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In Brief
In bottom-up mass
spectrometry, quantified protein
groups can contain several
genes. Based on 14 diverse
proteomics datasets, we show
that selecting only one gene to
represent each group has little
impact on GO-term enrichment,
but authors should report what
gene is selected for full
transparency. We also show that
single-gene selection strongly
affects network analysis. Thus,
we present the Cytoscape app
Proteo Visualizer that retrieves
STRING networks using protein
groups as input to visualize and
analyze MS-based proteomics
data.
Highlights
• Bottom-up proteomics data sets contain protein groups with multiple genes.• Selecting one gene per protein group has an impact on functional analysis.• Protein group representative genes need to be reported for GO term enrichment.• Single-gene selection strongly impacts network visualization and analysis.• Proteo Visualizer is a solution for STRING networks and protein groups in Cytoscape.
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RESEARCH
Functional Analysis of MS-Based Proteomics
Data: From Protein Groups to Networks
Marie Locard-Paulet1,2,3,*,‡ , Nadezhda T. Doncheva1,‡ , John H. Morris4, and
Lars Juhl Jensen1,*
Mass spectrometry-based proteomics allows the quanti-
fication of thousands of proteins, protein variants, and
their modifications, in many biological samples. These are
derived from the measurement of peptide relative quanti-
ties, and it is not always possible to distinguish proteins
with similar sequences due to the absence of protein-
specific peptides. In such cases, peptide signals are re-
ported in protein groups that can correspond to several
genes. Here, we show that multi-gene protein groups have
a limited impact on GO-term enrichment, but selecting
only one gene per group affects network analysis. We thus
present the Cytoscape app Proteo Visualizer (https://apps.
cytoscape.org/apps/ProteoVisualizer) that is designed for
retrieving protein interaction networks from STRING using
protein groups as input and thus allows visualization and
network analysis of bottom-up MS-based proteomics data
sets.

Nowadays, protein relative quantities can routinely be
measured across samples using high-throughput mass
spectrometry (MS). Classically, proteins are digested into
peptides before MS analysis, often using trypsin for what is
called bottom-up MS analysis, or shotgun proteomics when
performed on a complex cell lysate (1, 2). Protein quantities
are then inferred from their peptides’ MS signal (i.e., protein
inference) (3, 4). Not all peptides are equally detectable by MS,
and enzymatic digestion can lead to loss of sequence
coverage. Furthermore, aggregating peptide signals at the
protein level remains a challenge, since peptides can be
shared between proteins.
When one lacks peptide-level evidence to determine which

proteins are present in a sample, it is usual to report protein
groups that can be composed of one or several protein ac-
cessions. These gather all the protein accessions that cannot
be distinguished based on the peptides detected in a given
experiment. Usually, this is done using the parsimony rule (or
Occam’s razor) that returns the minimal list of proteins
From the 1Novo Nordisk Foundation Center for Protein Research, Univers
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nationale de protéomique, ProFI, FR 2048, Toulouse, France; 4Reso
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sufficient to explain all observed peptides. Such an approach
is used by default in most of the MS analysis tools where a
single accession can only be in one protein group. Less
frequently, all possible protein groups explained by the iden-
tified peptides can be listed in the final output, which can be
useful for the specific analysis of proteoform variants, but
results in accession redundancy that should be handled
carefully for downstream functional analysis. Most software
suites offer multiple options, allowing the users to choose the
most suitable strategy for their data.
Regardless of how protein inference is performed, the na-

ture of the protein groups obtained from a given shotgun
experiment depends on the sample quality, the sensitivity of
the experimental pipeline (and instrument), and the redun-
dancy of the protein database used to match tandem-MS
spectra to peptide sequences. Using well-curated pro-
teomes such as the UniProt/SwissProt human proteome often
results in only a few protein groups with more than one
accession, whereas less-well-studied proteomes containing
multiple proteins with similar sequences results in larger pro-
tein groups (where “larger” means more accessions per pro-
tein group). This is a bottleneck in the analysis of experiments
where the input material is limited, such as single-cell prote-
omics. There is no agreement on how to handle protein
groups for downstream analysis such as functional enrich-
ment and protein–protein interaction networks. The methods
sections of manuscripts very rarely describe how protein
groups were handled for analysis that requires a single
accession per feature. Most of the time a single accession per
group is selected, but which accession and how it is selected
is rarely reported. The impact of choosing one protein (or
gene) over another on functional analysis is not known,
making it difficult to assess what bias single-accession se-
lection can generate on proteomics results.
Here, we investigate the protein groups identified in 14 high-

