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Association between climate variability and malaria
epidemics in the East African highlands
Guofa Zhou*, Noboru Minakawa*, Andrew K. Githeko†, and Guiyun Yan*‡

*Department of Biological Sciences, State University of New York, Buffalo, NY 14260; and †Centre for Vector Biology and Control Research, Kenya Medical
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Communicated by Hans R. Herren, International Centre of Insect Physiology and Ecology, Nairobi, Kenya, December 30, 2003 (received for review
September 4, 2003)

The causes of the recent reemergence of Plasmodium falciparum
epidemic malaria in the East African highlands are controversial.
Regional climate changes have been invoked as a major factor;
however, assessing the impact of climate in malaria resurgence is
difficult due to high spatial and temporal climate variability and the
lack of long-term data series on malaria cases from different sites.
Climate variability, defined as short-term fluctuations around the
mean climate state, may be epidemiologically more relevant than
mean temperature change, but its effects on malaria epidemics have
not been rigorously examined. Here we used nonlinear mixed-regres-
sion model to investigate the association between autoregression
(number of malaria outpatients during the previous time period),
seasonality and climate variability, and the number of monthly
malaria outpatients of the past 10–20 years in seven highland sites in
East Africa. The model explained 65–81% of the variance in the
number of monthly malaria outpatients. Nonlinear and synergistic
effects of temperature and rainfall on the number of malaria outpa-
tients were found in all seven sites. The net variance in the number
of monthly malaria outpatients caused by autoregression and sea-
sonality varied among sites and ranged from 18 to 63% (mean �

38.6%), whereas 12–63% (mean � 36.1%) of variance is attributed to
climate variability. Our results suggest that there was a high spatial
variation in the sensitivity of malaria outpatient number to climate
fluctuations in the highlands, and that climate variability played an
important role in initiating malaria epidemics in the East African
highlands.

climate change � statistical modeling � Plasmodium falciparum �
time series analysis

Malaria is a major public health problem in sub-Saharan Africa
(1). The high-elevation areas in East Africa had infrequent

epidemic malaria between the 1920s and the 1950s (2, 3). Malaria
epidemics were not reported between the 1960s and the early 1980s
after a malaria eradication campaign (4, 5). Although the lack of
documented epidemics in the highlands between the 1960s and the
early 1980s could have been due to the methods for health data
recording at the health clinics, it is well recognized that a series of
malaria epidemics have occurred in the East African highlands,
including the highlands in western Kenya (6–13), Uganda (11),
Ethiopia, Tanzania (14, 15), Rwanda (8), and Madagascar (6, 11).
As a consequence of low immunity in the human population of the
highlands, malaria epidemics have caused significant human mor-
tality in both children (13) and adults (16). Compared to the malaria
situation between the 1920s and 1950s, the current pattern of
malaria in the highlands is characterized by increased frequencies
(17), expanded geographic areas (18), and increased case-fatality
rates (19).

The causes of the recent reemergence of Plasmodium falciparum
epidemic malaria in the East African highlands are controversial.
Several mechanisms have been hypothesized, including (i) in-
creased travel from the malaria-endemic Lake Victoria basin to the
highlands (20–22); (ii) degradation of the healthcare infrastructure
(9–11); (iii) antimalarial drug resistance (22–24); (iv) local malaria
transmission in the highlands as a consequence of land-use changes

(9, 11, 25); and (v) global warming (8, 26, 27). Malakooti et al. (10)
analyzed the hospital clinical records and questionnaire survey
results in a highland tea plantation estate in Kericho (�1,700 m
above sea level), western Kenya, and concluded that the increased
travel and healthcare infrastructure degradation should not be the
key factors for the reemergence of highland malaria. Their con-
clusions are supported by the facts that the majority (92%) of
malaria patients did not travel to malaria-endemic areas, and that
the healthcare system in their study area has not been degraded.
Drug resistance can only aggravate malaria-induced morbidity and
mortality; it cannot initiate an epidemic. In addition, drug resis-
tance could not explain the sporadic malaria epidemics in the
Kenyan highlands in the 1920s to 1950s, when the problem of
drug resistance was insignificant (18). The reemergence of
epidemic malaria is likely due to local malaria transmission in the
highlands (10).

