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Group B Streptococcus (GBS) emerged as a leading cause of invasive infectious disease

in neonates in the 1970s, but has recently been identified as an escalating public

health threat in non-pregnant adults, particularly those of advanced aged or underlying

medical conditions. GBS infection can rapidly develop into life-threatening disease

despite prompt administration of effective antibiotics and initiation of state-of-the-art

intensive care protocols and technologies due to deleterious bacterial virulence factors,

such as the GBS pore-forming toxin β-hemolysin/cytolysin (β-H/C). β-H/C is known

to have noxious effects on a wide range of host cells and tissues, including lung

epithelial cell injury, blood brain barrier weakening, and immune cell apoptosis. Neonatal

and adult survivors of GBS infection are at a high risk for substantial long-term

health issues and neurologic disabilities due to perturbations in organ systems

caused by bacterial- and host- mediated inflammatory stressors. Previously engineered

anti-virulence inhibitors, such as monoclonal antibodies and small molecular inhibitors,

generally require customized design for each different pathogenic toxin and do not target

deleterious host pro-inflammatory responses that may cause organ injury, septic shock,

or death. By simply wrapping donor red blood cells (RBCs) around polymeric cores,

we have created biomimetic “nanosponges.” Because nanoparticles retain the same

repertoire of cell membrane receptors as their host cell, they offer non-specific and

all-purpose toxin decoy strategies with a broad ability to sequester and neutralize various

bacterial toxins and host pro-inflammatory chemokines and cytokines to attenuate the

course of infectious disease. This proof-of-concept study successfully demonstrated

that intervention with nanosponges reduced the hemolytic activity of live GBS and

stabilized β-H/C in a dose-dependent manner. Nanosponge treatment also decreased

lung epithelial and macrophage cell death following exposure to live GBS bacteria and
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stabilized β-H/C, improved neutrophil killing of GBS, and diminished GBS-induced

macrophage IL-1β production. Our results, therefore, suggest biomimetic nanosponges

provide a titratable detoxification therapy that may provide a first-in-class treatment

option for GBS infection by sequestering and inhibiting β-H/C activity.

Keywords: Group B Streptococcus, nanoparticle, nanosponge, neonatal sepsis, neonates, adults, biomimetic,

beta-hemolysin/cytolysin

INTRODUCTION

Group B Streptococcus (GBS) is the leading cause of neonatal
early-onset sepsis (EOS) with an incidence of 0.34–0.37 per
1,000 live births (1). Nearly one-third of women of child-
bearing age are asymptomatic carriers of the bacterium, which
can colonize up to half of infants during the birthing process
without appropriate empiric intrapartum GBS prophylaxis (1,
2). Although mortality has greatly decreased over the last few
decades, an estimated 30% of very low birthweight (VLBW, <

1,500 g at birth) preterm and 2–3% of term infants will die
from GBS EOS due to gestational age-dependent impairments
of humoral immunity and primary reliance on developmentally
immature innate immune responses (1, 3).

Conversely, non-pregnant adults account for 90% of the
estimated 1,660 annual deaths attributable to GBS infection
(4). Nearly all cases (95%) occur in persons with at least one
comorbidity, including obesity (53.9%) and diabetes (43.2%) (5).
In 2016, an estimated 27,729 GBS cases were reported in the
U.S. (5), with 94.6% of cases requiring hospitalization, 27.3%
necessitating admission to an intensive care unit, and 5.6%
resulting in death (5, 6). Alarmingly, rates of invasive GBS
infection roughly tripled in the U.S. between 1990 and 2016 (5, 6).

