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ABSTRACT OF THE DISSERTATION

Liouville and cloud models of randomly forced particle-laden flow

by

Daniel Dominguez-Vazquez

Doctor of Philosophy in Engineering Science (Mechanical and Aerospace)

University of California San Diego, 2024
San Diego State University, 2024

Professor Carlos F. Coimbra, Co-Chair
Professor Gustaaf B. Jacobs, Co-Chair

Eulerian-Lagrangian (EL) models are developed that account for stochasticity and
randomness in tracers of inertial particles forced by a carrier flow phase. Central to the
novelty of the models is a forcing formulation that uses a series expansion with random
coefficients to account for epistemic and aleatoric uncertainties, in lieu of commonly used
stochastic, random-walk processes.

Starting from randomly forced ordinary differential equations that govern the
Lagrangian inertial point-particle tracer dynamics, Lagrangian cloud and Liouville models

are derived. Both cloud and Liouville models are closed and are shown to more accurately



and computationally efficiently predict the propagation of the forcing randomness into
confidence intervals of the particle phase solution as compared to Monte Carlo sampling
methods.

The closed and predictive particle cloud tracer models the mean motion and
deformation of a cloud of inertial particles at a singular point in space and along its
Lagrangian trajectory in time. The tracer builds upon the Subgrid Particle-Averaged
Reynolds Stress Equivalent (SPARSE) formulation first introduced in Davis et al. (2017)
for the tracing of particle clouds. Using a combination of the forcing models, averaging
and a truncated Taylor series expansion to estimate the statistical correlations in the cloud
region, the SPARSE model is closed and achieves a third convergence for the confidence
interval with respect the number of samples.

The Liouville models are rigorously derived with the method of distributions and do
not require truncation or ad-hoc assumptions. The deterministic PDF models are described
by hyperbolic partial differential equations (PDEs). In Eulerian form, the PDEs are solved
with grid-based spectral methods. To recover the Lagrangian character of the disperse
phase, the method of characteristics is employed to derive a PDF formulation based on
the computation of flow maps, circumventing difficulties of solving high-dimensional PDE
equations. This formulation is local, does not require grid based methods nor sampling,
and offers a complete statistical description. It is shown that the Liouville PDF models may
generalize Langevin and Fokker-Planck descriptions of particle statistics to non-Gaussian
noise of the random walk.

An inverse model to infer stochastic descriptions of particle forcings from noisy
trajectory data using an adjoint formulation is also introduced using a point-particle

approach.
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Chapter 1

Introduction

1.1 Background and motivation

Multiphase flows in which a dispersed phase composed of particles, droplet or
bubbles interacts with a carrier flow are present in many natural and industrial processes.
Examples of applications of these flows are gas and liquid fluidized beds [8, 9], aerosol and
spray flows in combustion engines [10, 11] and medical devices [12], dispersion of snowflakes
in the atmosphere [13], transport and mixing phenomena in oceans [14], sea search and
rescue algorithms [15], volcanic eruptions [16, 17, 18], cavitation in turbomachinery [19] or
kidney stone fragmentation [20] and sedimentation [21].

The Eulerian-Lagrangian (EL) method provides a natural framework for the mod-
eling of such flows. It uses Eulerian continuum models to describe the dynamics of the
ambient flow, and tracks individual particles along their Lagrangian paths. The computa-
tional simulation of gas and liquid flows laden with liquid or solid particles using an EL
approach can be categorized based on the fidelity of the model into firstly a high-resolution
particle-resolved (PR) approach, secondly a point—particle approach and thirdly a point—
cloud approach. The highest fidelity approach models and resolves the flow near a particle’s
surface at scales smaller than the particles’ size. The coupling of the two phases is carried
out by imposing no—slip boundary conditions on the particle’s surface. The hydrodynamic

force on a particle can be computed by directly integrating the pressure and shear stress



distribution along the boundary. Examples of various implementations include the arbi-
trary Eulerian—Lagrangian technique [22, 23], the deformable-spatial-domain/stabilized
space—time technique [24], the overset grid technique [25], the constrained interpolation
profile method [26, 27], immersed boundary methods [28, 29, 30, 31, 32], lattice Boltzmann
equations [33, 34] or the smoothed profile method [35]. The high computational cost limits
the number of particles that can be simulated. With the current computational resources,
most studies compute hundreds to thousands of particles [1, 31].

In process—scale problems millions of particles must be simulated [36] which for PR
methods are not feasible with current day computer infrastructure. For this problem size,
the reduced point—particle approach that models a particle as a volumeless singular point
has to be the de facto choice. The so—called Particle-Source-In—Cell (PSIC) method [37, 38]
accounts for the particle’s influence introduced in the Eulerian equations that govern
the carrier phase through singular source terms. This model is valid if the smallest
hydrodynamical scale of the flow is several orders of magnitudes larger than the particles’
size. The PSIC method requires modeling for the terms in the governing equations
that couple the mass (if evaporation and condensation are considered), momentum and
heat transfer exchanged between the two phases. For spherical particles in a steady
incompressible, uniform, creeping flow, the drag force is analytically described by the Stokes’
law [39]. If the flow or the particle motion is unsteady, additional forcing terms have to be
considered including the unsteady added—mass and viscous—history forcing effects, which
through Newton’s second law results in a governing equation for the particle’s acceleration
known as the Boussinesq—Basset—Oseen (BBO) equation [40, 41, 42]. The BBO relation
was later modified to include the effects of non—uniform transient ambient flow leading to
the widely used Maxey—Riley—Gatignol (MRG) equation [43, 44]. If compressibility effects
are considered, additional Faxén forces complete the particle equations [45, 46, 47]. Many
physical situations of interest however, lead to particle forcings that can not be described

analytically. The default modus operandi to compute these flows relies on the use of



empirical and/or data—driven correlations to correct the MRG equation. Examples of
parameters for which empirical correlations are developed include arbitrary Reynolds and
Mach numbers [48, 49, 50, 51|, particle density and slip coefficients [52] viscosity rations
for droplets [53] and inhomogeneities in the particle configurations [54] among others. For
the mass and energy exchange, the use empirical correlations is also the most common
practice.

Even with the point-particle approach, the degrees of freedom in a given problem
may exceed the available computational resources. A further problem size reduction is
hence desirable, specially if one is interested in computing on desktop computers for design
purposes. The Cloud-In-Cell (CIC) method [55] addresses the computational cost problem
by amalgamating groups of particles. Unfortunately, the CIC usually does not account for
the second-moment cloud dynamics and statistics but rather just scales a computational
point or parcel with the number of particles within the physical cloud, i.e., a zeroth order
model [56, 57, 58]. A zeroth order model does not account for velocity distribution of
both the carrier phase and the particle phase within the cloud [57, 58, 59, 60, 61, 62]. As
investigated in Ref. [60], the pseudo-turbulent kinetic energy (associated with the velocity
fluctuations) can be as high as 40% for certain conditions in flow over fluidized beds. These
effects can yield rather inaccurate predictions with the zeroth cloud method that does not
account for velocity fluctuations. These also called point-cloud methods [57, 58, 3, 4] have
been less investigated in the literature than classical point-particle methods. Additional
difficulty related to a closure problem that arises from a statistical averaging process

appears.

1.1.1 Computational challenges in particle-laden flows

Despite the broad usage of the point—particle approach, the accuracy, convergence
and stability of the method are affected by its numerical treatment. The computational

approximation of point—particles requires interpolation between the Lagrangian point



tracer and what is usually a grid based approximation of the Eulerian carrier phase
model [63, 64, 65, 66, 67, 68]. Particles move freely through the domain in locations different
from the computational grid points of the flow, whose tractability in parallel computing is
involved and requires the use of interpolation [69, 70, 71]. Special attention has to be paid to
the treatment of pointwise forcing into the numerical grid to regularize the coupling source
terms and its numerical representation in the computational grid [72, 73, 74, 75, 76, 77, 78].
Another known approximation challenge is a nonphysical numerical self-forcing that is
connected with this interpolation. The point—particle description relies on the knowledge
of the unperturbed flow velocity which is in principle unknown. The use of the flow
velocity interpolated at the particle location instead of the velocity of the unperturbed
flow at that location produces self-motion as a result of a self-induced force that is not
physical [79]. Some of the earliest work to tackle this issue led to the forcing—coupling
method (FCM) [80, 79, 81], while several corrections to the point-particle method have been
recently proposed [82, 75, 77, 83]. The point—particle assumption leads also to convergence
issues related to a strong grid dependence because the forcing is modeled by averaging
in the volume of the computational cell unless the number of particles per cell exceeds a
threshold [76]. These drawbacks have inspired the development of different alternative
approaches for the simulation of particle-laden flows [84, 65]. Some of the recent research
includes the volume averaged method [85, 86, 87, 88, 89, 19], the modeling of interparticle
forcing by the pairwise interaction extended point—particle (PIEP) model [90, 91, 92, 93],
the microstructure-informed probability—driven point—particle (MPP) model [94], the
exact regularized point particle (ERPP) method [76, 95] to tackle convergence issues,
the use of discrete Green’s functions to find the undisturbed velocity and correct the
particle’s self-force [77], and machine learning (ML) models to find closures to reduced

descriptions [96, 97].



1.1.2 Non-deterministic point-particle forcing laws

If a forcing function is fit empirically to experimental or computational data, the
resulting expression is analytical. Then the function and its related trace do not account
for quantifiable measures of uncertainty such as confidence intervals defined by plus/minus
a standard deviation around the average [98] or confidence intervals defined within a
probability range of the samples. We say that methods that trace (tracers) point—particles
based on these analytical models are deterministic. In an ongoing effort to account for
the confidence interval, several formulations of the disperse phase are presented here, that
assume the point—particles to be randomly forced (rF), i.e., the forcing is considered non—
deterministic. These probabilistic models propagate the confidence intervals of the forcing
into the kinematics, dynamics and heat transfer of the disperse phase [98, 99, 2, 4, 6, 5, 7.
The randomness may originate from confidence intervals, i.e., the fitting error of empirical
or data—driven forcing functions reconstructed from PR simulations [100, 101, 102] as
shown in Fig. 1.1 (left). The randomness can also be stochastic in nature for the subgrid
scale model, in which the forcing function is described by a probability density function
(PDF) according to the dynamics of the subgrid scale [103, 104]. The probabilistic models
enable an assessment of sensitivity to uncertain/unknown forcing models in flows where
the point—particle assumption is used but analytical descriptions for the particle forcing
are not available. The probabilistic macro—model is a natural complement to the multi—
scale data—driven framework proposed in Refs. [100, 101, 102], that connects accurate
high-resolution simulations with the reduced point-particle method through surrogate
models. The latter approximates the interphase force and heat flux with a surrogate model
in a wide parameter space using high-resolution simulations in a data-driven manner.
In regions of the parameter space with a large uncertainty, additional high-resolution
simulations are conducted to improve the accuracy and/or validity range of the surrogate

model. As more high-resolution simulations become available, the multi-scale method is



updated via a Bayesian procedure. This procedure yields an approximate forcing function
with a computable probability density function. The probabilistic forcing thus propagates
into a PDF solution based on the random point—particle dynamics. The development of
forward models to propagate it becomes crucial, as discussed in Jacobs and Udaykumar
(2019) [98]. This task has motivated this work, where several point—particle models with
random forcing based on different approaches such as Monte Carlo (MC), the method of

moments (MoM) and the method of distributions (MoD) have been introduced.

1.1.3 Stochastic PDF models for particle-laden flow

Stochastic processes are mathematical objects usually defined as a sequence of
random variables in a probability space, where the index of the sequence often has the
interpretation of time. Stochastic processes are used to model systems and phenomena
that appear to vary in a random manner. Stochastic descriptions of particle statistics
of positions and velocities in multiphase flows have its origins in the landmark work
of Buyevich [105, 106, 107]. The derivation of this type of kinetic PDF equation is
analogous to the Maxwell-Boltzmann equation of classical kinetic theory and leads to
unclosed PDF models. Since then, a significant body of literature addresses closure
analytically [108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 103, 119]. A closure may
also be accomplished with numerical approximation. Quadrature—based moment methods,
for example, have been derived by describing finite moment sets of the joint PDF by an
optimal set of quadrature nodes and weights [120, 121, 122, 123, 124, 125, 126, 127, 128].

To reduce the dimensionality of the PDF formulation, the generalized Langevin
model [119] uses stochastic processes, mostly Wiener increments, in the point-particle
equations. This approach stems from their usage in modeling subgrid-scale stochas-
ticity on passive tracers in turbulent flows [129, 130]. Stochastic models of the dis-
perse phase based on the use of Wiener increments have also been used in recent

years [131, 132, 133, 134, 135, 136, 137, 36, 138, 139, 1, 140, 141, 142, 143, 144, 145, 146).



A drawback of Langevin models is that determination of accurate statistics requires
significant sampling, making the approach computationally prohibitively expensive. An
alternative is to use the corresponding Fokker—Planck equation [140, 146] making use of
the It6 calculus which requires closure and its advection—diffusion character makes its nu-
merical solution a computational challenge that continues inspiring new research [147, 148].
Only under simplified considerations, the Fokker—Planck equation allows constructive
analytical solutions to be found [141], where the temporal evolution of the particle statis-
tics is described analytically. Because of the complexity of the numerical solution of the
Fokker—Planck equation to compute the joint PDF of the particle phase, most studies are
restricted to finding the first and second moments of the joint PDF [141]. The moment
equations also require the development of closures that can be based on gradient models
or learned correlations from PR simulations [143]. None of these models consider the
forcing random, i.e., the consideration of epistemic uncertainty on the point-particle model
itself is not accounted for. The stochastic models consider the particle statistics as the
result of a stochastic process, without including randomness in the forcing, and as such,
they can be considered a subset of randomness. In particular, stochastic models do not
treat uncertainties originated from empiricism in the model used to describe the particles’
dynamics, related to the impossibility of deterministically describe the particles’ force
without fully resolving the near flow. Considering a random forcing model implies the
model itself may be incomplete, as a result of the use of a reduced description not based
on first principles.

A new class of PDF model that starts from an approximation of the random forcing
function based on series expansions involving proper sets of random variables [149, 150]
was introduced in Ref. [99] for the Eulerian phase in EL systems. The model is then
dependent on basis functions, for example Chebyshev polynomials, and random coefficients.
The confidence intervals of the forcing so defined are general and can be caused by either

empiricism or stochasticity of the problem. Following the method of distributions, the



randomly forced Lagrangian point—particle model is governed by a closed hyperbolic PDE
for the joint PDF of the particle solution in physical and phase space. The resulting
equation governs a joint PDF that has an augmented dimensionality to include the particle
phase variables and the random coefficients. The moment equations follow naturally
from the PDF approach, but they require closure of the higher moments. The numerical

approximation of the moment model that admits singularities is not trivial [98].
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Figure 1.1. Scheme of a randomly forced cloud described by the SPARSE-R method.
On the left, the drag coefficient Cp as a function of the particle Reynolds number
Re, = Res|al|d, with uncertainty bounds where a is the relative velocity, Res the
reference Reynolds number of the flow and d, the non-dimensional particle diameter. On
the right, the representation of a one-dimensional particle cloud in the domain o — z, — u,,.
The dots are the point—particles (computed with the PSIC equations) and the ellipsoids
the subclouds or point—clouds (computed with the SPARSE-R equations). The PDF's of
the particle phase variables are also represented where the point—particles and point—clouds
are linked by colors according to a division of the domain in two subclouds per dimension
ina—z,—u
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1.2 Contributions and outline

The primary objective of this thesis is the development of models that propagate
a quantified measure of uncertainty in randomly forced particle-laden systems of single

tracers and groups of tracers. The central novelty to this development is a random forcing



law based on a series expansion with random coefficients, in lieu of Langevin models.
Probability density function models in both Eulerian and Lagrangian form are derived.
Lagrangian cloud models are derived in closed-form using a method of moments. The
hyperbolic PDF model is shown to be equivalent to classic Langevin and Fokker-Planck
models. Additionally the PDF model can be used for non-Gaussian noise. The predictive
models are intended to be used for inference of non-deterministic forcing descriptions from
sparse and noisy trajectory observations. In ongoing work, an inverse model was developed
that is based on the random forcing formulation that infers a forcing law.

Specific contributions that were made towards these objectives, and where they are

described in the document, include:

e Derivation of a PDF model for a randomly forced particle phase based on the method
of distributions that leads to a high-dimensional hyperbolic PDE. Development of
high-order spectral numerical methods to accurately solve this equation in Fulerian

frame. Chapter 2.

e Implementation and assessment of a regularized Dirac delta functions with vanishing
moments to prescribe deterministic initial conditions to the Eulerian PDF model.

Chapter 2.

e Development of a closure of the point-cloud method SPARSE and its extension to
include second order moments of the particle phase. Derivation of the expected
convergence, which is of the third order of standard deviation of the initial condi-
tion, ensuring computational savings with respect to Monte Carlo based methods.

Chapter 3.

e Derivation of a point-cloud method for the particle phase considering non-deterministic
forcing laws, according to the proposed random forcing model in the first contribution.

This closed method of moments shows also third order convergence rate and can



provide approximations of moments higher than second as well as the PDFs of the

particle variables. Chapter 4.

e Development of a Lagrangian formulation to solve the hyperbolic PDF equation from
the first contribution by using high-dimensional flow maps, discretized with spectral
methods, compatibles with discontinuous Galerkin fluid solvers. This formulation
recovers the Lagrangian character of the particle phase, and does not require grid

based solvers nor sampling, by virtue of the method of characteristic. Chapter 5.

e Development of an inverse model to infer stochastic descriptions of particle forcings
from noisy trajectory data using an adjoint formulation. A Monte Carlo point-particle

approach is adopted to quantify uncertainty. Chapter 6.

e A generalized hyperbolic PDF model, based on the Liouville theorem, or equivalently
the MoD, is proposed as an alternative to the Fokker-Planck and Langevin approaches
for describing particle statistics in particle-laden flows. This model allows the use of
the method of characteristics, leading to the computational advantages investigated
in previous contributions. Analytical models from the literature are reproduced and

a model for a FHHS is proposed. Chapter 7.

A significant finding presented here, is related to the connection between the PDF
model based on the hyperbolic governing equation, by virtue of the MoD, and classical
alternatives based on the Fokker-Planck and Langevin models. In particular, analytical
descriptions of canonical stochastic processes used in the literature [141], as well as a
model for fluidized homogeneous heating systems (FHHS) [1, 143] are analyzed here with
the hyperbolic model. Because of its hyperbolic character, computational advantages are
also exploited in this work.

Another approach to account for the kinetic effects of a particle phase in a spatial

region, i.e., the stochastic dynamics of the particle phase, is to take a point-cloud perspective
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as initially proposed in Ref. [57]. By ensemble averaging a group of point—particles within
a cloud region and combining that with a Taylor expansion of the forcing function and
carrier phase variables around the average values of the particle phase (particle position
and relative velocity), one-way and two—way coupled point—cloud tracers were presented
in Refs. [57, 58]. This point-cloud method was coined Subgrid Particle-Averaged Reynolds
Stress—Equivalent (SPARSE), as it naturally accounts for stochasticity in the subcloud
scales. However, these formulations are closed a priori, i.e., lacking a closure independent
of previously performed Monte Carlo simulations. This has motivated the extension of
SPARSE to a closed-form formulation [3], where significant computational savings can
be achieved. In SPARSE, the forcing is described analytically and the particle cloud is
said to be deterministically forced (dF). To account for epistemic effects, i.e., randomness
in the forcing, one can assume a random forcing of a single trace that determines the
particle’s path within a confidence interval. This randomness affects the cloud motion
as compared to the deterministic cloud. Notably, the a random forcing can cause the
forcing for two particle that have the same relative velocity to be different. In a stochastic
environment these two forcings have to be the same. Extension of the SPARSE method to
consider randomness in the forcing function in closed-form has also been proposed here.
Furthermore, approximation of higher order moments and the PDFs of the particle phase

can be provided with the proposed SPARSE-R method [4].
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Chapter 2

A Probability density function for-
mulation for randomly forced dis-
persed phases

2.1 Introduction

The empirical corrections employed to describe forcing laws of point-particles
outside of the range of the Stokes drag, depend of plethora of parameters, such as particle
shape and the Reynolds and Mach numbers, that have nonlinear effects on the flow around
a particle. This naturally translates into a prediction error of a point-particle model,
as the momentum and energy exchange are only known within certain bounds. The
presence of such a stochastic forcing in both the empirical and data-driven approaches
renders solutions to the corresponding PSIC model random as well. These solutions are
given in terms of a joint PDF of system states or their ensemble moments. Monte Carlo
(MC) simulations are often used to obtain such solutions. They are easy to implement,
“embarassingly” parallel, and free of distributional assumptions; their only approximation
stems from the practical need to rely on a finite number of MC realizations, N, to compute
the sample statistics. A drawback of the MC method is its slow convergence: its sampling
error decays as 1/y/N,. This can make MC simulations prohibitively expensive if each

realization takes a long time to compute. Various modifications of the standard MC,
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e.g., multilevel MC, pseudo-MC, or combinations thereof, can significantly accelerate this
convergence rate, but their performance is not guaranteed especially when the goal is to
compute the full PDF rather than its moments [151, 152]. Other sampling-based methods,
such as stochastic collocation, require nontrivial modifications [153] in order to handle
hyperbolic problems with discontinuities. When the stochastic dimension and/or the noise
strength become large, such methods might become slower than the standard MC even for
problems with smooth solutions [154].

Direct numerical alternatives to sampling techniques include methods based on
(generalized) polynomial chaos expansions. These methods represent uncertain inputs
and state variables by orthogonal polynomials of standard random variables, and often
exhibit spectral accuracy. Of direct relevance to high-speed compressible flows described
by the Euler equations with shocks is the multi-element generalized polynomial chaos
method [155, 156, 157], which accommodates the presence of discontinuities in the stochastic
space. Its computational cost might become comparable to sampling methods [158],
especially when the stochastic dimension is large. Like their sampling-based counterparts,
the direct simulation methods do not provide physical insight into the probabilistic behavior
of a system, e.g., the spatiotemporal nonlocality of the statistical moments [159] and
PDFs [160] of the system states.

The method of moments (MoM) alleviates some of these disadvantages by deriving
deterministic equations for the statistical moments of a system state. Since the MoM is
free of polynomial expansions, it does not suffer from the “curse of dimensionality”, but it
often requires closure approximations to be computable. It has been used to derive moment
equations for high-speed flows interacting with a particle phase [98]; the closure terms were
learned from the MC simulations. Practical considerations limit the MoM to the derivation
and solution of equations for the first two moments —mean and (co)variance— of a system
state, which limits its usefulness for highly non-Gaussian phenomena. Specifically, the

MoM cannot capture rare events occurring in such problems, which are characterized by
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fat-tailed PDFs.

