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ABSTRACT OF THE DISSERTATION

Improving GPU Efficiency With Fine-Grained Spatial Partitioning

by

Marcus Nathaniel Chow

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2023

Dr. Daniel Wong, Chairperson

GPU architecture has enabled an era of high-performance and scientific computing and

this is why machine learning has the capabilities it does today. While they are still designed for the

highest computationally intensive workloads, there are emerging situations where a single workload

doesn’t efficiently utilize all of the GPUs resources, leaving room to execute concurrent workloads.

This dissertation aims to improve GPU efficiency through partitioning and resource scaling. The

first part studies the limitations of current spatial partitioning mechanisms through the use of exe-

cution task graphs. The second part motivates and proposes fast fine-grained spatial partitions to

improve system throughput in GPU inference servers and explores how a kernel’s partition can be

optimized to reduce its footprint while maintaining overall inference performance. Third, spatial

partitions are used as a resource scaling mechanism and are coordinated with frequency scaling to

reduce energy usage in dynamic load environments. Lastly, a methodology is proposed to generate

a detailed floorplan to enable research in improving thermal efficiency in GPUs.
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Chapter 1

Introduction

The goal of the field of Computer Architecture has always been to improve the perfor-

mance of current common workloads and programs of the day. We do not design and study archi-

tecture for architecture’s sake. Instead, we use test suites and benchmarks to design and compare

architecture designs. In the 1980s through to the 2000s, these test suites focused primarily on the

general-purpose processor and how to speed up a single program as quickly as possible. However,

for as general purpose the Central Processing Unit (CPU) is, there has been a workload where it

could not meet the standards of the time. Graphical workloads are unique compared to standard

CPU benchmarks due to its large use of data. So the Graphics Processing Unit (GPU) was created

to accelerate graphical workloads and as graphics became more complex the GPU became an inte-

gral part of the whole computer system. What sets a GPU apart from a CPU is its ability to compute

a massive amount of data in parallel. This is also known as a Single Instruction Multiple Data

paradigm. The power of this architecture is that it can perform the same operations on different data

at the same time, which is exactly what a graphics workload needs. It was becoming apparent that
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there are many other workloads that have similar data characteristics, such as molecular dynamic

simulations, physics simulations, computational biology, and cryptography.

In 2007 Nvidia introduced their Compute Unified Device Architecture (CUDA) platform

that enabled their GPUs to run General Purpose workloads. The CUDA language allowed program-

mers to write any general program that could potentially utilize the parallelism the GPU provided.

This kicked off a GPU programming revolution that enabled immense speed-ups in data-driven

workloads. The programming language, however, has to be complemented with an architecture that

can perform the work of computing data in parallel. This was done through a hierarchical approach

within the hardware itself. Within Computer Science, we use the term thread to refer to a single

stream of instructions. This single stream is at the bottom of the hierarchy. If we want to increase

parallelism within the architecture we need to increase the number of threads that are executing in

parallel. One design is the vector unit, which operates on a vector, or array, instead of scalar data.

A scalar unit operates on a single thread, while a vector unit, or SIMD Unit, operates on a group of

threads, called a warp or wavefront. Each wavefront is a group of 32 threads that perform the same

operation on 32 different pieces of data. The next step up the hierarchy is to group a collection of

vector units together. Now instead of a single vector unit operating on a single warp, it’s a vector of

vector units. This vector of vector units is referred to as Compute Unit, Streaming Multiprocessor,

or a Core of the GPU, and the collection of warps is referred to as a Thread Block. Finally, the

top of the hierarchy is the entire GPU, which itself is a collection of CUs that operate on a Grid of

Thread Blocks. Now when a kernel is launched on the GPU, the programmer specifies the Block

Size (number of threads within a block) and the Grid Size (number of blocks).

In the early years of General Purpose GPU programming, as a vast number of workloads
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were being accelerated, GPU architecture was primarily focused on increasing the available paral-

lelism the GPU could support. Whether that be, increasing the number of SIMD units per CU or

increasing the total number of CUs within the GPU to speed up a single GPU kernel. Another way

to increase parallelism is to increase the number of kernels that can concurrently run on the GPU.

Streams have enabled two different use cases for a GPU. The first is to increase parallelism for a

single workload, which has been shown to be effective in a variety of computational fields. The

second, and perhaps more common, is the ability to run separate workloads concurrently. This may

be more common due to its use in data centers that utilize GPUs. In a data center it is possible for

many clients to share a single GPU, much the same way that virtual machines have enabled multiple

clients to utilize a single CPU. A common use of GPUs in data centers is as an inference server.

For the last decade, Machine Learning has exploded as premier workloads that are ac-

celerated by GPUs. Machine Learning models must be trained on gigabytes worth of data over

millions of iterations to achieve the level of accuracy and usefulness we see today, which could

not have been feasible without the use of GPUs. Once a model is trained, it is then used for in-

ference, meaning the model infers what the proper output should be given this new input data. An

inference server, facilities an incoming inference request from a client to a GPU in the data center

and responds with the output of the inference. GPUs are able to handle many clients concurrently

through the use of streams. While utilizing streams has the potential to increase parallelism, it must

be done in a thoughtful manner, otherwise, contention for hardware resources outweighs any benefit

that concurrent execution might have. In this dissertation, we propose various hardware partitioning

techniques that aim to mitigate any slowdowns caused by contention.

The first work, in chapter 2, studies the effect of contention using parallel implementation
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of the Winograd-strassen matrix multiplication algorithm. This is the first type of parallelism that

was discussed earlier, one that aims to improve a single workload. While streams allow concurrent

execution of kernels, it does not allow for an easy way of enforcing dependencies between con-

current kernels. The Direct Acyclic Graph Execution Engine (DAGEE) is a library that enables a

programmer to define a workload as a task graph. This task graph is then used by the GPU runtime to

enforce any dependencies between kernels. This way a parallel algorithm is able to fully utilize the

GPU. However, concurrent kernels creates contention for hardware resources. Therefore, this work

includes the development of compute unit masking at runtime which is able to partition hardware

resources so that concurrent kernels do not overlap resources. Unfortunately, current CU Masking

mechanisms in AMD GPUs create significant overhead and slows down the entire workload which

is further explored in the following work.

In chapter 3, we discuss the details and causes of CU masking overheads and propose a

hardware-software solution that removes current limitations through extensions to the kernel launch

packets. This allows us to take advantage of fine-grained per-kernel spatial partitions in the GPU.

Within Machine Learning Inference servers, it is common to co-locate separate inference requests

within the same GPU to improve overall system throughput. However, co-location can cause con-

tention for hardware resources. This can be alleviated through the use of fine-grained per-kernel

spatial partitions. By profiling inference kernels, we are able to find what should be the ”right size”

of the partition and by using this information we allocate the right number of CUs to the kernel

with respect to reducing overall hardware contention. Then explores how a kernel’s ”right-size” can

be optimized to reduce the total CU requirement of the model. If the model’s CU footprint can be

reduced then that leaves more hardware resources for a concurrent workload and avoids contention.
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To do this, kernels are analyzed to determine which ones of the greatest impact on the total model

runtime. This information is then used as a heuristic to allocate CUs. This method reduces the total

CU requirement for a model without changing its overall runtime.

Next, chapter 4 explores how scaling hardware resources can reduce the power consump-

tion of the GPU. We find that there is a reduction of power as the number of active CUs decreases.

We then coordinate resource and frequency scaling to minimize the GPUs power consumption while

meeting the current demand of the server. However, current AMD GPU’s do not power gate. This

means that more power saving could be achieved if we include some sort of power gating for inac-

tive CUs. Power gating does come with a design decision of what granularity should we gate at, as

granularity affects chip area overheads. We model power gating per Compute Unit and per Shader

Engine and find both to be effective at reducing power.

Finally, thermal and energy efficiency are can be a large limiting factor for performance. If

the GPU becomes too hot, it is forced to scale its frequency until it is below a temperature threshold.

However, thermal research has been out of reach to academics due to the lack of knowledge of the

GPU’s floorplan. chapter 5 proposes a methodology to identify the GPUs floorplan layout. The

generated floorplans are validated against real GPU hardware and is then used for thermal and

energy modeling and research.

In total, this dissertation aims to improve current GPUs efficiency with fine-grained spatial

partitioning abilities. We show that this has the ability to improve the performance of complex

parallel algorithms, increase the system throughput of co-located workloads, and reduce power

consumption.
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Chapter 2

Energy Efficient Task Graph Execution

Using Compute Unit Masking

The process of executing kernels on a GPU have largely remained the same since the

beginning of general purpose execution. Device kernels are comprised of a grid of Thread Blocks

and each thread block is scheduled to a Compute Unit (CU) on the GPU. The host produces and

enqueues a kernel in a stream, while the gpu consumes and dequeues from the same stream, one

after the other. Improvements have been made, such as, concurrent execution of kernels from sep-

arate streams and device side kernel launches, but the limitations in host to device streams remain

unaddressed. This means, if a programmer wants to increase parallelism across kernels, they must

ensure dependencies are met across streams, increasing the complexity of their code and burdens

the programmer to know all the nitty-gritty details of architecture and system stack.

AMD’s Direct Acyclic Graph Execution Engine (DAGEE) [11] offers a novel program-

ming paradigm, through tasked based execution. Here the programmer only need to specify the

6



nodes and edges of a task graph, and the library enforces dependencies in the driver level queues.

However, with increased kernel concurrency also affects hardware utilization. This is due to Thread

blocks of various kernels contending for the same CU. This may potentially be alleviated through

Compute unit Masking thereby improving energy efficiency of the system. CU Masking is a tech-

nique that allows a programmer to mark off which CUs a kernel is able to execute on.

This work aims to show DAGEE is a viable execution paradigm and combined with CU

Masking, can lead to increased utilization and energy efficiency of the GPU. Our paper makes the

following contributions:

1. Implementation and performance analysis of Winograd-Strassen Matrix Multiplication algo-

rithm using DAGEE.

2. Power and Energy Characterization of Resource Partition through Compute Unit Masking

Policies.

3. Implement Compute Unit Masking at Runtime for Task Graph Executions

2.1 Task Graphs

Works like [30] popularized data-flow programming models. A workload is implemented

as an acyclic graph as shown in Figure 2.1. In this implementation, the nodes can be operations such

as CPU functions and GPU kernels. The edges represent the dependencies among the tasks. The

number of required active thread blocks will depend on number of tasks that are available to be

scheduled after their dependencies are successfully met. More recent works like [11, 100] proposed

novel data-flow programming paradigms to exploit heterogeneous systems with CPUs and GPUs

7



such as Nvidia DGX [49], Summit [43], and Exascale Supercomputers such as Frontier [69] and El

Capitan [68].

Benefits of task graphs: By dividing the workload into task graphs, we can effectively

control the granularity of necessary compute requirements. Thereby assist in making attuned de-

cisions on allocation to improve speedup and energy efficiency of the system. In the next section,

we shall discuss how Compute Unit Masking could help in saving energy while executing tasks of

different compute intensities.

Top
CPU task

H2D
Copy task

Left
GPU task

Right
GPU task

D2H
Copy task

Bottom
CPU task

Figure 2.1: Sample DAGEE Task Graph
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void dagee_example()
{

dagee::CpuExecutorAtmi cpuEx;
dagee::GpuExecutorAtmi gpuEx;
dagee::MemCopyExecutorAtmi memEx;
auto dagEx = dagee::makeMixedDagExecutor(cpuEx, gpuEx, memEx);
auto *dag = dagEx.makeDAG();

auto initCpu = cpuEx.registerKernel<...>(&initFuncCpu);
auto comptueGpu = gpuEx.registerKernel<...>(&computeKernelGpu);
auto finalCpu = cpuEx.registerKernel<...>(&finalFuncCpu);

auto topCpuTask = dag->addNode(cpuEx.makeTask(initCpu,...));
auto h2dCopyTask = dag->addNode(memEx.makeTask(src, dest, size));
auto leftGpuTask = dag->addNode(gpuEx.makeTask(comptueGpu,...));
auto rightGpuTask = dag->addNode(gpuEx.makeTask(comptueGpu,...));
auto d2hCopyTask = dag->addNode(memEx.makeTask(src, dest, size));
auto bottomCpuTask = dag->addNode(cpuEx.makeTask(finalCpu,...));

dag->addEdge(topCpuTask, h2dCopyTask);
dag->addFanOutEdges(h2dCopyTask, {rightGpuTask, leftGpuTask});
dag->addFanInEdges({rightGpuTask, leftGpuTask}, d2hCopyTask);
dag->addEdge(d2hCopyTask, bottomCpuTask);
dagEx.execute(dag);

}

Initialize Executors

Register CPU functions and GPU kernels

Create Task Nodes

Specify dependency

Figure 2.2: Sample DAGEE program

2.2 Directed Acyclic Graph Execution Engine (DAGEE)

DAGEE [11] is a C++ library that provides a simplified interface to implement applica-

tions as task graphs as described in Section section 2.1. The nodes in the task graph can be a com-

putation or a memory operation, while the edges represent dependencies between tasks. DAGEE is

high-level Programmer API that utilizes AMD’s C runtime library called Asynchronous Task and

Memory Interface (ATMI) runtime under the hood. ATMI internally calls ROCm stack. Finally,

ROCm has all the low-level device drivers, queues, and Data Structures necessary to launch and

execute computation on AMD GPUs and CPUs.
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Figure 2.3: Software stack for implementing DAGs in AMD GPUs. The application defines the
task graph using DAGEE’s API, which then wraps the individual functions with their arguments in
a task. The tasks and their dependencies get passed to ATMI which puts them into their respective
queues,along with their barrier packets to enforce dependencies, that the rocm stack cam dispatch
to the hardware.

Let us assume that we have an application which has two CPU, two GPU and two mem-

ory copy tasks respectively. The dependencies among all these tasks is as shown in Figure 2.1.

Figure 2.2 illustrates the implementation of Figure 2.1 in DAGEE. We observe that the implemen-

tation involves four stages.
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1. Initialize executors: In this step, we instantiate executors necessary to successfully schedule

all the tasks in the application.There are three types of Executors CPU, GPU, and Memory

Copy.

2. Register GPU Kernels and CPU functions: We register the CPU function and GPU kernel

pointers with the respective CPU or GPU executors.

3. Create Task Nodes: Each task will include information regarding the registered kernel and

necessary parameters to successfully execute the task including kernel launch parameters and

CPU threads.

4. Specify Task dependency: The dependency will stall a task from execution until all the

dependencies are met. This dependency information is essential since it provides an insight

into the required parallelism and memory to make informed decisions in order to alleviate

performance degradation of the system.

2.2.1 System Stack

The high-level overview of DAGEE Software Stack is shown in Figure 2.3. The appli-

cation implemented as a task graph can have CPU, GPU or Memory copy tasks. We know from

Figure 2.2 that each node in the task graph is created with an executor, and each task will consist

of a registered Function pointer along with the required function arguments and dependency infor-

mation. DAGEE internally uses Asynchronous Task and Memory Interface (ATMI) to effectively

manage task queues and launch tasks. ATMI dispatches the ready tasks on to the AMD hardware

resources through ROCm [12] as the dependencies are met. ATMI uses Barrier Packets (BP) to

effectively enforce dependencies that are set by DAGEE. Once the kernel and barrier packets are
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enquired in their respective queues, the ROCm runtime dispatches the packets to the respective

resource.

2.3 Compute Unit Masking

A compute unit (CU) is the GPU’s core hardware unit. AMD allows programmers to

control which CU’s are active for thread block scheduling for each specific queue. This is done

through the HSA runtime API hsa amd queue cu set mask(queue,size,mask) This function call

sets the active CU’s all kernels that are dispatch to this queue. Each

Compute Units are then grouped together into a cluster called a Shader Engine (SE). These

clusters are hidden from the programmer, they impact performance and power usage depending

on how they are activated as discussed in subsection 2.3.1. This leads to two masking policies;

Distributed and Packed

Distributed: This policy aims to balance active CU across Shader Engines. This allows

for minimal contention between thread blocks within a single kernel.

Packed: Activates CUs within a single SE before activated another SE. The goal of this

packed is to keep as many SE engines unoccupied as possible, leaving space reducing contention

between concurrent kernels.

2.3.1 Power and Energy Characterization

To characterize power and energy consumption of different number of active CUs, we run

a simple matrix multiplication kernel that uses 128 thread blocks, to make sure that the full GPU is
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(a) Distributed

(b) Packed

Figure 2.4: AMD MI 50 Has 4 Shader Engines with 15 CUs each, for a total of 60 CUs. Figure
shows 18 active CUs for Distributed and Packed Policies

occupied, while measuring the execution time and average power consumption.

Figure 2.5a Shows the power consumption for distributed and packed polices. For Dis-

tributed we see large dips at 31 and 59 active CUs. At 31 CUs, each shader engine has half of its

CUs active. We believe this dip in power is due to power gating within the shader engine. Where

the first and second half’s are on a separate power gate. We see the same dips in the packed policy

at 7, 22, 37, and 52 active CUs. This shows that it is possible to isolate concurrent kernels to indi-

vidual SEs and, as long as they each use half of the SE, will still reduce total power consumption.

However, for a single kernel it is still more efficient to use packed policy. We also notice that the
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(a) Power Consumption. The difference between power curves indicated that there is some form of power gating involved within each
Shader Engine. Packed policy, on average, used less power than Distributed masking policy.

0 5 10 15 20 25 30 35 40 45 50 55 60

100

100.5

Number of Active CUs

N
or

m
al

iz
ed

E
ne

rg
y

Distributed Packed

(b) Normalized Energy to 60 active CUs. This shows that reducing the number of CUs reduces the overall energy in both Distributed
and Packed Policies. Indicated by all points below the dotted line.

Figure 2.5: CU Masking Power and Energy analysis

larger power savings come from the higher number of active CUs, at lower active CUs the power

savings diminish. Indicating that we should not have only a few CUs active for the best efficiency.

Although CU Masking may reduce power consumption, it also impacts the execution

time due to limited compute resources. Therefore, In Figure 2.5b, we show the normalized energy

of active CUs with respect to all 60 active CUs. We highlight the normal energy usage by the dashed

line. Here, we see reducing the number of active CUs has the potential to save energy overall, with

energy savings up to 46%. Saving diminish exponentially as the number of active CUs decreases,

due to the performance impact of reduced compute resources being greater than the power savings.

However, even at 15 active CUs, energy is reduced by 12% in packed policy. This allows us to

separate each SE into its own ”logical” GPU, in which we explore in the following section.
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2.4 Compute Unit Masking during Task Graph Execution

The last section we described the mechanism that allows us to Mask CUs for a single

kernel. However, when using DAGEE, multiple kernels are allowed to be queued up in various

queues as long as their dependencies are met and dependencies are enforced using barrier packets.