The role of climate as a driving force for malaria epidemics in the
highlands is a subject of considerable discussion (22). Despite an
increase in the global average surface temperature during the past
century by 0.6 � 0.2°C (28), Hay et al. (29) concluded that mean
temperature and rainfall have not changed significantly in the past
century at four locations in the East African highlands, where
malaria incidence has been increasing. However, their use of
spatially interpolated climate data were criticized for its inappro-
priateness for trend analysis in areas known to have a high spatial
heterogeneity in temperature (30). Assessing the impact of climate
in malaria resurgence is difficult because of high spatial climate
variability and the lack of a long-term data series on malaria cases
from different sites. Temperature affects the development rates and
survivorship of malaria parasites and mosquito vectors. Rainfall
influences the availability of mosquito larval habitats and thus
mosquito demography. Temperature and rainfall may have syner-
gistic effects on malaria transmission. Thus, simultaneous analysis
on the long-term time series of meteorological and parasitological
data are critically needed to demonstrate the effects of climate on
malaria cases. Moreover, climate variability (short-term fluctua-
tions around the mean climate state on a fine time scale) may be
epidemiologically more relevant than the mean temperature in-
crease (31). However, the association between climate variability
and malaria epidemics has not been rigorously examined.

In this study, we used nonlinear time series analysis to investigate
the association between climatic variability and the number of
monthly malaria outpatients over the past 10–20 years in seven
highland sites in East Africa where malaria epidemics have been
reported. We are particularly interested in the synergistic effects of
temperature and rainfall on the number of malaria outpatients and
spatial variation in the sensitivity of malaria outpatient numbers to
climate conditions. This knowledge is critical to the development of
malaria early warning systems for the East African highlands.

Materials and Methods
Climate and Malaria Outpatient Data Collection. We investigated the
association between climatic variability and number of malaria
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outpatients in seven highland sites in Ethiopia, Kenya, and Uganda.
Detailed information on the locations of the study sites, climatic
conditions, and sources of monthly malaria outpatient number is
presented in Table 1. The Kilgoris site included malaria patients
�15 years of age (32), whereas malaria outpatients of all ages were
included in other sites. The period that malaria outpatient data were
available varies from 10 to 20 years among the seven sites (Table 1).
The meteorological data from 1978 to 1998 were actual weather
station records, downloaded from the African Remote Sensing
Data Bank (http:��informatics.icipe.org�databank) and the Sur-
face Data of the World Meteorological Organization (www.ncdc.
noaa.gov�oa�climate�climatedata.html), including daily maximum
and minimum temperature and daily rainfall at each of the seven
sites. Meteorological data of Kilgoris were based on the weather
station data in Kisii of similar elevation, �35 km from Kilgoris. The
maximum and minimum monthly temperature and monthly rainfall
were calculated from the daily records and used for all analyses.
Malaria vector population dynamics were not examined because the
corresponding long-term data on trends in Anopheles vector pop-
ulations are not available for the study sites.

Statistical Analysis. Climate changes and frequency of malaria epidemics.
We are particularly interested in whether climate warming has
occurred and climate variability was higher in 1989–1998 than in
1978–1988 because frequent malaria outbreaks have occurred in
the East African highlands since 1989. For each of the seven study
sites, we compared average maximum monthly temperature, min-
imum monthly temperature, and rainfall over the periods of 1978–
1988 and 1989–1998 by using the t test. Climate variability is
measured by the annual variance of the three meteorological
variables (maximum temperature, minimum temperature, and rain-
fall). Changes in monthly minimum and maximum temperature and
rainfall at each site were expressed as standardized anomalies
relative to the 1961–1990 mean for each site. The 1961–1990 mean
was obtained from the almanac characterization tool (ACT) for
each site (33). The standardized anomaly is calculated as the
difference between time series data and the mean values divided by
the standard deviation. Annual variance in the maximum and
minimum monthly temperature and rainfall in any given year was
calculated from the 12-month mean. The difference in the mean
annual variance of the three meteorological variables between
1978–1988 and 1989–1998 was tested by using the t test, assuming
different variances for each period.