throughput proteomics data sets. We show that different
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From Protein Groups to Networks with Proteo Visualizer
accessions in the same protein group usually have similar
sequences but may not have the same functional Gene
Ontology (GO) annotation(s). Our work also reveals that
downstream functional analysis such as GO-term enrichment
and biological network analysis can be impacted by which
single protein accession is selected as input to the analysis.
Although GO-term enrichment is quite robust when analyzing
global proteomics data sets, the selection of a single gene in a
protein group has a strong impact on network generation.
Hence, we propose the new Cytoscape app Proteo Visualizer
that allows the retrieval of STRING networks from a list of
protein groups, their visualization, and functional analysis.
EXPERIMENTAL PROCEDURES

Data Retrieval and Parsing

All the information about the data sets used in this study can be
found in Supplemental Table S1. We worked with the Supplemental
data associated with the publications, which were retrieved from the
publisher websites or the associated ProteomXchange data re-
positories (5).

Identifier Mapping: From UniProt Accession to Unique Gene
Identifier

For each UniProtKB accession in the selected data sets, the cor-
responding protein sequence was retrieved from the UniProt Archive
UniParc (6). Only in four of the data sets, there were a few missing
sequences (1 in Guo human, 1 in Mund human, 5 in Martinez Val
human, and 36 in Garcia-Puig zebrafish). For each species, all protein
sequences were retrieved from STRING v11.5 (7) and used as a
database for blasting the data set sequences using the following
parameters: max_target_seqs=3, max_hsps=1, evalue=1e-2, and
outfmt=6. For each UniProtKB accession, the best match(es) in
STRING were identified as those with sequence identity > 90%. If
more than one sequence fulfilled these criteria, we applied the
following filtering criteria until only one sequence was left: max(iden-
tity), min(evalue), max(bit.score), min(Ensembl gene ID), where the
Ensembl gene identifiers were extracted from the STRING aliases file
for each species. See Supplemental Table S1 for a full overview of the
identifier-matching numbers. For phosphoproteomics data sets
(Martinez-Val et al., 2021 (mouse phosphoproteomics (8)) and Locard-
Paulet et al. (9)), we used the field “Proteins” of the site tables from
MaxQuant. The other phosphoproteomic data set was analyzed with
Spectronaut v14, and it was not clear what was reported in the field
“PG.ProteinGroups” of the Supplemental Table S1.

Gene Product Sequence Similarity

Homology scores, also referred to as bit scores, were retrieved from
STRING v11.5 (7) for all pairs of genes in each of the species of in-
terest. All missing bit scores were replaced by the minimum bit score
for a given species (minimum pairwise similarity value). To correct for
differences in sequence length, each gene pair bit score was divided
by the minimum value of the two corresponding self bit scores (min(bit
score gene1 versus gene1, bit score gene2 versus gene2)) to obtain
self-normalized bit scores.

Gene Functional Similarity

The GO-term annotations from STRING v11.5 were used to
calculate the gene ontology similarity as follows. For each GO term t,
its information content was calculated as ic(t) = −log(p(t)), where
2 Mol Cell Proteomics (2024) 23(12) 100871
p(t) = freq(t)/freq(root) and freq(t) = ∣annot(t)∣ + ∑c∈children(t) ∣annot(c)∣.
The GO hierarchy was defined based on the Obo file used for STRING
v11.5. Then, for each pair of proteins i and j, two measures were
calculated as described by Jiang et al. (10). The remaining uncertainty
ru and the missing information mi are defined as ruij = ∑t ic(t) ⋅ 1 (t ∕∈ Pi

∧ t ∈ Pj) and miij = ∑t ic(t) ⋅ 1 (t ∈ Pi ∧ t ∕∈ Pj), where Pi and Pj are the
sets of GO terms for proteins i and j, respectively. The overall
normalized distance score is given by sij = sqrt(ruij

2 + miij
2)/∑t ic(t) ⋅ 1

(t ∈ Pi ∨ t ∈ Pj). The functional similarity was reported as (1 − sij).