Therefore, CU masking is unable to work at the application level because the user has no control

over when a kernel is dispatched.

2.4.1 Compute Unit Runtime

For our Compute Unit Masking runtime, we modified ATMI so that when a kernel packet

is dispatched to a queue, we dispatch two extra barrier packets in front to the kernel packet to

enforce CU Masks. In the first barrier packet, we assign a callback function that executes once that

packet is consumed by the runtime. The runtime then allocates the mask for the upcoming kernel

packet. We use a round robin scheduling for both packed and distributed and packed policies. The

second barrier packet is assigned a dependency that enforces the kernel to wait until the cu mask

callback function is finished executing, which it signals using hsa signal store relaxed(signal,0).

Figure 2.6 describes our runtime and CU partitioning for four tasks.

For our Round Robin scheduler, we split the GPU into four groups for both packed and

distributed masking policy. We decided to use four groups because the MI50 has four shader engines

which lowers the complexity. We leave evaluation of more complex schedulers to future work.
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Figure 2.6: (Below) Two barrier packets are required to set cu masks per kernel packet. The first
packet is assigned a call back handler that sets the cu mask on its callback function. The second is
make sure the kernel packet is not dispatched before the cu mask is set. (Above) We show how CUs
are partition among four separate tasks for packed and distributed policies

2.5 Evaluation

For our evaluation methodology we use the compute unit masking runtime described in

Figure 2.6 on a system equipped with AMD EPYC 7302 and MI50 GPUs, using ROCM v4.1.1. We

breakdown our evaluation into two parts, Performance and Energy Efficiency.

2.5.1 Winograd Strassen Algorithm

Winograd-Strassen is an combinatorial matrix multiplication algorithm that breaks down

a matrix into a series of steps. Each step computing on a portion of the final matrix. These steps

reduce the overall complexity from O(n3) to O(n2.81). Not only does it reduce the number of

operations, there is an increase of addition operations and a decrease in multiplication ones. This

means in practice, the algorithm is faster due to the short latency of addition operations compared
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Figure 2.7: Figure from [70]. This dependency graph is used as a reference to implement Strassen
Matrix Multiply in DAGEE.

to multiplication.

We use 3 workloads to evaluate this work - standard Matrix Multiply algorithm, Sequen-

tial Strassen, and DAG Strassen. Sequential Strassen, performs the algorithm sequentially while

DAG Strassen exploits the parallelism in the dag in Figure 2.7. We run experiments for matrix sizes

4096x4096 to 32768x32768. We do not show the results for matrix sizes smaller than 4096x4096

since there isn’t enough parallelism that is necessary, the initialization overhauls the execution time.

2.5.2 DAGEE Performance

On average we see a speed up of 5.8% for sequential Strassen and 15.3% speed up for

DAG Strassen as shown in Figure 2.8, without our CU Masking Runtime. This shows the benefit

of implementing algorithms in DAGEE to exploit their task level parallelism. However, for both

Sequential and DAG Strassen, we do not see the performance benefits for smaller sizes. This is due
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Figure 2.8: Speed Up observed with different sizes of Matrix Multiplication operation. The results
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Figure 2.9: Relative performance of Packed and Distributed CU allocation policies.

to the difference in initialization costs in sequential and DAGEE implementations, therefore we do

not show those results. Sequential Strassen still sees a benefit due to its lower complexity and use

of more addition operations than multiplication operations.

Next, we evaluated our two CU partitioning polices in Figure 2.9 against the DAG version
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of Strassen. Both Packed and Distributed perform significantly worse that our baseline. This is due

to the overhead created from our CU Masking runtime described in Figure 2.6. We observe the

slowdown to decrease as the matrix size gets larger, as the kernel execution time outweighs the

overhead. We also observe that the Packed policy performs slightly better then Distributed. This

is due to the load imbalance caused by the Distributed policy, As Distributed has a Shader Engine

which only has three active CUs, while the other have four. Packed gets rid of this load imbalance

and performs better.

2.5.3 CU Masking Runtime Energy Analysis

Next, we evaluate our CU Masking runtime and Round Robin Scheduling for power and

energy savings in Figure 2.10. On average the Baseline uses 67W while both packed and distributed

use only 50W of power. The power remains constant for all sizes. This is due to the fact that we

only show sizes that fully utilize the GPU. CU Masking uses much less energy because each kernel

has its own set of CUs, reducing the amount of contention across kernels. This reduction in power

is one of the main reasons for the energy savings seen in Figure 2.10b. On average, Packed has a

18% reduction of energy compared to 16% for distributed. Again, it is more efficient to pack the

same kernel within a single CU if possible. Also, larger matrices benefit more from CU Masking,

2.6 Related Works

There has been previous works exploring dependency graph execution and resource par-

tition on GPUs. An overview of these works is presented here.

Execution Graphs on GPUs: Recent works [11, 100, 104] have proposed programming
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(a) Power consumed during Task-based Strassen Matrix Multiply. Using CU Masking Policies greatly reduces the average power
consumption for larger matrices.
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(b) Normalized Energy to 60 active CUs. Overall, Packed policy uses less energy than Distributed, this is due to less contention within
a Shader Engine.

Figure 2.10: CU Masking Power and Energy analysis.

models and runtimes to implement GPU-based execution graphs. LC-MEMENTO [104] proposed

novel memory models to efficient synchronization of data blocks and task placement on heteroge-

neous systems with CPUs and GPUs. DAGEE [11] is newly released task-based runtime, we have

not been able to find work using DAGEE as the programming model. However, Nvidia has a graph

execution library called Cuda Graphs[90], which is only supported on Nvidia GPUs. We evaluate

our work with DAGEE on AMD GPUs.

Winograd-Strassen Algorithm: Previous work have implemented parallel versions of

winograd-strassen on Nvidia GPUs using concurrent streams.[70][46] Our work implements the

algorithm using a DAG, showcasing the performance benefit of tasked based execution on AMD

GPUs.
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GPU Resource Partitioning: Resource partitioning using AMD’s CU Masking has been

shown to increase performance for multi-tenancy in GPUs [94, 95]. This work aims to showcase

that CU Masking can be a viable technique to save energy when applications are implemented as

task graphs.

Efficient GPU scheduling: Coarse-grain efficient scheduling across multiple GPUs was

demonstrated to be beneficial in [103, 105]. Similarly, there are works that improved performance

within a single GPU with effective scheduling of kernels and thread blocks [33, 2, 3, 117, 118, 119].

However, these works do not consider the need to enforce effective implementation methodologies

to enable effective execution of workloads in System stack. Although LC-MEMENTO [104] does

propose novel programming models to support heterogeneous task-graph applications, they do not

consider the effects of effective fine-grain utilization of Compute Units. Other recent works [53, 51]

have attempted to identify solutions to make ML inference energy efficient.

2.7 Future Works

In this work, we demonstrated the benefit of using Task Graphs to improve Performance

while using CU Masking for resource partitioning to improve energy efficiency using the Winograd-

Strassen Matrix Multiplication algorithm. We showed that by allowing concurrent execution of

tasks, we could increase the speedup of Matrix multiply by 15.3%. Additionally, we were able to

save up to 18% energy by using CU-masking techniques to activate only the Compute Units required

to fulfill the ‘ready’ tasks.

DAGEE with Larger workloads: This paper uses Matrix Multiplication as the only

workload. However, it is necessary to identify adoption of DAGEE and CU-masking techniques
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in other workloads such as Machine Learning (ML). We plan on integrating DAGEE along with

DAG Matrix Multiplication, DAG Pooling, DAG Reduction, DAG convolution, and other popular

linear algebraic functional layers into TensorFlow and PyTorch to evaluate performance and energy

efficiency of future ML systems.

Task speculation: Furthermore, The task graph-based DAGEE programming model can

also be used to speculate critical execution path and memory footprint to improve caching, paging,

and task placement.

CU Partitioning Policies: In this work, we only evaluate a naive round robin CU Masking

Partitioning scheme. This was to show that it is possible to save energy during task graph execution.

However, it may be possible to increase energy efficiency through a more complex approach. Our

method equally partitioned the GPU into four equal groups. However, it is possible to make each

group have a different number of active CUs. We can base the number of CUs given to a task on

number of thread blocks launched, type of function being run, and number of available CUs. These

methods may improve the performance and energy efficiency of task graph execution.

In the next chapter, we propose a solution to remove the overhead of per kernel cu masking

through hardware support.
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Chapter 3

Enabling Kernel-Wise Right-Sizing for

Spatially Partitioned GPU Inference

Servers

With the rise of Machine Learning (ML) and Inference as a Service [37, 44, 124, 107],

GPUs play a significant role in performance. Training machine learning models are computationally

heavy for a sustained amount of time. However, inference workloads are shorter running, which

leads to under-utilization of GPU resources [52, 54, 65]. Figure 3.1 (left) illustrates such a scenario

where two inference models temporally share a single GPU while executing, resulting in significant

GPU resource under-utilization.

To increase utilization, the GPU is spatially partitioned to co-locate multiple inference

models on a single GPU [134], such as Nvidia’s Multi-Process Service (MPS) [86], Multi-Instance

GPU (MIG) [87], and AMD’s CU Masking API [9]. Prior works demonstrated that MPS and MIG
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can improve utilization and system throughput in GPU-based inference serving platforms without

violating Service Level Objective (SLO) constraints [24, 54, 31].

Figure 3.1 (center) illustrates a scenario where the GPU is spatially partitioned and two

inference models are co-located. In this scenario, determining the size of spatial partitions is impor-

tant to balance throughput, latency (QoS), and resource utilization. To do this, prior works perform

model-wise right-sizing which looks at the inference model’s resource-latency trade-off to size the

spatial partition. While this can improve GPU utilization and inference throughput, significant

under-utilization remains as the resource requirements vary from kernel to kernel over an inference

pass. In order to take advantage of this fine-grain under-utilization, GPU spatial partitioning will

need to be reconfigured and right-sized on a per-kernel basis, as shown in Figure 3.1 (right).

However, existing commercial GPU spatial partitioning mechanisms cannot support re-

partitioning at the granularity of kernels due to their coarse scope. For example, MPS/MIG par-

titions are applied to a process and CU Masking is applied to a stream. Thus, resizing a spatial

partition would require launching a new process to execute inference requests. Figure 3.2 illustrates

the limitation of process-scoped partition instances. While processing inference requests, if the

inference server determines that the spatial partition needs to be reconfigured (t1), we will need to

(1) configure a new MPS/MIG instance, (2) start a new ML backend process to handle the inference

request processing, and (3) load the ML model on to the GPU before the new spatial partition can

begin processing requests (t2). This reconfiguration overhead typically takes in the order of tens of

seconds [24, 31].

To mask the downtime due to reconfiguration, prior works have proposed using a shadow

instance as shown in Figure 3.2 (middle) [24, 31]. Once the shadow instance completes configuring
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Figure 3.1: (Left) By default, model inference is not spatially partitioned. (Center) MPS/MIG
enables spatial partitioning where the models’ partitions are right-sized to satisfy QoS; which can
leave significant fine-grain under-utilization. (Right) We can further reduce under-utilization by
spatially partitioning individual kernels within an inference request.

the new spatial partition, the inference server schedules the inference request to this new instance,

avoiding downtime. However, due to partition reconfiguration overheads, all inference requests are

handled by a static spatial partition for the duration of an epoch (for example, every 20s [24]).

In order to realize the benefit of spatial partitioning with kernel-wise right-sizing, as

shown in Figure 3.1 (right), GPU spatial partitioning mechanisms must provide the ability to of-

fer kernel-scoped partitions. As illustrated in Figure 3.2 (bottom), providing spatial partitions at the

granularity of individual kernels within an inference pass will (1) avoid reloading of ML models and

ML backend process, (2) avoid the need for a shadow instance and (3) right-size spatial partitions

to individual kernels and minimize resource under-utilization.

To this end, we propose Kernel-wise Right-sizing for Spatial Partitioned GPU Inference

Servers (KRSIP). Kernel-wise right-sizing can eliminate fine-grain resource under-utilization and

enable more opportunities to support greater concurrency of running inference models in the GPU

without violating QoS requirements. To the best of our knowledge, this work is the first to demon-

strate dynamic spatial partitioning of GPU inference servers at the granularity of individual ker-

nels.
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Our paper makes the following contributions:

• We identify that significant under-utilization occurs under existing model-wise right-sizing of

spatial partitions. We show that further opportunities exist for reducing under-utilization by right-

sizing kernels within an inference pass.

• We present KRISP, a framework to enable kernel-wise right-sizing of spatially partitioned GPU

inference servers. KRISP introduces a programmer-transparent framework to right-size kernels

and a kernel-scoped partition instance to enforce fine-grain spatial partitions.

• We present an emulation methodology to evaluate KRISP on a real-world GPU inference server.

We demonstrate that KRISP can provide kernel-wise right-sizing to unmodified ML serving

frameworks, such as PyTorch.

• We show that KRISP can enable the GPU to support a greater level of concurrently running

inference models compared to existing spatially partitioned inference servers. KRISP improve

throughput by 2x on average while meeting latency SLO targets and energy per inference by 33%.

3.1 Background

3.1.1 High-level GPU Architecture

GPUs are massively parallel architectures that can process thousands of threads concur-

rently. GPUs consist of multiple Compute Units (CUs)1 where each can process up to 2,560 threads

in groups of 32 or 64 threads, called a warp or wavefront. These compute units can be organized

into clusters,2 called Shader Engines (SEs) in AMD terminology or Graphical Processing Clusters

1Also called Streaming Multiprocessors (SMs) in Nvidia terminology. CUs and SMs may be used interchangeably in
this work.

2Clusters and SEs may be used interchangeably in this work.
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Figure 3.2: Resizing inference server’s spatial partition. Existing commercial GPU spatial partition-
ing techniques are enforced at the process-level. (Top) Reconfiguring spatial partition size requires
restarting the ML backend and reloading models. (Center) Prior works mask this downtime by re-
configuring shadow instances, but repartitioning is still limited to every ˜10s. (Bottom) Our work
enables inference requests and kernels within requests to instantaneously resize spatial partitions.

(GPCs) in Nvidia terminology. For example, Nvidia A100 organizes a group of 16 SMs into a GPC

and AMD MI50 organizes groups of 15 CUs into an SE.

GPU kernels are partitioned into multiple work-groups (WGs)3 which are scheduled to

SEs through a Command Processor.4 Every SE has a Workload Manager (WLM) that schedules

thread blocks to CUs within their corresponding SE.vGPU kernels can be programmed and launched

directly using language extensions such as CUDA, HIP, or OpenCL and runs on GPU runtimes such

as Nvidia’s CUDA and AMD ROCm. GPU kernels can also be utilized through library API calls,

such as cuDNN, MIOpen, cuBLAS, rocBLAS.

3Also called threadblocks (TBs) in Nvidia terminology. WGs and TBs may be used interchangeably in this work.
4Also called Gigathread Engine or Threadblock scheduler in Nvidia terminology.
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Table 3.1: Comparison of GPU spatial partitioning techniques.
GPU Spatial
Partitioning

Scope
SW/HW

Enforced?
Programmer
Transparent

Compute/Memory
Partitioning?

Spatial
Granularity

Reconfiguration
Overhead

Allow
Oversubscription

MPS[86] Process HW Yes (Service) Yes/No GPU% High Yes
MIG[87] Process HW Yes (vGPU) Yes/Yes GPC High No

CU Masking API[9] Stream HW No (API) Yes/No CUs Medium Yes
Elastic Kernel[96] Kernel SW No (Code Tform) Yes/No Grid/Block Dim Low No

Kernel-Scoped Partition
Instance (This work)

Kernel HW Yes (Runtime) Yes/No CUs Low Yes

3.1.2 Inference Server Frameworks

Inference server frameworks enable a common interface to process client inference re-

quests [41, 59]. These servers typically consist of a frontend, that enqueues and manages client

inference requests, and a GPU-accelerated backend, that consists of a machine learning framework

to process the inference (such as TensorFlow [1] or PyTorch [97]) using the underlying hardware

resource. Examples of inference serving frameworks include TorchServe [102], Tensorflow Serv-

ing [93], and Nvidia TensorRT [91].

However, a major issue with machine learning inference is that processing inference re-

quests typically under-utilizes the GPU hardware. [54, 52, 65] Thus, inference servers must serve

multiple machine learning models in order to improve the utilization of server resources. This is par-

ticularly challenging for GPU-powered inference servers as GPUs do not support fine-grain context

switching between processes, supporting only coarse-grain spatial sharing of hardware resources.

Table 3.2: Comparison of spatially partitioned GPU inference servers.
Spatially Shared
Inference Servers

Spatial
Partitioning

Right-sizing
Granularity

Right-sizing
Metric

Resize
Overhead

Reload
Model?

Resize Overhead
Masking

GSLICE[31] MPS Model
Profiled Model Kneepoint

(GPU%)
High

(2-15s)
Yes

Shadow Instance
(50-60µs downtime)

Gpulet[24] MPS Model
Profiled Model Kneepoint (GPU%)

or Profiled Model’s minGPU%
High

(10-15s)
Yes

Background Instance
(Masked w/ 20s period)

PARIS and ELSA[63] MIG Model
Profiled Model Kneepoint
(GPU size & Batch Size)

High
(˜10s)

Yes
Multiple Instances

+ Scheduling

KRISP (This work)
Kernel-Scoped

Partition Instance
Kernel Profiled Kernel’s minCU

Low
(milliseconds)

No Not required
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3.1.3 Limitations of GPU Spatial Partitioning Techniques

When two or more kernels are launched on a GPU concurrently, the kernels can run on

unique sub-sets of CUs (inter-CU sharing), or the kernels can co-locate and share the same CU

(intra-CU sharing). By default, concurrently running kernels are not assigned to specific CUs and

can run on any CU, potentially being shared [95, 13].

Therefore, many spatial partitioning techniques exist to allocate GPU resources to concur-

rently running kernels. When concurrent kernels are co-located in the same CU, intra-CU spatial

partitioning techniques exist to partition resources within a CU between the concurrent kernels.

While myriad work exists in literature [122, 123, 132], we are not aware of any intra-CU spatial

partitioning5 that exists in commercial products6. Thus, this work deals with inter-CU spatial par-

titioning that is supported by commercial hardware. Table 3.1 summarizes these inter-CU spatial

partitioning techniques.