GBS exhibits pathogenicity against vulnerable populations,
such as infants, the elderly, and adults with comorbidities, due
to the expression of several virulence factors that exploit host
susceptibilities. Amongst the most important GBS virulence
factors, the secreted β-hemolysin/cytolysin (β-H/C) toxin stands
out due to its broad range of host cell targets (7, 8). A pore-
forming toxin expressed in more than 99% of GBS strains,
β-H/C is responsible for the trademark ring of hemolysis
around GBS colonies on blood agar plates and its linkage to
a phenotype of orange pigmentation (9). The cylE gene is
both essential and sufficient for β-H/C activity (8). Due to
the toxin’s non-specific affinity for the lipid bilayer of cell
membranes, β-H/C contributes to penetration of tissue barriers
and inflammatory injury in GBS invasive disease syndromes such
as meningitis, infections of skin and soft tissues, osteomyelitis,
bacteremia, endocarditis, arthritis, and urosepsis in adults (4, 6),
as well as pneumonia, bacteremia, and/or meningitis in neonatal
patients (10). Because β-H/C is sequestered and inhibited by
the lipid-rich primary component of surfactant, dipalmotyl
phophatidylcholine (DPPC), surfactant-deficient preterm and
very low birth weight (VLBW) neonates have the highest risks
for GBS pneumonia and bacteremia (11, 12).

Neutrophils are essential components of innate immunity,
as they are the first line of defense against pathogenic

organisms and comprise the largest number of innate immune
cells. Neonatal neutrophils have well-documented reductions
of neutrophil storage pools and functional deficiencies in
chemotaxis, transmigration, and neutrophil extracellular trap
(NET) formation (1, 13). Moreover, poorly regulated immune
responses during early sepsis may increase the neonate’s risk
for mortality and long-term morbidity (3, 7). Similarly, adults
with obesity and type 2 diabetes have impaired neutrophil
function with a lower stimulation index, impaired chemotaxis,
and enhanced free radical production compared to metabolically
healthy individuals, whichmay increase their chance for infection
and heighten morbidity and mortality risks (14, 15).

Current strategies for reducing the incidence of neonatal GBS
early-onset sepsis involve the administration of intrapartum
antibiotic prophylaxis (IAP) to GBS-colonized pregnant,
laboring mothers (16). Although neonatal mortality from GBS
EOS declined by more than 80% following enactment of the
1996 CDC perinatal GBS prevention guidelines, the use of
maternal and neonatal empiric antibiotics has risen to levels
never before encountered. Moreover, further reductions in
the incidence of GBS EOS have not been observed in the last
two decades (1, 3). In neonates and adults, GBS isolates with
increasing minimum inhibitory concentrations (MICs) to
penicillin and ampicillin have been reported in the United States
and Japan (1). The proportion of GBS isolates resistant to
erythromycin and clindamycin is also steadily increasing. This
trend is alarming for adults and penicillin allergic patients with
skin and soft tissue infections as clindamycin is considered the
first-line antimicrobial agent (5, 17). Adjuvant therapies that
target pathogen toxicity and host responses must, therefore,
be considered.

Recent advances in nanotechnology and biomimetics has
enabled the engineering of cell membrane-coated nanoparticles,
which can function as biologic decoys to sequester and
inhibit pathogen toxins (Figure 1). Our group has studied the
function of biomimetic nanoparticles, generated by wrapping
natural cell membranes derived from human erythrocytes
around poly-lactico-glycolic acid (PLGA) cores, and are termed
“nanosponges” or human red blood cell nanosponges (hRBC-
NS) (18). Because the nanoparticles retain the same repertoire
of cell membrane receptors as their host cell, they offer
a multifaceted toxin decoy strategy with broad ability to
sequester and neutralize various pore-forming toxins (PFT),
endotoxins, and proinflammatory cytokines, regardless of their
molecular structure and source. The inner polymeric core
is essential for RBC membrane stabilization, enabling their
prolonged half-life in the bloodstream to facilitate maximum

Frontiers in Pediatrics | www.frontiersin.org 2 November 2019 | Volume 7 | Article 410

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Koo et al. Nanoparticles Block Beta-Hemolysin/Cytolysin

FIGURE 1 | (A) Nanoparticle Engineering: schematic demonstrating fusion of a RBC-derived ghost membrane vesicle and PGLA core to create nanosponge

therapeutics. (B) Representative zoomed-in image of a single toxin-absorbed nanosponge examined with transmission electron microscopy (TEM). The sample was

negatively stained with uranyl acetate prior to TEM imaging.

toxin absorption (18). Nanoparticles are biodegradable, bio-
compatible, and widely applicable (19–21). In vitro and in vivo
studies have demonstrated complete inhibition of PFT-induced
hemolysis by human-derived nanosponges for α-hemolysin of
methicillin-resistant Staphylococcus aureus (22), listeriolysin O
of Listeria monocytogenes (22), and streptolysin O of group A
Streptococcus (21).

