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ABSTRACT OF THE DISSERTATION

State Estimation for Discrete Linear Systems

with Additive Laplace Noise

by

Nhattrieu Chan Duong

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2020

Professor Jason L. Speyer, Chair

State estimators are developed for discrete linear systems with scalar additive Laplace process

and measurement noises and their properties are analyzed. For the scalar case, an analytic

recursive estimator is presented, along with detailed analysis of its behavior with respect to

noise parameters. In addition, a one-step model predictive controller is developed. Using

an objective function with 1-norm control and terminal state costs, the expectation of the

objective function with respect to the conditional probability density function is determined

by using the computational structure developed for the estimator. Numerical simulations

for both the estimator and one-step controller are presented to demonstrate their unique

behavior, including robustness to noise spikes in the measurements. For the general vector

system, update and propagation algorithms as well as a method for computing moments

in closed form using characteristic functions are presented. An explicit state estimator is

developed for the two-state case, and a numerical example is presented to demonstrate the

algorithms and the unique properties of Laplace estimators.
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CHAPTER 1

Introduction

In many engineering applications, random processes or noises have volatility that are not

well-modeled by Gaussian distributions. The Gaussian distribution is considered a light-

tailed distribution, whose tails decay at a faster rate than an exponential [Bry74]. While its

structure lends itself to compact, closed-form analytical results, this is in fact a constraint

on the robustness of its modeling. The light tails poorly model systems with noise spikes,

such as radar, sonar [KFR98], and stock market volatility [Lin05], and algorithms built on

Gaussian distributions are susceptible to such outliers. Ad-hoc methods have been developed

to compensate for this limitation. Ideas such as pre-filters have been industry standard for

decades.

Past efforts in deriving analytic recursive estimators have used Cauchy distributions,

whose heavy tails better capture volatile phenomena [IS14],[FSI15]. However, developing an

estimator using the Cauchy probability density functions (pdf) directly becomes intractable

beyond the scalar case, and the multivariate estimator was developed using characteristic

functions [IS14]. In this work, we explore the use of Laplace distributions, whose densities

have tails which do decay exponentially but at a slower rate than those of Gaussian densities.

Furthermore, the structure of the Laplace pdfs allows for a more direct treatment of the

conditional densities and have interesting properties with respect to objective functions with

1-norm costs.
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1.1 Laplace densities

The Laplace probability density function (pdf) with zero mean and variance 2α2 has the

form

fL(x) =
1

2α
e−

1
α
|x| (1.1)

Contrast this with the pdfs for the Cauchy distribution with zero median and Gaussian

distribution with zero mean and variance σ2,

fC(x) =
βπ

β2 + x2

fG(x) =
1√

2πσ2
e−

x2

2σ2

(1.2)

Figure 1.1 shows plots of the Cauchy, Laplace, and Gaussian probability density functions

where the spread parameters α, β, and σ have been chosen to minimize the square of the

difference between the pdfs. For a given α, σ ≈ 1.06α and β ≈ 1.4σ [IS14]. We observe the

heaviness of the Cauchy tails compared to that of the other two. While the Laplace tails

still over-bound those of the Gaussian, we can see that it does decay exponentially and is

much lighter than those of the Cauchy pdf.

1.2 Particle filters and Laplace distributions

With the advent of fast, inexpensive computational capabilities, simulations methods have

been used to fill in the gap where analytical filters have been absent. Particle filters have had

widespread use in non-linear systems [MBL11] in robotics [KSO16], navigation, and image

processing, using both Gaussian and non-Gaussian noise. Laplace densities have been used in

areas such as image [RVG06] and speech [LBG10] processing. However, these techniques are

approximate by nature and do not produce explicit closed-form expressions for the minimum

variance estimate.
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Figure 1.1: Comparison of pdfs with same effective variance

1.3 Analytic linear estimators

Prior to this work, there were two known analytic recursive linear estimators: the Kalman

filter and the Cauchy estimator. The Kalman filter has been in use for decades, and the use of

Gaussian noise has been successfully applied to solve a large class of problems. However, its

limitations have been well-documented. The Cauchy estimator was developed in [IS10],[IS12]

and [IS14]. It is considered a heavy-tailed estimator, and its behavior is quite different

compared to the Kalman filter. In particular, the variance was shown to be a function of

the measurements as well as the noise parameters. In contrast, the Kalman filter variance

can be computed a priori. One can see the consequences of this when the Kalman filter

processes Cauchy noise [IS12].

There has some work done in the way of estimating Laplace random vector corrupted by

3



Gaussian noise [Sel08] and state estimation for linear systems driven by Laplace noise using a

bank of Kalman filters [FMS16]. However, in this work, we derive a recursive analytical esti-

mator in closed-form. Like the Kalman filter and Cauchy estimator, the solution is the exact

optimal estimator for a linear system with additive Laplace noise, not an approximation.

These three analytic linear estimators can be distinguished by their a posteriori condi-

tional pdfs (cdpf). The Kalman filter’s a posteriori cpdf is Gaussian and is therefore both

symmetric and unimodal. In contrast, the Cauchy a posteriori cpdf is neither symmetric

nor unimodal. True to its nature of sitting between the other two, the Laplace a posteriori

cpdf is not symmetric but is unimodal.

1.4 Laplace controllers

Another interesting aspect of the functional form of the Laplace density is the 1-norm in

the exponential. The commonly-used least-squares optimal solutions to control problems

minimize the square of a cost. This is a matter of applying the tools that are available

rather than the ones that are desired. For many problems where one wishes to optimize the

1-norm, such as fuel consumption, the least-squares solution undervalues the control cost

near zero, leading to unnecessary control inputs when the error is small. Since the Laplace

pdf has the same form as a an objective function with 1-norm costs, the equations developed

to obtain the expectations for the estimator can also be used to obtain the expected function

of the cost.

1.5 Outline

In Chapter 2, we state the estimation problem for a discrete scalar linear system driven by

additive Laplace noise process with additive Laplace noise measurements. We then develop

the conditional probability density functions (cpdf) through the first few update and propa-

4



gation steps to motivate a general form for the k-th step, and we state the recursive algorithm

to update and propagate from step k to step k+1. We then use the Fourier transform of the

cpdf to derive the closed-form solutions for the normalization and first two moments in order

to obtain the state estimate and estimation error variance. Finally, we present a numerical

example tying everything together and discuss some of the features of a Laplace estimator.

In Chapter 3, following a similar process to the scalar case, we generalize the derivation to

that of a discrete vector linear system. We present a method for obtaining the moments in

n-dimensions. We then explicitly derive the closed-form expressions for the normalization,

first and second moments and present a numerical example for the 2-dimensional problem.

In Chapter 5, we go back to the scalar case and derive a one-step model-predictive controller

by minimizing a cost function with 1-norm cost. We present a numerical example and discuss

some of the unique properties of such a Laplace controller. Finally, in Chapter 6, we offer

concluding remarks and provide suggestions for future extension to this concept.

1.6 Notation

The Laplace densities involve summing many terms, including a handful of parameters and

variables, and to keep track of every component explicitly will cause the notation to become

quite cluttered. Therefore, we will make certain sacrifices to the notation to help keep things

legible. When the notation deviates from the standard notation, it will be made clear in

context.

Random variables at step k will be represented by capital, alphabetical letters, such as

Wk and Xk, and their realization will have a corresponding lower-case version, wk and xk.

Vector variables have the same convention, except that they will be boldfaced, as Xk and

xk. However, elements of xk ∈ Rn, x1, · · · , xn, lose the step k in favor of the element index.

When explicitly using the elements, the step k should be obvious in context. Matrix and

vector parameters will use capital letters without indices, such as Φ,Γ and H.
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pdf Probability density function

cpdf Conditional probability density function (fX|Y )

ucpdf Unnormalized conditional probability density function (f̄X|Y )

Table 1.1: List of initialisms

We distinguish between update and propagation steps by noting the indices for the state

followed the measurement sequence, separated by a vertical line. For example, k+ 1|k refers

to xk+1 conditioned on yk.

Throughout this work, we will refer to the sgn (x) function, which is defined using the

convention

sgn (x) =


−1, x ≤ 0

+1, x > 0

. (1.3)

Note that this may differ from other conventions, where sgn (0) = 0. We will also make

exceptions to this convention, where sometimes sgn (0) = 1, but that will be noted explicitly.
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CHAPTER 2

Scalar Laplace Estimator

In this chapter, we present the derivation, analysis, and demonstration of the minimum

variance estimator for the scalar case. In addition to providing a framework for an analytic,

recursive algorithm, we introduce a new concept for simplifying the relatively complicated

coefficient function used to define the Laplace conditional probability density function (cpdf).

In Section 2.1, we define the discrete scalar linear system. In Section 2.2, we derive

the unnormalized conditional pdfs (ucpdf) for the first few steps, and then in Section 2.3,

we hypothesize the general form of the ucpdf at k|k − 1 and prove it by induction. In

Section 2.4, we discuss some properties of the structure of the ucpdf. In Section 2.5, we

derive the closed-form equations for the mean and variance and discuss some properties of

the estimator for the first update. Finally, in Section 2.6, we present and discuss a 50-step

numerical simulation which shows the robustness of the scalar Laplace estimator.

2.1 Scalar dynamical system

The discrete scalar linear system with scalar state x̃k, measurement z̃k, independent mea-

surement noise vk, process noise wk, and deterministic control input ūk is given by

x̃k+1 = Φx̃k + wk + ūk

z̃k = Hx̃k + vk

(2.1)

where x̃1, wk and vk are all Laplace distributed as

fX̃1
(x̃1) =

1

2α
e−

1
α
|x̃1−x̄1| (2.2)
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fW (wk) =
1

2β
e−

1
β
|wk| (2.3)

fV (vk) =
1

2γ
e−

1
γ
|vk| (2.4)

and x̄1 is the mean of x1. For convenience, we decompose the system into deterministic and

stochastic parts, so that

x̃k = x̄k + xk, (2.5)

where the deterministic part is

x̄k+1 = Φx̄k + ūk, z̄k = Hx̄k, (2.6)

and the stochastic part is

xk+1 = Φxk + wk, zk = Hxk + vk. (2.7)

We define the measurement history up to step k as a random sequence

Yk = {Z1, · · · , Zk} (2.8)

with the associated realization

yk = {z1, · · · , zk} . (2.9)

The purpose for using z as elements of y is because we refer to both the random variable

and realization pretty often, and it’s clearer to no have things like yk and yk in the same

expression. It’s the only major exception to the standard notation. For the remainder of the

derivation, we consider only the stochastic part of the system.

2.2 First two updates and propagations

We work through the first few updates and propagations to deduce the general form of the

ucpdf. These steps will also form the base case for the subsequent proof by induction.
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2.2.1 Measurement update at k = 1

For the update at step k = 1, we make use of Bayes’ Theorem, which states that

fA|B =
fB|AfA
fB

. (2.10)

Therefore, the pdf of X1 conditioned on the measurement sequence Y1 is

fX1|Y1(x1|y1) =
fY1|X1(y1|x1)fX1(x1)

fY1(y1)
(2.11)

where y1 = {z1}. It is simpler to consider the conditional pdf without the normalization

factor, fY1(y1). Therefore, let us define the unnormalized conditional pdf (ucpdf) as

f̄X1|Y1(x1|y1) = fY1|X1(y1|x1)fX1(x1)

= fZ1|X1(z1|x1)fX1(x1)

= fX1,Y1(x1,y1)

(2.12)

Using the measurement equation in (2.1) and fV in (2.4),

fZ1|X1(z1|x1) = fV (z1 −Hx1)

=
1

2γ
exp

(
−|H|

γ

∣∣∣z1

H
− x1

∣∣∣) . (2.13)

Combining (2.13) and (2.2), we re-write the ucpdf as

f̄X1|Y1(x1|y1) = fV (z1 −Hx1)fX1(x1)

=
1

4αγ
exp

(
−|H|

γ

∣∣∣z1

H
− x1

∣∣∣− 1

α
|x1|
)
.

(2.14)

Figure 2.1 shows f̄X1|Y1 for α = 1.0 and γ = 0.25. Notice the peak at x1 = 1.23 due to

the measurement z1 = 1.23, the slight kink at x1 = 0 from the zero initial conditions, and

the asymmetry of the curve.

2.2.2 Propagation from k = 1 to k = 2

For the propagation, we need to determine the conditional density f̄X2|Y1(x2|y1). Recall that

fA,B = fA|BfB =⇒ fA,B|C = fA|B,CfB|C = fB|CfA|B,C (2.15)
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Figure 2.1: f̄X1|Y1 : a posteriori unnormalized conditional pdf at k = 1 for z1 = 1.23

We can therefore construct the joint density

f̄X1,X2|Y1(x2, x1|y1) = f̄X1|Y1(x1|y1)fX2|X1,Y1(x2|x1,y1)

= f̄X1|Y1(x1|y1)fX2|X1(x2|x1).
(2.16)

Using the dynamical equation in (2.1) and fW in (2.3),

fX2|X1(x2|x1) = fW (x2 − Φx1)

=
1

2β
exp

(
|Φ|
β

∣∣∣x2

Φ
− x1

∣∣∣) , (2.17)

and we can re-write (2.16) as

f̄X1,X2|Y1(x2, x1|y1) = f̄X1|Y1(x1|y1)fW (x2 − Φx1)

=
1

8αβγ
exp

(
− 1

α
|x1| −

|H|
γ

∣∣∣z1

H
− x1

∣∣∣− |Φ|
β

∣∣∣x2

Φ
− x1

∣∣∣) (2.18)
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To obtain f̄X2|Y1 , we then integrate (2.16) over x1

f̄X2|Y1(x2,y1) =
1

8αβγ

∫ ∞
−∞

exp

(
−|H|

γ

∣∣∣z1

H
− x1

∣∣∣− 1

α
|−x1| −

|Φ|
β

∣∣∣x2

Φ
− x1

∣∣∣) dx1 (2.19)

The solution to the integral in (2.19) was shown in Appendix B of [IS14] and is re-stated in

(7.1) of the Appendix for convenience. Using that result, (2.19) is evaluated as

f̄X2|Y1(x2,y1) = g
2|1
1 · exp

(
− 1

α

∣∣∣z1

H

∣∣∣− 1

β

∣∣∣∣Φz1

H
− x2

∣∣∣∣)
+ g

2|1
2 · exp

(
−1

γ
|z1| −

1

β
|−x2|

)
+ g

2|1
3 · exp

(
− |H|
γ |Φ|

∣∣∣∣Φz1

H
− x2

∣∣∣∣− 1

α |Φ|
|−x2|

) (2.20)

where,

g
2|1
i =

1

8αβγ


1

ρi +
3∑
l=1
l 6=i

ρlsgn (ξl − ξi)
− 1

−ρi +
3∑
l=1
l 6=i

ρlsgn (ξl − ξi)

 (2.21)

and

ρ1 = |H|
γ

ξ1 = z1
H

ρ2 = 1
α

ξ2 = 0

ρ3 = |Φ|
β

ξ3 = x2
Φ

(2.22)

Since the exponentials without x2 are constant, we can collapse them into the coefficients to

get

f̄X2|Y1(x2,y1) = ḡ
2|1
1 · exp

(
− 1

β

∣∣∣∣Φz1

H
− x2

∣∣∣∣)
+ ḡ

2|1
2 · exp

(
− 1

β
|x2|
)

+ ḡ
2|1
3 · exp

(
− |H|
γ |Φ|

∣∣∣∣Φz1

H
− x2

∣∣∣∣− 1

α |Φ|
|−x2|

) (2.23)

The coefficient terms ḡ
2|1
i are constant except for one or two step changes. For example, ḡ

2|1
1

has a step change at
Φz1

H
, while ḡ

2|1
2 has a step change at 0. ḡ

2|1
3 has step changes at both

Φz1

H
and 0, which can be observed numerically by plotting the equations with respect to
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x2. Following these observations, we state the following theorem, whose proof is shown in

Section 7.2 of the Appendix.