Process-scoped partition instances: Nvidia GPUs utilize Multi-Process Service (MPS)

to enable workloads to run concurrently on GPUs. Additionally, MPS provides a feature to specify

the percentage of compute resources (GPU%) available to a concurrent process over its lifetime. To

provide stronger isolation, Nvidia recently introduced Multi-Instance GPU (MIG) which enables a

GPU to be partitioned into as many as 7 independent GPUs (on the Nvidia A100 GPU). Each MIG

partition has separate and isolated paths through the entire memory system and compute resources

(corresponding to a Graphics Processing Cluster, GPC). Both MPS and MIG do not require any pro-

gram changes as they are configured through the CUDA runtime, which can incur high overheads.

As shown previously in Figure 3.2, MPS/MIG provides process-scoped partition instances

5Carefully note that we make a distinction between sharing (kernel co-location) and partitioning (kernel resource
allocation).

6Intra-SM spatial partitioning techniques are further discussed in Section 3.7
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which require launching a new process during partition resizing, leading to high overheads. In this

work, we propose Kernel-scoped Partition Instance, which provides the ability to resize and enforce

GPU spatial partitions on a per-kernel basis.

Programmer burden: AMD GPUs by default natively support multiple concurrent

processes (equivalent to Nvidia’s MPS). Instead of specifying a resource percentage as in MPS,

AMD GPUs support CU Masking APIs [9], which allow users to provide a resource mask to a

stream and specify which compute units the kernels in the stream can utilize. While this does not

require reloading a model when resizing partitions, it has a heavy programmer burden as it requires

modification to the ML framework and libraries to utilize the API and requires the programmer to

manually determine the CU mask to be applied to the stream.

Concurrent execution of kernels and spatial partitioning can also be realized through

software-only solutions, such as using Elastic Kernels [96], to control the size of kernels, in combi-

nation with SM-aware programming and thread-block delegation [74] to map the kernel to specific

SMs. However, software-only solutions require significant program changes or source code trans-

formation to the compute kernels. This is infeasible in ML inference as most compute kernels

are derived from API calls from heavily optimized GPU libraries which can be closed-source and

would incur additional programming burden to library developers. Therefore, GPU spatial parti-

tioning techniques must be programmer-transparent to be compatible with existing inference server

software stack.

3.1.4 Limitations of Spatial Partitioned GPU Inference Servers

Since inference requests tend to under-utilize GPUs, many recent works aim to understand

and improve the spatial partitioning of GPUs to enable different models to share the GPU and handle
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concurrent inference requests [36, 31, 24, 63]. Table 3.2 summarizes the most relevant inference

servers.

Spatial partition resizing overhead: Due to their reliance on process-scoped partition-

ing techniques, existing spatially partitioned inference servers incur high reconfiguration overheads

(in the 10’s of seconds), as shown previously in Figure 3.2. These inference servers mask the pro-

cess/model reloading overhead by creating new model instances in the background (Gpulet) and

then hot-swapping this shadow instance (GSLICE). Similarly, PARIS/ELSA by design launch mul-

tiple instances of the same model with different sizing and can rely on scheduling to mask partition

resizing. Even with these masking techniques, partition resizing can only be done infrequently (for

example, every 20s in Gpulet [24]).

We present KRISP, which utilizes our Kernel-Scoped Partition Instance to provide kernel

granular spatial partitioning. By quickly re-sizing individual kernel’s partition without the need to

reload inference models, we can take advantage of fine-grain resource under-utilization to maximize

the amount of concurrently running kernels.
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Figure 3.3: Inference model sensitivity to GPU resource restriction.
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Model-wise right-sizing of spatial partition: All existing techniques right-size the

spatial partition at the granularity of the entire inference model due to their reliance on MPS (for

GSLICE [31] and Gpulet [24]) and MIG (for PARIS/ELSA [63]). To right-size the model’s spa-

tial partition, all prior works utilized off-line profiling to obtain the “kneepoint”, which is the point

where we experience a diminishing return on performance gains with greater resource allocation

(GPU% for MPS and GPU instance size for MIG). Examples of such trade-offs are shown in Fig-

ure 3.3. PARIS/ELSA additionally considers the inference request batch size to determine the knee-

point, while Gpulet also considers the minimum GPU% sizing that satisfies the QoS target given a

request rate.

In the next section, we will demonstrate the limitations of model-wise right-sizing and

highlight the opportunities of kernel-wise right-sizing. Note that these prior works can potentially

benefit by building off Kernel-scoped Partition Instance instead of MPS/MIG. This would enable

GSLICE, Gpulet, and PARIS and ELSA to still provide model-wise right-sizing at the granularity

of each inference request, instead of a designated epoch.

3.2 A Case for Kernel-wise Right-sizing

3.2.1 Opportunity for model-wise Right-sizing

Figure 3.3 shows the sensitivity of model inference to varying resources (right-sizing).

For these experiments, We utilize an AMD MI50 GPU, which consists of 60 CUs. We tested

9 ML models and swept the range of active CUs that the ML model can utilize (x-axis). Models

exhibit varying tolerance to resource restriction before exhibiting performance impact. For example,

albert is highly tolerant of resource restriction where it is able to maintain peak throughput and
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stable tail latency even under 10 CUs. On the other hand, vgg19 experiences immediate throughput

degradation and an increase in tail latency. In Table 3.3, we listed the minimum CU required while

maintaining tail latency.

Inherently, models that are tolerant of resource constraints tend to under-utilize the GPUs,

while models that are intolerant of resource constraints tend to utilize the GPUs more. As shown

previously, many existing works [24, 31, 63] harness this characteristic to right-size the model’s

spatial partition.
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Figure 3.4: Kernel trace for albert (top) and resnext (bottom) showing minimum required CUs.
Models vary by both the number of kernel calls and minimum CU requirements.
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3.2.2 Why Kernel-wise Right-sizing?

We now motivate the need for kernel-wise right-sizing within an inference model by pro-

filing and identifying the minimum required CUs for each kernel to maintain its overall tail latency.

Figure 3.4 shows the kernel-wise minimum required CUs for two example models, albert and

resnext. The models consistently switch between high to low minimum required CUs, and clearly

demonstrate phase behavior patterns as the inference requests are executed through the layers. Each

model varies in the number of kernel calls for a single inference pass, as shown in Table 3.3.

Recall, albert can tolerate 12 active CUs and satisfy tail latency requirements. The

majority of kernels utilized by albert only require 10 or less active CUs. There are periodic spikes

of kernels that have 50-60 minimum required CUs, but those kernels do not necessarily impact

overall model latency if these kernels are short running compared to the other kernels which may

dominate execution time.

On the other hand, resnext suffers significantly when restricting CUs. This is due to

resnext having more kernels that require a high number of minimum required CUs. Although

with model-wise right-sizing, resnext requires a large spatial partition (55 CUs), there still exist

significant opportunities within resnext to resize the partition on a per-kernel basis as many kernels

require less than 20 CUs to maintain latency requirements. Therefore, kernel-wise right-sizing can

take advantage of these fine-grain under-utilization opportunities.
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3.3 KRISP

3.3.1 High-level Overview

Figure 3.5 shows a high-level overview of KRISP. When an ML framework processes

an inference request, it can generate hundreds of kernel calls to the GPU. To provide programmer

transparency, we intercept each kernel call in the GPU runtime and perform kernel-wise right-sizing

to determine the kernel’s partition size. Our goal is to require no program changes or programmer

intervention to natively support existing ML frameworks. Thus, we implement kernel-wise right-

sizing in the GPU runtime rather than in the ML framework.

To enforce the spatial partition, we introduce Kernel-scoped Partition Instance support in

the GPU hardware. The hardware will first perform Resource Allocation to determine which clus-

ters (shader engines) and CUs to allocate to the kernel’s spatial partition and determine the kernel

resource mask. We then tag the kernel with this mask and hand it over to the GPU’s workgroup

dispatcher (threadblock scheduler), which will enforce the spatial partition and schedule the ker-

nel’s work-groups only to the specified CUs. Note that native hardware support for kernel-scoped

partition instances does not require any changes to the CUs or their pipeline stages.

Since KRISP introduces native support for kernel-scoped partition instances (not streams

or processes) by tagging spatial partitioning information to each kernel command, this also naturally

avoids the need for relaunching model instances that require high-overhead model reloading and

techniques to mask this overhead. Thus, KRISP can quickly reconfigure spatial partitions of kernels

within an inference pass.
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Figure 3.5: KRISP Overview. Right-sizing occurs in the runtime by injecting partition sizing
requirements into each kernel packet sent to GPU. Kernel-scoped partition instances enable each
kernel to be resized and enforced with a resource mask. Together KRISP enables kernel-wise
right-sizing of inference requests in a programmer-transparent manner.

3.3.2 Finding Kernel-wise Right-Sizing

As shown in Table 3.2, existing GPU inference servers make spatial partition sizing deci-

sions based on profiled-guided model-level right-sizing, balancing latency/throughput requirements,

and resource partitioning. Similarly, KRISP makes spatial partition sizing decisions based on

profiled-guided kernel-level right-sizing. Kernel-level right-sizing can be determined at the time

of the installation of GPU-accelerated libraries. such as rocBLAS or MIOpen. This performance

database is profiled during library installation time and is utilized to aid in selecting the most high-

performance kernel variation given certain runtime parameters [106] and are already included in

available libraries [7]. Thus, the overhead of profiling a kernel’s minimum required CU can be

amortized during the library’s installation and share the library’s performance database. In this

scenario, KRISP would rely on the library’s profiled database to right-size the kernel.

As shown previously, a single inference is composed of a series of kernel calls to the

GPU, where each kernel can have its own sensitivity to reducing the number of available CUs

(right-sizing). In our experiments we observe two factors that affect kernel sensitivity, kernel type

and kernel size (thread block size * grid size).

We observe four broad types of kernel sensitivities: unaffected, low, medium, and high
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sensitivity. In Figure 3.6 show an example of each of these four kernel types7, one from each type

of kernel sensitivity and the various kernel sizes that are called for that specific kernel. Note that

both the x-axis (number of active CUs, from 1 to 60) and y-axis (kernel execution time in ns) are

log-scale to enhance details at lower CU counts.
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Figure 3.6: Types of Kernel Sensitivities

Unaffected kernels’ execution time is unaffected by restricting resources, possibly due

7The specific kernel names are:
Unaffected: fused unsqueeze unsqueeze to

Low Sensitivity: Cijk Alik Bljk SB MT128x64x12 SN AMAS0

textttBL0 GRVW1 GSU1 GSUASB K1 LRVW1 NLCA3 NLCB3 PGR1
PLR1 SVW4 TT8 4 USFGRO0 VAW1 VS1 VW1 WG16 16 1 WGM8

Medium Sensitivity: ZN2at6native6modern18elementwise

kernelINS0 13BinaryFunctorIfffNS0 10AddFunctorIf

EEEENS 6detail5ArrayIPcLi3EEEEEviT T0

High Sensitivity: fused sigmoid mul
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to the very short execution time and the small kernel size. These kernels typically are only called

with one or few varied thread sizes. The type of kernels include, element-wise indexing, GELU

activation, and Layer Normalization.

Low and Medium sensitivity kernels have some degree of tolerance to resource restriction

up until certain point is reached (this is usually around half of available CUs), then their execution

time increases linearly. Transpose, small convolution and GEMM kernels all exhibit some sensitiv-

ity.

Finally, High sensitivity kernels, such as fused kernels, execution time immediately in-

creases linearly and cannot be restricted. These kernels are highly sensitivity because their kernel

size is greater than the maximum number of threads the GPU can execute in parallel. In other words,

these kernels are able to fully utilize the GPU.

In our work, we define the kernel-level right-size based on the least number of CUs that

have the same latency as a kernel utilizing the full GPU. Essentially, the data points in Figure 3.7a

are the profiled kernels’ minimum CU requirements that populate this table. Once we determine

the minimum CUs required for a kernel, we pass that information along to the GPU along with the

kernel launch. This partition sizing information is similar to the information necessary for MPS

(GPU%) and MIG (instance size in terms of GPC) but in units of the number of CUs.

Why Profiled-guided Kernel Right-Sizing?

We found no strong predictor of a kernel’s minimum required CU given runtime informa-

tion, such as kernel size or input data size. Figure 3.7a plots the kernel’s minimum required number

of CUs latency (y-axis) vs its kernel size (x-axis). The general trend is as the kernel size increase
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Figure 3.7: Minimum require CUs sensitivity for profiled kernels across all workloads. Differenti-
ating kernel names by color and marker type. Y-axis is min. required CUs.

so too does the minimum required number of CUs. However, it does not directly relate to the total

number of threads a GPU can process. For example, AMD’s MI50 can handle 2560 threads per CU

or 153600 threads per GPU. There exists a significant number of kernels that exceed this thread limit

and are capable of running with no performance penalty when restricting the number of available

CUs. For example, all of the green circles (MIOpenConvFFT fwd in) exceed the GPU’s physical

thread limit, but have a wide range of minimum required CUs, sometimes with the same kernel size.
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(a) Packed (b) Distributed

(c) Conserved

Figure 3.8: Illustrative example of allocating 19 CUs (in orange) across 4 Shader Engines (SEs)
with three distribution policies.

This shows that kernels are not fully utilizing the GPU even with enough threads.

We also explored how the data input size of kernels may affect the minimum resource

requirements in Figure 3.7b. We also observe that data input size does not correlate with the min-

imum resource requirement for that kernel. The more important factor is the behavior of the ker-

nel. For example, miopenSp3AsmConv v21 1 2 and gfx9 f3x2 fp32 stride1 group always

require the full 60 CUs no matter the size of the input data. Therefore, to determine the minimum

required CU, we must account for kernel type in addition to kernel size and input size, which are

captured during the profiling stage.
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3.3.3 Allocating Resources for Partition Instances

Once the GPU hardware receives the requested spatial partition size for the kernel, it must

then allocate resources for that kernel. In order to allocate resources for spatial partitions, we have

to determine (1) Which SE clusters and CUs to allocate from? and (2) How to distribute selections

of CUs across SE clusters?

Distributing CUs across SE Clusters

By default, existing GPUs tend to distribute work across clusters in a round-robin man-

ner for both AMD [95] and Nvidia GPUs [92]. We explore the following distribution policies.

[Distributed]: This is the default distribution policy. Equally distributes CU allocation across all

available SE clusters. [Packed]: Allocate CUs packing a single SE before spilling over to other SE

clusters. This aims to minimize the number of SEs utilized, leaving other SEs idle for other spa-

tial partitioning opportunities. [Conserved]: Find the minimum number of SEs that would satisfy

the CU allocation requirement. Then evenly distribute across those SEs. Figure 3.8 illustrates an

example of allocation policies.

In Figure 3.9, we evaluate these policies on an AMD MI50 GPU with 4 SEs of 15 CUs

each (60 CUs total). For the Packed policy, we observe three distinct spikes around 16, 31, and 46

active CUs. In AMD GPUs, thread blocks are equally split across SEs and then are scheduled to

available CUs within that SE. Because Packed does not evenly distribute active CUs across SEs,

there is a resource imbalance which causes slowdown. Distributed has a similar effect at 15, 11,

and 7 active CUs, when the number of active CUs is less than one entire SE. Conserved avoids both

pitfalls and finds a balance between both policies. Thus, we adopt the Conserved distribution policy.
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Figure 3.9: Characterization of vector multiplication kernel with respect to reduction of CU re-
sources and distribution policies.

It is important to note that energy usage actually decreases in the conserved policy (up to

8% decrease) for a single kernel in the 40 CU range. This gives significance to CU distribution as

a viable way to increase energy efficiency and utilization through co-location of kernels in unused

CUs. Many prior works on energy efficiency and energy proportionality on CPU and heterogene-

nous systems demonstrate that scheduling of workloads across hardware resources has a significant

impact on energy efficiency [126, 20, 127, 125, 26, 133]. Distribution of CUs across SEs has a

significant impact on performance and power/energy. Therefore, when making spatial partitioning

decisions, we need not only to consider the size of the partitions but also where the partition is

allocated across SEs and CUs.
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Generating kernel resource mask

To generate the per-kernel resource mask, we present our policy in Algorithm 1. Our

policy requires the hardware to track the number of kernels assigned to each CU with the addition

of a Resource Monitor. Exiting GPUs already need to keep track of the number of thread blocks

assigned to a CU as there is a per-CU thread block limit. Thus we extend existing resource tracking

infrastructure in GPUs to also track the number of kernels assigned to a CU.

Algorithm 1 Partition Resource Mask Generation
Require: SE = 4 ▷ 4 SE in MI50
Require: CU = 15 ▷ 15 CUs per SE in MI50
Require: CU Kernel Counters[SE][CU ]
Require: overlap limit
Ensure: num cus≤ total cus
1: cu mask = 0
2: num se = ceil(num cus/CU)
3: cu per se = ceil(num cus/num se)
4: se count[SE]
5: for se = 1 to SE do
6: se count[se] = ∑

CU
n=1 CU Kernel Counters[se][n]

7: end for
8: se id← sort(se count)
9: allocated cus = 0

10: while i < num se do
11: se = se id[i]
12: cu id← sort(CU Kernel Counters[se])
13: while j < cu per se && allocated cus < num cus do
14: cu = cu id[ j]
15: if CU Kernel Counters[se][cu]> 0 then
16: overlapped cu++
17: end if
18: if overlapped cus <= overlap limit then
19: setBitInMask(cu mask,se,cu)
20: end if
21: allocated cus++
22: end while
23: end while

return cu mask

Recall we generate resource masks based on the Conserved policy, which needs to first

determine the least amount of SEs that will satisfy the CU requirement (line 2). Which SE to select
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is based on which SEs have the least amount of kernels actively running in their CUs. This is

calculated by the sum of kernels in an SE from the CU Kernel Counters (lines 4-7) and then sorted

by least first (line 8). Once the SEs are selected, we then allocate CUs within the SEs. The CU

allocation is evenly distributed across the selected SEs (lines 10-18). Similarly to SE selection,

the CUs allocated within SEs will be determined by sorting the CUs by the number of assigned

kernels (line 12) and selecting the CUs with the least assigned kernels (lines 13-17). By minimizing

the number of kernels assigned to a CU, we can reduce the contention of concurrently executing

kernels within a single CU. If there are not enough CUs to isolate kernels, we may allow them to

overlap.

3.3.4 Architectural Support for Kernel-scoped Partition Instance

To natively support kernel-scoped partition instances in hardware, we need to (1) extend

the kernel command packet to include partition size requirements, and (2) extend hardware thread-

block scheduling mechanisms to be aware of the kernel’s resource masks. In this section, we present

a reference implementation on top of AMD GPU architecture due to the open-source nature of the

entire GPU runtime stack. However, kernel-scoped partition instances can also be implemented on

top of Nvidia architecture in corresponding components.