Epidemic detection was based on the method proposed by Cullen
et al. (34). The epidemic alert threshold for each month was
determined as the average monthly malaria cases in the past 5 years
plus two times the standard deviation. Malaria case data were not
transformed. Hay et al. (13) compared three malaria epidemic
detection methods and showed that Cullen’s method based on
untransformed monthly malaria outpatient numbers is a sensitive
method. The proportion of the total number of epidemic months
between 1978–1988 and 1989–1998 was calculated.

Statistical association between climate variability and malaria incidence.
The number of malaria outpatients, Nt, at a given time is likely to
be affected by the previous number of malaria outpatients (autore-
gression), seasonality, and climate variability. Thus, the dynamics of
the number of monthly malaria outpatients can be modeled as

Nt � f�Ni�t, t� � g�Tmin�t�, Tmax�t�, Rain�t�� � et , [1]

where

f�Ni�t, t� � � � �
i�1

d

�iNt�i � b1cos�2�

12
t� � b2sin�2�

12
t�

[2]

g � r1�
i��1

�min

Tmin�i� � r2 �
i��2

�max

Tmax � r3 �
i��3

�R

Rain�i��r4 �
i��1

�min

Tmin�i�

	 �
i��3

�R

Rain�i��r5 �
i��2

�max

Tmax�i�	 �
i��3

�R

Rain�i�. [3]

The term f(Ni�t, t) is a higher-order autoregressive model that tests
the effect of autoregression, g(Tmin(t), Tmax(t), Rain(t)) represents
the effects of climate variability on malaria incidence, and et

represents random noise. Nt was not adjusted for annual human
population growth rates because the number of hospitals generally
increases in proportion to human population size increase, and thus
the human population size that each hospital has served remains
similar during the study period (35). Parameter � is the determin-
istic drift, and �i measures the lagged effect (autoregression). d, the
maximum number of lagged months, is determined by the lagged
autoregression analysis between monthly malaria incidences (36).
Seasonality in the number of malaria outpatients was implemented
by the sin and cos functions (37). ri is the regression coefficient, Tmin
and Tmax represent minimum and maximum monthly temperature,
and Rain represents monthly rainfall. The terms (�1, �min), (�2, �max),
and (�3, �R) represent the time lag periods when minimum and
maximum monthly temperature and rainfall exhibited significant
lagged correlation with the number of malaria outpatients as
determined by the significance tests of cross-correlation function.
Thus, ¥i � �1

�min Tmin(i) and ¥i � �2

�max Tmax(i) represent minimum and max-
imum monthly temperature for the time lag period (�1, �min) and (�2,
�max), and ¥i � �3

�R Rain(i) represents monthly rainfall for (�3, �R).
¥i � �1

�min Tmin(i) 	 ¥i � �3

�R Rain(i) represents the interaction of minimum
temperature and rainfall.

Eq. 1 allows for testing two alternative hypotheses. The first
hypothesis is that malaria dynamics were primarily determined by
the autoregressive effect (i.e., number of malaria outpatients at time
t is determined by the malaria incidences in previous months) and

Table 1. Descriptions of the study sites and malaria outpatient time series data source

Country Site (geographic coordinates and elevation)

Malaria
outpatient
data period

Long-term mean climate (1978–1998)
Malaria

outpatient
time series
data source

Maximum
monthly

temperature, °C

Minimum
monthly

temperature, °C

Annual
rainfall,

mm

Ethiopia Alaba (7.30°N, 38.17°E, 1,500–2,100 m) 1988–1999 26.8 12.9 646 Ref. 52
Ziway (7.81°N, 38.63°E, 1,500–2,300 m) 1991–1999 26.2 12.7 598 Ref. 52