In this study, we explored the potential for hRBC-NS to
specifically inhibit GBS β-H/C toxin associated cellular toxicities.
Employing live GBS bacterial strains and cell-free stabilized β-
H/C preparations, we found hRBC-NS effectively inhibited β-
H/C mediated hemolysis, immune cell death, and lung epithelial
cell culture death. This proof-of-principle study suggests the
merit of future translational studies to assess the therapeutic role
of hRBC-NS in neonatal and adult GBS disease.

METHODS

Generation of Human Red Blood
Cell-Coated Nanosponges (hRBC-NS)
hRBC-NS were created as previously described (18). Briefly,
PLGA-COOH 0.66 dl/g was dissolved in acetone at a
concentration of 5 mg/ml, then dispersed in equal volume
water. Acetone was allowed to evaporate. Human RBCs from
health donors are washed in PBS three times via centrifugation
at 700 × g for 8min. RBC membrane ghosts were prepared
using hypotonic treatment, washed, and centrifuged at 16,000
rpm for 10min at 4◦C. RBC membrane protein was quantified

using BCA assay for total protein content. Membranes were
adhered to PLGA cores via sonication for 3min at a protein-
to-core ratio of 1:4. The nanosponges were spun down and
resuspended in 5% sucrose diH2O at a final concentration 5–10
mg/ml for use, and stored at 4◦C for no longer than 5 days
or −80◦C for no more than 30 days. Unless otherwise stated,
the treatment concentration of hRBC-NS is 500µg/mL for all
in vitro experiments.

GBS Bacterial Strains and Prep
GBS bacterial strains used in this experiment included NCTC
(serotype 3), COH1 (serotype 3), A909 (serotype 1a). All bacteria
are grown to mid-log phase at OD600= 0.4 (∼2× 108/ml CFU)
in Todd Hewitt Broth (THB). For assays, the bacteria are spun
down and resuspended in serum-free Roswell Park Memorial
Institute medium (RPMI).

β-H/C Containing GBS Supernatant
Overnight liquid cultures of GBS were subcultured at 1:20 into
final volume of 500mL and grown to mid-log phase of OD600
= 0.4. The bacteria were pelleted and washed, then resuspended
in 20ml PBS with 3% Tween 80, 1% starch, and 1% glucose
for stabilization of β-H/C toxin. The solution was incubated for
1 h at 37◦C, then the bacteria is pelleted, and the supernatant
filtered through 0.22µm syringe filter. The supernatant was
mixed at a 1:1 volume of ice-cold methanol to precipitate out the
toxin, incubated at −20◦C for 1 h. Toxins were spun down and
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resuspended in 1ml PBS. All centrifuge spins were done at 3,000
× g for 10 min.

Hemolysis Assay
Human venous whole blood was collected in heparinized tubes.
Red blood cells (RBC) are washed in PBS three times via
centrifugation at 700 × g for 8min. The RBC pellet was then
resuspended to achieve 5% concentration by volume. GBS at 8
× 106 CFU or 1 µl β-H/C+ extract is used to infect 100 µl 5%
RBC for 1 h, or 30min, respectively. Nanosponges were added at
varying concentrations for dose-dependent experiments. At the
end of infection, the plate was spun down at 3,000× g for 5min.
The supernatant was collected and absorbance at 541 nm read.

Mammalian Cell Cultures
A549 lung adenocarcinoma epithelial cells were cultured in RPMI
with 10% heat-inactivated fetal bovine serum (HI-FBS) + 100
IU/mL penicillin/streptomycin (P/S). THP-1 human monocytes
were cultured in RPMI with 10% HI-FBS + 100 IU/mL P/S.
HEK-Blue-IL1β cells were cultured in Dulbecco’s Modified Eagle
Media (DMEM) with 100 IU/mL P/S, 100µg/mL Zeocin, and
200µg/mL Hygromycin B Gold. For colorimetric assays, media
was free of phenol red. For infection assays, antibiotic-free media
was used.