Gene Set Enrichment Analysis

All the GO-term analyses were performed with the GO-term anno-
tation files from STRING v11.5 (7). We randomly selected one gene for
each protein group (selection performed 10 times, see Supplemental
Table S2 and the Zenodo repository for gene sampling tables and
enrichment results), and used the GSEA function in R (package
clusterProfiler, using the default option by = “fgsea”). We used two
gene ranking strategies: by decreasing log2-transformed fold change,
and by decreasing sign-logged p-value (−log10(p-value) with the sign
of the log2(fold change), using decreasing absolute fold change for
equal p-value). BH-adjusted p-values resulting from the GO-term
enrichment were considered significant when ≤ 0.05. “2i” corre-
sponds to the combination of two inhibitors as described in (11):
CHIR99021 and Mirdametinib.

Network Analysis

For each data set, STRING networks were retrieved for all gene
identifiers using confidence cutoffs of 0.4, 0.7, and 0.9 for functional
associations (full STRING network). In the resulting networks, genes
belonging to the same protein group were annotated as such in order
to determine the number of connections between genes in different
protein groups. These numbers were used to calculate the probability
of the protein groups being connected in a STRING network. Spe-
cifically, for protein group a and protein group b, we determined the
number of edges eab that connect the two groups given a predefined
STRING confidence cutoff. The size of each protein group was set to
the numbers of protein group members na = |a| and nb = |b|. The final
probability of an edge to exist between the two groups is calculated as
pab = eab/(na * nb).

Proteo Visualizer App for Cytoscape

The app is implemented in Java under the BSD 2-Clause “Simplified”
open source license (https://spdx.org/licenses/BSD-2-Clause.html) and
the source code is hosted on github (https://github.com/scaramonche/
ProteoVisualizer). The app is available for users at the Cytoscape app
store: https://apps.cytoscape.org/apps/ProteoVisualizer.

Proteo Visualizer relies on the Cytoscape stringApp for retrieving
networks from the STRING database (12) as well as the built-in
Cytoscape CyGroups functionality for the creation and maintenance
of the group nodes. In accordance with other Cytoscape apps, the
main functionality is also available via commands and can be auto-
matically executed from R or Python via the Cytoscape automation
interface (13).

Currently, the app works as follows. Given a list of protein groups
and user-defined settings for STRING (confidence cutoff, network
type, and species), a network for all genes matched to the accessions
is retrieved, keeping track of which nodes belong to which group.
Then, genes that belong to more than one protein group are dupli-
cated and the duplicated nodes are connected by an edge (with type
identity). In the next step, protein group members are assigned to a
CyGroup, a representative protein is chosen to be used for enrich-
ment, and all groups are collapsed. Finally, all node and edge

https://spdx.org/licenses/BSD-2-Clause.html
https://github.com/scaramonche/ProteoVisualizer
https://github.com/scaramonche/ProteoVisualizer
https://apps.cytoscape.org/apps/ProteoVisualizer


From Protein Groups to Networks with Proteo Visualizer
attributes are aggregated depending on their type and the size of the
protein groups they belong to.

For the nodes that are part of collapsed protein groups, all numeric
attributes such as COMPARTMENTS and TISSUES confidence
scores are averaged over the members of each protein group.
Selected textual attributes including the canonical UniProtKB identi-
fier, display name, the list of known PDB structures, and develop-
mental level and family information from Pharos are concatenated. In
addition, whenever a protein group is collapsed, all edges connecting
its members to other proteins or protein groups are replaced by one or
multiple meta edges. The corresponding edge scores are summed up
over all existing edges and divided by the number of all possible edges
that could connect this protein group with another protein or protein
group. For easy reference, the number of existing and possible edges
between protein groups are saved as attributes in the Cytoscape Edge
table and can be looked up there. The final STRING network might
contain edges with confidence scores that are below the user-
specified cutoff. Therefore, such edges are highlighted in the
network view by using dashed edge lines.

Although a collapsed group node looks like any other STRING
node, it can be uncollapsed, which leads to all its members and
corresponding edges being displayed in the network view with a semi-
transparent box behind them to indicate that they belong together
(referred to as compound node visualization). In order to ensure
compatibility with stringApp and general data import in Cytoscape,
each protein group accession composition is stored in the query term
column of the collapsed group node in the Node table, while each
group member’s query term value is set to the accession used to
retrieve it. The representative node for each group, which is used for
enrichment analysis and network expansion with stringApp, is set by
default to the first accession in the protein group but can be changed
by the user later on.