AMD GPU architecture overview

Our work builds off AMD GPUs and the AMD ROCm runtime. This subsection provides

a brief overview of the ROCm runtime and the AMD GPU architecture. Figure 3.10 illustrates how

a kernel packet gets dispatched through the many layers of the ROCm runtime and scheduled to the

GPU’s compute units (CUs). At the high-level, machine learning frameworks, such as TensorFlow
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and PyTorch, perform model inference that utilizes GPU accelerated libraries, such as MIOpen [62]

and AMDMIGraphX [6] for optimized ML kernels. These libraries can generate multiple kernel

calls per ML model layer, or custom kernels can be created by using the HIP language extension.

Once a kernel is called, the kernel-launch command is passed to the ROCm Runtime

to convert the command to an architected queuing language (AQL) packet which is inserted into

a heterogeneous system architecture (HSA) queue. AQL packets can be kernel-launch commands,

memory transfers, or dependency-enforcing barrier packets. The ROCr Runtime allocates and main-

tains the software HSA queues in a shared memory space that both the GPU and user-level runtime

can access [39, 95].

Architectural support

Figure 3.11 illustrates the modifications required to support kernel-scoped partition in-

stances. In the baseline AMD architecture, spatial partitioning is enforced in hardware by a per-

queue CU mask where every kernel in the queue inherits the same spatial partition. This CU mask

is set by the CU Masking API, which internally sets the queue’s CU mask through an IOCTL syscall.

In the command processor, the kernel packet is read from the queue and processed by the packet

processor before being sent to the Dispatcher, which schedules the TBs to CUs based on the CU

mask.

To enforce kernel-scoped partition instances, we need to first extend the AQL packets to

include an additional field to store the partition size. Recall that this partition size was set by kernel-

wise right-sizing when the kernel was launched. Next, on the GPU end, we extend the Command

Processor (specifically the packet processor) to recognize the modified AQL kernel packet. Once
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Figure 3.10: Overview of an AMD GPU-based inference server.

the packet processor consumes the AQL kernel packet, we run our partition resource allocation

algorithm to generate a kernel resource mask associated with that kernel. Recall, this resource

allocation algorithm also requires a set of CU resource counters to keep track of the number of

kernels assigned to each CU. Once the kernel’s resource mask is generated, the kernel’s threadblocks

are ready to be dispatched to the SEs WLM. We do not require any modifications to the thread block

scheduling algorithm in the Dispatcher nor do we require any changes to the CU’s pipeline. These

mechanisms are already in place to support AMD’s CU Masking API. Thus, we only introduce

small hardware changes to generate a per-kernel resource mask to enforce kernel-scoped partition
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Figure 3.11: Architectural Support for KRISP. Components in red are additions to AQL packet and
Packet Processor.

instances. In AMD architectures, the Command Processor is implemented as firmware [32, 80].

Therefore, our modifications to the packet processor can be implemented as firmware extensions to

the existing command processor.

Overheads

KRISP introduces (1) a Required CUs table in the ROCR-Runtime and (2) Per-CU kernel

counters in the Command Processor. Since the Required CUs table is stored in CPU-side memory,

the storage overhead is negligible. Recall that the information in this table may already exist in

certain accelerated libraries, such as rocBLAS, as discussed previously in Section 3.3.2. The access

time to this table is typically off the critical path unless the HSA queue is empty. The Per-CU kernel

counters keep track of the number of kernels assigned to a CU. Since the maximum number of

concurrent streams a GPU can handle is 32, we only need 5 bits per CU to keep track. Therefore, this
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counter requires an overhead of 300 bits (60 CUs x 5 bits). The additional steps of resource mask

generation add overhead to the Command Processor’s firmware. However, these operations only

require summing and sorting the utilization of the CUs. We profiled our algorithm’s implementation

in software and have seen a tail latency of 1 µs to run the resource mask generation algorithm.

Generalizability

At a high-level, architecture support for KRISP requires (1) a mechanism to specify a

partition’s size and (2) a mechanism to enforce the partition. On Nvidia GPUs, such mechanisms

already exist, although not well-documented. For example, MPS allows users to set a percentage

of compute resources assigned to an MPS instance. Furthermore, hardware isolation mechanisms

exist as Voltage MPS includes hardware facilities to allow each MPS client to have separate GPU

address space and facilities to “concentrate the work submitted by a client to a set of SMs”[89].

To support KRISP for Nvidia architectures, we would similarly implement kernel-wise

right-sizing in the CUDA runtime to intercept kernel events and inject partition-sizing information

into the kernel commands going to the GPU. Similarly, we would extract this in hardware and

generate a mask to guide existing hardware MPS enforcement mechanisms.

3.4 Evaluating KRISP Through Emulation

Why emulation and not simulation? Currently, simulation infrastructures are insuffi-

cient for evaluating KRISP. For example, while gem5 can simulate ML workloads, it can only

simulate native MIOpen workloads (applications that directly call MIOpen) and does not support

ML frameworks, such as PyTorch or TensorFlow [106]. While GPGPU-sim has been previously
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demonstrated to simulate PyTorch and cuDNN [73], the embedded PTX that it depended on is no

longer packaged into libraries and can no longer simulate modern PyTorch/cuDNN [56]. Alter-

natively, Accel-Sim is able to simulate PyTorch workloads by first creating SASS traces to drive

the simulation [60]. However, we observe that for a single inference model, there can be different

variations of library kernels called depending on the request’s input size or batch size. Thus, a static

trace-based approach is insufficient in capturing this dynamic behavior. Furthermore, GPU simu-

lators fail to capture the behaviors of the ML framework and GPU runtimes that have a significant

impact on the inference request’s end-to-end latency.

As shown in Figure 3.5, KRISP does not require modifications to the GPU pipeline, CUs,

or the threadblock dispatcher (scheduler). We only introduce an allocator that generates a resource

mask. Therefore, evaluating through simulation would provide limited insights as most of KRISP’s

modified behavior exists outside areas modeled by the simulator.

GPU HardwareProgrammer/ML Framework GPU Runtime

Partition
Size

ML 
Inference

Model

Inference 
Requests

Kernel
Calls

Resource 
“Right-
Sizing”

Partition 
Allocation

GPU WG 
Dispatcher

Stream Resource Mask (CU Masking API)

Baseline CU Masking

GPU Runtime

Partition
Size

GPU HardwareProgrammer/ML Framework

ML 
Inference

Model

Inference 
Requests

Kernel
Calls Resource 

“Right-
Sizing”

Partition 
Allocation

GPU WG  
Dispatcher

Kernel
Resource 

Mask
Emulated Kernel-scoped Partition Instance

Emulated KRISP(a) Compared to Figure 3.5, emulation moves the kernel-scoped partition instance implementation to GPU runtime instead of hardware.

 ROC Runtime
HSA Queues (streams)

BB

 GPU

HW Queue

Scheduler

Packet 

Processor

D
is

pa
tc

he
r

Command
Processor

HW Queue
K

Callback Function
Right-sizing

SE/CU Allocation

3

4
CU Mask

2

6

1

Set CU Mask Reg.5 C
U

 M
as

ki
ng



 A

PI
IO

C
TL

 c
al

l

01101010
CU Mask Reg.

01101010

01101010

4min CU

(b) Emulation implementation details built on AMD’s CU Masking.

Figure 3.12: Emulation methodology overview

49



3.4.1 Emulation Methodology

We present an emulation methodology that faithfully evaluates the critical aspects of our

work, that can capture (1) the end-to-end tail latency effect of inference requests, (2) the overhead

of KRISP components, and (3) the interplay between spatial partitions, and co-located inference

models. The major constraints in the baseline system are that (1) we cannot modify the GPU

Command Processor’s firmware, and (2) we cannot modify the AQL packets as the hardware expects

a well-defined struct. From Figure 3.5, we can see that these constraints will require us to emulate

the behavior of kernel-scoped partition instances in GPU runtime, while kernel-wise right-sizing

can still occur in the GPU runtime. Figure 3.12 overviews our emulation approach built on top of

AMD’s CU Masking API.

Emulating Kernel-scoped Partition Instance with Stream-scoped CU Masking: To

emulate kernel-scoped partition instance, we need to behaviorally model the ability to set resource

masks on a per-kernel basis. At a high level, we coordinate packets in the HSA queues to reconfigure

the queue’s CU mask before every kernel launch (Figure 3.12b).

When an AQL packet for a kernel launch, (K), is inserted into the HSA queue, we inject

two AQL barrier packets in front of the kernel packet (B). The first barrier packet ensures that any

currently running kernels are finished before we set a new CU mask for the queue. Once the first

barrier packet is consumed by the hardware ( 1 ), it also triggers a callback function ( 2 ) in the

runtime to execute our kernel-wise right-sizing ( 3 ) and resource allocation algorithm ( 4 ) for the

upcoming kernel. The queue’s CU mask is reconfigured through an HSA runtime API that sets the

hardware queue’s CU mask through an IOCTL system call ( 5 ). Once the IOCTL completes, the

callback function sets a dependency signal to the waiting second barrier packet ( 6 ), which avoids
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a race condition between setting the queue’s new CU mask and execution of the next kernel packet.
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Figure 3.13: Timing diagram comparing Emulated KRISP and Proposed KRISP with native
kernel-wise spatial partitioning support. Components in red adds emulation timing overheads.

3.4.2 Modeling KRISP Performance

Since our evaluation is an emulation, we incur extra emulation-related timing overheads

due to behaviorally modeling kernel-scoped partition instances using the baseline server’s AMD

CU Masking API. Therefore, we need to account for these emulation-related timing overheads

to estimate the expected performance of KRISP with native kernel-scoped partition instance

support. Figure 3.13 illustrates a timeline where the emulation-related overheads (outlined in red)

are due to (1) setting the queue’s CU mask using an HSA runtime API call (and underlying IOCTL

syscall), and (2) the introduction of barrier packets to wait for the completion of prior executing

kernels and to wait for the successful reconfiguration of the queue’s CU mask.

A challenge of adjusting for this emulation overhead is that it is difficult to directly mea-

sure on real GPU hardware. While it is possible to measure the time to launch a callback function

and associated ioctl call due to the HSA APIs, it is not possible to time when a barrier packet is con-

sumed in the hardware. Furthermore, we observe that when running concurrent models, the ROCm

runtime serializes the callback function and HSA APIs (and therefore, underlying IOCTL syscall)

leading to high timing variation.
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We noted that the amount of emulation overhead per inference should be consistent among

the same inference model as we observe that the amount of emulation overhead experienced scales

with the number of kernel calls in the inference model. This is because each kernel call incurs

an emulated kernel-scoped partition instance overhead. Therefore, we measure the total emulation

overhead of an inference pass as LOver = LBase
Emu−LBase

Real , where LBase
Real is the latency of the model on

the baseline system without any modification and LBase
Emu is the latency of the baseline system with

emulation of kernel-scoped partition instance with the resource mask to all active CUs. We can now

estimate KRISP’s latency without emulation overhead as LKRISP
Real = LKRISP

Emu −LOver. Note that LOver

only includes the components highlighted in red in Figure 3.13 and that all latency results include

the extra overhead introduced by our resource right-sizing and partition allocation components.

To estimate throughput, since all evaluated scenarios incur the same emulation overhead,

we obtain the relative throughput with respect to the baseline system with emulated kernel-scoped

partition instance that sets the resource mask to all active CUs.

3.5 Evaluation

3.5.1 Evaluation Methodology

Server Hardware: We deployed our inference server on a system featuring an AMD

MI50 GPU, 2 AMD EPYC 7302 16-Core Processor, 512 GB RAM, Ubuntu 18.04 LTS with kernel

5.4.0, and Intel 10G X550T network card. The AMD MI50 GPU contains 60 Compute Units across

4 Shader Engines. The server runs the AMD ROCm 4.5 runtime stack.

GPU Inference Server: We created our own custom inference server framework [50] as

most existing inference servers, such as TensorRT [91], are designed for Nvidia-based GPU systems
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and tightly integrate Nvidia-specific features. Our inference server consists of the following. Infer-

ence Front-end: a multi-threaded process responsible for accepting asynchronous gRPC requests

from clients and sending back the inference result (response). Request/Response Queues: Queues

are shared memory segments for storing request’s (response’s) data to be served (sent to the client).

Workers: Performs pre-processing, inference, and post-processing on a batch of requests. Each

worker is independent of the other, allowing for concurrent inference execution on the same GPU.

Spatial partitioning policies: We evaluate five inference server spatial partitioning poli-

cies as follows:

MPS Default: By default, AMD GPUs support concurrent execution of kernels where

each concurrently running kernel can share all resources in the GPU with no isolation. This policy

is also similar to Nvidia MPS with no resource restriction.

Static Equal: Each model has an equal-sized and non-overlapping spatial partition of CUs.

Model Right Size: This policy represents the prior work’s spatial partitioning policy which

selects a partition sizing based on the “kneepoint” of the GPU resource vs latency curve [24, 31, 63].

This minimum required CU per model is presented in Table 3.3. If concurrent models can fit within

a GPU, there will be no overlapping allocated CUs between partitions. If concurrent models do

not fit within a GPU, then overlapping of CUs will occur. This is different from previous works as

they enforce isolation through MPS/MIG and would not consider extra concurrent cases. However,

for completeness, we allow overlapping between partitions and indicate whether concurrent models

would not be considered in previous works with an open circle in our results.

KRISP Oversubscribed (KRISP-O): This policy provides kernel-scoped partitions. It is

possible that concurrently running kernels may require minimum CUs that together exceed the

53



available number of physical CUs. Thus, CU over-subscription occurs when we allow all CUs to be

overlapped between partitions, which maximizes the GPU’s utilization.

KRISP Isolated (KRISP-I): Similar to the previous policy, but we do not allow over-

subscription of CUs. This means concurrent kernels are isolated. In the scenario, where there are

not enough isolated resources to meet the min CU requirement, we allocate only what is available

to the kernel, potentially allocating fewer CUs than the min CU requirement.

Workloads: The models used for our workloads are described in Table 3.3. In addition,

the table shows the number of kernel calls that takes place when processing a single inference

request. The models evaluated cover a range of ML types, including convolutional neural networks

and transformer-based networks.

To measure the impact of various inference server spatial partitioning techniques, we run

1, 2, and 4 workers of the same model concurrently. We show evaluation with a batch size of 32 and

geomean results of batch sizes of 16, and 8. We also evaluate the impact of colocating 2 different

models in Figure 3.16.

Since the goal of our work is to demonstrate the benefit of kernel-wise right-sizing in

improving utilization of GPU, our evaluation drives the GPU and inference server at maximum

load. This differs from the evaluation of prior inference server works which proposed inference

scheduling policies and inference model management policies (to overcome limitations of process-

scoped partitions) that are adaptive to fluctuating request rates.
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Table 3.3: Inference workload used along with the number of kernel calls per inference, model-wise
right-sized partition size, and 95% tail latency (ms).

Model # of Kernels Model Right-Size (CUs) 95% lat. (ms)

albert [71] 304 12 27
alexnet [66] 34 45 91

densenet201 [45] 711 32 72
resnet152 [42] 517 26 11
resnext101 [131] 347 55 154
shufflenet [75] 211 21 8
squeezenet [48] 90 21 8

vgg19 [111] 62 60 81
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Figure 3.14: Evaluation results. KRISP is able to improve throughput by 2x on average, support
more concurrent models compared to other techniques, reduce energy per inference by 33% and
satisfy target tail latency SLO.

3.5.2 Evaluation Results

Inference Throughput: The results of our evaluation are shown in Figure 3.14a, where

each chart shows the system throughput (request per second) with 1, 2, and 4 workers, normalized

to 1 model worker running independently.

55



For MPS Default, throughput improves overall using 2 workers, but there is a decrease

in throughput caused by increased contention for hardware resources with 4 workers. However,

albert, shufflenet, and resnet152 require the least amount of resources and can co-locate 4

workers with modest throughput gains due to limited contention. MPS Default outperforms all other

policies, specifically for albert and densenet201, because the benefit of sharing unrestricted re-

sources from MPS default outweighs the potential negative impacts of contention. We observe

that workloads have different sensitivity to allocated resources and performance impact due to con-

tention.

On average, Static Equal performs similarly to MPS Default using 1 and 2 workers, yet

shows continuing improvement with 4. This can be attributed to isolated partitions which reduce

contention. This highlights that with high concurrent inference models, contention becomes a lim-

iting factor and some models can be very tolerant of resource restriction.

By allocating the minimum required amount of CUs per model, Model Right-Size presents

an upper-bound for existing spatial partitioning inference server works [31, 63, 24]. In general,

Model Right-Size improves against Static Equal and MPS Default when concurrently running two

models, which validates result trends seen in prior works. However, when forced to run with 4

workers it will oversubscribe CUs which leads to contention, resulting in a decreased throughput.

KRISP-O follows a similar trend of increasing for 2 workers but decreasing for 4 workers,

due to model contention. However, we note that KRISP-O does provide more throughput than

Model Right-Size with 4 concurrent models.

To alleviate the impact of model contention, KRISP-I makes sure that there is isolation

between concurrent kernels. This is why we see this policy gives the highest overall throughput
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Table 3.4: Max concurrent models without SLO violations. Bold font indicate best achieved con-
currency for a model.

Model MPS Default Static Equal Model Right-Size KRISP-O KRISP-I

albert 4 2 2 2 2
resnet152 2 4 2 2 4

densenet201 2 1 2 2 1
alexnet 4 4 4 4 4

resnext101 2 2 2 2 4
shufflenet 2 1 2 2 4
squeeznet 2 4 2 2 4

vgg19 2 4 2 1 4

and is the only policy with improved throughput with 4 workers. resnet152, resnext101, and

densnet201 decrease in throughput due to these models containing mostly high minimum required

CUs. For example, in Figure 3.4 we show the resnext101 kernel trace with respect to its min CU

and most kernels require more than half of the available CUs. Thus, at 4 workers, some kernels will

get less than the required CUs because KRISP-I enforces isolation, reducing throughput.

Overall, KRISP-I improves total system throughput by ˜2x on average (compared to

˜1.5x average for all other techniques), 1.22x over static equal with 4 workers, and up to ˜3.5x,

over MPS Default with 1 worker. Table 3.4 shows the maximum concurrent model without SLO

for each model and policy. We find that for most scenarios, KRISP is able to achieve the higher

concurrent model.

