
University of California
Santa Barbara

Structural Defense Techniques in Adversarial

Machine Learning

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Can Bakiskan

Committee in charge:

Professor Upamanyu Madhow, Chair
Professor Ramtin Pedarsani
Professor Kenneth Rose
Professor Ambuj Singh

September 2022

The Dissertation of Can Bakiskan is approved.

Professor Ramtin Pedarsani

Professor Kenneth Rose

Professor Ambuj Singh

Professor Upamanyu Madhow, Committee Chair

September 2022

Structural Defense Techniques in Adversarial Machine Learning

Copyright © 2022

by

Can Bakiskan

iii

To my wife Laurel, my parents Emine and Faruk, and my sister Evrim

iv

Acknowledgements

First and foremost, I would like to thank my advisor, Professor Upamanyu Madhow,

for accepting me as a student, his support and patience with me throughout the years, his

technical expertise and willingness to guide me, and his understanding nature in difficult

situations. I consider myself lucky to have been your student. I want to also express my

gratitude for the members of my dissertation committee, Professors Ramtin Pedarsani,

Kenneth Rose and Ambuj Singh, for taking the time to review and help by giving their

constructive feedback.

I want to thank all past and present members of the Wireless Communication and

Sensornets Lab for helpful discussions and their friendship: Metehan Cekic, Ahmet Dun-

dar Sezer, Bhagyashree Puranik, Soorya Gopalakrishnan, Maryam Eslami Rasekh, Mo-

hammed Abdelghany, Lalitha Giridhar, Anant Gupta and Zhinus Marzi. I am especially

thankful to Metehan Cekic and Ahmet Dundar Sezer for many late night studies, Zoom

meetings, stimulating discussions and many collaborations.

I thank all my past teachers and instructors for their knowledge and enthusiasm to

teach me what they know. I would not be here if it was not for you.

Special thanks go to Army Research Office and National Science Foundation for the

financial support for part of my Ph.D. studies.

Last but not least, I want to thank my parents Emine and Faruk, my wife Laurel

and my sister Evrim from the bottom of my heart for their unconditional support during

challenging times.

v

Curriculum Vitæ
Can Bakiskan

Education

2022 Ph.D. in Electrical and Computer Engineering, University of Cali-
fornia, Santa Barbara, California, USA

2019 M.S. in Electrical and Computer Engineering, University of Cali-
fornia, Santa Barbara, California, USA

2017 B.S. in Electrical and Electronics Engineering, Boğaziçi University,
İstanbul, Turkey

2017 B.S. in Mathematics, Boğaziçi University, İstanbul, Turkey

Publications

1. Can Bakiskan, Metehan Cekic, Upamanyu Madhow. “Early Layers Are More
Important For Adversarial Robustness”, in International Conference on Machine
Learning (ICML) Workshop – New Frontiers in Adversarial Machine Learning, 2022

2. Metehan Cekic*, Can Bakiskan*, Upamanyu Madhow. “Layerwise Hebbian/anti-
Hebbian (HaH) Learning In Deep Networks: A Neuro-inspired Approach To Ro-
bustness”, in International Conference on Machine Learning (ICML) Workshop –
New Frontiers in Adversarial Machine Learning, 2022

3. Metehan Cekic*, Can Bakiskan*, Upamanyu Madhow. “Neuro-Inspired Deep
Neural Networks with Sparse, Strong Activations”, in IEEE International Confer-
ence on Image Processing (ICIP), 2022

4. Metehan Cekic, Can Bakiskan, Upamanyu Madhow, “Towards Robust, Inter-
pretable Neural Networks via Hebbian/anti-Hebbian Learning: A Software Frame-
work for Training with Feature-Based Costs”, in Software Impacts Journal, 2022

5. Can Bakiskan, Metehan Cekic, Ahmet Dundar Sezer, Upamanyu Madhow. “Sparse
Coding Front End for Robust Neural Networks”, in International Conference on
Learning Representations (ICLR) Workshop on Security and Safety in Machine
Learning Systems, 2021

6. Can Bakiskan, Metehan Cekic, Ahmet Dundar Sezer, Upamanyu Madhow. “A
Neuro-Inspired Autoencoding Defense Against Adversarial Attacks”, in IEEE In-
ternational Conference on Image Processing (ICIP), 2021

7. Can Bakiskan, Soorya Gopalakrishnan, Metehan Cekic, Upamanyu Madhow. “Po-
larizing Front Ends for Robust CNNs”, in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2020

vi

Abstract

Structural Defense Techniques in Adversarial Machine Learning

by

Can Bakiskan

Over the last decade, deep neural networks (DNNs) have become an increasingly

popular choice for researchers looking to take on previously unsolved problems. With

the popularity of these networks come concerns about their security and reliability. In

particular, DNNs have been shown to be vulnerable to carefully crafted perturbations

that make the networks yield incorrect outcomes while indicating high confidence in

those outcomes. There have been many defense mechanisms proposed to combat these

attacks, among which adversarial training and its variants have stood the test of time.

While adversarial training of DNNs yields state-of-the-art empirical performance, it does

not provide insight into the mechanism of robustness, or explicit control over the fea-

tures being extracted by the network layers. In this dissertation, we seek to address

these drawbacks by incorporating bottom-up structural blocks into DNNs, with the aim

of providing robustness and extracting interpretable features in a principled manner.

Specifically, we use guiding principles from signal processing, sparse representation the-

ory and neuroscience to design network components to incorporate robust features into

neural networks.

We begin by presenting an analysis of adversarial training that motivates and justifies

further research into shaping the earlier layers of neural networks. Through partial

adversarial training and perturbation statistics tracking, we show that early layers play

a crucial role in adversarial training.

We then focus our attention on front end based techniques, which process the input

vii

to reduce the impact of perturbations before feeding it to a DNN. In one technique,

we design and evaluate a front end which polarizes and quantizes the data. We ob-

serve that polarization and subsequent quantization eliminates most perturbations and

develop algorithms to learn approximately polarizing bases for data. We investigate the

effectiveness of the proposed strategy on simple image classification datasets. However,

it is more difficult to learn polarizing bases for more complex datasets. This motivates

the design of a front end based defense inspired by existing sparse coding techniques. We

construct an encoder that uses a sparse overcomplete dictionary, lateral inhibition and

drastic nonlinearity, characteristics commonly observed in biological vision, in order to

reduce the effects of adversarial perturbations.

Finally, we introduce a promising neuro-inspired approach to DNNs with sparser and

stronger activations. We complement the end-to-end discriminative cost function with

layer-wise costs promoting Hebbian (“fire together wire together”) updates for highly

active neurons, and anti-Hebbian updates for the remaining neurons. Instead of batch

norm, we use divisive normalization of activations to suppress weak outputs using strong

outputs, and L2 normalization of neuronal weights to provide scale invariance. Ex-

periments demonstrate that, relative to standard end-to-end trained architectures, our

proposed architecture leads to sparser activations, exhibits more robustness to noise and

other common corruptions, and demonstrates more robustness to adversarial perturba-

tions without adversarial training.

viii

The material in this dissertation is partly based on the following publications.

• Can Bakiskan, Metehan Cekic, Upamanyu Madhow. “Early Layers Are More

Important For Adversarial Robustness”, in International Conference on Machine

Learning (ICML) Workshop – New Frontiers in Adversarial Machine Learning,

2022

• © 2020 IEEE. Reprinted, with permission from Can Bakiskan, Soorya Gopalakr-

ishnan, Metehan Cekic, Upamanyu Madhow. “Polarizing Front Ends for Robust

CNNs”, in IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), 2020

• © 2021 IEEE. Reprinted, with permission from Can Bakiskan, Metehan Cekic,

Ahmet Dundar Sezer, Upamanyu Madhow. “A Neuro-Inspired Autoencoding De-

fense Against Adversarial Attacks”, in IEEE International Conference on Image

Processing (ICIP), 2021

• Can Bakiskan, Metehan Cekic, Ahmet Dundar Sezer, Upamanyu Madhow. “Sparse

Coding Front End for Robust Neural Networks”, in International Conference on

Learning Representations (ICLR) Workshop on Security and Safety in Machine

Learning Systems, 2021

• © 2022 IEEE. Reprinted, with permission from Metehan Cekic*, Can Bakiskan*,

Upamanyu Madhow. “Neuro-Inspired Deep Neural Networks with Sparse, Strong

Activations”, in IEEE International Conference on Image Processing (ICIP), 2022

ix

Contents

Curriculum Vitae vi

Abstract vii

List of Figures xiii

List of Tables xviii

1 Introduction 1
1.1 Deep Learning Revolution and Its Achilles’ Heel 1
1.2 Tale of Two Paradigms . 3
1.3 Dissertation Organization . 6

2 Background 7
2.1 Adversarial Attacks . 8

2.1.1 White-Box Attacks . 9
2.1.2 Black-Box Attacks . 13

2.2 Defenses . 14
2.2.1 Adversarial Training and Variants 15
2.2.2 Other Defenses . 16
2.2.3 Defense Evaluation and Gradient Masking: 17

3 Analysis of Adversarial Training 18
3.1 Layers’ Role in Adversarial Robustness 19

3.1.1 Introduction . 19
3.1.2 Setup and Definitions . 20

3.1.2.1 Partial Adversarial Training 20
Retraining Latter Layers 22
Retraining Earlier Layers 23
Retraining A Single Layer 24

3.1.2.2 Tracking Perturbations Across Layers 24
3.1.3 Experiments & Results . 25

x

3.1.3.1 Details . 26
3.1.3.2 Retraining Latter Layers 27
3.1.3.3 Retraining Earlier Layers 29
3.1.3.4 Retraining A Single Layer 31
3.1.3.5 Tracking Perturbations Across Layers 32

3.1.4 Discussion . 33
3.1.4.1 Limitations . 34

3.2 Statistical Differences in Parameters . 35
3.2.1 Statistics of Batch Norm Layers 35
3.2.2 Lp Norms of Convolutional Layers 38
3.2.3 Singular Value Distributions of Convolutional Layers 40

3.3 Conclusion . 43

4 Front End Based Defenses 44
4.1 Polarizing Front Ends for Robust CNNs 44

4.1.1 Introduction . 44
4.1.2 Related Work . 45
4.1.3 Polarizing Front End . 45

4.1.3.1 Implementing a Polarizing Front End 48
4.1.4 Experiments and Results . 51

4.1.4.1 Training Details . 51
4.1.4.2 Results and Discussion 53

4.1.5 Conclusions . 54
4.2 Sparse Coding Front End for Robust Neural Networks 55

4.2.1 Introduction . 55
4.2.2 Sparse Overcomplete Front End 58

4.2.2.1 Patch-Level Overcomplete Dictionary 59
4.2.2.2 Sparse Randomized Encoder 59
4.2.2.3 Sparse Encoder Without Randomization 62
4.2.2.4 CNN-based Decoder . 62
4.2.2.5 Ensemble Processing . 62

4.2.3 Evaluation . 62
4.2.4 Experiments, Results and Discussion 63

4.2.4.1 Non-random encoder . 68
4.2.5 Conclusion . 69

5 Incorporating Neuro-inspired Bottom-up Principles for Robustness 71
5.1 Introduction . 71

5.1.1 Approach and Contributions . 72
5.1.2 Related Work . 73

5.2 Model . 74
5.2.1 Inference in a HaH block . 75

xi

5.2.2 HaH Training . 77
5.3 Experiments . 79
5.4 Conclusion . 87

6 Conclusion 88

A Analysis of Adversarial Training 90

B Sparse Encoding Defense Without Dropout 92
B.1 Block Diagram . 92
B.2 Determining Attack Parameters . 93
B.3 Choice of Hyperparameters and Training Settings 94
B.4 Backward Pass Approximation to Activation 95
B.5 Gradient Propagation Through Top U Coefficients 96
B.6 Gradient Smoothing . 96
B.7 Results for HopSkipJumpAttack . 96
B.8 Results for Zeroth Order Optimization (ZOO) Based Attack 97
B.9 Effect of Attack Step Size . 98
B.10 Validation of Attack Code . 98

xii

List of Figures

1.1 Realistic images generated for absurd prompts. Images taken from [1] . . 2
1.2 Stop signs altered by adversarial perturbations to look innocuous. They

appear as 45 mph signs to a DNN trained to recognize traffic signs. Images
taken from [2] . 3

1.3 Adversarial vulnerability is not limited to image domain. Left: a model
that predicts sentiment of reviews can be fooled by a few changes in the
order of the letters. Image taken from [3] Right: text to speech recognition
model understands can be fooled by a noise imperceptible to our ears.
Image taken from [4]. 4

1.4 Comparison of two approaches in signal processing: hand-crafted versus
top-down, end-to-end methods. End-to-end methods provide convenience
but over-reliance on them results in unintended adverse effects. 5

1.5 Illustration for our approach. We incorporate bottom-up elements inspired
by the principles from traditional signal processing, sparse representation
theory and neuroscience into DNNs to enhance negative aspects. 6

2.1 There are four threat models in adversarial attacks: poisoning attacks,
model extraction attacks, inference attacks, and evasion attacks. Image
taken from the GitHub page of [5]. 8

2.2 Example of an attack restricted to the shape of an eyeglass frame. Left:
clean image, Middle: perturbed image, Right: Individual predicted by the
recognition model after the attack. Images taken from [6]. 9

2.3 White-box attacks are usually computed using the gradient information.
Contrary to how training minimizes the loss by changing network parame-
ters using their gradients, attacking tries to maximize the loss by changing
the inputs using input gradients. 10

2.4 Illustration of three different gradient based attacks over the loss surface.
Left: FGSM [7], which computes the gradient and projects it onto the Lp

ball. Middle: BIM [8], which divides the gradient ascent into smaller steps
of size α. Right: PGD [9], which performs the multi-step gradient ascent
for different initializations and chooses the best among them. 12

xiii

2.5 Illustration of three different attack types (PGD [9], AutoAttack [10], and
SquareAttack [11]) and the corresponding perturbed images. Attacked
images are not easily recognized by humans. 14

3.1 Visualization of (i) initial adversarial training, (ii) freezing of the early
(adversarially trained) layers, and reinitialization and natural retraining
of the latter layers for the example scenario with the code A1N2. Cutoff
point is before block 5 convolutional layer 1. Note that skip connections
have been omitted and network is shortened for illustration purposes. . . 22

3.2 Visualization of (i) initial natural training, (ii) freezing of the early (natu-
rally trained) layers, and reinitialization and adversarial retraining of the
latter layers for the example scenario with the code N1A2. Cutoff point
is before block 5 convolutional layer 1. Note that skip connections have
been omitted and network is shortened for illustration purposes. 22

3.3 Visualization of (i) initial adversarial training, (ii) freezing of the latter
(adversarially trained) layers, and reinitialization and natural retraining
of the early layers for the example scenario with the code N2A1. Cutoff
point is before block 3 convolutional layer 2. Note that skip connections
have been omitted and network is shortened for illustration purposes. . . 23

3.4 Visualization of (i) initial natural training, (ii) freezing of the latter (nat-
urally trained) layers, and reinitialization and adversarial retraining of the
early layers for the example scenario with the code A2N1. Cutoff point
is before block 3 convolutional layer 2. Note that skip connections have
been omitted and network is shortened for illustration purposes. 23

3.5 Visualization of (i) initial adversarial training, (ii) freezing of all layers
except one, and reinitialization and natural retraining of the single layer.
The single natural layer is block 5 convolutional layer 1. Note that skip
connections have been omitted and network is shortened for illustration
purposes. 24

3.6 Adversarial accuracy for the case A1N2 as the number of adversarially
trained layers increases. Note the plateau at the beginning. 25

3.7 Adversarial loss for the case of A1N2. The number of adversarially trained
layers increases to the right. Higher loss means model is performing worse. 27

3.8 Adversarial accuracy for the case of N1A2. The number of adversarially
trained layers decreases to the right. After a particular cutoff point, the
networks cannot learn from adversarial training and collapse to random
guessing. Such data points are omitted from the plot. 28

3.9 Adversarial loss for the case of N2A1. The number of adversarially trained
layers decreases to the right. Higher loss means model is performing worse. 29

3.10 Adversarial loss for the case of A2N1. The number of adversarially trained
layers increases to the right. Higher loss means model is performing worse. 30

xiv

3.11 The difference in adversarial accuracy between an all adversarially trained
network and network with a single natural layer, indicating the singular
contribution of that layer to adversarial robustness. 31

3.12 Distributions of the ratio of adversarial perturbations’ L2 norm to signal’s
L2 norm after each convolutional layer. Histogram is created by computing
this value for each image. The layer names are on the y-axis and histogram
bin values are on the x-axis. 32

3.13 The means of the distributions of perturbation-to-signal ratio from Fig-
ure 3.12, expressed in dB. 33

3.14 Histograms of running means in each batch norm layer inResNet. Orange
histograms are for the adversarially trained network and blue histograms
are for the naturally trained network. 36

3.15 Histograms of running variances in each batch norm layer in ResNet.
Orange histograms are for the adversarially trained network and blue his-
tograms are for the naturally trained network. 36

3.16 Histograms of γ (scale) in each batch norm layer in ResNet. Orange
histograms are for the adversarially trained network and blue histograms
are for the naturally trained network. 37

3.17 Histograms of β (bias/offset) in each batch norm layer inResNet. Orange
histograms are for the adversarially trained network and blue histograms
are for the naturally trained network. 37

3.18 Histograms of
(∥·∥1/∥·∥2)2−1

d−1
ratio of the filters in each convolutional layer in

ResNet. Orange histograms are for adversarially trained network, blue
histograms are for naturally trained network. d is the number of elements
in each filter of that layer. 0 means a single non-zero element and 1 means
all elements are equal. 39

3.19 Histograms of
(∥·∥1/∥·∥2)2−1

d−1
ratio of the filters in each convolutional layer

in VGG. Orange histograms are for adversarially trained network, blue
histograms are for naturally trained network. d is the number of elements
in each filter of that layer. 0 means a single non-zero element and 1 means
all elements are equal. 39

3.20 Singular value distributions of linear representations of various convolu-
tional layers of ResNet, normalized by their top singular value. Top two
rows are the first two layers, middle two rows are middle two layers, and
bottom two rows are last two layers. Orange plots are for adversarially
trained network, blue plots are for naturally trained network. Left: Distri-
butions for ResNet-34 trained with SGD optimizer. Right: Distributions
for ResNet-34 trained with Adam optimizer [12]. 41

xv

3.21 Singular value distributions of linear representations of various convolu-
tional layers of VGG, normalized by their top singular value. Top two
rows are the first two layers, middle two rows are middle two layers, and
bottom two rows are last two layers. Orange plots are for adversarially
trained network, blue plots are for naturally trained network. Left: Dis-
tributions for VGG-16 trained with SGD optimizer. Right: Distributions
for VGG-16 trained with Adam optimizer [12]. 42

4.1 Activation sparsity (Equation 4.1) alone is not sufficient to achieve robust-
ness: perturbations can ride on top of strongly activated neurons (shaded
region). 46

4.2 Polarization of neural activity can fully eliminate perturbations. For the
shown hypothetical histogram (gray) of wTx/∥w∥1, a ternary activation
(blue) is effective. 47

4.3 Block diagram of the polarizing front end defense convolution with polar-
izing filters followed by ℓ1 normalization and quantization. 48

4.4 Histograms of normalized front end filter outputs ak/∥wk∥1 after each
training stage for MNIST and Fashion MNIST 49

4.5 Illustration of regularizers B1 and B2 superposed onto the quantization
function. B1 ensures even distribution of first layer outputs and B2 drives
the even distribution away from the danger zones around the thresholds. 50

4.6 Typical progression of front end filters over the training stages. 51
4.7 Classification accuracy versus L∞ attack budget for MNIST and Fashion

MNIST. 53
4.8 Basis filters discovered when Olshausen & Field [13] tried to represent

images by a distributed code in a sparse manner. They are similar to
filters observed in the visual cortex of mammals. Image taken from [13]. . 56

4.9 Proposed autoencoding defense. Decoder restores input size but does not
attempt to reconstruct the input in our nominal design (supervised de-
coder+classifier training). 57

4.10 Histogram of correlations for a typical patch with atoms of an overcomplete
dictionary vs. that of activations through layer 1 filters of a standard
classifier CNN. 58

4.11 Progression of coefficients after each operation: (i) Each voxel shows pro-
jection onto a dictionary atom, (ii) Projections after taking top T , (iii)
Remaining projections after dropout, (iv) Projections after activation and
quantization. Notice the saturation in color. 61

4.12 Dictionary learned through the optimization in Equation 4.4 from patches
extracted from the training images of CIFAR-10 dataset. 64

4.13 Accuracy vs ϵ plot for the sparse coding defense without dropout (T = 15)
under L∞ PGD attack with various ϵ values. 69

xvi

5.1 Our model consists of two different types of blocks: first 6 blocks are
Hebbian-anti-Hebbian (HaH), while the rest are regular VGG blocks. HaH
blocks use a weight normalized convolutional layer, followed by ReLU,
divisive normalization and thresholding. Regular VGG blocks use a weight
normalized convolutional layer followed by ReLU and batch norm. 74

5.2 Illustrations for each component of a HaH block: (a) convolution with
layer filters learned partly through Hebbian–anti-Hebbian updates, (b)
division of layer outputs by the L2 norm of their corresponding filters,
effectively normalizing each filter, (c) divisive normalization, which divides
each pixel by the mean across channels at that location to both provide
scale invariance and suppress the weak “noise” elements, and (d) per-
channel thresholding, which kills a fixed percentage of all activations in
each channel helping attenuate the impact of noise on smaller activations. 75

5.3 HaH block convolutional layer outputs illustrating the cheating in the naive
implementation. The network learns to adjust the earlier layer weights
such that for almost all images a designated subset of channels are very
active (shown in yellow/green), satisfying the Hebbian loss, and the rest
is used for the actual classification task. 78

5.4 HaH blocks yield sparser activations than baseline, measured by the squared
Hoyer term. 79

5.5 To compute the SNR at the nth block inputs, we divide the L2 norm of the
block input corresponding to clean image by the L2 norm of the difference
of block corresponding to clean and noisy images. 80

5.6 Comparison of SNR values of the block inputs for the standard base model
(gray) and ours (red) under i.i.d. Gaussian noise with σ = 0.1. 81

5.7 Comparison of classification accuracies as a function of noise standard
deviation σ. To provide a concrete sense of the impact of noise, noisy
images at increasing values of σ are shown below the graph. 81

5.8 The average norm of minimum-norm adversarial attacks is higher for our
model than the standard model for all Lp norms considered. 82

5.9 Visualization of what features the first layer of the network focuses on using
Grad-CAM for both standard (middle) and HaH trained (right) networks. 85

5.10 Ablation study for number of HaH blocks. Every additional HaH block
contributes to the robustness of the model with a slight compromise on
clean accuracy. 86

A.1 Architectures and layer names for (a) ResNet (b) VGG 91

B.1 A block diagram of our proposed defense (non-random) 92
B.2 Activation function and its backward pass smooth approximation with

varying degrees of smoothness . 95

xvii

List of Tables

4.1 Comparison of accuracies for the standard model (no defense), adversari-
ally trained model, and our defense for MNIST and Fashion MNIST datasets. 52

4.2 Accuracies for our defense method (stochastic encoder) under different
attacks (CIFAR-10, ϵ = 8/255) . 66

4.3 Comparison of our defense (stochastic encoder) with other defense tech-
niques (CIFAR-10, ϵ = 8/255). Attack details are: PGD with NS = 100,
NR = 50 for the first 4 rows and PGD EOT with NS = 20, NR = 1,
NE = 40 for the last row. 67

4.4 Comparison of our defense (stochastic encoder) with other defense tech-
niques for Imagenette dataset. 67

4.5 Performance comparison of different defense methods with our defense
with non-random encoder (CIFAR-10). 68

5.1 Comparison of accuracies for the baseline model and our bottom-up de-
fense under Gausian noise, L∞ bounded attack and L2 bounded attack. . 83

5.2 Common corruption accuracies across different models. While standard
and adversarially trained models are VGG16, HaH (ours) uses the afore-
mentioned modified version of VGG16. Adversarially trained models per-
form poorly on fog and contrast corruptions while excelling on high-frequency
corruptions like noise. On the other hand, the HaH framework consistently
improves the robustness against all sorts of corruptions. Bright. = bright-
ness, Gauss. = Gaussian, Elastic = elastic transformation. 84

5.3 Accuracies when we remove components from our defense one at a time
(ablation study). 86

B.1 Accuracies for our defense method under different settings (CIFAR-10, L∞

ϵ = 8/255) . 94
B.2 Results for HopSkipJumpAttack attack (CIFAR-10) 97
B.3 Results for ZOO attack (CIFAR-10) . 98

xviii

Chapter 1

Introduction

1.1 Deep Learning Revolution and Its Achilles’ Heel

The original, groundbreaking paper of Krizhevsky et al. [14] drew attention to the

potential of machine learning in general, and deep neural networks (DNNs) in particular,

more than a decade ago. Since then, DNNs have been in the spotlight and at the cutting

edge of almost any application (spanning science, engineering and beyond) for which large

amounts of data are available. There has been an accompanying Cambrian explosion of

papers published that focus on using and improving deep neural networks. DNNs can

now beat humans in the game of Go [15], predict protein folding [16], control robotic

hands [17], beat humans in the video games of DoTA [18] and StarCraft [19], produce

surprisingly realistic faces [20], create believable pictures from absurd prompts [1] (see

Figure 1.1), write and summarize text comparable to a highly proficient human [21], do

multi-modal reasoning [22], and even converse well enough to fool Google employees into

thinking they possess consciousness [23]. More importantly, deep neural networks are in

the core of many everyday tools and products such as search engines, product recom-

mendation tools, speech recognition and virtual assistant systems or language translation

1

Introduction Chapter 1

websites, influencing and greatly affecting most people’s lives.