Kenya Kericho (0.30°S, 35.25°E, 1,500–2,300 m) 1978–1998 23.2 11.0 1,814 Ref. 17
Kilgoris (1.07°S, 34.96°E, 1,400–2,100 m) 1980–1999 25.2 15.5 1,936 Ref. 13
Eldoret (0.46°N, 35.23°E, 1,800–2,200 m) 1985–1998 23.3 10.8 982 Refs. 12 and 53
Nandi (0.22°N, 35.10°E, 1,800–2,200 m) 1980–1999 25.8 13.4 1,463 This study

Uganda Kabala (1.27°S, 30.04°E, 1,650–2,300 m) 1992–1998 23.2 12.3 1,196 Refs. 11 and 53
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seasonality. In this case, f should account for most variance in
malaria outpatient time series data. The alternative hypothesis is
that climate variability should be the most important factor if the
majority of the variance in the number of malaria outpatients is
contributed by g.

The effects of autoregression, seasonality, and climatic variability
on malaria incidences were analyzed by using the following two-step
method. In the first step, we assumed g' 0 in Eq. 1 (i.e., climate
variability plays no role), and we determined the functional form of
f by using the forward stepwise regression method. The proportion
of variance in malaria temporal variation accounted for by autore-
gression and seasonality was calculated. In the second step, we
subtracted the predicted effects of autoregression and seasonality
from monthly malaria outpatient time series and then performed
forward stepwise multiple regression analyses on the residuals to
determine the functional form of g and the variance of malaria
outpatient time series contributed by meteorological variables,
using meteorological data as independent variables. In both steps,
only variables that met the 0.05 significance level were entered into
the model in the stepwise regression analysis.
Sensitivity analysis. We evaluated the impacts of climate fluctuation
on malaria incidences through sensitivity analysis, assuming polit-
ical and socioeconomic factors remain the same. The scenarios
included (i) monthly temperature increase by 1–3.5°C in February–
April (the range of mean global land surface temperature increase
by year 2100 predicted by the Intergovernmental Panel on Climate
Change) (28); (ii) rainfall increase by 22% (the average fluctuation
of rainfall in April and May during 1961–1990 for the seven study
sites); and (iii) changes in both temperature and rainfall simulta-
neously. The predicted change in the number of monthly malaria
outpatients as a result of climatic condition changes was computed
as the percentage of changes in malaria outpatient numbers relative
to those under the average climatic condition between 1961 and
1990. For simplicity, we reported the changes in the month of June
when the number of malaria outpatients generally reaches a peak
in our study sites in Kenya and Uganda.

Results
Climate Warming and Climate Variability. We observed substantial
anomalies in maximum and minimum monthly temperature and
rainfall (Fig. 1 for Nandi; see supporting information, which is
published on the PNAS web site, for other sites). Compared to
1978–1988, we found that two sites exhibited small but statistically
significant changes in temperature among the seven study sites in
1989–1998, but no sites exhibited significant changes in rainfall
between the two periods (Table 2). The site Alaba exhibited a
0.46°C increase in the maximum monthly temperature in 1989–
1998 (P � 0.014), and Kilgoris showed a 0.19°C increase in the
minimum monthly temperature (P � 0.032). However, compared
to the period of 1978–1988, the average annual variance in the
maximum monthly temperature during 1989–1998 significantly
increased in five (Alaba, Kericho, Eldoret, Nandi, and Kabale) of
the seven study sites (Table 2). Kericho and Eldoret also exhibited
significant increases in the average annual variance in the minimum
monthly temperature and rainfall, respectively. Only one site
(Ziway) exhibited significant reduction in the average annual
variance in the minimum monthly temperature. Kilgoris is the
only site where we did not detect any significant changes in
climate variability.

Association Between Climate Variability and Malaria Incidence. Sig-
nificant change in climate variability has coincided with increased
magnitude (Fig. 1 for Nandi; see supporting information for other
sites) and frequency of malaria epidemics since 1989 (Table 2). The
cross-correlogram analysis found that monthly rainfall and maxi-
mum and minimum temperature were significantly correlated with
monthly malaria incidences with a time lag of 1–2 months and 2–5
months, respectively (data not shown). Our estimates of the time

delay in the association between malaria incidences and tempera-
ture and rainfall were consistent with previous studies in Rwanda
(8) and Kakamega, western Kenya (18).