Tail Latency: Figure 3.14b shows the tail latency for each model. In inference servers,

we define SLO similar to prior works on spatially partitioned inference servers where we set 2x the

isolated inference tail latency [24, 63]. Latencies must meet this requirement or it is considered a

violation.

When reaching 4 workers, MPS Default, Model Right-Size, and KRISP-O do not meet

SLO requirements for all models, except alexnet (and albert for MPS Default). Static Equal
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adheres to the SLO target for 4 workers with alexnet, resnet152, squeezenet and vgg19. This

indicates that with 4 workers, contention and interference between models become a significant

issue. KRISP-I violates SLO with densenet201 and albert. Note, however, no spatial partitioning

technique was able to successfully handle 4 concurrent densenet201. This demonstrates the need

to spatially partition concurrent requests and that not all models are capable of sharing resources.

Energy Per Inference: We also characterize energy per inference for our partitioning

policies in Figure 3.14c. To obtain inference energy, we measure power using rocm-smi during the

course of experiments.

We observed that MPS Default, Static Oracle, and KRISP-O measured a reduction in

energy per inference for 2 workers (geomean of 15%, 19%, 19%, respectively) but not for 4 due to

the significant increase in latency. Static Equal (18% geomean)and KRISP-I are the most efficient

for 4 workers, as each worker would get the least amount of resources. KRISP-I reduces energy

per inference by 29% and 33% for 2 and 4 workers, respectively, compared to an isolated

inference.
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Figure 3.15: Geomean of normalized RPS with batch sizes of 16 (a) and 8 (b), for 1, 2, and 4
concurrent models.
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Figure 3.16: Co-located mixed inference model throughput with combinations of 2 different co-
located workloads

Batch Size Sensitivity: The geomean of all models using batch sizes of 16 and 8 is

shown in Figure 3.15. Smaller batches decrease the input size of each kernel, potentially changing

sensitivity to resource contention. For example, MPS Default improves over Static Equal and Model

Right Size due to contention being less of an issue and Static Equal and Model Right Size becoming

overly restrictive. However, contention still affects performance, as KRISP-I still outperforms all

other policies at 4 workers, indicating the importance of kernel-wise partitioning at smaller batch

sizes.

Co-locating with mixed inference models: To demonstrate KRISP’s ability to support

mixed concurrent inference models, we ran every combination pair of inference models concurrently

with each other. Figure 3.16 shows the boxplot of the throughput distribution observed. Recall

from Figure 3.14 that KRISP-I performs slightly better than Model Right Size for 2 concurrent

models. These results follow similar trends and show KRISP and Model Right-Size achieving better

throughput than MPS Default, and KRISP-I generally outperforming or matching Model Right Size.

Thus, KRISP can also improve utilization and throughput with a mix of inference models.

Overlap Limit Sensitivity To see how contention impacts system performance, we per-

form a sensitivity study by varying the amount of allowed kernel overlap. In Figure 3.17, the x-axis

is the number of CUs that are allowed to have multiple kernels running concurrently, and the y-axis
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Figure 3.17: KRISP sensitivity to oversubscription limit

is the normalized RPS. In general, as we reduce the allowed overlap of kernels, performance in-

creases. This is why KRISP-I typically outperforms KRISP-O. 4 workers have more to gain than 2

since there is more contention among concurrent kernels and thus see a higher improvement. We

also observe three distinct spikes at the 16, 31, and 46 overlap limits. This is due to how the limit

interacts with our resource mask generation algorithm, as it might lead to an imbalance across SE

clusters. At these spikes, there is less of a chance of imbalance because sharing 15, 30, or 45 CUs

guarantees at least 1, 2, or 3 full SEs, respectively.

3.6 Optimizing Kernel Right-Size

Spatial Partitioning allows the GPU the be utilized by multiple workloads while removing

contention for hardware resources. As we have shown in the previous chapter, the granularity of

the partition can greatly impact the overall system throughput of the GPU and by allowing kernel-

wise partitions, each kernel now is able to perfectly utilize only the hardware resources it needs.

This is done through profiling the kernels to determine its own ”right-size”. In our previous work,

the ”right-size” was determined as the least number of CUs that maintain the same execution time

as using the entire GPU. However, this still can lead to contention if there are two or more kernels

whose combine ”right-size” outnumbers the total hardware resources in the GPU. One way to reduce

contention is to reduce the total CUs required for a model, Here the total CUs is the sum of the
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individual kernels CU requirements. One advantage that can be utilized is the fact that resource

scaling effects kernels differently. We characterize ”critical” kernels within a model with the intent

to give more CUs to kernels that speed up the total model runtime, while using less CUs to kernels

that have the least impact on the model runtime. We use the kernels impact on model runtime as a

heuristic when allocating the kernel’s ”right-size”.

3.6.1 Analyzing Critical Kernels

While a kernel’s ”right-size” has been based on the effect of resource scaling on the kernel

itself. We motivate the need to also take into account the effect on the total model slowdown. In

Figure 3.18, we show the kernel slowdown with respect to the overall model slowdown. Each line

shows the impact scaling the kernel has on the kernel runtime and the model runtime. The model

slowdown is used to show how much of an impact that single kernel has on the entire runtime. The

resource scaling is swept from 60 CUs to 1 CUs, where the 60 CUs point would start at (1,1) and

the 1 CU point would be the end of the line. In reality each kernel should be plotted with individual

points, but the continuous line through these points are shown to better visualize the trend. In this

figure, we see that a model is comprised of kernels with a variety of behaviors. In general, lines that

have a steeper slope have a greater impact on the model slowdown than flatter lines. This means

that unlike prior ”right-size” there are kernels that could be scaled even further while not impacting

the overall model runtime.
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Figure 3.18: Kernel sensitivity to resource scaling with respect to the total model slowdown. We
can see that how the kernel slowdown impacts the total model runtime. Some kernels have a larger
impact on total model runtime than others. We explore how this can inform more optimal kernel
right-sizes

3.6.2 Determining Optimal ”Right-size”

Using the information provided in Figure 3.18 we then need to determine how to allocate

a new ”right size” to each kernel such that the total model runtime does not slowdown while min-

imizing the total allocated CUs. We use a greedy optimization allocation algorithm described by

Figure 2.

The algorithm first starts each kernel with 1 CU. It then chooses the kernel that currently

has the highest model slowdown (y-axis in Figure 3.18). The kernel that is selected is allocated an

additional CU, and new model times and model slowdowns are recalculated. This iterates until the

total model time meets some defined threshold. In our case the threshold is the model time using

KRISP ”right sizes”.
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Algorithm 2 Greedy Optimization Allocation
Require: Slowdown T hreshold
Require: Times[num kernels in model][CU ] ▷ 60 CUs in AMD MI50
Require: Model Slowdowns[num kernels in model][CU ]
Require: Kernel Times[num kernels in model]
Require: Kernel Heap[num kernels in model]
Require: Kernel CUs[num kernels in model]
1: current time = sum(Kernel Times)
2: while current time < Slowdown T hreshold do
3: Selected Kernel = maxheappop(Kernel Heap)
4: Kernel CUs[Selected Kernel]+ = 1
5: CU = Kernel CUs[Selected Kernel]
6: Kernel Times[Selected Kernel] = Times[Selected Kernel][CU ]
7: if Kernel CUs[Selected Kernel]> 60 then
8: new model di f f = Model Slowdowns[Selected Kernel][CU ]
9: maxheappush(kernel heap,new model di f f )

10: end if
11: current time = sum(Kernel Times)
12: end while

return Kernel CUs

We analyze the results of this greedy optimization in Figure 3.20. Here, the y-axis is

”kernel sensitivity” which is the slope of the lines in Figure 3.18. This is chosen as a proxy metric

because a kernel with a higher slope means that it impacts the model runtime faster individually

then the kernels with a lower slope. The x-axis is the number change in allocated CUs from its

previous KRISP ”right size”, with the color of each point representing the actual previous ”right

size”. Darker having higher number of CUs and lighter having fewer. In general, kernels with

higher sensitivity either gain CUs or have no change. This indicates that the algorithm is prioritizing

allocations to more critical kernels, with lower sensitivity kernels losing CUs. We can also see that

while lower sensitivity kernels lose CUs, the kernels that loose the most are ones that the previous

KRISP ”right size” had a high allocation and kernels with smaller ”right size” remained so. This

trend is showcased in densenet201 but is similar for the other models.

Figure 3.20 shows the difference in total allocated CUs for KRISP ”Right Size” and the
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Figure 3.19: Relating the difference in CUs from previous kernel ”right-size” to the new critical
allocation with the kernel’s Sensitivity. Sensitivity is the slope of the line from Figure 3.18

critical aware optimization. Overall, the greedy optimization is able to reduce the total allocated

CUs, on average, to 85% of KRISP ”Right Size”
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Figure 3.20: Reduction in Total Allocated CUs per model compared to previous kernel ”right-size”

3.6.3 Evaluation

We evaluate the new CU allocations using the same methodology KRISP Figure 3.21a

shows the model throughput for our previous baseline MPS Default, KRISP Oversubscribed, and

the Critical Aware Allocation. The new allocation typically under performs prior methods for 1 and
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2 workers and only gains advantage with 4 workers in albert, resnet152, resnext101, shufflenet, and

vgg19. This is mirrored in Figure 3.21b, where the new allocation does not meet SLO with 2 and 4

workers. This indicates that the allocation algorithm may be too loose in its threshold.

Another factor may be the impact of contention between kernels Looking back at Fig-

ure 3.6, we see a variety of kernel sensitivities to resource scaling. In low and medium sensitives, a

common behavior is the curve remains fairly flat until some point in the scaling where it begins to

increase, with different rates of change among kernels. They key point is that there a two different

phases of the kernels behavior to resource restriction. With KRISP, the kernels remained in the first

phase, because our min cu threshold was very tight, within 1% execution time. During runtime,

when kernels are colocated the are subject to contention and, from the individual kernel’s perspec-

tive, contention mirrors a reduction in hardware resources. But, because KRISPs ”right size” keeps

the kernel in the first phase of its behavior, contention’s effect on the total execution time remains

small. However, with our critical aware allocation, using the kernel sensitivity as a heuristic to

allocate CUs reduced the CUs to the point where it now sits either within the second phase or on

the border. Where only a reduction of 1 CU can have a major impact on the runtime. In this case,

Contention mimics that reduction and is now more of an issue than before, which causes the SLO

violation. However, It does outperform prior methods for 4 workers. This is due to the fact that the

effects of contention grows faster for the prior methods because they have a higher total used CUs.

3.6.4 Future Work

In this chapter, we explored one way to optimize the kernel ”right-size” in order to im-

prove GPU utilization and reduce contention. We showed that by using the kernel’s affect on model

slowdown as a heuristic can lead to a decrease in the total allocated CUs while, theoretically, main-
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taining the latency requirements. We used a greedy allocation algorithm in this work, however

future work may use other optimization methods to find more optimal solutions. However, the

role of contention must also be considered when choosing a ”right-size”. Future work may look at

runtime scheduling to reduce contention, or use a dynamic right-sizing the is runtime dependent.

1 2 4
1.0

1.5

2.0

2.5

No
rm

al
ize

d 
RP

S

albert

1 2 4

1.00

1.25

1.50
resnet152

1 2 4
0.25

0.50

0.75

1.00

densenet201

1 2 4

1.0

1.5

2.0

alexnet

1 2 4

1.0

1.5

resnext101

1 2 4

1.0

1.5

shufflenet

1 2 4
0.5

1.0

1.5
squeezenet

1 2 4

1.00

1.25

1.50

vgg19

1 2 4

1.0

1.2

1.4

Geomean

MPS Default KRISP Oversubscribed Critical Aware

(a) Model Throughput

1 2 4

1.0

1.5

2.0

2.5

No
rm

al
ize

d 
Ta

il 
La

te
nc

y

albert

1 2 4
1

2

3

4
resnet152

1 2 4

5

10
densenet201

1 2 4

1.0

1.5

2.0
alexnet

1 2 4
1

2

3

4

resnext101

1 2 4
1

2

3

shufflenet

1 2 4

5

10

15
squeezenet

1 2 4

2

4

vgg19

1 2 4
1

2

3
Geomean

MPS Default KRISP Oversubscribed Critical Aware

(b) 95th Percentile Latency

Figure 3.21: Evaluating Critical aware allocation against prior work.

3.7 Related Works

The most relevant work was previously presented in section 3.1. We now present other

related works.

Inference Servers: DjiNN and Tonic presented one of the first works on GPU-based

ML inference serving [40]. Besides this, there exist many proposed inference serving frameworks,

such as Clipper [29], INFaaS [107], Themis [76], etc. Recent works explore inference servers with

heterogeneous hardware, such as DeepRecSys [38]. Our work targets spatial partitioning in GPU-

powered inference servers and can be utilized by any serving framework. Also, we believe our work

is one of the first to target inference serving on AMD-based GPU systems.
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GPU Compute Spatial Partitioning: Spatial partitioning of GPUs is a common ap-

proach to improve the utilization of the GPU. Significant literature exist in achieving spatial par-

titioning of GPUs across SMs [4, 5, 121, 96, 58, 135] and within SMs [122, 123, 132] through

program transformation, runtimes, microarchitectural techniques and scheduling techniques.

Intra-SM partitioning: Intra-SM spatial partitioning techniques, such as Simultaneous

Multi-Kernel [122] and Warped Slicer [132] look at mechanisms to partition resources within an

SM without contention. However, we are not aware of any that exist in commercial products. Intra-

SM spatial partitioning is tangential to our work and can provide additional fairness and reduce

contention when kernels share a CU.

GPU Memory Partitioning: Prior works [55, 18, 17, 79] have proposed various tech-

niques, such as, memory bank partitioning or contention aware memory scheduling to improve

system memory bandwidth. These techniques require some form of hardware support and are not

implemented in current hardware, with the exception of MIG. However, as shown in GSLICE,

GPUlet, and our own work, system throughput can still be improved without memory partitioning

and any memory partitioning mechanism will only benefit KRISP.

Performance sensitivities of kernels: To an extent, all GPU spatial partitioning tech-

niques exploit the different performance sensitivities of individual kernels. For example, prior works

have identified that certain kernels perform better with less thread-level parallelism [58], or aimed

to find the optimal SM partition for a kernel under dynamic workload conditions [135].

The challenge that ML inference serving presents is that no current method exist to take

advantage of individual kernel properties. Specifically, all GPU spatial partitioning techniques apply

spatial partitions to an entire process. In order to reconfigure the partition, one would need to launch
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a new process and reload the ML model. Our work close this gap by taking advantage of kernel-level

repartitioning.

3.8 Summary

Model-wise right-sizing of spatial partitions for GPU inference servers leaves significant

under-utilization. To overcome this gap, we propose KRISP, to enable Kernel-wise Right-sizing for

Spatial Partition of GPU inference servers. We propose an additional AQL kernel packet parameter

that tells the GPUs CP how many CUs it needs to allocate for this kernel. We also introduce a

CU allocation policy that Conserves SE usage while maintaining a workload balance.We emulate

KRISP on a real AMD GPU system using per-kernel CU Masking and show an 2x throughput over

isolated inferences, 33% improvement to energy per inference and a 1.22x improvement over prior

spatial partitioning techniques. In the follow chapter, we will continue to optimize the kernel ”right

size” in order to reduce contention across workloads.
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Chapter 4

Coordinated Frequency and Resource

Scaling for GPU Inference Servers

Data centers have increasingly adopted the use of GPUs to accelerate Machine Learning

(ML) and Inference-as-a-Service workloads [37, 44, 124, 107]. However, prior works have shown

that a single inference request typically under-utilizes GPU resources [52, 65]. While GPU resource

utilization can be improved through larger batch sizes, care must be taken to ensure Service Level

Objectives (SLO) are not violated, which forces a GPU to process smaller batches [54]. As SLOs

are targeted for the tail or 99%-tile latency, there is a large latency slack between the average re-

sponse time and tail latency, as illustrated in Figure 4.1. This latency slack can be exploited to

save power by employing different techniques to push the average latency closer to the tail (red

distribution in Figure 4.1), such as using DVFS [85, 77, 26]. While DVFS has been shown to be

an effective method for reducing power, it might not be able to completely bridge the latency slack.

This limitation is due to the limited number of frequency states that are allowed in the hardware, as

69



latency

sa
m
pl
e

av
er
ag

e

99
%

slack

Figure 4.1: Black distribution describes the slack between average and tail (99%) latency. Red
distribution illustrates how isolated scaling can leave gap to be exploited. Blue distribution outlines
our work to close the left over gap through cooridanted frequency and resource scaling.

well as the range of the states.

Another technique that has been used is resource scaling within a single GPU [78, 98,

82]. Resource scaling takes advantage of the fact that a workload may under-utilize the GPU and

therefore does not need all of the available resources. We can use this to our advantage to save

power, by coordinating resource and frequency scaling we can close the slack gap and reduce power

even more (blue distribution).

Towards this end, we present COFRIS, a framework to coordinate frequency scaling and

resource scaling to improve the energy efficiency of GPU inference servers, this chapter makes the

following contributions:

• Investigate frequency and resource scaling characteristics of modern GPU hardware.

• Characterize a variety of inference workloads sensitivity to frequency and resource scaling,

with respect to latency, throughput, and power consumption.

• Propose COFRIS , a runtime that minimizes GPU power consumption coordinating fre-
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quency and resource Scaling without violating SLO.

• We demonstrate that COFRIS can achieve 28% average power reduction compared to the

baseline.

4.1 Background

GPUs are massively parallel architectures that can process thousands of threads concur-

rently. GPUs consist of multiple Compute Units (CUs) where each can process up to 2,560 threads

in groups of 64 (AMD) or 32 (Nvidia) threads, called a wavefront. These compute units are orga-

nized into clusters, called Shader Engines (SEs). In our experiments, we use an AMD MI50 GPU,

that organizes 4 SEs of 15 CUs each, with a total of 60 CUs. Through AMD’s CU Masking API [9]

and the ROCm System Management Interface (ROCm SMI) Library [8], CU resources and fre-

quency can be scaled, as well as measuring the GPU’s total power. AMD’s MI50 has 9 frequency

steps ranging from 925MHz to 1725MHz. We refer to each combination of frequency step and

number of active CUs as the GPU’s configuration space. Although the CU Masking API gives us

control over which CUs are active, previous work have shown that how active CUs are distributed

across SEs have a significant impact on performance and power consumption [28]. Due to this, for

our experiments, we employ a conserved policy, which first finds the minimum number of SEs that

satisfy the number of active CUs. Then, it evenly distributes the CUs across that subset of SEs. This

policy has been shown to avoid any load imbalance from round-robin thread block scheduling.
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Figure 4.2: Power trends of resource (x-axis) and frequency scaling (color bar). While resource
scaling can reduce power consumption, current AMD GPUs do not automatically cause CUs to be
gated due to limitations from AMD.