Proteo Visualizer can also work with Omics Visualizer to combine
the protein groups with time series or post-translational modification
data sets. In such a case where protein group members can be
assigned different information than the protein group, it is recom-
mended to switch from the compound node visualization to show
group node visualization of the expanded groups, which displays all
group members and the group itself as separate nodes. The node
attribute protein group can be used to keep track of which nodes
belong together as being part of the same group.
RESULTS

Data Sets Description

To evaluate the impact of protein groups on downstream
functional analysis, we selected 14 publicly available data sets
with different types of proteomics data (see Supplemental
Table S1 for their full description). These were chosen to
cover a large range of samples (bulk proteomics, phospho-
proteomics, single-cell proteomics), sample preparation stra-
tegies (single injection or fractionated peptide samples, label-
based or label-free quantification), instruments (a timsTOF
from Bruker, and orbitrap instruments from ThermoFisher
Scientific), and methods (including data-independent and
data-dependent acquisition) (8, 9, 14–23). All the analyzed
samples are tryptic digests, but their depth, peptide coverage,
and the quality of the seven species proteome annotation vary
in ways that impact their protein group composition.
Throughout the manuscript, we call “protein groups” all the

accessions or groups of accessions quantified in the data sets
with the same set of peptides. It varies between studies
whether protein groups include all possible accessions within
each group or only the most probable protein(s) based on the
entire set of detected peptides in a given sample. Many pro-
teomics software tools offer multiple options. For two of the
data sets (Martinez-Val et al., 2021 mouse proteomics (8); and
Guo et al., 2022 (23)), we compared three strategies described
in the largely used MaxQuant software, which report:

1. “Protein IDs”: All the identifiers of proteins contained in
the protein group. They are sorted by decreasing number
of identified peptides. In other words, these include all
protein identifiers that match the set of peptides corre-
sponding to the protein group.

2. “Majority Protein IDs”: Identifiers of those proteins that
have at least half of the peptides that the leading protein
group has (see below).

3. “Leading Proteins”: proteins containing the highest
number of peptides in a given group. In case of a tie,
multiple accessions are reported.

For the other data sets analyzed with MaxQuant, we used
the “Majority Protein IDs”, which are most commonly used in
the literature. For the data sets analyzed with other software
tools, we used the protein accession groups reported by the
authors (Fig. 1). In phosphoproteomics data sets, output ta-
bles report one row per phosphorylated peptide with a
sequence that may be found in several proteins, the acces-
sions of which make up a protein group.
For each protein group retrieved from the Supplemental

data, we matched the corresponding STRING gene identifiers
based on sequence similarity to the reported accessions (see
Experimental Procedures). The proportion of single- and multi-
gene protein groups is very different depending on the data
set and the accession reporting strategy (Fig. 1). For example,
in Choi et al. (16), where the amount of material was limited (rat
tendons), 19.6% of the protein groups matched more than
one gene (multi-gene protein groups). As expected, this pro-
portion was reduced in deep proteomes of well-studied or-
ganisms such as the mouse proteome of Martinez-Val et al. (8)
where it was 1.8% (based on “Majority Protein IDs” in both
cases). The duck liver proteome (Lo et al.) (20) did not contain
any multi-gene protein group. It is thus absent from the next
figures of this paper.
Protein Sequence Similarity Within Protein Groups

Genes within the same protein group share peptide se-
quences present in all of them, so we expect a high level of
sequence similarity between them. Figure 2 presents the pair-
wise sequence similarity of all the gene pairs in the proteomes
used for the 13 data sets containing multi-gene groups (blue
bars). As expected, for the distribution of only the gene pairs
that are in the same group, the sequence similarity increases
(red bars), although some protein groups present a low mean
sequence similarity (Supplemental Fig. S1).
Mol Cell Proteomics (2024) 23(12) 100871 3
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From Protein Groups to Networks with Proteo Visualizer
The pairwise gene sequence similarity within protein
groups increases when reporting “Majority Protein IDs” and
“Leading Proteins” because these only contain the acces-
sions matching the highest number of peptides.
Conversely, in phospho-enriched data, the pairwise
sequence similarity within groups decreases because
groups are defined by one, or a very limited number of
peptides containing a given phosphorylation site. Thus, the
gene products belonging to the same protein groups are
less similar, and this is amplified when using large prote-
ome databases such as TrEMBL. The selected data sets
contain two phosphoproteomics analyses of mouse
4 Mol Cell Proteomics (2024) 23(12) 100871
samples: Martinez-Val et al. (mouse phosphoproteomics
(8)) and Locard-Paulet et al. (9). In the first one, the authors
used a fasta file that contained 43,539 sequences,
including cleaved proteins and gene isoforms having some
very similar sequences (UniProtKB/TrEMBL). Locard-Paulet
et al. took a different approach since they used only the
reference accessions of the UniProtKB/Swiss-Prot mouse
database (16,699 sequences). This explains why the
numbers of accessions per group are different between
these two data sets (Fig. 1), as well as why the mean
pairwise sequence similarity within protein groups differs
(Supplemental Fig. S1).
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From Protein Groups to Networks with Proteo Visualizer
Other factors can impact how similar gene sequences in the
same groups are, such as the depth of the analysis, differ-
ences in sample preparation, and different filters applied to
phospho-localization score, to name a few. These all influence
the peptide group composition by impacting the number of
unique peptides per group, which ultimately affects the
Mol Cell Proteomics (2024) 23(12) 100871 5



