τp = [1, 10, 100] and (τpD)−1 = 5.
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Appendix L

Derivation of analytical solutions

The method of characteristics, i.e., the mapping of the fixed (Eulerian) coordinate

system in the phase space, xp, onto the moving (Lagrangian) coordinate system in the

phase space, x̂p(t), transforms the PDE (7.27) into a system of ODEs

dx̂p
dt

= up + ξ

√
D

2t
, x̂p(0) = x̂0p; (L.0.1a)

dfXΞ

dt
= 0, fXΞ(x̂p(0), ξ; 0) = fΞ(ξ)δ(x̂

0
p). (L.0.1b)

The solution to the characteristics (L.0.1) is

x̂p = x̂0p + upt+ ξ
√
2Dt, (L.0.2a)

fXΞ = f 0
XΞ. (L.0.2b)

After substituting x̂0p from (L.0.2a) we arrive to (7.28).
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The characteristics of the Liouville equation (7.37) are given by

dx̂p
dt

= τpûp + ξφ, x̂p(0) = x̂0p; (L.0.3a)

dûp
dt

= −ûp + ξϕ, ûp(0) = û0p; (L.0.3b)

and

dfXUΞ

dt
= fXUΞ,

fXUΞ(x̂p(0), ûp(0), ξ; 0) = δ(x̂0p)δ(û
0
p − v0)fΞ(ξ).

(L.0.3c)

The joint PDF changes along time because the non-conservative version of the equa-

tion (7.37) is non-homogeneous. This occurs because the third term in (7.37) has an

explicit dependency with the particle velocity which leads to a non zero right hand side in

the ODE for the joint PDF (L.0.3c). The solution to (L.0.3) is

x̂p(t) = x̂0p + τpû
0
p(1− e−t) + ξσX , ûp(t) = û0pe

−t + ξσU , (L.0.4a)

fXUΞ = f 0
XUΞe

t. (L.0.4b)

where σX and σU are defined by (7.35). They are derived with the moment model (J.0.2).

The general expression for the joint PDF fXUΞ(xp, up, ξ; t) is found by obtaining x̂0p and

û0p from the characteristics (L.0.4a) and substituting them into (L.0.4b):

fXUΞ = etfΞ(ξ)δ(x̂
0
p)δ(û

0
p − v0), (L.0.5)

which leads to (7.38).
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The characteristics of (7.45) are

dûp
dt

= − 1

τp
ûp + ξϕ, (L.0.6)

dfUΞ

dt
=

1

τp
fUΞ, (L.0.7)

that one can be solve analytically, obtaining

ûp = û0pe
−t/τp + ξ(1− e−C1t/τp)C2 , (L.0.8a)

fUΞ = f 0
UΞ e

t/τp , (L.0.8b)

which leads to (7.46).
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[256] V. Garzó, S. Tenneti, S. Subramaniam, and C. M. Hrenya. Enskog kinetic theory
for monodisperse gas–solid flows. Journal of Fluid Mechanics, 712:129–168, 2012.

[257] M. R. H. Sheikhi, P. Givi, and S. B. Pope. Velocity-scalar filtered mass density
function for large eddy simulation of turbulent reacting flows. Physics of fluids,
19(9), 2007.

[258] S. Gheorghiu, J. R. Van Ommen, and M.O. Coppens. Power-law distribution of
pressure fluctuations in multiphase flow. Physical Review E, 67(4):041305, 2003.

[259] L Biferale, P Perlekar, M Sbragaglia, and FJPRL Toschi. Convection in multiphase
fluid flows using lattice boltzmann methods. Physical Review Letters, 108(10):104502,
2012.

[260] F. Forgues, L. Ivan, A. Trottier, and J. G. McDonald. A gaussian moment method
for polydisperse multiphase flow modelling. Journal of Computational Physics,
398:108839, 2019.

[261] D. L. Koch and A. S. Sangani. Particle pressure and marginal stability limits
for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical
simulations. Journal of Fluid Mechanics, 400:229–263, 1999.

[262] D. Schneider, J. Fuhrmann, W. Reich, and G. Scheuermann. A variance based
FTLE-like method for unsteady uncertain vector fields. In Topological Methods in
Data Analysis and Visualization II: Theory, Algorithms, and Applications, pages
255–268. Springer, 2011.

[263] H. Risken and T. Frank. The Fokker-Planck Equation: Methods of Solution and
Applications. Springer, Berlin, 1996.

[264] J. E. Moyal. Stochastic processes and statistical physics. Journal of the Royal
Statistical Society. Series B (Methodological), 11(2):150–210, 1949.

[265] T. T. Soong and J. L. Bogdanoff. Random Differential Equations in Science and
Engineering. Academic Press, New York, 1974.