Similar to the cross-correlogram analysis, the time series analysis
revealed some effects of autoregression: Malaria outpatient num-
ber generally exhibited significant and positive correlations with the
number of malaria outpatients of the past 1–2 months (Table 3).
Such a lagged, compensatory lag effect reflects the temporal effects
of a malaria epidemic because an increased number of P. falciparum
gametocyte carriers is expected after a large number of cases. A
5-month-lag compensatory lag effect was detected in one site
(Alaba), likely caused by the factor that malaria transmission has
two peaks a year; the interval between the two peaks was 5 months.

Fig. 1. Meteorological and number of monthly malaria outpatients time
series and epidemic alerts in Nandi District Hospital, western Kenya. (a)
Maximum monthly temperature. (b) Minimum monthly temperature. (c)
Monthly rainfall. (d) Annual variance in monthly maximum and minimum
temperature and rainfall (rainfall variance was scaled by division by 2,000). (e)
The number of monthly malaria outpatients. Dashed lines stand for the
months that epidemic alerts were declared by the Cullen’s method. Meteo-
rological parameters were represented by standardized anomaly relative to
the 1961–1990 mean for each site. See Table 1 for source of number of malaria
outpatients data. For a comprehensive list of time series data of other study
sites, see supporting information.
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We have statistically factored out the contribution of autoregres-
sion, seasonality, and climate variability to the temporal variation of
malaria incidence. Eighteen to 63% variance (mean � 38.6%) in
the monthly malaria outpatient time series data were attributed to
autoregression and seasonality (Table 3). The net variance in the
number of malaria outpatients time series because of climate
variability varies considerably among sites, ranging from 12% to
63% (mean � 36.1%). Climate variability contributed more vari-
ance than autoregression and seasonality in three (Kilgoris, Keri-
cho, and Eldoret) of seven sites (Table 3). For all seven sites studied,

we found significant and positive effects of interactions between
maximum or minimum monthly temperature and rainfall on the
number of malaria outpatients, suggesting synergistic effects of
climatic conditions on malaria transmission.

Sensitivity Analysis. Our model accounted for 65–81% of the total
variance in the number of malaria outpatients time series data for
the seven study sites, an outstanding fit of the observed malaria
outpatient time series (Fig. 1). We therefore used the model to
evaluate the impacts of climate fluctuation on malaria incidences

Table 2. Decadal average and variance of monthly temperature and rainfall and total number of epidemic months detected by the
Cullen’s method in seven East African highland study sites

Site Variables

Decadal average* Average annual variance†

Proportion of
epidemic months, %

1978–1988 1989–1998 t P 1978–1988 1989–1998 t P 1978–1988 1989–1998

Alaba Maximum temperature 25.96 26.42 2.44 0.014 3.52 4.64 1.96 0.033 0 7.5
Minimum temperature 12.62 12.63 0.02 0.491 3.95 3.74 0.43 0.338
Rainfall 54.99 52.46 0.53 0.301 4.92 4.22 0.60 0.279

Ziway Maximum temperature 25.77 25.83 0.30 0.379 3.42 4.26 1.48 0.078 NA 7.5
Minimum temperature 12.58 12.82 1.11 0.139 4.27 3.14 3.08 0.004
Rainfall 52.15 53.30 0.16 0.443 4.92 4.79 0.09 0.462

Kericho Maximum temperature 22.68 23.17 1.39 0.091 1.43 3.59 4.54 �0.001 6.8 11.7
Minimum temperature 10.91 11.19 1.40 0.091 2.36 3.90 1.91 0.040
Rainfall 151.51 133.92 1.14 0.143 6.02 7.48 1.04 0.157

Kilgoris Maximum temperature 25.56 25.81 1.67 0.057 2.80 2.33 1.26 0.113 4.6 8.3
Minimum temperature 15.77 15.96 1.98 0.032 0.92 0.84 0.97 0.174
Rainfall 102.30 110.10 1.19 0.129 2.70 2.35 0.77 0.226