Figure 1.1: Realistic images generated for absurd prompts. Images taken from [1]

Concomitant with the growing interest in machine learning, however, researchers

brought into question the robustness and security of these models. Biggio et al. [24] have

exposed the vulnerability of machine learning models such as support vector machines

(SVMs) and neural networks to adversarial attacks. These adversarial attacks work by

changing the inputs ever so slightly, such that they are imperceptible to humans, to make

the models fail at their task and have high confidence while doing so. Other researchers

showed that the same kind of attacks are also applicable to DNNs [25] and found even

more powerful adversarial attack methods [9]. Kurakin et al. [26] demonstrated that

these adversarial examples are not limited to carefully controlled lab conditions but

can be implemented in the real world. Eykholt et al. [2] showed that not only can

adversarial attacks be implemented physically, but they can affect hypothetical safety

critical systems. An example for this is traffic sign recognition models for autonomous

driving being fooled using inconspicuous looking alterations like stickers and graffiti (see

Figure 1.2).

The issue of adversarial vulnerability is not limited to the visual domain; DNNs that

2

Introduction Chapter 1

Figure 1.2: Stop signs altered by adversarial perturbations to look innocuous. They
appear as 45 mph signs to a DNN trained to recognize traffic signs. Images taken
from [2]

process other types of inputs can also be attacked effectively. For example, a model

that predicts the sentiment of a review can be fooled by a few changes in the order of

the letters, or what a text to speech recognition model understands can be completely

changed by a noise imperceptible to our ears (see Figure 1.3). In addition, neural networks

are notoriously hard to explain and interpret [27]. Such demonstrations of vulnerability

and uninterpretability raise concerns for the reliability of neural networks, especially in

security sensitive applications, and pose a significant challenge for the future of the role

played by neural networks in our daily lives.

1.2 Tale of Two Paradigms

In order to understand the adverse effects mentioned in Section 1.1 better, we need to

take a step back from the topic of adversarial vulnerability, and discuss two approaches in

signal and data processing. Before the widespread adoption of machine learning methods,

most signal processing was done using domain-specific methods. Researchers would hand-

3

Introduction Chapter 1

Figure 1.3: Adversarial vulnerability is not limited to image domain. Left: a model
that predicts sentiment of reviews can be fooled by a few changes in the order of the
letters. Image taken from [3] Right: text to speech recognition model understands
can be fooled by a noise imperceptible to our ears. Image taken from [4].

craft specialized solutions for each task at hand, such as Pyramid Histogram of Oriented

Gradients (PHOG) in image processing or dynamic time warping in speech recognition.

In contrast, the promise of deep learning was to replace all of this manual research labor

by top-down, end-to-end trained models that require minimal intervention other than

preprocessing (“massaging”) of the data — sometimes even using the same architecture

for different tasks. The famous argument asserted by Rich Sutton in [28] is that in

this dichotomy of hand-crafted vs end-to-end, heavily data-reliant approaches, the latter

wins in the long run — or did so far. Arguably, training extremely large DNNs on such

end-to-end cost functions with variants of stochastic gradient descent is one of the key

contributors to the recent explosive growth of data processing.

We argue that while the assertion in [28] may be true, it is the exclusive reliance on

these top-down methods which results in unintended and dangerous consequences such

as susceptibility to adversarial perturbations, lack of interpretability or vulnerability

against common corruptions like blur, defocus and weather effects (Figure 1.4). Within

the existing training paradigm, the main recourse to remedy these negative effects is more

sophisticated top-down training, including modification of the end-to-end cost function

4

Introduction Chapter 1

and/or adversarial augmentation of the input data. On the other hand, we claim that

it may be beneficial or even necessary to incorporate more carefully designed “bottom-

up” components and structures into DNNs (instead of exclusive reliance on top-down

solutions) to achieve desired outcomes.

Preprocessed
Data Loss

• Adversarial vulnerability
• Non-interpretable features
• Susceptibility to common

corruptions

Domain expertise End-to-end training

Figure 1.4: Comparison of two approaches in signal processing: hand-crafted versus
top-down, end-to-end methods. End-to-end methods provide convenience but over-re-
liance on them results in unintended adverse effects.

It is important to emphasize that we do not advocate going back to the domain

expertise days. Rather, we seek to incorporate some key principles from other areas

to build more carefully designed structural elements, integrating them as part of neural

networks to alleviate or reduce these unintended ill effects caused by over reliance on end-

to-end methods. Our bottom-up elements are inspired by the areas of signal processing,

sparse representation theory and neuroscience. The term “bottom-up” refers to structural

elements that are designed with a principle in mind, pieced together to give rise to a more

complex system— a system which “controls” the output signal representations from those

blocks. (Figure 1.5).

5

Introduction Chapter 1

Data Loss

Figure 1.5: Illustration for our approach. We incorporate bottom-up elements inspired
by the principles from traditional signal processing, sparse representation theory and
neuroscience into DNNs to enhance negative aspects.

1.3 Dissertation Organization

This work proposes principled structural elements and network components that are

designed “bottom up” to suppress adversarial perturbations at each step and provide

explainable mechanisms while doing so. The organization of the rest of this dissertation

is as follows. Chapter 2 gives a brief background into the field of adversarial machine

learning and lays out some of the attacks and defenses used to compare with our ap-

proaches. Chapter 3 explains the motivation behind some of the design choices we made

in our approaches. Chapter 4 describes two front end based approaches. The first uses

polarization and quantization to mitigate adversarial attacks, while the second uses tech-

niques and ideas from sparse coding theory and neuroscience. Chapter 5 outlines a more

general approach that can be used to complement any layer of a convolutional neural

network to produce sparser and stronger activations which could potentially enhance

robustness and interpretability. Chapter 6 concludes by discussing high-level ideas and

further research directions.

6

Chapter 2

Background

Since the vulnerability of machine learning models was first pointed out [24, 25], there

have been a vast number of research papers written on how to generate these perturba-

tions (adversarial attacks) [7, 9] and how to defend against them [9, 29, 30, 31]. In this

cat-and-mouse game, attackers try to identify the smallest potential distortion that can

fool a DNN (flipping the prediction in a classification context) or the distortion within

some bounds that fools the DNN the best. Defenders, on the other hand, aim to defend

DNNs against such threats. The fundamental importance of this contest is well under-

stood by the research community: given the pervasive impact of DNNs, it is crucial to

understand and address their vulnerabilities. In this section, we give a brief background

on the most commonly used attack types and some of the proposed defenses from the

literature that we use to compare our defenses with.

7

Background Chapter 2

2.1 Adversarial Attacks

Figure 2.1: There are four threat models in adversarial attacks: poisoning attacks,
model extraction attacks, inference attacks, and evasion attacks. Image taken from
the GitHub page of [5].

Adversarial attacks can be broadly grouped into four threat models: poisoning attacks,

in which the adversary mixes bad data into training data to hamper training; extraction

attacks, in which, the adversary tries to learn about or decode the weights of the network

by querying; inference attacks, in which, the adversary tries to find out more about the

training data; and evasion attacks, in which, the attacker tries to fool the network by

changing the input (see Figure 2.1). Our focus in this dissertation is evasion attacks.

When we use the term “adversarial attacks”, we mean evasion attacks in general.

Evasion attacks are typically grouped into two categories: white-box attacks, in which

the attacker has access to both the structure and the parameters of the neural network;

and black-box attacks, in which the attacker has access only to the network outputs

(scores) or sometimes only the decision (prediction).

8

Background Chapter 2

Orthogonal to the assumption about access to the network parameters and gradients,

are assumptions about the “noticeability” (power) or about the geometry of the attacks.

In terms of the geometry of the attacks, a minority of papers consider a specific shape for

the attack [2, 6] (see Figures 1.2, 2.2). Most of the research, however, considers attacks

that are distributed throughout the input. In terms of the power of the attack, most

papers assume an Lp bound on the perturbation, with p most commonly chosen as ∞

because it can be tuned to be imperceptible to humans [7, 26]. An exception to this is

exemplified by [32], which uses “perceptual” distance to compute the power of the attack.

In this work we mostly study L∞ bounded attacks, but in Section 4.2 we also test our

defense against L1 and L2 bounded attacks.

Figure 2.2: Example of an attack restricted to the shape of an eyeglass frame. Left:
clean image, Middle: perturbed image, Right: Individual predicted by the recognition
model after the attack. Images taken from [6].

2.1.1 White-Box Attacks

Most of the commonly used white-box attacks generate their perturbation by using

gradient information. As is well known, during the training of a neural network, the

gradient of the loss with respect to network weights is used to update the weights to

minimize the loss. In contrast, while generating gradient-based white-box adversarial

attacks, the gradient with respect to the input is computed, and the input is modified

9

Background Chapter 2

using this to maximize the loss in order to fool the neural network (Figure 2.3). While

doing this, the attacks are constrained to be “small” or “imperceptible”. In other words,

while successfully fooling the DNNs, they are restricted to have no effect on decisions

made by humans.
Gradient Based Attacks

Deep Neural
Network

Softmax LossInput

Minimize by changing

Training:

Deep Neural
Network

Softmax LossInput

Maximize by changing

Attacking:

Most adversarial attacks use loss gradients

∇

∇

10/48Figure 2.3: White-box attacks are usually computed using the gradient information.
Contrary to how training minimizes the loss by changing network parameters using
their gradients, attacking tries to maximize the loss by changing the inputs using
input gradients.

The formulation of gradient based white-box attacks on classifiers can be written as

follows. Given a classifier with parameters θ, fθ : x → y that takes in inputs x ∈ RN ,

and outputs predictions (confidence scores for M classes) y ∈ [0, 1]M , the goal of an

adversary is to find a perturbation e ∈ RN that maximizes the given loss function L for

classification subject to some constraints:

max
e∈S

L(fθ(x+ e),ytrue), (2.1)

where L is a loss function, ytrue is the vector of true labels and the constraint is that e

is chosen from a set S, which is typically constrained in Lp norm, with p = ∞ receiving

10

Background Chapter 2

the greatest attention as mentioned.

The loss L maximized for the attack is usually taken as the cross-entropy loss between

the network outputs f(x) and label y. This corresponds to an untargeted attack, i.e. the

wrong label that is easiest to switch to is sought. However, the attack can also be targeted

such that a particular target prediction is promoted [33].

Next, we describe the key L∞ bounded attacks in the literature, in chronological order

of invention.

Fast Gradient Sign Method (FGSM) [7]: the sign of the gradient with respect

to the input is taken and scaled by the L∞ budget ϵ:

e = ϵ · sign(∇xL(fθ(x),ytrue)) (2.2)

Basic Iterative Method (BIM) [8]: This is an iterative version of FGSM where

the overall Lp budget ϵ is divided into smaller steps of size δ. In each step, gradient of

the loss function L with respect to the input is normalized and scaled by δ, and added to

the perturbation calculated in the previous step. After each step, the computed attack is

projected to conform to the Lp bound. Gradient ascent over the loss in the input space

is thus achieved.

ei+1 = clipϵ

[
ei + δ · sign(∇eL(fθ(x+ e),ytrue))

]
(2.3)

where ei corresponds to the value of the perturbation at iteration i with e0 = 0 or e0

with each element drawn from uniform distribution U(−ϵ, ϵ).

Projected Gradient Descent (PGD): This attack [9] employs BIM with multiple

random starting points sampled from a uniform distribution in the ϵ box around the data

point. The goal is to optimize over a greater area in the input space because the loss

11

Background Chapter 2

surface being navigated is complicated. It was noted in [9] that BIM is a formulation

of Projected Gradient Descent (PGD), a well-known method in convex optimization.

Among the many attack methods, Projected Gradient Descent (PGD) is regarded to be

among the most effective L∞ bounded attacks, and is therefore generally used to evaluate

defense methods. Figure 2.4 illustrates these three methods.

■♥♣✉t ❞✐♠�

✁✂
✄
☎
✆
✝
✞✟
❥

✠✠❡✠✠✶ ✔ ✎ ❜♦①

s❣♥✭r✡▲✮

☛❝❧☞❛✌

r✡▲

✍✏✑✑ ✒✏✓✕✏✖✗✘✙✚

Input dimi

In
p

u
t

d
im

j

Loss contourmap

α · sign(∇xL)

∇xL

Input dimi

In
p

u
t

d
im

j

Loss contourmap

α · sign(∇xL)

∇xL

Figure 2.4: Illustration of three different gradient based attacks over the loss surface.
Left: FGSM [7], which computes the gradient and projects it onto the Lp ball. Middle:
BIM [8], which divides the gradient ascent into smaller steps of size α. Right: PGD [9],
which performs the multi-step gradient ascent for different initializations and chooses
the best among them.

Carlini-Wagner (C&W) [33] is a modified version of PGD. In this attack, the loss

function L is taken as the difference between the logit that corresponds to the correct

label and the maximum of logits among the incorrect labels.

Expectation Over Transformation (EOT) is suggested in [34] to make attacks

robust against transformations, and [35] suggests using this method to evaluate defenses

utilizing stochasticity. As the name suggests, it computes the mean of gradients over

the random transformations that are part of some networks to better approximate the

gradients. With EOT, PGD becomes:

ei+1 = clipϵ

[
ei + δ · sign(

NE−1∑
r=0

∇eLr(f(x+ ei),y))
]

(2.4)

12

Background Chapter 2

where e0 = 0 and NE corresponds to the number of runs used to average the gradients.

We use this technique in evaluating our defense that contains randomness (Section 4.2).

AutoAttack [10] is a recent attack that improves some of the shortcomings of PGD

by automating the choice of the step size hyperparameter by adaptively changing it using

optimization trends. This circumvents a bottleneck in attack hyperparameter selection.

It also replaces the cross-entropy loss with a shift and rescaling invariant loss to avoid

vanishing gradients and gradient masking problems encountered in defense evaluation

(see Section 2.2.3).

2.1.2 Black-Box Attacks

Black-box attacks are gradient-free, not relying on the knowledge of weights or gra-

dients. There are three main types of black-box attacks. Score-based black-box attacks

assume access to the softmax outputs, i.e. scores [11, 36], while decision-based black-box

attacks assume access to the decision of the model (argmax of scores) [37, 38]. The

third type of black-box attacks assumes access to the training dataset only. Such attacks

typically use a surrogate model trained on the same dataset in order to generate attacks

[39, 40] and apply (transfer) it to the actual network in question.

13

Background Chapter 2

Clean PGD SquareAttackAutoAttack

Figure 2.5: Illustration of three different attack types (PGD [9], AutoAttack [10], and
SquareAttack [11]) and the corresponding perturbed images. Attacked images are not
easily recognized by humans.

Figure 2.5 demonstrates some of the white-box and black-box attacks and the images

perturbed with them.

2.2 Defenses

Since the vulnerability of neural networks to adversarial examples was first pointed

out [24, 25], there has been significant research effort in developing more sophisticated

defenses. Over the years many defense mechanisms have been proposed, only to be

defeated by stronger adversaries [41, 42]. Nowadays most of the state-of-the-art defenses

use either extra unlabeled data [43] that is not present in the original dataset or an

extreme amount of data augmentation, both in conjunction with adversarial training.

14

Background Chapter 2

2.2.1 Adversarial Training and Variants

In adversarial training, we train the neural network with attacked inputs generated

during training. In each training step, adversarial attacks for the network at that stage

are calculated, inputs are perturbed and fed into the network to train it. Some of the more

recent successful defenses that use adversarial training include [44], which uses 2000-fold

synthetic data augmentation of the training dataset combined with adversarial training,

[45], which uses 80 million additional images from TinyImages dataset and other data

augmentation techniques, [46], which combines adversarial training with parameterizable

activation functions and 6 million synthetic images, and [47], which uses a modified cost

function aiming to trade off clean and adversarial accuracy without any augmentations

or extra data.

Even though it is used in state-of-the-art defenses, adversarial training is not without

disadvantages. First, it is computationally intensive: computing as many gradients as

attack steps in each training step considerably slows down the training, by at least an

order of magnitude. An even bigger issue is that adversarial training, like any top-down

method, results in a black box. It is unclear how the model is made more robust or

what exactly changed in the weights of the network to provide the enhanced robustness.

Therefore it is very difficult to have an intuitive understanding of why and how pertur-

bations are being controlled as they flow up the network. This opaqueness and lack of

insight makes it challenging to improve on the adversarial robustness without ad hoc

methods like augmentations or additional data. As a result, most of the improvements

in the past few years are achieved through combining adversarial training with other

approaches, rather than by improving the adversarial training itself. Further, there is

still a significant robust generalization gap between clean and adversarial accuracies for

adversarially trained networks, showing that the perturbation is not completely rejected

15

Background Chapter 2

by the adversarially trained network. While the last issue is not unique to adversarial

training, it does show that it is not a “silver bullet” against adversarial vulnerability, and

there remain fundamental security concerns about DNNs.

2.2.2 Other Defenses

Provably robust defenses have also been studied extensively [48, 49, 50]. These meth-

ods provide a lower bound for adversarial accuracies; however, guarantees are provided

mostly for small datasets, models, and low attack budgets. [51, 52, 53] report certi-

fied robustness for L2 bounded attacks that is able to scale to larger datasets such as

ImageNet. Unfortunately, these certified defenses do not perform as well as adversarial

training against current attack methods.

There are also bio-inspired defenses. [54] has a network structure similar to the V1

cortex of the primate brain in the first few layers of CNNs. This aids the networks in

increasing adversarial robustness with adversarial training. Their approach is distinct

from our neuro-inspired approach that is described in Chapter 5 in that their defense

uses Gabor type filters and injects noise adapted from observations from physiology.

Many other sophisticated defense mechanisms have been proposed employing detec-

tion techniques [55, 56, 57, 58], preprocessing methods [29, 30, 59], modification of the

optimization objective [56, 60, 61], and biological constraints [54, 62, 63, 64]. However,

these methods have either eventually been beaten by an adaptive attack [41, 42, 65] or

do not match the empirical success of adversarial training. Adversarial training and its

variants therefore continue to be the state-of-the-art defense against adversarial attacks.

16

Background Chapter 2

2.2.3 Defense Evaluation and Gradient Masking:

The use of non-differentiable functions or functions with a saturation region can

cause state-of-the-art gradient-based attacks to falter. However, defenses that rely on

such “gradient masking” are not robust: they are easily circumvented by the attacker,

as shown by Athalye et al. [42], by replacing the non-differentiable function with a dif-

ferentiable approximation. Indeed, our own front end based defenses in Section 4.1 and

Section 4.2 employ non-differentiable functions. We therefore test these defenses using

the gradient approximation methods of [42], replacing non-differentiable functions with

their differentiable approximations (or identity function if it makes the attack stronger)

in the gradient calculations.

17

Chapter 3

Analysis of Adversarial Training

In view of its success, adversarial training is naturally under the spotlight for researchers

looking to improve the state-of-the-art and/or looking for an answer to how the learned

model differs from a model trained in a standard fashion. Previous works in the literature

attempt to analyze adversarial training in terms of loss landscape [66], decision boundary

[67], class-wise robustness [68], smoothness [69] and algorithmic stability [70]. However,

prior works do not provide structural insight into the contribution of different layers

in the network towards robustness. Nor do they investigate what statistical differences

exist between the weights of adversarially trained networks and those of naturally trained

networks. In this chapter, we aim to fill this gap and analyze adversarially trained

networks in these two regards to obtain detailed structural insights and distill principles

to guide us in designing bottom-up techniques.

18

Analysis of Adversarial Training Chapter 3

3.1 Layers’ Role in Adversarial Robustness

3.1.1 Introduction

In this section, we seek to quantify the importance of each layer in handling ad-

versarial perturbations by comparing adversarial training versus natural training on a

layer-wise basis. Our goal is to develop architectural insights to guide further research

into the structural properties of robust neural networks. We demonstrate that earlier

layers play a crucial role in defending against adversarial perturbations. We also provide

a novel approach for inspecting how adversarial perturbations flow through the layers of

the network, thus providing a fine-grained analysis of a model’s robustness. We report

experiments on CIFAR-10 image classification dataset using two popular architectures,

namely, VGG and ResNet.