[266] B. Flury. A first course in multivariate statistics. Springer Science & Business Media,
2013.

281



[267] C. Gardiner. Stochastic methods. Springer, Berlin, 2009.

[268] B. Noble, J. W. Daniel, et al. Applied linear algebra, volume 3. Prentice-Hall
Englewood Cliffs, NJ, 1977.

[269] H. O’hara and F. J. Smith. Error estimation in the Clenshaw–Curtis quadrature
formula. The Computer Journal, 11(2):213–219, 1968.

[270] L. N. Trefethen. Is Gauss quadrature better than Clenshaw–Curtis? SIAM review,
50(1):67–87, 2008.

[271] G. I. Taylor. Diffusion by continuous movements. Proceedings of the London
Mathematical Society, 2(1):196–212, 1922.

282


	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background and motivation
	Computational challenges in particle-laden flows
	Non-deterministic point-particle forcing laws
	Stochastic PDF models for particle-laden flow

	Contributions and outline

	A Probability density function formulation for randomly forced dispersed phases
	Introduction
	Lagrangian Problem Formulation
	Solution Strategies
	Method of Distributions
	Method of Moments
	Singularities in the Stochastic Solution

	Numerical Implementation
	Chebyshev collocation method and time integration
	Regularization of Dirac delta function
	Filtering for capturing discontinuities
	Monte Carlo simulations

	Two Canonical Particle-Laden Flows
	Uniform flow
	Stagnation flow
	Impact of stochastic forcing

	Simulation Results and Discussion
	Uniform flow: Monte Carlo results
	Uniform flow: Method of Distributions
	Stagnation flow
	Deterministic initial condition with regularized Dirac delta functions

	Summary of results
	Acknowledgments

	Point-cloud models for particle-laden flows in closed-form
	Introduction
	Closed SPARSE: Governing Equations
	Point-Particle Method
	SPARSE Particle Cloud Tracer
	SPARSE with Second-Order Moments
	Closed SPARSE

	Verification Tests
	Linear Forcing in Constant Carrier Velocity Field, Case 1
	Positive Linear Forcing in Constant Carrier Velocity Field, Case 2
	Constant Forcing in a Harmonically Varying Carrier Velocity Field, Case 3
	Empirically Forced Particle Tracers in a Harmonically Varying Carrier Velocity Field, Case 4

	Two- and Three-Dimensional, One-Way Coupled, Particle-Laden Flow Tests
	Stagnation Flow
	ABC flow
	Isotropic turbulence

	Summary of results
	Acknowledgments

	SPARSE-R: A point-cloud tracer with random forcing
	Introduction
	SPARSE–R: point–cloud model with random forcing
	Point–particle model
	Point–cloud SPARSE model
	Random forcing SPARSE–R model
	Closure model
	Numerical implementation

	Numerical experiments
	One–dimensional sinusoidal velocity field
	Stagnation flow
	Isotropic turbulence

	Summary of results
	Acknowledgments

	Lagrangian PDF models of multiphase flows with randomly forced inertial particles
	Introduction
	Liouville equation for particle-laden flows
	Lagrangian solution of Liouville equation
	Numerical implementation
	Computation of moments
	Computation of marginals
	Spectral methods to compute moments and marginals

	Numerical experiments
	Deterministically forced particles
	Randomly forced particles

	Summary of results
	Acknowledgments

	Particle forcing reconstruction from limited observation with quantified uncertainty
	Introduction
	Particle Forcing Models
	Inverse methods

	Problem Formulation
	Adjoint optimization algorithm
	Hamiltonian Monte Carlo

	Applications
	Forcing inference in the ABC flow
	Homogeneous Isotropic Turbulence

	Summary of results
	Acknowledgments

	Fokker-Planck, Langevin and Liouville models of particle statistics
	Introduction
	Stochastic Models of Particle Dynamics
	Particle trajectory
	Particle velocity

	Analytical solutions to Liouville models
	Particle trajectory
	Particle velocity

	A Liouville model for fluidized homogeneous heating systems
	Phenomenology of granular-temperature dynamics
	Particle-velocity distributions

	Discussion
	Summary of results
	Acknowledgments

	Concluding remarks
	Conclusions
	Future work

	Derivation of the PDF equation using the method of distributions
	Deterministic analytical solution of the test cases
	Uniform flow
	Stagnation flow

	Expected convergence of SPARSE-R
	SPARSE–R equations for the SF test case
	Flow map representation of the Liouville equation
	Isoparametric maps in the augmented phase space
	High-order computation of moments and marginals
	Analytical solution for stagnation flow
	Non-periodic functions
	Moment Models
	Analytical solutions based on the moment model
	Particle trajectory
	Particle velocity

	Derivation of analytical solutions
	Bibliography