Theorem 2.2.1. For

A = {A0, A1, · · · , An} , {(−∞, ξ1), [ξ1, ξ2), · · · , [ξn,+∞)} (2.24)

with ξ1 < · · · < ξn ∈ R, any g : R→ R constant on Ai ∈ A, can be simplified to

g(x) = ρ0 +
n∑
i=1

ρisgn (ξi − x) (2.25)

where, for xi ∈ Ai,

ρ0 =
g(x0) + g(xn)

2

ρi =
g(xi−1)− g(xi)

2

(2.26)

Therefore, the complicated expressions for ḡ
2|1
i can be simplified to

G2|1
i = ρ

2|1
i0 +

N
2|1
i∑
l=1

ρ
2|1
il sgn

(
ξ

2|1
il − x2

)
(2.27)

where N
2|1
i is the ith element of

N2|1 =
[

1 1 2
]T
. (2.28)

This simplification is key to developing the recursive structure of the Laplace estimator. The

number of sign functions in each term corresponds to the number of x2 in the associated

exponential part. We refer to these as “elements” (not to be confused with elements in a

vector). Therefore, N
2|1
i refers to the number of sign functions of term i.

Figure 2.2 shows f̄X2|Y1 , propagated from f̄X1|Y1 in Figure 2.1, with β = 0.33. Observe

how the convolution with fW smooths out the sharp features from f̄X1|Y1 .
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Figure 2.2: f̄X2|Y1 : a priori unnormalized conditional pdf at k = 2

2.2.3 Update at k = 2

The update of the unnormalized conditional pdf f̄X2|Y2(x2|y2) is given by

f̄X2|Y2(x2|y2) = f̄X2|Y1(x2|y1)fZ2|X2,Y1(z2|x2,y1)

= f̄X2|Y1(x2|y1)fZ2|X2(z2|x2)

= f̄X2|Y1(x2|y1)fV (z2 −Hx2)

(2.29)

where, similar to (2.13),

fV =
1

2γ
exp

(
−|H|

γ

∣∣∣z2

H
− x2

∣∣∣) (2.30)

and f̄X2|Y1(x2|y1) is given in (2.20).

Figure 2.3 shows f̄X2|Y2 updated from f̄X2|Y1 in Figure 2.2 with measurement z2 = 1.09.
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Figure 2.3: f̄X2|Y2 : a posteriori unnormalized conditional pdf at k = 2 for z2 = 1.09

2.2.4 Propagation to k = 3

To propagate from k = 2 to k = 3, we first obtain the joint conditional density

f̄X3,X2|Y2(x3, x2|y2) = f̄X2|Y2(x2|y2)fX3|X2(x3|x2) (2.31)

where, as in (2.17),

fX3|X2(x3|x2) = fW (x3 − Φx2)

=
1

2β
exp

(
−|Φ|
β

∣∣∣x3

Φ
− x2

∣∣∣) (2.32)
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and f̄X2|Y2 is given in (2.29). We can then compute the marginal conditional density

f̄X3|Y2(x3|y2) =
1

4βγ

∫ ∞
−∞

f̄X2|Y2(x2|y2)fX3|X2(x3|x2) dx2

=
1

4βγ

∫ ∞
−∞

f̄X2|Y1(x2|y1)fV (z2 −Hx2)fW (x3 − Φx2) dx2

=
1

4βγ

∫ ∞
−∞

(
G2|1

1 · ε
2|1
1 + G2|1

2 · ε
2|1
2 + G2|1

3 · ε
2|1
3

)
dx2

(2.33)

where

ε
2|1
1 = exp

(
−|H|

γ

∣∣∣z2

H
− x2

∣∣∣− 1

β

∣∣∣∣Φz1

H
− x2

∣∣∣∣− |Φ|β ∣∣∣x3

Φ
− x2

∣∣∣)
ε

2|1
2 = exp

(
−|H|

γ

∣∣∣z2

H
− x2

∣∣∣− 1

β
|−x2| −

|Φ|
β

∣∣∣x3

Φ
− x2

∣∣∣)
ε

2|1
3 = exp

(
−|H|

γ

∣∣∣z2

H
− x2

∣∣∣− |H|
γ |Φ|

∣∣∣∣Φz1

H
− x2

∣∣∣∣− 1

α |Φ|
|−x2| −

|Φ|
β

∣∣∣x3

Φ
− x2

∣∣∣)
(2.34)

Using the integral formula (7.3) of the Appendix for each term in the integral, we get

f̄X3|Y2(x3|y2) =
3∑
i=1

N
2|1
i +1∑
j=0

G
3|2
ij exp

N
2|1
i +1∑
l=0

ηjl |ξjl − x3|

 (2.35)
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where ρij, ξij and ρij are

ρ10 = 0 ξ10 = z2
H

η10 = |H|
γ

ρ11 = a
2|1
11 ξ11 = Φz1

H
η11 = 1

β

ρ12 = 0 ξ12 = x3
Φ

η12 = |Φ|
β

ρ20 = 0 ξ20 = z2
H

η20 = |H|
γ

ρ21 = a
2|1
21 ξ21 = 0 η21 = 1

β

ρ22 = 0 ξ22 = x3
Φ

η22 = |Φ|
β

ρ30 = 0 ξ30 = z2
H

η30 = |H|
γ

ρ31 = a
2|1
31 ξ31 = Φz1

H
η31 = |H|

γ|Φ|

ρ32 = a
2|1
32 ξ32 = 0 η32 = 1

α|Φ|

ρ33 = 0 ξ33 = x3
Φ

η33 = |Φ|
β

(2.36)

and, for

δ̄ij =

N
2|1
i +1∑
l=0
l 6=j

ρilsgn (ξil − ξij)

δij =

N
2|1
i +1∑
l=0
l 6=j

ηilsgn (ξil − ξij)

(2.37)

G
3|2
ij =

(
ρ

2|1
i0 + δ̄ij

)
ηij + δij

−

(
−ρ2|1

i0 + δ̄ij

)
−ηij + δij

(2.38)
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Since the exponentials without x3 are constant, we can collapse them into the coefficients

and then combine terms with the same exponents to get

f̄X3|Y2(x3|y2) = Ḡ
3|2
1 · exp

(
− 1

β

∣∣∣∣Φz2

H
− x3

∣∣∣∣)
+ Ḡ

3|2
2 · exp

(
− 1

β

∣∣∣∣Φ2z1

H
− x3

∣∣∣∣)
+ Ḡ

3|2
3 · exp

(
− 1

β
|−x3|

)
+ Ḡ

3|2
4 · exp

(
− |H|
γ |Φ|

∣∣∣∣Φz2

H
− x3

∣∣∣∣− 1

β |Φ|
|−x3|

)
+ Ḡ

3|2
5 · exp

(
− 1

β

∣∣∣∣Φz2

H
− x3

∣∣∣∣− 1

β |Φ|

∣∣∣∣Φ2z1

H
− x3

∣∣∣∣)
+ Ḡ

3|2
6 · exp

(
− |H|
γ |Φ|

∣∣∣∣Φz2

H
− x3

∣∣∣∣− |H|
γ |Φ|2

∣∣∣∣Φ2z1

H
− x3

∣∣∣∣− 1

α |Φ|2
|−x3|

)
(2.39)

Note that (2.39) combines the indices i and j from (2.35) to a single index. As in step k = 2,

Ḡ
3|2
i can be simplified, using Section 7.2.1 of the Appendix, to the form

G3|2
i = ρ

3|2
i0 +

N
3|2
i∑
l=1

ρ
3|2
il sgn

(
ξ

3|2
il − x3

)
(2.40)

where N
3|2
i is the ith element of

N3|2 =
[

1 1 1 2 2 3
]T
. (2.41)

Note that terms with one element, known as “single-element” terms, combine with other

single-element terms with the same exponentials. For example,

Ḡ
3|2
1 exp (−β |−x3|)

= G
3|2
1 exp (−β |−x3|) +G

3|2
5 exp (−β |−x3|)

(2.42)

After combining all the terms with identical exponential parts, we order the terms so that

the ones with the fewest elements are listed first. As implied in (2.41), a general pattern

emerges such that for step k, there are k terms with one element, followed by k − 1 terms

with two elements, and k − 2 terms with three, or k, elements.

Figure 2.4 shows f̄X3|Y2 , propagated from the f̄X2|Y2 in Figure 2.3.
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Figure 2.4: f̄X3|Y2 : a priori unnormalized conditional pdf at k = 3

2.3 Proof of general recursive form in R by induction

We will use induction to show that (2.43) is the general form of the ucpdf which is preserved

under measurement update and propagation.

2.3.1 Induction hypothesis

From the first few steps presented above, we hypothesize that the general a priori unnor-

malized conditional pdf at step k|k − 1 is

f̄Xk|Yk−1
(xk|yk−1) =

nk|k−1∑
i=1

Gk|k−1
i Ek|k−1

i (2.43)

18



where

Gk|k−1
i = ρ

k|k−1
i0 +

N
k|k−1
i∑
l=1

ρ
k|k−1
il sgn

(
ξ
k|k−1
il − xk

)

Ek|k−1
i = exp

−N
k|k−1
i∑
l=1

η
k|k−1
il

∣∣∣ξk|k−1
il − xk

∣∣∣
 (2.44)

2.3.2 Base case

By construction, we know that the ucpdf at 2|1 and 3|2 from section 2.2 have the form shown

in (2.43). Next, we assume f̄Xk|Yk−1
(2.43) and show that f̄Xk+1|Yk has the same form.

2.3.3 Update from k|k − 1 to k|k

First update to step k by

f̄Xk|Yk = f̄Xk|Yk−1
fZk|Xk

= f̄Xk|Yk−1
fV

(zk
H
− xk

) (2.45)

This step is straight-forward, and it is clear that the form in (2.43) is preserved.

2.3.4 Propagate from k|k to k + 1|k

Then we propagate to step k+ 1 by forming the joint density f̄Xk+1,Xk|Yk and evaluating the

convolution integral

f̄Xk+1|Yk(xk+1|yk) =

∫ ∞
−∞

f̄Xk|YkfXk+1|Xk dxk

=

∫ ∞
−∞

f̄Xk|YkfW

(xk+1

Φ
− xk

)
dxk

(2.46)

Each term i in f̄Xk+1|Yk must be evaluated using the integral formula (7.3) of the Appendix

by choosing the appropriate parameters ρ, η and ξ, as we had done for step k = 3 (2.36).

We set each offset of a particular term in the exponent of Ek|k−1
i as ξ and its corresponding
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coefficient as η. If there is a corresponding sign function in Gk|k−1
i , then its coefficient is ρ.

When we include fV and fW , there is no corresponding sign function, so we set ρ = 0. These

were the first and last rows for each set of integration parameters for step k = 3 in (2.36).

In this way, we generate the a priori ucpdf at k + 1 using the a priori ucpdf at k in

(2.43). Based on the patterns for 2|1 and 3|2, we determine that the parameters at k + 1|k

are

ρi0 = 0 ξi0 = zk
H

ηi0 = |H|
γ

ρi1 = a
k|k−1
i1 ξi1 = ξ

k|k−1
i1 ηi1 = η

k|k−1
i1

ρi2 = a
k|k−1
i2 ξi2 = ξ

k|k−1
i2 ηi2 = η

k|k−1
i2

ρi3 = a
k|k−1
i3 ξi3 = ξ

k|k−1
i3 ηi3 = η

k|k−1
i3

...

ρi,Ñi = a
k|k−1

i,Ñi
ξi,Ñi = ξ

k|k−1

i,Ñi
ηi,Ñi = η

k|k−1

i,Ñi

ρi,Ñi+1 = 0 ξi,Ñi+1 = xk+1

Φ
ηi,Ñi+1 = |Φ|

β

(2.47)

where Ñi = N
k|k−1
i for short. The first and last rows of (2.47) correspond to the measurement

update and propagation, respectively, and are the same for any term. The newest measure-

ments being added to the top is done to preserve a consistent structure. The middle rows

are determined by the parent term at step k, so ρ is simply the coefficients of the parent’s

sign functions, ξ are from the arguments, and η are from the coefficients in the exponential.

The solution to the integral is determined using the integral formula (7.3) of the Appendix.

2.3.5 Isolate xk+1 and factor out constant terms

After performing the integral, the arguments of the sign functions are of the form ξl − ξi,

only some of which involve ξi,Ñi+1 which contains xk+1. For example,

ηjsgn
(xk+1

Φ
− zk
H

)
= −ηjsgn (Φ) sgn

(
Φzk
H
− xk+1

)
ηj

∣∣∣xk+1

Φ
− zk
H

∣∣∣ =
ηj
|Φ|

sgn

(
Φzk
H
− xk+1

) (2.48)
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Every term not involving xk+1 is constant, so the exponentials are factored out as a scalar

multiple. In the coefficient functions, the constant sign terms are moved into the ρi0 and ηi0

in the numerator and denominator of (7.4), respectively.

2.3.6 Simplify coefficient function and combine terms

The complicated coefficient (G) functions are simplified using the method described in Sec-

tion 7.2.1 of the Appendix. This allows for the terms with identical exponential parts to be

combined. Finally, the expression is re-written in the general form given in (2.43), with the

indices k − 1 and k incremented to k and k + 1, respectively, as

f̄Xk+1|Yk(xk+1|yk) =
nk+1|k∑
i=1

Gk+1|k
i Ek+1|k

i (2.49)

where

Gk+1|k
i = ρ

k+1|k
i0 +

N
k+1|k
i∑
l=1

ρ
k+1|k
il sgn

(
ξ
k+1|k
il − xk+1

)

Ek+1|k
i = exp

−N
k+1|k
i∑
l=1

η
k+1|k
il

∣∣∣ξk+1|k
il − xk+1

∣∣∣
 (2.50)

Thus, we have shown by induction that the update and propagation algorithm is recursive

for f̄Xk|Yk−1
in (2.43).

2.4 Properties of the ucpdf

By observing the first few ucpdfs through k = 4, we can deduce a pattern in the number of

terms as well as identify which terms contain which elements, allowing us to know a priori

which terms will combine. The first few terms counts are shown in Table 2.1 and it is clear

that the number of terms is

nk|k−1 =
k∑
i=1

i =
k(k + 1)

2
. (2.51)
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k Terms Elements

1 1 2

2 3 1+2

3 6 1+2+3

4 10 1+2+3+4

Table 2.1: Term count for R

The number of elements (or sign functions) are deduced in a similar way to be

Nk|k−1 =



1k × 1

1k−1 × 2

1k−2 × 3
...