Eldoret Maximum temperature 23.19 23.29 0.58 0.290 1.54 2.22 2.54 0.011 0 10.0
Minimum temperature 10.99 10.73 1.41 0.092 0.93 1.30 1.51 0.074
Rainfall 73.08 86.04 1.36 0.087 3.06 5.06 2.54 0.011

Nandi Maximum temperature 25.48 25.84 1.60 0.069 1.25 1.91 1.77 0.047 9.3 15.9
Minimum temperature 13.57 13.32 1.40 0.091 0.46 0.48 0.20 0.422
Rainfall 111.60 126.00 1.61 0.065 3.36 4.66 1.40 0.089

Kabale Maximum temperature 23.55 23.33 0.85 0.202 0.71 1.06 2.11 0.024 NA 3.1
Minimum temperature 12.14 12.32 1.10 0.138 0.54 0.68 0.95 0.179
Rainfall 88.91 95.23 0.59 0.282 2.12 3.30 1.58 0.073

NA, not applicable.
*Temperature unit is °C, and rainfall unit is millimeters (mm).
†Rainfall variance value listed in the table is the actual variance divided by 2,000.

Table 3. Model fitting results and the effects of autocorrelation, seasonality, and climate variability on the temporal variance in the
number of monthly malaria outpatients in seven East African highland sites

Site

Stepwise multiple regression to test the
effects of autocorrelation and seasonality

Stepwise multiple regression to test the
effects of climate variability

r2 (total)‡� d � b1 b2

r2 (autocorrelation
and seasonality)* �1 �2 �3 �4 �5

r2 (climate
variability)†

Alaba 49.75 1 0.64 – – 0.63 – – – – 90.85 0.12 0.75
5 0.25

Ziway 126.78 1 0.60 – – 0.38 �104.79 – – 1.28 – 0.27 0.65
Kericho 19.79 1 0.36 – – 0.19 – �17.95 �1.46 – 6.43 0.59 0.78
Kilgoris 200.95 1 0.58 – – 0.18 – �1,137.52 �187.49 – 771.97 0.63 0.81
Eldoret 335.54 1 0.41 – 181.50 0.33 – �375.91 �38.13 – 172.06 0.44 0.77

2 0.20
Nandi 89.12 1 0.71 65.62 37.15 0.58 – – �6.42 33.40 – 0.16 0.74
Kabale 168.85 1 0.76 – – 0.41 – – �11.87 – 52.91 0.32 0.73

2 �0.39

Parameter � is the deterministic drift. d is the time lag in months selected by equation 2. �, bi, and �i are regression coefficients determined by the stepwise
regression analysis. For both steps, only variables that met the 0.05 significance level were entered into the analysis. – refers to those variables not entered into
the analysis.
*r2 (autoregression) represents the variance of monthly malaria outpatient time series attributed to autocorrelation and seasonality.
†r2 (climate variability) refers to the variance of monthly malaria outpatient time series attributed to climate variability.
‡r2 (total) refers to the total variance of monthly malaria outpatient time series accounted for by autocorrelation, seasonality, and climate variability.

2378 � www.pnas.org�cgi�doi�10.1073�pnas.0308714100 Zhou et al.



using sensitivity analysis, assuming political and socioeconomic
factors remain unchanged. We found that a 1°C increase in the
minimum and maximum monthly temperature would lead to an
8–95% increase in the number of malaria outpatients in the month
of June from average climatic condition (Table 4). A temperature
increase by 3.5°C would result in a 27–332% increase in malaria
incidences. The sites most sensitive to temperature change (Nandi
and Kabale) exhibit a lower average maximum or minimum
monthly temperature. A monthly rainfall increase of 22% would
lead to a 6–138% increase in malaria incidence. The site most
sensitive to rainfall change (Ziway) also shows the lowest rainfall.
The effects of increases in temperature and rainfall on malaria
incidences are synergistic. In Eldoret, for example, a 71% and 118%
increase in malaria is expected if temperature and rainfall are
increased by 3.5°C and 22%, respectively; however, a 357% increase
in the number of malaria outpatients is predicted if both variables
change simultaneously (Table 4).