Cell Viability Using ATP Based
Luminescence Assay
Cell viability was measured using the CellTiter Glo ATP-based
assay (Promega). A549 cells were seeded the day prior at 2 ×

104 cells/well in a 96-well plate, considering that the cell count
roughly doubles with overnight incubation. THP-1 monocytes
were differentiated using 25µM PMA and seeded the day prior
at 2 × 104 cells/well in a 96-well plate. A549 and THP-1 were
infected at MOI 20 and MOI 10, respectively. The plates were
centrifuged at 500 × g for 5min for bacteria contact with cells,
then infected with live bacteria at 37◦C for 2 h. When infecting
with β-H/C+ extract, we used 5 µl and infect for 1 h. At the
end of the experimental infection, the media was aspirated, and
CellTiter Glo substrate added. The plate was shaken for 30 s to
lyse cells and release ATP content, then allowed to incubate at
room temperature for 10min prior to reading luminescence.

Cell Death Fluorescent Labeling With
Propidium Iodide
A549 cells are seeded the day prior at 1 × 105 cells in 500 µl
media. THP-1 monocytes are differentiated with 25µM PMA
the day prior and seeded at 5 × 105 cells in 500 µl media.
Cell dishes used in these experiments are 35mm glass-bottom,
poly-L-lysine treated FluoroDish (World Precision Instruments).
Cells were infected with GBS at MOI 10 for 2 h. At the end
of infection, media was aspirated, and cells stained with 500 µl
propidium iodide at a concentration of 0.5µg/ml with 1% bovine
serum albumin. Fluorescent microscopy was performed on the
Zeiss Inverted Fluorescence microscope using the Red Alexa 594
protocol (618 nm).

Human Neutrophil Isolation
Neutrophils are isolated using Polymorph Prep (Fresenius Kabi)
as previously described (23). In summary, 30ml human venous
blood collected in heparinized tubes is carefully layered over
20ml Polymorph Prep and centrifuged at 500 × g for 30min
at room temperature with brakes off. Two distinct white bands
appear above the erythrocyte pellet, with the bottom white band
containing neutrophils. The neutrophil layer was collected and
pelleted at 630 × g for 8min. Any remaining erythrocytes
were lysed with hypotonic treatment using water with short,
30 s incubation periods. Neutrophil yield was counted using
a hemocytometer.

Neutrophil Killing Assay
GBS were grown overnight in liquid culture and subcultured to
OD600 = 0.4. Neutrophils resuspended in RPMI (2 × 105 cells)
were added to a 96-well tissue culture plate and infected with
GBS at MOI 1. The plates were centrifuged at 300 × g for 5min
for bacterial contact with cells and incubated at 37◦C for 30min.
At the end of the infection, neutrophils were lysed by combining
20 µl of the sample to 180 µl water. Serial dilutions were plated
on THB and incubated at 37◦C overnight for CFU counting the
next day.

Inflammasome Production and
Measurement
THP-1 cultured in RPMI + 10% FBS were differentiated with
25 nM PMA overnight at 2 × 105 cells / well in a 12-well plate.
HEK-Blue-IL1β reporter cells are seeded at 1 × 105 cells / well
in a 96-well plate the day prior. On the day of infection, PMA-
containing media was aspirated and new media added to the
THP-1 macrophages. The cells were then infected with live GBS
at mid-log phase (OD600 = 0.4) at MOI 1 for 2 h at 37◦C.
After the infection, the THP-1 supernatant was transferred to
the HEK-blue cells and incubated overnight at 37◦C. On the
following day, 50 µl HEK-blue supernatant was transferred to a
new 96-well plate containing 150 µl/well SEAP detection reagent
and allowed to develop at 37◦C. Absorbance at 640 nm is read
every 30 min.

Human Protection
Healthy adult human blood donors were informed and consented
under an approved UC San Diego Human Research Protections
Program protocol (IRB #131002).