From Protein Groups to Networks with Proteo Visualizer
presence of dissimilar gene products gathered in the same
protein group.

Functional Similarity Within Protein Groups

Many resources exist that provide gene functional
annotation coming from experimental evidence or predic-
tion algorithms based on many parameters including
sequence similarity, text mining, or co-expression (24, 25).
They are often used when analyzing omics data sets, but
cannot be directly mapped to protein groups. This raises
several questions, such as how similar the annotated
functions attributed to genes in the same group are, and if
one can use the functional annotation of one gene to
represent its protein group. We calculated pairwise GO-
term annotation similarity (i.e. “functional similarity”) for all
FIG. 3. Pairwise gene functional similarity. Distribution of pairwise ge
proteins detected in each data set (blue) and in the pairs belonging to th
function; “BP” = biological process; “CC” = cellular component) in the da
did not contain any multi-gene protein group. Two genes with no annota
plots do not have the same vertical axis.

6 Mol Cell Proteomics (2024) 23(12) 100871
genes in the proteomes selected for the study (in blue in
Fig. 3). Globally, pairwise functional similarity was slightly
lower for molecular function (MF) than for cellular compo-
nent (CC) and biological process (BP). For all data sets and
GO types, gene pairwise functional similarities were shifted
to higher values when focusing on gene pairs in the same
protein group (red bars in Fig. 3), indicating more similar
functional annotations. This can be due to functional an-
notations predicted based on sequence similarity since
genes in the same group have higher sequence similarity
(Fig. 2). Most of the genes in the same protein group have a
functional similarity of 1, which corresponds to the exact
same set of GO terms. It is worth noting that we considered
a gene with no annotation as totally similar to another gene
without annotation (functional similarity = 1) because two
ne GO-term annotation similarity (i.e., functional similarity) in the set of
e same protein group (red) for the three GO types (“MF” = molecular
ta sets presented in Fig. 1. Lo et al., 2020 (20) was excluded because it
tion have a functional similarity of 1. Note that for greater legibility, the
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genes without annotation will have the same impact on GO-
term enrichment analysis.
Figure 3 shows that pairwise functional similarity between

genes of different proteomes depends on the species—which
can be more or less annotated—and the redundancy in the
database (TrEMBL versus UniProtKB/Swiss-Prot). Within
pairs, the pairwise functional similarity is further impacted by
the strategy chosen for protein group reporting (leading pro-
tein identifiers, majority protein identifiers, or all) and the
deepness of the analysis (see Supplemental Fig. S2 for the
mean pairwise functional similarity per protein group).

Functional Analysis Using GO-Term Enrichment

GO-term enrichment is often performed to discuss prote-
omics results. It calculates the probability for a given GO term
to be over-represented in a subset of regulated genes. GO-
term annotation is available per gene, and there is no agree-
ment on how to combine gene-level annotation with protein
groups, so one has to select a single gene per protein group to
perform the analysis. Manuscripts’ Experimental Procedures
sections hardly ever describe how these single genes are
selected, which lacks transparency and impedes
reproducibility.
We observed that genes in the same protein group may not

have the same functional annotation, which implies that
selecting a single gene (or another) per protein group might
have an impact on downstream functional analysis. To eval-
uate this, we performed gene-set enrichment analysis (GSEA)
several times using different genes as protein-group repre-
sentatives and compared the outputs. We worked with the
proteomics data sets of Martinez-Val et al. (mouse prote-
omics, 2021 (8)) and Guo et al. (23) to evaluate the impact of
protein group reporting on GO-term enrichment results. In
both cases, we used comparisons from the original publica-
tions: the effect of 2-day treatment with Mek1/2 and Gsk3
inhibitors on the mouse embryonic stem cell proteomes
(labeled “2i” based on Fig. 1 of Martinez-Val et al.; see
Experimental Procedures for more information); the compari-
son of human oocyte proteomes after in vivo maturation (IVO)
with the proteome of germinal vesicles (GV) for Guo et al..
GSEA requires ranking the genes based on the amplitude of