Our contributions are:

• We develop a partial adversarial training method in order to quantify the role of

each layer in providing robustness against adversarial attacks.

• We introduce the concept of “perturbation-to-signal ratio” (PSR), defined in terms

of different Lp norms, to track the flow of adversarial perturbations through the

network.

• Using these two techniques we conclude that earlier layers play a crucial role in

adversarial robustness.

The code repository associated with this section can be found at

https://github.com/canbakiskan/layersnotequalinAT

19

https://github.com/canbakiskan/layersnotequalinAT

Analysis of Adversarial Training Chapter 3

3.1.2 Setup and Definitions

We now describe the methodology that was used to evaluate and understand the

importance of each layer.

3.1.2.1 Partial Adversarial Training

Since our goal is to analyze the role of each layer of the network in adversarial training,

we found the most straightforward method to be restricting the contribution of each layer

to the adversarial training process. We achieve this by a two step process (see Figures

3.1 through 3.5). In the first training stage, we train the whole network adversarially

or naturally. Then, we freeze either the earlier or the latter part of the network and

reinitialize the remaining unfrozen layers. In the second training stage, we train the

unfrozen layers with the other training method from scratch. To keep track of and refer

to various experiments of these two kinds, we employ a 4 character code. The first two

characters of the code refer to how the earlier layers are trained and whether they are

trained in the first or second stage; and the last two characters refer to how the latter

layers are trained and in which stage. “A” means adversarial and “N” means natural

training. “1” means that part of the network was trained first, then frozen, whereas “2”

means that part of the network was reinitialized and retrained a second time. Putting

it all together, an experiment with the code “A1N2” is where we train all layers in the

network adversarially first, then freeze the earlier layers and reinitialize the latter layers,

and retrain the latter layers naturally. An experiment with the code “A2N1” means we

train all the layers in the network naturally first. Following that, we freeze the latter

layers and reinitialize the earlier layers. Then, we retrain the earlier layers adversarially.

We use this encoding scheme to refer to specific instances of partial adversarial training

throughout the section. For completeness, we train all combinations of partial adversarial

20

Analysis of Adversarial Training Chapter 3

training (A1N2, N1A2, A2N1, N2A1).

We also experimented with retraining the reinitialized layers both adversarially and

naturally in parallel and taking the differences between them (e.g. N1A2–N1N2 or N2A1–

A2A1). Doing this removes the confounding effects caused by the reinitialization of

parameters and the mismatch of the optimizer state after the reinitialization, from the

actual effect of partial adversarial training. However, we omit this process in this section

because we observed that the aforementioned effects were minimal and this process made

the reporting unnecessarily more convoluted.

In order to reduce the training time of the substantial number of different experiments,

we opted for a smaller ResNet [71] and VGG [72] models with 16 units. The number of

parameters is 11.2 million for ResNet and 14.7 million VGG.

We should mention that since ResNet has skip connections, it is not entirely linear.

However, in order to plot the adversarial losses in a two dimensional plot, we need to

use a linear list of layers. While linearizing the layers of ResNet, we chose to place the

shortcut layers after the main branch layers that it’s summed with, but the placement of

these shortcut layers is somewhat arbitrary.

Another important point to make here is that the distributional shift in layer inputs

caused by adversarial training necessitates the running mean and running variance (non-

trainable parameters) of batch norm layers be kept unfrozen after the reinitialization. To

be specific, freezing and reinitializing works in a straightforward way for trainable param-

eters (both convolutional and batch norm layers). For a batch norm layer whose trainable

parameters are not frozen (therefore they are reinitialized), non-trainable statistics (i.e.

running means and variances) are also not frozen and reinitialized. On the other hand,

for a batch norm layer whose trainable parameters are frozen, the non-trainable statis-

tics are not frozen, but not reinitialized either. This is done because freezing the running

statistics would significantly hamper the training due to the different distributions of

21

Analysis of Adversarial Training Chapter 3

batch norm layer inputs corresponding to clean and adversarial images.

Retraining Latter Layers The first type of partial training experiment we conduct is

where we freeze the earlier layers, then reinitialize and retrain the latter layers. This type

of training is the most natural of the three partial adversarial training setups because it

resembles the regular procedure followed in transfer learning.

(i)

la
ye

r1
co

nv
1

la
ye

r1
bn

1

la
ye

r2
co

nv
1

la
ye

r2
bn

1

la
ye

r2
co

nv
2

la
ye

r2
bn

2

la
ye

r3
co

nv
1

la
ye

r3
bn

1

la
ye

r3
co

nv
2

la
ye

r3
bn

2

la
ye

r4
co

nv
1

la
ye

r4
bn

1

la
ye

r4
co

nv
2

la
ye

r4
bn

2

la
ye

r5
co

nv
1

la
ye

r5
bn

1

la
ye

r5
co

nv
2

la
ye

r5
bn

2

la
ye

r6
co

nv
1

la
ye

r6
bn

1

la
ye

r6
co

nv
2

la
ye

r6
bn

2

lin
ea

r

(ii)

la
ye

r1
co

nv
1

la
ye

r1
bn

1

la
ye

r2
co

nv
1

la
ye

r2
bn

1

la
ye

r2
co

nv
2

la
ye

r2
bn

2

la
ye

r3
co

nv
1

la
ye

r3
bn

1

la
ye

r3
co

nv
2

la
ye

r3
bn

2

la
ye

r4
co

nv
1

la
ye

r4
bn

1

la
ye

r4
co

nv
2

la
ye

r4
bn

2

la
ye

r5
co

nv
1

la
ye

r5
bn

1

la
ye

r5
co

nv
2

la
ye

r5
bn

2

la
ye

r6
co

nv
1

la
ye

r6
bn

1

la
ye

r6
co

nv
2

la
ye

r6
bn

2

lin
ea

r

: naturally trained : adversarially trained : frozen

Figure 3.1: Visualization of (i) initial adversarial training, (ii) freezing of the early
(adversarially trained) layers, and reinitialization and natural retraining of the latter
layers for the example scenario with the code A1N2. Cutoff point is before block 5
convolutional layer 1. Note that skip connections have been omitted and network is
shortened for illustration purposes.

(i)

la
ye

r1
co

nv
1

la
ye

r1
bn

1

la
ye

r2
co

nv
1

la
ye

r2
bn

1

la
ye

r2
co

nv
2

la
ye

r2
bn

2

la
ye

r3
co

nv
1

la
ye

r3
bn

1

la
ye

r3
co

nv
2

la
ye

r3
bn

2

la
ye

r4
co

nv
1

la
ye

r4
bn

1

la
ye

r4
co

nv
2

la
ye

r4
bn

2

la
ye

r5
co

nv
1

la
ye

r5
bn

1

la
ye

r5
co

nv
2

la
ye

r5
bn

2

la
ye

r6
co

nv
1

la
ye

r6
bn

1

la
ye

r6
co

nv
2

la
ye

r6
bn

2

lin
ea

r

(ii)

la
ye

r1
co

nv
1

la
ye

r1
bn

1

la
ye

r2
co

nv
1

la
ye

r2
bn

1

la
ye

r2
co

nv
2

la
ye

r2
bn

2

la
ye

r3
co

nv
1

la
ye

r3
bn

1

la
ye

r3
co

nv
2

la
ye

r3
bn

2

la
ye

r4
co

nv
1

la
ye

r4
bn

1

la
ye

r4
co

nv
2

la
ye

r4
bn

2

la
ye

r5
co

nv
1

la
ye

r5
bn

1

la
ye

r5
co

nv
2

la
ye

r5
bn

2

la
ye

r6
co

nv
1

la
ye

r6
bn

1

la
ye

r6
co

nv
2

la
ye

r6
bn

2

lin
ea

r

: naturally trained : adversarially trained : frozen

Figure 3.2: Visualization of (i) initial natural training, (ii) freezing of the early (natu-
rally trained) layers, and reinitialization and adversarial retraining of the latter layers
for the example scenario with the code N1A2. Cutoff point is before block 5 convolu-
tional layer 1. Note that skip connections have been omitted and network is shortened
for illustration purposes.

22

Analysis of Adversarial Training Chapter 3

Retraining Earlier Layers The second type of partial training experiment is where

we freeze the latter layers, then reinitialize and retrain the earlier layers.

(i)

la
ye

r1
co

nv
1

la
ye

r1
bn

1

la
ye

r2
co

nv
1

la
ye

r2
bn

1

la
ye

r2
co

nv
2

la
ye

r2
bn

2

la
ye

r3
co

nv
1

la
ye

r3
bn

1

la
ye

r3
co

nv
2

la
ye

r3
bn

2

la
ye

r4
co

nv
1

la
ye

r4
bn

1

la
ye

r4
co

nv
2

la
ye

r4
bn

2

la
ye

r5
co

nv
1

la
ye

r5
bn

1

la
ye

r5
co

nv
2

la
ye

r5
bn

2

la
ye

r6
co

nv
1

la
ye

r6
bn

1

la
ye

r6
co

nv
2

la
ye

r6
bn

2

lin
ea

r

(ii)

la
ye

r1
co

nv
1

la
ye

r1
bn

1

la
ye

r2
co

nv
1

la
ye

r2
bn

1

la
ye

r2
co

nv
2

la
ye

r2
bn

2

la
ye

r3
co

nv
1

la
ye

r3
bn

1

la
ye

r3
co

nv
2

la
ye

r3
bn

2

la
ye

r4
co

nv
1

la
ye

r4
bn

1

la
ye

r4
co

nv
2

la
ye

r4
bn

2

la
ye

r5
co

nv
1

la
ye

r5
bn

1

la
ye

r5
co

nv
2

la
ye

r5
bn

2

la
ye

r6
co

nv
1

la
ye

r6
bn

1

la
ye

r6
co

nv
2

la
ye

r6
bn

2

lin
ea

r

: naturally trained : adversarially trained : frozen

Figure 3.3: Visualization of (i) initial adversarial training, (ii) freezing of the latter
(adversarially trained) layers, and reinitialization and natural retraining of the early
layers for the example scenario with the code N2A1. Cutoff point is before block 3
convolutional layer 2. Note that skip connections have been omitted and network is
shortened for illustration purposes.

(i)

la
ye

r1
co

nv
1

la
ye

r1
bn

1

la
ye

r2
co

nv
1

la
ye

r2
bn

1

la
ye

r2
co

nv
2

la
ye

r2
bn

2

la
ye

r3
co

nv
1

la
ye

r3
bn

1

la
ye

r3
co

nv
2

la
ye

r3
bn

2

la
ye

r4
co

nv
1

la
ye

r4
bn

1

la
ye

r4
co

nv
2

la
ye

r4
bn

2

la
ye

r5
co

nv
1

la
ye

r5
bn

1

la
ye

r5
co

nv
2

la
ye

r5
bn

2

la
ye

r6
co

nv
1

la
ye

r6
bn

1

la
ye

r6
co

nv
2

la
ye

r6
bn

2

lin
ea

r

(ii)

la
ye

r1
co

nv
1

la
ye

r1
bn

1

la
ye

r2
co

nv
1

la
ye

r2
bn

1

la
ye

r2
co

nv
2

la
ye

r2
bn

2

la
ye

r3
co

nv
1

la
ye

r3
bn

1

la
ye

r3
co

nv
2

la
ye

r3
bn

2

la
ye

r4
co

nv
1

la
ye

r4
bn

1

la
ye

r4
co

nv
2

la
ye

r4
bn

2

la
ye

r5
co

nv
1

la
ye

r5
bn

1

la
ye

r5
co

nv
2

la
ye

r5
bn

2

la
ye

r6
co

nv
1

la
ye

r6
bn

1

la
ye

r6
co

nv
2

la
ye

r6
bn

2

lin
ea

r

: naturally trained : adversarially trained : frozen

Figure 3.4: Visualization of (i) initial natural training, (ii) freezing of the latter (natu-
rally trained) layers, and reinitialization and adversarial retraining of the early layers
for the example scenario with the code A2N1. Cutoff point is before block 3 convolu-
tional layer 2. Note that skip connections have been omitted and network is shortened
for illustration purposes.

23

Analysis of Adversarial Training Chapter 3

Retraining A Single Layer Similar to the previous two techniques, one can also

freeze all but one layer, and then reinitialize and retrain that single layer. This makes a

small but noticeable change in the robustness of the neural network.

(i)

la
ye

r1
co

nv
1

la
ye

r1
bn

1

la
ye

r2
co

nv
1

la
ye

r2
bn

1

la
ye

r2
co

nv
2

la
ye

r2
bn

2

la
ye

r3
co

nv
1

la
ye

r3
bn

1

la
ye

r3
co

nv
2

la
ye

r3
bn

2

la
ye

r4
co

nv
1

la
ye

r4
bn

1

la
ye

r4
co

nv
2

la
ye

r4
bn

2

la
ye

r5
co

nv
1

la
ye

r5
bn

1

la
ye

r5
co

nv
2

la
ye

r5
bn

2

la
ye

r6
co

nv
1

la
ye

r6
bn

1

la
ye

r6
co

nv
2

la
ye

r6
bn

2

lin
ea

r

(ii)

la
ye

r1
co

nv
1

la
ye

r1
bn

1

la
ye

r2
co

nv
1

la
ye

r2
bn

1

la
ye

r2
co

nv
2

la
ye

r2
bn

2

la
ye

r3
co

nv
1

la
ye

r3
bn

1

la
ye

r3
co

nv
2

la
ye

r3
bn

2

la
ye

r4
co

nv
1

la
ye

r4
bn

1

la
ye

r4
co

nv
2

la
ye

r4
bn

2

la
ye

r5
co

nv
1

la
ye

r5
bn

1

la
ye

r5
co

nv
2

la
ye

r5
bn

2

la
ye

r6
co

nv
1

la
ye

r6
bn

1

la
ye

r6
co

nv
2

la
ye

r6
bn

2

lin
ea

r

: naturally trained : adversarially trained : frozen

Figure 3.5: Visualization of (i) initial adversarial training, (ii) freezing of all layers
except one, and reinitialization and natural retraining of the single layer. The single
natural layer is block 5 convolutional layer 1. Note that skip connections have been
omitted and network is shortened for illustration purposes.

3.1.2.2 Tracking Perturbations Across Layers

Separate from partial adversarial training, we also use another method to visualize

how different layers operate on the adversarial perturbations by plotting the Lp norm

of the difference between layer outputs for attacked images and layer outputs for clean

images. We divide this by the Lp norm of the layer outputs for clean images to obtain

perturbation-to-signal-ratio (Equation 3.1). This serves two purposes: we get a better

measure of the strength of the attack at that layer with respect to the layer outputs

for clean images, and the effect of number of dimensions on the Lp norm is eliminated

since both the numerator and denominator have it. While Lp norms do not capture the

full complexity of the adversarial perturbations, they do equip us with an approximate

measure of remaining power of the perturbation at a given layer.

PSRl =
∥fl(x)− fl(x+ e)∥p

∥fl(x)∥p
(3.1)

24

Analysis of Adversarial Training Chapter 3

3.1.3 Experiments & Results

At first glance, accuracy might seem like a reasonable statistic to measure the effec-

tiveness of layers in adversarial training with. However, when we look at the plots for

the accuracy, (Figure 3.6) we notice a shortcoming of using accuracy as a performance

measure. Namely, both of the plots show a saturation of accuracy at the beginning.

The saturation at the beginning means that even if the first quarter of the network (for

ResNet) is adversarially trained, there is no observed gain in robustness. This is some-

what counterintuitive, and indeed, when we look at the same plots for cross-entropy loss,

which is what the adversarial attack tries to maximize in the first place, we see a dif-

ferent picture. The first layers certainly do increase robustness, in the form of reduced

false-confidence in the wrong label. To give a concrete example, for a hypothetical two

label task, both [0.51, 0.49] and [0.99, 0.01] softmax outputs give 0% accuracy against

label of [0, 1]. However, clearly the second softmax output is much worse. Therefore,

when comparing points with accuracies close to zero, the better approach to measure

effectiveness is to use the cross-entropy loss itself. If, on the other hand, accuracies are

not close to zero, then accuracy can also be a viable metric.

co
nv

1

lay
er1

.0.
co

nv
1

lay
er1

.0.
co

nv
2

lay
er1

.1.
co

nv
1

lay
er1

.1.
co

nv
2

lay
er2

.0.
co

nv
1

lay
er2

.0.
co

nv
2

lay
er2

.0.
sh

or
tcu

t.0

lay
er2

.1.
co

nv
1

lay
er2

.1.
co

nv
2

lay
er3

.0.
co

nv
1

lay
er3

.0.
co

nv
2

lay
er3

.0.
sh

or
tcu

t.0

lay
er3

.1.
co

nv
1

lay
er3

.1.
co

nv
2

lay
er4

.0.
co

nv
1

lay
er4

.0.
co

nv
2

lay
er4

.0.
sh

or
tcu

t.0

lay
er4

.1.
co

nv
1

lay
er4

.1.
co

nv
2

lin
ea

r

Cutoff layer

0

10

20

30

40

50

R
es

N
et

ad
ve

rs
ar

ia
l

ac
cu

ra
cy

0

10

20

30

40
V

G
G

ad
ve

rs
ar

ia
l

ac
cu

ra
cy

co
nv

(0
)

co
nv

(3
)

co
nv

(7
)

co
nv

(1
0)

co
nv

(1
4)

co
nv

(1
7)

co
nv

(2
0)

co
nv

(2
4)

co
nv

(2
7)

co
nv

(3
0)

co
nv

(3
4)

co
nv

(3
7)

co
nv

(4
0)

lin
ea

r

ResNet

VGG

Figure 3.6: Adversarial accuracy for the case A1N2 as the number of adversarially
trained layers increases. Note the plateau at the beginning.

25

Analysis of Adversarial Training Chapter 3

3.1.3.1 Details

To reduce the amount of hyperparameter search and hand-tailoring, and for consis-

tency, we use the same optimizer, scheduler and optimization hyperparameters for all

experiments of the same model. We train ResNet-16 with momentum SGD optimizer

with learning rate 0.1 for 75 epochs and 0.01 for a further 5 epochs. We use a momentum

coefficient of 0.9, a weight decay coefficient of 2 × 10−4 and batch size of 128. We start

training VGG-16 with Adam optimizer with learning rate 1 × 10−3 for 100 epochs. We

scale down the learning rate by a factor of 10 at epochs 50 and 75. We do not use weight

decay for VGG and use a batch size of 128. The choice of using different optimizers for

different models was made to ensure diversity and reduce the likelihood of observations

being caused by the choice of a certain optimizer/hyperparameter. The hyperparame-

ters for the SGD optimizer were taken from [9] and the hyperparameters for Adam were

determined after a hyperparameter search in a limited number of combinations. For

ResNet training we stop early after reducing the learning rate to reduce the chance of

catastrophic overfitting [73]. We do not use this for VGG, to reduce the reliance of obser-

vations on a particular method, as mentioned before. Following [9], we use L∞ bounded

PGD attack with attack budget ϵ = 8/255, step size 2/255, and 10 steps for both of

the models’ adversarial training. Perturbations are initialized with each element drawn

from uniform distribution U(−ϵ, ϵ). For adversarial testing, we use L∞ bounded PGD

attack with attack budget ϵ = 8/255, step size 1/255, and 100 steps. Perturbations are

initialized with each element drawn from uniform distribution U(−ϵ, ϵ). Total training

time is 15 days for ResNet experiments and 10 days for VGG experiments, running on

an in-house cluster with 4 Nvidia GTX 1080Ti GPUs.

26

Analysis of Adversarial Training Chapter 3

3.1.3.2 Retraining Latter Layers

We observe that in Figure 3.7 as the number of adversarially trained layers increases

from zero to number of layers in the network, the adversarial loss goes from all natural

model’s loss value to all adversarial model’s loss value, as expected. What is striking

is how this transition occurs. The evolution of adversarial loss very closely follows an

exponential function for both of the models. This is the first indication that the first few

layers play a major role in reducing the adversarial loss.

co
nv

1

lay
er1

.0.
co

nv
1

lay
er1

.0.
co

nv
2

lay
er1

.1.
co

nv
1

lay
er1

.1.
co

nv
2

lay
er2

.0.
co

nv
1

lay
er2

.0.
co

nv
2

lay
er2

.0.
sh

or
tcu

t.0

lay
er2

.1.
co

nv
1

lay
er2

.1.
co

nv
2

lay
er3

.0.
co

nv
1

lay
er3

.0.
co

nv
2

lay
er3

.0.
sh

or
tcu

t.0

lay
er3

.1.
co

nv
1

lay
er3

.1.
co

nv
2

lay
er4

.0.
co

nv
1

lay
er4

.0.
co

nv
2

lay
er4

.0.
sh

or
tcu

t.0

lay
er4

.1.
co

nv
1

lay
er4

.1.
co

nv
2

lin
ea

r

Cutoff layer

10

20

30

R
es

N
et

ad
ve

rs
ar

ia
l

lo
ss

10

20

30

40

50

60

V
G

G
ad

ve
rs

ar
ia

l
lo

ss

co
nv

(0
)

bn
(1

)

co
nv

(3
)

bn
(4

)

co
nv

(7
)

bn
(8

)

co
nv

(1
0)

bn
(1

1)

co
nv

(1
4)

bn
(1

5)

co
nv

(1
7)

bn
(1

8)

co
nv

(2
0)

bn
(2

1)

co
nv

(2
4)

bn
(2

5)

co
nv

(2
7)

bn
(2

8)

co
nv

(3
0)

bn
(3

1)

co
nv

(3
4)

bn
(3

5)

co
nv

(3
7)

bn
(3

8)

co
nv

(4
0)

bn
(4

1)

lin
ea

r

ResNet

VGG

Figure 3.7: Adversarial loss for the case of A1N2. The number of adversarially trained
layers increases to the right. Higher loss means model is performing worse.