The method of distributions (MoD) overcomes this limitation by deriving a deter-
ministic equation for either the joint PDF or the joint cumulative density function (CDF)
of the system states. Having its origins in the statistical theory of turbulence [161], the
MoD has since been used as an efficient uncertainty quantification technique [162]. It
retains all the advantages of the MoM, but might require closure approximations. The
MoD yields a closed-form PDF/CDF equation for nonlinear flows in the absence of a
shock, e.g., those described by the inviscid Burgers equation [99] and the shallow-water
equations [163]. Within the MoD framework, shocks and discontinuities can be treated
either analytically, as was done for the Buckley-Leverett equation [164] and water hammer
equations [165], or by adding the PDF/CDF equation a kinetic defect-like source term
that generally has to be learned from Monte Carlo runs [166]. Numerical solutions of
PDF/CDF equations admit high-order spectral accuracy [99] and can be up to two orders
of magnitude faster than the standard MC [167].

Here we deploy the MoD to describe isothermal particle-laden flows driven by
stochastic forcings [2]. The underlying flow model relies on the Lagrangian point-particle
formulation with one-way coupling between fluid flow and particle transport. The drag
on a particle is modeled as a random variable with a prescribed PDF. The MoD yields
a closed-form partial differential equation for the joint PDF of a particle’s position and
velocity. We consider two canonical flow scenarios, both in one spatial dimension: a uniform
carrier flow and a stagnation carrier low. These are important in their own right and
can be used as building blocks of more general and multi-dimensional flows; for example,
the stagnation flow is a central component to the dynamic description of attractors and
repellers in dynamic systems [168]. Our PDF solutions are validated against high-fidelity
MC simulations and compared with solutions of the moment equations [98]. The hyperbolic
PDF equation is solved via the Chebyshev collocation method [99]. Discontinuities in its

solution are captured using the filtering techniques [74, 169]. An important contribution
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of this work is the numerical analysis of the use of regularized Dirac delta functions in
the context of deterministic initial conditions for the PDF model. The vanishing moment
condition then governs the accuracy of the description of the joint PDF in a statistical
sense. The number of moments than can be computed (marginalizing the joint PDF)
accurately are directly related to the amount of vanishing moments of the regularized
Dirac delta. A key result of our analysis is also the derivation of analytical expressions
for the position and velocity of a particle moving in deterministic uniform and stagnation
flows. These expressions allow us to generate sufficiently large numbers of MC realizations.
In both flow regimes, the PDF solutions are non-Gaussian and their moments can increase
or decrease depending largely on the time-dependent increase or decrease of the inter-phase
velocity. Moreover, the stochastic solution can develop discontinuities at inflection points

of the inter-phase velocity.

2.2 Lagrangian Problem Formulation

Dynamics of an isothermal collisionless particle phase in a one-way coupled unidi-

mensional Eulerian-Lagrangian system with the point-particle approximation is governed

by[38, 170]
dx
d_tp = up, (21&)
du, U — Uy
= 2.1b
dt ¢ T ( )

Here, t is the non-dimensional time, z, is the non-dimensional particle position, and w,
is the non-dimensional particle velocity. The non-dimensional particle response time 7,
is a measure of the response of the particle to a change in the carrier velocity u. It is
expressed as 7, = dZRe /(18¢), where d, = d;/ L is the non-dimensional particle diameter,
Re = Uy L/v is the Reynolds number, L is a characteristic length, U, is the reference

velocity, and € = p/p, is the relative density ratio of the two phases.
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The function ¢ is used to correct the Stokes drag force for flow conditions outside
of Stokes assumptions. Such models for the corrected drag coefficient ¢ are empirical and,
therefore, can only be determined within an uncertainty bound [100, 101, 57]. For the

sake of generality, we postulate [57, 99], that ¢ depends on the relative velocity u — wu,,

¢ = ag(u —up), (2.2)

without specifying the functional dependence of the function g(-). This function can be
expanded in terms of several random modes. Here, we consider the first of those random
modes, and take ¢ = a. The random coefficient a, with a given PDF f,(A) accounts for
the uncertainty in ¢ stemming from a broad range of sources such as uncertainty in the
particle size, shape or inexactness/empiricism of the drag force, and renders the system of
ordinary differential equations (2.1) stochastic. Its solution is given in terms of the joint
PDF foz,u, (A, Xp, Upst).

Our model formulation ignores inter-particle collisions. This is justified if the

particle phase is dilute, especially in one spatial dimension [171].
2.3 Solution Strategies

2.3.1 Method of Distributions

When applied to (2.1), the MoD yields an exact PDF equation (see Appendix A)

aaxu a
fPP_I_

[ 0 [Ag(U—-U,)
ot 0X,

ou, T

Upfaxpup} + (U - Up)faxpup =0, (23)

with A, X, and U, the deterministic versions of the stochastic variables a, z, and u,.
Equation (2.3) describes the evolution of the joint PDF of the particle phase and drag
coefficient, foq,u, (A, Xp, Up; t), in the phase space €2 spanned by coordinates (X, U, A).
This space can be either infinite or bounded, Q = [X), X}] x [U), U;] x [A°, A']. In the
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latter case, (2.3) is subject to boundary conditions for the independent variables X,, and

Up

j;xpup<j47}(g7l]b;t) f;x Up (jq?l]b;t)7 (2‘4)

fampup(A7 Xp7 U;))a ) (A,Xp,t) (25)

j;xpup

The boundary functions on the right hand side of these expressions are specified according
to the corresponding marginal distributions; and using the characteristic velocities of (2.3)
defined as in (2.14) and (2.15), X} = X)) or X} = X} for Cx (X)) > 0 and Cx(X}}) <0,
respectively. Similarly, U = UY or U? = U} for Cy(UY)) > 0 and Cy(U)) < 0, respectively.

The PDF equation (2.3) is also subject to the initial condition,

Fazyuy (A, X, Uy 0) = (A, X, Up). (2.6)

aTpup

The function form of (A, X,,U,) is determined by the degree of certainty in the

a:cu

initial state of the system, (z,,,up,). If it is known with certainty, i.e., deterministic, then

fa:cpup(Aa va Up; 0) fa( ) ( xpo)(s(Up - up0)7 (2'7)

where §(-) is the Dirac delta function. We will refer to this as a deterministic initial
condition (dIC). If the initial condition is not know with certainty, then we refer to
it as stochastic (sIC). Once foz,u, (A, Xp, Up;t) is computed from (2.3)-(2.6), the PDFs
fopuy (Xp, Ups t), fo,(Xpit), and f,, (Up;t) are computed as its marginals via numerical

integration over the respective variables (see appendix A).

2.3.2 Method of Moments

Solutions of the moment equations have been used to elucidate many salient features

of stochastically forced particle-laden flows [98]. We summarize that analysis and extend
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it to derive third-moment equations in order to understand the degree of non-Gaussianity.
The derivation starts by using the Reynolds decomposition to represent all parameters and
state variables as the sums of their respective ensemble means (denoted by the overbar) and
zero-mean fluctuations (denoted by the prime), e.g., z, = T, +a), with 27, = 0. Substituting
these decompositions into (2.1) and take the ensemble average, we obtain equations for

the means

dz,
d_tp - D3 (28)
da, N T T
oS _ G )+ 0~ 29)
for the variances, o7 = g and o) = quZ,
do? -
d—;fp = 20l (2.10)
R E (2.11)
ET:d)(uup—aup)+¢up(u—up)+¢uup—q§up, .

and for the third central moments, s, = x;?’ and s, = u,”,

ds, — —
;&p = 3u"u}, (2.12)

T, dsy, ——s — L
3ar ¢ (wuh? = su,) + ¢'up? (U —uy) — oo (G — g'up) + u? — pup®. (2.13)

As opposed to the exact PDF equation (2.3), these moment equations are not closed
since they contain unknown mixed, higher-order moments. To render them computable,
one has to introduce closure approximations such as the a priori closure [170, 57] used
to analyze the first two statistical moments or a posteriori closure as used in Eulerian
formulations [171, 172].

The moment equations (2.9)—(2.13) provide insight into the deviation of the stochas-

tic solution from its deterministic counterpart and/or general dynamics of the moments.
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For example, the mean dynamics, described by (2.8) and (2.9), differs from the solution
of the deterministic problem (2.1) with the mean value of the random parameter a@. The
difference between the deterministic equation and the averaged equation is the correlation
¢'u’ and gb’_u;,. In some special cases, e.g., when the carrier flow is constant and the relative
velocity is zero (u = u,), the mean of the solution is the same as the deterministic solution
for @; and the velocity deviation decreases since the right hand side of (2.11) contains only
the damping term.

Finally, we note that the moment equations (2.9)—(2.13) are related to the PDF

equation (2.3) as they represent the evolution of the first three moments of f, and f,,.

2.3.3 Singularities in the Stochastic Solution

The characteristic velocities which can be directly inferred from (2.3),

dx
Cx = dtp = U, (2.14)
AU, Ag(U -1,
Oy =" = 9 - Do), (2.15)
p

can be different which can lead to a cross-over of the characteristics’ paths at certain
values of A. In general hyperbolic systems when characteristics cross, a discontinuity is
expected to appear in the solution. Depending on the sign of the relative velocity, U — U,,
we identify two settings in which the resulting discontinuities appear in the joint PDF,
fazpu, and its marginals. First, for a positive (and constant) relative velocity (Fig. 2.1a),
we consider a cloud of N, particles with uniformly spaced different drag coefficients A;
(1 = 1...N,) such that A;;; > A;. The particle with the greatest forcing, Ay, (rightmost
particles), moves fastest, whereas the leftmost particle with a slower response is left behind.
As a result the cloud expands. For a nonlinear relative velocity, the characteristics could
steepen and cross in the expansion, yielding discontinuities (not exhibited in the graph).

For a second setting the same initial cloud is considered but for a negative (and
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Figure 2.1. Evolution of the PDF of z, of a cloud of particles initially distributed
uniformly in space and traveling at the same initial velocity (from left to right) with
different drag coefficients A; such that A;,; > A;. Under the influence of positive relative
velocity in (a) and negative relative velocity in (b).
constant) relative velocity, which causes the cloud of particles to compress. At some point,
the leftmost particles overtake the rightmost particles and the cloud concentrates in a
reduced region or even in a singular point. At that instant, the characteristics of the
hyperbolic system (2.3) cross. If all of them cross in a single point, then the PDF solution
becomes the Dirac delta distribution. After this singular event, the cloud expands and
asymmetry can reemerge resulting in steepening of the left side of the PDF f, and in its
discontinuity, as it did for the positive relative velocity.

Consistent with the formation of discontinuities in the marginal PDF, f, , discon-
tinuities also arise in the marginal PDF of the particle velocity, f,,. In Section 2.5, we
illustrate these phenomena by analyzing the uniform and stagnation carrier lows with

stochastically forced particle dynamics.

2.4 Numerical Implementation

The discontinuities and sharp gradients that can appear in the solution of the

PDF equation (2.3) require special numerical treatment. We use a low-dispersive/diffusive
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Chebyshev collocation method to approximate the derivatives with respect to X, and
U,. Such spectral treatment was shown to be effective or even necessary to solve similar
moment equations in [98]. We also deploy the filtering and regularization techniques
designed to capture discontinuities and regularize singularities in a spectral solution while

preserving accuracy [73, 98, 169, 36].

2.4.1 Chebyshev collocation method and time integration

The Chebyshev collocation method, extensively described in textbooks [173, 174], is
briefly summarized below for the sake of completeness. We do so for one spatial dimension;
the multi-dimensional formulation builds upon that, as it is defined along lines on a
tensorial grid. In the Chebyshev collocation method, a function y(x) is approximated by a

Chebyshev interpolant as

Ny Ng
r—x
v, (2) =D yla)li(x), L) = ] p— ; : (2.16)
7=0 k=0, kg

Here j =0,..., N,; and [;(z) is the Lagrange polynomial of degree N,. The collocation

points are chosen as the Gauss-Lobatto quadrature points,
& = —cos(im/N,), i=0,...,N, (2.17)

such that the L, norm of the interpolant is minimized on the interval [—1, 1].

The derivative of the function y(x) at points x; is approximated by

L) = Yyl (w), (2.18)

with I; the derivative of the corresponding Lagrange polynomial. This approximated
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derivative is recast in the matrix-vector form,
y' =Dy, (2.19)

where the differentiation matrix D has components D; ; = I} (z;).

The multi-dimensional PDF equation (2.3) is discretized on a tensorial grid that
spans X,, U, and A in the domain 2. The spectral approximation of the distribution
function f = fy 4Nx, Nu, (A, X,,U,) on this grid is governed by the semi-discrete equation

df

& DYFY 4 DU = (2.20)

where the entries of the flux arrays are given by

X ~
Eije = Upi,j,kfivj7k7 (2.21)
A ingUiin — U, ) .
U 1,75 1,7, pl, J{;
Fi,j;:k = - ’ (Ui g — Upi,j,k;)fi,j,ka (2.22)
P

with counters i, j, k along the tensors. The matrices D*» and DU are the scaled versions
of the matrix D with the following entries

%) =% . (%), =% D

= = 2.23

k,m

with 9¢/0X,=2/(X™ — X*™) and 0¢/0U,=2/(Up™ — U™) for the one-dimensional
case. The matrix-vector multiplication DX*F*» and DY»FU is performed along grid lines
with the counters j and k, respectively, in (2.21) and (2.22). The carrier flow velocity U
is specified at the particle locations. The semi-discrete system is integrated in time with
the total variation diminishing (TVD) Runge-Kutta scheme [175].

The marginals f, and f,,, are obtained via the numerical integration of fi. .,

along A and either U, or X,, respectively. This is done via Clenshaw-Curtis quadrature in
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U, and X,,, and via the trapezoidal rule in A. Because the distribution equation does not
have terms with derivatives respect to A, the spectral approximation is not necessary in

this direction.

20
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Figure 2.2. Regularization of the Dirac delta function, §™* in comparison with a
Gaussian PDF.

2.4.2 Regularization of Dirac delta function

The numerical solution of the PDF equation (2.3) with the deterministic initial
state (2.7) requires an approximation of the Dirac delta function §(-). We rely on the kernel

that regularizes §(-) with a class of high-order, compactly supported polynomials [73],

e 1Pk (g /e T E |—€,€
5k () = Pritale), welad (2.24)

€

0, otherwise,

where € > 0 is the support width or scaling parameter. On the compactly supported
interval the regularized delta function integrates to unity (i.e., the zeroth moment is one).
The polynomial P™F is designed to have the first up to the m!* moment vanished and
to have k continuous derivatives at the endpoints of the compact support. For it to be
possible for the moments to vanish the regularized delta is permitted to have negative

values on its supported interval. The vanishing moments ensure that the regularized Dirac
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delta kernel (a so-called delta sequence) converges to the exact Dirac delta function at a
rate of O(e™™!). This moment property is necessary for the construction of high-order
approximations of singular Dirac delta source terms in spectral approximations of PDEs
as was shown in Ref. [73]. To preserve high-order spatial accuracy it was further shown
that the optimal value for the compact support must be e = N, RImARE2)  The compact
kernel 6™*(z) in (2.24) has a maximum at its center. To achieve high-order accuracy, one
has to relax positivity of the kernel, leading to the undershoots in Fig. 2.2.

For the approximation of the initial Dirac delta distribution function in (2.7), the
vanishing moments of the regularized delta function yield an accurate representation of
the zero moments of the deterministic initial state. Thus, in that case the regularized
Dirac delta provides both spatial accuracy and the correct statistical properties of the
distribution function at the initial time.

A naive alternative is to approximate (x) via a Gaussian PDF

! v ] : (2.25)

i(z) ~ oro exp [_Tt?

with small variance o2. The Gaussian PDF, however, has no vanishing moments and can
thus not yield high-order approximations to the Dirac delta. If the initial state is random,
than the Gaussian distribution does correctly represent uncertainty in the initial state of

the system.

2.4.3 Filtering for capturing discontinuities

Since (2.3) admits singularities we have to regularize these singularities in numerical
approximations to avoid numerical instabilities. To this end, we once again resort to the

regularized Dirac delta kernel (2.24). This time the kernel serves as a convolution filter
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kernel as discussed in Ref. [169] to smoothen a function y(z) as follows

y(zr) = /$ ey(T)cS:”’k(a: — 7)dr. (2.26)

—€

Using a quadrature rule for approximation of the convolution integral, the interpolant yy,

is filtered as

—€

xr+e€ N Ny
i) = [ o= Y el = Y ulw)Si (o) (2.27)
x =0 i=0
The discrete filter S; is defined as
xr+e€
Si(x) = / (7)5™* (2 — 7)dr. (2.28)
In vector notation, (2.27) and (2.28) take the form
¥ = Sy. (2.29)

The extension to tensorial form is straightforward. This convolution filter was shown in
Ref. [169] to smoothen shock discontinuities while providing high-order accurate resolution
away from shocks. In some cases a weak exponential filter [99] is needed to remove

high-frequency numerical noise that appears in regions near the boundaries.

2.4.4 Monte Carlo simulations

The PDF and the moments of the PDF can be computed with a MC approach. In
MC, realizations of z, and u, are computed by solving (2.1) with random coefficients a
drawn from a given PDF f,(A). Here, we use analytical solutions that will be discussed
in the next section and that allow for a computationally efficient determination of a

significant number of MC realizations, N,. In all the tests considered, we found N, = 105
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realizations to be sufficiently accurate yielding a normalized error of the third moment less
than 0.1%. The kernel density estimation, implemented in the MATLAB 2019b subroutine
kdensity, determines the PDFs f, (X,;t), fu,(Up;t), and fu ., (X,, Up;t). The unknown
correlation terms in the moment equations (2.8)—(2.13) are closed using MC realizations.
The resulting a priori closed moment equations are integrated in time via the fourth-order

Runge-Kutta (RK4) scheme.

2.5 Two Canonical Particle-Laden Flows

We consider two one-way coupled particle-laden flows—a uniform flow and an
inviscid stagnation low—for which the carrier phase velocity is described by analytical
expressions. These are both important in their own right and serve as building blocks
for more complex flows. Both flows admit analytical solutions for the corresponding
particle-laden flow with constant deterministic forcing, ¢p=constant. While this particle
solution for the uniform carrier flow is well known, we are not aware of an analytical
solution to the particle-laden stagnation flow. Analytical solutions are derived for both

flows in the two following sections.

2.5.1 Uniform flow

By its definition, a uniform carrier flow is characterized by a constant velocity field
u. To derive the analytical solution, we cast the particle transport equations (2.1) with
the constant « and the initial conditions z,(0) = x,, and u,(0) = u,, into a the following

linear system of ODEs,

— = + : b= —. (2.30)
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The analytical solution of this system is

xp(t) = xp, + ut + %(u — ) (e = 1), (2.31)
uy(t) = u + (up, —u)e . (2.32)

Details of the derivation are provided in Appendix B.

The solution is plotted in Fig. 2.3 and shows that the response of the particle
initially at rest to a fluid velocity is slower with increasing b, i.e., with increasing effective
inertia. Hence, for a given 7,, higher values of the correction parameter a decrease the
particle’s time response. At long times on the order of O(1/b) the particle velocity becomes
equal to the carrier flow velocity u. When the relative velocity between the particle and
the carrier phase (also called interphase velocity) becomes zero, then the particle position

increases linearly at its constant advection rate u.

0.8+
0.6 +
3@

0.4}
0.2+

0+

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
t Tp
(a) (b)

Figure 2.3. Time dependence (a) and phase space (b) of the particle dynamics in the
constant uniform carrier flow.
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2.5.2 Stagnation flow

The stagnation carrier velocity field, u = (u,v) ", is given by the Hiemenz analytical

solution for an inviscid, irrotational flow [176] in the domain = € [—o00, 0] as follows,

where y is the coordinate perpendicular to the flow direction, and k is a constant. The

viscous boundary layer solution near a wall at = = 0 is available as well [177]. It predicts

the boundary layer thickness of § = \/m, too thin to affect the particle dynamics.
Along the center line y = 0, the flow is one-dimensional with a stagnation point at

x = 0 and velocity

u=—kux. (2.33)
With the carrier velocity at the particle location x, is u = —kz, (2.1) can be cast
into a linear dynamic system,
d |z 0 1 T
T "l = "l (2.34)
Uy —kb —b| |u,

The analytical solution to this system is derived in Appendix B and is characterized by

the eigenvalues of the 2 x 2 matrix in (2.34)

—b— /b(b— 4k —b+ \/b(b— 4k

Their real and imaginary parts are plotted in Fig. 2.4, for b € [0,8] and k = 1. For
0 < b < 4k, the eigenvalues are imaginary with negative real part. In that case, the

solution of the system (2.34), i.e.,the particle phase solution, is well-known to tend towards
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an inward spiral in the phase plane as plotted in Fig. 2.5¢c. Before it reaches the spiral
singularity, however, the particle will have crossed the x = 0 line where the wall is
located. This is, of course, not possible and the particle trace has to terminate at x = 0.
Alternatively, we can interpret the solution as a physical solution of a particle trajectory
in an opposed jet carrier flow. For b > 4k, both eigenvalues are real and negative, in which
case the particle moves towards an inward node in the phase space x, — v,. A bifurcation
in particle dynamics from a spiral to a node occurs at b = 4k. Figure 2.5¢ shows the
particle phase when the stagnation point is an inward node and an inward spiral, for two

different initial conditions.

—\ ‘
—— )

Im{\}
[=}
<>

-0.5F

6 4
Re{\}

Figure 2.4. Imaginary and real part of the eigenvalues A; and Aq in (2.35), for b € [0, §].
The circle corresponds to b = 0, and the diamond and square to b = 8 for A\; and A,
respectively.

The analytical solutions for the particle’s position and velocity, x,(t) and wu,(t),
versus time are plotted in Figs. 2.5a and 2.5b. The particle reaches the stagnation point
for any forcing b = a/7,. The collision of the particle with the wall for the stagnation flow

case is indicated by the red dot in the graphs 2.5a, 2.5b and 2.5c.

2.5.3 Impact of stochastic forcing

The effect of a stochastic forcing on the particle-laden uniform and stagnation flows

is studied for the cases and parameters collated in Table 2.1. For both flow regimes, we
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Figure 2.5. Solutions for particles released at rest (a) and at flow condition (b) in a
stagnation flow with k£ = 1 for different values of the parameter b. The phase space plot in

().

consider particles initialized at rest. For the stagnation flow, we also consider the particles

initialized according to the carrier flow velocity.