their regulation, or its significance. We ranked them by fold
change or by signed log-transformed p-value (the sign cor-
responding to the direction of the regulation: up and down
being positive and negative, respectively) when comparing
two conditions. Each analysis was performed 10 times,
randomly selecting one gene per protein group, and we
calculated for each GO-term the proportion of draws for which
it presented a GSEA q-value ≤0.05, which is very often used
as the cutoff in the literature.
Figure 4 shows the distribution of the proportion of itera-

tions where each GO-term passed the enrichment threshold.
Not all GO terms were enriched 100% of the time, so single-
gene selection for protein groups has an impact on the
GO-term enrichment results. Nevertheless, this impact is very
mild in the classic use case of global proteomics using ma-
jority or leading protein accessions to report protein groups
(Fig. 4A). In all cases, the proportion of times a GO-term is
significantly enriched correlates with the significance of
enrichment in each iteration and the median −log10(q-value) of
all iterations (Supplemental Fig. S3A; results for majority pro-
tein accessions), which indicates that when considering the
top regulated GO-terms, protein group single-gene selection
has little impact.
Data sets with more multi-gene protein groups, such as the

single-cell proteomics data from Guo et al. show less repro-
ducibility (Fig. 4B), and in such cases, it is advisable to
perform enrichment with several iterations of protein group
single-gene selection to identify the GO-terms consistently
enriched. In all cases, researchers should provide the list of
single genes selected per protein group in such analysis for
full transparency.

Impact of Protein Grouping on Protein–Protein Interaction
Networks

Like GO-term annotation, protein–protein interactions (or
functional associations) are reported at the gene level in most
if not all databases. It is common practice to use only one
accession per protein group to generate a network. This has
the obvious disadvantage that the resulting network only
contains the single genes picked for each group: even if
several genes have the same number of quantified shared
peptides, only one will be present in the network and re-
searchers may miss relevant nodes. Consequently, one may
also miss relevant connections between nodes.
We sought to estimate the impact of single-gene picking on

the protein–protein interaction networks generated from MS-
based proteomics data by retrieving functional associations
from the STRING database (7). For each data set in this study,
we calculated the probability for two protein groups to be
connected in a network based on the number of STRING
edges connecting each pair of genes from the groups divided
by the number of all possible edges that could connect the
two protein groups (Fig. 5). For completeness, we performed
the analysis using three different confidence score cutoffs for
functional associations from STRING, namely 0.4, 0.7, and 0.9
(see Supplemental Fig. S4 for scores 0.4 and 0.9).
Although many protein group pairs are always connected

irrespective of which group member would be chosen to
represent the group (probability peak at 1), the results
consistently show that a large portion has 0.5 or less proba-
bility of appearing in a network created after the selection of
one gene per protein group. Since the “probability of protein
groups being connected” directly depends on the number of
genes in each protein group, we observe distinct peaks at 0.5,
0.33, or 0.67. These values represent pairs of protein groups
where one group has only one member and the other group
has either two or three members, with at least one being
Mol Cell Proteomics (2024) 23(12) 100871 7



Number of GO terms enriched in minimum one of the 
iterations with a q-value ≤ 0.05

FC sign-log

10 20

4020 60 25 50 75 100

20

30 4010 20 50 6030 90

40 60 80

All accessions

Majority Protein 
accessions

Leading 
accessions

0.2
0.4
0.6
0.8

1

0.2
0.4
0.6
0.8

1

0.2
0.4
0.6
0.8

1

Pr
op

or
tio

n 
of

 d
ra

w
s 

w
he

re
 a

 g
iv

en
 G

O
 te

rm
 p

as
se

s 
th

e 
th

re
sh

ol
d

Guo et al. (single-cell proteomics)BA

Number of GO terms enriched in minimum one of the 
iterations with a q-value ≤ 0.05