27

Analysis of Adversarial Training Chapter 3

Another key observation we made is that if the earlier layers are trained naturally

in the first stage, frozen and the rest is adversarially trained (N1A2), the network has a

more difficult time converging. In fact, after some cutoff point (layer3.0.bn2 for ResNet

and layer 10 for VGG) the network cannot learn and collapses to random guessing (see

Figure 3.8). A likely explanation is that the perturbations grow to such high levels in the

earlier layers that the latter layers do not have the capacity to learn from the distributions

they see.

co
nv

1

lay
er1

.0.
co

nv
1

lay
er1

.0.
co

nv
2

lay
er1

.1.
co

nv
1

lay
er1

.1.
co

nv
2

lay
er2

.0.
co

nv
1

lay
er2

.0.
co

nv
2

lay
er2

.0.
sh

or
tcu

t.0

lay
er2

.1.
co

nv
1

lay
er2

.1.
co

nv
2

lay
er3

.0.
co

nv
1

lay
er3

.0.
co

nv
2

lay
er3

.0.
sh

or
tcu

t.0

lay
er3

.1.
co

nv
1

lay
er3

.1.
co

nv
2

lay
er4

.0.
co

nv
1

lay
er4

.0.
co

nv
2

lay
er4

.0.
sh

or
tcu

t.0

lay
er4

.1.
co

nv
1

lay
er4

.1.
co

nv
2

lin
ea

r

0

10

20

30

40

50

R
es

N
et

ad
ve

rs
ar

ia
l

ac
cu

ra
cy

0

10

20

30

40

V
G

G
ad

ve
rs

ar
ia

l
ac

cu
ra

cy

co
nv

(0
)

co
nv

(3
)

co
nv

(7
)

co
nv

(1
0)

co
nv

(1
4)

co
nv

(1
7)

co
nv

(2
0)

co
nv

(2
4)

co
nv

(2
7)

co
nv

(3
0)

co
nv

(3
4)

co
nv

(3
7)

co
nv

(4
0)

lin
ea

r

ResNet

VGG

Figure 3.8: Adversarial accuracy for the case of N1A2. The number of adversarially
trained layers decreases to the right. After a particular cutoff point, the networks
cannot learn from adversarial training and collapse to random guessing. Such data
points are omitted from the plot.

28

Analysis of Adversarial Training Chapter 3

3.1.3.3 Retraining Earlier Layers

In Figure 3.9, similar to what we observe in latter layer retraining, we see a change in

adversarial loss from all adversarial model’s loss value to all natural model’s loss value

as the number of adversarially trained layers decreases. The transition for ResNet again

follows an exponential curve wheres the the transition for VGG follows a non-monotonic

trajectory. It is unclear what causes this behavior and why it is only observed when

earlier layers are retrained.

co
nv

1

lay
er1

.0.
co

nv
1

lay
er1

.0.
co

nv
2

lay
er1

.1.
co

nv
1

lay
er1

.1.
co

nv
2

lay
er2

.0.
co

nv
1

lay
er2

.0.
co

nv
2

lay
er2

.0.
sh

or
tcu

t.0

lay
er2

.1.
co

nv
1

lay
er2

.1.
co

nv
2

lay
er3

.0.
co

nv
1

lay
er3

.0.
co

nv
2

lay
er3

.0.
sh

or
tcu

t.0

lay
er3

.1.
co

nv
1

lay
er3

.1.
co

nv
2

lay
er4

.0.
co

nv
1

lay
er4

.0.
co

nv
2

lay
er4

.0.
sh

or
tcu

t.0

lay
er4

.1.
co

nv
1

lay
er4

.1.
co

nv
2

lin
ea

r

Cutoff layer

0

10

20

30

40

R
es

N
et

ad
ve

rs
ar

ia
l

lo
ss

10

20

30

40

50

V
G

G
ad

ve
rs

ar
ia

l
lo

ss

co
nv

(0
)

bn
(1

)

co
nv

(3
)

bn
(4

)

co
nv

(7
)

bn
(8

)

co
nv

(1
0)

bn
(1

1)

co
nv

(1
4)

bn
(1

5)

co
nv

(1
7)

bn
(1

8)

co
nv

(2
0)

bn
(2

1)

co
nv

(2
4)

bn
(2

5)

co
nv

(2
7)

bn
(2

8)

co
nv

(3
0)

bn
(3

1)

co
nv

(3
4)

bn
(3

5)

co
nv

(3
7)

bn
(3

8)

co
nv

(4
0)

bn
(4

1)

lin
ea

r

ResNet

VGG

Figure 3.9: Adversarial loss for the case of N2A1. The number of adversarially trained
layers decreases to the right. Higher loss means model is performing worse.

29

Analysis of Adversarial Training Chapter 3

In Figure 3.10, when the early layers are retrained adversarially, we observe a very

rapid and significant decrease in loss, to the level of all adversarial model’s loss value,

with as few as 4 adversarial layers.

co
nv

1

lay
er1

.0.
co

nv
1

lay
er1

.0.
co

nv
2

lay
er1

.1.
co

nv
1

lay
er1

.1.
co

nv
2

lay
er2

.0.
co

nv
1

lay
er2

.0.
co

nv
2

lay
er2

.0.
sh

or
tcu

t.0

lay
er2

.1.
co

nv
1

lay
er2

.1.
co

nv
2

lay
er3

.0.
co

nv
1

lay
er3

.0.
co

nv
2

lay
er3

.0.
sh

or
tcu

t.0

lay
er3

.1.
co

nv
1

lay
er3

.1.
co

nv
2

lay
er4

.0.
co

nv
1

lay
er4

.0.
co

nv
2

lay
er4

.0.
sh

or
tcu

t.0

lay
er4

.1.
co

nv
1

lay
er4

.1.
co

nv
2

lin
ea

r

Cutoff layer

0

10

20

30

R
es

N
et

ad
ve

rs
ar

ia
l

lo
ss

0

10

20

30

40

50

60

V
G

G
ad

ve
rs

ar
ia

l
lo

ss

co
nv

(0
)

bn
(1

)

co
nv

(3
)

bn
(4

)

co
nv

(7
)

bn
(8

)

co
nv

(1
0)

bn
(1

1)

co
nv

(1
4)

bn
(1

5)

co
nv

(1
7)

bn
(1

8)

co
nv

(2
0)

bn
(2

1)

co
nv

(2
4)

bn
(2

5)

co
nv

(2
7)

bn
(2

8)

co
nv

(3
0)

bn
(3

1)

co
nv

(3
4)

bn
(3

5)

co
nv

(3
7)

bn
(3

8)

co
nv

(4
0)

bn
(4

1)

lin
ea

r

ResNet

VGG

Figure 3.10: Adversarial loss for the case of A2N1. The number of adversarially
trained layers increases to the right. Higher loss means model is performing worse.

30

Analysis of Adversarial Training Chapter 3

3.1.3.4 Retraining A Single Layer

When we freeze the whole network and retrain a single layer (Figure 3.11), we see a

similar trend in the change in statistics as in Sections 3.1.3.2 and 3.1.3.3. Specifically,

the change in accuracy induced by each individual early layer is much greater than the

change induced by the individual latter layers. Interestingly, these effects of individual

layers follow a more linear trend. In this experiment, we can safely look at the accuracies

since changing only a single layer does not bring the adversarial accuracy close to zero,

where the aforementioned saturation occurs.

co
nv

1

lay
er

1.0
.co

nv
1

lay
er

1.0
.co

nv
2

lay
er

1.1
.co

nv
1

lay
er

1.1
.co

nv
2

lay
er

2.0
.co

nv
1

lay
er

2.0
.co

nv
2

lay
er

2.0
.sh

or
tc

ut.0

lay
er

2.1
.co

nv
1

lay
er

2.1
.co

nv
2

lay
er

3.0
.co

nv
1

lay
er

3.0
.co

nv
2

lay
er

3.0
.sh

or
tc

ut.0

lay
er

3.1
.co

nv
1

lay
er

3.1
.co

nv
2

lay
er

4.0
.co

nv
1

lay
er

4.0
.co

nv
2

lay
er

4.0
.sh

or
tc

ut.0

lay
er

4.1
.co

nv
1

lay
er

4.1
.co

nv
2

Natural Layer

5

10

15

20

25

30

35

R
es

N
et

ad
ve

rs
ar

ia
l

ac
cu

ra
cy

d
ro

p

10

20

30

40

V
G

G
ad

ve
rs

ar
ia

l
ac

cu
ra

cy
d

ro
p

co
nv

(0
)

co
nv

(3
)

co
nv

(7
)

co
nv

(1
0)

co
nv

(1
4)

co
nv

(1
7)

co
nv

(2
0)

co
nv

(2
4)

co
nv

(2
7)

co
nv

(3
0)

co
nv

(3
4)

co
nv

(3
7)

co
nv

(4
0)

ResNet

VGG

Figure 3.11: The difference in adversarial accuracy between an all adversarially
trained network and network with a single natural layer, indicating the singular con-
tribution of that layer to adversarial robustness.

31

Analysis of Adversarial Training Chapter 3

3.1.3.5 Tracking Perturbations Across Layers

The perturbation-to-signal ratio (Equation 3.1) indicates the sustained power of the

adversarial perturbation at each layer. Figure 3.12 shows this ratio computed for each

image and the resulting ratio distributions.

Figure 3.12: Distributions of the ratio of adversarial perturbations’ L2 norm to signal’s
L2 norm after each convolutional layer. Histogram is created by computing this value
for each image. The layer names are on the y-axis and histogram bin values are on
the x-axis.

32

Analysis of Adversarial Training Chapter 3

Figure 3.13 shows the means of these distributions converted to dB. This value is,

in essence, the negative of the signal-to-noise ratio (SNR dB) widely used in the signal

processing field, if we view the perturbation as noise.

Figure 3.13: The means of the distributions of perturbation-to-signal ratio from Fig-
ure 3.12, expressed in dB.

3.1.4 Discussion

Our partial adversarial training approach clearly reveals that earlier layers play a

larger role in providing robustness than the latter layers. This is demonstrated both

by our evaluations of accuracy under adversarial attacks and by the trends in the loss

function. An intuitive explanation is that, unless adversarial perturbations are atten-

uated early on, they can have ever increasing impacts as they flow through the net-

work, since DNNs are sequential models. This intuition is borne out by our comparisons

33

Analysis of Adversarial Training Chapter 3

of perturbation-to-signal ratio between adversarially trained and naturally trained net-

works: we see from Figure 3.12 how the perturbation expands in size as it flows through

the layers in the naturally trained network, and how it is kept under check with adver-

sarial training. Furthermore, Figure 3.13 shows that the PSR difference increases rapidly

in the earlier layers, and continues to grow but at a slower pace.

This observation is made even starker if we consider the number of parameters in each

layer. Since the latter layers have many more channels than early layers but have the

same number of spatial dimensions in the kernels, they have more parameters. Therefore

the difference in contribution to adversarial robustness per parameter is even greater than

the nominal difference between early and latter layers.

Yet another piece of evidence regarding the importance of the early layers is an

experiment in which we freeze the early layers after natural training, and then try to

train latter layers adversarially. We find that, if enough early layers are frozen after

natural training, then adversarial training simply does not converge: this is because the

perturbation is allowed to increase in size too much as it flows through the naturally

trained layers.

3.1.4.1 Limitations

Due to the sheer number of experiments that were executed to obtain these results,

they were only run once and there are no known error bars associated with the experimen-

tal results. Therefore there is some statistical variation in the results which is apparent

in the minor roughness that is evident in some of the graphs. It also means that if the

experiments were conducted again, slightly different results would be obtained. However,

since the adjustment of cutoff points is very granular (one layer at a time), this statistical

variation should not significantly affect the conclusions from this work.

34

Analysis of Adversarial Training Chapter 3

3.2 Statistical Differences in Parameters

Along with the analysis to determine which layers are more important for adversarial

robustness, we analyze the parameters themselves. We compare various statistics of

layers’ parameters of adversarially trained networks and naturally trained networks to

see if there are clear structural differences that we can extract and use in our structural

defenses.

3.2.1 Statistics of Batch Norm Layers

As reported by Frankle et al. [74], batch norm layers pack a great deal of capacity and

expressivity, even when used in conjunction with random weights. So we first compare

the parameters (both trainable and non-trainable) of batch norm layers of adversarially

and naturally trained ResNets. Figures 3.14, 3.15, 3.16, and 3.17, plot the histograms of

running means, running variances, γ (scale), and β (bias) for each batch norm layer of

these networks. We can observe differences in some of these statistics. Namely, running

variance distributions of some middle layers and the γ and β distributions of the latter

layers differ between adversarially and naturally trained networks. However, these trends

are not consistent across layers, nor do they give clear insights.

35

Analysis of Adversarial Training Chapter 3

Adv
Nat

Figure 3.14: Histograms of running means in each batch norm layer in ResNet.
Orange histograms are for the adversarially trained network and blue histograms are
for the naturally trained network.

Adv
Nat

Figure 3.15: Histograms of running variances in each batch norm layer in ResNet.
Orange histograms are for the adversarially trained network and blue histograms are
for the naturally trained network.

36

Analysis of Adversarial Training Chapter 3

Adv
Nat

Figure 3.16: Histograms of γ (scale) in each batch norm layer in ResNet. Orange
histograms are for the adversarially trained network and blue histograms are for the
naturally trained network.

Adv
Nat

Figure 3.17: Histograms of β (bias/offset) in each batch norm layer in ResNet.
Orange histograms are for the adversarially trained network and blue histograms are
for the naturally trained network.

37

Analysis of Adversarial Training Chapter 3

3.2.2 Lp Norms of Convolutional Layers

Similarly, we consider Lp norms of the filters of the convolutional layers. Specifically,

we consider
(∥·∥1/∥·∥2)2−1

d−1
ratio (see Figures 3.18 and 3.19), which serves two purposes.

First, it provides scale invariance. Comparing nominal Lp norms of two networks can

yield incorrect conclusions because there’s an interplay between weights and the batch

norm running statistics, and different networks can converge to filters with different Lp

norms by pure chance. Second, as reported in [75],
(∥·∥1/∥·∥2)2−1

d−1
ratio gives a measure of

sparsity level – in fact, better than other proxy measures. 0 means that the filter has a

single nonzero element and 1 means all elements in the filter are equal. However in this

inquiry too, we run into greatly overlapping distributions of statistics. One outlier is the

first convolutional layer; we can see that the adversarially trained network’s first layer’s

filters are consistently sparser in both ResNet and VGG. For other layers, the histograms

overlap significantly and it is hard to draw statistically significant conclusions.

38

Analysis of Adversarial Training Chapter 3

0.0212 0.2012 0.3812 0.5612 0.7412 0.9211

((L1/L2)2 − 1)/(d− 1)

(L1/L2)2−1
d−1 distribution of filters at each layer

conv1

layer1.0.conv1

layer1.0.conv2

layer1.1.conv1

layer1.1.conv2

layer2.0.conv1

layer2.0.conv2

layer2.0.shortcut.0

layer2.1.conv1

layer2.1.conv2

layer3.0.conv1

layer3.0.conv2

layer3.0.shortcut.0

layer3.1.conv1

layer3.1.conv2

layer4.0.conv1

layer4.0.conv2

layer4.0.shortcut.0

layer4.1.conv1

layer4.1.conv2

Adversarial

Natural

Figure 3.18: Histograms of
(∥·∥1/∥·∥2)2−1

d−1 ratio of the filters in each convolutional layer
in ResNet. Orange histograms are for adversarially trained network, blue histograms
are for naturally trained network. d is the number of elements in each filter of that
layer. 0 means a single non-zero element and 1 means all elements are equal.

0.0525 0.2206 0.3887 0.5569 0.7250 0.8931

((L1/L2)2 − 1)/(d− 1)

(L1/L2)2−1
d−1 distribution of filters at each layer

features.0

features.3

features.7

features.10

features.14

features.17

features.20

features.24

features.27

features.30

features.34

features.37

features.40

Adversarial

Natural

Figure 3.19: Histograms of
(∥·∥1/∥·∥2)2−1

d−1 ratio of the filters in each convolutional layer
in VGG. Orange histograms are for adversarially trained network, blue histograms
are for naturally trained network. d is the number of elements in each filter of that
layer. 0 means a single non-zero element and 1 means all elements are equal.

39

Analysis of Adversarial Training Chapter 3

3.2.3 Singular Value Distributions of Convolutional Layers

Lastly, we consider the linear operation that the convolutional layer applies on the

image. We convert each convolutional layer into a very large matrix acting on the entire

image, and then plot singular values of this matrix in decreasing order, normalized by

the largest singular value. The plots for these singular value distributions are given in

Figures 3.20 and Figures 3.21.

From these plots the following conclusions can be drawn:

• For most layers other than the first, adversarially trained models have slightly

fatter-tailed singular value distributions than naturally trained models. This indi-

cates that they project their inputs to a more diverse set of principal components.

• For the first layer singular values, the distributions are inconsistent; they vary

between architectures but also depend on the optimizer used.

• For both naturally and adversarially trained models, singular values are sparser for

the latter layers than the earlier layers.

40

Analysis of Adversarial Training Chapter 3

0 500 1000 1500 2000 2500 3000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv1

0 10000 20000 30000 40000 50000 60000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of layer1.0.conv1

0 5000 10000 15000 20000 25000 30000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of layer2.1.conv1

0 5000 10000 15000 20000 25000 30000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of layer2.1.conv2

0 2000 4000 6000 8000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of layer4.1.conv1

0 2000 4000 6000 8000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of layer4.1.conv2

Adversarial

Natural

0 500 1000 1500 2000 2500 3000
Singular Value Index

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv1

0 10000 20000 30000 40000 50000 60000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of layer1.0.conv1

0 5000 10000 15000 20000 25000 30000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of layer2.1.conv1

0 5000 10000 15000 20000 25000 30000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of layer2.1.conv2

0 2000 4000 6000 8000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of layer4.1.conv1

0 2000 4000 6000 8000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of layer4.1.conv2

Adversarial

Natural

Figure 3.20: Singular value distributions of linear representations of various convolu-
tional layers of ResNet, normalized by their top singular value. Top two rows are
the first two layers, middle two rows are middle two layers, and bottom two rows
are last two layers. Orange plots are for adversarially trained network, blue plots are
for naturally trained network. Left: Distributions for ResNet-34 trained with SGD
optimizer. Right: Distributions for ResNet-34 trained with Adam optimizer [12].

41

Analysis of Adversarial Training Chapter 3

0 500 1000 1500 2000 2500 3000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv 0

0 10000 20000 30000 40000 50000 60000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv 1

0 2500 5000 7500 10000 12500 15000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv 6

0 1000 2000 3000 4000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv 7

0 500 1000 1500 2000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv 11

0 500 1000 1500 2000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv 12

Adversarial

Natural

0 500 1000 1500 2000 2500 3000
Singular Value Index

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv 0

0 10000 20000 30000 40000 50000 60000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv 1

0 2500 5000 7500 10000 12500 15000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv 6

0 1000 2000 3000 4000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv 7

0 500 1000 1500 2000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv 11

0 500 1000 1500 2000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
V

al
u

e

Singular Values of conv 12

Adversarial

Natural

Figure 3.21: Singular value distributions of linear representations of various convolu-
tional layers of VGG, normalized by their top singular value. Top two rows are the
first two layers, middle two rows are middle two layers, and bottom two rows are last
two layers. Orange plots are for adversarially trained network, blue plots are for nat-
urally trained network. Left: Distributions for VGG-16 trained with SGD optimizer.
Right: Distributions for VGG-16 trained with Adam optimizer [12].

42

Analysis of Adversarial Training Chapter 3

3.3 Conclusion

The importance of continued research on systematic approaches to the design of ro-

bust neural networks, preferably in a manner that we can interpret, cannot be overstated.

While adversarial training is the state-of-the-art defense, it is difficult to interpret the

resulting networks, and they offer far less robustness under attack than is acceptable in

many applications. We hope that our observations, and the methods we have developed

to obtain them, open the door to further efforts at dissecting adversarial training, and in

developing principled approaches to designing in robustness. For example, it may be pos-

sible to be more aggressive about adversarial training in the early layers as we continue

to seek methods which trade off clean and attacked accuracy. As another example, while

defenses based on preprocessing input data have been defeated, a closer analysis of the

early layers may provide insights for the design of improved preprocessing techniques.

In terms of measuring robustness, quick computations of perturbation-to-signal ratios

for early layers may be more informative about the operation of a layer than exhaustive

evaluations of end-to-end accuracy.

An open issue is how the structure of the weights and the patterns of the activa-

tions are different for adversarially trained networks than for naturally trained networks.

While we perform extensive experiments and observe some differences between the statis-

tics of naturally trained model parameters and adversarially trained model parameters,

they lack coherence and discernible trends. Therefore we were unable to extract clear

guidelines that apply to the different network architectures we have considered. Thus, in

our approaches we focus on directly shaping the activations of layers instead. We believe

that continued efforts to gain detailed structural insight are of great value in the quest

to develop principled, interpretable approaches to robustness.

43

Chapter 4

Front End Based Defenses

As discussed in Chapter 3, most of the robustness in adversarial training is achieved

by the earlier layers in a neural network. In this chapter we investigate the approach

that uses front ends to suppress adversarial attacks before they reach the core neural

network. The first approach we develop relies on polarization of first layer outputs and

quantization. It is limited to simple datasets in its capability due to its relatively simple

design and assumptions. The second front end approach we develop involves a similar

polarization idea but achieved through the use of an overcomplete dictionary. It further

employs techniques from other fields to alleviate the effects of adversarial attacks before

they reach the core classifier.

4.1 Polarizing Front Ends for Robust CNNs

4.1.1 Introduction

In this section, we investigate a systematic, bottom-up approach to robustness, study-

ing a defense based on a nonlinear front end for attenuating adversarial perturbations

before they reach the deep network. We focus on L∞ bounded attacks: ∥e∥∞ ≤ ϵ

44

Front End Based Defenses Chapter 4

for an “attack budget” ϵ > 0. Furthermore, we assume a “white-box” attack, in which

the adversary has full knowledge of the network structure and weights. Our approach

consists of polarizing the input data into well-separated clusters by projecting onto an ap-

propriately selected basis (implemented using convolutional filters), and then quantizing

the output using thresholds that scale with the L1 norm of the basis functions. For ideal

polarization, we prove that perturbations are completely eliminated. We introduce a reg-

ularization technique to learn polarizing bases from data, and demonstrate the efficacy of

the proposed defense for the MNIST and Fashion MNIST datasets. The code associated

with this section can be found at https://github.com/canbakiskan/polarizing-frontend.

4.1.2 Related Work

A number of quantization-based defense methods have been proposed in the literature,

within the neural network [76, 77] and as a front end [78, 79, 80, 81]. The key difference in

our proposed strategy is that we employ polarization prior to quantization, which enables

theoretical guarantees on robustness (Section 4.1.3). We do not claim robustness due to

non-differentiability of quantization; we test our defense using the gradient approximation

methods of [42] (as discussed in Section 2.2.3).

4.1.3 Polarizing Front End

We investigate a defense based on a front end which preprocesses the inputs via a

linear transformation followed by a nonlinear activation f . Following convention, the

linear operation of a particular filter is termed a neuron. Consider a typical front end

neuron with weights w and scalar output a. For perturbed input x+ e with L∞ bound

∥e∥∞ < ϵ, a contains two components: desired signal wTx, and an output perturbation

wTe that is constrained in magnitude:
∣∣wTe

∣∣ ≤ ∥e∥∞∥w∥1 ≤ ϵ∥w∥1 due to Hölder’s

45

https://github.com/canbakiskan/polarizing-frontend

Front End Based Defenses Chapter 4

inequality. For the defense to be successful, the nonlinearity f must be chosen such that

f(a = wT (x+ e)) ≈ f(wTx).