Table 2.1. Flow regimes and parameter values considered in the simulations.

Test case Tpo | Upy | U Tp
Uniform flow, particle launched
at rest (UF)
Stagnation flow, particle launched
at rest (SFR)
Stagnation flow, particle launched
at flow conditions (SFF)

0 0 1 10.25

For each of these cases, we consider three PDFs; f,(A), for the random variable a in
the drag correction factor defined in (2.2) including a uniform, normal and beta distribution,
all with the same mean p, and standard deviation o, (Fig. 2.6). For the stagnation flow,
fa(A) is selected to have a non-zero probability in the interval 0 < a/7, < 4k to ensure
that all particles reach the wall at a finite time (according to the deterministic solution).

Also investigated is the effect of deterministic versus stochastic initial conditions.
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Figure 2.6. Uniform, normal and beta ((/ , N, B) PDFs selected for the random
parameter a. All three PDFs have the same mean u, = 1 and standard deviation o, = 0.2,
Le., a~U[l—+12/2,1+12/2], a ~ N[1,0.2], and a ~ BJ2, 3] + 0.6.

2.6 Simulation Results and Discussion
2.6.1 Uniform flow: Monte Carlo results

The PDFs f,,(X,;t) and f,,(Up; t) obtained via MC solution of (2.1) for the uniform
flow with the uniform forcing distribution f,(A) and deterministic initial conditions are
depicted in Fig. 2.7. Starting from the deterministic Dirac delta initial distribution, both
fo,(Xpit) and f, (Up;t) first widen over time, while showing a skewness, i.e., a bias,
towards the upper range of the X, and U, values, where more particles accumulate. This
bias reflects the particles” asymptotic behavior in the limit of an infinite response time,
T, — 00, in which case all the particles congregate on a step function in time. After
the initial widening, the velocity distribution narrows with time as the particles’ velocity
settles to the uniform carrier flow velocity. The temporal evolution of the PDFs has a
characteristic time scale on the order O(7,/a). At later times, the velocity distribution
returns to the Dirac delta and the corresponding position distribution is advected at
constant velocity u without changes in time.

The means 7,(t) and u,(t), plotted with their corresponding two standard deviation

bandwidths in Fig. 2.8, tell a similar story. The mean particle velocity u,(t) increases
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Figure 2.7. PDF of particle position (a) and velocity (b) for the UF test case carried out
with MC with a uniform forcing distribution.

from its zero initial state and settles to the constant carrier velocity at ¢ — oo. Associated
with the acceleration and settling is an initial increase in the velocity bandwidth that
then returns to zero at later times. Consistent with the velocity bandwidth, the position
bandwidth grows initially and then remains constant when the particles settle.

Per definition, and as confirmed by Fig. 2.8, the mean of the solution must be
contained in the interval of deterministic limit trajectories. Moreover, because x,(a) and

up(a) are monotonically increasing with a it follows that

T, € |min {(anin), 7 (amae) s 1 {7 (anin) 2 (0ma) )

Uy € [mam {up(amin)’ up(amaX)}v m(?x {up(amin)>up(ama><)}] )

where ani, > 0 and @, denote a minimum and maximum value of a. This suggests
that T, ~ r,(a) and uw, ~ u,(a), i.e., that the mean solution is equal to the deterministic
solution at the mean stochastic forcing.

The moment equations provide further insight. Because of the correlation terms
¢'u’ and ¢'ul, the governing equations for the mean position and velocity in (2.8) and (2.9),

respectively, are different from the deterministic equations (2.1) with a = @. But the term
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@'u' is zero for the uniform flow case because v’ = 0. Moreover, the correlation term
@', in (2.9) is negligible, but not zero. Thus, to a first approximation T, ~ x,(@) and
U, ~ u,(a). For a random solution with a uniform stochastic forcing distribution, the root
mean square difference over the time interval is 0.0073 for the position and 0.0062 for the

velocity.

Figure 2.8. Two standard deviation interval along the mean for the test case UF with a
uniform forcing distribution. In dashed green the particle velocity computed with MoD
and in black with MC. In dashed red the particle position computed with MoD and in
blue with MC. Dark colors indicate dIC whereas light ones sIC.

With a zero carrier phase velocity perturbation, v’ = 0, many of the correlation
terms in the second central moment or variance of the velocity are also zero or negligible.
Significant terms that remain are a damping term —g_zﬁaip and the source term, gb’_%(ﬂ—ﬂp).
The latter is positive because the relative velocity is positive, (@ —@,) > 0, and because
¢" = a’ and u;, have the same sign since the particle velocity u, is monotonically increasing
with respect to the forcing ¢ = a. The positive source term is maximum initially and
decreases as the particle velocity settles to the flow conditions. The damping term reduces
the velocity variance to zero in the limit ¢ — oco. Correspondingly, the PDF f, tends to
the Dirac delta distribution (Fig. 2.7b). The combination of the temporal damping and
forcing by the positive source leads to a maximum variance at times that are on the order
of O(r,/a). The particle position variance depicted in Fig. 2.9a shows an initial increase

consistent with the increasing velocity variance and an increased spreading of random
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particle trajectories. When the particles settle to the constant carrier flow condition, then
all trajectories are advected at constant velocity. After that time the particle variance no
longer changes.

In Fig. 2.9a, the variance of the particle velocity and position are plotted versus
time for three different forcing distributions f, (uniform, normal and beta). The temporal
trends for the different stochastic forcing are very similar because the mean forcing and
its variance are chosen to be the same for the three forcing distributions. The damping
term in the velocity variance equation, which depends on the mean forcing and velocity
variance only, is therefore not affected by the shape of the forcing distribution. The source
correlation term, however, is directly dependent the forcing fluctuations, ¢, which leads
to differences in the velocity and position variances for different shapes of the forcing

distribution of up to 15%.

—4 x107*
9 x10 ‘ . ‘ 5
x,, U x,, B - = —uy, N
11l xp, U, sIC = = —u,, U -==u, B 11
z, N u,, U, sIC

0 0.5 15 2

(b)

Figure 2.9. Computations for the UF case with MC in color lines and with the MoM in
black dots of the (a) second and (b) third central moments for the particle position and
velocity and the three PDFs considered for a (see Fig. 2.6) and dIC. It is included the
case of sIC for the uniform distribution. The legend in (b) is valid for (a) as well.

The third central particle position and velocity moments evolve in a similar way as
the variances (Fig. 2.9b). The third velocity moment, s,,, experiences a negative growth

followed by an asymptotic decay to zero (or the Dirac delta in the PDF sense as observed
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above). The third position moment, s, , first decreases and then asymptotically evolves to
a constant value. Both the minimum in s,, and the plateau in s,, occur at slightly later
times as compared to the minimum in o,, and o,,. The difference in the factors 2¢/7,
and 3¢/7, in equations (2.11) and (2.13) are assumed to be at least partially responsible
for causing this shift in the maximum. The similarity in variance and skewness trends
would suggest that the third moment dynamics might also be primarily affected by a
positive sourcing and a damping. To verify this, the correlation terms in (2.13) are plotted
versus time in Fig. 2.10. Clearly, the damping term —58% has a major influence on the
long term response. However, there is no single dominant source term. While the term
W(E — ) plays a similar role as the positive source term in the variance equation, the
other correlation terms are not negligible and contribute also. Surprisingly perhaps is that
the term with fourth order correlations, —gb’T;f, is dominant, an indication that the tail
behavior of the solution PDF and tail behavior of the forcing function has a considerable
impact on the higher central moment solution of the solution. This is confirmed by
the deviation in the third central moment evolution of up to 200% for different forcing
distributions. We plan to report further on the tail behavior of the PDF in the near future.

%1074

Terms in equation (13)

0 0.5 1 1.5 2
t

Figure 2.10. Terms in equation (2.13) versus time ¢ for the UF case with dIC.

The solution with stochastic initial condition (sIC) is plotted in Figs. 2.8 and 2.9.

It shows that while the trends in the position and velocity mean and variance are similar
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to those determined with a deterministic initial condition (dIC), the sIC solution is offset
as compared to the dIC solution. The offset is according to the initial position deviation
of o, = 0.05. Time integration of (2.10) from time zero to a time ¢ confirms that exactly
this term o,(t = 0) appears at the initial time, ¢ = 0. The offset in Fig. 2.9 does not
change significantly over the time interval [0, ¢], which implies that the term @ in (2.10)
is small. MC simulations confirm this and show that the term has a maximum value
of 0.002 over the time interval. Because of the damping term the velocity variance and
third central moment goes to zero in the asymptotic time limit for both deterministic and

stochastic initial conditions.

2.6.2 Uniform flow: Method of Distributions

The solution of the governing equation for the PDF in (2.3) is grid-resolved for the
uniform flow case using a spectral grid with Ny, x Ny, = 300 x 300 collocation points
and a uniform grid in A direction with N4 = 200. The CFL condition is set to 0.8. The
Dirac delta distribution function for dIC is regularized according to 6™ in (2.24) with an
optimal scaling € = 0.05, and m = 5 zero vanishing moments and smoothness k = 2.

Figure 2.11 shows snapshots of f; ., (contours), f;, (left and bottom axes) and f,,
(right and top axes) at three consecutive times. For reference, the mean of the particle
phase solution (black line) is superposed in the contour plot. At time ¢ = 0, the marginals
are initialized according to the regularized Dirac delta as shown in Fig. 2.11a. At a later
time, ¢ = 0.54, the joint PDF f, ., has traveled along the mean in the X, — U, coordinate
system and has widened and deformed (contours in Fig. 2.11b). The marginal f,, and
Ju, show that the particles have a bias towards the larger values of the position and the
velocity. That is consistent with the observations in the moments discussed previously;
because the particles with smaller response time, 7,/A, travel a distance greater than the
slower responding particles, they cluster at large X,. Those fast particles furthermore

reach their terminal settling velocity faster and thus there is a similar clustering in f,,.
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The convexity of the PDF's is an indication that the clustering is more pronounced towards
larger values. The schematic in Fig. 2.12 underscores this and shows how the characteristic
paths with non-constant advection velocity for different A; leads to a convex probability
density.

At time t = 1.6, the velocity PDF has evolved towards a Dirac delta function
represented by a narrowly supported distribution centered at U, = 1. The numerical
solution successfully captures this PDF behavior despite showing some minor fluctuations
caused by Gibbs oscillations. The accuracy of the MoD solution at this time relies largely
on the number of vanishing moments m of the regularization of the Dirac delta function at
t = 0. Because the number of vanishing moments are specified to be greater than five, the
first up to the fifth moment are accurately preserved even at times when the distribution
function tends to the singular Dirac delta distribution. This accuracy preservation is
confirmed by the results in Fig. 2.8 that compares the time evolution of the mean and
variance determined with the MoD and MC approach and that shows no discernible

difference between the solutions of the two approaches.
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Figure 2.11. Marginals f, and f,, at t = [0,0.54,1.6] in (@), (b) and (c) respectively for
the UF test case with dIC and the uniform distribution for f,. Contour plots of the joint
PDF f,,u, superposed with the mean of the particle phase solution.

A few remarks on the accuracy of the numerical solution of the equation (2.3):
Remark 1: Consistent with the findings in [98], the use of high order methods is

necessary to compute an accurate solution of the joint PDF f,; ., such that the marginals
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determined according to (A.12)-(A.14), are in good comparison with MC results. To
underscore the importance of numerical discretization, we compare the Chebyshev spectral
discretization with a first and a second order upwind finite difference (FD) schemes.
Fig. 2.13a shows that the FD schemes are overly dissipative as compared to the spectral
method if the same number of grid points are used. The root mean square error (RMSE)
between resolved MC results and the spectral solution is 0.064, whereas the RMSE for the
first and second order FD method is significantly larger at 0.280 and 0.180, respectively.
To mitigate the dissipation and inaccuracy, FD requires an excessive resolution for the

computation of the PDF after marginalization.

fu,,.r,,
t1 >ty

to

Figure 2.12. Schematic evolution in time of the particle phase PDF f, ., for the UF
test case.

Remark 2: The spectral solution shows dispersion errors in the form of high-
frequency oscillations in the distribution function. These are induced by the high-order
approximation of the steep gradients in the PDF that in turn are a result of the steep
gradient in the uniform forcing distribution f,. These dispersion errors, however, average
out and turn out to have no significant effect on the numerical accuracy of the first three
moments (see Fig. 2.13b for the third central moment). The second order FD scheme also
exhibits dispersion errors, but the FD’s oscillations do not average out and the moments
are not accurately captured using this discretization.

Remark 3: For deterministic initial conditions, the regularization of the Dirac delta
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is necessary to accurately compute the moments of the evolving distribution function.
Particularly, the vanishing moment condition ensures that the evolution of the third
moment (Fig. 2.13b) is not affected by the numerical approximation as compared to Dirac
delta regularization with only two vanishing moment m = 2 in (2.24), or a Gaussian

distribution function.
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Figure 2.13. Comparison between the spectral discretization and finite difference upwind
discretization with first and second order for (a) f,, at ¢ = 0.24 and (b) s,,. Both figures
are for the UF test case with dIC with a uniform forcing distribution.

2.6.3 Stagnation flow

In the particle-laden stagnation flow, the relative (interphase) velocity is not only
affected by the evolution of the particle phase as is the case in the uniform flow but also
by the evolution of the carrier phase velocity along the particle’s path. The temporal
development of the random particle position and velocity therefore displays a considerably
more complex behavior as compared to the uniform flow. Because of the spatial dependence
of the carrier flow, the particle solution is furthermore non-trivially dependent on its initial
condition. We consider two initial conditions described in section 2.1, one with the particles
starting at rest (Case SFR) and another with the initial particle velocity specified at the

carrier flow’s velocity conditions (Case SFF). We discuss the MC and MoD solutions for
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each case below.
SFR case: Monte Carlo results

The mean trends with two standard deviation bandwidth determined with the MC
approach for a uniform forcing distribution are plotted in Fig. 2.14. To discuss the SFR
case three stages of development are identified. In the first stage (¢ < 0.6) each particle
identified with a counter ¢ accelerates in positive z-direction at a rate a;(—kx,, — kuyp,)/T,.
Similar to the uniform flow case, the velocity and position variance both increase in this
stage with varying acceleration of the stochastically forced particles. The second central
moment plotted versus time in Fig. 2.15a confirms the growth of the particle variance in
this stage.

In a second stage (0.6 < ¢t < 1.6), the particle with the smallest response time
Tp/ Gmaz —the fastest responding particle with acceleration rate amqe(—kp,, .. — ktp,0n)/Tp—
has accelerated to the carrier velocity (¢t = 0.6). After that, the flow velocity continues to
decrease (stagnates) along this particle’s path. Because of the particle’s inertial response,
the particle’s velocity, however, does not decrease equally fast along the particle’s path.
Effectively, the relative velocity of this particle therefor becomes negative. In other words,
the particle starts to decelerate. As more particles with larger response time reach the
carrier flow conditions, more particles start to decelerate until all particles have a negative
relative velocity. During this second stage the velocity variance of the particle phase
decreases to a minimum at ¢ ~ 1.6, ( Fig. 2.15a).

In a third stage ¢t > 1.6, when the relative particle velocity is smaller than zero
(up > u(z,)) for all the particles, the cloud decelerates to a decreasing carrier velocity and
the particle velocity variance increases. The variance increase mechanism is similar to the
first stage and the uniform flow, in which a time varying carrier velocity in combination
with a random forcing leads to a variance increase in the particle velocity. In the stagnating

flow, the random particle cloud compresses with a decreasing position variance before the
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wall is reached.

0.2 T T . : 1.2

Figure 2.14. Two standard deviation interval along the mean for the test case SFR with
a uniform forcing distribution. In dashed green the particle velocity computed with the
MoD and in black with MC. In dashed red the particle position computed with MoD and
in blue with MC. Dark colors indicate dIC whereas light ones sIC.

As opposed to the uniform flow case the carrier flow’s velocity fluctuation, u’, for
the stagnation flow is non-zero which affects several terms in the moment equations. Even
with these extra terms, just like for the uniform flow, the mean stagnation flow solution
described by (2.8) and (2.9) can also be approximated by the solution of the deterministic
equation for a = @. The latter position and velocity solution have a root mean square
deviation of 0.0073 for 7, and 0.0053 for u, as compared to the former. Both the terms
¢'u’ and ¢'ul, turn out to be negligible in (2.9).

The evolution of the velocity variance as governed by its moment equation (2.11) is
affected by the second term on the right hand side, i.e.,¢'u’ (@ —1,). At ¢ ~ 1.6 the relative
velocity (@ — w,) in this term changes sign when the particle phase begins to decelerate
after its initial acceleration. The sign of gb’_u; in this term changes at t ~ 1.6 also as follows:
in the first stage u, is monotonically increasing for all the forcing values of ¢ = a according
to the analytical velocity solution (2.32); in stage two, some particles are accelerating
and others are decelerating which yields different signs for du,/d¢ depending on ¢. Upon
ensemble averaging it turns out that the mean of du,/d¢ is positive prior to ¢ ~ 1.6 and

negative after. In the third stage u, is monotonically decreasing with respect to ¢. So, the
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correlation term (;5’_% changes sign at ¢ ~ 1.6 and thus the term gb’_u;)(ﬂ —u,) > 0.

In addition to the damping term that was discussed for the uniform flow case, the
first term on the right hand side in the velocity variance equations (2.11) also involves
the term gbu—’u;7 for the stagnation flow case. Similar to the sign change of gzﬁ’_% at t ~ 1.6,
the sign of W is the same as u — u, because of a comparable behavior of du,/du and
du,/d¢. As a result m is negative before t ~ 1.6 and positive thereafter. The values of

the term u’u]’J are between —0.002 and 0.002 and are thus of the the same order as the

2
Up

velocity variance o (See Fig. 2.15a). The term (buh’u; therefor has a significant effect on
the variance dynamics. At early times it reduces the growth of the variance and at later
times it enhances growth as compared to the uniform flow, where the term is zero.

The third order correlation terms (the third and fourth term in (2.11)) are observed
to have a negligible contribution to the particle variance evolution. In comparing the
maximum magnitude of each of the terms in the right hand side of (2.11) with respect to
the left hand side over the time interval, we find that the terms gb’u—’u’p and u’_u’f) have at
most a 3.0% and 1.0% contribution whereas the first and second terms have a significant
120% and 152% contribution to the ”variance acceleration”.

Figures 2.15a and 2.15b include the variance evolution for several distribution
functions of the forcing f,. As in the uniform flow case, the effect of the shape of f, is
small on the order of 5% in the velocity variance and slightly more (order of 10%) in the
position variance. The general trends are not affected by the shape of the forcing PDF.

The third position moment is negative throughout the time interval considered
(Fig. 2.15b) indicating a non-symmetric position distribution that is skewed towards larger
values of the particle coordinate. To understand the evolution of the particle velocity’s third
moment, we differentiate between two stages; firstly, when the mean interphase velocity
u — U, is positive and the skewness shows a bias towards higher velocity values similar

to the uniform flow case and as also illustrated in Fig. 2.1. Secondly, when ©w — @, ~ 0

at first after which it becomes negative, i.e., & — 4, < 0 with a near zero skewness first
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Figure 2.15. Computations for the SFR case with MC in color lines and with the MoM
in black dots of the (a) second and (b) third central moments for the particle position and
velocity and the three distributions considered for a (see figure 2.6) and dIC. It is included
the case of sIC for the uniform distribution. The legend in (a) is valid for (b) as well.

and decreasing after showing a bias towards small values of the particle coordinate when
u —u, < 0 right before the particles hit the wall. This second stage can be also understood
through the evolution of the PDF that consists of the formation of the singular Dirac
delta distribution for which the skewness is zero and its consequent behavior as illustrated
in Fig. 2.1b with a change of the bias in the PDF.

Like in the uniform flow case, the evolution of the third central moment is affected
by many different terms in the velocity skewness equation (2.13) as shown in Fig. 2.16.
The fourth order correlation terms are important in the stagnation flow also, but because
the velocity fluctuation is non-zero, ' # 0, the evolution of terms that involve u' are
non-trivial and require a separate and more in-depth analysis. We feel this is outside the
scope of the current paper and we plan to report on the skewness behavior in more detail
in future work.

Stochastic initial conditions do not only alter the evolution of the mean of the
stagnation flow solution with dIC by a constant offset as was the case for the uniform

flow (see Fig. 2.14), but the difference between the solutions with dIC and sIC changes
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Figure 2.16. Terms in equation (2.13) versus time ¢ for the SFR case with dIC and a
uniform forcing distribution.

considerably over the time interval and specifically at early times. The variance of the
particle position and velocity is initially offset according to its initial values as shown
in Fig. 2.15a, but then the difference with respect to the dIC case decreases as time
evolves. This reduction can be understood by considering the stagnation flow solution
where particles can non-physically cross the wall (i.e.,an opposed jet flow). For this flow
all particles move towards the same final state with x, = 0 and u, = 0 in the asymptotic
time limit, £ — oo and thus the position and velocity variance tend to zero.

Between the initial time and the infinite time, the terms M and u’_u;) are respon-
sible for the reduced variances. The contribution of u’_u]’[, which is negative for ¢t < 1.6,
particularly, causes a greater increase in the damping term for sIC as compared to dIC
at early times. When the interphase velocity changes sign at ¢ ~ 1.6 this term becomes
positive and it will have the opposite effect. A physical interpretation is as follows: a more
energetic initial state with higher velocity variance is more resistant to changes induced by
stochastic forcing resulting in greater damping at early times. The term % is positive in
the acceleration stage and negative in the deceleration stage and its magnitude is greater
for dIC as compared to sIC consistent with greater values of u;, for sIC.

Another considerable difference between the dIC and sIC is that the minimum in

the velocity variance at ¢ ~ 1.6 is non-zero for the stochastic case, while it is nearly zero
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for the deterministic case. As a consequence, the singularity in the distribution function
when the relative velocity changes sign can be expected to be less significant and the PDF

can be expected to have a broader support.
SFR case: Method of Distributions

Using the same grid as was used for the uniform flow case, the PDF solution for
the SFR case with a uniform forcing distribution, f,, and dIC are computed and plotted
for three instances in Fig. 2.17 at t = 1.22, ¢t = 1.60 and ¢ = 2.15. At time ¢t = 0 the
initial condition is identical to the uniform flow case plotted in Fig. 2.11a and it is therefor
not repeated in Fig. 2.17. The MC results are also plotted in Fig. 2.17 and they are in
excellent agreement with the MoD results.

