UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Automatic Generation of Test-Cases for Software Testing

Permalink
https://escholarship.org/uc/item/45j0n0q5

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 18(0)

Authors
McGraw, Gary
Michael, Christoph

Publication Date
1996

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/45j0n0q5
https://escholarship.org
http://www.cdlib.org/

Automatic Generation of Test-Cases for Software Testing

Gary McGraw and Christoph Michael
Reliable Software Technologies C'orporation
21515 Ridgetop Circle, Suite 250
Sterling. VA 20166

{gem,cemich}@rstcorp.com

Introduction

In software testing, one is often interested in judging how
well a series of test inputs tests a piece of code — the
main idea being to uncover as many faults as possible
with a potent set of tests. Unfortunately, it is almost
impossible to say quantitatively how many “potential
faults” are uncovered by a test set, not only because of
the diversity of the faults themselves, but because the
very concept of a “fault™ is only vaguely defined (Fried-
man & Voas, 1995). This has lead to the development
of test adequacy criteria, criteria that are believed to
distinguish good test sets from bad ones. When a test
adequacy criterion has been selected, the question that
arises next is how one should go about creating a test
set that is “good” with respect to that criterion. That
question is the topic of this abstract.

We are specifically concerned with adequacy criteria
that require certain features of a program’s source code
to be exercised. A simple example would be a criterion
that says, “Each statement in the program should be
executed at least once when the program is tested.” Test
methodologies that use such criteria are usually called
coverage lests, hecause certain features of the source code
are to be “covered” by the tests.!

The example given above describes statement cover-
age, which is a coverage criterion not in general use.
The simplest coverage criterion that 2s used in practice is
branch coverage. This criterion requires that every con-
ditional branch in the program must be taken at least
once. For example, to obtain branch coverage of the code
fragment:

if (a >= b) { do one thing }

else { do something else }
requires one program input that causes the value of the
variable a to be greater than or equal to the value of b,
and another that causes the value of a to be less than
that of b. One effect of this requirement is to ensure that
the “do one thing” and “do another thing" sections of
the program are hoth executed.

There is a hierarchy of increasiu(fl_v complex coverage
criteria having to do with the conditional statements in

"There is no reason to believe that the methodology de-
scribed in this abstract will not work for other kinds of ade-
yuacy criteria as well, but certain flavors of coverage testing
are of immediate interest because the Federal Aviarion Ad-
ministration requires that safety-critical aviation software be
tested with inputs satisfving multiple condition coterage. a
particular type of coverage test.

B11

http://www.rstcorp.com

a program. At the top of the hierarchy is multiple con-
dition coverage. which requires the tester to ensure that
every permutation of values for the boolean variables in
a COIldl[lOll occurs at IER‘F'. once.

With any of these coverage criteria, the question arises

of what to do when a test set fails to meet the chosen
criterion. Often, the next step is to try to find a test set

that does satisfy the criterion, but this can be quite dif-
ficult because the condition to be covered may be deeply
nested in the code, and it is necessary, in essence, to ex-
ecute the program backwards in order to discover which
inputs will cause the criterion to be met. For instance,
in the branch coverage example given above, it might
be necessary to find a set of inputs that cause a to he
less than b. It is easy to demonstrate that finding a set
of tests that satisfy multiple condition coverage (as well
as most other coverage criteria) is equivalent to solving
the halting problem; there is no algorithm that can per-
form this task successfully in all cases. We suggest that
a heuristic approach may hold promise.

In particular, we are mvestigating the application of
case based reasoning (CBR) to the automatic generation
of test cases by applying a set of pre-fabricated tweaks to
user-defined test-cases (Kolodner, 1993; Turner, 1992).
Preliminary work is focused on understanding what
strategies human testers resort to when confronted with
an initiallyv-poor test set. Research into these methods
will guide the creation of a set of tweaks that could in-
principle impart a modicum of creativity to a test-set—
generation program (Schank & Leake, 1989).

As part of test-case generation. our research effort
must by necessity concentrate on tracing backwards
through a program. In the example above, for instance,
our program is required to automatically devise a way
of making sure that a turns out to be less than b in at
least one test case. \We are also focusing on capturing
the inherent “structure” of test cases. ('BR should prove
especially apropos to this aspect of the task.

References

Friedman. M. and Voas. 1. (1995). Software Assessment:
Reliability. Safety. Testability. New York, NY: John
Wiley & Sons.

Ixolodner, J. (1994). Case-Based Reasoning. San NMateo.
CA: Morgan Kaufman Publishers.

Schank, R. and Leake. D. (1989). Creativity and learn-
ing in a case-based explainer. Artificial Intelligence,
40(1-3).353-333.

Turner, S. (1092). MINSTREL: A Computer Model
of Creativiry and Storytelling. Doctoral dissertation.
Los Angeles: UCLA.


http://whh.rstcorp.com
http://pronii.se
http://ca.se

	cogsci_1996_811