ϵ∥w∥1

−ϵ∥w∥1

Perturbation
removed

(for a majority
of neurons)

Perturbation
rides on top

of signal

a

f(a)

Figure 4.1: Activation sparsity (Equation 4.1) alone is not sufficient to achieve robust-
ness: perturbations can ride on top of strongly activated neurons (shaded region).

One design approach is to promote sparse activations by increasing the threshold for

neurons to fire, which makes it difficult for a small perturbation to induce firing:

f(a) =

{
0 |a| ≤ ϵ∥w∥1
a otherwise

(4.1)

While this method helps (see [82, 83, 84] for a similar approach), Figure 4.1 shows why it

cannot be completely successful. When a neuron resides near the middle of the unshaded

region, no perturbation can change the signal output (f(a) = 0). However, neurons with

a strong desired signal component (large |wTx|) can serve as hosts for the perturbation,

allowing it to propagate through the defense. Hence activation sparsity can only be a

part of the solution.

What if we could somehow polarize neural activity to obtain well-separated clusters

of neurons? Consider for instance the three clusters of activations shown in Figure 4.2.

In such a scenario, we can completely eliminate perturbations by using a quantized

nonlinearity (in this case, ternary quantization). Note that it is important for neurons to

46

Front End Based Defenses Chapter 4

ϵ ϵ

Danger
zone

ϵϵ

Polarized histogram
of wTx/∥w∥1 f(a)

1

0

−1

a

∥w∥1

Figure 4.2: Polarization of neural activity can fully eliminate perturbations. For the
shown hypothetical histogram (gray) of wTx/∥w∥1, a ternary activation (blue) is
effective.

avoid the “danger zones” of width 2ϵ shown in the figure: this ensures that perturbations

cannot switch data from one quantization level to the next. These observations are

formalized in the following proposition.

Proposition 1. Suppose the front end polarizes activations into a multimodal distribu-

tion with L clusters, with minimum inter-cluster separation d > 2ϵ∥w∥1. Let c1 < c2 <

. . . cL−1 denote the midpoints between adjacent clusters. Then the following L-level quan-

tizer (with thresholds at ci) completely eliminates perturbations with L∞ norm smaller

than ϵ:

f(a) =
1

2

L−1∑
i=1

sign(a− ci). (4.2)

Proof. Since we use a quantizing nonlinearity, perturbations can cause distortion only

if the output switches quantization levels. We know that for a perturbation e with L∞

budget ϵ, the maximum output distortion is ϵ∥w∥1. Therefore, if clusters are separated

by a distance of 2ϵ∥w∥1, perturbations cannot propagate through the defense.

This result motivates a second design approach, where we seek a neural basis in which

outputs are well-polarized for clean inputs, with clusters of wTx/∥w∥1 separated by at

47

Front End Based Defenses Chapter 4

least 2ϵ, as shown in Figure 4.2. We can then choose a piecewise constant nonlinearity

(Equation 4.2) to eliminate the effect of perturbations. Equipped with these design

principles, we now detail training procedures to learn polarizing bases from data.

4.1.3.1 Implementing a Polarizing Front End

x+ e
Polarizing

filters
[w1, . . .wK]

1
∥wk∥1 Q(·) Classifier

Front end

a z

Figure 4.3: Block diagram of the polarizing front end defense convolution with polar-
izing filters followed by ℓ1 normalization and quantization.

We employ a front end (shown in Figure 4.3) which uses convolutional filters to learn

polarized and quantized latent representations of data. For a front end neuron wk, let

zk = ak/∥wk∥1 denote the normalized activation. We seek a multimodal distribution

for z, with clusters separated by at least 2ϵ. We achieve this by training with bump

regularizers B1(·) and B2(·) which promote polarization of data. We train in three stages

by minimizing the modified loss function:

L(y,ytrue, z) = LCE(y,ytrue) +
λ

K

K∑
k=1

B(zk)

where LCE is the cross-entropy loss determined by the true label and outputs of the clas-

sifier, K is the number of neurons, z is the vector of activations of all neurons [z1, . . . zK],

B is the regularizer and λ is a scaling coefficient which is adjusted at every epoch as

explained in Section 4.1.4. These stages can be described as follows:

1. We start by training the polarizer without using any quantization. The front end

filters are initialized from a uniform distribution described in [71]. Due to the

48

Front End Based Defenses Chapter 4

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

MNIST Initial

After stage 1

After stage 2

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
0.00

0.01

0.02

0.03

0.04 Fashion MNIST Initial

After stage 1

After stage 2

Figure 4.4: Histograms of normalized front end filter outputs ak/∥wk∥1 after each
training stage for MNIST and Fashion MNIST

random initialization, normalized activations are typically clustered around zero

initially (shown in blue in Figure 4.4). Next, we incorporate a bump regularizer

B(·) = B1(·) (Figure 4.5) to drive the normalized activations away from the origin,

pushing z towards the endpoints −1 and 1:

B1(zk) = e−z2k/2σ
2
1 .

2. After achieving a sufficiently even level of distribution throughout the interval

[−1, 1], we switch to the second bump regularizer B(·) = B2(·), aimed at pushing

the normalized activations away from the quantization thresholds ±c and polarizing

z into three clusters centered at −1, 0 and 1:

B2(zk) = e−(zk−c)2/2σ2
2 + e−(zk+c)2/2σ2

2 .

49

Front End Based Defenses Chapter 4

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
wTx
‖w‖1

−1

0

1

Regularizer 1

Activation function

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
wTx
‖w‖1

−1

0

1

Regularizer 2

Activation function

Figure 4.5: Illustration of regularizers B1 and B2 superposed onto the quantization
function. B1 ensures even distribution of first layer outputs and B2 drives the even
distribution away from the danger zones around the thresholds.

3. Then we introduce the quantization function f2(·) described in Equation 4.3. We

also stop training and freeze the filters in the front end, and remove the regularizer.

We train the classifier to let the weights adapt to the quantization:

f2(zk) = 0.5 sgn(zk − c) + 0.5 sgn(zk + c). (4.3)

For testing, we continue using the quantized activation in Equation 4.3 to eliminate

perturbations. Details regarding the choice of parameters such as λ, c, σ1 and σ2 are

given in Section 4.1.4. We find that these three stages suffice for Fashion MNIST and

MNIST, but depending on the dataset, one could potentially repeat Stage 2 with an in-

50

Front End Based Defenses Chapter 4

Fashion MNIST

MNIST

Initial After Stage 1 After Stage 2

Initial After Stage 1 After Stage 2

Figure 4.6: Typical progression of front end filters over the training stages.

creasing number of clusters until the desired level of polarization is achieved. Figure 4.4

demonstrates the effects bump regularizers have on the distribution of normalized acti-

vations. Figure 4.6 shows the filters obtained after each stage for MNIST and Fashion

MNIST. Interestingly, we find that the learned filters appear similar to pixel bases. This

is consistent with the observations in [9] about first-layer filters learned by adversarial

training on MNIST.

4.1.4 Experiments and Results

4.1.4.1 Training Details

For a fair comparison we use the small convolutional neural network from [9], con-

sisting of two convolutional layers and two fully connected layers. Convolutional layers

have 32 and 64 filters that are 5x5 in size. Each convolutional layer is followed by 2x2

maxpooling operation. Every layer except the last uses ReLU activation function. The

51

Front End Based Defenses Chapter 4

outputs of the last layer are fed into a softmax function to generate classification prob-

abilities. In every run, the model is trained for 20 epochs in each stage for a total of 60

epochs. Gradient descent is achieved using the Adam optimizer [12] with learning rate

10−3 and default hyperparameters in PyTorch library.

During training with bump regularizers, stage 1 and stage 2 bump widths are picked

to be σ1 = 0.35 and σ2 = 0.15, respectively. To make the adaptation of weights smoother,

we increase the bump coefficient λ linearly from 0 to 1 in each stage, as the stages progress.

The quantization threshold is chosen to be c = 0.3 for Fashion MNIST and c = 0.5 for

MNIST. When adversarially training using the methods of Madry et al. [9] we use 10

restarts and 20 steps in each restart.

Attack Setup: We evaluate our defense against the white-box attacks described in

Chapter 2: FGSM, BIM and PGD with Restarts. We use attack budget ϵ = 0.3 for

MNIST and ϵ = 0.1 for Fashion MNIST. In iterative methods, we use step size α = ϵ/10.

In BIM, we use 20 steps. In PGD, we choose the best performing attack from 20 random

restarts, with 100 steps in each restart.

Fashion MNIST (ϵ = 0.1) MNIST (ϵ = 0.3)

Clean FGSM BIM PGD Clean FGSM BIM PGD

No defense 91.6 19.7 1.49 0.11 99.4 21.9 0.47 0.00

Adv. Training 83.8 77.9 75.6 74.1 97.5 93.1 90.0 86.7

Ours 87.3 69.4 54.9 44.5 99.1 93.2 86.5 70.8

Table 4.1: Comparison of accuracies for the standard model (no defense), adversarially
trained model, and our defense for MNIST and Fashion MNIST datasets.

52

Front End Based Defenses Chapter 4

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
`∞ Attack Budget ε

0

20

40

60

80

100
C

la
ss

ifi
ca

ti
on

ac
cu

ra
cy

MNIST

Defense, BIM

No Defense, BIM

Defense, PGD

No Defense, PGD

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
`∞ Attack Budget ε

0

20

40

60

80

C
la

ss
ifi

ca
ti

on
ac

cu
ra

cy

Fashion MNIST

Defense, BIM

No Defense, BIM

Defense, PGD

No Defense, PGD

Figure 4.7: Classification accuracy versus L∞ attack budget for MNIST and Fashion MNIST.

4.1.4.2 Results and Discussion

Figure 4.7 shows the effect of attack budget on accuracy, showing that our front end

increases adversarial accuracy across a wide range of ϵ. Table 4.1 details our results

against different attacks, with a comparison with methods from the literature.

Our defense significantly improves robustness against a variety of attacks, but falls

short of the accuracies obtained by adversarial training. This is because perfect polar-

ization is not possible in practice, leading to some leakage of adversarial perturbations

through the front end. However, the polarization approach is amenable to interpretation,

53

Front End Based Defenses Chapter 4

and provides an avenue for further efforts in systematic bottom-up design. In contrast,

empirical experiments are the only means of verifying the efficacy of state-of-the-art

adversarial training.

4.1.5 Conclusions

In this section, we have shown that polarization is a promising tool for defense against

adversarial attacks: when data is perfectly polarized, quantization can provably eliminate

perturbations. Our training procedures for learning polarizing bases indicate that pixel

bases are effective for polarizing datasets like MNIST and Fashion MNIST, which is

consistent with the first-layer filters learned in adversarially trained models for these

datasets [9].

There are a few key limitations that make this approach inapplicable to more com-

plicated datasets. First, this approach consists of a single layer, which in itself is very

limiting, but it also considers first layer outputs to be independent of each other while

learning the filters. It solely aims to obtain a polarized distribution at the end of the first

layer. Furthermore, quantization combined with these filters results in a heavy loss of

information. Therefore, this approach does not scale well to more complicated datasets

like CIFAR-10. For such datasets, most of the activations remain in the danger zone

due to a high variance in patches in these datasets, which translates to lower adversarial

accuracies. For those datasets we need approaches that consist of more layers and take

the complexities into account.

54

Front End Based Defenses Chapter 4

4.2 Sparse Coding Front End for Robust Neural Net-

works

After observing the shortcomings of the polarizing front end in addressing more com-

plex datasets, we now describe our sparse coding based front end. It uses a similar

polarization idea, achieved through sparse representation theory. It consists of multiple

operations and layers, and generalizes to more complicated datasets.

4.2.1 Introduction

Olshausen & Field [13] showed that when you try to represent images by a distributed

code in a sparse way (i.e. approximate an image as a sum of scaled constituent simple

images, with as few nonzero coefficients as possible), you obtain basis filters that are

similar to those observed in the visual cortex of mammals (Figure 4.8). The field that

[13] was part of is called sparse representation theory. In this section, we turn to sparse

overcomplete representation theory for defending against adversarial attacks, inspired by

the observation that sparse representations are known to have greater robustness in the

presence of noise. Specifically, we use the overcomplete basis obtained by sparse coding to

have a polarization effect, similar to what we had in our previous defense. In addition, we

also incorporate ideas from neuroscience into our defense. While neuro-inspiration could

ultimately provide a general framework for designing DNNs which are robust to a variety

of perturbations, for this defense we take a first step by focusing on the well-known L∞

bounded attack, which captures the concept of “barely noticeable” perturbation. Our

architecture, illustrated in Figure 4.9, does not require adversarial training. Rather, it

consists of the following: (a) a neuro-inspired encoder learned in purely unsupervised

fashion, (b) a decoder which produces an output of the same size as the original image,

55

Front End Based Defenses Chapter 4

Figure 4.8: Basis filters discovered when Olshausen & Field [13] tried to represent
images by a distributed code in a sparse manner. They are similar to filters observed
in the visual cortex of mammals. Image taken from [13].

and (c) a standard CNN for classification. The decoder and classifier are trained jointly

in standard supervised fashion using clean images passed through our encoder.

The key features we incorporate into our encoder design are sparsity and overcom-

pleteness, long conjectured to be characteristic of the human visual system [13], lateral

inhibition [85], synaptic noise [86], and drastic nonlinearity [87]. We use standard unsu-

pervised dictionary learning [88] to learn sparse, highly overcomplete (5-10X relative to

ambient dimension) patch-level representations. However, we use the learned dictionary

in a non-standard manner in the encoder, not attempting patch-level reconstructions.

Instead, we take the top T coefficients of the basis projection from each patch (lateral

inhibition), thus restricting the attack space, randomly drop a fraction p of them (synap-

tic noise and lateral inhibition), and threshold and quantize them, retaining only their

sign (drastic nonlinearity), thus not allowing perturbations to ride on top of them. We

use overlapping patches, providing an additional degree of overcompleteness. The patch-

56

Front End Based Defenses Chapter 4

C
N

N

D
ic

tio
na

ry
 P

ro
je

ct
io

ns

S
el

ec
t T

op
 T

D
ro

po
ut

 w
ith

P

ro
ba

bi
lit

y
p

A
ct

iv
at

io
n

&
Q

ua
nt

iz
at

io
n

R
es

N
et

-3
2

“Reconstructions”

In
pu

t (
Im

ag
e)

Autoencoder

P
re

di
ct

io
ns

Encoder Decoder

P
at

ch
 E

xt
ra

ct
io

n

Classifier

Figure 4.9: Proposed autoencoding defense. Decoder restores input size but does not
attempt to reconstruct the input in our nominal design (supervised decoder+classifier
training).

level outputs, which have ternary quantized entries, are fed to a multi-layer CNN decoder

whose output is the same size as the original RGB image input. This is then fed to a

standard classifier DNN.

We report on experiments on the CIFAR-10 and a subset of the ImageNet dataset

(“Imagenette”), demonstrating the promise of a “bottom-up” neuro-inspired approach,

in contrast to the top-down approaches that currently dominate adversarial machine

learning. For state-of-the-art PGD attacks tailored to our architecture, our attacked

accuracy is slightly worse than that of adversarial training [9, 47] for CIFAR-10, while it

is on par or slightly better than these methods for ImageNette, showing that our approach

scales to larger image sizes. The defense parameters are chosen to combat L∞ bounded

attacks, but we demonstrate its general-purpose nature by showing that it also provides

robustness against L2 and L1 bounded attacks.

We invest significant effort into attacking our own defense: following the guide-

lines in [35], our strongest attack is tailored specifically to account for the structure

of our defense while avoiding the gradient obfuscation problem exposed in [42]. The

software for our defense, including the attack library we have created, is available at

github.com/canbakiskan/neuro-inspired-defense.

57

https://github.com/canbakiskan/neuro-inspired-defense

Front End Based Defenses Chapter 4

−2 −1 0 1 2

Correlation value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H
is

to
gr

am
d

en
si

ty

CNN 1st layer

Overcomplete dictionary

Figure 4.10: Histogram of correlations for a typical patch with atoms of an overcom-
plete dictionary vs. that of activations through layer 1 filters of a standard classifier
CNN.

4.2.2 Sparse Overcomplete Front End

The rationale behind our encoder design is as follows: An overcomplete dictionary

for sparse coding results in large activations for a fraction of the atoms, in contrast

with filters learned in the first layer of a traditional convolutional neural network where

activations are clustered around zero (see Figure 4.10). We can therefore drop most of

the activations, reducing the effective subspace available to the attacker. An attacker can

still perturb the subset of top T coefficients in each patch. We combat this by randomly

dropping a large fraction p of these coefficients, thereby allowing the decoder and classifier

to learn to be resilient to randomness in the sparse code, and to an attacker knocking

a coefficient out of the top T . The thresholds for ternary quantization of the selected

coefficients are selected to provably guarantee that the attacker cannot flip the sign of any

nonzero entry in the sparse code. The hard thresholding ensures that the perturbation

cannot add to a coefficient which would have been selected for a clean image. Rather,

the attacker must invest the effort in pushing a smaller coefficient into the top T , and

gamble on it being randomly selected.

58

Front End Based Defenses Chapter 4

4.2.2.1 Patch-Level Overcomplete Dictionary

We consider images of size N×N with 3 RGB channels, processed using n×n patches

with stride S, so that we process M = m × m patches, where m = ⌊(N − n)/S⌋ + 1.

Learning at the patch level allows for the extraction of sparse local features, effectively

allowing reduction of the dimension of the space over which the adversary can operate

for each patch.

We use a standard algorithm [88] (implemented in Python library scikit-learn),

which is a variant of K-SVD [89], to learn the patch-level overcomplete dictionary (number

of basis tensors much larger than the patch dimension 3n2) . Given a set of clean training

images X = {X(k)}Kk=1, an overcomplete dictionary D with L atoms can be obtained by

solving the following optimization problem [88]:

min
D∈C,{α(k)}Kk=1

K∑
k=1

∑
i,j

(1
2

∥∥∥RijX
(k) −Dα

(k)
ij

∥∥∥2

2
+ λ

∥∥∥α(k)
ij

∥∥∥
1

)
(4.4)

where C ≜
{
D = [d1, . . . ,dL] ∈ Rn̄×L | ∥dl∥2 = 1 ,∀l ∈ {1, . . . , L}

}
, λ is a regularization

parameter, α(k) is an m×m× L tensor containing the coefficients of the sparse decom-

position, and Rij ∈ Rn̄×N̄ with n̄ ≜ 3n2 and N̄ ≜ 3N2 extracts the (ij)-th patch from

image X(k). The optimization problem in Equation 4.4 is not convex, but its convexity

with respect to each of the two variables D and {α(k)}Kk=1 allows for efficient alternating

minimization [88, 89].

4.2.2.2 Sparse Randomized Encoder

Based on the overcomplete dictionary obtained from Equation 4.4, we encode the

image patch by patch. For a given image X, patch xij ∈ Rn̄ is extracted based on

the (ij)-th block of X (that is, xij = RijX), and then projected onto dictionary D in

59

Front End Based Defenses Chapter 4

order to obtain projection vector x̄ij, where x̄ij = DTxij. Since the dictionary is highly

overcomplete, a substantial fraction of coefficients typically take large values, and a sparse

reconstruction of the patch can be constructed from a small subset of these. However,

our purpose is robust image-level inference rather than patch-level reconstruction. Hence

we use the dictionary to obtain a discrete sparse code for each patch using random

“population coding,” as follows:

1. Top T selection: We keep only T elements of the projection vector with largest

absolute values and zero out the remaining elements. The surviving coefficients are

denoted by x̌ij.

2. Dropout: Each of the top T coefficients is dropped with probability p, leaving

surviving outputs

x̃ij(l) =

{
0, with probability p

x̌ij(l), with probability 1− p
(4.5)

for all l ∈ {1, . . . , L}. Note that we use dropout for both train and test time, as

opposed to only during training in its standard usage.

3. Activation/Quantization: Finally, we obtain sparse codes with discrete values

by applying binary quantization with a dead zone designed to reject perturbations.

x̂ij(l) =

{
sgn (x̃ij(l)) ∥dl∥1 , if

|x̃ij(l)|
ϵ∥dl∥1

≥ β

0, otherwise
, (4.6)

for all l ∈ {1, . . . , L}, where β > 1 is a hyperparameter. The scaling of the surviving

±1 outputs by ∥dl∥1 allows basis coefficients surviving a larger L1 norm based

threshold to contribute more towards the decoder input, but these could be omitted,

60

Front End Based Defenses Chapter 4

(i) (ii) (iii) (iv)m

m

L

Figure 4.11: Progression of coefficients after each operation: (i) Each voxel shows
projection onto a dictionary atom, (ii) Projections after taking top T , (iii) Remaining
projections after dropout, (iv) Projections after activation and quantization. Notice
the saturation in color.

since the decoder can learn the appropriate weights.

Rationale: By Hölder’s inequality, an attacker with L∞ budget ϵ can perturb the kth

basis coefficient by at most ϵ ∥dk∥1. By choosing β > 1, we guarantee that an attacker

can never change the sign of a nonzero element of the sparse code. Thus, the attacker can

only demote a nonzero element to zero, or promote a zero element to a nonzero value.

As discussed, a large dropout probability alleviates the impact of both demotions and

promotions. Even though this is designed with L∞ bounded attacks in mind, it provides

robustness against L2 and L1 bounded perturbations as well, as will be shown later.

Another consequence of choosing β > 1 is that weak patches whose top T coefficients

are not large enough compared to the maximum perturbation ϵ ∥dk∥1 get killed, thereby

denying the adversary the opportunity to easily perturb the patch-level sparse code.

Following patch-level processing with stride S, the encoder outputs an image level sparse

code which is an m×m× L tensor (Figure 4.11).

61

Front End Based Defenses Chapter 4

4.2.2.3 Sparse Encoder Without Randomization

Another encoder scheme we try eliminates the dropout component altogether. In this

scheme, for each patch, we keep only the T elements of the projection vector with largest

absolute values, zeroing out the remaining elements. Then, we apply the activation

function same as in the randomized encoder scheme. We report the results for this

encoder type separately in Section 4.2.4.1.

4.2.2.4 CNN-based Decoder

The discretized sparse codes x̄ij are fed into a CNN-based decoder with three trans-

posed convolutional layers, each followed by ReLU activation function, that produces

output with dimension N × N × 3 and restores the original RGB image size. The goal

of the CNN-based decoder is to restore the output dimension rather than to reconstruct

the image.

4.2.2.5 Ensemble Processing

In order to utilize the full potential of the randomization employed in the encoder,

we allow for ensemble processing in which an input image is processed using E random

realizations of our encoder during inference, with classifier softmax outputs averaged

across the realizations.