During the first stage (¢ < 0.6) the joint PDF f, , deforms along the mean of the
particle trajectory (depicted by the black solid line) showing a non-linear clustering of the
particles in the X, — U, plane towards high values. During the second stage (0.6 < t < 1.6)
some particles accelerate and others decelerate leading to the near singular Dirac delta
distribution at ¢t ~ 1.6 (Fig. 2.17b). At later times (¢ > 1.6) the PDF of the particle
velocity increases on the left front (Fig. 2.17¢), confirming a bias toward lower velocities
in a deceleration field as discussed in the MC results.

The position PDF solution has an increasing bias towards the large value of X,
which is consistent with the asymptotic infinite time behavior of the non-physical solution
where particles are permitted to cross the wall and where both the particle velocity and

position distribution evolve to a Dirac delta centered at X, = 0 and U, = 0.
SFF case: Monte Carlo results

In a final test, the particle velocity is initialized with the carrier phase velocity
at the particle position. The MC results for the mean with a two standard deviation

bandwidth are plotted versus time in Fig. 2.18. In the SFF case, the particle phase only
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Figure 2.17. Marginals f,, and f,, at t = [1.22,1.60,2.15] in (a), (b) and (c), respectively,
for the SFR test case with dIC and the uniform distribution for f,. Contour plots are of
the joint PDF f, ., superposed with the mean of the particle phase solution.

decelerates which yields an evolution that is opposite to the uniform flow evolution as
plotted in Fig. 2.1a, or an evolution that is very similar to the third ”deceleration” stage
of the SFR case for ¢t > 1.6. The mean velocity decreases monotonically when the mean
particle position increases towards the wall. This evolution is accompanied by an increase

in the variances of both z, and w,,.

0.2 . . : : 1.2

Figure 2.18. Two standard deviation interval along the mean for the test case SFF with
a uniform forcing distribution. In dashed green the particle velocity computed with the
MoD and in black with MC. In dashed red the particle position computed with MoD and
in blue with MC. Dark colors indicate dIC whereas light ones sIC.

Because the SFF case is similar to the other two cases, the moment evolution results
do not shed any additional light on the evolution of the stochastically forced particle phase.

It is therefor omitted here.
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SFF case: Method of Distributions

20 20 . . 20
115

15

110

fu,

ot
o

(a)

Figure 2.19. Marginals f, and f,, at ¢t =[0.87,1.17] in (a) and (b) respectively,for the
SFR test case with dIC and a uniform forcing distribution. Contours of the joint PDF
Japu, superposed with the mean of the particle phase solution.

The results for the uniform distribution forcing, f,, for the SFF case are also very
similar to the deceleration stage of the SFR case. Rather than reiterating that discussion,
we choose a different stochastic forcing according to a beta distribution for f, in Fig. 2.6
which does not have steep gradients in f, like the uniform distribution. For a grid with
the same size as described before, the distribution results for two different times are shown
in Figs. 2.19a and 2.19b with a deterministic initial condition. Clearly, the solution does
not show Gibbs oscillations and the MC results and the MoD are in excellent agreement.

As time evolves, the PDF of the particle position is advected with a positive
characteristic velocity (2.14) and the particle velocity with a negative velocity according
to (2.15). The PDFs widen in time as the response times of random particles is different
for different stochastic forcing leading to variations in the particles velocities and positions.
Both the position and velocity PDF display a non-Gaussian (non-symmetric) trend that is

more subtle than for the uniform forcing.
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2.6.4 Deterministic initial condition with regularized Dirac
delta functions

One of the most important findings of this work relies on the use of regularized
Dirac delta functions to compute deterministic initial conditions. Originally developed
for singular source terms that account for the coupling of the Eulerian and Lagrangian
phases in Ref. [73], this technique and its condition of vanishing moments is particularly
convenient to account for dIC described by the Dirac delta function. To numerically
compute equation (2.3), the initial conditions have to be accordingly discretized. As it is
evident, is not possible to prescribe a real Dirac delta function numerically meaning to
include the singularity of an infinite value in a single point and zero in the rest. Alternatively,
the use of a regularization of the initial condition according to Ref. [73] is computationally
doable. A Dirac delta 6(z) function is characterized by a first moment = and zero for any
of the next moments. The vanishing moment condition for its regularization allows to
provide a number m of moments that can be accurately represented by this regularization.
This meas that we can define a regularized Dirac delta 6" * that has the first moment x
and up to m zero moments (ideally indefinite zero moments as §(x)). Where k is related
to the curvature of the polynomial approximation and e is the optimal support interval in
which is defined. It is worth to mention that the parameter m is the number of vanished
moments if m is an even number. On the contrary the number of vanished moments is
m — 1.

To illustrate the power of this technique, we show in Fig. 2.20a and 2.20b the
evolution in time of the second and third moment of the SFR case with dIC and a following
the uniform distribution for different approximations of the Dirac delta function. It is
compared the MC results with the MoD using a Gaussian, and two regularized Dirac
delta functions with m = 2 and m = 3 respectively. For the MoD we use the Chebyshev

collocation method as well and the same grid than in Section (2.6.3).
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For the mean, all the approximations match the MC results (not showing here), as
the Gaussian or the numeric Deltas can accurately be set up to have a certain mean. On
the contrary, the Gaussian can not be defined such that the variance is zero. Consequently,
the results with dIC are not properly represented in this way. The same happens for a
numerical Delta with m = 2, since is an even number and then the vanishing moment
conditions is m — 1 = 1 (only the mean is accurately represented). Note that the initial
variance of the Gaussian and the € for the numeric Deltas are different. To account for
the dIC properly, we use a numeric Delta with m = 3. As opposed to the previous
approximations, the first three moments would match the real Dirac delta function. In
other words, the regularization allows the solution to account up to the moment three
properly. The MoD results for this case match the MC results for the mean, deviation and
third central moment (see Figs. 2.20a and 2.20b). This confirm the regularization of the
Dirac delta function developed in [73] as a suitable tool for stochastic studies in general

when deterministic initial conditions are applied in a numerical context.
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Figure 2.20. Comparison of different numeric approximations of the Dirac delta function
for deterministic initial conditions for the SFR test case when a follows the uniform
distribution for (a) the second central moments and (b) the third central moments.
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2.7 Summary of results

Several techniques and models including a Monte Carlo approach, a method of
moments and a method of distributions are developed and compared for analysis of particle
dynamics with stochastic forcing in one-way coupled Eulerian-Lagrangian formulations.
Random solutions of two canonical flow problems are discussed including a particle phase
accelerated in a uniform carrier flow and a particle phase released in a stagnation carrier
flow with two initial conditions, one at rest and one initialized at the carrier flow velocity.

Starting from the Lagrangian particle equations for position and velocity with
stochastic forcing, a closed PDF formulation is derived. A single hyperbolic partial
differential equation, whose characteristic advection velocities are non-constant, governs
the evolution of the PDF solution. In a single spatial dimension, the PDF depends on
three variables at a given time, including the position, the velocity and a forcing coefficient.

A high-order spectral method with discontinuity regularization is necessary for the
accurate solution of the hyperbolic partial differential equation that admits discontinuities.
A polynomial regularization of a Dirac delta function with m vanishing moments is shown
to accurately capture the first m moments of the PDF solution in time.

Moment equations are derived for the first three moments of the particle position
and velocity, representing the mean, variance and skewness of the PDF. Monte Carlo results
are used to determine correlations terms and to close the system of moment equations.

Analytical solutions are derived for the system of two linear ODEs that govern the
dynamics of particles with a deterministic forcing in a one-dimensional uniform flow and
stagnation flow. The particle solution in the stagnation flow has its final state with a zero
velocity at the wall. Depending on the relative forcing the particle manifolds in the phase
space (position/velocity space) tends to either a node or spiral.

The mean solution with random forcing can be approximated within 1% using a

mere single deterministic solution at the mean forcing for all flow cases considered.
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In flows where all randomly forced particles accelerate or decelerate, the velocity
variance increases driven by a single correlation source term. A damping terms counters
this source term. When the particle velocity settles, the velocity variance reduces to
zero because of this damping. Higher-order correlation terms are generally negligible in
the velocity variance equation. The position variance increases in accelerating flows and
decreases in decelerating flows, i.e.,the random cloud expands and compresses, respectively.
When the relative velocity changes sign, the particle variance approaches zero and the
PDF has a very narrow support.

The skewness of the distribution function has a bias towards the carrier velocity
to which the particle accelerates or decelerates. The bias of the distribution function is
non-linear and more significant towards to the tail ends of the distribution function. The
skewness equation is driven by a sourcing and a damping similar to the variance equation,
but with different response time. High-order correlation terms are significant suggesting a

complicated tail behavior of the PDF.
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Chapter 3

Point-cloud models for particle-laden
flows in closed-form

3.1 Introduction

The reduced point-particle method permits the simulation of millions of particles [36]
that are commonly encountered in large scale problems. The model reduction comes with
limitations both in terms of numerical approximation and physics omissions, that are well
documented in literature [178, 179, 180, 63, 104, 59, 181, 182, 76, 95|, including convergence
issues and approximation of the singular point distribution over a grid, considerable
empiricism in particle forcing, omission of physics such as the finite size particle effects
and wake effects, subgrid turbulence-particle interactions and particle-particle interactions,
ete.

Another method for reducing computational degrees of freedom is to use high-order
approximation in the form of smooth macro-particles that distribute the particle influence
over a mesh using a Gaussian distribution or a polynomial distribution function. This
approach was first introduced for discontinuous Galerkin based particle-mesh methods in
Ref. [183] and later for finite difference based methods in Ref. [170]. Much effort has gone
into the development of high-order distribution functions (also referred to as projection
kernels) in the context of EL methods to approximate either a Dirac delta distribution of

a point-particle [73, 184] or to numerically model the flow around a finite sized particle in
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a consistent and convergent manner [185, 75|. However, less efforts have been put towards
ensuring high-order corrections to the point tracer method in physical and phase space
that should naturally accompany a high-order Euler-Lagrange discretization method and
a distribution function that is mathematically smooth up to a certain order. We refer to a
“tracer”, to the Lagrangian algorithm that computes trajectories along the inertial point
particles” paths or point clouds in time.

To address the shortcomings of CIC and high-order PSIC methods, we coined the
Subgrid Particle-Averaged Reynolds Stress-Equivalent (SPARSE) formulation in Ref. [57].
SPARSE is based on a method of moments to capture the effect of sub-cloud scales in
one-way coupled simulations. The method of moments derives governing equations for the
moments of the variables of interest by using a Reynolds decomposition of the variables in
average plus fluctuations as n = 7 + 7' where i = 0. The method of moments reduces
the computational cost in comparison to sampling methods but requires closure. We refer
to the literature for a review of the method of moments in the context of particle-laden
flows (see for example Refs. [186, 187, 171, 2, 98] and references therein). By combining a
Reynolds averaging with a truncated Taylor expansion of the forcing correction within a
cloud, SPARSE augments the CIC method in two ways. Firstly, it provides a second order
correction to the forcing. Secondly, it accounts for interphase, drift, kinetic energy and
stresses. In Ref. [58], SPARSE was extended for the simulation of two-way coupled and
non-isothermal particle-laden flows by modeling the cloud deformation with a bivariate
Gaussian function whose principle strains depend on the subgrid scale strain tensor. In
tests of a shock interaction with a particle cloud it was shown that SPARSE captures
the same physics as the point-particle model, but requires two orders of magnitude fewer
degrees of freedom [58]. This is because SPARSE allows to compute clouds of point-
particles as a single points, reducing the amount of equations to solve. So far, the SPARSE
tracer has been closed a priori with data from PSIC simulations.

Here, we propose a closed SPARSE algorithm [3] that makes the tracer predictive.

93



Following the SPARSE approach [57, 58|, covariance terms are closed using a combination
of averaging and Taylor expansion of the carrier phase variables around the mean cloud
location. To enable the closure, the SPARSE tracer presented in Ref. [57] is first extended
to account for position, velocity and temperature covariances, i.e., to account for second
moments of the particle phase. The resulting particle cloud tracer has a second order
correction to the motion and deformation caused by the carrier phase velocity field along
its mean trajectory. We perform a variety of one-way coupling computations, suitable
for dilute flows, to verify accuracy and convergence including one-dimensional tests with
prescribed velocity fields, the two dimensional stagnation flow, and the three dimensional
ABC flow. We also validate SPARSE with a simulation of an isotropic turbulence flow,
where the gas is simulated with a Direct Numerical Simulation (DNS) solver and the

SPARSE particles are traced in the DNS flow field.

3.2 Closed SPARSE: Governing Equations
3.2.1 Point-Particle Method

For completeness, we start the derivation of SPARSE from the dimensional point-
particle equations that describe the kinematics, dynamics and heat transfer of a small

spherical particle immersed in a carrier flow as follows [38, 188, 170]

dz,
d_fp = Uyp, (31&)
_da, 1, wdi_
iy 8 = Ll — | (i~ ). (3.1b)
mpap% — Nukrd, (T-1T,). (3.1c)

where &, u,, Tp, m,, and ¢, are the particle’s position vector, velocity vector, temperature,
mass and specific heat (at constant pressure), respectively. The carrier flow at the particle

position is described by the velocity vector u, density p, temperature T, conductivity &
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and dynamic viscosity fi. The mass of a spherical particle is related to its diameter dp, and
density p,, as m, = ﬁpwgf; /6. The Cp is the drag coefficient and Nu the Nusselt number
that describes the ratio of convective to conductive heat transfer at the particle’s boundary
Nu = th/ k where h is the convective heat transfer coefficient. For a small particle
Reynolds number, Re, = j|& — i,|d,/fi and incompressible flow, the drag coefficient
and Nusselt number are described analytically as Cp = 24/Re, and Nu = 2. For
higher particle Reynolds numbers and/or other flow parameters, these can be empirically

corrected [48, 49, 50, 52, 53] with the functions f; and f; as

24
= — 2
Cpo Repfl’ (3 a)
Nu = 2fs. (3.2b)

Using the non-dimensional variables t = /77, u = @/Us, p = p/poo, T = T/Tw,
1= o, k= l;/kom € =0C/Cooy Tp=Tp/Loo, Up="10,/Uss, T, = Tp/TOOa Py = Pp/ Poos
¢p = Cp/Coo, dp = cip /L, where the oo subscript identifies reference scales, we arrive at

the non-dimensional formulation

dx
d_tp = ’U/p, (33&)
du f
dTp QCT f2
—F = = (T -T .
dt  3Pr St ( ) (3:3¢)

where St = 7, /7 is the Stokes number, i.e. the ratio of the characteristic particle time scale,
T, = ﬁpci;/ (1871) to the convective carrier phase time scale, 7y = Lo /Us. The Prandtl
number is denoted by Pr = [i¢/ k, and the specific heat ratio of the particle to the carrier
phase with ¢, = ¢,/c. Defining a carrier phase, reference Prandtl number Pro, = fiooCoo/kso

and Reynolds number Rey = pooUsoLoo/ oo, We express the particle Reynolds number,
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Stokes number and Prandtl number in terms of non-dimensional variables as follows

p Pody e
Re, = Reoo; lu —u,|ld,, St= Res 18:’ Pr = Proo?. (3.4)

Without loss of generality, we take the dynamic viscosity, conductivity and specific heat

ratio of the carrier phase to be constant so that u =k =c = 1.

3.2.2 SPARSE Particle Cloud Tracer

SPARSE was derived in Refs. [57, 58] for one- and two-coupled formulations in
non-closed form, respectively. Here, we review the derivation for reference and to introduce
notation. For a detailed description of the model derivation, we refer to the interested
reader to Refs. [57, 58].

SPARSE models a cloud of particles using a method of averaging starting with
the Reynolds decomposition of any instantaneous particle variable n into its average and
fluctuating component according to n = 7+, where the average is defined by its ensemble

average

Np

1
N, —

)

for N, particles within a cloud. We define the relative velocity a and the relative

temperature b as

a=1u-—1u, (3.6a)

b=T —T,, (3.6D)

In SPARSE, we extend the functionality of the correction functions in (3.2a) and (3.2a)
beyond the forcing correction for flow conditions outside the Stokes regime, to account for

the variation of the forcing within the cloud region and associated velocity (phase) space
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on the governing equations of the statistical moments. To do so, we start by assuming that
the correction functions of the forcing depend on the relative velocity so that f; = fi(a)
and fy = fy(a), which can be interpreted as a particle-phase in which the particle’s inertial
effects are dominant and Boussinesq number is small following our previous work on the
interaction of a curtain of particles with a moving shock [170, 189, 171, 58]. Consequently,
we Taylor expand this function around the mean velocity of the cloud to account for
fluctuations in the cloud region, e.g. for f; this leads to

dfr 1,, 0*f

— n — / N
fi(@+a’) = fi(a)+a, %a, E—l— 5 i Pada; |

+0 (a’3> . (3.7)

Here, we use index notation for brevity with indexes ¢ = 1,2,3 and 57 = 1, 2, 3. Substituting

this into (3.3) and Reynolds decomposing one finds

dz,, dx;i B )
at " ar Tt (3.8a)
dt,, du; 1 L Of 1 021,
Z : S|+ 5dia @ +al), 3.8h
— (fl( ) + G B0, | T 3% Bar . (@; + a}) (3.8b)
dTp dT/ 2¢, af? 1 /0 82f2 T /
; —a;a; b+10). 3.8

dt dt  3PrSt (f2( )+ da; a+ o i da,a; |, (b+1) (3.8¢)

Averaging of this system leads to the non-dimensional SPARSE equations for the mean

particle position, velocity and temperature [57]

7,
ZZ’Z —,,. (3.92)
dupl - fl 6 —— anl 1 7 82f1
St o =a;fi (@) + ala] 8_ + Ea % 3, “ar 7+ éa jala, Jay0ar . (3.9b)
3PrStdT, - ofs| | b—— 0°f 0> f2
) +Vd] —did Yarar 3.9
2o, at @A o e T 2V B | (3:9¢)

Through the combination of Taylor expansion of the forcing and averaging, these governing

model equations accounts for moments of velocity distribution in the cloud region on the
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mean cloud dynamics. In previous work, we closed this system a priori with Monte-Carlo
sample.

Note that we previously omitted the third term on the right hand sides of (3.9b)
and (3.9¢) as they pertain to derivatives of order higher than one of the forcing function
which generally turns out to be smaller than the gradient. However, because this term
after averaging is O (?) and thus potential similar in order of terms, we retain it here

for completeness.

3.2.3 SPARSE with Second-Order Moments

In order to close the SPARSE equations, we must first extend the model (3.9) to
include equations that govern the second order moments. These can be obtained following
a standard method of moments procedure [57, 58, 98, 2|, i.e., first obtain equations for
the fluctuating variables by subtracting the averaged equations from the instantaneous
equations; then multiplying or taking the inner product of the resulting system with the

fluctuating variables and vectors, respectively; finally, averaging and neglecting terms on
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the order of fluctuations to the third power or higher, we arrive at the following

dcfzf L=y (3.10a)

Std;fi = a; (fl (@) + %a; aj, aijg;k a) + ag 3 gfl (3.10b)
31;5“51}) ~ <f2 (@) + %@ 2 252] > + V] Z“Z R (3.10c)
di (x% x’j) = Tty + ;U (3.10d)
St% (u ul, ) = (a;u;,j + a}u;l) fi (@) +a7m g(’];i E+@ ik gg;lg _ (3.10e)
3122% dﬁf =TIV f2 (@) + bT}d; gi R (3.10f)
( Lp; p]) UpUp; T o (pajfl (@) ‘i‘aijm gc]; a) ; (3.10g)

i ( ) 3pr % <%b'f2( @) + baj, Th ) (3.10L)
g( T,) = Ty (@) + aiTya; 22 + ;]CJT (%fg( @) + buj,,aj a—fQ > . (3.100)

Because we have retained only terms on the order of fluctuations squared, this SPARSE

formulation is a second order CIC model.

3.2.4 Closed SPARSE

The second-order SPARSE formulation in (3.10) is not yet closed as many of the
terms have the form of a covariance of particle variables with carrier phase variables or
a covariance between two carrier phase variables, and the carrier phase has an unknown
distribution within the cloud region. To highlight those terms more explicitly, we make

use of (3.6a) and (3.6b) to unroll terms related to the relative velocity and temperature
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as follows

a; =W — 1, (3.11a)
b=\T|-T, (3.11b)
a;a; = | |+ up, up, . — ugu;j wju, (3.11c)
Vai; =|T'u; |+ Thuy, —| Ty, | —| Tju; |, (3.11d)
T, a5 = | T, U Z’Diu;?j, (3.11e)
up, @y = | up, | — Up; Ui - (3.11f)
Tha; = | Tyu; | — Tyuy,, (3.11g)
Va, =Tz, | —Tha,, (3.11h)
Vuy, =T, | — Thu,, (3.111)
VT, =TT, |- 117, (3.11j)

where the boxed terms need closing. To be consistent with the SPARSE framework, we
need to account for the influence of the carrier phase at the mean location. We will rely
on averaging and Taylor series expansions once more by expanding the carrier velocity

and temperature in (3.11a) and (3.11b) around the mean cloud location, Z,, as follows

Ou; 1 %, 1— — 0%y
LT~ (e /- 7 ! / — A Y /
u; ~ u; (Ty) + Lp; oz, - + o pj by 00, . = u; (Tp) + o pj pk 00y . , (3.12a)
— orT 1 0T 1— 0°T
T~T(x o —x, T =T (x —x! x! 3.12b
(wp) + xpz axl =, + 2xplxpj axzaxj % (mp) + przxp] axlax] z, ( )

Note that the second term on the right hand side are zero after averaging.
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We close the second moments in a similar way. For example,

ou _ ou,
wpuy = ug (uy — Uj) = uj (uj (@) + ), 8—2 - @-) = ujzl, a—zi B (3.13a)
ou; ou;
Tup =T (u; — ) = T" (u @)+, 5| - a) =T, 5| . (3.13D)
J 1z, J =,
— — T
T2 =T (T-T)~T (T (@,) + o, g - T) ~ T, g , (3.13¢)
‘ Ly Tp ! T Tp

close the Reynolds stress and the heat flux on the sub-cloud scale. Further closures of

covariances are as follows

ou; ou;
J Y Y J
)~ af — w v Rl ol — (3.14a)
pi) P~ Pk a$k PiJ PPk a$k
Thuy ~ T)x),. ,ap U mar —| (3.14b)
7 Ox; ©PI Ozl
p p
0
/ I ~ o4/ / 1! ~ ! Al
up, 1" =, P 5| L1 ~ T, D (3.14c)
ilz, ilz,

Substituting (3.11)—(3.14) into (3.10) closes the model. The resulting system of model

equations is shown in Ref. [3].
Error Estimates

Because SPARSE uses a combination of a Taylor series and higher-moment trun-
cation, naturally the model accuracy depends on these truncation errors. These errors
intuitively depend on the spatial cloud size over which the Taylor series is expanded and
over which the moments are determined.