11 × k


, (2.52)

where 1k is a column vector of length k composed of 1’s. There are k terms with one element,

k − 1 terms with two elements, k − 2 terms with three elements, · · · , and one term with k

elements.

An important property of the conditional pdf is that it is log-concave and unimodal.

Consider the joint density function of initial condition and measurements, which are then

convolved with the process noise. Since the measurement and process noise densities are

log-concave, and log-concavity is preserved under multiplication and convolution, it follows

that the conditional density function at time step k is also log-concave. Furthermore, since

the conditional pdf is a marginalization of the log-concave joint density function, then it is

also log-concave and, therefore, unimodal. This property allows for the use a standard tools

to determine the maximum a posteriori (MAP) estimate as an alternative to computing the

conditional mean.
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2.5 Mean and Variance

The mean, µ and variance σ2 are given as

µXk|Yk = E[Xk|Yk]

σ2
Xk|Yk = E[(Xk − µXk|Yk)

2|Yk]

= E[X2
k |Yk]− 2µXk|YkE[Xk|Yk] + µ2

Xk|Yk

= E[X2
k |Yk]− µ2

Xk|Yk

(2.53)

where E[Xk|Yk] and E[X2
k |Yk] are the first and second moments of the normalized conditional

pdf fXk|Yk , respectively.

Therefore, we first need to normalize the a posteriori ucpdf f̄Xk|Yk , which is given by

(2.43) and (2.45), or more explicitly,

f̄Xk|Yk(xk|yk) =

nk|k−1+1∑
i=1

Gk|k−1
i Ek|k−1

i

 · 1

2γ
exp

(
−|H|

γ

∣∣∣zk
H
− xk

∣∣∣) (2.54)

where Gk|k−1
i and Ek|k−1

i are given in (2.44). We can ignore the
1

2γ
, since we will normalize

anyway, and re-index the terms to get

f̄Xk|Yk(xk|yk) =
nk|k∑
i=1

Gk|ki E
k|k
i

(2.55)

where

Gk|ki = ρ
k|k
i0 +

N
k|k
i∑
l=1

ρ
k|k
il sgn

(
ξ
k|k
il − xk

)

Ek|ki = exp

−N
k|k−1
i∑
l=1

η
k|k−1
il

∣∣∣ξk|k−1
il − xk

∣∣∣− |H|
γ

∣∣∣zk
H
− xk

∣∣∣


, exp

−N
k|k
i∑
l=1

η
k|k
il

∣∣∣ξk|kil − xk∣∣∣


(2.56)

Note that the only substantial difference between f̄Xk|Yk and f̄Xk|Yk−1
is the additional element

from fV .
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2.5.1 Characteristic function

Instead of integrating for them directly, the normalization and moments can be obtained by

using the characteristic function of the ucpdf, which is the Fourier transform of f̄X|Y . For

ν ∈ C, x ∈ R, the characteristic function is

φ̄X|Y (ν) =

∫
R
ejνxf̄X|Y (x|y) dx (2.57)

The derivation of the characteristic function can be found in Section 7.3 of the Appendix,

but suffice it to say that it simply is an application of the integral formula (7.3) that was

used in propagation. Using (7.16) for each term of f̄ iX|Y = giεi, the corresponding term in

the characteristic function is

φ̄iX|Y = Gi(ν)Ei(ν) (2.58)

where

Gi(ν) =
g†i (ξi)

jν + ηi +
m∑
l=1
l 6=i

ηisgn (ξl − ξi)
− gi(ξi)

jν − ηi +
m∑
l=1
l 6=i

ηisgn (ξl − ξi)

,
ai1

jν + ai2
− bi1
jν + bi2

Ei(ν) = exp

− m∑
l=1
l 6=i

ηl |ξl − ξi|+ jνξi


, exp (ci1 + ci2jν)

(2.59)

where g†i indicates that we use the convention sgn (0) = 1 instead of the usual −1 stated in

(1.3). The reason for this comes from the derivation of the integral formula, which makes

the indexing line up.

2.5.2 Normalization

From (7.24), the normalization factor fY is simply

fY = φ̄X|Y (0). (2.60)
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Therefore, using (2.58), we get

fY =
m∑
i=1

(
ai1
ai2
− bi1
bi2

)
exp (ci1) (2.61)

2.5.3 First moment and second moments at step k

The mean and variance is given by

x̂ = E [X|Y ]

Var(x) = E
[
X2|Y

]
− E [X|Y ]2

(2.62)

where

E [X|Y ] =

[
1

j

∂φX|Y (ν)

∂ν

]
ν=0

E
[
X2|Y

]
=

[
−
∂2φX|Y (ν)

∂ν2

]
ν=0

.

(2.63)

Note that the moments are derived form the normalized characteristic function φX|Y ,

which is simply φ̄X|Y divided by fY found in (2.61). The proof of (2.63) is detailed in

Section 7.4 of the Appendix. Using the formulas in Section 7.5 of the Appendix, the first

and second moments of term i are given by

E[X|Y ] =
m∑
i=1

1

j

[
∂Gi

∂ν
Ei +Gi

∂Ei
∂ν

]
Ei[X

2|Y ] = −
m∑
i=1

[
∂2Gi

∂ν2
εi + 2

∂Gi

∂ν
· ∂εi
∂ν

+Gi
∂2εi
∂ν2

] (2.64)

where, for brevity, the partial derivatives are shown in (7.26) and (7.28) of the Appendix.

2.5.4 Example: a posteriori mean of fX1|Y1

Let’s do generic example of the mean for the cpdf after the first update. Consider the f̄X1|Y1 .

For simplicity, let H = 1. From (2.13),

f̄X1|Y1 =
1

4αγ
exp

(
−1

γ
|z1 − x1| −

1

α
|x1|
)

(2.65)
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Then, from (2.61), the characteristic function is

φ̄X1|Y1(ν) =

(
1

jν + 1
γ

+ 1
α

sgn (−z1)
− 1

jν − 1
γ

+ 1
α

sgn (−z1)

)
exp

(
− 1

α
|z1|+ jνz1

)

+

(
1

jν + 1
α

+ 1
γ
sgn (z1)

− 1

jν − 1
α

+ 1
γ
sgn (z1)

)
exp

(
− 1

α
|z1|
)

,

(
a11

jν + a12

− b11

jν + b12

)
exp (c11 + c12 · jν)

+

(
a21

jν + a22

− b21

jν + b22

)
exp (c21)

(2.66)

The normalization factor becomes

fY1 =

(
a11

a12

− b11

b12

)
exp (c11) +

(
a21

a22

− b21

b22

)
exp (c21)

=
2α2γ

α2 − γ2
exp

(
− 1

α
|z1|
)
− 2αγ2

α2 − γ2
exp

(
−1

γ
|z1|
) (2.67)

Using (2.67) and (2.64), the first moment becomes

x̂1 , E[X1|Y1] =

2α2γ2sgn(z1)
α2−γ2

(
e−

1
γ
|z1| − e− 1

α
|z1|
)

+ z1αe
− 1
α
|z1|

αe−
1
α
|z1| − γe−

1
γ
|z1|

=

2α2γ2sgn(z1)
α2−γ2 e−

1
γ
|z1|

αe−
1
α
|z1| − γe−

1
γ
|z1|

+

(
z1α− 2α2γ2sgn(z1)

α2−γ2

)
e−

1
α
|z1|

αe−
1
α
|z1| − γe−

1
γ
|z1|

(2.68)

Let’s consider a few extremes.

• α > γ and z1 � 0

In this case, we can see the that e−
1
γ
|z1| vanishes faster than e−

1
α
|z1|, so e−

1
α
|z1| and the

right term of (2.68) dominate for z1 � 0. Furthermore, the linear part of that term,

z1α, dominates the constant part, so

x̂1 ≈

(
z1α− 2α2γ2sgn(z1)

α2−γ2

)
e−

1
α
|z1|

αe−
1
α
|z1|

≈ z1αe
− 1
α
|z1|

αe−
1
α
|z1|

= z1

(2.69)
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• α < γ and z1 � 0

In this case, we can see the that e−
1
α
|z1| vanishes much faster than e−

1
γ
|z1|, so e−

1
γ
|z1|

and the left term of (2.68) dominate. So

x̂1 ≈
2α2γ2sgn(z1)

α2−γ2 e−
1
γ
|z1|

−γe−
1
γ
|z1|

=
2α2γsgn (z1)

γ2 − α2

(2.70)

is constant!

• α = γ

When α = γ, it can be shown that x̂1 =
z1

2
.

We can confirm these observations with a numerical example. Figure 2.5 shows x1 as a

function of z1 for (α, γ) ∈ {(1, 0.33), (1, 0.67), (1, 1), (0.67, 1), (0.33, 1)}. We can see the linear

behavior when z1 is small and when γ < α, but for γ > α the conditional estimate seems to

saturate for large z1. Also, we can see that the slope is
1

2
when α = γ. This is consistent

with our intuition that the estimate should favor the measurement when the measurement

noise is lower than the prior noise. Conversely, when the measurement noise is larger, it

effects should be attenuated. When they are equal, it splits the difference.
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Figure 2.5: Conditional mean x̂1 versus measurement z1

2.5.4.1 Example: a posteriori variance at k = 1

Let’s do a generic example of the variance for the same cpdf. Again, let H = 1 for simplicity.

Then, using (2.67) and (2.64), the second moment is then given by

E[X2
1 |Y1] =

[
2z2

1α
2γ

(α2 − γ2)
− 8α3γ3 |z1|

(α2 − γ2)2 +
4α4γ3 (α2 + 3γ2)

(α2 − γ2)3

]
×

(α2 − γ2) exp
(
− 1
α
|z1|
)

2αγ
(
αe−

1
α
|z1| − γe−

1
γ
|z1|
)

− 4α3γ4 (γ2 + 3α2)

(α2 − γ2)3 ×
(α2 − γ2) exp

(
− 1
γ
|z1|
)

2αγ
(
α exp

(
− 1
α
|z1|
)
− γ exp

(
− 1
γ
|z1|
))

=

[
z2

1α−
4α2γ2 |z1|
α2 − γ2

+
2α3γ2 (α2 + 3γ2)

(α2 − γ2)2

]
×

exp
(
− 1
α
|z1|
)

α exp
(
− 1
α
|z1|
)
− γ exp

(
− 1
γ
|z1|
)

− 2α2γ3 (γ2 + 3α2)

(α2 − γ2)2 ×
exp

(
− 1
γ
|z1|
)

α exp
(
− 1
α
|z1|
)
− γ exp

(
− 1
γ
|z1|
)

(2.71)
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Figure 2.6 shows the error variance of x1 as a function of measurement z1 for (α, γ) ∈

{(1, 1), (0.5, 1), (0.33, 1)}. For small z1, the error variance looks quadratic, but for large z1,

the error variance goes to a constant. It appears that while the variance is a function of the

measurements, the effect of large measurements on the variance is bounded, except when

the relative variances are equal. Note that, while not shown in the figure, the conditional

variance is the same for equal values of αγ.
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Figure 2.6: Variance versus measurement z1

Figures 2.7 and 2.8 show the error variance of x1 as a function of measurement z1 for the

Kalman filter, Laplace estimator, and Cauchy estimator. Using a least-squares fit between

Laplace, Cauchy and Gaussian pdfs, the relationship between the noise parameters of the
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Laplace distribution (γ), Cauchy distribution (ν), and Gaussian distribution (σ) are

σ = 1.02γ

ν = 1.4σ = 1.43γ,
(2.72)

where the coefficients were determined numerically [IS12]. We can see that the behavior of

the Laplace variance approaches that of the Kalman filter as the difference between α and γ

become large, while it approaches a parabolic shape similar to that of the Cauchy estimator

when α approaches γ (the coefficient for the z2 term of the Cauchy variance is 1
4

[IS14]).
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Figure 2.7: Variance versus measurement z1 for α = 1, γ = 1

2.6 Example: 50-step simulation

We recursively and analytically computed the conditional pdf as well as the first and second

moments for 50 steps using the parameters Φ = 0.9, H = 1, α = 1/5, β = 1/4, γ = 1/3.

Following the motor example in [ABL17], the measurements were generated using a Laplace

random number generator, and two spikes of magnitude 10 were added to the measurements

at k = 16 and k = 33 to simulate anomalies.

Figure 2.9 shows the a posteriori cpdf at step k = 17, just after the first spike, along

with the conditional mean x̂ and maximum a posteriori estimate xMAP . We see that it is
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Figure 2.8: Variance versus measurement z1 for α = 0.5, γ = 1

unimodal, though x̂ is quite different from xMAP due to the asymmetry.

Figure 2.10 shows the measurement noise, maximum a posteriori estimation error, and

conditional mean estimation error bounded by estimated standard deviations for the Laplace

estimator and Kalman filter. The red dashed lines depict the computed estimation standard

deviation. As in Figures 2.7 and 2.8, the Kalman filter noise parameters were determined

from the Laplace noise parameters using (2.72). The Kalman estimate reacts strongly to

the spikes, while its variance remains constant. In contrast, the Laplace estimate appears to

attenuate the measurement spikes and the estimated standard deviation increases to account

for the increased uncertainty.

Qualitatively, the maximum a posteriori (MAP) estimate in the second subplot of Figure

2.10 appears to track the conditional mean reasonably well. Since the conditional probability

density function is unimodal, there are many convex optimization methods available to

determine its maximum. This supports the work in [ABL17] and [ABB11], where MAP

estimates are used as a reasonable alternative to the conditional mean.
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Figure 2.9: A posteriori conditional pdf at k = 17
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CHAPTER 3

Vector Laplace Conditional PDF

We extend the problem to the vector case with additive scalar measurement and process

noise. While it is not presented here, generalizing to vector noises is straight-forward, par-

ticularly if the elements are independent. In contrast to the chapter on scalar estimation, we

will save the mean and variance for the next chapter, because it is quite an involved topic

on its own.

In Section 3.1, we define the general discrete linear system in Rn. In Section 3.2, we

formally show the equations used to perform the measurement and propagation steps in Rn.

In Section 3.3, we derive the first update and propagation steps in R2 because it becomes

quite complicated to show for Rn. During the first propagation, we extend the concept of

simplifying the coefficient function to 2-dimensions. Using the lessons learned in Section

3.3, we hypothesize the general form of the ucpdf at step k|k − 1 and prove that it is

preserved under update and propagation by induction in Section 3.4. Finally, in Section 3.6,

we discuss the computational complexity and then extend it to Rn. It turns out that while

the computational complexity increases, conceptually extending from R2 to Rn is rather

straight-forward.
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3.1 Vector dynamical system

Let the discrete linear system with state xk ∈ Rn, scalar measurement zk ∈ R, independent

scalar measurement noise vk, and scalar process noise wk be defined as

x̃k+1 = Φx̃k + Γwk

z̃k = Hx̃k + vk

(3.1)

with Φ ∈ Rn×n, Γ ∈ Rn×1, and H ∈ R1×n and where x1, wk and vk are all Laplace distributed

as

fX̃1
(x̃1) =

n∏
i=1

1

2α
e−

1
α
|x̃i−x̄i| =

n∏
i=1

1

2α
e−

1
α
|−x̄i+Eix̃| (3.2)

fW (wk) =
1

2β
e−

1
β
|wk| (3.3)

fV (vk) =
1

2γ
e−

1
γ
|vk|, (3.4)

the elements of x̃1 are mutually independent and Ei ∈ R1×n have elements 1 at i and 0

elsewhere.