4.2.3 Evaluation

State-of-the-art PGD attacks are based on gradient computation, and an impor-

tant criticism of prior proposals of preprocessing-based defense is that they were mask-

ing/obfuscating/shattering gradients, without adapting the attacks to compensate for

this [42]. Indeed, many such defenses do fail when attacks are suitably adapted, leading

62

Front End Based Defenses Chapter 4

a group of prominent researchers to propose guidelines for evaluating defenses [90]. Fol-

lowing such guidelines, we devote substantial effort to devising attacks adapted to our

defense, as follows:

• We consider several different smooth backward pass replacements for the parts of

our defense that are non-differentiable:

– for the activation function, we test two backward passes: identity and a smooth

approximation.

– for top T taking operation, we test identity backward pass as well as propa-

gating gradients through top U coefficients where U > T .

• We check that there exist some ϵ values that reduce the adversarial accuracy to 0

(see Figure 4.13).

• We test our defense against attacks with a large number of iterations or restarts.

• We test against different threat models such as the following: L∞, L2, and L1

bounded attacks; decision and query based black-box attacks that do not rely on

gradients; transfer black-box attacks with different surrogate models.

• To ensure that the gradients are computed appropriately, we test computing smoothed

gradients where gradients are averaged over many different points in the neighbor-

hood of the original point, in each step of the attack (EOT [34]). However, we

observe that this does not significantly increase the attack strength.

4.2.4 Experiments, Results and Discussion

Our main focus is on evaluating our defense on the CIFAR-10 dataset (N = 32), for

which there are well-established benchmarks in adversarial ML. In order to verify that

63

Front End Based Defenses Chapter 4

Figure 4.12: Dictionary learned through the optimization in Equation 4.4 from patches
extracted from the training images of CIFAR-10 dataset.

our approach scales to larger images, we also consider the Imagenette dataset: 9469 train

and 3925 validation RGB images, cropped to size 160 × 160 (N = 160). Both datasets

contain images from 10 classes. For CIFAR-10, we use 4 × 4 patches (n = 4) and an

overcomplete dictionary with L = 500 atoms. The stride S = 2, so the encoder output is

a 15× 15× 500 tensor (m = 15, L = 500). The regularization parameter in Equation 4.4

is set to λ = 1 and the number of iterations is chosen as 1000 to ensure convergence.

The hyperparameters for Imagenette are 8 × 8 (n = 8) patches and an overcomplete

dictionary with L = 1000 atoms, stride S = 4, which gives encoder outputs of size

38× 38× 1000 (m = 38, L = 1000). The number L of dictionary atoms is 10 times the

ambient dimension for CIFAR-10, and 5 times the ambient dimension for ImageNette.

The number of iterations in dictionary learning is set to 10000, and to promote sparsity,

the regularization parameter λ is set to 0.5, in the upper range of values resulting in

64

Front End Based Defenses Chapter 4

convergence. A subset of the resulting atoms are shown in Figure 4.12.

We set T = 50, p = 0.95, E = 10 for our nominal defense based on ablation studies,

with hyperparameter β = 3 for the threshold in Equation 4.6. We train the CNN-

based decoder in supervised fashion in tandem with the classifier, using the standard

cross-entropy loss. We use a cyclic learning rate scheduler [91] with a minimum and

maximum learning rate of ηmin = 0 and ηmax = 0.05, respectively. In order to provide a

consistent evaluation, we employ the ResNet-32 classifier used in [9] for CIFAR-10, and

use EfficientNet-B0 [92] for Imagenette. The number of epochs for supervised training is

70 for CIFAR-10 and 100 for Imagenette.

Attacks: We report on three attacks on our nominal defense: (1) White-box, where every

differentiable operation is differentiated. For the non-differentiable activation/quantization,

we take a smooth backward pass approximation. (2) Pseudo-white-box - transfer (PW-

T), where we generate white-box attacks for an unsupervised-trained decoder with the

same encoder, with standard supervised training of the classifier. This attack is adapted

specifically for our defense and does not apply to the benchmark defenses that we com-

pare against. Black-box, where the adversarial attack is generated based on a stan-

dard adversarially trained surrogate classifier. For attacks, we consider PGD and PGD

with EOT, if it is applicable. Different from the existing EOT implementation, we

use δ · sign (Er [∇x/||∇x||2]) in each step to compute the expectation, which we find

yields stronger attacks. Unless otherwise stated, we use the following parameters for L∞

bounded PGD with EOT for CIFAR-10 trained models: an attack budget of ϵ = 8/255,

a step size of δ = 1/255, a number of NS = 20 steps, a number of NR = 1 restarts, and a

number of NE = 40 realizations for EOT. The same default attack parameters are used

for attacking models trained on Imagenette, but given the lack of standard benchmarks,

we test several attack budgets ϵ ∈ {2/255, 4/255, 8/255}.

Benchmarks: Our benchmarks are the PGD adversarially trained (AT) [9], R+FGSM

65

Front End Based Defenses Chapter 4

PGD with EOT

Clean White-Box PW-T Black-Box

Our defense 80.1 61.3 39.5 57.8

Table 4.2: Accuracies for our defense method (stochastic encoder) under different
attacks (CIFAR-10, ϵ = 8/255)

adversarially trained [93], and TRADES [47] defenses for the same classifier architecture.

We reimplement these, to enable stress-testing these defenses with attacks of varying

computational complexity. We train these models for 100 epochs with the same cyclic

learning rate that we use for our models, and verify, for ResNet-32 classifier for CIFAR-

10 and EfficientNet-B0 for Imagenette, that we can reproduce results obtained using the

original code. For both PGD AT and TRADES, training hyperparameters are ϵ = 8/255,

δ = 1/255, NS = 10, andNR = 1. In addition, for TRADES λTRADES = 1/6. For RFGSM

AT, they are ϵ = 8/255, α = 10/255. We also report on naturally trained (NT) networks

(i.e., no defense).

Note that the classifier CNN used in our experiments is “simpler” ResNet-32 rather

than the wide ResNet-32, both of which are utilized in [9] and other studies in the

literature. The choice of the smaller ResNet-32 network makes evaluation of attacks

computationally more feasible.

Robustness against Defense-Adapted Attacks: We first investigate the perfor-

mance of our defense under the different attack types specified earlier. Table 4.2 provides

clean and adversarial accuracies for the different attack types. We note that the worst-

case attack for it is not a white-box attack, rather, it is the pseudo-white-box transfer

(PW-T) attack. While this result is surprising at first, it is intuitively pleasing. An at-

tack succeeds only to the extent that it can change the identities of the top T coefficients

in the encoder. Since the latter is designed to preserve information about the original

66

Front End Based Defenses Chapter 4

Clean
Adversarial
(Worst case)

NT 93.1 0.00

PGD AT [9] 79.4 42.1

RFGSM AT [93] 80.9 42.4

TRADES [47] 75.2 45.8

Our defense 80.1 39.5

Table 4.3: Comparison of our defense (stochastic encoder) with other defense tech-
niques (CIFAR-10, ϵ = 8/255). Attack details are: PGD with NS = 100, NR = 50 for
the first 4 rows and PGD EOT with NS = 20, NR = 1, NE = 40 for the last row.

image, providing an unsupervised decoder might provide better guidance to the attacker

by giving it a reproduction of the original image to work with.

Comparison with benchmarks: Table 4.3 lists worst-case accuracies for each defense,

where we vary the computational burden of attack on the benchmarks up to a point that

is comparable to the default settings for our own EOT/PGD attack. NT denotes natural

training (no defense). The worst-case adversarial accuracy for our defense is 39.5%, a

little worse than the worst-case accuracies of 42-46% for the benchmark defenses. On

the other hand, the worst-case accuracy of our defense (again achieved by the PW-T

attack) is slightly better than for the benchmark defenses for Imagenette, as reported

Clean
Adversarial (ϵ = x/255)

x = 2 x = 4 x = 8

NT 89.35 11.44 0.28 0.00

PGD AT 80.97 75.31 68.81 53.32

TRADES 80.08 75.67 70.75 59.46

Our defense 79.36 76.03 72.81 65.45

Table 4.4: Comparison of our defense (stochastic encoder) with other defense tech-
niques for Imagenette dataset.

67

Front End Based Defenses Chapter 4

in Table 4.4. We conjecture that the reason results are better for Imagenette is that a

patch for an Imagenette image encompasses less of the total image area than that of a

CIFAR-10 image. Hence, patches have less variability and are represented better with

the sparse coding framework. This leads to a smaller loss of information for Imagenette

after the drastic quantization.

4.2.4.1 Non-random encoder

We also test our defense with non-random encoder (i.e. without dropout) against

a wide range of attacks and compare the results with benchmark defenses from the

literature using the CIFAR-10 dataset. (See Appendix B.3 for the choice of hyperparam-

eters and training settings for both our defense and benchmarks.) Table 4.5 compares

our defense with the benchmarks from the literature. In all white-box attacks, we use

the following attack settings: number of steps Ns = 40, number of random restarts

Nr = 100 and step size δ = ϵ/8. For the attacks against our defense, we also use U = 2T

and the backward pass smoothing mentioned in Section 4.2.3 to make it stronger. (See

Appendix B.2 for discussion of these choices and accuracies for other attack variations.)

Column 1 reports on clean accuracy. Columns 2 and 3, report results for the L∞ bounded

white-box attack with cross-entropy loss and Carlini-Wagner loss, respectively. Columns

Clean
White-Box

(L∞, ϵ = 8
255

)
White-Box (C&W)

(L∞, ϵ = 8
255

)
White-Box
(L2, ϵ = 0.6)

White-Box
(L1, ϵ = 30)

Natural 92.66 0.00 0.00 0.00 0.00

Adv. Training 79.41 43.27 42.03 52.09 19.98

TRADES 75.17 45.79 42.87 51.35 21.15

T = 15 (Ours) 85.45 37.33 37.35 60.47 47.13

Table 4.5: Performance comparison of different defense methods with our defense with
non-random encoder (CIFAR-10).

68

Front End Based Defenses Chapter 4

4 and 5, report results for L2 and L1 bounded attacks, respectively.

We highlight the following observations from Table 4.5: (a) the clean accuracy (col-

umn 1) is better than that of the adversarially trained benchmarks, (b) the adversarial

accuracy (columns 2 and 3) for L∞ bounded perturbations falls short of the adversarially

trained benchmarks, (c) the adversarial accuracy for L2 (column 4) and L1 (column 5)

bounded perturbations is substantially better than that of the benchmarks.

Figure 4.13: Accuracy vs ϵ plot for the sparse coding defense without dropout (T = 15)
under L∞ PGD attack with various ϵ values.

The robustness of our defense to Lp attacks with different p is because the impact

of different attacks is similar: they flip ±1 to 0 and 0 to ±1 in the sparse code. In

contrast, standard adversarial training approaches are optimized for Lp bounded attacks

for a specific p and do not perform as well under other types of attacks.

4.2.5 Conclusion

The promising results obtained with our sparse coding front end open up an exciting

new direction for building bottom-up defenses to make neural networks more robust for

a wider range of attacks. We can tune our defense to approach the performance of state-

of-the-art adversarial training for L∞ bounded attacks, while also providing robustness

against L2 and L1 bounded attacks. While our results demonstrate the potential of

69

Front End Based Defenses Chapter 4

sparse overcomplete representations, neuro-inspiration and bottom-up design of robust

DNNs, there is significant scope for further improvement. We attenuate perturbations

in a single, rather drastic, encoding step, but spreading the burden across more layers

may help with both clean and attacked accuracy. Such an approach that distributes

the workload of combatting attacks across layers, making the networks more robust from

within, is described in Chapter 5. Our separation of decoder and classifier enables reuse of

standard classifier architectures, but there might be better options. Finally, the efficacy

of the transfer attack designed specifically for our defense highlights the need for further

research on adaptive attacks for novel defenses.

70

Chapter 5

Incorporating Neuro-inspired

Bottom-up Principles for Robustness

The previous two front end based defenses are restricted in their power by the fact that

they try to mitigate adversarial attacks before they reach the core network. A more

general approach would be structural elements that can be used to complement any layer

of a neural network. In this sense, the next defense is more general than the previous

two in that the techniques used in the model can be used to replace any layer of a neural

network, not necessarily be used in a front end. For this approach we take inspiration

from neuroscience and supplement our model with Hebbian rule based updates which

allows us to have more control over the features extracted.

5.1 Introduction

In this chapter, we explore a complementary approach to robustness, based on supple-

menting the end-to-end cost function with layer-wise costs aimed at shaping the features

extracted by intermediate layers of the DNN. Specifically, while standard DNNs produce

71

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

a large fraction of small activations at each layer, we seek architectures which produce

a small fraction of strong activations, while continuing to utilize existing network ar-

chitectures for feedforward inference and existing software infrastructure for stochastic

gradient training. To this end, we introduce neuro-inspired mechanisms creating compe-

tition between neurons during both training and inference. The code for this bottom-up

approach is available at https://github.com/metehancekic/SparseStrongActivations.

5.1.1 Approach and Contributions

In order to attain sparse, strong activations at each layer, we employ the following

neuro-inspired strategy for modifying standard DNN training and architecture:

Hebbian/anti-Hebbian (HaH) Training: We augment the standard end-to-end

discriminative cost function with layer-wise costs at each layer, promoting neurons with

large activations and demoting neurons with small activations. The objective is to create

a neural basis that generates a distributed sparse code without the reconstruction cost

associated with traditional sparse coding. [13].

Neuronal Competition via Normalization: We increase sparsity even more by

using Divisive Normalization (DN), which allows larger activations to suppress smaller

activations. We use Implicit L2 Normalization of the neuronal weights to ensure a fair

competition amongst neurons. This way, each activation can be seen as a geometric

projection of the layer input onto the “direction” of the neuron. (Using implicit rather

than explicit weight normalization in our inference architecture simplifies training.)

We report on experiments using the CIFAR-10 image classification dataset, compar-

ing a baseline VGG-16 network trained with HaH training and DN against the same

architecture trained with end-to-end training. Both architectures use implicit weight

normalization, which we have verified does not adversely impact accuracy. We show

72

https://github.com/metehancekic/SparseStrongActivations

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

that, compared to the baseline network, the activations in our suggested architecture

are indeed more sparse. We do not use noise augmentation or adversarial training in

our experiments in order to separate the effects of our training approach and inference

architecture. We demonstrate that our model is significantly more resistant to noise and

adversarial perturbations than the baseline model for CIFAR-10 classification. Our model

is more robust than both the baseline model and an adversarially trained model against

the broader collection of corruptions in the CIFAR-10-C dataset (common corruptions

dataset), in general.

5.1.2 Related Work

In artificial neural networks, Hebbian learning has a long history that dates back

to the neocognitron [94] and includes recent attempts to incorporate it into deep ar-

chitectures [95]. However, to the best of our knowledge, ours is the first approach to

clearly demonstrate an increase in robustness from its integration in DNNs. A widely

accepted concept in neuroscience [96, 97], divisive normalization has been demonstrated

to be competitive with other normalization methods in deep neural networks. Our novel

contribution is to demonstrate that divisive normalization can be engineered to improve

sparsity and robustness. Finally, sparse coding with a reconstruction objective was shown

to lead to neuro-plausible outcomes in a seminal paper decades ago [13]. Our HaH-based

training targets strong sparse activations in a way that is compatible with conventional

stochastic gradient training, as opposed to the iterative sparse coding and dictionary

learning in such an approach.

Recent research demonstrating possible robustness improvements by incorporating

well-known elements of mammalian vision into DNNs includes [54], which employs Gabor

filter blocks and stochasticity, and [98], which employs neural activity measurements from

73

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

W
N

 C
onv2d

D
ivisive N

orm
alization

t

W
N

 C
onv2d

B
atch N

orm
alization

HaH Blocks

Standard VGG Blocks

HaH Block VGG Block

Figure 5.1: Our model consists of two different types of blocks: first 6 blocks are
Hebbian-anti-Hebbian (HaH), while the rest are regular VGG blocks. HaH blocks use
a weight normalized convolutional layer, followed by ReLU, divisive normalization
and thresholding. Regular VGG blocks use a weight normalized convolutional layer
followed by ReLU and batch norm.

mice for regularizing DNNs. Instead of including specific biological vision components,

we draw broad ideas from neuro-inspiration that can be incorporated into data-driven

learning and inference in DNNs.

5.2 Model

This section describes the way we incorporate HaH training and divisive normalization

into a standard CNN for image classification. Since the residual connections of ResNet

([71]) variants complicate our interpretation of building models from the bottom-up using

HaH learning, we use a linear CNN for our experiments (VGG-16 [72]), applied to the

CIFAR-10 dataset. We alter the initial few convolutional blocks to include neuro-inspired

principles since we want to create robustness from the bottom up. We name these

modified blocks “HaH blocks” (see Figure 5.1).

Each HaH block uses convolution with implicit weight normalization, then ReLU,

followed by divisive normalization, and then thresholding. Implicit weight normalization

allows us to understand the convolution outputs for each filter as projections. We have

ensured that using it in all blocks of a baseline VGG-16 architecture does not have an

74

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

adverse effect on accuracy (indeed, it slightly improves it). Therefore, each standard (non-

HaH) block in our architecture also uses convolution with implicit weight normalization,

followed by ReLU, but employs batch norm rather than divisive normalization. Each

HaH block contributes a HaH loss element for training, so that the overall loss function

used for training is the standard discriminative cross-entropy loss and the sum of the

HaH losses from each HaH block.

We now describe the core components of our architecture, shown in Figure 5.2.

5.2.1 Inference in a HaH block

2

÷ReLU

(a) (b) (c) (d)

Figure 5.2: Illustrations for each component of a HaH block: (a) convolution with
layer filters learned partly through Hebbian–anti-Hebbian updates, (b) division of
layer outputs by the L2 norm of their corresponding filters, effectively normalizing
each filter, (c) divisive normalization, which divides each pixel by the mean across
channels at that location to both provide scale invariance and suppress the weak
“noise” elements, and (d) per-channel thresholding, which kills a fixed percentage
of all activations in each channel helping attenuate the impact of noise on smaller
activations.

Implicit weight normalization: If we think of the convolution output at a given spatial

location from a given filter as a vector inner product ⟨·, ·⟩ between the filter weights w

vector and the input vector x, the output of the ReLU unit following the convolution is

computed by

y = ReLU

(⟨w,x⟩
||w||2

)
(5.1)

This effectively means the weight tensor of each filter is normalized to unit L2 norm,

75

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

without actually having to enforce an L2 norm constraint in the cost as a regularizer or

explicitly normalizing the filters after each optimization step.

Divisive normalization: Let y1(loc), ..., yN(loc) denote the activations corresponding

to the N filters in a given HaH block computed as in Equation 5.1 for a given spatial

location loc. Let M(loc) = 1
N

∑N
k=1 yk(loc) represent the mean of the activations at a

given location, and let Mmax = maxlocM(loc) denote the maximum of this mean over all

locations. The divisive normalization we use for each activation is computed as follows:

zk(loc) =
yk(loc)

σMmax + (1− σ)M(loc)
, k = 1, ..., N (5.2)

where 0 ≤ σ ≤ 1 is a hyperparameter which can be separately tuned for each HaH

block. As we can see, in addition to the competition among neurons at a given location

achieved by dividing byM(loc), Mmax in the denominator suppresses the contributions at

locations for which the input is “noise” rather than a strong enough “signal” well-aligned

with one or more of the filters. The output of a HaH-block is scale-invariant (i.e., we

obtain the same output if we scale the input to the block by any positive scalar) thanks

to this specific implementation of divisive normalization.

Per-channel Adaptive Thresholding: Finally, channel-specific thresholding following

the divisive normalization allows us to ensure that each neuron is generating significant

outputs. The output of the kth neuron at location loc is given by

ok(loc) =

{
zk(loc) if zk(loc) ≥ τk

0, otherwise
(5.3)

where the threshold τk is neuron and image specific. For example, we may set τk to the

90th percentile of the statistics of zk(loc) in order to get an activation rate of 10% for

each channel for every image. Another simple choice that works well, but gives higher

76

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

activation rates, is to set τk to the mean of zk(loc) for each image.

5.2.2 HaH Training

For an N -channel HaH block with activations yk(loc), k = 1, ..., N at location loc, the

purpose of Hebbian/anti-Hebbian loss is to maximize the average of the topK activations

and minimize the average of the remaining N − K activations, where K is a hyperpa-

rameter. Therefore, sorting the activations {yk(loc)} so that y(1)(loc) ≥ y(2)(loc) ≥ ... ≥

y(N)(loc), the contribution to HaH loss at this location is given by

Lblock(loc) =
1

K

K∑
k=1

y(k)(loc)− λ
1

N −K

N∑
k=K+1

y(k)(loc) (5.4)

where λ ≥ 0 is a hyperparameter determining the importance of the anti-Hebbian com-

ponent of the adaptation. The overall HaH cost for the block, Lblock, which we wish to

maximize, is obtained by taking the mean over all locations and batch images.

The overall loss function to be minimized is then given by

L = Ldisc −
∑

HaH blocks

αblockLblock (5.5)

where Ldisc is the standard discriminative loss (cross-entropy) and {αblock ≥ 0} are the

hyper-parameters determining the relative weight of the HaH loss for each block.

Cheating: When naively implemented, we discovered that HaH costs lead to a form of

cheating by the network layers. The network learns to adjust the earlier layer weights

such that for almost all images a designated subset of channels are very active (shown

in yellow/green in Figure 5.3), satisfying the Hebbian loss, and the rest is used for the

actual classification task. To overcome the issue of cheating, we do not backpropagate

the gradients coming from the Hebbian loss, thereby restricting how much earlier layers

77

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

can influence the activity of latter layers, since this highly active subset is the result of

an avalanche effect building up from earlier layers. Weights of the earlier layers would

be arranged such that they result in these always active subsets. With this setup of

non-propagation, the most a layer can do is to try to “match” its own inputs, which is

what we want. Alongside this, division of the convolutional layer outputs by the 2-norm

of their corresponding filters (weight normalization) also serves to prevent cheating by

eliminating the factor of weight norm in the layer outputs.

Figure 5.3: HaH block convolutional layer outputs illustrating the cheating in the
naive implementation. The network learns to adjust the earlier layer weights such
that for almost all images a designated subset of channels are very active (shown in
yellow/green), satisfying the Hebbian loss, and the rest is used for the actual classifi-
cation task.

78

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

5.3 Experiments

We replace the first 6 blocks (each block includes conv, ReLU, batch norm) of VGG-

16 with the HaH blocks (each block includes normalized conv, ReLU, divisive norm,

thresholding). For training, we use Adam optimizer [12] with an initial learning rate of

10−3, multiplied by 0.1 at epoch 60 and again at epoch 80. We train all models for 100

epochs on CIFAR-10. We choose τk in Equation 5.3 to keep 20% of activations. We use

[4.5× 10−3, 2.5× 10−3, 1.3× 10−3, 1× 10−3, 8× 10−4, 5× 10−4] for α in Equation 5.5.

We use 0.1 for λ and set K to 10% of number of filters in each layer in Equation 5.4 and

set σ = 0.1 in Equation 5.2. Details about other hyper-parameters can be found in our

code repository.