Statistical Analysis
Data presented in this study are averaged values from three
reads per sample, obtained from three replicates (each
experiment done independently of each other) with standard
deviation shown as error bars. Independent variables were
analyzed using the Student’s t-test. Experiments involving
microscopic fluorescent images were done in triplicates,
with a representative image shown in corresponding
figures. Cell count involving microscopic images were
completed using ImageJ (NIH and LOCI, University of
Wisconsin). All experiment images were counted, values
averaged, and results displayed in corresponding figures.
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All analyses were carried out using Prism (GraphPad,
San Diego, CA). A p-value of ≤ 0.05 was deemed
statistically significant.

RESULTS

Human RBC-NS Do Not Directly Kill Nor
Inhibit Growth of GBS
To confirm that hRBC-NS do not have direct effects on
GBS growth or cell death, bacteria were grown in Todd

FIGURE 2 | There is no difference in the growth pattern of WT NCTC GBS

grown in THB, in THB + 5% sucrose, and in THB + hRBC-NS (in 5%

sucrose). hRBC-NS does not have a direct inhibitory effect on the growth of

GBS. Values averaged from three reads per sample, obtained from three

independent replicates.

Hewitt Broth (THB) with and without hRBC-NS. A five
percent sucrose solution was tested in this experiment
as a vehicle control as nanosponges are administered
in a 5% sucrose solution. As demonstrated in Figure 2,
no differences in growth patterns were observed with
hRBC-NS exposure.

Human RBC Nanosponges Reduce β-H/C
Mediated Hemolysis
Because β-H/C is known for its signature hemolytic activity
in the clinical laboratory, the ability of hRBC-NS to inhibit
β-H/C-mediated hemolysis was evaluated as a first test of
neutralization capacity. Well-characterized GBS clinical isolates
including NCTC (serotype III), COH1 (serotype III), and A909
(serotype Ia) were used in human RBC lysis experiments.
GBS strain NCTC demonstrated the greatest hemolytic activity
compared to COH1 and A909, and was chosen as the primary
GBS organism for subsequent experiments given it provided
the strongest toxin challenge (Figure 3A). For all GBS strains,
1cylE mutants lacking the encoding gene did not exhibit
hemolytic activity. Hemolytic activity was proportional to the
concentration of bacterial supernatant containing stabilized
β-H/C toxin in a dose-dependent manner (Figure 3B), as
well as concentration of bacteria (Figure 3C), with significant
reductions in hemolysis achieved with concentration of hRBC-
NS as low as 50µg/ml. At a hRBC-NS concentration of
500µg/ml, hemolytic activity resulting from 1 µl β-H/C
extract and 4 × 106 CFU live NCTC GBS declined from
75 ± 2% to 9 ± 3%, and from 51 ± 1% to 25 ± 1%,
respectively (Figure 4).

FIGURE 3 | (A) The NCTC GBS strain demonstrated the greatest hemolytic activity compared to COH1 and A909. (B) Hemolytic activity was proportional to the

concentration of bacterial supernatant containing stabilized β-H/C toxin in a dose-dependent manner, and (C) the concentration of bacteria. Values averaged from

three reads per sample, obtained from three independent replicates. Values averaged from three reads per sample, obtained from three independent replicates.
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FIGURE 4 | (A) hRBC-NS reduced hemolysis caused by β-H/C+ extract and (B) live NCTC GBS in a dose-dependent manner. Values averaged from three reads per

sample, obtained from three independent replicates.

FIGURE 5 | A549 cells infected by (A) β-H/C+ extract and (B) live NCTC GBS (MOI 20) have improved cell viability after treatment with hRBC-NS in a

dose-dependent manner. Values averaged from three reads per sample, obtained from three independent replicates.

hRBC-NS Improve Lung Epithelial and
Macrophage Cell Viability During GBS
Exposure
A549 lung adenocarcinoma cells closely resemble immature
type II pulmonary epithelial cells and, therefore, provide
an in vitro model of investigation to determine detrimental
effects of β-H/C on preterm neonatal lung epithelium (24–
26). Our results demonstrate reduced cytotoxicity of live
NCTC GBS and β-H/C+ extract on A549 cells by hRBC-NS
in a dose-dependent manner, and improved cell viability, as
measured by ATP activity (Figure 5). After infection with β-
H/C+ extract, A549 cell viability improved 4-fold following
treatment with 500µg/mL hRBC-NS (Figure 5A). Likewise,
A549 viability increased 25-fold after infection with live GBS at
MOI 20 (Figure 5B).