To formalize through basic analysis, we consider the Taylor expansion of the carrier

flow velocity around the average location of the particle cloud for the one-dimensional
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model, as follows

u(@) = Co+ Cy (x = T,) + Co (x = T,)" + Cs (z = T,)° + O ((x = T)")

L L - (3.15)
= C() -+ 0213;2 -+ 031';3 + O (ZL‘;4> s
where the constants are given by
c 7). C ou c 1 0%u o 1 &u (3.16)
= ulx = — = - — = - — . .
0 P T O @,’ 72 92 @,7 7 6 923 7

2

Using the standard deviation o,, to express the two central moments we have prQ =0y,

and pr?’ = ’Yxpaipa where 7., is the Pearson’s coefficient of the third moment (or coefficient

of skewness). Finally, the average of the carrier flow velocity is
u(@) = Co + G2 + Cyy,, 08 +0 <x_p4> , (3.17)

which indicates that the leading order term not included in the SPARSE formulation is
proportional to the standard deviation of the macro-particle’s location to the third power.
This procedure can be applied similarly to the rest of the truncated terms. For example,

for the term w2 that is closed using expressions (3.13a) and (3.14a) we have

W = )+ Cow'ay? + O (way?) = Clag? + CiCaay? + 0 (1)
(3.18)
= Cfagp + ClCQ’yxpogp +0 <%4> ’

and for the term w/u’ that is closed with (3.14a) one has

[y ] !t 2 r 3\ 2 113
upu = C’lup:L'p + C’gupxp + O (upxp ) = C1Pzpu,00,0u, + C’g'yxpup%paup + O (upa:p ) ,

(3.19)

where p,, ., is the Pearson’s correlation coefficient of x, and u, and , ., the Pearson’s
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coefficient of the third moment W.

To summarize, each term in SPARSE and therefor the SPARSE model is expected
to be on the order of the third moment of the cloud location variance in the asymptotic
range. Effectively, for this third-order model we thus have assumed a symmetric probability
density distribution of the particle statistics in the cloud. The Pearson’s coefficients is the
proportionality constant on this error. It depends on the probability density function in

space and velocity phase space.
Adaptivity and Splitting

The third-order error estimates indicates that the error reduces if the clouds size is
reduced. This can be accomplished by adapting the cloud size through splitting of large
clouds into smaller clouds. Associated with this splitting we expect a convergence of the
SPARSE method with respect to subdivisions of the particle cloud along the variables z,
and u, of the third order.

To illustrate the splitting of a particle cloud, here, we uniformly divide the particle
phase’s computational domain at initial conditions as defined by the limits of the physical
and phase space of the particle variables according to M, = M,”M,?, where M, is the
total number of macro-particles and M,” and M,” are the number of divisions in physical
and phase space along x, and u,, respectively, that here we have considered to be equal
M," = M,?. The weight of each macro-particle is computed as the ratio of the point-
particles contained in the macro-particle to the total number of particles N,. The first
two moments of the macro-particles are computed initially for each macro-particle. The
splitting of the initial cloud is schematically illustrated in Figure 3.1. The Figure represents
the initial time (left) and a later time (right) of a particle cloud represented by PSIC
particles (points) and SPARSE macro-particles (ellipses).

Considering uniform splitting, the reduction in the standard deviation implies that

each macro-particle has a fraction of the one of the initial cloud. This is 0,,, ~ 04,/ My»
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for the k-th macro-particle. Then, the constants Cy;,, Cs;, and Cs,, for each macro-particle
differ by the ones of the original cloud Cy, Cy and Cj for being evaluated at a small
distance of the center. Each macro-particle is located at 7,, where the distance to the
center of the total cloud is the small quantity |, — T,,| with k£ =1,..., M. According to
this Cy ~ Cyy, Cy ~ Csy), and C3 ~ (.

Additionally, the averaged coefficient of skewness v,, and 7,,,, and the Pearson’s
coefficient p, ., can be assumed to be on the same order than the one of the initial cloud,
provided that the gradients within the cloud are small which is needed for the Taylor
series to be in the asymptotic range. Therefore, The leading order terms in (3.17)—(3.19)

when splitting the initial cloud are

My o 3
Z wk@%k%,,kffipk ~ U3z, (ﬁ) ) (3.20a)
k=1 P
M, ” 3
Z wkolkCQkpxpupk’Yxpk ~ 0102796;, (M;p> s (320b)
k=1 p
L o g
Z wkCQk%pupkaipaupk ~ Oy, (M—fp) M{Zp. (3.20¢)
k=1 D P

The reader is referred to Ref. [3] for additional insights on the derivation SPARSE model.

Figure 3.1. Splitting of the initial cloud of point-particles at ¢ = 0 and a later time into
M, = 4 macro-particles for a one-dimensional case. Each of the four macro-particles are
described with SPARSE and later joined using the relations (3.21).
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3.3 Verification Tests

For verification purposes, we repeat the one-dimensional numerical tests with
constant and linear forcings as described in Ref. [57]. We consider an additional one-
dimensional test with a known empirical forcing that includes a more realistic dependence
of the forcing correction with respect to the relative velocity. We note that these tests are
intended to be numerical exercises to test consistency. They are not necessarily intended
to have physical meaning. The analytical flow velocities v and forcing functions f; are
selected arbitrarily to evaluate the accuracy of the SPARSE formulation with different
levels of complexity. The parameters of the resulting four test cases, including the carrier
phase velocity fields, Stokes numbers and correction factor functions are summarized in
Table 3.1.

All test cases are computed with a total number of particles of N, = 10,000 and
with initial conditions for position and velocity given according to the uniform density
distributions z,(0) ~ U(—1,1) and u,(0) ~ U(—5,15). Here, U denotes a uniform
distribution function and the arguments give the minimum and maximum value of the
distribution. PSIC simulations are conducted to obtain the reference solution. For each
test case, we compare the closed SPARSE method with the SPARSE method from [57]
which was closed a priori and only traces the averages of the particle cloud. We refer
to this model as ”"SPARSE a priori”. We did not use subdivisions of a global group of
particles into sub-clouds for this a priori closed model. For predictions with the closed
SPARSE formulation, however, we have subdivided into M, number of sub-clouds to

ensure accuracy and convergence. The global averages and variances of the combined set
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of sub-clouds are given by

MP
6= wy, (3.21a)
k=1
MP MP
W0 =Y w0y + > wi(m, —7) (0 — 0), (3.21b)
k=1 k=1

for arbitrary solution variables ¢, n and 6. The weight wy, of the k-th cloud represents
the number of particles per cloud. Here, we take it as the ratio between the number of
point-particles in the cloud k denoted by N, and the total number of particles so that
Wy = Ny, /Np.

SPARSE reduces the computational expense as compared to PSIC simulations when
tracing a cloud of point-particles as a point. The PSIC description in three-dimensions of a
non-isothermal cloud with N, particles requires the solution of 7N, equations according to
the system (3.3). For the same case, the closed SPARSE method with M, macro-particles
solves 35M,, equations as described by the system (3.10). Generally, M, < N, to reproduce
accurate mean and variances of the cloud and the computational savings is on the order
of 35M,/(7N,). In general, a measure of the reduction of degrees of freedom when using
SPARSE as compared to PSIC can be defined making use of the variables d, that takes the
values 1, 2 or 3 depending of the dimensions of the problem and e, that takes the value 0
for an isothermal simulation or 1 for a non-isothermal one. The ratio of the computational

cost of SPARSE as compared to a PSIC method is

—. 3.22
2d + ¢ N, ( )

p

. (3d+2d2—|—26+2de) M,

To determine the difference between PSIC and SPARSE methods, we normalize
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the Lo norm of the moment difference with the L., norm of the PSIC result as follows

() = “<.>SPARSE . (-)PSICHQ
1()PSIC)

(3.23)

The convergence rate of SPARSE is affected by the moment accuracy, and thus the inverse
square root of the sub-cloud sample size, as well as the second order Taylor truncation of

the forcing and the carrier phase field.

Table 3.1. Summary of the one-dimensional carrier flow velocity fields, u(z), Stokes
number, St, and forcing correction factor function, fi(u — u,) for four one-dimensional
test cases.

Case Number | u(z) E fi(u —uy)
1 10 10 U — Uy
2 10 10 |u — |
3 x+5+cos(m(x+5)) | 1/24 1
4 9 + cos(mz/10) 1/2 | 140.15(0.9487(Ju — u,|)) """

3.3.1 Linear Forcing in Constant Carrier Velocity Field, Case
1

In Case 1 the carrier phase velocity is taken constant u(x) = 10. The Stokes
number is set to St = 10, and the correction factor of the forcing is linearly dependent
on the relative velocity. In the constant carrier phase velocity field, the fluctuations of
the velocity field are zero. Thus the sub-cloud carrier phase fluctuations are zero, v’ = 0,
and the covariance terms involving the carrier phase variables in the SPARSE formulation
are zero also and cannot affect the (SPARSE) solution. The first derivative of the linear
correction factor function, fi(u — u,), with respect to the relative particle velocity is unity
and the second derivative is zero. Therefore, terms with a second derivative of the forcing
in (3.10b) and thus the the Taylor series expansion has no effect on the model accuracy
for this case. In the constant carrier flow velocity, the cloud accelerates towards this

velocity (Fig. 3.2a) and translates and widens correspondingly in the positive z-coordinate
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(Figs. 3.2a and 3.2b, respectively). The averages and variances of the particle position
and velocity determined with N, = 10* PSIC particles are in excellent comparison with a
SPARSE results that uses only M, = 16 clouds. Moreover, a comparison of the moment
differences (Fig. 3.2c) between the PSIC and SPARSE show a monotonic error reduction

with an increasing number of clouds, providing evidence of a consistent convergence.

3.3.2 Positive Linear Forcing in Constant Carrier Velocity
Field, Case 2

Case 2 differs from Case 1 only in the forcing function, which is is selected to
be proportional to the absolute value of the relative velocity. This results in a more
realistic positive (drag-like) forcing for negative relative velocities. The first and second
moment trends for Case 2 are generally similar to Case 1 as shown in Figures 3.2d and 3.2e.
Differences, such as the smaller position variance, ITDQ, for Case 2 as compared to Case
1, can be easily attributed to the changes in the positive forcing function, which moves
all particles in the positive x-coordinate. The "SPARSE a priori” method is showing
visible inaccuracies in the mean trace (Fig. 3.2d), whereas the SPARSE result compares
well with PSIC. This is related to the subdivisions into sub-clouds for the closed SPARSE
method. The "SPARSE a priori” method results are generated for a single global cloud
without subdivisions. The closed SPARSE method’s subdivision reduces the magnitude of
the truncated third order correlation terms per sub-cloud in (3.10) and thus improves the
accuracy of the global mean. Without the subdivision the third-order correlation leads to

the difference observed in the ”SPARSE a priori” model.

3.3.3 Constant Forcing in a Harmonically Varying Carrier
Velocity Field, Case 3

In a third one-dimensional test, Case 3, we take the correction factor constant (f; =
1) and specify the carrier phase velocity field according to a growing, oscillating function,

which lets us investigate the effect of the velocity variance in the carrier phase velocity
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Figure 3.2. Comparison of the first (first column) and second (second column) moment
results versus time between the closed SPARSE method with M,=16, SPARSE a priori,
and PSIC for the four, one-dimensional test cases, Case 1 (a,b), Case 2 (d,e), Case 3 (g,h)
and Case 4 (j, k) as summarized in Table 3.1. The third column of figures show the error,
¢, as defined in (3.23) versus the number of sub-divisions, M,”, for SPARSE.
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field. Specifically, in zeroth order models, the average flow field is poorly approximated
at the average particle location such that u(z,) ~ u(Z,), as discussed in Ref. [190]. In
the closed SPARSE formulation, these fields are determined according to the closure
model (3.11)—(3.14).

The particle velocity variance trend in Figure 3.2h shows a sharp initial drop in a
time interval that is on the order of the Stokes number, after which it gradually grows while
the particle phase is accelerated in the increasing carrier phase velocity field. At later times
(t > St), the variance trends also show a dominant harmonic mode of similar frequency
as the the oscillating carrier flow velocity. This oscillatory effect can also be observed in
the particle location variance. The average particle velocity trend in Figure 3.2g closely
follows the carrier flow velocity field at the average particle location because of the small
Stokes number and the inherent particles’ fast response to the carrier flow.

The results are in excellent agreement with the PSIC and the SPARSE a priori
results. The error trends in Figure 3.2i show a monotonic convergence, an indication that
the truncated terms in the Taylor expansion in (3.12)—(3.14) are smaller with an increased

number of sub-clouds (per expectation).

3.3.4 Empirically Forced Particle Tracers in a Harmonically
Varying Carrier Velocity Field, Case 4

In a final, most demanding, one-dimensional test, Case 4, we assume both the
forcing function and the velocity field to have non-trivial, non-linear dependencies (see

Table 3.1). The forcing is set by the well-known function of Schiller and Naumann ([191])
fi=1+0.15Re)%7, (3.24)

which is accurate for particle Reynolds numbers of Re, = Res|u — uy|d, < 10%. The

reference Reynolds number is set to Re,, = 10%, the Stokes number to St = 1/2, the relative
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Figure 3.3. Drag coefficient correction factor f; in terms of the particle Reynolds number
Re,, with the sign of the relative velocity.

particle density to p, = 10% and the non-dimensional particle diameter as d, = 9.478 x 1073
(according to (3.4)). For this case both the forcing and statistical truncation affect the
accuracy of the SPARSE solution.

Before we discuss the SPARSE results, we make a few remarks on the Schiller and
Naumann correction factor which is plotted versus the particle Reynolds number multiplied
by the sign of the relative velocity in Figure 3.3. Also plotted are its first two derivatives
with respect to the relative velocity a, = u —u,. The second derivative shows a singularity
in the zero limit of the particle Reynolds number. This singularity can negatively affect
accuracy through the terms that involves a second derivative in (3.10). This can occur if a
SPARSE cloud experiences a change from acceleration to deceleration along its trajectory.
To avoid the singularity we neglect the drag force correction effect and its derivatives by
setting f1 to unity for Re, < 0.1 leading to the Stokes drag.

The particle phase’s mean and variance trends are plotted in Figures 3.2j and 3.2k,
respectively, and show that the particle cloud accelerates initially over a time proportional
to the particle response time, until it reaches an oscillating plateau. Coinciding with this
acceleration, the particle velocity variance reduces from its initial value to an oscillating
trend with minima of approximately zero. The cloud size, proportional to the particle

location variances, changes with the changes in the average relative velocity uw — %,: the
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cloud grows when uw — %, > 0 and shrinks when ©w — u, < 0. In transitioning from
acceleration to deceleration, the front of the cloud decelerates faster than the tail, causing
a switch in the relative velocity of the particles in the front with respect to the ones in the
tail. Eventually, the cloud reaches a state in which the average relative velocity of the
cloud is zero and the deviation of the particle velocity experiences a minimum, associated
with a zero rate of change of the cloud size for that instant of time.

The SPARSE results are in excellent agreement with PSIC and SPARSE a priori,
verifying the closed SPARSE method. The error reduces once again monotonically with
an increase number of subdivisions of the cloud as shown in Figure 3.21. The convergence
rate is slightly smaller as compared to previous cases, as the Case 4 requires convergence
of both the truncated Taylor series terms and the truncated, higher-order moment terms,

where the accuracy for Case 1-3 is impacted by only one of the two truncations.

3.4 Two- and Three-Dimensional, One-Way Cou-
pled, Particle-Laden Flow Tests

3.4.1 Stagnation Flow

To test the two-dimensional closed SPARSE formulation, we first consider a cloud
traced in a carrier phase velocity field according to the analytical stagnation flow solution

of [176] for an inviscid irrotational flow, in the domain = € [—o0, 0] as follows

u= —kuz, (3.25a)

v = ky, (3.25b)

where y is the coordinate perpendicular to the flow direction, and k is constant set to
unity £ = 1. To initialize a cloud of particles at rest, we sample from a uniform probability
density distribution function with average location 7, = —1 and y,, = 0 and with deviations

in space given by o, = o, = 0.05. Because the particles are initialized at rest, the average
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and variance of the vertical and horizontal velocity components are zero, as well as any
other moment involving a velocity component. Particles in the cloud are forced according
to the Stokes drag corrected with the Schiller and Naumann correlation in (3.24). The
reference Reynolds number in (3.4) is set to Reo, = 10%. The Stokes number is selected to
be unity St =1 and the particle to fluid density ratio is set to p, = 10°.

A PSIC computation is performed for reference to determine the error of the closed
SPARSE formulation. Because of the sampling error, well known to be proportional to
1/ \/ﬁp, the moments of the sampled cloud differ from the uniform distribution used
for the seeding. The average location of the sampled initial condition is 7, = —0.998,
7, = 1.23 x 107 and the deviations o,, = 4.98 x 107> and o,, = 4.95 x 1072, The
correlation is % = 2.927 x 107° at time zero. The remainder of the moments are zero
because the cloud is at rest initially. To initialize a single SPARSE cloud (M, = 1) we
specify the initial condition according and consistently with the PSIC moments. With
this initial condition, inaccuracies in the evolution of the third moment mostly affect the
comparison between PSIC and closed SPARSE (see third bullet point in the Remarks on
pp. 7), not in the least because the Taylor expansion of the linear velocity field in the
stagnation flow case is exact and errors in the truncation of the Schiller and Naumann
function are relatively small.

The traces of PSIC particles (red dots) and SPARSE clouds (green ellipses) are
compared in Figure 3.4 for several instances of time. The radii of the ellipse and its
orientation are set according to the eigenvalues and eigenvectors of the covariance matrix
of the cloud’s location in z- and y-direction computed from the SPARSE variables. The
cloud compresses and expands in z- and y-direction, respectively, as it traverses the
stagnating velocity field. The evolution of the first two moments computed with both
approaches are depicted in Figure 3.5.

The trends of the z-location of the cloud can be divided into three stages (see [2]

for a detailed discussion). In a first stage, all the point-particles in the cloud accelerate
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Figure 3.4. Evolution of the particle cloud immersed in the stagnation flow for different
instants of time ¢ = [0, 0.5, 1.65, 2.2]. The red dots represent the point-particles inside the
cloud traced by a PSIC simulation and the green macro-particle is given by the SPARSE

method. The background is colored according to the modulus of the stagnation flow field

u=(u,v)".

with a positive relative velocity u; —u,, > 0 for 1 <4 < N, towards a linearly decreasing
carrier flow velocity. At some point the carrier flow velocity becomes less as compared to
the velocity of some of the particles in the cloud. In this second stage, the cloud changes
from having all the particles accelerating to all decelerating, producing a maximum in the
average particle velocity u, at approximately ¢ = 1 (see Figure 3.5a). Correspondingly,
the average horizontal particle location trend changes from a parabolic increase to a
linear increase. After all the particles have crossed the zero relative velocity, all particles
in the cloud decelerate towards the stagnation point, defining the third stage where 7,
describes a parabolic downward trend. The variances of the particle phase velocity in the
x-direction follow a similar trend of increase and decrease as shown in Figure 3.5¢ as its
average counterpart. The range of horizontal velocities grows as the cloud accelerates and
decreases in the third stage when decelerating, showing a maximum in the second stage.
The horizontal size of the particle o,, decreases from its initial value as the cloud reaches
the stagnation point. Second order correlations are depicted in Figures 3.5d-3.5f. The
three stages are once again observed.

Figures 3.4 and 3.5 show that closed SPARSE is accurate within 1.5% compared
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Figure 3.5. Averages (a) and deviations (b) of the particle phase for the closed SPARSE
method and the PSIC method.

to the PSIC results for a time period on the order of at least three characteristic time
scales. The relative error between the PSIC and SPARSE computations is related to the
truncation of the third moments in the SPARSE equations and the Taylor expansion of
the correction factor of the drag force f; given by (3.24). The matching between both
approaches leads to a relative error less than 1% for all moments except for the maximum
relative error of m which is 1.5%, which indicates that the most sensitive variable to
third order moments in the cloud is the correlation between the velocity components. The
maximum relative error of the averages is 0.3% for 7, and the one of the deviations is
0.8% for o,,. Because of the very good match for a single SPARSE cloud with a small

number of PSIC particles, we do not investigate the effect of splitting clouds for this case.

75



3.4.2 ABC flow

Closed SPARSE is tested in three-dimensions by tracing clouds in the three-
dimensional analytical velocity field of the so-called ABC flow. The ABC flow was
introduced by [192] as part of the family of Beltrami flows satisfying that V A u = u. Any

ABC flow is an exact steady solution of the Navier-Stokes equations

68_1; +u-Vu=-Vp+vViu+f, (3.26a)

V-u=0, (3.26D)

where without loss of generality the density is assumed to be the unity, p is the pressure,

v the dynamic viscosity and the forcing f is giving by

f=v(Asinz+ Ccosy, Bsinz+ Acosz, Csiny+ Bcosz), (3.27)

where for small Reynolds number, i.e., v > 1, the only stable solution is given by the

ABC flow field w = (u,v,w)" with

u= Asinz + Ccosy, (3.28a)
v = Bsinz + Acosz, (3.28b)
w = C'siny + Bcosx. (3.28c¢)

The ABC flow has been extensively used to study chaotic effects in turbulence ([193, 194])
and non-linear dynamics ([195, 196, 197]). Here, we use it to test SPARSE clouds immersed
in the ABC carrier phase flow. The carrier phase flow is independent of time, i.e., steady,
and is specified according to (27). In other words, this field is not used as an initial

condition to a time-dependent numerical prediction of the carrier-flow field.