4.1.1 Characterising Frequency and Resource Scaling in Modern GPUs

To highlight the power properties of frequency scaling and resource scaling on inference

servers, we sweep a range of frequency levels and resource scaling levels while running our suite

of inference workloads (more details on workloads in our evaluation section). Figure 4.2 shows the

geometric mean of these results, with the x-axis indicating the number of active CUs, the color bars

indicating the 9 frequency scaling steps, and the y-axis indicating the GPU’s power normalized to

the maximum observed power consumption.

Across all frequency steps, we observe that the hardware does not activate any CU or SE

poewr gating as shown by the relatively constant power when scaling CUs from 60 to 32. Then, at

31, there is a dip in power which is most pronounced at the highest frequencies, indicating potential

power gating is activity, allowing for most of the power savings to be seen when scaling from 30 to

1 active CU.

However, the amount of power savings achievable through resource scaling appears lim-

ited compared to the amount of power savings achievable through frequency scaling. This implies

that resource scaling may be ineffective, compared to frequency scaling, in saving power in current
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Figure 4.3: Calculated per-CU active idle power for each frequency scale. Higher frequencies lead
to higher power savings through gating.

hardware. However, our experimental results directly contradict prior works which have stated and

shown effective CU-level power gating through internal, firmware level tools. [82, 78]. We discov-

ered that this is because AMD’s CU Masking API does not automatically cause the CUs to be

power gated [10]. In fact, these CU power gating features have no publicly available control to

end users, even though the hardware does have internal CU-level power gating features. Therefore,

we as researchers, are not able to reproduce these effects as demonstrated by AMD. In our work,

we will model both CU and SE power gating granularities to evaluate power gating due to resource

scaling as though we have internal AMD tooling.

4.1.2 Modeling Power Gating Savings in AMD GPUs

To estimate power savings that are available through internal AMD tools but not con-

sumers, we need to estimate the amount of power-gating savings per CU. To model possible power

saving by power gating individual CUs, we first need to find how much power a single CU consumes

while in active idle or CUActiveIdle, by using the following equation.

CUActiveIdle = (GPUActiveIdle−GPUIdle)/(NCU)
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This includes the power while the CU is being clocked but not actively running anything

and the static leakage power. We measure GPUIdle power, which is the power of the GPU while

nothing is running to be 15W on the MI50. Next, to find GPUActiveIdle, we continuously launch

empty kernels of 1 warp wide for a set amount of time and record GPUActiveIdle. Because we are

launching empty kernels, this ensures that we are not potentially measuring any extra dynamic

power from a CU or the GPUs memory system. Dividing the total active idle power by the number

of CUs gives us the per CU active idle power.

We discover that this active idle power differs for each frequency as shown in Figure 4.3.

We speculate that this may be due to power gating not just saving static energy, but some form

of dynamic energy, such as dynamic clock gating where more power is consumed with higher

frequency. We see that the greatest amount of power savings can come from running at higher

frequencies as leaving a CU ungated would result in high unused power, which is consistent with

previous intuition of multi-core scaling and the need for power gating unused areas of the chip [34].

Using the calculated per CU idle power, we can then model CU level power gating in the whole chip

by multiplying CUActiveIdle with the number of inactive CUs and subtracting that from the measured

GPU power.

CU vs SE granularity power gating. While area overheads are a significant consideration in

chip design, in our work, we aim to characterize how coordinating frequency and resource scaling

can reduce power usage regardless of gating granularity. This is why we evaluate potential power

savings at CU and SE gating granularities in Figure 4.4. Here, the baseline is the power trend of

resource scaling at max frequency (the top power curve in Figure 4.2). By subtracting our modeled

per CU active idle power from the baseline, we can see how the granularity of power gating affects
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Figure 4.4: Calculated power savings from power gating at CU and SE granularity. Per CU Gating
saves on average 9% over SE gating.

power savings. At the SE granularity, we see distinct steps in power savings corresponding to a SE

being gated only when all of its CUs are inactive. Whereas, if we gate at the CU granularity, we

get a near-linear reduction in power. In total, only when power gating is invoked, we can see the

benefits of resource scaling in the GPUs. On average, per CU gating can save an additional 9% over

SE level gating.

4.1.3 Related work - Dynamic power management systems

Prior works have used frequency scaling [57], deep sleep states [27], or coordination

of both [26] to reduce power for latency-critical services on CPUs by closing the latency slack.

GPUs frequency and power states have also been leveraged to optimize the performance and power

efficiency of individual kernels [77]. Resource scaling has been used explicitly for GPUs as they

are parallel processors with many cores [98, 128].

Specifically for GPU inference servers, frequency scaling has been combined with dy-

namic batching [85]. For our work, we specifically propose coordinating frequency and resource
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(a) Normalized Power Curves (Color bar) with yellow points indicating highest throughput for a given power level.
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Figure 4.5: Characterizing the effect of frequency and resource scaling. Green heat map represents
the achieved latency, with black boxes indicating SLO violation. (a) Top figure, shows the measured
power adjusted for CU-granularity power gating, with yellow points indicating the configuration
that achieves the highest throughput for a given RPS contour level. (b) Bottom figure, shows the
achieved RPS as contours, with yellow points indicating the configuration that achieves the lowest
power consumption for that contour level.

scaling for latency-critical and dynamic throughput inference servers. While dynamic batching has

been shown to improve utilization it may not always be possible to increase the batch size, as it

leads to significant increases in tail latency and it might lead to SLO objectives.

4.2 CoFRIS: Frequency and Resource Coordination at Runtime

In this section, we introduce COFRIS, a runtime to coordinate frequency scaling and re-

source scaling to close the latency gap in GPU-based inference servers. COFRIS aims to minimize

the power consumption of inference servers by finding the ideal trade-off between frequency and

resource scaling while satisfying the QoS requirement for varying incoming RPS rates. To high-

light the functionality of COFRIS, we will first present a characterization study of the impact of

frequency and resource scaling on inference workloads. Then we will present a framework that

coordinates frequency and resource scaling to enable energy-efficient GPU inference serving.
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4.2.1 Characterizing Frequency and Resource Scaling for Inference Workloads

We now characterize how coordinated frequency and resource scaling affects inference

workloads. In Figure 4.5 we sweep through the GPUs frequency and resource configuration while

measuring the latency, throughput (RPS), and power for various inference models.

Impact on latency. The impact on tail latency is shown in the background of each figure as

a green heatmap, ranging from 1x to 2x. SLO is chosen as 2x the latency of the model when

running at max frequency and full resources, which is similar to the methodology used in previous

works [28, 25, 64]. Later, we will perform a sensitivity analysis with varying SLO levels. For now,

any configuration that does not meet the SLO is shown as a black box in the heatmap and is taken

as an invalid configuration but is shown for completion.

We see that scaling down frequency increases latency at a faster rate than resource scaling.

(It gets darker green quicker going top to bottom than right to left.) However, even at the slowest

frequency we only start to see SLO violations when we additionally scale down to 30 or 15 CUs,

depending on the tolerance of the model. This shows that frequency scaling alone is not able to fully

exploit the large latency slack between average and tail latencies. Only with coordination between

both frequency and resource can we squeeze as much slack as possible for energy savings.

Impact on power and RPS. For Figure 4.5a, we show the power consumption with CU granularity

power gating of each configuration and interpolated it as contour lines to better visualize the trend.

The colors of the contours are normalized to the top right configuration. In Figure 4.5b, we measured

the max throughput achieved for each configuration with the highest RPS, which, again, would be

the top right of each figure. Each contour can be seen as a Pareto front, as moving along the curve

will not provide any power or RPS benefits, respectively. However, we need to consider that the
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Figure 4.6: Geomean of workloads showing RPS (blue, filled contours) and power (red contour
lines), for both CU (a) and SE (b) level power gating. CU-level gating allows more aggressive
resource scaling.

throughput of the system can match the incoming RPS, as well as, not violate SLO. To find the

optimal point we search the configurations along each curve and plot a yellow point indicating the

highest RPS (Figure 4.5a) or lowest power (Figure 4.5b) on the curve, respectively.

Intuitively, by scaling down frequency we see consistent drops in RPS, indicated by going

down the contours. However, with resource scaling, the RPS remains stable to various degrees. This

is because inference workloads have been shown to under-utilize the GPU. This allows us to restrict

compute resources to reduce power but without having any effect on the server’s throughput.

Specifically, for albert, alexnet, and vgg19, the optimal configuration for a specific RPS, is

at the knee point of the curve where resource scaling starts to affect RPS drastically. However,

at around 15-10 active CUs, resource scaling becomes so extreme that the RPS is limited at all

frequency level, indicated by the contours becoming vertical. The contour lines for shufflenet

and squeeznet are not as defined as they under-utilize the GPU to such a degree that frequency

and resource scaling have little effect on RPS.

CU-level vs SE-level power gating Lastly, we compare the optimal configurations based on either

CU-level power gating (Figure 4.6a or SE-level power gating (Figure 4.6b). Each figure shows the
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Figure 4.7: Overview of COFRIS

geomean of all workloads RPS and power. Here RPS is shown as the (background) blue, filled

contours and power has the red contour lines on top. Again, each power line is marked with the

configuration that achieves the highest RPS. On average the optimal amount of resources for a per

CU power-gated GPU is just over the 30 CU mark. While, for an SE power-gated GPU, it is just

below 45 CUs, as the SE will not be gated unless all CUs are inactive. In general, CU-level gating

provides more aggressive resource scaling opportunities for power savings. While the max RPS for

the lowest power levels are at the lowest frequency scale, this is also typically where there start to

be SLO violations, making these configurations invalid.

4.2.2 CoFRIS Implementation

The design objective of COFRIS is to minimize power of a GPU while maintaining SLO

for a variable incoming request rate. Figure 4.7 presents an overview of COFRIS. COFRIS consists

of offline profiled frequency-resource response curves for a given inference model, along with an

online runtime that dynamically determines the frequency/resource scaling configuration given a

model’s incoming RPS rate.

We utilize the observations stated in subsection 4.2.1 to configure the GPUs frequency

and amount of available resources. As we saw previously, each inference model has drastically

unique tolerances to frequency scaling, resource scaling, and SLO tolerance. Due to this, we profile
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Table 4.1: Inference workload used and 95% tail latency (ms).
Model 95% lat. (ms)

albert [71] 27
alexnet [66] 91

densenet201 [45] 72
resnet152 [42] 11
resnext101 [131] 154
shufflenet [75] 8
squeezenet [48] 8

vgg19 [111] 81

each model’s sensitivity offline similar to many prior works on spatially partitioned GPU-based

inference servers [64, 25, 28]. First, we determine the maximum RPS and baseline tail latency

based on running the model at the max frequency and CUs. This gives us our model’s RPS range

for our system. Next, at each RPS step from 0 to max, the optimal frequency/resource configuration

is determined to be the one that minimizes GPU power, while having no SLO violations. This

process is seen in Figure 4.7 inside the Offline box.

This frequency/resource response curve is then stored in a table in the serving framework

runtime. Then, during runtime, COFRIS takes incoming RPS information from the serving frame-

work (i.e. TorchServe, Trition, TensorflowServing, etc.) and looks up the optimal configuration

from the table and sets the frequency and available compute resources. Polling is done every 0.5

seconds, and uses user-level APIs (either through ROCm SMI or CU Masking APIs) to set the

configuration.
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Figure 4.8: Client Request Trace. Derived from Facebook’s SWIM Dataset [114]

4.3 Evaluation

Evaluation Methodology

We evaluated COFRIS on a server featuring an AMD MI50 GPU, 2 AMD EPYC 7302

16-Core Processor, 512 GB RAM, Ubuntu 18.04 LTS with kernel 5.4.0. The AMD MI50 GPU

contains 60 Compute Units across 4 Shader Engines. The server runs the AMD ROCm 5.2 runtime

stack.

Inference server. For our evaluation, we built our own custom inference server framework as

most existing inference servers, such as TensorRT, are designed for Nvidia-based GPU systems and

tightly integrate Nvidia-specific features. Our inference server consists of (1) an Inference Front-

end, a multi-threaded process responsible for accepting asynchronous gRPC requests from clients

and sending back the inference result (response), (2) Request/Response Queues, where queues are

shared memory segments for storing request’s (response’s) data to be served (sent to the client)., and

(3) Workers, where each worker is an instance of a machine learning framework (such as PyTorch,

Tensorflow, etc.) that services the inference request.

Inference model Workloads. The inference models evaluated are listed in Table 4.1. For this

work, we fix our request’s batch size to 1, as this represents scenarios where servers require very

low latency. This will also allow us to show the impact of scaling on the GPU without any interaction
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with dynamic batch sizing. However, previous works have seen improvement in coordinating the

batch size and DVFS [85] and there can be future opportunities to coordinate all three. We used

Facebook’s SWIM dataset [114] as the basis of our client request generator. We normalized the trace

to be fifteen minutes long and each workload’s max RPS being a load of 1 as shown in Figure 4.8.

Power management policies. To evaluate COFRIS, we compare against six scaling policies as

follows:

Baseline: No frequency or resource scaling is used. This means the GPU is consistently

running at max frequency with all available CUs.

FS: Frequency Scaling using the max resources.

RS-SE Gated: Resource Scaling with power-gating at the SE-granularity.

RS-CU Gated: Resource Scaling with power-gating at the CU-granularity.

COFRIS-SE Gated: Coordinated Frequency and Resource Scaling with power-gating at

the SE granularity.

COFRIS-CU Gated: Coordinated Frequency and Resource Scaling with power-gating at

the CU granularity.

GPU Power: Figure 4.9 plots the average power of the GPU normalized to our baseline policy. On

average RS-SE Gated and FS show similar power reduction. RS-CU Gated demonstrates the po-

tential savings of having a finer power gating granularity which performs better than RS-SE Gated

except for alexnet, resnext101, and vgg19. However, individual models show varying amounts

of sensitivity to power management policies, e.g. RS-SE Gated saves more power for albert,

shufflenet, and squeezenet, therefore, there is no clear winner. This demonstrates that resource

scaling can potentially provide more savings than frequency scaling.
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Figure 4.9: Average Power for each power management policy.

One important point to note is the granularity between frequency vs resource steps. With

our GPU we can control each CU individually but are limited to only 9 frequency steps that are not

uniform in distance (as illustrated in Figure 4.3). This may account for RS-CU Gated outperforming

FS due to the limitations of frequency steps. It may be possible if there were more steps at lower

frequencies we would be able to see more improvement from frequency scaling. Future exploration

in under-clocking along with voltage control may lead to more opportunities. In any regard, we

show that coordinating frequency and resource scaling leads to the most power savings.

Coordinating both frequency and resource scaling with COFRIS-SE Gated saves 6%

more power over FS. This indicates that neither resource nor frequency scaling alone can exploit

the latency slack to its fullest extent and by coordinating both we can extract more power savings

opportunities. In total, COFRIS-CU Gated outperforms all other policies With 28% average power

decrease over baseline, 13% improvement over FS, and 5% over the next best which is RS-CU

Gated.

Sensitivity to SLO: Next we explore how frequency/resource scaling can be affected by

various levels of latency constraint. Figure 4.10 displays that power savings can still be achieved

even when the latency slack is tightened. While we do observe the trend that having a larger slack
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Figure 4.10: Geomean of average power for each policy, with varying SLO constraints.

means a larger power reduction, all policies are able to achieve almost the same level of power

savings (within 2%) with a slack of 1.25x and 1.5x compared with 2.0x.

Finally, to evaluate if we are meeting SLOs, we plot the geomean of 95th percentile tail

latency achieved for each policy in Figure 4.11. In all scenarios, we meet the SLO. RS-SE Gated

and COFRIS-SE Gated flatten out after 1.5x. This is due to the fact that the SE-gated policies most

often choose the resource configuration of 45 CUs, as choosing any less doesn’t save any power

but does lower the RPS it is able to handle even if it is within SLO. FS and CU-gated policies are

able to achieve tail latency closer to the SLO target and minimize latency slack, however at most

only reaches 1.75x. This indicates that there is possibly more latency slack opportunity that can be

pushed closer to the SLO for power savings opportunity.

4.4 Summary

Latency slack in inference servers leave a large gap between the average latency and

service level objectives. This slack can be exploited by scaling the GPUs frequency and resources

to slow down a request, with the goal of reducing total GPU power usage without violating SLO.
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Figure 4.11: 95th percentile tail latency achieved for each policy. Latency slack is used up while
maintaining SLO.

While DVFS has been previously explored to bridge the slack gap, our work shows that it typically

is not able to push the average latency far enough, leaving untapped power savings. We propose

COFRIS which coordinates frequency and resource scaling for GPU inference servers. However,

resource scaling can only be effective if it is combined with power gating at some granularity.

During our initial exploration, we found that current GPUs do not automatically initiate power

gating and we hope this work motivates the importance of allowing programmer control over power

gating. While we do not evaluate area overheads, we show that SE level power gating can be

effective, but CU level power gating proves to be the most efficient. In total, COFRIS with CU

level power gating lowers power by 28% over baseline, a 13% improvement over FS, and 5% over

isolated CU power gated resource scaling.
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Chapter 5

GPUCalorie: Energy and Floorplan

Estimation for GPU Thermal Evaluation

Figure 5.1: GPUCalorie Energy and Floorplan Estimation Methodology Overview

GPU architectures are ubiquitous across many domains from high-performance comput-

ing environments for data centers and supercomputers to energy-constrained mobile devices and

embedded systems. In many cases, thermal constraint is a major design consideration, for example,

impacting cooling costs in datacenters [35] and usability in mobile devices [101, 129]. However,

GPU thermal research in literature has been limited due to a lack of validated and accurate GPU
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thermal modeling frameworks. While prior works relating to GPU thermal management exist, they

are mainly limited to gaming (graphics) or mobile platforms [110, 101, 112, 21, 99]. Clearly, there

is a lack of accurate and validated thermal models for exploring the designs of modern discrete

GPUs.

A thermal model first needs a component-level power trace derived from performance

counters of individual components within the chip. Simulators such as GPGPU-sim [19][61],

gem5 [22], and multi2sim [120] provide various counters relating to SM utilization, L2 usage, and

other components. These performance statistics are then passed to a power model to obtain power

traces.