For convenience, we decompose the system into deterministic and stochastic parts, so

that

x̃k = x̄k + xk, (3.5)

x̄k+1 = Φx̄k

z̄k = Hx̄k,
(3.6)

with initial conditions x̄1 =
[
x̄1 x̄2 · · · x̄n

]T
and

xk+1 = Φxk + Γwk

zk = Hxk + vk

(3.7)

For the remainder of the derivation, we will only consider only the stochastic part.
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3.2 Laplace conditional PDF update and propagation

Given the a priori ucpdf f̄Xk|Yk−1
, the a posteriori pdf conditioned on the measurement

sequence Yk is, using Bayes’ Theorem, given by

f̄Xk|Yk(xk|yk) =
fXk|Yk−1

(xk|yk−1)fZk|Xk(zk|xk)
fYk(yk)

, (3.8)

where

yk = {z1, z2, · · · , zk} . (3.9)

Since fYk is just a normalization factor that can be computed at any time, we will ignore it

for now and, going forward, only consider the unnormalized conditional pdf

f̄Xk|Yk(xk|yk) = f̄Xk|Yk−1
(x1|yk−1)fZk|Xk(zk|xk)

= f̄Xk|Yk−1
(xk|yk−1)fV (zk −Hxk).

(3.10)

To determine the a priori unnormalized conditional density f̄Xk+1|Yk(xk+1|yk), we first con-

struct the joint density fXk+1,W |Yk from

f̄Xk,Wk|Yk(xk, wk|yk) = f̄Xk|Yk(xk|yk)fW (wk). (3.11)

Then, we make the change of variables from xk to (xk+1, wk) using xk+1

wk

 =

 Φ Γ

0 I

 xk
wk

 , A

 xk
wk


=⇒

 xk
wk

 =

 Φ−1 −Φ−1Γ

0 1

 xk+1

wk

 , A−1

 xk+1

wk

 (3.12)

[SC08, p. 51] and integrate with respect to wk

f̄Xk+1|Yk(xk+1|yk) =
∣∣Φ−1

∣∣×∫ ∞
−∞

f̄Xk|Yk
(
Φ−1xk+1 − Φ−1Γwk|yk

)
fW (wk) dwk,

(3.13)

where det (A−1) = det (Φ−1) , |Φ−1|. Using these general steps, we determine the recursive

algorithm for generating the a priori ucpdf given the parameters of the a priori ucdpf from

the previous step.
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3.3 First update and propagation in R2 to motivate general form

We explicitly compute the first update and propagation steps for the 2-dimensional case to

motivate the general structure of the unnormalized conditional pdf (ucpdf) as well as the

recursive algorithm to generate successive a posteriori and a priori ucpdfs at any step k for

the general n-dimensional case.

3.3.1 Initial conditions for x ∈ R2

Let the elements of initial condition be described by independent Laplace distributions with

means 0 and with spread parameter α so that

fX1(x1) =
1

2α
exp

(
− 1

α
|x1|
)
· 1

2α
exp

(
− 1

α
|x2|
)

=
1

4α2
exp

(
− 1

α
|E1x1| −

1

α
|E2x1|

) (3.14)

where

E1 =
[

1 0
]
, E2 =

[
0 1

]
. (3.15)

3.3.2 Update at k = 1 for x ∈ R2

Let the measurement at k = 1 be z1 so that, using (3.4) and (3.7), the density of Z1

conditioned on X1 is

fZ1|X1 =
1

2γ
exp

(
−1

γ
|z1 −Hx1|

)
= fV

(
−1

γ
|z1 −Hx1|

)
(3.16)

The unnormalized pdf of X1 conditioned on Z1 is the joint density

f̄X1|Y1 = fX1(x1)fV (z1 −Hx1)

=
1

8α2γ
exp

(
− 1

α
|E1x1| −

1

α
|E2x1| −

1

γ
|z1 −Hx1|

) (3.17)

which is a product since V is independent of X1. Since we can normalize at any time, we

will carry forward the joint density function, or unnormalized conditional density function

(ucpdf), without the coefficient
1

8α2γ
.
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Figure 3.1 shows f̄X1|Y1 with α = 0.5 and γ = 0.4. Notice the asymmetry and kink on

the left side, which is the peak of fV (z1 −Hx2).

Figure 3.1: f̄X1|Y1 : a posteriori unnormalized conditional pdf at k = 1

3.3.3 Propagation from k = 1 to k = 2 for x ∈ R2

To determine the ucpdf f̄X2|Y1(x2|y1), we first construct the joint density fX2,W |Y1 from

fX1,W |Y1 = fX1|Y1fW , (3.18)

which is again a product due to the independence of W , where fW is given by (3.3). Then,

we make the change of variables from x1 to (x2, w1) and then integrate with respect to w1.
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For the initial conditions, the exponents become

− 1

α
|x̄1i − Eix1| = −

1

α

∣∣Ei (Φ−1x2

)
− EiΦ−1Γw1

∣∣
= −|EiΦ

−1Γ|
α

∣∣∣∣EiΦ−1x2

EiΦ−1Γ
− w1

∣∣∣∣ (3.19)

where i = 1, 2, while the exponent for the measurement becomes

−1

γ
|z1 −Hx1| = −

1

α

∣∣−z̄1 +H
(
Φ−1x2

)
−HΦ−1Γw1

∣∣
= −|HΦ−1Γ|

γ

∣∣∣∣ −z1

HΦ−1Γ
+
HΦ−1x2

HΦ−1Γ
− w1

∣∣∣∣ (3.20)

Using (3.3) and (3.17), (3.13) becomes explicitly in terms of the Laplace densities

f̄X2|Y1(x2|y1) =
|Φ|−1

2β

∫ ∞
−∞

exp

(
−|E1Φ−1Γ|

α

∣∣∣∣E1Φ−1x2

E1Φ−1Γ
− w1

∣∣∣∣
−|E2Φ−1Γ|

α

∣∣∣∣E2Φ−1x2

E2Φ−1Γ
− w1

∣∣∣∣
−|HΦ−1Γ|

γ

∣∣∣∣ −z1

HΦ−1Γ
+
HΦ−1x2

HΦ−1Γ
− w1

∣∣∣∣− 1

β
|w1|

)
dw1,

(3.21)

where it is assumed that E1Φ−1Γ 6= 0, E2Φ−1Γ 6= 0, and HΦ−1Γ 6= 0. As before, we will

ignore the coefficient
|Φ−1|−1

2β
. Using the integral formula (7.59), and defining pre-integration

parameters ρ̄
2|1
i and ξ̄

2|1
i as

ρ̄
2|1
1 =

|E1Φ−1Γ|
γ

, ξ̄
2|1
1 =

E1Φ−1x2

E1Φ−1Γ
, ψ̄

2|1
1 + θ̄

2|1
1 x2,

ρ̄
2|1
2 =

|E2Φ−1Γ|
γ

, ξ̄
2|1
2 =

E2Φ−1x2

E2Φ−1Γ
, ψ̄

2|1
2 + θ̄

2|1
2 x2,

ρ̄
2|1
3 =

|HΦ−1Γ|
γ

, ξ̄
2|1
3 =

−z1

HΦ−1Γ
+
HΦ−1x2

HΦ−1Γ
, ψ̄

2|1
3 + θ̄

2|1
3 x2,

ρ̄
2|1
4 =

1

β
, ξ̄

2|1
4 = 0 , ψ̄

2|1
4 + θ̄

2|1
4 x2,

(3.22)
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the solution to (3.21) is

f̄X2|Y1(x2|y1) =
|Φ|−1

4βγ

4∑
j=1

g
2|1
j exp

− 4∑
l=1
l 6=j

ρ
2|1
l

∣∣∣ξ2|1
l − ξ

2|1
j

∣∣∣


,
|Φ|−1

4βγ

4∑
j=1

g
2|1
j ε

2|1
j

(3.23)

where

g
2|1
j (x2) =

1

ρ̄
2|1
j +

4∑
l=1
l 6=j

ρ̄
2|1
l sgn

(
ξ̄

2|1
l − ξ̄

2|1
j

) − 1

−ρ̄2|1
j +

4∑
l=1
l 6=j

ρ
2|1
l sgn

(
ξ̄

2|1
l − ξ̄

2|1
j

)
=

1

ρ̄
2|1
j +

4∑
l=1
l 6=j

ρ̄
2|1
l sgn

((
ψ̄

2|1
l − ψ̄

2|1
j

)
+
(
θ̄

2|1
l − θ̄

2|1
j

)
x2

)
− 1

−ρ̄2|1
j +

4∑
l=1
l 6=j

ρ
2|1
l sgn

((
ψ

2|1
l − ψ

2|1
j

)
+
(
θ

2|1
l − θ

2|1
j

)
x2

)
,

1

ρ̄
2|1
j +

4∑
l=1
l 6=j

ρ
2|1
l sgn

(
ψ

2|1
jl + θ

2|1
jl x2

) − 1

−ρ̄2|1
j +

4∑
l=1
l 6=j

ρ
2|1
l sgn

(
ψ

2|1
jl + θ

2|1
jl x2

)

(3.24)

and,

ε
2|1
j (x2) = exp

− 4∑
l=1
l 6=j

ρ̄
2|1
l

∣∣∣ξ̄2|1
l − ξ̄

2|1
j

∣∣∣


= exp

− 4∑
l=1
l 6=j

ρ̄
2|1
l

∣∣∣(ψ̄2|1
l − ψ̄

2|1
j

)
+
(
θ̄

2|1
l − θ̄

2|1
j

)
x2

∣∣∣


, exp

− 4∑
l=1
l 6=j

ρ̄
2|1
l

∣∣∣ψ2|1
jl + θ

2|1
jl x2

∣∣∣


(3.25)

Note that the arguments of the sign functions are converted into standard form

ξ
2|1
jl = ψ

2|1
jl + θ

2|1
jl x2 (3.26)

40



3.3.4 Simplify g after propagation for x ∈ R2

As in the scalar case, the form of gj in (3.24) is not suitable for recursion. Furthermore, it is

impractical to combine any terms while dealing with such an unwieldy coefficient function.

However, we can extend Theorem 2.2.1 to n-dimensions to simplify this.

Theorem 3.3.1. LetH be a hyperplane arrangement of m affine hyperplanes H1, H2, · · · , Hm,

where Hi = {x|ψi + θix}, x ∈ Rn, ψi ∈ R. Let g : Rn → R be a function of sgn (ψi + θx),

constant on the faces of A. Then,

g = ρ0 +
n∑
i=1

(mi )∑
j=1

ρij
∏
l∈σij

sgn (ψl + θlx) (3.27)

where

σi = {{1} , · · · , {m} , · · · , {1, 2} , · · · , {m− 1,m} , · · · , {m− n+ 1, · · · ,m}} (3.28)

is the set of all subsets of {1, · · · ,m} with at most n elements. The proof is provided by

collaborators from the Technion in Israel and an excerpt of their work is included in Section

7.7 of the Appendix.

Theorem 3.3.1 has a profound effect on the general n-dimensional Laplace estimator.

Not only does it make more obvious how we can preserve the structure of the ucpdf under

propagation, it provides a straight-forward framework for combining terms simply by adding

coefficients. Furthermore, it enables a parallel effort for the n-dimensional Cauchy estimator

as well.

Section 7.6 of the Appendix describes a straight-forward algorithm for determining the

coefficients of the simplified (or flattened) gj(x2). For now, we will use it to flatten our
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relatively simple coefficient functions. After flattening, each gj(x2) assumes the form

g
2|1
j (x2) = ρ

2|1
j0 + ρ

2|1
j1 sgn

(
ψ

2|1
j1 + θ

2|1
j1 x2

)
+ ρ

2|1
j2 sgn

(
ψ

2|1
j2 + θ

2|1
j2 x2

)
+ ρ

2|1
j3 sgn

(
ψ

2|1
j3 + θ

2|1
j3 x2

)
+ ρ

2|1
j4 sgn

(
ψ

2|1
j1 + θ

2|1
j1 x2

)
sgn

(
ψ

2|1
j2 + θ

2|1
j2 x2

)
+ ρ

2|1
j5 sgn

(
ψ

2|1
j1 + θ

2|1
j1 x2

)
sgn

(
ψ

2|1
j3 + θ

2|1
j3 x2

)
+ ρ

2|1
j6 sgn

(
ψ

2|1
j2 + θ

2|1
j2 x2

)
sgn

(
ψ

2|1
j3 + θ

2|1
j3 x2

)
= ρ

2|1
j0 +

6∑
i=1

ρ
2|1
ji

∏
l∈σji

sgn
(
ψ

2|1
jl + θ

2|1
jl x2

)
(3.29)

and

σ = {{1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3}} (3.30)

Figure 3.2 shows f̄X2|Y1 with α = 0.5, β = 0.3 and γ = 0.4. Note the smoothness of the pdf

after convolution with fW compared to the sharp point of f̄X1|Y1 in Figure 3.1.

3.3.5 Generalized integral formula

The simplification of the coefficient function in (3.29) introduces one complication. The

integral formula that we’ve been using the propagate f̄Xk|Yk is not valid for when g is not

a function of sums of signs. Therefore, we re-derive the integral formula to account for the

products of sign functions and show examples for both x ∈ R and x ∈ R2 in Section 7.8 of

the Appendix. The results in the relevant form in (7.59) are restated here for convenience.

For x ∈ R and

g(x) = ρ0 +
m∑
i=1

ρi
∏
`∈σi

sgn (ξ` − x) , (3.31)

the integral

I =

∫ ∞
−∞

g(x) exp

(
−

n∑
i=1

ηi |ξi − x|+ jνx

)
dx

=
n∑
i=1

Gi exp

(
−

n∑
`=1

ρ`(ξ` − ξi)s`i + jνξi

) (3.32)
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Figure 3.2: f̄X2|Y1 : a priori unnormalized conditional pdf at k = 2

where

Gi =

 g(ξi)

jν +
n∑̀
=1

η`sgn (ξ` − ξi)


†

− g(ξi)

jν +
n∑̀
=1

η`sgn (ξ` − ξi)
(3.33)

and the † indicates that sgn (0) = 1 instead of our usual convention sgn (0) = −1. The reason

for this comes from the derivation, when we make a shift from ξi+1 to ξi for convenience but

causes a change in convention at that particular location. This integral formula allows for

the propagation in Rn as well as calculation of the moments in the next chapter.
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3.4 Proof of general recursive form for Rn by induction

We now present the recursive algorithm for determining the a posteriori and a priori ucpdf

at step k + 1|k by undergoing a measurement update from step k|k − 1 to k|k, followed

by a convolution integral. Finally, we do some bookkeeping to organize it in the standard

structure.