We set the constants of the carrier flow field to A = v/3, B = /2 and C = 1. Ten
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thousand particles (N, = 10*) are released at rest with initial location 7, = Y, =72p = mand
standard deviations o,, = 0, = 0., = 0.08 according to a uniform distribution where all
variables are statistically independent at the initial time. The initial velocity averages and
variances are zero since all point-particles are at rest initially. The correction factor f; used
is taken according to (3.24) and the SPARSE simulation is computed with different levels of
splitting, i.e., the single cloud is uniformly divided into M, = [1, 2, 3, 4, 5, 6]> number of
smaller clouds along z,, y, and z, such that M, = M,” M,” M,” with M,” = M;* = M,".
Similar to the stagnation flow test case, the sampled initial condition for PSIC is used as
initial condition for the closed SPARSE simulation. The reference Reynolds number is set
to Reo, = 250 and the density ratio is p, = 10*. Four clouds with different Stokes numbers
St =[1, 2, 5, 10] are traced for 8 time units, during which the carrier flow was verified
with Navier-Stokes simulations (not shown here) to not have a significant time-dependent
change as compared to the initial velocity field. The non-dimensional particle diameters
according to (3.4) for the four different clouds simulated are d, = [2.68, 3.8, 6, 8.49] x 1072,
This leads to volume fractions of [0.91, 2.57, 10.15, 28.70](%) at the initial time. The
larger volume fractions are nonphysical because collisions can be expected to affect the
dynamics, but despite this the tests can still be used for purpose of assessing the formal,
numerical accuracy and correct implementation of the 3D SPARSE model against PSIC
as they both assume a non-collisional particle phase.

The average trajectories (solid black lines) of the four clouds are visualized in
Figures 3.6a—3.6d. Three-dimensional prolates, whose axes are scaled with the principle
strains, depict the cloud size. Single point-particles traced with the PSIC method are
depicted as points for different instances of time. The cloud trajectories are in large
determined by the the coherent structures of the ABC flow as visualized by the vorticity
contours in each plane of the boundaries of Figures 3.6a—3.6d. The x component of the
particle velocity initially increases as the particle cloud is accelerated by one of these

large flow structures. After the initial acceleration, the clouds are transported primarily
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in z-direction and its lateral motion is affected only in a secondary manner by smaller
vortices in the x — y and x — z planes. Therefore, the velocity and locations along x
are greater (see Figures 3.7a and 3.7b), whereas the average particle phase solutions in
the perpendicular directions remain on the same order of magnitude. As evidence of the
excellent match between PSIC and the closed SPARSE method we select the case for
St = 2 to show the results of all moments of the cloud in Figure 3.7. The averages of the
cloud location and velocity in Figures 3.7a and 3.7b show no visible difference between
both approaches. The particle phase variances are captured with the SPARSE method
as shown in Figures 3.7c and 3.7d. We note that at later time ¢ > 7, the variances show
visible errors that are on the order of percentages, an indication that at that instance
the truncation errors are no longer negligible. The terms that correlate sub-cloud scale
position and velocity fluctuations in multiple directions can be either positive or negative,
indicating the combined grow of the cloud in the mixed direction. These correlated second
moments combining position and velocity are shown in Figures 3.7e-3.7i and show also
relative error on the order of percentages for later times.

To evaluate the convergence of the SPARSE solution with an increase number of
clouds, we perform computations for each case and subdivide (or split) in each spatial
dimension up to six subdivisions, meaning a total of M, = 6% macro-particles for the
maximum level of splitting. The results in Figures 3.7a-3.7i correspond to the maximum
level of splitting. To obtain a measurement of the particle averages we use the modulus of
the average particle location and velocity and for a measure of the cloud’s deviation in

locations and velocities we use a geometrical average as follows

Xl =T+ T+ 2 (W] = /U + T+ W), (3.29)

Oy )1/3 , Ou, = (O'UPO'UPO'wp)l/B ) (3.29Db)

p (Ufﬂpo-ypo-zp
The convergence of those measurements is shown in Figure 3.8 according to the error
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(c) and

are depicted in Figures (a), (b) ,

]

[1, 2, 5, 10

an ABC flow for Stokes numbers St

the the SPARSE macro-particles are depicted with

(d) respectively. Along the trajectory,

prolates scaled by the principle strains given by the second moments and the point-particles

[0, 2.67, 5.33, 8].

The carrier flow is visualized with the vorticity component corresponding to each plane

superposed with velocity vector fields.

traced with PSIC are depicted as points for different instants of times ¢
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Figure 3.7. Results of the SPARSE method compared with PSIC computations of the
ABC flow for the average particle location (a), particle velocity (b), deviations in particle
position (c) and particle velocity (d) as well as cross-terms in particle location (e) and in
particle velocity (f) for St = 2.
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Figure 3.8. Convergence of the SPARSE method as compared with the PSIC approach
for the average modulus of the particle location and velocity and representative particle
deviation in position and velocity computed as the averages of the magnitudes in (3.29)
when splitting into M, = M,” M;? M,”* macro-particles where M,” = M;” = M,". The
error £(-) of the magnitudes shown in the legend (defined in (3.23)) shows a third order
convergence rate. The Figure includes the results for the four clouds represented in
Figure 3.6 with St =[1, 2, 5, 10].

defined in (3.23) where the colors of the plots match with the clouds as depicted in
Figure 3.6. These trends show the expected convergence of the SPARSE method when the
initial condition is subdivided in macro-particles as derived in Section 3.2.4. The errors
are generally smaller for clouds with a greater Stokes number. This is consistent with the
proportionality of the right hand side of the system of closed SPARSE equations (3.10)
with 1/St. The truncated terms are also proportional to 1/St and thus reduced with an
increase in St. A physics analogy that intuitively explains this error behavior, is that

clouds with more inertia are more reticent to deformation according to the fluid flow and

the eventual grow of high order moments (or errors) within the cloud.

3.4.3 Isotropic turbulence

To test the three-dimensional SPARSE formulation in a non-analytical, computed
and complex velocity field, we revisit the simulation of a decaying isotropic turbulence
([198, 199]) performed in Ref. [57]. The isotropic turbulence simulation is performed in

a cube with periodic boundary conditions on all sides with the validated discontinuous
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Galerkin code as described in Ref. [200] and references therein, where the initial condition
is adopted from Ref. [201].

Computations are performed on a domain (2 spanned by coordinates (z, vy, z), defin-
ing a cube of size 27 so that Q = [0, 27] x [0, 27] x [0, 27|. The reference Reynolds number
is Reo, = 2357 and the initial turbulent Mach number Ma, = 0.05 [201]. The physical
particles are initialized over a cubic domain of size [y = 0.1 stretching approximately 3
grid cells in each direction with N, = 27,000 total point-particles uniformly distributed in
each direction. The particles are released at rest and according to a one-way coupling,
assuming that the flow is dilute, the particles have small but not negligible inertia with a
Stokes number St = 0.5 but the flow is not perturbed by them. The temperature of all
point-particles is unity at t=0. The non-dimensional particle diameter is d, = 2 x 1073
and the ratio of densities p, = 10%. The drag and heat transfer correction factors for this

case are adopted from Refs. [48, 188] and read as

R Reld —0.43
p
fo =1+ 0.3Re%5Pro33, (3.30b)

The computed carrier phase velocities are used to determine the particle Reynolds as
defined in (3.4) and the particle Mach number M,, = [u—wu,|/+/T}, in the forcing correction
factors (3.30). The Prandtl number is Pr = 0.7 and the relative heat capacity is set to
unity ¢, = 1.

The result of the computations for a thousand macro-particles M, = 10*, uniformly
distributed in space is shown in Figure 3.9 for several instants of time where the 27,000
point-particles computed with the PSIC method are shown as points and the SPARSE
clouds as ellipsoids using the covariance matrix of the cloud location in three dimensions.

Contours of the turbulent kinetic energy k visualize the carrier phase’s turbulent structures
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on the boundaries of the cube. The particles initially at rest react to the carrier flow. As
compared to the fluid tracers (not shown), the inertial tracers have a smoother response.
After some time, the initial cube of particles is dispersed and the macro-particles are
advected and deformed according to the carrier flow.

The average particle location and velocity defined in (3.29a) computed with the
PSIC and SPARSE methods are compared in Figure 3.10a. The plots show that the mean
location and velocity initially change according to the dynamics of the eddies at the cloud
location. As the cloud spreads and the fluid velocity is sampled over a larger area, the
fluid velocity through the cloud approaches zero after an initial acceleration because the
turbulence is isotropic, making the average velocity in the box to evolve towards zero. The
deviations of the cloud’s location is plotted versus time in Figure 3.10b and show a general
increase in all three dimensions consistent with turbulent diffusion mechanisms [202]. The
particle standard deviations of the sub-cloud scale velocity increase from an initial rest
state in which the standard deviations are zero towards a trend that correlates with the
decaying carrier phase turbulence as seen in Figure 3.10d. The temperature average
is almost constant and the standard deviation of the temperature small as shown in
Figure 3.10c because the turbulence Mach number is low and the flow is near isothermal.
The standard deviation of the particle temperature of the cloud behaves similar to the
one of the particle velocity, starting from an initial value zero according to a uniform
temperature in the cloud to increase with an oscillating trend governed by the changes
in the carrier phase flow temperature. The results by PSIC and SPARSE methods are
in an excellent agreement for the average magnitudes of the particle cloud as well as for
its deviations. The rest of the second moments not shown in Figure 3.10 are also well
captured by the SPARSE method. The maximum discrepancy in the first two moments
when comparing SPARSE with PSIC show a relative error of 3% or smaller validating the
closed SPARSE tracer.

The computational efficiency of the SPARSE tracer versus the point particle tracer
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(e) (f)

Figure 3.9. Locations of the particles and macro-particles tracked with PSIC and
SPARSE methods for the isotropic decaying turbulence case at times (a) t = 0, (b) t = 0.8,
(c)t=1.6, (d) t =24, (e) t = 3.2 and (f) t = 4. The contours show the turbulent kinetic
energy in the boundaries of the domain. The point-particles are represented with points
and the macro-particles with ellipsoids.
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depends on a number of factors for this three-dimensional isotropic turbulence simulation.
Firstly, the number of ODEs of the SPARSE model as compared to PSIC is 1/0.1852 larger.
Despite this near factor five increased number of equations, SPARSE is computational far
more efficient, because secondly each macro-particle models hundreds of point particles
which leads to saving according to (3.22) and thirdly because SPARSE has a third order
convergence rate (Figure 3.11) of the statistics whereas PSIC converges according the
inverse of the square root of the number of samples, i.e., number of particles. To obtain
accurate estimates of the increased computational efficiency, a combination of these factors
determine the computational efficiency. For an accurate estimate of code, the algorithms
have to be optimized with various computer languages, which is beyond the scope of the

current paper.

3.5 Summary of results

A closed SPARSE tracer is developed that predicts the dynamics of the first two
statistical moments of groups of particles and traces them as a single point. This cloud
or macro-particle approach accounts for the effects of carrier phase velocity distribution
and the sub-cloud’s second moments of the particle phase and carrier phase. The tracer
combines a truncated Taylor expansion of the forcing correction factors around the cloud’s
mean relative velocity and a Reynolds decomposition of the ensemble averages of the
particle variables within the cloud. Using a Taylor expansion, averaging and truncation,
the extended SPARSE formulation provides a closed set of equations for the first two
moments of the particle cloud. The closure expresses unknown combined moments of both
phases in terms of those known moments of the disperse phase that are traced with the
SPARSE method. This closes the SPARSE tracer method that so far has been used with
an a priori closure.

The SPARSE method reduces the computational expense for the tracing of the first

85



x1071 x 1072
5.5 4 20 .
—e—|T,|, PSIC —e—o,,, PSIC
— < -|Z,|, SPARSE —<-0,,, SPARSE
5.4+ —=— [w,], PSIC —=—gq,, PSIC
—»—[a,|, SPARSE 13 151 _y 4, SPARSE
—*—0, PSIC
53¢ .
;) o L
5 2, 10
5.2+t
11 5
5.1+
5 0 0
1 2 3 4 0 1 2 3
t t
(a) (b)
x1072 %1072
1.1 . . . . . .
—e—T,, PSIC —=—oy, PSIC 10 - —e—o,,, PSIC  —p-0,, SPARSE
—4&-T,, SPARSE —v¥ -o07,, SPARSE -4 -0y, SPARSE ——o,,, PSIC
14 —=—0,,PSIC  —4&-0,, SPARSE
8 L
13
a -~ 6F
S il =
1 S g
12 4l
11 21
0.9 0 0
1 2 3 4 0 1 2 3
t t
(c) (d)

Figure 3.10. Statistics of the inertial particle cloud in the three-dimensional decaying
isotropic turbulence case computed with PSIC and SPARSE methods; (a) average module
of the particle cloud location and velocity, (b) spatial deviations of the particle cloud, (c)
temperature mean and deviation and (c) deviations of the particle cloud velocity.
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Figure 3.11. Convergence of the SPARSE method as compared with the PSIC approach
for the average modulus of the particle location and velocity and representative particle
deviation in position and velocity computed as the averages of the magnitudes in (3.29)
and average and standard deviation of the particle temperature.

two statistical moments of a cloud as compared to a simulation with the PSIC method by
reducing the required degrees of freedom. It improves upon the accuracy of commonly
used zeroth order Cloud-in-Cell models through a second order moment correction by
expanding the forcing function in the surroundings of the cloud. The error of the SPARSE
tracer is a function of the truncated terms of the Taylor expansions and the truncation of
higher-order statistical moments that are shown in test cases to converge with the size of
the macro-particle to the third power.

The closed SPARSE method is verified and validated against PSIC results for
analytical one-, two- and three-dimensional flows where the relative errors are either
negligible or small percentages in all the test cases.

The SPARSE tracer is accurate for finite time and will require merging and join of
macro-particles to adapt the number of macro-particles needed depending on the error of

the model as the simulation evolves.
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Chapter 4

SPARSE-R: A point-cloud tracer
with random forcing

4.1 Introduction

Here, the SPARSE-R method [4] is introduced, that accounts for both randomness
of the empirical or data—driven forcing functions and/or stochasticity of the subcloud
dynamics, extending the SPARSE model described in Chapter 3. We define the random
forcing function via series expansions involving proper sets of random as proposed in
Ref. [99] to trace randomly forced (rF) particle clouds. The SPARSE-R method is
designed to capture the first two moments of the particle phase by computing a closed
set of equations in Lagrangian form combining Taylor expansions around the average
magnitudes of the cloud with Reynolds averaging. The SPARSE-R method exhibits a
third order convergence rate with respect to the standard deviations of the particle phase
variables. By subdividing or splitting the particle cloud into subclouds (see Fig. 1.1 right)
the accuracy of the method is ensured. Using a mixture distribution (MD) of Gaussians,
SPARSE-R approximates higher order moments and enables the reconstruction of the
PDF of the of the underlying point—particle population. The computational savings as
compared with Monte Carlo (MC) simulations using the PSIC description (MC-PSIC), is
proportional to the number of point—clouds or subclouds divided by the total number of

point—particles. Because of the slow convergence of MC, the number of samples (point—
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particles) is several order of magnitudes larger than the number of subclouds needed for an
accurate SPARSE-R simulation, ensuring computational savings. The SPARSE-R method
computes the moments and the PDF of the particle phase in a closed and computationally
efficient manner that makes it scalable to complex flows. It combines the advantages of
the MoM in a closed form, reduction of the computational cost as compared to sampling
methods, with the advantages of PDF methods, full statistical description able to capture
rare events linked to fat-tailed PDFs in the solution. Considering the MC-PSIC simulations
the ground truth, we compare the SPARSE-R method with the MC-PSIC method in
a variety of verification tests on dilute, one—way coupled particle-laden flow problems
with prescribed velocity fields, and a numerical simulation of an isotropic turbulence flow,

where the gas is simulated with a compressible discontinuous Galerkin (DG) DNS solver.

4.2 SPARSE—R: point—cloud model with random
forcing

4.2.1 Point—particle model

The non—dimensional governing point—particle equations for a small spherical

particle immersed in a carrier flow where the inertial effects are dominant is given by

dz,

5 = U (4.1a)
du f

dTp 207« f2

— = = (T —-T 4.1
i " 3prot LT (4-1c)

where x,, u, and T, are the non-dimensional particle location, velocity and temperature
and uw and 7" are the non—dimensional velocity and temperature of the carrier flow evaluated
at the particle location. The Prandtl number Pr = ¢/ k is defined with the dimensional

dynamic viscosity ji, specific heat capacity ¢ and conductivity k of the flow. The Stokes
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number St = 7, /7y is defined with the characteristic time of the particles 7, = ﬁch; / (1811)
where p, and Jp are the dimensional density and diameter of the particles and 75 = Loo/Us
is the characteristic time of the flow defined with a reference length and velocity. Making
use of reference values denoted with subscript infinite, we define the reference Prandtl
number Pry, = flsoCoo/ koo and Reynolds number Res, = pooUso Lo/ oo, ONE can rewrite

the non—dimensional numbers in terms of the reference values

d2
L% p_ pp KE (4.2)
18u k

Re, = Reoo£|u —u,ld,, St=Re
I

using the non-dimensional variables p = §/pos, ft = ji/fice, k = k/koo, ¢ = ¢/Coo,
Pp = Pp/Psos Cp = Cy/Coo and, d, = d,/Lo. The specific heat ratio of the two phases is
defined as ¢, = ¢, /c.

The correction factors of exchanged momentum and energy are given by the
functions f; and fy; which correct the analytical laminar solution for the drag coefficient

Cp and Nusselt number Nu (based on the particle diameter) as

24
CD == R—epfl, (43&)
Nu = 2fs. (4.3b)

These functions, are also denoted the forcing functions, typically correct for higher particle

Reynolds and Mach numbers and/or other flow parameters [48, 49, 50, 51, 52, 53, 54].

4.2.2 Point—cloud SPARSE model

Following the SPARSE approach as described in Refs. [57, 58, 3|, we model a cloud
of particles with the MoM using a Reynolds decomposition of any instantaneous scalar

particle variable ¢ into its average and fluctuating component according to ¢ = ¢ + ¢/,
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where the average is defined by its ensemble average

_ 1 N

for N, point-particles within a cloud. Using the Reynolds decomposition for the variables
of the two phases including the forcing functions f; and fs, the system of equations for
the kinematics, dynamics and thermodynamics of a stochastic cloud of point—particles can

be written as

dz, dw; _ ’
dt + E — UP + up7 (45&)
dw, du] 1 _ _
W W L) - (1.50)
dt dt
dT, 4T, 2

@ T @ = aprg 2t ) THT =T, ~T), (4.5¢)

that after manipulation and averaging leads to the equations for the first two moments of the

particle phase

dgf L=y (4.6a)
du, - _
St gfl = f1 (@ —Up,) + fluj - flu,, (4.6b)
3PrStdT, -
oo, ar — 12T = To) + BT = T, (4.6¢)
% (“”;’z‘%a) = Ty ;U (4.6d)
St— ( uy,, p]) f1 (u uy, .+ uiug,, — 2up, ) + fiup, < upj) + flul (u —Tp,), (4.6e)
ar? e
3];“5’5 =T, (T~ T)) + 5T, (T~ T,), (460)
Cr t
dt ( ) Up, P] {fl (az u — LUy ) + fiz), ( EPj)} 5 (4.6g)
d L
() =iy + 3Pr5t T (5,7 = @, T3) + Ty, (T = T)] (4.6h)
d
— f uT’—u’ T/ +f/T/(ﬂi_ﬂi)
dt ( ) 20[ ' ( P) 1 g ] (4.61)

+3pogy 2 (40T~ 0.T7) + Ty, (T=Ty)
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where index notation with ¢+ = 1,2,3 and j = 1,2,3 is used to present a compact
version of the equations. Note that for any two vectorial variables i and &, the term
% is a component of a three by three tensor, whereas 7, is a the component of a three-
dimensional vector. For the general three-dimensional case we have x, = (x, y, 2,) " and
u, = (u, v, w,)". For a combined moment of a scalar ¢ and a vectorial magnitude 7, the
term gb’_n; represent the i—th component of a vector. Note that the system of equations (4.6)
truncates moments that are greater than third order while the equations for the first
moments (4.6a)—(4.6¢) are not truncated. In the second moment equations (4.6d)—(4.61)

high—order terms are neglected.

4.2.3 Random forcing SPARSE—R model

The dependencies of both correction functions f; and f, correct for physics that
deviate from the case of creeping flow over a spherical particle. In the PSIC model,
those functions have generally been used as exact force models that depend only on the
particle phase and the carrier phase. In practice, however, they can be known only within
confidence intervals as they are approximate curve fits to experimental and computational
data that have sources of systematic uncertainty or epistemic uncertainty. Alternatively,
the forcing function can be interpreted in the context of stochastic models to account for
stochasticity of subgrid scales. In other words, the function may be used to account for
aleatoricism in the particle forcing.

To model confidence intervals, we follow Refs. [57, 58, 3|, and consider the functions
f1 and f5 to be dependent on the relative velocity @ = u — u,, and the random coefficients
o; and §; with 2 = 1,..., N where N is the number of modes considered. First proposed

in Ref. [99] and then later also used in Ref. [6], the correction functions with quantified
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uncertainty can be described with a series expansion as

= Zaﬂ/h'(a) ~ Zaiwi(a)a fa(a) = Zﬂi@(a) ~ Zﬁi@(a)a (4.7)

where the variables «; and [3; are correlated or uncorrelated random coefficients that
quantify the uncertainty in the forcing defined by the joint PDF fog(cu, ..., an, B, ..., On)
and the orthogonal basis functions ¢; and ;. We assume f; and f; to have compact
support on @ € [@pin, Amaz]- We take both 1; and (; as a Chebyshev polynomial of the
first kind. Because the forcing function is approximated by a polynomial, it can only be
accurate within the interval of the independent variable that the polynomial depends on,
i.e., a. In SPARSE the forcing function and its derivative are evaluated only at the mean
relative velocity @. So, if the SPARSE solution predicts a mean relative velocity outside
of the accurate polynomial range, then the forcing function will need to be approximated
within a new interval.

Using (4.7) and decomposing the stochastic variables in average plus fluctuation,

the mean and variance of the forcing functions are given by

Ji= Zaﬂ/fi (a), (4.8a)

2 N N-1)/2
afl = (Zoﬂb@ > :Zla;%pi? ; 2a (@) Y; (a), (4.8b)

and equivalently for f;. The variance of the forcing function is then described by the
second moments of the coefficients and captures the uncertainty in the forcing functions
by combining N modes. As an example consider an empirical forcing that is based on the

Schiller and Naumann (SN) correlation [203] given by

g1 =1+0.15Re) " (4.9)
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In Figure 4.1a, this forcing is plotted with an unknown confidence interval modeled by
the first five Chebyshev modes 11, ...,%5 where the random coefficients «;, ..., a5 are
considered uncorrelated. Two standard deviation bounds are depicted when considering
the standard deviation of all modes zero except for the modes one ;.9 = 0, third o;x3 = 0
and fifth 0,45 = 0 in dashed, dash-dotted and dotted lines respectively. The number
of random modes is chosen such that the series expansion can accurately approximate
complex dependencies of the confident interval with the relative velocity. Considering only
the first mode to be random (i.e., only 4 is given by a PDF and the rest as, ..., ay are
deterministic) the standard deviation oy, does not change with respect to the relative
velocity (Fig. 4.1a dashed line). By combining modes, more complex functions and
confidence interval can be approximated by (4.8b). In Figure 4.1b (dashed line), we show
a combination of only two modes that localizes a particle Reynolds number where the
forcing is defined with a smaller confidence interval.