Another important aspect in thermal modeling is having a proper architectural floorplan of

the modeled chip. While accurate floorplans for traditional CPUs may be available, GPU architec-

tural floorplans are essentially nonexistent; either significantly out-of-date or based on renderings in

promotional materials / white papers [110]. Even if a floorplan is available, there is no way to val-

idate the thermal behaviors of the chip as a ground truth cannot be derived solely from a floorplan.

In our view, this is the main barrier towards approachable thermal research related to GPUs.

Our goal is to develop GPUCalorie, a methodology to derive accurate and validated floor-

plans of modern GPUs and a technology-agnostic component-level power model. Specifically, we

derive accurate thermally equivalent floorplans using infrared thermography. We identify fine-grain,

sub-SM component areas of thermal relevance which would result in thermally accurate steady-state

temperature estimations. This infrared thermography setup can then also be used to validate our

thermal models.

Our paper makes the following contributions:
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• Introduce the GPUCalorie energy model which provides technology-agnostic component-

level energy modeling. It enables GPU architectural exploration without dependence on

power models that are based on obsolete technology-dependent tools.

• Introduce a methodology to identify a thermally equivalent detailed floorplan at the sub-SM

component level.

• Validate our power model and floorplans against simulation and empirical measurements

through IR thermography and power instrumentation.

• Demonstrates the utility of GPUCalorie by exploring a dynamic thermal management case-

study in GPGPU-Sim to study the impact of thermal constraints in GPUs.

5.1 GPUCalorie Overview

Figure 5.1 shows an overview of GPUCalorie1. First, GPUCalorie provides a technology-

agnostic component-level power model. The component-level access energy is derived from high-

level instruction-based energy obtained through the validated GPUJoule [16] energy-per-instruction

(EPI) estimation tool. GPUCalorie also provides a floorplan estimator that derives a sub-SM component-

level floorplan through microbenchmarking and empirical infrared thermography. Together, these

two techniques provide modern thermal floorplans and component-level energy estimates of GPU

components, enabling thermal evaluation of modern GPUs. Beside benefits provided to thermal

simulation, our tools and methodology can also benefit any other GPU architectural research relat-

ing to power and temperature.

1A calorie is defined as the energy needed to raise the temperature of 1 gram of water by 1◦C. Our work builds energy
and thermal floorplan estimation models to observe how energy raises the temperature of a chip.
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5.2 GPUCalorie Energy Modeling

5.2.1 Existing GPU Energy and Power Models

GPUWattch [72] is based on component-level energy per access. It is the de-facto power

modeling tool integrated with GPGPU-sim, it utilizes a bottom-up approach to power modeling by

detailing low-level hardware components, which are combined with synthesis-level simulation and

tools such as McPAT (compute) and CACTI (memory systems). The generated power model is

regressed against measured power of microbenchmarks on a real GPU.

This method, however accurate, is difficult to apply to modern GPU architectures. A

bottom-up modeling approach would require low-level details that are not publicly known. To

recalibrate GPUWattch on a modern GPU would potentially require the redesign and synthesis of

RTL models of components (such as execution unit, Tensor cores, and memory coalescer logic) and

power estimations from McPAT and CACTI which does not support modern process technology.

Thus, GPUWattch is not easily adaptable to modeling power of new architectures.

GPUJoule [16] moves away from low-level details with a top-down approach for energy

estimation. GPUJoule can be recalibrated to estimate energy of new hardware in a relatively eas-

ier manner compared to GPUWattch, by running micro-benchmarks of single instruction types to

obtain Energy Per Instruction (EPI) for compute instructions and Energy per Transaction (EPT) for

memory accesses. EPI and EPT are used along with profiled instruction and transaction statistics

to model a workload dynamic power. While this method can be used to find energy characteristics

for any GPU, it cannot provide energy information for individual architectural components which

is necessary for thermal simulation.

To ease the recalibration of GPUCalorie, we bridge the limitations of prior approaches
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to provide a technology-agnostic, component-level energy model. By being technology-agnostic,

it does not rely on any low-level simulation tools that are needed by GPUWattch. This allows our

modeling methodology to be easily applied to a variety of architectures and process technologies.

Component-level energy modeling will allow us the granularity required for thermal simulation and

to match the detail of GPGPU-sim’s component-level access counters (i.e. for ALU, register file,

caches, etc.).

5.2.2 Methodology

GPU Energy Model: As shown in Figure 5.1, the goal of our model is to provide a

component-level energy model derived from a top-down approach without the need for low-level

RTL / technology-dependent modeling. Our high-level equation for GPU energy is the combined

total energy from each SM, L2 cache, and DRAM access, which follows Equation 5.1 and 5.2

for SM energy. Where α is an activity counter of a specific hardware component and E is the

energy per access of that component. As shown in equation 5.2, SM energy is broken down into

energy for decode, integer, floating point (FP), double precision (DP), special function unit (SFU),

multiplier (MULT) execution units, and register file access (RF). Activity counters are obtained

through GPGPU-sim. We derive energy per access through linear regression as we later detail.

EGPU =
N

∑
n=1

ESMn +(EL2 ∗αL2)+(EDRAM ∗αDRAM) (5.1)

ESM = Edecode ∗αdecode +Eint ∗αint +E f p ∗α f p

+Ed p ∗αd p +Es f u ∗αs f u +Emult ∗αmult +Er f ∗αr f

(5.2)

Obtaining EPI: To obtain EPI, we use GPUJoule which calculates Energy Per Instruc-
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tion (EPI) and Energy Per Transaction (EPT) through empirical power measurements of micro-

benchmarks. A micro-benchmark repeats a single PTX (Parallel Thread Execution) instruction for

a known number of iterations. This number is typically in the billions as we need each micro-

benchmark to run for a few seconds at steady-state, collecting average power measurements and

execution time. Finally, EPI is then calculated and given in Equation 5.3.

EPI =
Avg.Power ∗ExecutionTime

#o f Instructions
(5.3)

Power can be measured either through Nvidia’s NVML [88] if the GPU card supports

power reporting, or through physical power measurement instrumentation [72] which measured

power with the use of external current sensors wired between the GPU’s power supply and PCIe

bus, and PCIe current is measured through the use of a riser card. Since our GTX1050 GPU

does not report instantaneous power, we opted to measure our GPU with power measurement

instrumentation[116].

Obtaining component-level access energy: In order to obtain component-level access

energy, we created a suite of nanobenchmarks, derived from GPUJoule benchmarks, that they only

issue a single instruction and can run on GPGPU-sim. By running nanobenchmarks, we obtain

activity counters for a single instruction. For this single instruction run, the energy of the GPU

is equivalent to the energy per instruction. Therefore, we obtain a system of linear equations for

every instruction type. Since we’re focusing on on-chip component-level access energy, our system

of linear equation is all of the forms in Equation 5.2. By running a single instruction, many of

the activity counters are either 0 or 1 and are essentially dummy coded. In this form, by solving

and obtaining the coefficients of each variable, we obtain the estimated energy increased caused
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Component Counter Coefficient (Energy in J)
DECODE 2.5E-11

INT 3.42E-11
FP 3.35E-11
DP 6.59E-10

INT MUL32 2.31E-09
SFU 9.52E-10
RF 6.05E-12
L1 6.15E-11

SHRD MEM 5.72e-11
L2 6.87E-11

DRAM 2.17E-10

Table 5.1: GPGPU-sim Counters and corresponding coefficients which can be interpreted as access
energy in Joules

by an access to that component; in other words, the per-component access energy. To solve this

system of linear equation, we run a Robust Linear Regression [81]. We choose to use Robust Linear

Regression over the more common Ordinary Least Squares (OLS) regression as OLS is sensitive

to outliers. Due to certain instructions having EPIs that are orders-of-magnitude larger than others,

these energy-heavy instructions have unwelcome weights that can skew coefficients. Robust Linear

Regressions are more tolerant of such outliers and we observe Robust Linear Regression models to

give us better correlation (r2=0.87).

The results of our regression and the coefficients are shown in Table 5.1. These coeffi-

cients can be interpreted as the access energy in J. Since every instruction accesses the front-end

(decode energy), it is not possible to regress a coefficient value. Therefore, to obtain decode energy,

we use this as a tuning parameter to calibrate again our real GPU measurements. We find that a

decode energy of 2.5e-11J provides the best calibration with real measurements. The value appears

reasonable as it’s greater than the RF access energy and less than all computational execution unit

access energy.

Validating GPUCalorie energy model: To validate GPUCalorie, we run a collection of
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GPU benchmarks from Rodinia on GPGPU-sim and on the real GPU. These results are shown in

Figure 5.2. From the real GPU, we obtain the average power over the course of the execution (Base-

line). From GPGPU-Sim, we obtain the activity counters from the run and use Equation 5.1 along

with our derived component-level access energy (Table 5.1) to obtain the GPUCalorie energy esti-

mate. With GPUCalorie, we obtain average power estimates that are typically in-line with measured

results. On average, GPUCalorie has an error of 9%.

We compare our method against the power estimate from GPUWattch. Overall, GPUWattch

provides wildly inaccurate results, with all power estimated above 100W and up to 450W. We sus-

pect that this is due to GPUWattch modeling older process technology which results in greater

energy per access, and due to modeling larger idle/constant energy that does not capture advances

in modern GPU power management. Also, note that our target GPU is a GTX1050 with 6 SMs while

GPUWattch was calibrated against a GTX480 with 16 SMs. GPUWattch is estimating significantly

higher power even when the number of hardware components is lower.
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Figure 5.2: Average Power related to Baseline: GPUCalarie has a average error of 9% while
GPUWattch always measured power over 100W

93



GPUWattch GPUJoule GPUCalorie

RTL synthesis ✓ ✗ ✗

Simulation Compatible ✓ ✗ ✓

Component-level power ✓ ✗ ✓

Energy per instruction ✗ ✓ ✓

Table 5.2: Our methodology is able to achieve both high level EPI’s and Component-level power
without the need for RTL synthesis.

5.2.3 Methods Comparison

GPUWattch has been the only GPU power model available to us. But, because it is based

off of an older process technology it is hard to provide a fair comparison. Therefore, while we val-

idate our own model, we use GPUWattch as a comparison of different methodologies, as shown

in Table 5.2. While GPUWattch bases it’s power model of off RTL synthesis of components,

GPUCalorie provides more flexibility by taking an EPI based approach to modeling, while still

achieving component-level power estimation.

5.3 Infrared Thermography Setup

Infrared thermography captures light in the infrared spectrum. To record the chip, we use

a similar setup that was proposed in prior works [14] where the heat sink is removed and the chip is

actively cooled through the underside of the motherboard with the cold side of a peltier device. The

hot side is attached to a liquid cooling loop to disperse the heat, as shown in Figure 5.3. We are then

able to dynamically change the amount of cooling by modifying the voltage to the peltier device.

Our setup uses the FLIR A325sc IR camera which captures a 320x240 image at 60Hz.

With a lens attached, it achieves a spatial resolution of 50µm/pixel. With this setup, we are able

to record the exposed chip with our IR camera. Figure 5.4, shows the raw image of the chip. For
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Figure 5.3: Our Infrared Thermography setup allows a clear view of the chip. The GPU is mounted
externally using a PCIe riser. Not shown is our power measurement instrumentation that logs the
GPU’s power consumption at runtime.

our experiments, we keep our cooling constant driving the Peltier device at 8V, to allow our chip to

reach a realistic operating temperature.

Limitations: While we use a Nvidia GTX 1050, our infrared thermography methodology

can be used with any chip (GPU or CPU), as long as, we are able to properly cool using the under-

the-board peltier device. A higher power GPU may require a more sufficient cooling system that

used in our setup.
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5.3.1 Floorplan estimation methods comparison

Our floorplan identification methodology is the only publicly available method to gain

floorplan information. As in Table 5.3 other options include finding technical datasheets that are

only released for a limited number of chips or industry standard chip analysis [115] which is de-

structive to the chip and costly. These aforementioned methods also do not allow one to identify

components on a chip. As shown in the next section, we pair careful microbenchmarking with

infrared thermography in order to discern sub-SM components in the floorplan.

Technical
Datasheets

Reverse
Engineer-
ing [115]

GPU
Calorie

Component iden-
tification

✗ ✗ ✓

Invasive ✗ ✓ ✗

Cost $0 Thousands Hundreds
GPU Limited Any Any

Table 5.3: GPUCalorie’s floorplan identification is a cost effective alternative to industry standard
analysis and can be applied to any GPU.

5.4 GPUCalorie Floorplan Identification

5.4.1 Overview

Figure 5.4(a) and (b) shows the raw thermal capture of the GPU when running a mi-

crobenchmark that exercises only SM0 and SM1, respectively. We highlight the location of SM0

and SM1 in the figure. We observe that identifying floorplan components faces several challenges

including (1) interference due to chip etchings, (2) unknown functionality of thermally signifi-

cant areas, and (3) coarse granularity of infrared thermography. To overcome these challenges,
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(a) Raw Image of SM 0 (b) Raw Image of SM 1

(c) Median Filtered SM 0 (d) Median Filtered SM 1

(e) Zoomed SM 0 (f) Zoomed SM 1

Figure 5.4: Raw, Filtered, and zoomed in images of benchmarks stressing SM 0 and 1. Raw images contain
artifacts of the etching on the silicon that is removed through median filtering. Zooming in, we can see
detailed structures within the SM.

we present (1) methods for filtering etchings while preserving underlying thermal behaviors, (2) a

microbenchmarking methodology to identify functionality of thermally significant areas, and (3) a

methodology for inferring sub-SM level components by deriving a power map.
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5.4.2 Removing interference from etching

One large noticeable aspect of the chip is the etched labeling, along with manufacturing

and chip information (e.g. the engraved ”GP107-400-A1”, NVIDIA logo, etc.). The etching has a

different thermal conductivity than the rest of the chip therefore it is significantly hotter or cooler

than the rest of the chip. This poses a problem while recording temperature The etching has a sharp

temperature gradient compared to the gradient of the rest of the chip and distorts any heat source

information we are able to obtain.

We aim to filter these gradients out while preserving the integrity of our data. We use a

Median Filtering technique to mask out the etching while preserving underlying edges [15]. We

first locate pixels on the heat map with a high gradient threshold and then apply a 20x20 Median

Filter Mask on each pixel above this threshold. We define this high gradient threshold as any point

above the 90th percentile threshold. We iterate this process until all artifacts of the etching are

removed. Figure 5.4 shows heatmaps before and after this median filtering technique. Note that the

color scale of the thermal maps are normalized to the highest measured temperature. Thus, the color

scale of the raw thermal map is not the same as the median filtered thermal map. Even though the

median filtered thermal map looks warmer overall, this is due to being normalized to a lower peak

temperature.

5.4.3 Identifying coarse functionality of heat sources

In order to identify the functionality of coarse-grain thermally significant areas, we use

a set of micro-benchmarks designed to stress sub-SM components and record their steady state

temperatures. Each micro-benchmark is comprised of billions of a single PTX instruction that is
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directed to a specific sub-component on the chip for a specific SM (identified with smid()). The

micro-benchmark is executed over ten seconds (we observe that thermal steady-state is reached by

this time). Table 5.4 shows a list of components and their corresponding PTX instruction that we

test.

We first start by identifying coarse-grain structures of the GPU by running these mi-

crobenchmarks directly on a specific SM ID. As shown in Figure 5.4, we can identify that different

regions of the GPU are hotter when microbenchmarks are directed to SM0 or SM1. This enable us

to identify general functionality of coarse-grain areas of the chip.

Observations

We note that in general, the lower left of the chip is consistently cooler than the rest of

the chip due to the location of graphics components (which we identified when running graphics

workloads). In our workloads, we mainly focus on compute workloads (i.e. CUDA) and do not

utilize graphics components. This observation is unique to discrete GPUs and we do not observe

prior documentation of this behavior in prior literature.

On another interesting note, we observe that the chip tend to be hotter towards the I/O

interfaces of the chip, such as to PCIe or off-chip global memory interface. We observe these

interfaces on the top, right, and bottom right of the chip. This can lead to a sizable thermal gradient

that can mask the thermal output of fine-grain components on the chip. Therefore, we will need

additional methodology in order to create a useful floorplan for thermal simulation with finer-grain

sub-SM components.
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Micro-benchmarks PTX Code
Register File mov.u32 x y

Integer Units add.u32 x,y,z

Floating Point Units add.f32 x,y,z

SFU sin.ftz.f32 x, y

Shared Memory ld.shared.u32 x [y]

L1 Cache ld.global.ca.u32 x [y]

I Cache bra.uni tgt

L2 Cache ld.global.cg.u32 x [y]

Table 5.4: Set of micro-benchmarks that are used and their corresponding PTX codes

Te
m

p

FP_ADD I_CACHE INT_ADD L1 L2 REG_FILE SFU_SIN SHD_MEM

Su
b

Po
w

er

Figure 5.5: Heatmap (Temp), Difference Map (Sub), and Power map of all micro-benchmarks
running on SM 1. To overcome similarities in the raw heatmaps, we subtract each micro-benchmark
from the average heatmap. This exaggerates minute differences, which can be observed in the power
(Power) maps. We plot contours to highlight the power sources.

5.4.4 Component Detail Granularity

Given the aforementioned challenges, to identify fine-grain heat sources and discern in-

dividual GPU components, we transform the thermal map to identify spatial heat generation [108]

(which we call a power map). Specifically, at steady state heat transfer, the negative spatial Lapla-

cian of the temperature distribution across the die is equal to the spatial heat generation. In other

words, we can identify heat generation from thermal output at steady-state.

In order to identify the power sources from the filtered heatmaps, we refer to the 2D

steady-state thermal found in [108]. Briefly, for each heatmap, we can locate the power-sources,

that were active during the time when the heatmap was captured, by taking the 2D spatial Laplacian
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of the heatmap. Repeating this technique on several heatmaps that were captured while the chip is

subjected to a variety of different workloads, will allow us to identify all the prominent heat-sources

on the chip.

When observing the heatmaps in Figure 5.5 (Labeled Temp first row), there seems to be

small differences in temperatures, indicating the minute differences in micro-benchmarks2. Here

we show micro-benchmark results for SM 0, as this SM was least obstructed from the etching.

Note, the hot and cold spots shown spans 0.4C with the steady state temperature around 60 Celsius,

demonstrating the challenge of extracting sub-SM component details.