Figure 5.4: HaH blocks yield sparser activations than baseline, measured by the
squared Hoyer term.

Sparser activations: To demonstrate that HaH blocks are operating as intended and

attaining the sparse and strong activations, we compute the sparsity levels of intermediate

representations and plot them in Figure 5.4. We compute the sparsity by the ratio of L1

norm square to L2 norm square (also known as squared Hoyer term [99]) of each spatial

location’s representation across the channel dimension. We then normalize the values so

that the sparsity measure lies between 0 and 1. 0 corresponds to a single nonzero element

79

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

whereas 1 corresponds to all elements being equal. We observe that the activations in

the first 6 blocks are indeed sparser for our architecture than for the baseline VGG.

Enhanced robustness to noise: In order to obtain a block-wise measure of robustness,

we borrow the concept of signal-to-noise-ratio (SNR) from wireless communication. Let

fn(x) denote the input tensor of the n
th block in when clean image x is fed to the network,

and fn(x+w) denote the input tensor when the image corrupted by noise w is fed. We

define SNR by

SNRn = 10 log10

(
Ex∼Dtest

[||fn(x)||22
||fn(x+w)− fn(x)||22

])
dB (5.6)

as illustrated in Figure 5.5, converting to logarithmic decibel (dB) scale, as is common

practice. Figure 5.6 shows that the SNR for our model well exceeds that of the standard

model, especially in the first 6 HaH blocks.

Conv Layer Inputs

SNRn =

Clean Image

Noisy Image

2

2

n n

2

2

n

Figure 5.5: To compute the SNR at the nth block inputs, we divide the L2 norm of
the block input corresponding to clean image by the L2 norm of the difference of block
corresponding to clean and noisy images.

These higher SNR values also correspond to gains in accuracy with noisy images.

Figure 5.7 compares the accuracy of our model and the base model for different levels of

Gaussian noise. There is substantial increase in accuracy at high noise levels: 64% vs.

26% at a noise standard deviation of 0.1, for example.

80

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

Im
ag

e

Bloc
k

1

Bloc
k

2

Bloc
k

3

Bloc
k

4

Bloc
k

5

Bloc
k

6

Bloc
k

7

Bloc
k

8

Bloc
k

9

Bloc
k

10

Bloc
k

11

Bloc
k

12
−2.5

0.0

2.5

5.0

7.5

S
N

R
(d

B
)

Ours

Standard VGG-16

Figure 5.6: Comparison of SNR values of the block inputs for the standard base model
(gray) and ours (red) under i.i.d. Gaussian noise with σ = 0.1.

0.00 0.05 0.10 0.15 0.20
Noise Standard Deviation

20

40

60

80

A
cc

u
ra

cy

Ours

Standard VGG-16

Figure 5.7: Comparison of classification accuracies as a function of noise standard
deviation σ. To provide a concrete sense of the impact of noise, noisy images at
increasing values of σ are shown below the graph.

81

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

Enhanced robustness to adversarial attacks: Even though we haven’t trained with

adversarial examples, we observe that the HaH blocks’ ability to reject noise also trans-

lates into improvements in adversarial robustness compared to the baseline VGG model.

This is true for state-of-the-art gradient-based attacks [9, 100], as well as AutoAttack, an

ensemble of parameter-free attacks suggested by RobustBench [101]. We find no addi-

tional benefit of using gradient-free (black-box) attacks, and conclude that the robustness

provided by our scheme is not due to gradient-masking or other flaws in evaluation.

Base Ours
0.0

2.5

5.0

7.5

`0

Base Ours
0

1

2

`1

Base Ours
0.0

0.2

0.4

`2

Base Ours
0

2

4

×10−3 `∞

M
in

im
u

m
A

d
ve

rs
ar

ia
l

D
is

ta
n

ce
N

ee
d

ed

Figure 5.8: The average norm of minimum-norm adversarial attacks is higher for our
model than the standard model for all Lp norms considered.

We can see in Figure 5.8 that the minimum distortion needed to flip the prediction

of our model (computed using the recently proposed fast minimum norm computation

method [100]) is higher for our model than the standard model for all the Lp attacks

considered. We have also observed gains in adversarial accuracy against all four Lp norm

attacks (p = 0, 1, 2,∞) used as benchmarks in adversarial machine learning. A subset of

results demonstrating the increased accuracy against noise and adversarial perturbations,

at the expense of a slight decrease in clean accuracy, is displayed in Table 5.1.

Enhanced robustness to common corruptions: We also test our neuro-inspired

framework under common corruptions suggested by [102]. These corruptions include

digital manipulations, noise injection, and various weather conditions. Accuracies ob-

82

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

Clean
Noisy

(σ = 0.1)
Adv (L∞)
(ϵ = 2/255)

Adv (L2)
(ϵ = 0.25)

Standard 92.5% 26.6% 10.4% 13.9%

Ours 87.3% 64.0% 21.5% 27.6%

Table 5.1: Comparison of accuracies for the baseline model and our bottom-up defense
under Gausian noise, L∞ bounded attack and L2 bounded attack.

tained by our model are compared with those for a standard model and an adversarially

trained model in Table 5.2 . We observe that our neuro-inspired design successfully

increases robustness against these common corruptions. Note that while adversarially

trained models perform well against noise type corruptions, they perform significantly

worse against more complex corruptions like contrast and fog [103, 104]. On the other

hand, our HaH framework not only performs relatively well (performing much better

than the standard model) for noise type corruptions but also substantially outperforms

the adversarially trained model on more complex corruptions such as fog and contrast.

Furthermore, the HaH-VGG16 performs better than both the standard model and the

adversarially trained model in terms of the mean corruption accuracy (last column).

Given that such corruptions barely affect human vision, these results demonstrate that

neuro-inspiration presents a promising path towards general-purpose robustness against

noise, adversarial perturbations, and common corruptions.

83

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

C
or
ru
p
ti
on

s
→

C
le
an

N
oi
se

W
ea
th
er

B
lu
r

D
ig
it
al

M
ea
n

M
o
d
el
s
↓

G
au

ss
.
S
h
ot

S
p
ec
k
le

Im
p
u
ls
e
S
n
ow

F
og

F
ro
st

B
ri
gh

t.
D
ef
o
cu
s
G
au

ss
.
M
ot
io
n

Z
o
om

C
on

tr
as
t
E
la
st
ic

P
ix
el
at
e
S
p
at
te
r
of

al
l

S
ta
n
d
ar
d

9
2
.5

32
.4

40
.0

45
.5

27
.5

72
.9

6
4
.5

61
.6

8
7
.4

45
.5

34
.8

59
.7

58
.9

23
.0

7
4
.8

51
.0

68
.6

53
.0

A
d
v
(8
/2
55
)

78
.7

7
4
.2

7
4
.4

7
3
.4

6
2
.9

62
.3

29
.7

59
.0

60
.4

6
9
.8

6
7
.5

6
7
.2

7
2
.0

18
.0

72
.5

7
5
.4

71
.5

63
.1

H
aH

(O
u
rs
)

87
.3

64
.7

63
.9

61
.2

50
.2

7
4
.4

63
.3

7
3
.3

83
.3

65
.9

59
.9

65
.8

69
.5

7
6
.3

73
.8

62
.1

7
6
.3

6
7
.7

T
ab

le
5.
2:

C
om

m
on

co
rr
u
p
ti
on

ac
cu

ra
ci
es

ac
ro
ss

d
iff
er
en
t
m
o
d
el
s.

W
h
il
e
st
an

d
a
rd

an
d
ad

ve
rs
ar
ia
ll
y
tr
ai
n
ed

m
o
d
el
s
ar
e
V
G
G
16

,
H
aH

(o
u
rs
)
u
se
s
th
e
af
or
em

en
ti
o
n
ed

m
o
d
ifi
ed

v
er
si
on

of
V
G
G
16

.
A
d
v
er
sa
ri
al
ly

tr
ai
n
ed

m
o
d
el
s
p
er
fo
rm

p
o
or
ly

on
fo
g

an
d
co
n
tr
as
t
co
rr
u
p
ti
on

s
w
h
il
e
ex
ce
ll
in
g
on

h
ig
h
-f
re
q
u
en

cy
co
rr
u
p
ti
on

s
li
ke

n
oi
se
.
O
n

th
e
ot
h
er

h
an

d
,
th
e
H
aH

fr
am

ew
or
k
co
n
si
st
en
tl
y
im

p
ro
v
es

th
e
ro
b
u
st
n
es
s
ag

ai
n
st

a
ll

so
rt
s
of

co
rr
u
p
ti
on

s.
B
ri
gh

t.
=

b
ri
gh

tn
es
s,

G
au

ss
.

=
G
au

ss
ia
n
,
E
la
st
ic

=
el
a
st
ic

tr
an

sf
or
m
at
io
n
.

84

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

Interpretability of features: The main aim of using a Hebbian cost function which

directly influences the HaH layer outputs was to control the representations used by the

neural network and have it use more interpretable features from the inputs. We can

demonstrate this by visualizing what features the first layer of the network focuses on

using a tool called Grad-CAM [105] for both standard and HaH trained networks. Grad-

CAM uses heatmaps to demonstrate regions in a target layer’s output that contributed

most to the end decision of the network. The regions that contribute more to the end

decision are colored red and regions that do not contribute as much are colored blue.

We can see in Figure 5.9 that for most of the images our model focuses on features that

humans would find more interpretable.

Standard HaHOriginal

Figure 5.9: Visualization of what features the first layer of the network focuses on
using Grad-CAM for both standard (middle) and HaH trained (right) networks.

Ablation: To test the effectiveness of different components in our HaH blocks, we do

an ablation study by removing one component at a time and measuring its performance.

The results of the ablation study are shown in Table 5.3, where it is evident that each and

every one of the components (HaH loss, divisive normalization, per-channel thresholding)

play an important role in the realized gain in robustness to noise and adversarial attacks.

We also test the effect of the number of HaH blocks in the network’s robustness. Fig-

ure 5.10 shows the trade-off between clean accuracy and robust accuracy as the number

85

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

Clean
Noisy

(σ = 0.1)
Adv (L∞)
(ϵ = 2/255)

Adv (L2)
(ϵ = 0.25)

All included 87.3% 64.0% 21.5% 27.6%

No HaH loss 89.7% 50.4% 8.8% 11.7%

Batch norm instead
of divisive norm

90.4% 46.7% 12.3% 17.4%

No thresholding 89.9% 37.5% 3.7% 2.5%

Table 5.3: Accuracies when we remove components from our defense one at a time
(ablation study).

of HaH blocks increases. We can see that with each additional HaH block, robustness to

noise improves, for both adversarial noise and otherwise. Note that after 7 HaH blocks

the network fails to converge due to the layer inputs to divisive normalization being too

small to be meaningful. As observed in other bio-inspired defenses, robustness through

the use of HaH blocks also comes with a small decrease in clean accuracy.

0 1 2 3 4 5 6
Number of HaH Blocks

10

30

50

70

90

A
cc

u
ra

cy

Clean

Noisy (σ = 0.1)

`2 adv (ε = 0.25)

l∞ adv (ε = 2/255)

Figure 5.10: Ablation study for number of HaH blocks. Every additional HaH block
contributes to the robustness of the model with a slight compromise on clean accuracy.

86

Incorporating Neuro-inspired Bottom-up Principles for Robustness Chapter 5

5.4 Conclusion

The preliminary results we obtained show the promise of layer-wise cost functions in

controlling the features extracted by the intermediate layers and therefore improving the

mainstream end-to-end paradigm in deep learning. The sparser and stronger activations

achieved through our neuro-inspired approach to neuronal competition during training

and inference clearly improve robustness against noise, common corruptions and adver-

sarial perturbations than baseline models. Looking at the results using the CIFAR-10-C

common corruptions dataset, we can say that the robustness attained by our approach,

without any augmentation, is more general than that of adversarial training. We note

that other recent bio-inspired adversarial defense approaches also came to similar con-

clusions [103].

Based on the promising results we obtained, we believe that a comprehensive analysis

into enhancing end-to-end training using layer-wise cost functions is justified. Further

research directions could include incorporating such techniques into a variety of archi-

tectures, training methods (including unsupervised and semi-supervised learning, and

data augmentation) and applications. In particular, a logical next step is to combine

data augmentation strategies (including adversarial training) with HaH architectures for

robust machine learning.

87

Chapter 6

Conclusion

While the general trend in machine learning is in line with the observation that more

data outperforms clever and hand-crafted solutions, over-reliance on data alone leads

to problems of vulnerability and non-interpretability. Specifically, the susceptibility of

neural networks to adversarial perturbations remains a key issue afflicting the area of

machine learning and its deployment in safety critical systems. While the most common

recourse to-date is to deploy adversarial training and its variants, this approach is still a

long way off from providing the level of robustness that we expect from humans or from

a vitally important automated system. Arguably, one of the key reasons behind this

stagnation after many years of research is the fact that we still do not fully understand

how adversarial training achieves the robustness it does. Although we can formulate the

top-down minimax problem adversarial training operates on, the underlying properties

it induces remain a black box. One of the ways in which we can alleviate this problem

is by using structural elements whose principles can be explained and understood, which

suppress adversarial perturbations at each step. We believe that it is worth pursuing this

approach as an alternative and complement to a purely data-centric approach, in order

to meet the intellectual and practical challenges left open by the current state of the art

88

Conclusion Chapter 6

in deep learning.

Our work has been an attempt in this promising direction of using more principled

building blocks to enhance the robustness and interpretability of deep neural networks.

We have tried to pave the first steps towards a bottom-up approach, complementary

to the mainstream approaches in machine learning today. Our defenses approach but

do not exceed the level of robustness observed in adversarial training based methods.

However, they show improvements in other important properties such as strength against

common corruptions or interpretable feature usage. Thus, we hope that the techniques

proposed in this dissertation motivate further research into this avenue of research, both

for adversarial robustness and for other improvements in constructing DNNs.

89

Appendix A

Analysis of Adversarial Training

We depict below, our layer numbering schemes for the ResNet and VGG networks used

in our experiments.

90

Analysis of Adversarial Training Chapter A

normalization

conv1

bn1

layer1.0.conv1

layer1.0.bn1

layer1.0.conv2

layer1.0.bn2

layer1.1.conv1

layer1.1.bn1

layer1.1.conv2

layer1.1.bn2

layer2.0.conv1

layer2.0.bn1

layer2.0.conv2

layer2.0.bn2

layer2.1.conv1

layer2.1.bn1

layer2.1.conv2

layer2.1.bn2

layer3.0.conv1

layer3.0.bn1

layer3.0.conv2

layer3.0.bn2

Shortcut conv

Shortcut bn

layer3.1.conv1

layer3.1.bn1

layer3.1.conv2

layer3.1.bn2

layer4.0.conv1

layer4.0.bn1

layer4.0.conv2

layer4.0.bn2

layer4.1.conv1

layer4.1.bn1

layer4.1.conv2

layer4.1.bn2

linear

Shortcut conv

Shortcut bn

Shortcut conv

Shortcut bn

a
normalization

conv (0)

bn (1)

conv (3)

conv (7)

bn (8)

conv (10)

bn (11)

linear

bn (4)

maxpool (6)

conv (14)

bn (15)

conv (17)

bn (18)

maxpool (13)

conv (20)

bn (21)

conv (24)

bn (25)

conv (27)

bn (28)

maxpool (23)

conv (30)

bn (31)

conv (34)

bn (35)

conv (37)

bn (38)

maxpool (33)

conv (40)

bn (41)

maxpool (43)

avgpool (44)

b

Figure A.1: Architectures and layer names for (a) ResNet (b) VGG

91

Appendix B

Sparse Encoding Defense Without

Dropout

B.1 Block Diagram

C
N

N
 D

ec
od

er

S
el

ec
t T

op
 T

R
es

N
et

-3
2

C
la

ss
ifi

er

In
pu

t

P
re

di
ct

io
ns

D
ic

tio
na

ry
 P

ro
je

ct
io

n
La

ye
r

A
ct

iv
at

io
n

Figure B.1: A block diagram of our proposed defense (non-random)

Input images first go through the convolutional layer with the dictionary atoms being

its filters. Then, for each patch representation, Top T coefficients in absolute value are

kept while other coefficients are zeroed out. This is followed by the activation function

described in Section 4.2.2.3. These quantized and highly sparse representations are then

fed into a convolutional neural net based decoder which restores the image size. The

92

Sparse Encoding Defense Without Dropout Chapter B

outputs of the front end are the inputs of the ResNet-32 based classifier. Training of

the decoder and the classifier are done simultaneously after the dictionary is learned and

frozen.

B.2 Determining Attack Parameters

In order to determine the strongest attack settings against our defense, we test it

with different attack parameters. In Table B.1, we report five white-box attack settings

on our defense for different T values. For these attacks, every differentiable operation is

differentiated. For the non-differentiable activation function, we take a smooth backward

pass approximation. We also experiment with replacing it with identity in the backward

pass but this results in weaker attacks (see Section B.4). For the baseline attack settings,

we choose number of restarts Nr = 10, number of steps Ns = 40, and step size δ = 1/255.

We then change one or two settings at a time and report those in each column. In the

third column, we report accuracies when gradients are propagated through the top U

coefficients (rather than top T). For the fourth column, we increase Ns to 1000, reduce

δ to 0.5 and Nr to 1 in order to keep computational complexity reasonable. For the fifth

column, we increase Nr to 100 and keep Ns = 40. Finally, for sixth column, we propagate

the gradients through the top U coefficients as well as increasing the number of restarts

Nr to 100. For all values of T , last two columns’ settings result in the strongest attacks.

Increasing the number of restarts Nr to 100 especially, had the biggest impact on the

accuracies.

By looking at the results in Table B.1, we determine to report on T = 15 in Table 4.5,

since it represents a good trade off between clean and attacked accuracy. After the

decision to use T = 15 for benchmark comparison in Table 4.5, we use the strongest

attack for this defense setting, which is taking Nr = 100 and propagating gradients

93

Sparse Encoding Defense Without Dropout Chapter B

Clean
White-box
(Baseline)

White-box
(U = 2T)

White-box
(Ns = 1000)

White-box
(Nr = 100)

White-box
(U = 2T
Nr = 100)

T = 1 81.81 44.79 48.26 59.91 34.89 37.83

T = 2 83.03 47.89 47.81 61.35 37.48 37.92

T = 5 83.24 47.11 42.21 60.37 36.66 32.83

T = 10 84.71 48.48 44.83 60.06 39.69 36.16

T = 15 85.45 46.89 44.55 57.13 38.43 37.33

T = 20 85.46 40.96 45.27 51.39 32.63 37.25

Table B.1: Accuracies for our defense method under different settings (CIFAR-10, L∞

ϵ = 8/255)

through the top U = 2T = 30 coefficients.

B.3 Choice of Hyperparameters and Training Set-

tings

Our defense: We evaluate our defense on the CIFAR-10 dataset (N = 32), for which

there are well-established benchmarks in adversarial ML. In our defense, we use 4 × 4

patches (n = 4) and an overcomplete dictionary with L = 500 atoms. The stride S = 2,

so the encoder output is a 15 × 15 × 500 tensor (m = 15, L = 500). The regularization

parameter in Equation 4.4 is set to λ = 1, in the upper range of values resulting in

convergence. The number of iterations in dictionary learning is chosen as 1000 to ensure

convergence. The number of dictionary atoms L is chosen to be 10 times the ambient

dimension of patches.

We test our defense for T = 1, 2, 5, 10, 15, and 20 with hyperparameter β = 3 for

the threshold in Equation 4.6. We train the CNN-based decoder in supervised fashion

in tandem with the classifier, using the standard cross-entropy loss. We use a cyclic

learning rate scheduler [91] with a maximum learning rate of ηmax = 0.05 for T = 1, 2

94

Sparse Encoding Defense Without Dropout Chapter B

and ηmax = 0.02 for T = 5, 10, 15, 20. In order to provide a consistent evaluation, we

employ the ResNet-32 classifier used in [9] and train it for 70 epochs.

Benchmarks: For a fair comparison, we use the same ResNet-32 classifier architecture for

the benchmarks. We train the PGD adversarially trained model from [9] with the same

cyclic learning rate with ηmax = 0.05 for 100 epochs. We train the model for TRADES

defense with learning rate η = 0.01 for the first 50 epochs and then with η = 10−3 for

the next 50 epochs. For both PGD adversarially trained model and TRADES, training

hyperparameters are ϵ = 8/255, δ = 1/255, NS = 10, NR = 1. Additionally for TRADES

λTRADES = 1/6. We also report on naturally trained network (i.e., no defense). This

network is also trained for 70 epochs with the same cyclic learning rate with ηmax = 0.05.

B.4 Backward Pass Approximation to Activation

We try replacing the activation function with two different functions in the backward

pass: identity and a smooth approximation (Figure B.2). We observe that the approxi-

mation with steepness= 4.0 results in the strongest attacks and use it in the backward

pass of all reported attacks.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
x̂ij(l)
‖dl‖1

−1.0

−0.5

0.0

0.5

1.0

x̄ij(l)
‖dl‖1

Activation

steepness=2.0

steepness=4.0

steepness=8.0

steepness=32.0

Figure B.2: Activation function and its backward pass smooth approximation with
varying degrees of smoothness

95

Sparse Encoding Defense Without Dropout Chapter B

B.5 Gradient Propagation Through Top U Coeffi-

cients

We test different settings for the hyperparameter U such as U = 2T , U = 5T ,

U = 10T and find that, in general, U = 2T results in the strongest attacks.

B.6 Gradient Smoothing

We test smoothing the gradients in each step by averaging them over 40 different

points in the δ L∞ neighborhood in each step of the attack. For computational feasibility,

we reduceNs to 20 andNr to 1. In general, for the models we tried this on, this smoothing

operation did not result in significantly stronger attacks. It decreased accuracies less than

0.5% while increasing the computational cost significantly. For this reason, we choose

not to use this operation in the attacks reported.

B.7 Results for HopSkipJumpAttack

HopSkipJumpAttack [38] is a recently proposed decision-based attack. The results

for this attack are reported in Table B.2. Similar to the last column of Table 4.5 the

reported results are for the average L2 norm of the perturbations. We observe that,

like the decision boundary attack, our defense requires the highest average L2 norm

perturbations.