Discussion
In this study, we found that two of seven sites exhibited a small but
statistically significant temperature increase during 1989–1998 in
comparison to 1978–1998. However, five of seven sites showed a
significant increase in climate variability measured by the average
annual variance in the temperature and�or rainfall. Our analysis of
climate change, based on actual meteorological records, suggests
that climate warming has occurred only on a small geographic scale,
but increased climate variability, whether natural or anthropogenic,
has occurred on a larger geographic scale in the East African
highlands. A high frequency of extreme climate events, such as El
Niño and drought in Africa since the late 1980s, has been reported
(38–40). Our results on the nonsignificant mean temperature
changes over the past two decades in Kericho was consistent with
the finding of other studies (22, 29).

One marked characteristic of the malaria situation in the 1990s
in the East African highlands is that both the frequency of malaria
epidemics and the number of malaria outpatients in an epidemic
have dramatically increased compared to those in the 1980s. Are
more frequent malaria epidemics in the 1990s causally coincident
with increased climate variability? Through joint analysis of epide-
miological and climatological time series, we have statistically
factored out the contribution of autoregression, seasonality, and
climate variability to the temporal variation in the number of
malaria outpatients. We demonstrated that climate variability is
strongly associated with the number of malaria outpatients in three
Kenyan sites (Kericho, Kilgoris, and Eldoret), where climate vari-
ability contributed 
40% of the temporal variance in malaria
outpatient numbers, far more than the contributions from autore-

gression and seasonality. For all seven study sites, we found highly
significant nonlinear, synergistic effects of the interaction between
rainfall and temperature on malaria incidence, indicating that the
use of either temperature or rainfall alone is not sensitive enough
for the detection of anomalies that are associated with malaria
epidemics (18, 22, 29). Thus, assessing the impact of climate change
on malaria transmission requires consideration of not only annual
mean temperature changes, but more importantly, the extent of
temperature and rainfall interannual variability.

We have demonstrated a high degree of spatial variation in the
sensitivity of malaria outpatient numbers to climate fluctuations.
Climate factors contributed �20% of the temporal variance in the
number of malaria outpatients in two sites, Alaba and Nandi (Table
1). Therefore, malaria dynamics are largely driven by autoregres-
sion and�or seasonality in these sites, and case surveillance is
important for predicting malaria outpatient dynamics. The ob-
served large among-site variation in the sensitivity to climate
fluctuations may be governed by complex interactions between
climate and biological and social factors. Potentially important
factors include land use, topography, P. falciparum genotypes,
malaria vector species composition, availability of vector control
and healthcare programs, drug resistance, and other socioeconomic
factors (41–44). These factors may have significant location-specific
effects. Discerning the contributions of these factors will be par-
ticularly useful for assessing the vulnerability of public health
systems to climate variability.

This study demonstrates the important role of climate variability
in malaria dynamics in some highland sites. However, malaria
transmission involves complex interactions between Plasmodium
parasites, anopheline mosquitoes, and humans. What pathways are
being affected by climate variability and cause frequent epidemic
malaria in the highlands? We propose the following conceptual
model to illustrate the pathways leading to epidemic malaria in the
East African highlands. The East African highland region contains
numerous valleys and basin-like depressions in a plateau where
malaria transmission intensity ranges from low to a level as high as
the lowland (9). Human settlers in these foci are the main malaria
reservoir, and they develop some degree of immunity to the severe
consequences of malaria infection, whereas the human population
uphill is not exposed to malaria infection regularly and generally
lacks immunity to malaria. The valleys and basin-like depressions
were recognized as less desirable areas to live; the human density
in these foci was relatively lower. As a result of rapid human
population increases over the past four decades in the East African
highlands (http:��grid2.cr.usgs.gov�globalpop�africa�app-2.php3),
however, there have been unprecedented human settling pattern
and land-use changes (45, 46). More families have settled in these

Table 4. Sensitivity analyses of the effects of climate variability on malaria outpatient numbers in the East African highlands