FC sign-log

Pr
op

or
tio

n 
of

 d
ra

w
s 

w
he

re
 a

 g
iv

en
 G

O
 te

rm
 p

as
se

s 
th

e 
th

re
sh

ol
d

200 400

200 400 250 500 7501000

400200 600 500 1000

800400

All accessions

Majority Protein 
accessions

Leading 
accessions

0.2
0.4
0.6
0.8

1

0.2
0.4
0.6
0.8

1

0.2
0.4
0.6
0.8

1

Martinez-Val et al. (mouse proteomics)

FIG. 4. Robustness of GSEA results depending on what gene is selected per protein group. The proportion of times a given GO term is
significantly enriched (q-value ≤0.05) after 10 random selections of single gene per protein group in the mouse proteomics data from Martinez-
Val et al. (A) or the single-cell proteomics data set Guo et al. (B). All GO-term types were combined. We ranked the protein groups per decreasing
log2-transformed fold change (“FC”) or signed log10(p-value) (“sign-log”) for GSEA analysis
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connected with the first group and one not. Indeed, ~90% of
all pairs considered for the analysis (pairs of protein groups for
which at least one protein group has more than one member)
consist of a protein group with only one member and a protein
group with more than one member. The appearance of distinct
peaks is thus a consequence of counting interactions; these
will not all have identical probabilities if we account for the
varying probabilistic confidence scores of the underlying in-
teractions from STRING. This is implemented in the Proteo
Visualizer app described in detail later.
Overall, this network analysis indicates that single-gene

selection has more impact on the network connectivity than
on functional enrichment, and this is the case for any strategy
chosen for protein grouping.

Protein Group-Aware Network Analysis With Proteo
Visualizer

Based on the lack of consistency of how protein-group
members are connected in a network as shown for STRING
networks, we concluded that single-gene picking is not an
option for building protein networks from bottom-up MS-
based proteomics data. Thus, we developed a Cytoscape app
named Proteo Visualizer, which allows the generation of net-
works with nodes that represent protein groups and are
composed of several genes (Fig. 6). Although the current
8 Mol Cell Proteomics (2024) 23(12) 100871
version only supports STRING networks and is optimized to
seamlessly work with stringApp, future versions of the app will
be agnostic to the source of the network and work on user-
generated data such as affinity purification-mass spectrom-
etry (AP-MS) or networks retrieved from IntAct (26) or Gene-
Mania (27).
The main idea behind the Proteo Visualizer app is that users

can provide a list of protein groups instead of single acces-
sions as input to the network query. The app then uses this list
to retrieve a STRING network and to create a collapsed group
node for each protein group in the resulting network. Thereby,
all node and edge attributes are automatically aggregated
suitably depending on their type and meaning. The final
network has the look and feel of any other STRING network
and is compatible with stringApp’s functionality, in addition to
a few extra features. In particular, users can uncollapse any
group of their choice and explore the node information of the
individual members, which shows up as separate rows in the
Node table.
The node and edge attribute aggregation are designed such

that group nodes and edges connecting such nodes represent
an “average” of the information in the protein groups. For
example, numeric protein group attributes (tissue and sub-
cellular localization scores) are averaged over the values of all
group members. In the case of numeric edge attributes
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FIG. 6. Proteo Visualizer app overview. The app input dialog allows users to provide the protein groups (shown here) as well as to set the
STRING network retrieval options such as organism, network type, and confidence cutoff, which are needed for stringApp to retrieve the
network. The two network representations show the same network with two multi-protein groups, which can be visualized either as collapsed
(left) or expanded compound nodes (right). The visualized subset of nodes corresponds to regulated protein groups from Guo et al. (see Fig. 7).
The Node table exemplifies some of the information available in Cytoscape via stringApp for each protein group and its members. The rows
indicated with * are only shown when the protein groups are expanded.

From Protein Groups to Networks with Proteo Visualizer
(STRING evidence scores), the individual edge scores are
summed up and divided by all possible edges that could
connect the protein group members. This means that if an
edge is missing, its score is assumed to be 0 and influences
the final aggregated score of the protein group edge. As a
result of this aggregation strategy, some protein group edges
can have confidence scores that are lower than the confi-
dence cutoff specified when retrieving the network and thus
are represented as dashed edge lines.
In addition, the expanded group representation enables