We consider a representation of the random function by a single mode as

fila) = agi(a), f2(a) = Bga(a), (4.10)

where g; and gy carry the dependencies with the relative velocity and the random coefficients
are reduced to o and 3 with given PDFs f,(«) and fz(5). For the Schiller and Naumann
correlation this yields f; = a(1+0.15Re)%") which corresponds to the dash-dotted line in
Figure 4.1b. This confidence interval for a single mode representation with the Reynolds
number is consistent with trends reported in literature (see for example [204]).

The average of the random coefficients, o and f3, in (4.10) is unity, @ = 8 = 1. The
second moments of the coefficients F, W and o/f’ are the measures that quantify the

uncertainty in this forcing function. The second moments propagate non-linearly into the

solution of the SPARSE-R cloud. For a deterministic forcing the moments are zero.
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——Schiller and Naumann, N =5 — —-Schiller and Naumann, N =5, 0,,., =0
[ Sp— Schiller and Naumann, (1 + 0.15Ref%7)

Figure 4.1. Two bandwidth representation of the random forcing function f; when
the SN correlation is fitted with the first five modes; (a) considering random only in the
first (dashed line), third (dash—dotted line) and fifth (dotted line) modes; (b) combining
the random modes first and second (dashed line) and taking f; = a(1 + 0.15Re)%7)
(dash-dotted line). The particle Reynolds number is Re, = Re|a|d, according to (4.2)
where constant density and viscosity are considered.

4.2.4 Closure model

The SPARSE-R equations in (4.6) are not yet closed for terms that are on the
order of fluctuations squared and that are function of a combination of particle phase and
flow variables, and correction functions. To close (4.6), we follow the procedure in Ref. [3].
The carrier flow velocity u and temperature T fields are Taylor expanded around the
average particle location truncating terms of order greater than two. By using a Taylor
expansion, we obtain an estimate of the carrier flow field at the particle locations within
the cloud region and can be interpreted as interpolation within the cloud region. The
forcing functions f; and fy are also expanded around the average values of the relative
velocity and random coefficients of the particle cloud. For completeness, we review the
closure approach and discuss it for random forcing.

Starting with the interpolation of the mean carrier flow velocity and temperature,

we Taylor expand at the average particle location of the cloud. Let ¢ be a flow variable
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(for example, a velocity component u; or the temperature 7'), then

T T (S L T N —,
VSR (a:p) + T, 8_:162 . + §xmmpj 83320%- . = ¢ (:Bp) + E:Epifﬂpj 8%8% . )

(4.11)

which relates the solution evaluated at the averaged cloud’s location, the second derivative
of the carrier phase at the averaged cloud’s location and the covariances of the locations
of the particle cloud M which are governed by equation (4.6d).

To close second moments, we proceed similarly by Taylor expanding the flow
variables. Depending on the type of term to close, the Taylor expansion has to be applied
once or twice to find a closure. If the term involves two variables different from the particle
phase variables (particle position, velocity or temperature), it has to be applied twice
whereas if it contains a combination of a flow variable or forcing function with a particle
variable, it has to be applied only once. For example, for a term involving a generic particle

variable &, and carrier phase variable 7, it follows that

_ ﬁ> _g o
PPy X
=, 0x;

where &, can be any of the components of the particle location x,, velocity w, or temperature

, (4.12)

Lp

o =& =1) =g, (77 (Z,) + ),

8:171-

T, and 7 can be any component of the flow field u or temperature 7. A second moment,
however, that combines two flow variables £ and 1 (components of the flow field or

temperature), has to be Taylor expand twice to close it as follows
2\ on

ys 5
=, L

where the approximation in (4.12) has been applied first to expand 7 and then to &.

n

z, 8;1:1

/ - / 85 ol 85
~ Ty, (5(3310) + xpj 6_% - Oz

=2 x
Pitrj 9.
z, Ox;

Clol o Elol
' = &'z,

9
Tp

8:61'

Tp

(4.13)
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To account for uncertainties in the forcing functions f; and f; we expand as follows

fi~ f|w+o/% SRR [ B o'a; O°h @5 _O*h
! taa@ 0a |gq ' Ouilgg 2 0% |54 2 0ada;|s 4 2 0Oa;0aj|,
1 891 1 anl
— f (a.@) + ~o/d “Ndd — d . — dd Y
h(@a) +5da 2, a,a+ 5 iy — i, “J“pi+“p7;“pj) fasday |,
(4.14)

where f; depends linearly on the random coefficient o according to (4.10) and the identity

aja; = upu — u;u;j — wjuy, + Upp U has been used. Note that, the procedure is easily
extendable to N randomly weighted modes according to (4.7) by adding the partials

of the functions v; and (;. It can also applied to determine the correction function fs.

The resulting expression in (4.14) contains the terms ugu;?j and wju’; that need to be
closed using the relations (4.12) and (4.13), respectively. The terms that correlate random
coefficients and particle variables quantify epistemic uncertainty. In the limit that the
standard deviations of the PDF's of the random coefficients go to zero, the random and
deterministic forcing functions coincide and SPARSE-R model simplifies to SPARSE.
For the second moments involving the forcing functions with any particle variable

&p, the closure is applied as follows

T o (T 0 0 _
%f{:g’(fl_fl)%}/”(fl(a’“”o"a—g e _f1>
wa tlaa (4.15)
g (@ a =7 _a) 9f
= aGe (@ a)+ ( pli = p“Pi) 8@1. R

where the identities df;/0a = g1, according to (4.10), and a; = u; — u,, have been used.
The resulting expression in (4.15) contains the unclosed term E that can be closed using
the relation (4.12). For the term o/¢, however (combinations of particle variables with
random coefficients), we can not apply the closure procedure because the gradients of

the random coefficients within the cloud are unknown, preventing its Taylor expansion.
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Rather, we use the MoM to derive moment equations that govern these terms

% (O‘%) =ty (4.16a)
d _
St& (a/u]/%) =f, <Oz/u;» — aluéi) +olf] (m . ﬂpz‘) 7 (4.16D)
P 7 i — J—
3 22515% (a/TZQ) = fo (T — a/TIQ) +a'f} (T — Tp) , (4.16¢)

where a can also be substituted by (. If we considered an expansion with N modes,
relations (4.16) have to be solved for each of the N random coefficients for T, 5 Qi
and o;T) withi=1,..., N.

In equations (4.16), terms combining the random coefficients and the forcing

functions are expressed as

—3 — ——\ 0
o fl = o'%g (@, @) + (a/ug - o/u;%) aiz 1 _ (4.17a)
—r T (G o (7 ) O
o fh~ o/ fgs (5,&) + (aui—aum) P , (4.17b)
[ 375

following a similar Taylor expansion. Finally, the only remaining terms that require closure
in (4.17) combine the random coefficients with the fluid phase (as for example o/u}). Those
terms, generally expressed as a/n’ where « is exchangeable with § and n is any scalar flow

variable, close as follows

—— On
o~ o , 4.18
o'’ ~ o'z, Bz, . (4.18)

that relates again to the system of equations (4.16).
For closure of correlations of the forcing functions and a flow variable, the procedure

has to be applied twice. Generalizing, n for any flow variable (velocity components or
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temperature), it follows that

—— ——— 01
n/f{ ~ :C;,Zf{ o

/ ﬁ) afl

~ ] — — / -
~ [a z,.91 (@, @) + (:L"piuj Ty Up —&Lj

on
M] S| (4.19)

where the term zj, u’ is closed using the relation (4.12) and o/}, is closed with (4.16a).

a,a aa

Equations (4.11)—(4.19) represent the closed form of the randomly forced SPARSE-
R model. Its solution depends on inputs of the averages of the carrier flow fields and
forcing functions. The accuracy of the SPARSE was shown to be of third order for the
deterministic model consistent with the order of the truncations of the Taylor series and
moment equations. Similarly here, the accuracy of the randomly forced model depends
on: (a) the truncation of terms on the order of statistical correlations of order greater
than two and (b) the truncation of the Taylor series terms greater than second order.
The SPARSE-R method is closed and thus predictive. It converges with a third order
expected rate with the size of the initial particle cloud given by the standard deviations in
phase space consequently with the retained terms in the SPARSE-R formulation. The
analysis of the leading order truncated terms in SPARSE-R is added in the Appendix C

for completeness.

4.2.5 Numerical implementation

Tracing

The numerical solution of the governing system of equations (4.6) and (4.11)-(4.19)
requires four stages including (1) locating the host grid or carrier flow domain of the
point—cloud, (2) interpolating the flow variable and gradients at the point—cloud’s location
(because this is a point—cloud, there is only one location, that happens to be the mean
location), (3) determining the forcing gradients at the cloud’s mean location and (4)
integrating in time. The first stage requires algorithms that are similar to the PSIC

method. We locate host cell as described in Ref. [71] if needed. For the second stage, we
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either use analytical solutions or interpolations [71, 183] that are consistent with the carrier
phase solver. A third order total variation diminishing (TVD) Runge-Kutta scheme [175]
is used for time integration.

For the third (interpolation) stage we need to compute the first and second deriva-
tives of the forcing functions f; and f; with respect to the relative velocity components and
similarly the first and second derivatives of the carrier flow velocity and temperature with
respect to space. The derivatives of an analytical forcing function can be precomputed
and evaluated at the average values during the time integration in the fourth stage. A
polynomial approximation of the forcing function requires the numerical evaluation of the
derivative. At each location, this derivative is interpolated at the required average values
during the time integration. In a similar fashion, for analytically prescribed carrier phase
flows, the derivatives are precomputed analytically and evaluated at the average cloud’s
location during the time integration. If the carrier phase is computed numerically, the
derivatives of velocity and temperature field with respect to space are numerically deter-
mined and interpolated at the average cloud’s location during the fourth (time integration)

stage.
Splitting and convergence

To compare point—cloud tracer results with MC-PSIC results in the tests below, we
define the initial state of a point—particle cloud by its first two moments computed from
the point—particles contained in the cloud. As an example, for any two particle variables

&p and 1, a first moment 7, and second moment &l 1, are computed as

N,
1 P
N = N, Z Mpis (4.20a)
&=+ Z & = &) (Mo = T1y) (4.20D)
p
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for a cloud containing N, point-particles.

Computing SPARSE-R

Joining

Splitting

Figure 4.2. Tlustration of a cloud of N, = 10 point-particles represented by its point—
particles depicted as points and subclouds (point—clouds) as ellipses at the initial time

= 0 and a later time ¢ > 0. The initial cloud is split into M, subclouds whose moments
are computed from the PSIC particles according to the splitting algorithm [4].

SPARSE was shown to be third—order accurate for a union of computational clouds
with respect to the standard deviations in each independent (physical and phase space)
dimension in Ref. [3]. To improve accuracy, a splitting algorithm was proposed that
converges the solution according to this rate by reducing the cloud’s sizing and increasing
the number of clouds along each independent dimension. To split, we divide the cloud
of point—particles at the initial time into a union of uniform sets. For example for a
one-dimensional case we divide the cloud in o — z,, — u,,, which leads to M,, = M[?‘Mpx * M,”
subclouds with M, M,* and M,? the number of divisions along «, z, and u, respectively.
Considering uniform splitting along all dimensions, in the general three-dimensional non—
isothermal case one has M, = MNT4¢ where N is the number of modes considered in the
random forcing, d = 1, 2, 3 is the dimension of the problem and e = 1 for non—isothermal

and e = 0 for isothermal flow. We identify M as the level of splitting of the cloud. The
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splitting algorithm is schematically illustrated in Figure 4.2, which visualizes the sampling
of a group of point particles and its division into M, = 1, M,, = 2% and M, = 3% subclouds,
corresponding to the levels of splitting M = [1, 2, 3], in the three dimensional space
spanned by the particle’s coordinate z,, its velocity u, and the random forcing coefficient
a. Once the cloud is split, the moments of each subcloud are computed using the relations
in (4.20). For further details of the algorithm, we refer to [3, 4].

The moments of the cloud composed by the total number of point—particles, i.e.,

without splitting, are post-processed by joining each subcloud k, with £ =1,..., M, as

follows
M,
¢ = Z Wiy, (4.21a)
", ,
& = Z Wiy, + Z wi (& — &) (T — 1), (4.21b)
k=1 k=1

for any three solution variables ¢, n and £&. We will refer to this as the Cumulative Cloud
throughout the paper, i.e., a multivariate Gaussian description of the accumulation of the
subclouds where the moments of each of them have been computed with SPARSE-R and
then joined with (4.21). The moments of the Cumulative Cloud converge to the Monte
Carlo results using (4.20) with the level of splitting. The relations (4.21) are exact and do

not add any approximation error to the computation.

The Cumulative Cloud can be visualized as an ellipsoid or a prolate spheroid for
any three variables of the particle phase and ellipse for any two variables by scaling the
principle axis, in the directions of the eigenvectors of the covariance matrix, with the

eigenvalues of the covariance matrix in the N + d 4 e dimensional space. For example, for
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three particle variables ¢, £ and 7, one has the following covariance matrices

e 7 TE 7 & oy
o n n
Koeyn = | ¢/ &% |, Kge= — | Ben= — | Ba=|__
o o T ¢ T & o
n &
(4.22)

Note that this representation may be also performed for a set of samples of the variables
¢, £ and 7 in a discrete manner from MC-PSIC results.
In approximation, moments greater than second of the Cumulative Cloud can also

be computed as follows

G = wi (6 — ) (& —€) T — ). (4.23)

which is the equivalent of a Monte Carlo sampling of point—particles, but for the SPARSE—
R subclouds. In (4.23) ¢, £ and 7 are the average values of the Cumulative Cloud and k is
an index that loops over all subclouds. The PDF of the Cumulative Cloud is non—Gaussian
and can be reconstructed using a mixture distribution by adding weighted Gaussians that
are defined with the two moments of each subcloud for a given level of splitting. The PDF

of any particle variable ¢ of a cloud split into M, subclouds can be computed as

fo(9) = Z —exp (—@) : (4.24)
k=1 20,

Error measurement

The computational savings of using SPARSE-R can be estimated by determining
the reduction of degrees of freedom as compared with MC-PSIC, i.e., the number of

variables to solve along time. The ratio of computational cost of SPARSE-R as compared
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to a MC-PSIC when considering N modes to define the forcing functions is

(4.25)

T =

2N (d+e(d+ 1)) +2d* + 3d + 2e (d + 1) (Mp)‘

2d + e N,

p

The factor multiplying M, /N, in the above expression is equal to 7 for a three-dimensional
d = 3 non—isothermal e = 1 simulation or smaller if simplified to less dimensions or
isothermal when considering a single mode N = 1. Generally, we find that N, > M, to
reproduce accurate results by the SPARSE-R method, ensuring computational savings.

To measure the errors of the SPARSE-R method, we normalize the Ly norm of the
difference between the MC-PSIC and SPARSE-R results of a given variable with the L
norm of the MC-PSIC result as follows

”(_)SPARSE*R _ (_)MC*PSICH?

=) = H(.)l\/IC—PSIC“Oo (4.26)

We also define averaged magnitudes of the first and second moments g1 and po respectively
that for a SPARSE-R computation with N,q number of variables ¢; with j =1,..., Nya,

are given by

Nyar 1/2 ¢32 e /]VU‘IT ¢3
-2 . .
M1 = (Z ¢j> 5 M2 = : : 5 (4.27)
1 N’UU/F te N’UGT

that combined with (4.26) provides an error measure for all N, dependent solution

variables in (4.6).
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4.3 Numerical experiments
4.3.1 One—dimensional sinusoidal velocity field

To test the accuracy of SPARSE-R as compared to MC-PSIC, we consider a cloud
of point—particles carried by an isothermal one-dimensional sinusoidal flow velocity field

given by
1.
u(z) =1+ 5 Sin (2x), (4.28)

where the forcing f; is defined according to (4.10) and ¢; according to the the Schiller and

Naumann correlation such that
fi=a(1+0.15Re)%7). (4.29)

This test is not necessarily physical, but the sinusoidal velocity field is typical and
representative of a modal (Fourier) analysis in chaotic flows. The simple one-dimensional
flow enables testing and verification of accuracy. Moreover, it provides fundamental insights
into the behavior of cloud dynamics that can serve as a reference for physically relevant
simulations.

The initial condition is set according to a uniform distribution 4 to sample the

initial locations x, and velocities w,, such that

IPO ~U [l‘p(]min’ Ip()max] ’ up(] ~U [upOmin’ up(]ma:p] : (430)
We test the formulation for both, dF and rF particles with « = 1 and
a~U [amina amaw] ) (431)
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respectively. The uniform distributions & are defined by the limit values a,,,;, and a4z,
which are directly related to its average and standard deviation as ay,;, = a — V30, and
Omae = @ + V30, with @ = 1 and o, = 0.3. We also initialize the particle locations and
velocities, according to the uniform distributions (4.30), with T, = %,, = 0, Op,, = 0.2
and o,, = 0.1. Initially, the variables a, z,, and u,, are statistically independent and

uncorrelated and therefore, the following moments are zero

=z u =0. (4.32)

The particle response time is set to St = 0.5, i.e., the particle time scale is similar to
the carrier flow convective time scale, such that the inertial effects are significant and of
influence to test. We also set the reference Reynolds number to Res, = 10* so that the
relative particle Reynolds number is greater than unity and the forcing of the particles lies
in a regime beyond the Stokes drag. The non-dimensional particle density is p, = 250 and
the non-dimensional particle diameter d, = 2 x 1073.

To develop a general understanding of the effect of the deterministic and random
forcing functions on the solution behavior of clouds of particles in a sinusoidal carrier field,
we first discuss the traces of three groups of PSIC point-—particles that are computed with
a deterministic forcing function according to three values of «, including a,,in, Qmas, and
A = (Qmin + Qmaz)/2 = 1. We will refer to these deterministic forced cloud traces as dF
clouds throughout the rest of the paper. The groups for each « contain N, = 10° particles
to ensure a converged MC moment error that scales according to 1/4/N,,.

The locations of the point—particles so computed are visualized in Fig. 4.3a for
different instants of time in the phase space x, — u,. Initially, all clouds coincide. As
time progresses, each group accelerates in positive direction because the carrier velocity
(black line) is positive, which combined with negligible particle velocities at early times

yields a positive relative particle velocity. The relative velocity has the same sign as the
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acceleration, and thus is positive at each particle location also. Each point—particle cloud
accelerates proportionally to the magnitude of its forcing coefficient, a. For @ — oo the
particle time response St/a — 0 and the trajectory tends to that of a particle without
inertia (a tracer). For small o, the time response increases. In the limit @ — 0, the time
response tends to infinity St/a — oo and its movement is asymptotically zero. At later
times, the clouds accelerate and decelerate successively around the average unity value of
the carrier phase velocity. Because of its inertia, each particle’s trajectory has a phase delay
and decrease of amplitude as compared to those of the carrier flow velocity field (4.28).
Initially uniformly distributed around the average location (z,, u,,) = (0,0), the particle
clouds stretch and rotate in phase space while they are simultaneously advected by the
flow.

A more detailed understanding of the groups’ rotation and deformation characteris-
tics can be obtained by the four quadrant depiction of the three tracers (first three rows) in
time (four columns) in Fig. 4.3b. In each quadrant the particles are colored according to a
shade of a color scheme. Moreover, the mean location, the principle stretching and rotation
of the clouds in each quadrant and of a Cumulative Cloud can be represented by the mean
location, the principle axes and the rotation of an ellipse, based on the average (T, u,)
and the eigenvalues and eigenvectors of the covariance matrix Kj,,,. These moments
are of course precisely the moments that are modeled by SPARSE and the MC-PSIC
moment results can thus be used for comparison and assessment of the predictive accuracy
of SPARSE. The ellipses and groups of point—particles show that particles in different
quadrants align naturally in phase space over a time interval that is on the order of St/«
as the velocities of all particles are damped towards the carrier velocity. The particle
clouds are straining in the x, — u, plane consistently with the velocity gradient of the
carrier phase and the particles’ inertia. At the initial time this velocity gradient is positive
and thus the particle cloud widens in the physical space. A particle group with a smaller

response time, St/« stretches more along the velocity gradient. In phase space the cloud
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compresses as it settles to the carrier velocity.

Figure 4.3. Particle phase solution of the sinusoidal one-dimensional test case for: (a) dF
particle clouds for three deterministic values of the random coefficient a,,;,, @ and @4,
for four instants of time computed with MC-PSIC divided in quadrants by colors; (b)
point—particle clouds at four instants of time for the cases in (a) and (c) in zoomed z, — u,
axis divided in quadrants by colors and with ellipses representing the total set of particles
(second row) or subsets (first row); (c¢) rF cloud considering a ~ U for four instants of
time with coloring according to quadrants in x, — u,, i.e., each quadrant has a distribution
of values of «; and (d) SPARSE-R solution with M = 2 of the same case than in (c) with
ellipses with continuous border line for the lower range of o and dot-dashed border line
for the larger range of a. The times in (a), (c¢) and (d) are ¢t = [0, 0.35, 1.75, 2.98] and
for (b) t = [0, 0.1, 0.35, 1.75]. The flow is depicted with a black continuous line in (a),
(¢) and (d). For a better visualization, 500 point—particles are depicted from the N, = 10°
used for the computations.

A randomly forced cloud tracer with @ ~ U does not concentrate along a line like
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the dF cloud, but distributes over a region according to the probability of the forcing
coefficient and of the associated deterministic tracers (Fig. 4.3c). This distribution is
a measure of the uncertainty in the solution. The footprint of the distributed particles
in phase space for an rF cloud is the confidence interval that concisely visualizes this
uncertainty. The rF cloud’s dispersion can be understood qualitatively as a summation of
the dF tracers that are determined with forcing coefficients that randomly span the range
of the PDF forcing coefficient. Roughly this can be seen as a summation of the locations
of the dF clouds in rows 1 to 3 in Fig. 4.3b. In addition to this increased dispersion, the
distributions of rF clouds in each quadrant overlap and can thus be said to be more mixed
at later times. The driving mechanisms for this enhanced mixing and increase in the
associated confidence intervals is the virtual stress correlation between the random forcing
and the flow field fluctuations that appears in the SPARSE-R formulation and that drives
the uncertainty in the rF cloud’s solution. The dF cloud that is forced according to the
average value of & compares closely with the mean solution of a rF cloud (compare second
and fourth row in Fig. 4.3b). A comparison of the second moments between the rF cases
and dF cases shows that with an increased randomness interval [pnin, Qmaz) in the forcing
function, the confidence interval as measured by second moments in the particle solution
increases. The randomness is directly proportional to the range of particle response times
(or inertia) as defined by St/a. A larger response time range naturally yields an increased
dispersion as measured by the second moments.