GBS β-H/C induces macrophage apoptosis to enable host
immune evasion (27–29). We, therefore, further examined the
effects of β-H/C on THP-1 human-derived monocytes (30, 31).
THP-1 cells were induced to differentiate into macrophages by
exposing them to phorbol myristate acetate (PMA) (32), then
employed as an in vitro model for GBS-induced macrophage
cell death. GBS-infected THP-1 macrophages had markedly
improved cell viability following hRBC-NS treatment, increasing
roughly 3-fold over the WT control (Figure 6).

FIGURE 6 | THP1 macrophages infected by live GBS at MOI 10 has improved

cell viability after treating with hRBC-NS. ***p < 0.0001 compared to WT

control. Values averaged from three reads per sample, obtained from three

independent replicates.

Cell death was also examined using fluorescent microscopy
and propidium iodine, a DNA intercalating stain used as cell
death marker. Both A549 lung epithelial cells (Figure 7) and
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THP-1 macrophages (Figure 8) demonstrated improved survival
following NCTC GBS infection when treated with hRBC-NS.
A549 cells were infected by live GBS at MOI 10 for 2 h, leading
to death in one-third of the cells in the untreated group, but
only a small fraction of cells (1 ± 0.4%) in the hRBC-NS treated
group. A549 cells exposed to β-H/C+ extract had 18 ± 4% cell
death, which declined to 1± 0.1% following hRBC-NS treatment.
Similar results were observed with THP-1 macrophage cells, with
infection with live GBS causing 41 ± 4% THP-1 cell death, but
improved survival by 15-fold with hRBC-NS treatment. β-H/C+
extract-exposed THP-1 cells exhibited a high cell death rate of
76 ± 6%, which was greatly reduced following treatment with
hRBC-NS (1± 0.4%).

Neutrophil Killing Assay
It has been described that GBS β-H/C enables the bacteria to
evade neutrophil extracellular traps and induce neutrophil cell

death (33). In these experiments, we aimed to demonstrate that
hRBC-NS can protect neutrophils from the cytotoxic effects
of β-H/C and thus enhance the neutrophil-mediated killing
of GBS. Human adult neutrophils, isolated on the day of the
experiment, were stimulated with live NCTC GBS. hRBC-NS
nearly doubled the neutrophils’ ability to kill NCTC GBS bacteria
(58 ± 7% vs. 26 ± 6 % CFU GBS, p-value of 0.0025; Figure 9).
GBS 1cylE mutants had low CFU recovery with and without
hRBC-NS, and there was no statistically significant difference
between the control and treatment groups. This data suggests
the presence of β-H/C may suppress neutrophil killing of this
GBS strain, but addition of hRBC-NSmay enhance their bacterial
clearance mechanisms.

Macrophage Inflammasome Activation
NLRP3 inflammasome activation has been associated with β-
H/C and identified as a crucial component of the human

FIGURE 7 | (A) Propidium iodide staining for dead cells. A549 cells were infected at 2 × 105 cells/well with live GBS at MOI 10 for 2 h, or with β-H/C+ extract.

Treatment with hRBC-NS at 500µg/ml resulted in reduced A549 cell death compared to the control. 1cyl-E mutant GBS strain did not produce significant cell death.

(B) Cell count of PI stained cells using FIJI/ImageJ demonstrates that hRBC-NS treatment reduces A549 cell death caused by infection with live WT GBS NCTC

(**p = 0.0003) or with β-H/C+ extract (*p = 0.0026). Experiments performed in triplicate.
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FIGURE 8 | (A) Propidium iodide staining for dead cells. THP-1 cells were infected at 5 × 105 cells/well with live GBS at MOI 10 for 2 h, or with β-H/C+ extract.