Site

Average climatic conditions 1961–1990
Scenarios of climate changes and resulting increases of malaria cases (in percentage)

in the month of June in relation to average climatic conditions

Monthly
maximum

temperature,
°C*

Monthly
minimum

temperature,
°C*

Monthly
rainfall,

mm*

Increase
temperature

by 1.0°C†

Increase
temperature

by 3.5°C†

Increase
rainfall by

22%

Increase
temperature by

1.0°C and rainfall
by 22%†

Increase
temperature by

3.5°C and rainfall
by 22%†

Alaba 25.86 10.73 117 9 33 22 34 62
Ziway 28.16 13.11 63 8 27 138 156 201
Kericho 27.10 10.33 227 37 129 94 151 295
Kilgoris 27.51 13.16 203 32 111 35 78 184
Eldoret 24.65 9.75 121 21 71 118 186 357
Nandi 27.51 12.03 203 95 332 6 122 411
Kabale 21.31 10.99 149 77 269 6 100 334

*Monthly maximum and minimum temperature and rainfall data presented in the table are for the months significantly correlated with the number of malaria
outpatients through the cross-correlogram analysis.

†Temperature increase refers to increase in both maximum and minimum temperature.
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less desirable areas and thus have dramatically increased malaria
reservoir size. Land-use changes have created more mosquito
breeding sites and have changed the water chemistry and temper-
ature of mosquito larval habitats so that mosquito larval develop-
ment is accelerated and survivorship increased (25, 47). They have
also altered the microclimate of the adult mosquitoes and acceler-
ated malaria parasite development (25). When the ambient tem-
perature and rainfall is suitable for a short period, mosquito
population size and parasite sporogonic development rates, and
thus, mosquito vectorial capacity (48), increase rapidly. People
living in the valleys receive more infective bites under such ambient
conditions, but only a small proportion of residents, particularly
young children, develop symptomatic malaria because of their
functional immunity. An epidemic arises when people living uphill
are being infected by malaria parasites through locally bred mos-
quitoes or mosquito dispersal; because they lack functional immu-
nity, they are very vulnerable to malaria infection and often develop
symptomatic or even severe malaria. Human mortality is increased
when drug resistance, inadequate administration of drugs, failure to
seek treatment or delayed treatment of malaria patients, and HIV
infections in the human population become increasingly prevalent
(9, 15, 22, 49, 50).

Our model postulates that climatic condition is one crucial factor
in initiating an epidemic, but topography, human settlement pat-
tern, land use, and drug resistance are also important. Climate
conditions influence the development, reproduction, and survivor-
ship of anopheline mosquitoes and malaria parasites. Topography
and human settlement patterns affect the spatial distribution of
mosquitoes and susceptible and immune human populations. Land-
use changes can cause the environmental conditions to be more
favorable for the development and reproduction of mosquitoes and

parasites. Drug resistance aggravates malaria case fatality after an
epidemic is initiated. Our model predicts that, in the highlands,
most severe malaria cases during an epidemic come from uphill
human populations that have not been regularly exposed to malaria
infection. The model, if validated by epidemiological and entomo-
logical data, suggests several potential approaches for preventing or
controlling malaria epidemics in the highlands. For example, tar-
geted control of malaria vectors, using larvicides at the larval stage
and using adulticides at the adult stage, in the valleys and basin-like
depressions in a plateau may be a cost-effective approach to reduce
malaria transmission. Malaria transmission in the valley can be
further reduced if insecticide-based mosquito control is combined
with elimination of larval habitats through appropriate land-use
management.

The development and implementation of malaria early warning
systems is advocated by the Roll Back Malaria project led by the
World Health Organization (51, 52). One main aim of malaria early
warning systems is to determine the timing of when an epidemic will
occur so that timely responses to prevent and contain malaria
epidemics can be formed. Despite high spatial variability in the
sensitivity of the number of malaria outpatients to climate fluctu-
ation, our results suggest that development of reliable malaria early
warning systems in the highlands is possible if we take into
consideration case surveillance data, temperature and rainfall
climate variability, and other factors underlying the observed spatial
variability.
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