Using the SPARSE-R point—cloud tracer we can compute the dispersion of the
clouds of point—particles depicted in Figs. 4.3a— 4.3c at a reduced computational cost.
Splitting the cloud in quadrants so that M = 2, i.e., two divisions along «, z, and u,,
we specify the first two moments of each subdivision (subset of point—particles) as initial
conditions for the point—cloud simulation (see Fig. 4.2). The resulting phase space depicted
with an ellipse for each subcloud is represented in Fig 4.3d for different instants of time.

The solution in each quadrant is now represented by two ellipses along the a dimension
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that coincide initially in phase space. At later times the two ellipses are located at different
positions and are deformed differently because they are forced differently. The point clouds
show the same trends in terms of advection, straining and rotation as compared to the

groups of MC-PSIC particles.

Figure 4.4. Particle phase solution of the sinusoidal one-dimensional test case for the rF
(green) and dF (red) computed with SPARSE-R with M = 7 as ellipses for the Cumulative
Cloud at different instants of time along the average particle phase (green dashed line
for rF and red dot-dashed line for dF'). The point—particles are depicted as points with
the corresponding coloring. The flow is depicted with a black continuous line. The time
instants are t = [0, 1.43, 2.85, 4.28, 5.73, 7.15, 8.5, 10]. For a better visualization, 500
point—particles are depicted from the N, = 10° used for the computations.

We assess the accuracy of the point—cloud tracer by comparing computational results
for different levels of splitting M = 1,...,7, such that the total number of subclouds is
M, = M? for the dF case (along z,, and u,) and M, = M? for the rF case (along a, z,
and u,) respectively. Figure 4.4 compares the Cumulative Cloud solution for the rF and
dF case with M = 7 and shows that the deterministic and random solutions while different
are strongly correlated. In fact, a comparison of their average trajectories in Fig. 4.6a in
phase space shows that they are within 3% of each other. They match so surprisingly well,
because the second moments on the right hand side of the first moment equations are
negligible as compared to the dominant acceleration term f, (% — %,). This is however not
the case for the second moment equations and their solution that depend on the second

and third moments [2] as plotted in Figures 4.6a— 4.7f. The maximum difference between
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the rF and dF solution for the second moments is 20% in o, (see Fig. 4.6¢) in the initial
acceleration stages. The standard deviations and correlations show an oscillatory trend.
The solutions for the rF cloud are mostly different from the dF cloud near its maxima.

The second moments o/_a:;, and o/_% can be interpreted as ”virtual” stresses that
cause the mixing of the random cloud. We dub these stresses virtual, because they are
not physical and only affect the random sample space. The two correlations of the force
coefficients with location and velocity are oscillatory and in phase with their respective
position and velocity standard deviation trends. This phase-locked behavior indicates
that the virtual stress cross-correlations are greater if the principle strain of the random
cloud is greater in the related physical or phase space dimension (in general physics, the
stress-strain relation is well-known [202]). Note that these terms have a zero value for the
dF case because o/ = 0 and they are thus not included the figure.

Figure 4.5 shows the MC-PSIC and Cumulative Cloud solution from a different
perspective in the f; — Re, plane. The dF cloud follows the line described by the
deterministic forcing function. The rF cloud is distributed in the space spanned by the
forcing and the relative velocity and can be visualized and computed with SPARSE-R
using the ellipsoidal approximation. The results show that the particle’s relative Reynolds
number is initially high (on the order of 20) when the clouds accelerate. Later, the particle
cloud oscillates around moderate values of Re, associated with a lower correction of the
Stokes drag and a forcing function closer to unity despite the randomness in a.

Figure 4.6f confirms the theoretical third—order convergence rate of SPARSE-R
with respect to the level of splitting M. We find that for M = 7 the maximum relative
error of all first and second moments of the rF particle cloud computed with SPARSE-R as
compared to MC-PSIC is 1% for the variable o7, . For the rest of variables of the particle
phase the error is lower than that, which denotes good agreement between the SPARSE-R
and MC—-PSIC results. The relative error for the other second moments involving « is

at most 1.5% (for o/z). For the dF case, the maximum relative error occurs also in the
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Figure 4.5. Forcing of the Cumulative Cloud of the sinusoidal one-dimensional test
case for three instants of times computed with SPARSE-R (M = 7) depicted as ellipses
in fi — Re, space and point-particles computed with MC-PSIC depicted as points. For
a better visualization, 500 point—particles are depicted from the N, = 10° used for the
computations.

variance of the particle velocity with a value of 0.1%. The computational savings are
significant even for M = 7. The ratio of computational cost of SPARSE-R as compared to
MC-PSIC defined as in (4.25) that takes into account the reduction of degrees of freedom
is 7 = 1.7 - 1073 for the dF case and r = 1.2 - 1072 for the rF case, that translates to a
0.17% and a 1.2% of the computational cost respectively as compared to MC-PSIC. We
conduct tests at three different wavenumbers (not shown here). We expect that with an
increasing wave number, it is necessary to increase the number of clouds while reducing
the compact support of each cloud. This so—called splitting as described in Ref. [3] ensures
that the solution is in the asymptotic convergence range of the model. For example, for a
case with a wavenumber of 4, we confirm that the theoretical convergence rate is observed
if we split the domain into M > 5 number of clouds per dimension.

Using multiple clouds, we can compose the PDF of the Cumulative Cloud with the
sum of weighted Gaussians as defined in (4.24). In Figure 4.8 we show these PDF's and
compare them to the MC-PSIC method for the rF case. Clearly, the PDF is not trivial,
i.e. not symmetric or Gaussian and SPARSE-R accurately predicts it. The evolution of

PDF of the particle location in time computed with MC-PSIC (Fig. 4.8a) compares well
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Figure 4.6. First and second moments of the one-dimensional sinusoidal velocity field test
case for stochastic and deterministic forcing computed with SPARSE-R and MC-PSIC.
Figure (a) shows the average particle location and velocity, (b) standard deviation of
the particle location, (c) standard deviation of the particle velocity, (d) combined second
moment of the particle phase, (e) combined second moments of the random coefficient
and particle phase variables and (f) expected convergence of SPARSE.

with SPARSE-R (Fig. 4.8b). In a similar manner, for the PDF of the particle velocity, we
show in Figures 4.8d—4.8f contour maps of the PDF along time computed with MC-PSIC
(Fig. 4.8d) and SPARSE-R (Fig. 4.8¢) and compare both at the same time instant in
Figure 4.8f. The mixture distribution composed by Gaussians shows oscillations related
to the underlying Gaussian representation of each subcloud. The results are within a 5%
agreement and SPARSE-R uses two order of magnitudes fewer degrees of freedom than
the MC-PSIC approach. Additionally, third order moments computed according to (4.23)
are depicted in Fig. 4.7 for the dF and rF cases computed with SPARSE-R and MC-PSIC

showing also agreement.
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Figure 4.7. Third moments of the one—dimensional sinusoidal velocity field test case for
rF and dF cases computed with SPARSE-R and MC-PSIC using the relation (4.23); (a)
shows the skewness of the particle position; (b) the particle velocity; (c¢) and (d) combined
third moments of the particle phase; and (e) and (f) combined third moments of the
random coefficient and particle phase variables.

4.3.2 Stagnation flow

The two—dimensional stagnation flow is analytically described according to [176]

for an inviscid irrotational fluid, in the domain (z,y) € [—o0, 0] X [—o0, o0] by

u=—kux, (4.33a)

v = ky, (4.33b)

where y is the coordinate perpendicular to the flow direction, and k is a constant. Point—
particles carried by this flow admit an analytical solution for their trajectories as well [2].
These analytical descriptions are helpful for testing and understanding of the basic

characteristics and canonical behaviour of the solutions of dF and rF clouds of particles.
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Figure 4.8. PDFs of the components of the particle location f,, and velocity f,, for
the rF case computed with MC-PSIC and SPARSE-R methods for the one-dimensional
sinusoidal velocity field test case. The Figure shows: PDF of z, computed with (a)
MC-PSIC and (b) SPARSE-R and (c) comparison of both methods at time ¢ = 0.3 and
the corresponding results for w, in (d)-(f). The legend in (c) also corresponds to (f).

Moreover, because there is symmetry with respect to the horizontal axes, the equations
decouple by coordinates and similarities between rF and dF clouds under symmetry
conditions can be analyzed. Closure terms that depend on the linear flow velocity field
are exact because the Taylor expansion of the linear field is exact.

Following [2], we reduce the complexity of the test further by assuming a forcing
function that sets f; = a with g; = 1 in (4.10), i.e. the forcing function is random but not
dependent on the relative velocity, so that the only the truncation of non—zero terms is
that of the third moments in the second moment equations (4.6e), (4.6g) and (4.16). For
reference, we present the complete closed system of equations for this form of the forcing
function in Appendix D.

We specify initial conditions for the cloud’s location and velocity by sampling from
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uniform distributions according to

ZL‘pO ~U [:Ep(Jmin’ xp(]max] ) ypo ~U [yPOmz'n’ yp(]max] ) (434&)

Upg ™~ U [uPOmin’ uPOmax} v Upg ™ u [vp(]min’ Up(]mam] ’ (434b>

With the particle cloud initially at rest, both components of the velocity u, and v, are
zero for all point—particles contained in the cloud. For the rF case the random coefficient

« is also sampled from an uniform distribution
a~U [min, Cmazl, (4.35)

whereas for the dF case the coefficient « is deterministic with o/ = 0. The averages of
the distribution functions are 7, = —1, Upo = Upg = Upg = 0, and the standard deviations
Oy = Oypy = Oupy = Oupy = 0.08. For the rF case, we also define @ = 1 and o, = 0.3
whereas for the dF all point—particles have the same value of a with zero fluctuations
so that « = @ = 1, 0, = 0. Second moments combining any of the variables «;, x,,,
Ypy> Upy and vy, are zero initially because the variables are considered uncorrelated at
t = 0. However, because in computational practice we can only use the limited number
of samples, N, = 10°, these moments include sampling errors that converge at the rate
1/ \/ﬁp with respect to the averages and second moments described above. The initial
condition for the SPARSE-R method is determined by sampling the point—particles as
described in Section 4.2.5. We set the Stokes number and the constant k in (4.33) to unity
so that St =k = 1.

Figure 4.9 shows the solutions of the rF and dF cases identified with green and red
colors, respectively. The particle cloud is advected by the flow field in the time interval
t € [0, 2.52] in which the average location of the dF cloud reaches the wall located at x = 0.

The solution is presented in the three-dimensional space o — z, — y, in Figure 4.9a for
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Figure 4.9. Evolution of the particle cloud immersed in the stagnation flow for different
instants of time ¢ = [0, 0.5, 1.65, 2.2]. The dots represent the point—particles traced by
the MC-PSIC method and the Cumulative Cloud traced with the SPARSE-R method is

represented by an ellipsoid for the rF case (red) and dF case (green). The projections of
the SPARSE-R solution are represented in the background planes.

three instants of time ¢ = [0, 1.26, 2.52]. The point—particles (computed with MC-PSIC)
are depicted as points and the point—cloud (computed with SPARSE-R) is represented
by either a ellipse in the dF case (because o = 1 for all particles then the a collapses
in a single point) or a prolate spheroid for the rF case with a magnitude and direction
of the principle axes that are equal to eigenvalues and direction of the eigenvectors of
the covariance matrices. The two covariance matrices used to represent the SPARSE-R
solution for the rF case in Figure 4.9 are K, ,,, and Kq,,,, whose eigenvalues are given

by the following Characteristic polynomials

A3—(Fj+y?+?)/\2+(ﬁ(ﬁ+y’ >+x;) 2 - 'Q—a'x'Q—a'y;f)A

p p p pyp p
— o—2 —o—2 —o—2 9 " ,9 o
12 0 1270 1200, 1 12,02 1 Tl Aol o] —
+ %y, S, + oy, —xt gt o = 2xy, o, o'y, =0,

(4.36)
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and

3 12 12 12 2 12 ’2 2 / 12 0 /2_ 7 /2_ WS
A (a:p +u,” + o ))\ —|—<a (xp +up>—|—xp w,” — xpuy, — Qwy — dlug | A
+x’2a’u’2+u’2a’x’2+o/2x’u P 2w o — 9 ol ol =0
P P P P PP P P pp P P )

(4.37)

respectively. The projections of the solution onto the planes z, —y,, o — z, and a — y,, are
also plotted in Figure 4.9a. Accordingly, in Figure 4.9b the projections in planes z, — u,,
a — 1z, and o — u, are also plotted. For the rF case, the projections are represented by
ellipses in all those planes. For the dF case the projections simply lead to lines. We also
show the first two moments of both dF and rF clouds computed with the MC-PSIC and
SPARSE-R methods in Figure 4.10 for comparison. The solution shown in Figures 4.9
and 4.10 corresponds to a level of splitting M = 5. Note that the initial condition is
split along the random parameters o and the two components of the particle velocity and
location. According to this, for the dF case the total number of subclouds is related to
the level of splitting M, = M* and for rF M, = M°.

The clouds approach the stagnation point along the z—axis as depicted in Figure 4.9a
in the x, — u, plane. The average horizontal location and velocity trends show three
different stages in time, including a first stage of acceleration, a second transitional stage
and a third deceleration stage. These stages are observed for both the rF and dF clouds.
Because the front of the cloud decelerates while the tail is still increasing its velocity, the
standard deviations of the horizontal velocity o, in the second stage show a minimum at
t ~ 1.6 (see Figure 4.10d) for the rF case. The dF case does not exhibit this minimum in
04,, but decreases monotonically over the entire time interval and plateaus only at that
time instant. In the third stage all point—particles in the cloud region decelerate towards
the stagnation point. Because of the symmetry of the problem, the mean vertical location

and velocity should be zero. The results, however, show a slight initial motion in the
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negative y direction as a result of the Monte Carlo sampling error that is on the order of
10~* for N, = 10° (see Figure 4.10b). Over time this non-zero initial condition leads to
vertical motion that is consistent with the three stages.

To assess the uncertainty in the rF point—cloud tracer, we compare the dF and the
rF' SPARSE cloud prediction in the phase space z, — u, in Figure 4.9b. The three stages
can once again be observed in the evolution of o,,, but are notably different for dI’ and rF
as follows: in the first stage o,, decreases for the dF cloud (see also Fig. 4.10c) whereas
for the rF cloud it increases. The latter increase is a result of the mix of fast and slow
responses to the fluid velocity of the point—particles in the rF cloud. This mix is consistent
with the range of the random force coefficients, «, and the resulting range in the time
responses of the point—particles as given by St/a. In fact, the enhanced mixing of the rF
cloud in space is a result of the virtual stress per the correlation of the coefficient o and
the particle phase variables x, and u, (as was also the case for the sine field test discussed

above) as it appears in the equations (D.le) that govern x/,u;,. This term in turn is the
only driving source term in the dynamics of o,, in (D.1c). The magnitude of the term
a (kfo + M) in equation (D.le) is approximately the same for rF and dF with @ = 1,
whereas the second term on the right hand side, a’_x; (kT), + 1,), is initially on the order
of o/x!, which in turn is governed by equations (D.1f)-(D.1g). In (D.1f)(D.1g) the only
term that is initially different from zero is o? (kT, +1,) and it is therefor the root cause
for the increase of o, in the rF cloud.

In vertical direction the solution is symmetric and it turns out that because of this
symmetry that o, evolves identically for rF and dF. This can be understood using the
simplification of the point—cloud equations in the y—direction for the y—symmetric Hiemenz
flow (Appendix D), which shows that the term —a’_y]g in equation (D.2e) is multiplied
by the average vertical relative velocity which is zero over the simulated time interval

(assuming no sampling errors). Ergo, the random forcing does not change the vertical

stress or strain (Figure 4.9a), which suggests that the uncertainty in solution is zero in
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Figure 4.10. First two moments for of the stagnation flow test case for the rF and dF
particles computed with the SPARSE-R and MC-PSIC methods. Including (a) horizontal
and (b) vertical averages of the phase, (¢) and (d) deviations of the particle phase, (e)—
(g)combined moments of the particle variables and (h)—(i) combined moments of the

particle variables and the random coefficient ov. The superscript ‘S’ indicates rF and ‘D’
dF.

vertical direction. This results generalizes to any particle-laden that is symmetric and
is randomly forced according to a symmetric PDF. We conclude that in these case the
uncertainty in the forcing does not propagate into the solution. A closer inspection of
ay,in Figure 4.10c shows trends on the order of the sampling errors. These trends as in

x—direction are governed by the intrinsic interaction of correlation terms in the governing
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system in y—direction.
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Figure 4.11. Errors, ¢(+), plotted versus number of clouds per dimension, M, show a
third convergence rate of the moment of the SPARSE (dF) and SPARSE-R (rF) method
for the (a) stagnation flow case and (b) isotropic turbulence test case.

In Figure 4.11a we plot the relative error versus splitting levels in the range
M =1,...,5. The third order convergence rate is once more validated. The dF test cases
reaches machine precision and does not require splitting to reduce the errors. We find
that for the maximum level of splitting (M = 5) considered which leads to M, = 3,125
and M, = 625 for the rF and dF cases respectively, the greatest relative error of all first
and second moments of the particle phase computed with SPARSE-R as compared to
MC-PSIC is 3% and it occurs O'ZP. The remaining variables of the cloud show smaller
relative errors as compared to MC-PSIC, validating the SPARSE-R method. The ratio
of computational cost of SPARSE-R as compared to MC-PSIC defined as in (4.25) is
r = 0.022 for the dF case and r = 0.141 for the rF case. This shows that using SPARSE-R
implies only a 14.1% of the computational effort that takes to solve the problem with the
MC-PSIC method for the rF case and a 2.2% for the dF case.

Consistent with the observations made for the sine test case, we confirm that the
solution converges with third order accuracy for all three Stokes numbers (not shown) and

that the difference in confidence interval between rF and dF increases with a larger range
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of randomness, and thus particle response times as proportional to St/a.

4.3.3 Isotropic turbulence

Following the validation of the dF clouds as presented in Ref. [3], we test the
randomly forced SPARSE-R formulation in a decaying isotropic turbulence velocity field.
For a detailed description of the test setup we refer to that article. Summarizing for
completeness, the isotropic turbulence simulation is performed in a cube with periodic
boundary conditions with the validated discontinuous Galerkin code as described in
Ref. [200] and references therein. Initial conditions are adopted from Ref. [201]. The
simulation is performed on a domain 2 spanned by coordinates (x,y, z), defining a cube
of size 27 so that Q = [0, 27] x [0, 27] x [0, 27].

As in the previous test cases, we seed a cloud of N, = 10° Monte Carlo point—
particles in the flow. The particles in the cloud are initially at rest and therefore the
cloud’s average velocity is u, = v, = w, = 0. The cloud’s temperature is set constant such
that T) = 0 for the cloud with Tp = 1. The locations of point—particles are sampled from

the uniform distribution functions

Tpg ™~ u ['Tp()min’ 'rPOma:c:| v Ypg U [ypﬂmin’ yp()max] T U [ZPOmin’ Zp()max} : (438)

The random momentum and energy coefficients, a and § are also sampled from an uniform

distribution
a = ~U [min, Cmaz) - (4.39)

The average and standard deviation values are 7, =y, =%z, =7, @ =1, 0,,,, = 0y, =

Oz

, =0.05 and o, = 0.3. For the dF case o, = 0.

P

The drag and heat transfer correction factors for this case are adopted from [48]
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and [188] respectively and read as

R Rel —0.43
fi=a (1 + 0.382—21’ + T”) {1 + exp (Wﬂ : (4.40a)

p

fo=a(1+0.3Re)*Pr®). (4.40Db)

The computed carrier phase velocities are used to determine the particle Reynolds as
defined in (4.2) and the particle Mach number M,, = |u—wu,|/+/T}, in the forcing correction
factors (4.40). The Prandtl number is Pr = 0.7, the relative heat capacity is set to unity
¢, = 1 and the density ratio of the two phases is p, = 250. We also set the Stokes number
to be St = 0.5 such that the inertia is dominant in the dynamics of the point—particles.
The non-dimensional particle diameter is d, = 4 - 1073 according to (4.2). The isotropic
turbulence case is set up with a reference Reynolds Re,, = 2,357 and Mach number
M., = 0.05 [201].

Using splitting along the particle locations and the random parameter « for the
point—cloud simulation, it follows that for the rF case the total number of subclouds
is M, = M,"M;”M," M = M* with superscripts indicating the dimension where the
divisions are performed. For the dF case then we have M, = M?3. We consider several
levels of splitting M = 1,...,8 that correspond to a maximum number of subclouds of
M, = 4,096 and M, = 512 for rF and dF cases respectively. Note that in this test case, all
relative errors should be expected to be non—zero because the flow is non—linear and the
correction functions of the forcing depend on the relative velocity of the particles through
the particle Reynolds and Mach numbers and so all Taylor and moment truncation affect
the accuracy of SPARSE-R.

In Figure 4.12 we show the rF test case results for three equispaced instants of
times in the interval ¢t € [0, 4]. The MC-PSIC particles are depicted as points and the

SPARSE-R clouds as prolate spheroids for a level of splitting with M = 4 which defines
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four subclouds along the variables x,, vy,, 2, and . We select this somewhat coarser level
of splitting for the clarity of the visualization in Figures 4.12a—4.12c. The SPARSE-R
subclouds are colored according to the spatial four divisions along each coordinate to
identify the point—particles that correspond to each point—cloud. The same color has been
used for a given subcloud and its corresponding point—particles in the Figures 4.12a-4.12c.
The background planes represents contours of the turbulent kinetic energy of the carrier
phase’s turbulent structures for each instant of time. The ellipsoids for each subcloud
computed with SPARSE-R are represented using the eigenvalues and eigenvectors of the
covariance matrix of the locations z,, y, and z,. To enhance clarity of the visualization, in
Figures 4.12d-4.12f we show the evolution in time of the point—particles and point—clouds
that intersect a plane passing through the center of the domain where only one slice of
4 x 4 clouds is represented. The particles initially at rest respond to the carrier flow
producing a deformation of the initial cube where the cloud of point—particles is defined.
Governed by the inertial effects, the response is smoother as compared with the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>