Treatment with hRBC-NS at 500µg/ml resulted in reduced THP-1 cell death compared to the control. 1cyl-E mutant GBS strain did not produce significant cell

death. (B) Cell count of PI stained cells using FIJI/ImageJ demonstrates that hRBC-NS treatment reduces THP-1 cell death caused by infection with live WT GBS

NCTC (**p = 0.0004) or with β-H/C+ extract (***p < 0.0001). Experiments performed in triplicate.

immune response to GBS (34, 35). In this experiment, THP-
1 macrophages were infected with live GBS, and subsequent
production of IL-1β is detected by HEK reporter cells that
express IL-1 cell receptors. The HEK reporter cells, in turn,
produce secreted embryonic alkaline phosphatase (SEAP), which
is measured using a colorimetric assay. THP-1 macrophages
infected by wild-type NCTC GBS exhibited a 7-fold increased
production of IL-1β compared to controls. However, IL-1β
production by GBS-infected THP-1 macrophages returned to
baseline following treatment with hRBC-NS. Baseline IL-1β
production was defined by SEAP production by HEK cells
exposed to uninfected THP-1 cells. Infection with GBS 1cylE
mutants did not lead to elevation in THP-1 macrophage IL-1β
production (Figure 10).

DISCUSSION

Pore-forming toxins, such as β-hemolysin/cytolysin of GBS,

are the most abundant cytotoxic bacterial proteins and share

a common function of perforating host cell membranes for

bioactivity (22, 36). In general, disease burden and host

responses are directly proportional to bacterial PFT secretion
(8, 22). GBS-generated β-H/C is a critical virulence factor that
induces apoptosis and necrosis of host epithelial and endothelial
cells, thereby enabling microbial invasion, replication, and
dissemination by way of immune defense subversion (8, 37).
β-H/C also stimulates proinflammatory immune responses
through NLRP3 inflammasome -dependent and -independent
pathways (8), resulting in injury to professional phagocytes,
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FIGURE 9 | Neutrophils are exposed to live WT GBS and the surviving

bacteria is plated for CFU quantification. The addition of hRBC-NS improves

neutrophil killing of WT GBS (*p = 0.003). The absence of β-H/C does not lead

to significant GBS killing, indicating that hRBC-NS does not have direct

bactericidal effects. Values averaged from three reads per sample, obtained

from three independent replicates.

FIGURE 10 | THP-1 cells were infected with GBS at MOI 1 for 2 h. The

supernatant was collected and added to HEK-Blue-IL1β reporter cells to

determine relative levels of IL-1β production. THP-1 macrophages infected by

WT GBS exhibited increased production of IL-1β compared to uninfected

controls (*p = 0.0027). Treatment with hRBC-NS reduced IL-1β production to

baseline. Infection with GBS 1cylE mutants did not lead to elevation in THP-1

macrophage IL-1β production. Values averaged from three reads per sample,

obtained from three independent replicates.

neurons, and brain endothelial cells (37). Activation of p38
MAPK by β-H/C contributes to evasion of host defenses by
GBS through induction of IL-10 expression and inhibition
of macrophage activation (29). By breaching the blood brain
barrier, β-H/C promotes the development of GBS meningitis,
which is associated with long-term neurologic disabilities in
almost half of affected neonates (8, 37) and non-pregnant
adults (38). During pregnancy, β-H/C contributes to in utero
infection, placental inflammation, preterm birth, fetal bacterial
burden, and death (8, 37). β-H/C also mediates injury to
lung epithelial and microvascular endothelial cells, the usual
point of infection for neonatal EOS (8), with striking densities

of GBS bacteria per gram lung tissue in primate pneumonia
models (37).