users to break down the averaged group-level edges into the
individual interactions of the group members. For instance, in
the network shown in Figure 6, we can distinguish two cases
for the GTPases protein group NRAS;HRAS;KRAS: the Dual
specificity mitogen-activated protein kinase kinase 1
(MAP2K1) is connected with all group members, whereas the
Macrophage colony-stimulating factor 1 receptor (CSF1R)
10 Mol Cell Proteomics (2024) 23(12) 100871
only interacts with KRAS from this protein group. NRAS,
KRAS, and HRAS have a high sequence similarity and are
involved in the same signaling pathway, but only KRAS is
reported as part of the Reactome complex S-Farn-Me-PalmS
KRAS in the CSF1 signaling pathway. This explains why
CSF1R is only associated with KRAS (given a functional as-
sociation score threshold of 0.7). If HRAS or NRAS were
chosen as representative single genes for this protein group,
this information would be missing from the network.
To make Proteo Visualizer networks compatible with the

STRING visual style in Cytoscape as well as with performing
enrichment analysis via stringApp, each group node is repre-
sented by one of the protein group members. By default, this is
the first accession in the protein group, but the so-called group
representative can be changed by the user later on. Further-
more, the Proteo Visualizer networks are compatible with any of
the network clustering algorithms in clusterMaker2 (28) as well



FIG. 7. Network visualization with Proteo Visualizer and Omics Visualizer. A high-confidence STRING network (functional association
confidence score ≥0.7) was retrieved with Proteo Visualizer using as input the set of regulated protein groups reported by Guo et al. (23) and
used for the enrichment analysis in the previous section. Protein groups are shown as larger nodes and Omics Visualizer is used to map the log2-
transformed fold change values of the comparison of human oocytes after in-vivo maturation (IVO) or in-vitro maturation (IVM) with germinal
vesicles (GV) onto the nodes. Dashed edge lines indicate protein group edges that have lower aggregated confidence scores than the confi-
dence cutoff specified when retrieving the network.

From Protein Groups to Networks with Proteo Visualizer
as other Cytoscape apps such as Omics Visualizer (29), thus
allowing users to perform typical downstream analysis tasks
while keeping the full resolution of the proteomic groups
detected by MS-based proteomics data. This is exemplified in
Figure 7, where we show the network of regulated protein
groups from Guo et al. (23) together with the fold change values
resulting from the comparison of human oocyte proteomes
after in vivo maturation (IVO) and in vitro maturation (IVM) with
the proteome of germinal vesicles (GV). A quick how-to guide
describing the steps necessary to create such a visualization is
available at https://jensenlab.org/training/proteovisualizer/.
DISCUSSION

MS-based proteomics results rarely reach single gene res-
olution, and researchers analyze quantities of protein groups
instead of single gene products. From the analysis of 14
published proteomics data sets, we show that the presence
and number of multi-gene protein groups depend on the type
of sample and the set of protein sequences used for the MS
search. Deep proteomics data sets only contain a few multi-
gene protein groups, whereas single-cell proteomics, deep-
visual proteomics, and phosphoproteomics data sets
contain a high number of multi-gene protein groups. This
impacts downstream analysis, and multi-gene protein groups
need to be specifically handled when using gene annotation
and building networks.
Although most genes in the same group have similar gene

product sequences, their functional annotation can be
different. This does not impact much reproducibility of GO-
term enrichment when working with a reasonable number of
multi-gene protein groups but can become an issue when the
Mol Cell Proteomics (2024) 23(12) 100871 11
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proportion of such groups increases. Since the gene selected
for annotating the group impacts GO-term enrichment out-
puts, it is important to report what gene is selected to repre-
sent each group when publishing results. When working with
data containing many multi-genes protein groups (for example
when working with single-cell data or post-transcriptional
modifications), we advise performing several GO-term en-
richments after random selection of one gene per protein
group and consider the GO terms that are reproducibly
enriched as strong candidates.
In this work, we show that the selection of a single gene

from each protein group has a strong impact on the network
built from a given data set. Picking one gene per protein group
can lead to two levels of information loss: 1) potential genes of
interest are removed by keeping only one gene per group; 2)
connections between nodes can be lost because all genes do
not have the same level of protein-protein association anno-
tation. Thus, we propose the Cytoscape app Proteo Visualizer,
which allows the creation of STRING networks of protein
groups and their visualization in Cytoscape. With this appli-
cation, one can build networks that contain all the genes that
can be present in a data set, grouping the ones that cannot be
unambiguously distinguished based on their detected pep-
tides. It is designed to easily visualize proteomics data con-
taining many protein groups, such as single-cell proteomics
data, and can be used in combination with other Cytoscape
apps for downstream analysis.
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