Even though we are stressing individual components, there are many components that are

shared across micro-benchmarks; for example, I-cache, decode circuity, and register files. These

shared components can hide potential differences. To overcome this, we first compute the aver-

age heatmap over all micro-benchmarks, then subtract each micro-benchmark from the average to

obtain a difference map to identify unique power sources, as seen the second row (Labeled Sub)

in Figure 5.5. Now we can discover differences in heatmaps. Specifically, we discover that com-

pute instructions (FP, INT, and SFU) tend to the left side of the SM, while memory and caches

are towards the middle and right side of the SM. With these difference maps, we then compute the

laplacian power map as described in subsection 5.4.3.

The peaks in the power maps are power sources and the troughs are power sinks (where

power output is less than the cooling). In Figure 5.5 (Power third row) we plot the contours around

the power sources to highlight the area which is most active. Now we see detailed locations of

individual components within the SM that are not visible in the difference map. Memory opera-

2Note, each image’s color scale is normalized to their own min-max values and are not directly comparable to each
other.
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tions, are seen as strips on the top and bottom of the SM, indicating where the memory units are

located. Floating point, integer and special function operations are still visible on the left hand side.

However, the register file benchmarks now appears in the center left. This shows how location in-

formation can be hidden due to shared component usage (for each Floating Point operation there

must be a read and write to the register file).

Using this extra detail we split the execution units into EXE T (top) and EXE B (bottom).

Another interesting point is the location of the power source in SFU SIN micro-benchmark (it

overlaps I CACHE). We believe this is due to special function operations being a longer latency

instruction, causing no-ops to be executed while it waits for resources to be freed, increasing the

usage of the front end scheduler. This is why we do not include a contour in the Power map for

Figure 5.5. We include special function operation power in the EXE blocks. Figure 5.6a shows the

final SM floorplan used in our experiments.

5.4.5 Identifying the Whole Floorplan

We previously identified the locations for each SM by microbenchmarking a single SM

at a time. In Figure 5.4, we show how course grained functionality (specificly SM 0 and 1) are

able to be seen solely through heatmaps. After locating all the other SMs, we begin to build our

final identified floorplan by using the same SM floorplan for each SM. We assume the circuitry will

be the same but only mirrored odd SMs. This orientation of the SM can be identified through the

sub-SM component identification methodology.

Next, we have found the I/O pins seen around the chip are highly thermally significant

and are significant heat sources on all benchmarks that we run (micro-benchmarks and evaluation

workloads), so we do not use a specific micro-benchmark to stress these pins, but instead identify
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EXE_T MEM_T
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(a) Floorplan of SM

MC0

SM0_MEM_B

SM0_I_CACHE SM0_SHD_MEM

SM0_EXE_TSM0_MEM_T

SM2_MEM_B SM2_EXE_B

SM2_I_CACHE
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SM4_MEM_B SM4_EXE_B
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MC1
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MC2

SM1_MEM_BSM1_EXE_B

SM1_REG_FILE SM1_SHD_MEM SM1_I_CACHE

SM1_MEM_TSM1_EXE_T

SM3_EXE_B SM3_MEM_B

SM3_I_CACHESM3_SHD_MEMSM3_REG_FILE

SM3_EXE_T SM3_MEM_T

SM5_MEM_BSM5_EXE_B

SM5_REG_FILE SM5_SHD_MEM SM5_I_CACHE

SM5_MEM_TSM5_EXE_T

SM0_EXE_B

SM0_REG_FILE

SM2_REG_FILESM2_SHD_MEM

(b) Floorplan of GTX1050

Figure 5.6: Identified Floorplans

the floorplan blocks by hand. Finally, guided by our L2 benchmark, we place the L2 floorplan block

in the center of the chip, between the two groups of SM. The Final floorplan for the GTX 1050 can

be seen in Figure 5.6b

Mapping power traces to floorplan components For an accurate power trace, GPUCalo-

ries energy counters are mapped to their corresponding floorplan block. Table 5.5 shows this map-
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Power Counter Hotspot Floorplan Block
DECODE I CACHE

ALU

EXE T
EXT B

FP
DP

INT MUL32
SFU

Register File REG FILE
L1 MEM T

MEM BL2
Shared Mem SHD MEM

DRAM I/O Blocks

Table 5.5: Mapping GPUCalorie power counters to Hotspot floorplan blocks

ping. I CACHE receives all decode energy and models the front-end scheduler of the SM. All

computational energy is split between the two EXE floorplan blocks. L1 and L2 access energy are

mapped to MEM, with L2 getting split across the L2 block in our floorplan. DRAM accesses are

mapped to the three I/O blocks to model data movement between the chip and on card DRAM.

To accurately model idle power distribution, we distribute the idle power non-uniformly

across the chip based on empirical distributions. We measured the active idle power to be 17.4W.

We obtain this by capturing the thermal map of the chip at idle and utilize that as the idle power

distribution. The idle power is non-uniform due to only certain hardware being activated during

compute (vs graphics hardware).

5.5 GPUCalorie Evaluation Results

5.5.1 Simulation Methodology

To validate our floorplan estimation, we use GPGPU-Sim [19] [61] as the basis of our

simulation framework. We use the set of workloads from the Rodinia benchmark suite [23], using

the default input sizes. The performance counters from the simulator are then fed to the GPUCalorie
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power model and generate a power trace for each block in our floorplan. We then feed Hotspot [113]

this power trace along with a floorplan to get the temperature map of our modeled chip. We enable

Hotspot’s secondary heat transfer model [47] which models heat transfer through the bottom-side

of the chip (through the package substrate and PCB board). By default, the secondary heat transfer

models oil cooling [84, 83] with no heatsink and does not model a peltier substrate for cooling.

We modified Hotspot to model peltier cooling by adding a consistently cold layer beneath the PCB

which we tuned to best match our empirical measurements.

In GPGPU-Sim, we model a configuration similar to Nvidia’s GTX1050. We then validate

our simulated thermal map against a real GTX1050 by running the same Rodinia workload on

the real GPU. Because the workloads were designed with architectural simulators in mind, actual

running time is in the order of milliseconds. This is too quick to record any meaningful steady-

state temperatures. In order to get a steady-state temperature, when experimenting on the baseline,

the benchmarks are slightly modified to run through thousands more iterations than what is run

in simulation. Hotspot already outputs the steady-state temperature map, so no modification is

needed there. However, HotSpot’s grid model simulation requires resolution to be powers of two.

Therefore, to match the IR camera’s resolution, we downsample HotSpot’s 256x256 resolution to

match the camera’s 234x252 resolution.

5.5.2 Validating Simulated Floorplans

To validate our simulated heat maps, we compare against a real GTX1050 GPU. However,

the absolute steady-state temperatures may differ greatly. In our experiments, we keep cooling

constant by fixing the peltier device’s voltage. By default, Hotspot has been validated on a vastly
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(a) Heatmaps from Real GPU (Baseline) compared to GPU Calorie. Note, all heatmap temperatures are normalized to themselves
(with blue being their coldest temperature and red the hottest) to compare relative thermal signatures.
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(c) Difference error of floorplan blocks. We observe geometric mean error of 10.1% across all blocks.
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(d) Chip-wide temperature distribution. Despite absolute temperature errors, the modeled shape of temperature distributions are similar,
showcasing the ability to capture spatial thermal properties with GPUCalorie floorplan identification.

Figure 5.7: GPUCalorie Evaluation Results

different processor and silicon packaging. To account for this difference, we tune the silicon thermal

conductivity to best match the observed lateral heat transfer, as well as the modeled peltier device

to match our cooling level.

Heatmap-level validation: Figure 5.7a shows the normalized thermal output of each

floorplan. The baseline is our measured steady-state temperatures of the real GTX10503. Each

3Note that the numerous horizontal hot spots that form a line are artifacts from the etching that was not fully removed
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column represents a workload and rows are floorplans, with the top row being the baseline and the

bottom is GPUCalorie’s floorplan. To provided a visually higher contrast within the heat maps we

normalize the visual representation from the min and max temperature for each figure individually.

We observe that the general thermal signatures for GPUCalorie does a good job at tracking

the overall thermal signature of the measured thermal maps. For example, backprop, hotspot and

lavaMD, all have warm areas spanning across the top 2/3rd of the chip, which a noticeable cool

band along the bottom 1/3rd. This is evident in GPUCalorie as well. For bfs, kmeans, myocyte,

there exist an Idaho-shaped cool band along the left-side of the chip, which is also reflected in

GPUCalorie. For b+tree, dwt2d, heartwall, and nw, there exist a cool region in the lower left and a

smaller cool region in the upper left, which is also captured accurately with GPUCalorie, with the

exception of nw which shows a cool band along the entire left side. Due to the qualitative nature of

visualizing heatmaps, the remainder of this section will aim to further quantify the quality of results

of GPUCalorie.

Block-level correlation: Figure 9b shows the correlation between the average temper-

ature of each GPUCalorie floorplan block (Y axis) vs the same location on the baseline heatmap

(X axis). Note that the axis are different between each benchmark. SMs are denoted by color and

sub-SM blocks by marker shape. Points falling closer to the y=x line demonstrates a more accurate

model (for example, backprop, b+tree, and dwt2d). In bfs, heartwall, lud and nw, the line is close

to 1 but are consistently below the dotted line, this means we are underestimating the temperature

of the entire chip, while workloads above the dotted line (hotspot, kmeans, and myocyte) means we

are overestimating the temperature. Nevertheless, most of these workloads still have a slope close

to 1, indicating the relative thermal trend of the GPU is still captured.

from filtering. Therefore, the real thermal map, absent the etching, would be significantly smoother.
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Block-level error: Figure 9c shows the error of each block component from 9b. For

the majority of workloads, the error is about 10% and, except for one outlier, less than 20% error.

Overall, we observe a geometric mean of 10.1% error.

LavaMD is major outlier, as it consists entirely of compute instructions with virtually no

memory instructions. Due to the heavy usage of ALU units, the power density of the ALU blocks

is very high leading to an extremely high simulated temperature.

Chip-wide thermal trends: In Figure 9d we show the temperature distribution of bfs,

heartwall, and hotspot. While GPUCalorie may incur absolute temperature errors, GPUCalorie is

still able to capture chip-wide thermal trends (temperature distribution shape). For example, we’re

able to capture the single high peak and sharp drop-off of bfs, the double peaks of heartwall, and

the small peak and larger middle peak of hotspot. Such chip-wide thermal trends are important

attributes to model for problems such as hotspot detection and mitigation.

5.6 Thermal Constraint Exploration

GPU architectures can be found in a wide variety of environments. Embedded, mobile,

desktop, cloud, and HPC systems are all important areas each with their own thermal and energy

constraints. To fulfill such constraints, thermal management techniques are enacted, such as thermal

throttling with dynamic voltage and frequency scaling.

To demonstrate GPUCalorie’s utility, in this section we show how GPUCalorie’s energy

and thermal model can be integrated into GPGPU-Sim to measure the performance and energy

impact due to various levels of thermal constraints.
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5.6.1 Dynamic Thermal Management

We implemented a dynamic thermal management technique within GPGPU-Sim by moni-

toring the chip temperature during runtime which is then used to decide whether the clock frequency

should be changed. The temperature output is computed using HotSpot at a fixed length epoch and

if the maximum temperature of the chip is over some specified thermal constraint, the frequency

is clocked down by a step and clocked up if there is still thermal headroom. The range of clock

frequencies spans from 1700MHz to 131MHz, with steps at every 100MHz, for a total of 17 steps.

This is based on Nvidia’s supported clocks for its pascal architecture. [88]

To calculate thermal constraints we used a percentage of the maximum temperature ob-

tain from running each workload at max frequency. We measured constraints ranging from 20%

reduction from the maximum temperatures to 50% the max. Once the constraint is set, out thermal

management implementation then tries to meet the constraint at runtime.

5.6.2 Performance Evaluation

Figure 5.8 shows the results of the dynamic thermal management with various levels of

thermal constraints. The performance slowdown is captured in Figure 5.8a. We see that workloads

separate into a range of thermal sensitivities ranging from 1-10x slowdown, with lud going up to

600x slowdown! Most workloads plateau around 40-50%, failing to meet the constraint set, even

while running at the lowest possible frequency. This shows the importance of available cooling to

the chip, as with enough cooling any workload can meet their proper constraints, or some workloads

might not be suitable as a comprehensive example for embedded or mobile environments. In future

work it may be advantageous to develop that can scale across a wide range of GPU spaces
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(a) Performance slowdown. Our dynamic thermal management scales the chip frequency to meet the imposed thermal cap
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(b) Energy Overhead, Myocyte and NW reduce their energy due to the frequency reduction, while being unaffected in performance

Figure 5.8: Thermal constraint evaluations.

Measuring the energy overhead due to these slowdowns in Figure 5.8b we find the major-

ity of workloads do not increase in energy usage. Even though the increase in runtime, the amount

of power savings due to a slower frequency makes up for that and evens out the energy usage. In

exception, Myocyte and NW actually reduce in energy because they are not thermally sensitive and

so reduce power consumption without affecting performance. This may lead to a class of work-

loads that have unique thermal signatures within thermally constrained spaces, which would lead to

frequency scaling that reduces overall energy.
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5.7 Related Works

Overall, there are very few works related to thermal modeling and thermal management

of GPU devices. We present an overview of related GPU thermal works here.

Thermal modeling of mobile devices: Several works have explored thermal model-

ing of mobile devices. For example, [130] models the thermal output of the mobile device as a

whole. At a finer-grain, thermal models for heterogeneous mobile processors [67] was developed

and is specific to integrated graphics chips and implements a floorplan that bounds the entire GPU

component. We focused on discrete GPUs and create a floorplan at the SM level.

GPU thermal management: There has also been very limited exploration of GPU

thermal management, mainly due to lack of simulation infrastructure. The most prominent is [110],

which explored the impact of thermals on GPUs.

Many existing works explored heterogeneous CPU-GPU on real platforms. For example,

[101] explored cooperative CPU-GPU thermal management for mobile gaming performance. [112,

21] explored dynamic thermal power management for big.LITTLE mobile SoCs. [99] explored the

thermal headroom and interaction with thermal coupling effects between the CPU and the GPU on

AMD APUs.

Infrared imaging modeling: Other works used infrared imaging on mobile processors

to train a thermal management system [101]. Again, they describe the floorplan based off of the

location of the entire GPU and not the internal components. With our floorplan, we enable more of

this type of research. As it allows thermal management systems to be run through simulations. In

[47], Hotspot was extended to more accurately model scenarios where the processor was used for

IR measurement. We use these settings for our Hotspot configuration in our work.
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GPU thermal simulation: Previous work have also incorporated Hotspot with a GPU

simulator [110]. However, this work uses outdated simulators and gpu architectures with floorplans

that were never validated. They use very course grained blocks that primarily deal with the graphics

pipeline. We focus on GPGPU applications and have validated on current graphics hardware.

Floorplanning: In total, there are few works that have validated a GPU floorplan for

thermal simulation. Even for CPUs there is a lack of validated modern CPU floorplans. However,

there still exist works that explore the implications of thermal-aware floorplanning [109]. For GPUs,

there is a complete lack of both thermal-aware GPU floorplan explorations and validated GPU

floorplans.

5.8 Summary

GPUs are the main accelerator behind HPC and many energy-conscious applications.

Their highly parallel architecture creates new thermal problems different from traditional CPUs.

However, there is a lack of required tools for GPU thermal research. The key impediment to-

wards enabling GPU thermal research are (1) a lack of accurate component-level GPU energy

model, and (2) a lack of accurate and validated thermal floorplans. Towards these goals, we pro-

pose GPUCalorie which consists of a new validated component-level energy model and an infrared

thermography-based methodology to empirically derive thermally-relevant floorplans for thermal

simulation. Overall, our energy model has an error of 9% on average compared to real GPU mea-

surements and 10% error for simulated thermal maps. We hope that the tools and methodologies

presented in this work can facilitate the much needed research and future development of power-

constrained and thermal-constrained GPUs.
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Chapter 6

Conclusion

GPU architecture is still continuing on its goal to improve on number of parallel opera-

tions per second. It has gone past its initial design for only graphics applications and into the wide

range of data science, scientific computing, and machine learning. while this architecture chases

pure performance in hopes of using even larger machine learning models or even more data, there

leaves a breadth of applications and use cases that are now underutilizing the GPU. Leaving plenty

of room to possibly run multiple applications concurrently. Cloud providers and data centers recog-

nize this and are now offering split partitions of the entire GPU among their clients. However, the

use of static partitions cannot account for the dynamic nature of computing on a GPU. Whether it

is through the dynamic computational behavior within an application or the dynamic load a GPU

inference server receives.

We first study current GPU partitioning capabilities in real hardware, using the Winograd-

Strassen parallel algorithm. DAGEE and task graphs have the potential for increasing GPU utiliza-

tion by allowing independent tasks being executed in parallel. We found that while the parallel
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algorithm can improve performance of matrix multiplication, including partitions can provide fur-

ther improvement in performance and energy efficiency, only, if these partitions are lightweight and

do not incur their own overheads.

We aim to rectify this with our KRISP framework. Through non-invasive modifications of

the GPU kernel command packet and packet processor, KRISP enables low overhead kernel-scoped

partitions. With the use of profiling, we are then able to determine what the kernels ”right-size”

should be so that it neither under or over utilizes any GPU hardware. We show an 2x throughput

over isolated inferences, 33% improvement to energy per inference and a 1.22x improvement over

prior spatial partitioning techniques. We also do a critical kernel analysis to show how differences

in the impact of resource scaling between kernels can be exploited to reduce the overall total CU

usage. We show that, prioritizing CU allocation towards kernels that have the largest impact on

overall model time can reduce the total CU usage while maintaining the same latency as our previous

”right-size”. However, we need to consider the inpact of contention when optimizing each kernel’s

size. We leave other possible optimization techniques and contention analysis for future work, but

again this motivates the possible research that could be enabled with kernel-scoped partitions.

We also show how kernel-scoped partitions can be leveraged to decrease GPU energy con-

sumption during periods of low utilization. While current GPU do not automatically enable power

gating, these partitions also encourage the use of power gating, either at the CU or SE granularity.

Coordinating Frequency and Resource Scaling can allow inference servers to respond timely to in-

coming demand while minimizing the GPU energy within the data center. In total, COFRIS with

CU level power gating lowers power 13% over frequency scaling , and 5% over isolated CU power

gated resource scaling.
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Lastly, GPU thermal performance and efficiency is an under researched area due to the

lack of floorplan information of GPUs. GPUCalorie’s methodology produces a validated floorplan

that showcases how the chip layout can impact the performance of the GPU. We hope that this is

the start of GPU thermal research and want to explore in future work.

Overall, this dissertation improves on the current spatial partitioning techniques and show-

case how dynamic fine-grained spatial partitions can be used to improve system throughput and

reduce energy consumption.
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