Toxicity of PFTs has led to the development of various anti-
virulence inhibitors, such as bacteriophages, immunemodulating
agents, prebiotics, monoclonal antibodies, small- molecular
inhibitors, anti-sera, and exchange transfusions (39, 40), but
these platforms typically require customized design for each
different pathogenic toxin (22). Biomimetic nanosponges address
these challenges by simply applying a hypotonic treatment to
donor RBCs, then wrapping RBC membranes around polymeric
cores via a nanoprecipitation method and sonication, thus
converting the microscale RBC into a nanoscale “nanosponge,”
measuring only 85 nm in diameter (18, 21, 41). This scale
difference is advantageous for preferential toxin absorption,
regardless of the PFT molecular structures and epitopic targets
(22). This attraction may be due to: (a) drastic increases in
the total number of circulating particles (i.e., one human RBC
will provide enough membrane to prepare 40,000 hRBC-NS
(22), (b) significant escalations in the frequency of collisions
between the membrane substrate and the PFT, and/or (c)
higher surface curvatures of the hRBC-NS compared to source
RBC, providing increased surface tension and toxin-nanosponge
affinity (22). By mimicking native RBCs, hRBC-NS bind PFTs,
thereby diverting them away from their naturally intended
cellular targets. Because β-H/C can cause host injury via diverse
mechanisms, its noxious effects may be attenuated by non-
specific nanosponges through a range of responses. That is,
GBS β-H/C-induced epithelial cell injury and death involves
nuclear chromatin clumping and programmed cell death, while
β-H/C-mediated hemolysis results primarily from membrane
cholesterol disruption (42). Once bound, nanosponges do not
undergo hemolysis but rather lock in the toxins to keep them
away host RBC membranes (18). The nanosponge construction
also allows for long circulation half-life in vivo of ∼40 h before
clearance by hepatic macrophages, in addition to binding and
retaining toxins more effectively than the host RBC membrane
alone (41). For neonatal and adult GBS infection, hRBC-NS could
potentially sequester β-H/C, reduce cytotoxic injury to lung
epithelium, increase survival of macrophages and neutrophils,
improve neutrophil killing of GBS organisms, and attenuate
macrophage inflammasomes activation and production of IL-
1β (Figure 11).

Nanoparticles are not only valuable as an adjuvant therapy
to antimicrobials in the treatment of infection to prevent the
onset of septic shock and multiple organ dysfunction syndrome
(MODS), but they can also be engineered to facilitate the
delivery of antimicrobials directly into cells and tissues used by
organisms to evade host immune responses (43–45). In addition
to hRBC-NS, which must be blood-typed to the recipient,
endothelial, macrophage (46, 47), and platelet cell membrane
engineered nanoparticles are also being developed, which may
offer improved protection against Gram-negative bacteria and/or
necrotizing enterocolitis. Macrophage-derived nanoparticles, for
example, successfully attenuated proinflammatory responses and
inhibit recruitment of excessive numbers of activated neutrophils
to inflamed tissue sites, resulting in decreased tissue injury and
reduced incidence of septic shock, MODS, and death in a murine
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FIGURE 11 | Schematic demonstrating the ability of hRBC-NS to sequester β-H/C to (A) reduce cytotoxic injury to lung epithelium and (B) attenuate macrophage

inflammasome activation to inhibit IL-1β production.

model of E. coli sepsis (46). Nanoparticles are biocompatible
and biodegradable in the liver, with in vivo animal studies
demonstrating absence of liver tissue or Kuffer cell injury (18).
Moreover, hRBC-NS do not directly engage in bacterial cycle
disruption or activities that may elicit resistance when compared
with traditional antibiotics. This is an important nanoparticle
characteristic, since the proportion of GBS isolates with in
vitro resistance to clindamycin or erythromycin have steadily
increased (1, 5).

Red blood cell-membrane coated PLGA nanoparticles
have a promising role in broadly treating a number of
ailments, ranging from infections to autoimmune diseases
(48) and hemolytic diseases (49). Determining in vivo
efficacy of nanosponges as adjuvant therapies in murine
GBS models of neonatal pneumonia and adult sepsis are
important next steps toward clinical implementation of this
innovative therapeutic. Multiple studies are currently ongoing
to evaluate their role in infection, necrotizing enterocolitis,
cancer, autoimmune disease, and hemolytic conditions with
cautious optimism.

CONCLUSION

We demonstrated that hRBC-NS attenuates β-H/C-mediated
hemolysis, lung epithelial cell death, macrophage apoptosis,
suppression of neutrophil bactericidal properties, and
inflammasome activity. This proof-of-principle study
demonstrates that toxin hRBC-NS neutralization may provide a
new avenue for adjunctive treatment in neonatal GBS sepsis by
sequestering and inhibiting β-H/C activity.
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