3.4.1 Induction hypothesis in R2

Given the a priori ucpdf at k|k − 1

f̄Xk|Yk−1
=

N
k|k−1
i∑
i=1

G
k|k−1
i ε

k|k−1
i (3.34)

where

G
k|k−1
i = ρi0 +

P
k|k−1
i∑
j=1

ρ
k|k−1
ij

∏
l∈σij

sgn
(
ξ
k|k−1
il

)
(3.35)

and

ε
k|k−1
i = exp

−M
k|k−1
i∑
j=1

η
k|k−1
ij

∣∣∣ξk|k−1
ij

∣∣∣
 (3.36)

where

ξ
k|k−1
ij = ψ

k|k−1
ij + θ

k|k−1
ij xk, (3.37)

N
k|k−1
i is the number of terms, M

k|k−1
i is the number of elements of term i, and P

k|k−1
i is

the number of terms in G
k|k−1
i , and σij is the set of indices of sign functions associated with

term j of G
k|k−1
i at step k|k − 1.

3.4.2 Base case

By construction, we know that the ucpdf at 2|1 from Section 3.3 have the form shown in

(3.34). Next, we assume f̄Xk|Yk−1
in (3.34) and show that f̄Xk+1,Yk has the same structure.
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3.4.3 Measurement update from k|k − 1 to k|k

The measurement update step involved constructing the joint density from the a priori ucpdf

and

fZk|Xk = fV (zk −Hxk) =
1

2γ
exp

(
−1

γ
|zk −Hxk|

)
. (3.38)

Since V is independent noise, this is simply the product, and effectively contributes an

additional element to the exponential so that

f̄Xk|Yk =

N
k|k−1
i +1∑
i=1

G
k|k
i ε

k|k
i (3.39)

where

G
k|k
i =

1

2γ
G
k|k−1
i (3.40)

and

ε
k|k
i = exp

−M
k|k−1
i∑
j=1

η
k|k−1
ij

∣∣∣ξk|k−1
ij

∣∣∣− 1

γ
|−zk +Hxk|


= exp

−M
k|k−1
i +1∑
j=1

η
k|k−1
ij

∣∣∣ξk|k−1
ij

∣∣∣


(3.41)

with

ξ
k|k−1
ij = ψ

k|k−1
ij + θ

k|k−1
ij x (3.42)

This gives us the a posteriori ucpdf at k|k, with the additional parameters

ρ∗ =
1

γ
, ψ∗ = −zk, θ∗ = H (3.43)

3.4.4 Propagation from k|k to k + 1|k

The propagation for the exponential part is a convolution with fW and can be done in

two stages. In the first stage, the parameters are updated with those of fW and a change of

variables is performed to get it into a form that will go into the second stage, the integration.
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Similarly to the exponential part, the coefficient portion also undergoes a two-stage prop-

agation. First, we perform a change of variables. Then, we augment each coefficient function

with a pair of zeros for fV and fW .

Given (3.39), the a priori ucpdf at k + 1 is

f̄Xk+1|Yk(xk+1|yk) =

∫ ∞
−∞

f̄Xk|Yk(xk|yk)fW (wk) dwk (3.44)

In order to perform this integral, we perform a change of variables from xk to xk+1, wk so

that for every term of f̄Xk|Yk , the integral in (3.44) becomes

f̃ iXk+1,W |Yk(xk+1, wk|yk) =

∫ ∞
−∞

G̃
k|k
i (xk+1, wk)ε̃

k|k
i (xk+1, wk) dw (3.45)

where

G̃
k|k
i (xk+1, wk) = ρ̃

k|k
i0 +

m∑
j=1

ρ̃
k|k
ij

∏
l∈σj

sgn
(
ξ̃
k|k
il (xk+1)− wk

)

ε̃(xk+1,wk) = exp

−M
k|k−1
i +2∑
j=1

η̃
k|k
ij

∣∣∣ξ̃k|kij (xk+1)− wk
∣∣∣


ρ̃
k|k
i0 =

|Φ|−1

2β
ρ
k|k
i0

ρ̃
k|k
ij =

|Φ|−1

2β
ρ
k|k
ij

∏
l∈σj

sgn
(
θ
k|k
il Φ−1Γ

)
η̃
k|k
ij = η

k|k
ij ·

1∣∣∣θk|kij Φ−1Γ
∣∣∣

ξ̃
k|k
ij =

ψ
k|k
ij

θTijΦ
−1Γ

+
θ
k|k
ij Φ−1

θ
k|k
ij Φ−1Γ

xk+1

, ψ̃
k|k
ij + θ̃

k|k
ij xk+1

(3.46)
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Each term is then integrated using the generalized integral formula (3.32) to get

f̃i,Xk+1|Yk(xk+1|yk) =
m∑
j=1

G̃
k+1|k
ijl exp

(
−

m∑
l=1

η̃
k|k
il

∣∣∣ξ̃k|kil − ξ̃k|kij ∣∣∣
)

=
m∑
j=1

G̃
k+1|k
ijl exp

(
−

m∑
l=1

η̃
k|k
il

∣∣∣(ψ̃k|kij − ψ̃k|kil )+
(
θ̃
k|k
ij − θ̃

k|k
il

)
xk+1

∣∣∣)

,
m∑
j=1

G̃
k+1|k
ijl exp

(
−

m∑
l=1

η̃
k+1|k
ijl

∣∣∣ψ̃k+1|k
ijl + θ̃

k|k
ijl xk+1

∣∣∣)

=
m∑
j=1

G̃
k+1|k
ijl exp

(
−

m∑
l=1

η̃
k+1|k
ijl

∣∣∣ξ̃k+1|k
ijl

∣∣∣)
(3.47)

where

G̃
k+1|k
ijl =

 G̃
k|k
i

m∑
l=1

η̃
k+1|k
ijl sgn

(
ξ̃
k+1|k
ijl

)

sjj=1

− G̃
k|k
i

m∑
l=1

η̃
k+1|k
ijl sgn

(
ξ̃
k+1|k
ijl

) (3.48)

and sjj = 1 indicates that sgn (0) = 0 instead of the normal convention sgn (0) = −1 in (1.3).

Note that each new argument has the form

η̃
k+1|k
ijl = η̃

k|k
ij

ξ̃
k+1|k
ijl = ξ̃

k|k
ij − ξ̃

k|k
il

=
(
ψ̃
k|k
ij − ψ̃

k|k
il

)
+
(
θ̃
k|k
ij − θ̃

k|k
il

)
xk+1

, ψ̃
k+1|k
ijl + θ̃

k|k
ijl xk+1

(3.49)

3.4.5 Simplify coefficient function

The coefficient term in (3.48) is then flattened into the standard form of (3.35) using the

procedures outlined in Section 7.6 of the Appendix so that

G̃
k+1|k
ijl = ρ̃

k+1|k
ij0 +

m∑
p=1

ρ̃
k+1|k
ijp

∏
l∈σijp

sgn
(
ξ̃
k+1|k
ijl

)
(3.50)
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This flattening accomplished two things. Firstly, it simplifies a complicated nested fractional

form of G and makes it easier to carry forward from step to step. Secondly, it allows for

terms with identical exponentials to sum, thus eliminating extra terms and reducing future

computational burden.

3.4.6 Combine terms and re-index at k + 1|k

After the coefficient terms have been flattened, the triple index ijl can then be reduced

to two new indices, ij. Furthermore, terms with the same exponentials can be combined,

though care must be taken to determine if all of the associated ξ̃
k+1|k
ijl are the same. Finally,

the re-indexed ucpdf can be written without the tilde on the parameters for step k + 1|k.

3.4.7 Handle collapsed hyperplanes

In many cases, one or more hyperplanes collapse into a constant. That is, for some hyper-

plane ξ∗ij = ψ∗ij + θ∗ijx, θ∗ij = 0. During the next propagation, the coefficients of ξ∗ij will divide

θ∗ijΦ
−1Γ, which will not work. It is easier to just look for these cases and factor out the con-

stant exp
(
−ρ∗ij

∣∣ψ∗ij∣∣) from the exponential at this point, rather than modify the propagation

to do the same thing.

The coefficient term is a bit more complicated, since all sub-terms with constant ξ∗ij must

be found and dealt with, including possibly shifting. Finally, all element indices must be

shifted when the element associated with ξ∗ij is removed. An example of this process is shown

in Section 7.9 of the Appendix.

3.4.8 Unnormalized cpdf at k + 1|k

Finally, we state the ucpdf at k + 1|k as

f̄Xk+1|Yk =

N
k+1|k
i∑
i=1

G
k+1|k
i ε

k+1|k
i (3.51)
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where

G
k+1|k
i = ρ

k+1|k
i0 +

P
k+1|k
i∑
j=1

ρ
k+1|k
ij

∏
l∈σij

sgn
(
ξ
k+1|k
il

)
(3.52)

and

ε
k+1|k
i = exp

−M
k+1|k
i∑
j=1

η
k+1|k
ij

∣∣∣ξk+1|k
ij

∣∣∣
 (3.53)

where

ξ
k+1|k
ij = ψ

k+1|k
ij + θ

k+1|k
ij xk+1, (3.54)

N
k+1|k
i is the number of terms, M

k+1|k
i is the number of elements of term i, and P

k+1|k
i is the

number of terms in G
k+1|k
i , and σij is the set of indices of sign functions associated with term

j of G
k+1|k
i at step k+1|k. Thus, we’ve shown by induction that the update and propagation

algorithm is recursive for f̄Xk|Yk−1
in (3.34).

3.5 Example of first several a posteriori ucpdfs

Using the algorithm described Section 3.4, the first several a posteriori ucpdfs are computed

for system parameters

Φ =

 0.95 0.01

−0.1 1

 Γ =

 0

1

 H =
[

1 0.5
]

(3.55)

with initial conditions

x̄1 =

 0.2

0

 (3.56)

and noise parameters α = 0.3, β = 0.01 and γ = 0.1. The ucpdfs are presented in Figures

3.3 to 3.5, showing the various shapes that the a posteriori ucpdf takes on from step to step.
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(a) (b)

Figure 3.3: f̄X1|Y1 (a) and f̄X2|Y2 (b)

3.6 Properties of the ucpdf

We now discuss some properties of the ucpdf in (3.34). In particular, the computational

complexity of the ucpdf in R2 and Rn will be characterized.

3.6.1 Computational complexity in R2

In contrast to the scalar case, the number of elements in each term stays relatively the same,

with the exception of some elements collapsing due to their associated hyperplane becoming

constant (θ → 0). For the a priori step k + 1|k, the number of elements is d + k, where d

accounts for the initial conditions.

Without term combination or element removal, the number of terms for the first few

steps are shown in Table 3.1. The number of new terms is the product of current terms

and the number of elements per term. Since there is no reduction, all terms have the same
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(a) (b) f̄X2|Y1

Figure 3.4: f̄X3|Y3 (a) and f̄X4|Y4 (b)

maximal number of elements.

It can be shown that the theoretical worst-case number of terms at k + 1|k for the two-

dimensional case without term combination or element removal is

maxnk+1|k =
(2 + k)!

3!
(3.57)

In practice, combining terms and removing hyperplanes which collapse into constants drive

down the rate considerably. However, it does appear that rate of increase remains faster

than polynomial. Figure 3.6 shows the number of terms for the first six steps. The number

of terms are equal for the first three steps, but they start to diverge at step 4.

3.6.2 Extension to Rn

First, notice that the only time we explicitly use the fact that x ∈ R2 is in the initial

conditions and in simplifying the coefficient function. However, Theorem 3.3.1 applies to
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(a) (b) f̄X2|Y1

Figure 3.5: f̄X5|Y5 (a) and f̄X6|Y6 (b)

n-dimensions. Therefore, all we need to do is start with the appropriate fX1 and use the

correct coefficient simplifying algorithm and the preceding results extend to n-dimensions as

well. However, the term count in (3.57) will change to

maxnk+1|k =
(n+ k)!

(d+ 1)!
(3.58)

3.6.3 Unimodality

Similarly to the scalar case, we can make an argument that the vector ucpdf is log-concave

and unimodal. This becomes an important point as the number of dimensions increases,

because as shown in (3.58), the number of terms increases rapidly. The unimodal nature of

the ucpdf offers an opportunity to use the maximum a posteriori (MAP) estimate instead of

the conditional mean. Since it’s unimodal, it has a single local maximum which is also the

global maximum, and many numerical methods may be leveraged to find it.
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k Terms Elements

1 1 4

2 4 5

3 20 6

4 120 7

5 840 8

6 6720 9

Table 3.1: Theoretical worst-case term count for R2

1 2 3 4 5 6

Step k

0

1000

2000

3000

4000

5000

6000

7000

N
u
m
b
e
r
o
f
te
rm

s

Combine terms

No combine terms

Theoretical

Figure 3.6: Theoretical worst case vs. actual number of terms in R2
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CHAPTER 4

Mean and Variance in R2

To determine the mean and variance of X given Y , we first normalize f̄X|Y and then compute

the first and second moments. For this chapter, f̄X|Y can be either a priori or a posteriori

at any step k, so we will not need to include indices. As in the scalar case, we use the

characteristic function of the ucpdf. For ν ∈ Cn,x ∈ Rn, the characteristic function is

φ̄X|Y (ν) =

∫
Rn
ejν

Txf̄X|Y (x|y) dx (4.1)

and the mean and variance are given by

µ = E [X|Y ]

Var(x) = E
[
XXT |Y

]
− E [X|Y ]E [X|Y ]T

(4.2)

where the i-th element of E [X|Y ] and the i` element of the symmetric E
[
XXT |Y

]
are

E [Xi|Y ] =
1

j

∂φX|Y (ν)

∂νi

E [XiX`|Y ] = −
∂2φX|Y (ν)

∂νi∂ν`
,

(4.3)

respectively. The proof for these expressions follow the same argument as the scalar case

in Section 7.4 of the Appendix. Note that we have abused the notation a little bit. Since

we are not labeling the step number k, we use the subscript on the random variable X to

indicate the element number instead. This should be clear in this context, even if it doesn’t

agree with the standard use of the subscript throughout this document.