96

Sparse Encoding Defense Without Dropout Chapter B

HopSkipJumpAttack

Average L2 norm of successful attack images

Natural ||e||2 = 0.31

Adv. Training ||e||2 = 2.08

TRADES ||e||2 = 2.00

T = 15 (Ours) ||e||2 = 3.43

Table B.2: Results for HopSkipJumpAttack attack (CIFAR-10)

B.8 Results for Zeroth Order Optimization (ZOO)

Based Attack

ZOO attack [36] is a query-based black-box attack where the gradients of the model

with respect to each input pixel are approximated using numerical differentiation and

then the attack is computed through stochastic coordinate descent. For computational

complexity reasons we evaluate this attack on 100 randomly selected images. These do

not include images that are wrongly classified by the corresponding model. The results

for this attack are reported in Table B.3. Similar to the last column of Table 4.5 the

reported results are for the average L2 norm of the perturbations. We observe that the

ZOO attack is unable to find adversarial examples for our defense. This is due to the

attack computing gradients by changing one pixel at a time by ±∆x. Since our front end

is very insensitive to single pixel changes, the gradients cannot be calculated using such

numerical differentiation techniques. We acknowledge that while this observation alone

does not show that our defense is secure, it does mean that this particular type of attack

is not applicable to our defense.

97

B.9 Effect of Attack Step Size

Nominally, we report results for when the step size δ = ϵ/8. For the L∞ attack, when

we use Ns = 1000, we decrease δ to 0.5/255. We also test for δ = 2/255 but this results in

higher accuracies therefore is omitted in the tables. For the L1 and L2 bounded attacks,

we try δ = ϵ/20 but this too results in weaker attacks.

B.10 Validation of Attack Code

To generate all attacks we use our own attack library and validate our results with

the foolbox [106] and torchattacks [107] Python packages.

ZOO Attack

Attack success rate (%) Average L2 norm of successful attack images

Natural 100 ||e||2 = 0.13

Adv. Training 100 ||e||2 = 0.89

TRADES 100 ||e||2 = 0.93

T = 15 (Ours) 7 ||e||2 = 0.04

Table B.3: Results for ZOO attack (CIFAR-10)

98

Bibliography

[1] Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour,
S. K. S., Ayan, B. K., Mahdavi, S. S., Lopes, R. G., et al. Photorealistic
text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

[2] Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash,
A., Kohno, T., and Song, D. Robust physical-world attacks on deep learning visual
classification. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1625–1634, 2018.

[3] Gao, J., Lanchantin, J., Soffa, M. L., and Qi, Y. Black-box generation of adversarial
text sequences to evade deep learning classifiers. In 2018 IEEE Security and Privacy
Workshops (SPW), pp. 50–56. IEEE, 2018.

[4] Carlini, N. and Wagner, D. Audio adversarial examples: Targeted attacks on
speech-to-text. In 2018 IEEE security and privacy workshops (SPW), pp. 1–7.
IEEE, 2018.

[5] Nicolae, M.-I., Sinn, M., Tran, M. N., Buesser, B., Rawat, A., Wistuba, M.,
Zantedeschi, V., Baracaldo, N., Chen, B., Ludwig, H., Molloy, I., and Edwards,
B. Adversarial robustness toolbox v1.2.0. CoRR, 1807.01069, 2018. URL
https://arxiv.org/pdf/1807.01069.

[6] Wu, T., Tong, L., and Vorobeychik, Y. Defending against physically realizable
attacks on image classification. arXiv preprint arXiv:1909.09552, 2019.

[7] Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

[8] Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial machine learning at scale.
In International Conference on Learning Representations (ICLR), 2017.

[9] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

99

https://arxiv.org/pdf/1807.01069

[10] Croce, F. and Hein, M. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In III, H. D. and Singh, A. (eds.),
Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp. 2206–2216. PMLR, 13–18
Jul 2020.

[11] Andriushchenko, M., Croce, F., Flammarion, N., and Hein, M. Square attack: a
query-efficient black-box adversarial attack via random search. In European Con-
ference on Computer Vision, pp. 484–501. Springer, 2020.

[12] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[13] Olshausen, B. A. and Field, D. J. Sparse coding with an overcomplete basis set:
A strategy employed by V1? Vision research, 37(23):3311–3325, 1997.

[14] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25, 2012.

[15] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., et al. A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

[16] Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
Tunyasuvunakool, K., Bates, R., Ž́ıdek, A., Potapenko, A., et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[17] Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron, A.,
Paino, A., Plappert, M., Powell, G., Ribas, R., et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

[18] Berner, C., Brockman, G., Chan, B., Cheung, V., Dkebiak, P., Dennison, C.,
Farhi, D., Fischer, Q., Hashme, S., Hesse, C., et al. Dota 2 with large scale deep
reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[19] Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung,
J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354,
2019.

[20] Karras, T., Laine, S., and Aila, T. A style-based generator architecture for genera-
tive adversarial networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 4401–4410, 2019.

100

[21] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165, 2020.

[22] Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-Maron,
G., Gimenez, M., Sulsky, Y., Kay, J., Springenberg, J. T., et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022.

[23] Allyn, B. The google engineer who sees company’s ai as ’sentient’ thinks a chat-
bot has a soul. NPR Article, 2022. URL https://www.npr.org/2022/06/16/

1105552435/google-ai-sentient.

[24] Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto,
G., and Roli, F. Evasion attacks against machine learning at test time. In Joint
European conference on machine learning and knowledge discovery in databases,
pp. 387–402. Springer, 2013.

[25] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and
Fergus, R. Intriguing properties of neural networks. In International Conference
on Learning Representations (ICLR), 2014.

[26] Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial examples in the physical
world. arXiv preprint arXiv:1607.02533, 2016.

[27] Burkart, N. and Huber, M. F. A survey on the explainability of supervised machine
learning. Journal of Artificial Intelligence Research, 70:245–317, 2021.

[28] Sutton, R. The bitter lesson.
http://www.incompleteideas.net/IncIdeas/BitterLesson.html, 2019.

[29] Guo, C., Rana, M., Cisse, M., and Van Der Maaten, L. Countering adversarial
images using input transformations. arXiv preprint arXiv:1711.00117, 2017.

[30] Yang, Y., Zhang, G., Katabi, D., and Xu, Z. ME-Net: Towards effective adver-
sarial robustness with matrix estimation. In International Conference on Machine
Learning, 2019.

[31] Bakiskan, C., Gopalakrishnan, S., Cekic, M., Madhow, U., and Pedarsani, R. Polar-
izing front ends for robust CNNs. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4257–4261. IEEE, 2020.

[32] Laidlaw, C., Singla, S., and Feizi, S. Perceptual adversarial robustness: Defense
against unseen threat models. arXiv preprint arXiv:2006.12655, 2020.

[33] Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks.
In 2017 ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

101

https://www.npr.org/2022/06/16/1105552435/google-ai-sentient
https://www.npr.org/2022/06/16/1105552435/google-ai-sentient
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

[34] Athalye, A., Engstrom, L., Ilyas, A., and Kwok, K. Synthesizing robust adversarial
examples. arXiv preprint arXiv:1707.07397, 2017.

[35] Tramer, F., Carlini, N., Brendel, W., and Madry, A. On adaptive attacks to
adversarial example defenses. arXiv preprint arXiv:2002.08347, 2020.

[36] Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-J. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training sub-
stitute models. In Proceedings of the 10th ACM workshop on artificial intelligence
and security, pp. 15–26, 2017.

[37] Brendel, W., Rauber, J., and Bethge, M. Decision-based adversarial attacks:
Reliable attacks against black-box machine learning models. arXiv preprint
arXiv:1712.04248, 2017.

[38] Chen, J., Jordan, M. I., and Wainwright, M. J. Hopskipjumpattack: A query-
efficient decision-based attack. In 2020 ieee symposium on security and privacy
(sp), pp. 1277–1294. IEEE, 2020.

[39] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A.
Practical black-box attacks against machine learning. In Proceedings of the 2017
ACM on Asia conference on computer and communications security, pp. 506–519,
2017.

[40] Tramèr, F., Papernot, N., Goodfellow, I., Boneh, D., and McDaniel, P. The space
of transferable adversarial examples. arXiv preprint arXiv:1704.03453, 2017.

[41] Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks.
In IEEE Symposium on Security and Privacy, pp. 39–57, 2017.

[42] Athalye, A., Carlini, N., and Wagner, D. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In International con-
ference on machine learning, pp. 274–283. PMLR, 2018.

[43] Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C., and Liang, P. S. Un-
labeled data improves adversarial robustness. In Advances in Neural Information
Processing Systems, pp. 11192–11203, 2019.

[44] Gowal, S., Rebuffi, S.-A., Wiles, O., Stimberg, F., Calian, D. A., and Mann, T. A.
Improving robustness using generated data. Advances in Neural Information Pro-
cessing Systems, 34:4218–4233, 2021.

[45] Rebuffi, S.-A., Gowal, S., Calian, D. A., Stimberg, F., Wiles, O., and Mann,
T. Fixing data augmentation to improve adversarial robustness. arXiv preprint
arXiv:2103.01946, 2021.

102

[46] Dai, S., Mahloujifar, S., and Mittal, P. Parameterizing activation functions for
adversarial robustness. In 2022 IEEE Security and Privacy Workshops (SPW), pp.
80–87. IEEE, 2022.

[47] Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and Jordan, M. Theoretically
principled trade-off between robustness and accuracy. In International conference
on machine learning, pp. 7472–7482. PMLR, 2019.

[48] Wong, E. and Kolter, J. Z. Provable defenses against adversarial examples via the
convex outer adversarial polytope. arXiv preprint arXiv:1711.00851, 2017.

[49] Croce, F., Andriushchenko, M., and Hein, M. Provable robustness of ReLU net-
works via maximization of linear regions. arXiv preprint arXiv:1810.07481, 2018.

[50] Raghunathan, A., Steinhardt, J., and Liang, P. Certified defenses against adver-
sarial examples. arXiv preprint arXiv:1801.09344, 2018.

[51] Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., and Jana, S. Certified robust-
ness to adversarial examples with differential privacy. In 2019 IEEE Symposium
on Security and Privacy (SP), pp. 656–672. IEEE, 2019.

[52] Cohen, J. M., Rosenfeld, E., and Kolter, J. Z. Certified adversarial robustness via
randomized smoothing. arXiv preprint arXiv:1902.02918, 2019.

[53] Salman, H., Li, J., Razenshteyn, I., Zhang, P., Zhang, H., Bubeck, S., and Yang,
G. Provably robust deep learning via adversarially trained smoothed classifiers. In
Advances in Neural Information Processing Systems, pp. 11289–11300, 2019.

[54] Dapello, J., Marques, T., Schrimpf, M., Geiger, F., Cox, D., and DiCarlo, J. J.
Simulating a primary visual cortex at the front of cnns improves robustness to im-
age perturbations. Advances in Neural Information Processing Systems, 33:13073–
13087, 2020.

[55] Feinman, R., Curtin, R. R., Shintre, S., and Gardner, A. B. Detecting adversarial
samples from artifacts. arXiv preprint arXiv:1703.00410, 2017.

[56] Xu, W., Evans, D., and Qi, Y. Feature squeezing: Detecting adversarial examples
in deep neural networks. arXiv preprint arXiv:1704.01155, 2017.

[57] Grosse, K., Manoharan, P., Papernot, N., Backes, M., and McDaniel, P. On the
(statistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280,
2017.

[58] Pang, T., Du, C., Dong, Y., and Zhu, J. Towards robust detection of adversarial
examples. Advances in Neural Information Processing Systems, 31, 2018.

103

[59] Bhagoji, A. N., Cullina, D., Sitawarin, C., and Mittal, P. Enhancing robustness of
machine learning systems via data transformations. In 2018 52nd Annual Confer-
ence on Information Sciences and Systems (CISS), pp. 1–5. IEEE, 2018.

[60] Hein, M. and Andriushchenko, M. Formal guarantees on the robustness of a clas-
sifier against adversarial manipulation. Advances in neural information processing
systems, 30, 2017.

[61] Moosavi-Dezfooli, S.-M., Fawzi, A., Uesato, J., and Frossard, P. Robustness via
curvature regularization, and vice versa. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 9078–9086, 2019.

[62] Marblestone, A. H., Wayne, G., and Kording, K. P. Toward an integration of deep
learning and neuroscience. Frontiers in computational neuroscience, pp. 94, 2016.

[63] Nayebi, A. and Ganguli, S. Biologically inspired protection of deep networks from
adversarial attacks. arXiv preprint arXiv:1703.09202, 2017.

[64] Cekic, M., Bakiskan, C., and Madhow, U. Neuro-inspired deep neural networks
with sparse, strong activations. arXiv preprint arXiv:2202.13074, 2022.

[65] Carlini, N. andWagner, D. Adversarial examples are not easily detected: Bypassing
ten detection methods. In ACM Workshop on Artificial Intelligence and Security,
pp. 3–14, 2017.

[66] Liu, C., Salzmann, M., Lin, T., Tomioka, R., and Süsstrunk, S. On the loss
landscape of adversarial training: Identifying challenges and how to overcome them.
Advances in Neural Information Processing Systems, 33:21476–21487, 2020.

[67] He, W., Li, B., and Song, D. Decision boundary analysis of adversarial examples.
In International Conference on Learning Representations, 2018.

[68] Tian, Q., Kuang, K., Jiang, K., Wu, F., and Wang, Y. Analysis and applica-
tions of class-wise robustness in adversarial training. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1561–
1570, 2021.

[69] Kanai, S., Yamada, M., Takahashi, H., Yamanaka, Y., and Ida, Y. Smoothness
analysis of adversarial training. arXiv preprint arXiv:2103.01400, 2021.

[70] Xing, Y., Song, Q., and Cheng, G. On the algorithmic stability of adversarial
training. Advances in Neural Information Processing Systems, 34, 2021.

[71] He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. In Proceedings of the IEEE
international conference on computer vision, pp. 1026–1034, 2015.

104

[72] Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[73] Rice, L., Wong, E., and Kolter, Z. Overfitting in adversarially robust deep learning.
In International Conference on Machine Learning, pp. 8093–8104. PMLR, 2020.

[74] Frankle, J., Schwab, D. J., and Morcos, A. S. Training batchnorm and only
batchnorm: On the expressive power of random features in cnns. arXiv preprint
arXiv:2003.00152, 2020.

[75] Yang, H., Wen, W., and Li, H. Deephoyer: Learning sparser neural network with
differentiable scale-invariant sparsity measures. arXiv preprint arXiv:1908.09979,
2019.

[76] Lin, J., Gan, C., and Han, S. Defensive quantization: When efficiency meets
robustness. arXiv preprint arXiv:1904.08444, 2019.

[77] Rakin, A. S., Yi, J., Gong, B., and Fan, D. Defend deep neural networks against
adversarial examples via fixed and dynamic quantized activation functions. arXiv
preprint arXiv:1807.06714, 2018.

[78] Khalid, F., Ali, H., Tariq, H., Hanif, M. A., Rehman, S., Ahmed, R., and Shafique,
M. Qusecnets: Quantization-based defense mechanism for securing deep neural
network against adversarial attacks. In 2019 IEEE 25th International Symposium
on On-Line Testing and Robust System Design (IOLTS), pp. 182–187. IEEE, 2019.

[79] Panda, P., Chakraborty, I., and Roy, K. Discretization based solutions for secure
machine learning against adversarial attacks. IEEE Access, 7:70157–70168, 2019.

[80] Chen, J., Wu, X., Rastogi, V., Liang, Y., and Jha, S. Towards understanding lim-
itations of pixel discretization against adversarial attacks. In 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 480–495. IEEE, 2019.

[81] Zhang, Y. and Liang, P. Defending against whitebox adversarial attacks via ran-
domized discretization. In The 22nd International Conference on Artificial Intelli-
gence and Statistics, pp. 684–693. PMLR, 2019.

[82] Marzi, Z., Gopalakrishnan, S., Madhow, U., and Pedarsani, R. Sparsity-based
defense against adversarial attacks on linear classifiers. In 2018 IEEE International
Symposium on Information Theory (ISIT), pp. 31–35. IEEE, 2018.

[83] Gopalakrishnan, S., Marzi, Z., Madhow, U., and Pedarsani, R. Combating ad-
versarial attacks using sparse representations. arXiv preprint arXiv:1803.03880,
2018.

105

[84] Gopalakrishnan, S., Marzi, Z., Cekic, M., Madhow, U., and Pedarsani, R. Robust
adversarial learning via sparsifying front ends. arXiv preprint arXiv:1810.10625,
2018.

[85] Blakemore, C., Carpenter, R. H., and Georgeson, M. A. Lateral inhibition between
orientation detectors in the human visual system. Nature, 228(5266):37–39, 1970.

[86] Prescott, S. A. and De Koninck, Y. Gain control of firing rate by shunting inhibi-
tion: Roles of synaptic noise and dendritic saturation. Proceedings of the National
Academy of Sciences, 100(4):2076–2081, 2003.

[87] Prenger, R., Wu, M. C.-K., David, S. V., and Gallant, J. L. Nonlinear V1 responses
to natural scenes revealed by neural network analysis. Neural Networks, 17(5-6):
663–679, 2004.

[88] Mairal, J., Bach, F., Ponce, J., and Sapiro, G. Online dictionary learning for sparse
coding. In Proceedings of the 26th annual international conference on machine
learning, pp. 689–696, 2009.

[89] Elad, M. and Aharon, M. Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Transactions on Image processing, 15(12):3736–
3745, 2006.

[90] Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber, J., Tsipras, D., Good-
fellow, I., Madry, A., and Kurakin, A. On evaluating adversarial robustness. arXiv
preprint arXiv:1902.06705, 2019.

[91] Smith, L. N. Cyclical learning rates for training neural networks. In IEEE Win-
ter Conference on Applications of Computer Vision (WACV), pp. 464–472. IEEE,
2017.

[92] Tan, M. and Le, Q. V. Efficientnet: Rethinking model scaling for convolutional
neural networks. arXiv:1905.11946, 2019.

[93] Wong, E., Rice, L., and Kolter, J. Z. Fast is better than free: Revisiting adversarial
training. arXiv preprint arXiv:2001.03994, 2020.

[94] Fukushima, K., Miyake, S., and Ito, T. Neocognitron: A neural network model for
a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-13(5):826–834, 1983. doi: 10.1109/TSMC.1983.6313076.

[95] Amato, G., Carrara, F., Falchi, F., Gennaro, C., and Lagani, G. Hebbian learning
meets deep convolutional neural networks. In Ricci, E., Rota Bulò, S., Snoek,
C., Lanz, O., Messelodi, S., and Sebe, N. (eds.), Image Analysis and Processing –
ICIAP 2019, pp. 324–334, Cham, 2019. Springer International Publishing. ISBN
978-3-030-30642-7.

106

[96] Carandini, M. and Heeger, D. J. Normalization as a canonical neural computation.
Nature Reviews Neuroscience, 13(1):51–62, 2012.

[97] Burg, M. F., Cadena, S. A., Denfield, G. H., Walker, E. Y., Tolias, A. S., Bethge,
M., and Ecker, A. S. Learning divisive normalization in primary visual cortex.
PLOS Computational Biology, 17(6):e1009028, 2021.

[98] Li, Z., Brendel, W., Walker, E., Cobos, E., Muhammad, T., Reimer, J., Bethge,
M., Sinz, F., Pitkow, Z., and Tolias, A. Learning from brains how to regularize
machines. Advances in neural information processing systems, 32, 2019.

[99] Hoyer, P. O. Non-negative matrix factorization with sparseness constraints. Journal
of machine learning research, 5(9), 2004.

[100] Pintor, M., Roli, F., Brendel, W., and Biggio, B. Fast minimum-norm adversar-
ial attacks through adaptive norm constraints. Advances in Neural Information
Processing Systems, 34, 2021.

[101] Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N.,
Chiang, M., Mittal, P., and Hein, M. Robustbench: a standardized adversarial
robustness benchmark. arXiv preprint arXiv:2010.09670, 2020.

[102] Hendrycks, D. and Dietterich, T. G. Benchmarking neural network robustness
to common corruptions and surface variations. arXiv preprint arXiv:1807.01697,
2018.

[103] Machiraju, H., Choung, O.-H., Herzog, M. H., and Frossard, P. Empirical
advocacy of bio-inspired models for robust image recognition. arXiv preprint
arXiv:2205.09037, 2022.

[104] Kireev, K., Andriushchenko, M., and Flammarion, N. On the effectiveness of
adversarial training against common corruptions. arXiv preprint arXiv:2103.02325,
2021.

[105] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D.
Grad-cam: Visual explanations from deep networks via gradient-based localization.
In Proceedings of the IEEE international conference on computer vision, pp. 618–
626, 2017.

[106] Rauber, J., Zimmermann, R., Bethge, M., and Brendel, W. Foolbox native: Fast
adversarial attacks to benchmark the robustness of machine learning models in
pytorch, tensorflow, and jax. Journal of Open Source Software, 5(53):2607, 2020.
doi: 10.21105/joss.02607. URL https://doi.org/10.21105/joss.02607.

[107] Kim, H. Torchattacks: A pytorch repository for adversarial attacks. arXiv preprint
arXiv:2010.01950, 2020.

107

https://doi.org/10.21105/joss.02607

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Deep Learning Revolution and Its Achilles' Heel
	Tale of Two Paradigms
	Dissertation Organization

	Background
	Adversarial Attacks
	White-Box Attacks
	Black-Box Attacks

	Defenses
	Adversarial Training and Variants
	Other Defenses
	Defense Evaluation and Gradient Masking:

	Analysis of Adversarial Training
	Layers' Role in Adversarial Robustness
	Introduction
	Setup and Definitions
	Partial Adversarial Training
	Retraining Latter Layers
	Retraining Earlier Layers
	Retraining A Single Layer

	Tracking Perturbations Across Layers

	Experiments & Results
	Details
	Retraining Latter Layers
	Retraining Earlier Layers
	Retraining A Single Layer
	Tracking Perturbations Across Layers

	Discussion
	Limitations

	Statistical Differences in Parameters
	Statistics of Batch Norm Layers
	Lp Norms of Convolutional Layers
	Singular Value Distributions of Convolutional Layers

	Conclusion

	Front End Based Defenses
	Polarizing Front Ends for Robust CNNs
	Introduction
	Related Work
	Polarizing Front End
	Implementing a Polarizing Front End

	Experiments and Results
	Training Details
	Results and Discussion

	Conclusions

	Sparse Coding Front End for Robust Neural Networks
	Introduction
	Sparse Overcomplete Front End
	Patch-Level Overcomplete Dictionary
	Sparse Randomized Encoder
	Sparse Encoder Without Randomization
	CNN-based Decoder
	Ensemble Processing

	Evaluation
	Experiments, Results and Discussion
	Non-random encoder

	Conclusion

	Incorporating Neuro-inspired Bottom-up Principles for Robustness
	Introduction
	Approach and Contributions
	Related Work

	Model
	Inference in a HaH block
	HaH Training

	Experiments
	Conclusion

	Conclusion
	Analysis of Adversarial Training
	Sparse Encoding Defense Without Dropout
	Block Diagram
	Determining Attack Parameters
	Choice of Hyperparameters and Training Settings
	Backward Pass Approximation to Activation
	Gradient Propagation Through Top U Coefficients
	Gradient Smoothing
	Results for HopSkipJumpAttack
	Results for Zeroth Order Optimization (ZOO) Based Attack
	Effect of Attack Step Size
	Validation of Attack Code