For x ∈ Rn, this requires n integrations as well as n single and
n∑
i

i =
n (n+ 1)

2
double

partial differentiations, though the latter can be done a priori. As bad as that sounds, it

appears to be less complicated than than directly integrating to find the moments.
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4.1 Characteristic function of ucpdf

To determine the characteristic function of fX|Y in Rn, we have to integrate over Rn, which

means evaluating n successive integrals using the same integral formula that we’ve used in

previous chapters. Consider the form fX|Y to be

fX|Y =
N∑
i=1

gi(x) exp

(
−

m∑
l=1

ρl |ψl + θlx|

)
(4.4)

where, for m unique ψ + θx, θ ∈ R1×n,

gi(x) = %0 +

Mi∑
q=1

%q
∏
l∈σq

sgn (ψl + θlx) (4.5)

and σq ⊆ {1, · · · ,m} are unique. Note that when m > n, the maximum number of elements

of σk is n. Using the generalized integral formula (3.32), (4.1) can be solved element-wise,

and each element can be explicitly written as

φiX|Y =

∫
x

ejν
T xgi(x) exp

(
−

m∑
l=1

ρl |ψl + θlx|

)
dx

=

∫
x1

∫
x2

· · ·
∫
xn

ρ0 +

Mi∑
q=1

ρq
∏
l∈σq

sgn (ψl + θlx)


exp

(
−

m∑
l=1

ρl |ψl + θlx|+ jνTx

)
dx1dx2 · · · dxn

=

∫
x1

∫
x2

· · ·
∫
xn

ρ0 +

Mi∑
q=1

ρq
∏
l∈σq

sgn (ψl + θ1x1 + · · ·+ θnxn)


exp

(
−

m∑
l=1

ρl |ψl + θl1x1 + · · ·+ θlnxn|+ j (ν1x1 + · · ·+ νnxn)

)
dx1dx2 · · · dxn

(4.6)

To illustrate this integration, the characteristic function φ̄X|Y for f̄X|Y in R2 is derived in

closed form in Section 7.11 of the Appendix. In addition, an example of the characteristic

function of f̄X1|Y1 is detailed in Section 7.12 of the Appendix.
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4.2 Normalization and moments from CF in R2

Evaluating φ̄X|Y at ν = 0 gives

[
φ̄X|Y

]
ν=0

=

∫
Rn
f̄X|Y (x|y) dx = fY (4.7)

Then, the normalized cpdf and characteristic functions are

fX|Y =
f̄X|Y
fY

φX|Y =
φ̄X|Y
fY

(4.8)

Applying (4.7) to (7.108), we can evaluate each term of the normalization factor as

f iY =
[
φiX|Y

]
ν=0

=

(
ai1
ai2
− ai4

ai5

ai7
−

bi1
bi2
− bi4

bi5

bi7

)
exp (ci3) (4.9)

Before defining the first and second moments, we simplify the definition of Gi from (7.108)

and εi as

Gi ,
Na

Da

− Nb

Db

ε , exp (jν1c1 + jν2c2 + c3)

(4.10)

We drop the indices on φ,G and ε for cleaner notation, but it is assumed that they are

components of φiX|Y .

The first two moments in R2 are

E [X] =

 1
j
∂φ
∂ν1

1
j
∂φ
∂ν2


ν=0

E
[
XXT

]
=

 −∂2φ
∂ν21

− ∂2φ
∂ν1∂ν2

− ∂2φ
∂ν1∂ν2

−∂2φ
∂ν22


ν=0

(4.11)

For the sake of brevity, the derivation of the partial derivatives for a general term of the

characteristic function are detailed in Section 7.13 of the Appendix.
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4.3 Example: 2-state conditional pdfs

Figure 4.1 shows the results for a 7-step simulation where the system parameters are given

in the previous section in (3.55). Similarly to the scalar case, we can see that the covariance

changes as a function fo the measurement, rather than steadily decrease as in the Kalman

filter. In addition, the response to the large jump in the measurement at k = 2 is rather

muted, despite the fact that zk = x1 + 0.5x2.

Figure 4.2 shows the results for the same system but with a spike of −10 introduced at

k = 3. As in the scalar case, the estimator only responds to a certain extent. Due to some

numerical limitations discussed later, we were unable to run spikes on longer runs. While

some work is still needed to improve the duration and speed of the numerical implementa-

tions, these examples demonstrate that the estimator works in two-dimensions and shows

resilience to huge noise events.

4.3.1 External algorithms

In practice, we do not use the algorithm in Section 7.6 to simplify the coefficient functions.

While it is fast and effective for benign cases, it is slow for large numbers of hyperplanes or

misses faces for hyperplane arrangements with small or thin faces. We first experimented

with the reverse search algorithm by Avis and Fukada in [AF93], but that had some numerical

issues of its own and was particularly slow, even compared to our simple algorithm in Section

7.6. Currently, we use the algorithms developed by Rada and Cerný in [RC18], along with

linear program solvers by Gurobi to produce fast, accurate sign vectors.

4.3.2 Numerical sensitivity

The reason why we can only run 7 steps for the 2-dimensional case is because we run into

numerical errors around there at the noise parameters we use. When the noise is large, the

huge jumps cause the conditional pdf to flatten and the scale of certain coefficients defining
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it to blow up. As a result, we suspect that the machine error after term cancellation for

certain terms results in large errors in the normalization factor and expectations.

This is not a comprehensive assessment of the problem, but it offer evidence that the

current definition of the cpdf will not work unless we find a way to effectively remove the

need for this cancellation.
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Figure 4.1: Estimation errors for 7 steps in R2 for α = 0.3, β = 0.01, γ = 0.1
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Figure 4.2: Estimation errors for 5 steps with spike at k = 3 in R2 for α = 0.3, β = 0.01, γ =

0.1
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CHAPTER 5

Scalar Laplace Controller

In many optimization problems, the L1-norm is preferable to the typical L2-norm for the

cost function because it more directly measures real quantities, such as fuel consumption

[VM06],[Ros06] and cost of treatment of infectious diseases [PIM14] and cancer [LBS04].

For the control problem near steady-state, where the control input is small, the cost is

higher for the L1-norm than it is for the L2-norm and can be used to suppress control input.

Conversely, the L1-norm has a lower penalty for large errors and is used for applications

with many outliers [MKP14]. However, there are no explicit solutions to linear stochastic

optimal control problems with L1 cost functions. In fact, only a few explicit solutions exist

for any linear stochastic optimal control problem, e.g. the Linear Quadratic Gaussian and

Linear Exponential Gaussian [SC08].

In Chapter 2, it is shown that, for linear scalar systems with additive noises described by

Laplace densities, the conditional probability density functions of the state conditioned on

the measurements is a sum of exponentials of weighted sums of absolute values. This form is

log-concave and is therefore unimodal [Sta89], though it is not symmetric. In [SYD18], it is

shown that, when addressing the control problem of such a system, a properly-defined cost

function of the L1-norm of the control and state maintains that same log-concave form for

the first step. This suggests that the cost function is also unimodal, which greatly simplifies

the extremization of the cost. In this chapter, we generalize the results in [SYD18] and

present the recursive, analytic solution to the one-step predictive controller for any step k.

In Section 5.1, we define the cost criterion for the one-step predictive controller. In
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Section 5.2, we derive the expression of the cost function at step k = 1 in a form which

motivates a recursive structure. We also examine the optimal control values as a function

of the measurement. In Section 5.3, we deduce the cost function at any step k given the

conditional probability density function from (2.43). In Section 5.4, we show numerical

results for a 50-step simulation.

5.1 One-step model-predictive controller

Consider the discrete scalar linear system defined in Chapter 2. We seek to derive a controller

which drives the state xk to zero while minimizing some cost as a function of the input uk.

In constructing the cost criterion, we consider a measure of the control input and predictive

state. We want the controller to drive the state to zero while using minimal control input, so

we chose a cost function whose maximum occurs when uk and xk+1 are small. For simplicity,

our cost criterion only projects the state one step into the future so that the cost criterion

only involves uk and xk+1. Therefore, we want to find u∗k such that

u∗k = argmax
uk

JYk(uk) (5.1)

where

JYk(uk) = E
[
e−c|uk|−S|xk+1+x̄k+1||Yk

]
= E

[
e−c|uk|−S|xk+1+Φx̄k+uk||Yk

]
,

(5.2)

and c and S are weighting parameters on the control and future state, respectively. The

expectation in (5.2) is taken with respect to the unnormalized conditional pdf (ucpdf)

f̄Xk+1|Yk(xk+1|yk), which is conditioned on the measurement history yk. We can use the

ucpdf because normalization is not necessary for the optimization. For simplicity, we will

assume x̄1 = 0.
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5.2 Objective function evaluated at k = 1

To motivate a recursive structure of the objective function at step k, we first determine the

objective function at k = 1. This is similar to the work in [SYD18], but it uses a simplified

structure for the ucpdf first shown in [DSY18]. To streamline the presentation, we have

moved the more involved derivation to the Appendices.

We first consider the a priori ucpdf at step k = 2 conditioned on measurements up to

k = 1. Assuming x̄1 = 0, this was defined in [DSY18] to be

f̄X2|Y1(x2|y1)

= G
2|1
1 · exp

(
− 1

β

∣∣∣∣Φz1

H
− x2

∣∣∣∣)
+G

2|1
2 · exp

(
− 1

β
|x2|
)

+G
2|1
3 · exp

(
−|H|
γΦ

∣∣∣∣Φz1

H
− x2

∣∣∣∣− 1

α |Φ|
|x2|
)
,

(5.3)

where G
2|1
i are coefficient functions whose form will be described below. First, define the

parameters of (5.3) as

ρ
2|1
11 = 1

β
, ρ

2|1
21 = 1

β
, ρ

2|1
31 = |H|

γ|Φ|

ρ
2|1
32 = α

|Φ|

(5.4)

and

ξ
2|1
11 = Φz1

H
, ξ

2|1
21 = 0, ξ

2|1
31 = Φz1

H

ξ
2|1
32 = 0.

(5.5)

Then, the coefficient and exponential functions in (5.3) can then be written as in terms of

the parameters in (5.4) and (5.5) as

G
2|1
i = a

2|1
i0 +

N
2|1
i∑
l=1

a
2|1
il sgn

(
ξ

2|1
il − x2

)
(5.6)

and

ε
2|1
i = exp

N
2|1
i∑
l=1

−ρ2|1
il

∣∣∣ξ2|1
il − x2

∣∣∣
 , (5.7)
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where N
2|1
i is the ith element of

N2|1 =
[

1 1 2
]T

(5.8)

and the parameters a
2|1
i0 and a

2|1
il are developed in Appendix B. The ucpdf in (5.3) can then

be written in the compact form

f̄X2|Y1(x2|y1) =
3∑
i=1

G
2|1
i ε

2|1
i (5.9)

5.2.1 Determining the objective function

Using (5.9), the objective function in (5.2) becomes

JY1(u1)

= e−c|u1|
∫ ∞
−∞

e−S|x2+Φx̄1+u1|f̄X2|Y1(x2|y1) dx2

= e−c|u1|
3∑
i=1

∫ ∞
−∞

G
2|1
i ε

2|1
i e−S|x2+Φx̄1+u1| dx2

(5.10)

The general solution to (5.10) is derived in Appendix B of [IS14] and is restated in the

Appendix for convenience. In order to use the integral formula (7.3), we augment the pa-

rameters in (5.10) so that the number of elements in G
2|1
i matches the number of elements

in ε
2|1
i . Here, we make a subtle change in notation from the superscript k+ 1|k = 2|1, which

refers to the ucpdf, to the superscript k = 1. This is done to simplify the task of organizing

the parameters to use the integration formula in Appendix A. So, the augmented parameters

for the objective function integral of (5.10) are
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%1
10 = 0 ξ1

10 = −Φx̄1 − u1 ρ1
10 = S

%1
11 = a

2|1
11 ξ1

11 = ξ
2|1
11 ρ1

11 = ρ
2|1
11

%1
20 = 0 ξ1

20 = −Φx̄1 − u1 ρ1
20 = S

%1
21 = a

2|1
21 ξ1

21 = ξ
2|1
21 ρ1

21 = ρ
2|1
21

%1
30 = 0 ξ1

30 = −Φx̄1 − u1 ρ1
30 = S

%1
31 = a

2|1
31 ξ1

31 = ξ
2|1
31 ρ1

31 = ρ
2|1
31

%1
32 = a

2|1
32 ξ1

32 = ξ
2|1
32 ρ1

32 = ρ
2|1
32

(5.11)

Using (5.11), the solution to (5.10) becomes

JY1(u1) = e−c|u1|
3∑
i=1

N
2|1
i∑
j=0

G1
ijε

1
ij (5.12)

where, for

δ̄1
ij =

N
2|1
i∑
l=0
l 6=j

%1
ilsgn

(
ξ1
il − ξ1

ij

)

δ1
ij =

N
2|1
i∑
l=0
l 6=j

ρ1
ilsgn

(
ξ1
il − ξ1

ij

)
,

(5.13)

the coefficient and exponential terms are

G1
ij =

a
2|1
i0 + δ̄1

ij

ρ1
ij + δ1

ij

−
−a2|1

i0 + δ̄1
ij

−ρ1
ij + δ1

ij

(5.14)

and

ε1ij = exp

N
2|1
i∑
l=0
l 6=j

ρ1
jl

∣∣ξ1
il − ξ1

ij

∣∣
 . (5.15)
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Again, G1
ij and ε1ij belong to the objective function and are distinct from G

2|1
i and ε

2|1
ij of the

ucpdf. While G1
ij is known explicitly, it is a very complicated function of u1. Furthermore,

several of the terms in (5.12) can combine, but the complexity of G1
ij makes adding them

cumbersome. Fortunately, a method for simplifying G1
ij into a sum of sign functions was

presented in Appendix A of [DSY18], which is restated in Appendix B for convenience.

Using this method, the coefficient functions become

G1
ij = a1

i0 +

N
2|1
i∑
l=0
l 6=j

a1
ilsgn

(
ξ1
il − Φx̄1 − u1

)
(5.16)

where the ρ1
ij have been transformed into a1

ij using Appendix B. More importantly, a1
ij is

constant, so G1
ij is a sum of simple sign functions of u1.

Expanding the exponential terms explicitly, we get

ε110 = exp

(
− 1

β

∣∣∣∣−Φz1

H
− Φx̄1 − u1

∣∣∣∣)
ε111 = exp

(
−S

∣∣∣∣−Φz1

H
− Φx̄1 − u1

∣∣∣∣)
ε120 = exp

(
− 1

β
|−Φx̄1 − u1|

)
ε121 = exp (−S |−Φx̄1 − u1|)

ε130 = exp

(
− |H|
γ |Φ|

∣∣∣∣−Φz1

H
− Φx̄1 − u1

∣∣∣∣
− 1

α |Φ|
|−Φx̄1 − u1|

)
ε131 = exp

(
−S

∣∣∣∣−Φz1

H
− Φx̄1 − u1

∣∣∣∣− 1

α |Φ|

∣∣∣∣−Φz1

H

∣∣∣∣)
ε132 = exp

(
−S |−Φx̄1 − u1| −

|H|
γ |Φ|

∣∣∣∣Φz1

H

∣∣∣∣)

(5.17)

We can see from the integral formula (7.3) of the Appendix that the arguments in the sign

functions are the same as the arguments in the absolute values of the exponentials. Therefore,

the offsets from u1 in the sign functions in G1
ij are the same as the offsets in the terms of

(5.17). Furthermore, they are the same as the offsets in f̄X2|Y1 , except for a sign change and
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shift by Φx̄1.

The constant elements in the exponentials can be absorbed into their associated G1
ij

functions. Furthermore, the terms with the same exponentials can be combined by summing

up their associated G1
ij functions. In this way, we collapse the double indices ij to just i, and

the coefficients become

Ḡ1
i = ā1

i0 +

N
2|1
i∑
l=1

ā1
ilsgn

(
−ξ1

il − Φx̄1 − u1

)
(5.18)

G̃1
i = ã1

i0 + ã1
i1sgn

(
−ξ1

i1 − Φx̄1 − u1

)
. (5.19)

We can now replace the parameters ξkil used for the integration with the original parameters

ξ
k+1|k
il from the ucpdf to get

Ḡ1
i = ā1

i0 +

N
2|1
i∑
l=1

ā1
ilsgn

(
−ξ2|1

il − Φx̄1 − u1

)
(5.20)

G̃1
i = ã1

i0 + ã1
i1sgn

(
−ξ2|1

i1 − Φx̄1 − u1

)
(5.21)

Note that we separate the coefficient terms associated with ρ1
ij = S from the other terms and

designate them with G̃1
i . In this way, Ḡ1

i has the same structure as G
2|1
i,N

2|1
i

, which greatly

simplifies the indexing. The number of elements are described by the same vector N2|1. The

additional terms, G̃1
i , only has one sign function and has the same structure as G

2|1
i1 . After

this simplification, we can then write the objective function as

JY1(u1) = e−c|u1|

(
3∑
i=1

Ḡ1
i ε̄

1
i +

2∑
i=1

G̃1
i ε̃

1
i

)
(5.22)

where

ε̄1i = exp

−N
2|1
i∑
l=1

ρ1
il

∣∣−ξ1
il − Φx̄1 − u1

∣∣ (5.23)

ε̃1i = exp
(
−ρ1

i0

∣∣−ξ1
i1 − Φx̄1 − u1

∣∣) . (5.24)
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Again, we can replace the temporary parameters ρilk used for the integration with the original

parameters ρ
k+1|k
il from the ucpdf to get

ε̄1i (u1) = exp

−N
2|1
i∑
l=1

ρ
2|1
il

∣∣∣−ξ2|1
il − Φx̄1 − u1

∣∣∣
 (5.25)

ε̃1i (u1) = exp
(
−S

∣∣∣−ξ2|1
i1 − Φx̄1 − u1

∣∣∣) . (5.26)

The solution is divided into two parts to highlight the structure inherited from the ucpdf.

In particular, the coefficient function Ḡ1
i has the same form asG

2|1
i in (5.3), and the associated

exponential function ε̄1i has the same form as ε
2|1
i . The only new terms come from the control

cost exp (−c |u1|), as well as G̃1
i and the associated exponential function ε̃1i , which contains

the weighting S.

Now that we have the objective function in closed form, we can then maximize JY1(u1)

to obtain u∗1. Unfortunately, it is a complicated function of u1, so the optimization must be

performed numerically. However, since it is also unimodal, there are a wide variety of tools

available to do so efficiently. The specific methods will not be discussed in this paper.

5.2.2 Numerical Example: u∗ at k = 1

Figure 5.1 shows the relationship between the optimal control u∗1 and the measurement z1

at step k = 1 for Φ = 1.1, H = 1, c = 1, S = 3, α = 1, β = 0.25, γ = 0.33. This is similar to

results shown in [SYD18]. The control goes to zero for a certain set of estimates around zero,

suggesting that the controller takes into account the uncertainty of x1 and hedges to avoid

unnecessarily increasing the cost. This dead zone of zero control about small measurements

helps explain the control performance in the general control case.
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Figure 5.1: Optimal control u∗1 versus measurement z1 for c = 1, S = 3, α = 1, β = 0.25, γ =

0.33

5.3 Objective Function at Step k

After repeating the process used to obtain JY1(u1) for several steps, a pattern emerges such

that we can deduce the objective function for any k. The objective function for step k is

JYk(uk) = e−c|uk|
∫ ∞
−∞

e−S|xk+1+Φx̄k+uk|×

f̄Xk+1|Yk(xk+1|yk) dxk+1

(5.27)

From [DSY18], the a priori ucpdf at step k + 1 is given by

f̄Xk+1|Yk(xk+1|yk) =
nk+1|k∑
i=1

G
k+1|k
i ε

k+1|k
i (5.28)
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where

G
k+1|k
i = a

k+1|k
i0 +

N
k+1|k
i∑
l=1

a
k+1|k
il sgn

(
ξ
k+1|k
il − xk+1

)

ε
k+1|k
i = exp

−N
k+1|k
i∑
l=1

ρ
k+1|k
il

∣∣∣ξk+1|k
il − xk+1

∣∣∣
 ,

(5.29)

a
k+1|k
i0 , a

k+1|k
il , ξ

k+1|k
il and ρ

k+1|k
il are known, the number of terms

nk+1|k =
(k + 1)(k + 2)

2
, (5.30)

and the number of elements for each term are the elements of the vector

Nk+1|k =



1k+1 × 1

1k × 2

1k−1 × 3
...

11 × (k + 1)


. (5.31)

To obtain the solution to (5.27), we first re-write the integrand in (5.27) by merging e−c|uk|

with ε
k+1|k
i and augmenting G

k+1|k
i so that the coefficient and exponential parts have the

same number of elements. For each term i, they become

Ḡ
k+1|k
i = a

k+1|k
i0 +

N
k+1|k
i∑
l=1

a
k+1|k
il sgn

(
ξ
k+1|k
il − xk+1

)
+ 0 · sgn (−Φx̄k − uk − xk+1) ,

(5.32)

where the 0 is a placeholder for sgn (−Φx̄k − uk − xk+1) and

ε̄
k+1|k
i = exp

−N
k+1|k
i∑
l=1

ρ
k+1|k
ij

∣∣∣ξk+1|k
ij − xk+1

∣∣∣


× exp (S |−Φx̄k − uk − xk+1|) .

(5.33)
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The parameters of (5.32) and (5.33) are summarized by

%ki0 = 0 ξki0 = −Φx̄k − uk ρki0 = S

%ki1 = a
k+1|k
i1 ξki1 = ξ

k+1|k
i1 ρki1 = ρ

k+1|k
i1

%ki2 = a
k+1|k
i2 ξki2 = ξ

k+1|k
i2 ρki2 = ρ

k+1|k
i2

...
...

...

%k
i,Ñi

= a
k+1|k
i,Ñi

ξk
i,Ñi

= ξ
k+1|k
i,Ñi

ρk
i,Ñi

= ρ
k+1|k
i,Ñi

(5.34)

where Ñi = N
k+1|k
i for short. We can then use Appendix B of [IS14] to solve the integral of

(5.27) to obtain JYk(uk), which can be written as

JYk(uk) = exp (−c |uk|)
nk+1|k∑
i=1

Ḡk
i ε̄
k
i (uk)

+ exp (−c |uk|)
k+1∑
i=1

G̃k
i ε̃
k
i (uk)

(5.35)

where

Ḡk
i = āki0 +

Nk
i∑

l=1

ākilsgn
(
−ξk+1|k

il − Φx̄k − uk
)

(5.36)

G̃k
i = ãki0 + ãki1sgn

(
−ξk+1|k

i1 − Φx̄k − uk
)
. (5.37)

and

ε̄ki (uk) = exp

N
k+1|k
i∑
l=1

ρ
k+1|k
il

∣∣∣−ξk+1|k
il − Φx̄k − uk

∣∣∣
 (5.38)

ε̃ki (uk) = exp
(
−S

∣∣∣−ξk+1|k
i1 − Φx̄k − uk

∣∣∣) (5.39)

5.4 Numerical Example for k = 1, · · · , 50

We recursively and analytically computed and optimized the cost function at each step for

the first 50 steps using the parameters Φ = 1.1, H = 1, α = 1, β = 0.25, γ = 0.33, c =
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0.5, S = 2.99. The measurement and process noise were generated using a Laplace random

number generator, and a spike was added to the measurement at k = 5, 6, 20 and 30 to test

the resilience of the controller. We initiate the state at x1 = 3 to clearly see the system

driven to zero. Furthermore, we simulate control saturation so that −1 ≤ uk ≤ 1.

The cost function at k = 40, 41 and 42 is shown in Figure 5.2, where the progression

of u∗ to zero is seen. We can also see that they are unimodal and have a cusp at uk = 0

corresponding to the control penalty term. The measurement noise vk, optimal control u∗k,

and the resultant state xk = x̄k + xk are shown in Figure 5.3. As expected, the control

maximized to drive the state to zero and then settles quickly. Furthermore, when the state

is close to zero, the control takes on a value of zero. This seems to be due to the uncertainty

in the state in combination with the absolute value penalty on the control. This behavior

does not occur in the LQG controller, because the cost of the quadratic penalty on the

control is negligible around zero.
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Figure 5.2: Cost function JYk(uk) versus control uk for s = 2, S = 3, α = 1.0, β = 0.25, γ =

0.33
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Figure 5.3: Measurement noise vk, full state xk, and control uk with initial x̄1 = 3 and

c = 2, S = 3, α = 1, β = 0.25, γ = 0.33
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CHAPTER 6

Conclusions

The main contribution of this work is the theoretical development of an analytic recursive

algorithm for state estimation of a discrete linear system with scalar additive Laplace process

and measurement noises. Proof-of-concept numerical implementations were demonstrated

for the scalar and 2-dimensional cases, including explicit closed-form expressions for the con-

ditional mean and error variance. Using the scalar estimation results, a one-step predictive

controller was also derived and implemented numerically.

In addition, two supporting contributions have allowed for significant progress in the

vector Cauchy estimator. First, the representation of the coefficient function using a basis of

sign functions has greatly reduced the complexity of defining the coefficient functions. The

cascading, nested fractions of sums of sign functions was turned into a sum of products of

sign functions, making it straight-forward to add two terms. Second, the key integral derived

in Appendix B of [IS14] was generalized to account for all functions of sign functions, rather

than only sums of sign functions. Together, these two contributions made it possible to

combine, update and propagate terms for both the Laplace and Cauchy estimators in a

tractable manner.

6.1 Next steps

This work primarily presents the theoretical background in Laplace estimation, and the

proof-of-concept code in MATLAB has demonstrated that the algorithms are correct. In
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addition, interesting ideas have been raised that offer a glimpse into the possibilities afforded

by Laplace-based estimation and control. The following topics represent key steps to address

in order to implement the Laplace estimator in real-world situations or new directions to

take Laplace-based research.

6.1.1 Predictive term combination

Currently, the algorithms used to combine terms in R2 involve normalizing and sorting the

hyperplanes across all terms and then applying a metric to determine if they are equal. This

process is very computationally expensive, taking a similar amount of time as the propagation

itself. However, in the scalar case, there was a fairly straight-forward way of determining a

priori which terms will combine, and it is likely possible for cases in higher dimensions as

well.

6.1.2 Term reduction or windowing

Even in the 2-dimensional case, the number of terms appear to grow faster rate than a

polynomial function of the step k. The goal of a real-time estimator is to keep the size of

the expressions constant. Therefore, a windowing technique similar to the one used for the

2-state Cauchy estimator in [SIF14] could be implemented to do this.

6.1.3 Re-mapping hyperplanes

Because the number of terms in subsequent steps come from the elements in the prior step,

it is necessary to reduce the number of elements to help control the growth of terms. In

the 2-dimensional case, some elements go away when the θ component of their associated

hyperplanes go to zero. It may be possible to locate elements whose θ terms are near zero

to force them to zero, particularly if they are far from the relevant parts of the pdf.

In a preliminary investigation, a pdf of the general form in (2.43) with G = 1 was
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fitted to a scalar cpdf at step k = 25. However, it used only one-tenth as many elements,

distributed evenly a few standard deviations around the mean. Surprisingly, this rather

crude approximation had an error of less than 1 percent. It may be possible to improve

upon this with less trivial coefficient functions as well. The immediate impact is that we

only use one-tenth number of elements, thereby reducing the number of future terms as well.

6.1.4 Limit hyperplane density

While the number of hyperplanes grows with each update, at some point, the increase in

hyperplane density will have segmented the relevant regions of the conditional pdf to such a

fine mesh that adding more hyperplanes may not significantly change the relevant statistics.

Therefore, one could consider a scheme where the number of hyperplanes were fixed and

possibly manipulated in such a way that does not change the mean and variance. This will

contribute to the effort to hold fixed the amount of memory it takes to define the conditional

pdf after a certain number of steps have been reached.

6.1.5 Switch to indicator functions

One of the drawbacks of using sign functions is that it is difficult to identify which terms are

important based on the scale of their coefficients. Indeed, it is often the case that individual

terms cannot be singled out because they cancel another term at certain points. Such is

the nature of sign functions. It may be possible to re-derive the equations using indicator

functions instead. With indicator functions, one may be able to reduce either terms or

elements by isolating individual faces.

6.1.6 Comparison to particle filters and other methods

As stated in the introduction, particle filters have been employed to deal with Laplace

densities. The relative accuracy and computational requirements should be compared to see
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if one should be used over the other in practice. Certainly, the Laplace estimator can be

used as a check against all simulation Monte-Carlo methods involving linear systems with

Laplace noise.

6.1.7 Robustness

Further theoretical investigations into the robustness of the Laplace estimator are needed,

due to errors in initial condition or noise characterizations. In particular, will two estima-

tors initialized with different α converge asymptotically? Will the estimation errors remain

bounded for an incorrect β or γ, and what is the size of that bound? These results would

be relevant to the viability of the Laplace estimator as an alternative to the Kalman filter

and other methods.

6.1.8 Laplace controller in two or more dimensions

The one-step scalar Laplace controller demonstrated some interesting properties not usually

seen in a typical linear controller. This area is rich for exploration, including extension to

greater number of steps or to higher dimensions. Furthermore, optimization algorithms for

finding the optimal control may need to be surveyed.
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CHAPTER 7

Appendix

7.1 Key integral formula

A key integral formula was derived by Idan and Speyer in Appendix B of [IS14] and is

restated here for convenience. It comes in a simple form,

I =

∫ ∞
−∞

exp

(
−

n∑
i=1

ηi |ξi − x|+ jzx

)
dx

=
n∑
i=1

gi

 n∑
l=1
l 6=i

ηlsgn (ξl − ξi)

 exp

− n∑
l=1
l 6=i

ηlsgn (ξl − ξi)

 (7.1)

where

gi =
1

jz + ηi +
n∑
l=1
l 6=i

ρlsgn (ξl − ξi)
− 1

jz − ηi +
n∑
l=1
l 6=i

ρlsgn (ξl − ξi) (7.2)

as well as a more general form,

I =

∫ ∞
−∞

g

(
n∑
i=1

ρisgn (ξi − x)

)
exp

(
−

n∑
i=1

ηi |ξi − x|+ jzx

)
dx

=
n∑
i=1

Gi

 n∑
l=1
l 6=i

ρlsgn (ξl − ξi) ,
n∑
l=1
l 6=i

ηlsgn (ξl − ξi)

 exp

− n∑
l=1
l 6=i

ηlsgn (ξl − ξi) + jzξi


(7.3)
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where

Gi =

ρi +
n∑
l=1
l 6=i

ρlsgn (ξl − ξi)

jz + ηi +
n∑
l=1
l 6=i

ρlsgn (ξl − ξi)
−

−ρi +
n∑
l=1
l 6=i

ρlsgn (ξl − ξi)

jz − ηi +
n∑
l=1
l 6=i

ρlsgn (ξl − ξi)
(7.4)

7.2 Scalar piecewise constant functions as sum of signs

Theorem 7.2.1. For

A = {A0, A1, · · · , An} , {(−∞, ξ1), [ξ1, ξ2), · · · , [ξn,+∞)} (7.5)

with ξ1 < · · · < ξn ∈ R, any g : R→ R constant on Ai ∈ A, can be simplified to

g(x) = ρ0 +
n∑
i=1

ρisgn (ξi − x) (7.6)

where, for xi ∈ Ai,

ρ0 =
g(x0) + g(xn)

2

ρi =
g(xi−1)− g(xi)

2

(7.7)

Proof. By observation, any function si constant on Ai ∈ A and zero elsewhere can be written

as a sum of two unit step function. For example, s with value 1 for 1 ≤ x < 2 and 0 elsewhere

can can be expressed as u (x− 1)− u (x− 2). Therefore, g(x) can be expressed as the sum

of si. Since the step function

u (x− ξ) =
1− sgn (ξ − x)

2
, (7.8)

it is clear that g(x) is also a sum of sign functions. To find ρi, we first construct g(x) in

terms of u(x− ξi) in order from most negative to positive x, so that

g(x) = g(x0) +
n∑
i=1

[g(xi)− g(xi−1)] u (x− ξi) (7.9)
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for xi ∈ Ai. We can then covert g(x) to a sum of sign functions using the conversion (7.8)

to get

g(x) = g(x0) +
n∑
i=1

(g(xi)− g(xi−1))

[
1− sgn (ξi − x)

2

]
= g(x0) +

n∑
i=1

g(xi)− g(xi−1)

2
+

n∑
i=1

g(xi−1)− g(xi)

2
· sgn (ξi − x)

=
g(x0) + g(xn)

2
+

n∑
i=1

g(xi−1)− g(xi)

2
· sgn (ξi − x)

, ρ0 +
n∑
i=1

ρisgn (ξi − x)

(7.10)

7.3 Scalar characteristic function

Given the form of the general scalar ucpdf in (2.43), the Fourier transform is

φ̄X|Y =

∫
R
ejνxf̄X|Y (x|y) dx

=

∫
R
ejνx

n∑
i=1

gi(x)εi(x) dx

=
n∑
i=1

∫
R
ejνxgi(x)εi(x) dx

(7.11)

where

gi(x) = ρ0 +
m∑
l=1

ρlsgn (ξl − x)

εi(x) = exp

(
−

m∑
l=1

ηl |ξl − x|

) (7.12)

Hence, φ̄X|Y can be computed term-wise as

φ̄iX|Y =

∫
R
ejνxgi(x)εi(x) dx

=

∫
R
gi(x) exp

(
−

m∑
l=1

ηl |ξl − x|+ jνx

)
dx

(7.13)
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The solution to this integral is given by (7.3), or

φ̄iX|Y =
n∑
i=1

Gi(ν) exp

− n∑
l=1
l 6=i

ηlsgn (ξl − ξi) + jνξi

 (7.14)

where

Gi =

ρi +
n∑
l=1
l 6=i

ρlsgn (ξl − ξi)

jν + ηi +
n∑
l=1
l 6=i

ρlsgn (ξl − ξi)
−

−ρi +
n∑
l=1
l 6=i

ρlsgn (ξl − ξi)

jν − ηi +
n∑
l=1
l 6=i

ρlsgn (ξl − ξi)
(7.15)

However, since all the variables are constant with the exception of ν, Gi(ν) and εi(ν) have

the form

Gi(ν) =
ai1

jν + ai2
− bi1
jν + bi2

εi(ν) = exp (ci1 + ci2 · jν)

(7.16)

7.4 Proofs of moments from characteristic function

The normalization factor of f̄X|Y (x) and moments of fX|Y (x) given its characteristic function

φX|Y (ν) are

fY = φ̄X|Y (0)

E[X|Y ] =

[
1

j

∂φX|Y (ν)

∂ν

]
ν=0

E[X2|Y ] =

[
−
∂2φX|Y (ν)

∂ν2

]
ν=0

(7.17)

The proofs of these expressions is fairly straight-forward. The characteristic function is given

by

φ̄X|Y (ν) =

∫
R
f̄X|Y (x) exp(jνx) dx (7.18)
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Evaluated at ν = 0,

φ̄X|Y (0) =

∫
R
f̄X|Y (x) dx

= fY .

(7.19)

To determine the moments, first consider the partial derivative of φX|Y with respect of ν,

which is

1

j

∂φX|Y (ν)

∂ν
=

1

j

∂

∂ν

∫
R
fX|Y (x) exp (jνx) dx

=
1

j

∫
R

∂

∂ν
fX|Y (x) exp (jνx) dx

=
1

j

∫
R
jxfX|Y (x) exp (jνx) dx

=

∫
R
xfX|Y (x) exp (jνx) dx

(7.20)

since ν is independent of x. When evaluated at ν = 0,[
1

j

∂φX|Y (ν)

∂ν

]
ν=0

=

∫
R
xfX|Y (x) dx

= E [X|Y ]

(7.21)

Similarly,

−
∂2φX|Y (ν)

∂ν2
= − ∂2

∂νi∂ν`

∫
R
fX|Y (x) exp (jνx) dx

= −
∫
R

∂2

∂ν2
fX|Y (x) exp (jνx) dx

= −
∫
R
−x2fX|Y (x) exp (jνx) dx

=

∫
R
x2fX|Y (x) exp (jνx) dx

(7.22)

When evaluated at ν = 0 [
−
∂2φX|Y (ν)

∂ν2

]
ν=0

=

∫
R
x2fX|Y (x) dx

= E
[
X2|Y

] (7.23)
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7.5 Scalar moments from characteristic function

Using the generic form for each term as well as the definitions for the moments from Section

7.4, we present the explicit form of the moments.

7.5.1 Normalization

The ith term of the normalization of f̄X|Y is

fY,i =
[
φiX|Y (0)

]
=

(
ai1
ai2
− bi1
bi2

)
exp (ci1)

(7.24)

7.5.2 First moment

The ith term of the first moment is given by

Ei[X|Y ] =
1

j

∂φX|Y (ν)

∂ν

=
1

j

[
∂Gi

∂ν
εi +Gi

∂εi
∂ν

]
ν=0

(7.25)

where

∂Gi

∂ν
= − ai1 · j

(jν + ai2)2 +
bi1 · j

(jν + bi2)2

→ −ai1 · j
(ai2)2 +

bi1 · j
(bi2)2

∂εi
∂ν

= jci2 exp (ci1 + ci2 · jν)

→ jci2 exp (ci1)

(7.26)
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7.5.3 Second moment

The ith term of the second moment is given by

Ei[X
2|Y ] = −

∂2φX|Y (ν)

∂ν2

= −
[
∂2Gi

∂ν2
εi + 2

∂Gi

∂ν
· ∂εi
∂ν

+Gi
∂2εi
∂ν2

]
ν=0

(7.27)

where

∂2Gi

∂ν2
= − 2ai1

(jν + ai2)3 +
2bi1

(jν + bi2)3

→ − 2ai1

(ai2)3 +
2bi1

(bi2)3

∂2εi
∂ν2

= −c2
i2 exp (ci1 + ci2 · jν)

→ −c2
i2 exp (ci1)

(7.28)

7.6 Algorithm for finding coefficients in R2

The algebra involved is messy and difficult to capture algorithmically, but we can take

advantage of the fact that Gj is piecewise constant. The jump discontinuities in the sign

functions, defined by ηj = ψj + θTj x = 0, divides Rn into regions of constant values. By

sampling these regions, we can use them as constraints to solve for the coefficients of (3.50).

The number of regions to sample is given by Steiner in (ref). For m sign functions in two

dimensions, the maximum number of constant regions is given by

Nr,max = 1 +
m∑
i=1

i = 1 +
m(m+ 1)

2
=
m2 +m+ 2

2
. (7.29)

In R3, it is given by

Nr,max =
m3 + 5m+ 6

6
. (7.30)

Even if we know how many regions there are, it may not easy to identify these regions. How-

ever, if we sample around every intersection point for the maximum number of intersections,
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Ni,max, we will be able to locate at least a sufficient number of samples. Furthermore, it is

straightforward to identify these intersections.

For m sign functions in Rn,

Ni,max =

(
m

n

)
. (7.31)

This assumes that every intersection point is unique and there are no parallel ηj. For example,

for three sign functions in R2, the Ni,max = 3, which can be verified by hand. At each of

these intersections, the space is divided into 2n regions. In R2, there are four region, and in

R3, there are eight. This is also verifiable by hand. Therefore, the number of sample points

is bounded from above by

Ns,max =

(
m

n

)
× 2n ≥ Nr,max (7.32)

For three sign functions in R2, this becomes 12. If you draw the three lines by hand, you

will see that there is a maximum of 7 regions, so the upper bound is not very tight.

Let us evaluate Gj at each sample point and arrange the values into the vector

y =


Gj(x1)

Gj(x2)
...

Gj(xNi,max)

 (7.33)

Clearly, many of these samples are redundant, but that is okay. We then evaluate the basis

functions at those sample points and arrange them into the matrix

B =


1 sgn (η1(x1)) sgn (η2(x1)) · · ·

∏m−1
j=1 sgn (ηj(x1))

1 sgn (η1(x2)) sgn (η2(x2)) · · ·
∏m−1

j=1 sgn (ηj(x2))
...

1 sgn
(
η1(xNi,max)

)
sgn

(
η2(xNi,max)

)
· · ·

∏m−1
j=1 sgn

(
ηj(xNi,max)

)

 (7.34)

The samples (7.33) and basis (7.34) are related as

y = Ba, (7.35)
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where

a =
[
a0 a1 a2 · · · aNb

]T
, (7.36)

where Nb is the number of distinct polytopes in Rn generated by the m sign functions. Note

that (7.35) is actually an under-defined problem. There are fewer linearly independent rows

than there are columns, so the solution to (7.35) is not unique. However, we can compute

the least-norm solution by first removing redundant rows to get B̂, where

rank
(
B̂
)

= Nr,max (7.37)

and is full row-rank. We can use MATLAB and unique to eliminate redundant rows in

(7.35) to get B̂ and the corresponding ŷ. The least-norm solution becomes

âln = B̂T
(
B̂B̂T

)−1

ŷ, (7.38)

which is what we get when we use the MATLAB pinv function. Note that the using the left

matrix divide, or backslash (A\b), to solve this equation yields the solution with the greatest

number of zero elements instead of the least-norm.

An example g function defined by

g(x) =

(
1 + s1

2 + 2.5s2

− −1 + s1

−2 + 2.5s2

)
· 1

3 + s3

(7.39)

where

s1 = sgn
(
ψ1 + θT1 x

)
s2 = sgn

(
ψ2 + θT2 x

)
s3 = sgn

(
ψ3 + θT3 x

) (7.40)

and

ψ1 = 4, θ1 =
[

2 −1
]

ψ2 = 6, θ2 =
[

3 5
]

ψ3 = −30, θ3 =
[

1 −20
] (7.41)
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It is then converted to the sum-product form using basis functions as

ĝ(x) = sTa (7.42)

where

s =
[

1 s1 s2 s3 s1s2 s1s3 s2s3

]T
. (7.43)

The samples were manually chosen at points x1 −8 −6 −1 0 0 6 8

x2 −5 0 −1 6 −6 0 −3

 (7.44)

as shown in Figure 7.1. Solving for a yields

aT =
[

0 −0.6667 0.8333 0 0 0.2222 −0.2778
]

(7.45)

7.7 Proof of Theorem 3.3.1

Theorem 3.3.1 was conjectured by the author, in conjunction with Dr. Jason Speyer. How-

ever, the proof of Theorem 3.3.1 was completed by collaborators Dr. Rom Pinchasi and Dr.

Moshe Idan from the Technion in Israel. Their paper containing the proof has yet to be

published, but an excerpt, copied here with their permission, immediately follows.

Theorem 7.7.1. Let A be a hyper-plane arrangement of n affine hyper-planes H1, · · · , Hn

in Rd defined by Hi = {x|〈x, vi〉 = ci}, where x ∈ Rd, vi ∈ Rd is normal to Hi, and ci ∈ R.

For every 1 ≤ i ≤ n let σi denote the indicator function of the open half-space {x|〈x, vi〉 > ci}

bounded by Hi. Let g be any function that is constant in the interior of every d-dimensional

face in A. Then there is a linear combination of products of d or less of the functions σi that

is equal to g at any point that is not in ∪ni=1Hi.

We start with a preliminary result that will be used to prove the main theorem presented

next. When stated separately, not within the problem addressed in this note, its statement

and proof can be greatly simplified, without hampering its generalization.
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Figure 7.1: Manual selection of sectors of example g function

Lemma 7.7.2. Let ∆d be a d-simplex in Rd. Let H1, · · · , Hd+1 be the d + 1 affine hyper-

planes supporting the facets of ∆d. For i = 1, · · · , d + 1, let σi be the indicator function of

the cosed half-space bounded by Hi and containing ∆d. Then

d+1∏
i=1

(1− σi) = 0. (7.46)

Proof. Assume, without loss of generality, that 0 ∈ ∆d. For i = 1, · · · , d + 1 we write Hi

as Hi = {x|〈x, vi〉 = ci}, where vi ∈ Rd (orthogonal to Hi) is chosen such that ci > 0.

Then ∆d = {x|∀1 ≤ i ≤ d+ 1, 〈x, vi〉 ≤ ci}. Observe that the statement of the Lemma

is equivalent to saying that there is no vector u ∈ Rd such that 〈u, vi〉 > ci for every
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1 ≤ i ≤ d + 1. Assume to the contrary that there is such a vector u. Then for every

α > 0 and every 1 ≤ i ≤ d + 1 we have 〈−αu, vi〉 = −α〈u, vi〉 < −αci < 0 < ci. In other

words,−αu ∈ ∆d for every α > 0. This is impossible as ∆d is bounded.

We can now proceed to the proof of Theorem 7.7.1. Observe that in order to prove The-

orem 7.7.1 it is enough to consider functions g that are indicator functions of d-dimensional

faces in A.

Proof. Let F be a d-dimensional face in A and let g be the indicator function of F . Let

I ⊆ {1, · · · , n} denote the set of indices i such that Hi supports F at a face of dimension d−1.

Let Ia and Ib be a partition of I into to parts such that if i ∈ Ia, then F ⊂ {x|〈x, vi〉 > ci}

and if i ∈ Ib, then F ⊂ {x|〈x, vi〉 < ci}.

Observe that F is equal to the intersection of all open half-spaces containing F that

are bounded by some hyper-plane Hi where i ∈ I. Therefore, the function g̃ =
∏

i∈Ia σi ·∏
i∈Ib(1− σi) is equal to g at any point not in ∪ni=1Hi.

Hence, if the cardinality of I is smaller than or equal to d we are done because g̃ can

clearly be written as a linear combination of products of |I| or less of the indicator functions

σ1, · · · , σn.

If the cardinality of I is larger than d, then g̃ can still be written as a linear combination of

products of the indicator functions σ1, · · · , σn, however the number of terms in each product

may exceed d. Therefore, Theorem 7.7.1 will follow if we can show that the product of every

d+ 1 of the indicator functions σ1, · · · , σn is equal, on Rd \ ∪ni=1Hi, to a linear combination

of products of d or less of the indicator functions σ1, · · · , σn.

We prove this by induction of d. The basis of the induction is the case d = 1. In this

case we have two indicator functions say σ1 and σ2. We would like to consider the function

σ1σ2 and express it as a linear combination of zero or one of the functions σ1 and σ2.

This could easily be left to the reader, but for completeness we bring the simple analysis

here. For i = 1, 2 there exists xi such that the functions σi is either the indicator function of
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{x|x < xi} or of {x|x > xi}. Without loss of generality assume that x1 ≤ x2. We consider

four possible cases.

Case 1. σ1 is the indicator function of {x|x < x1} and σ2 is the indicator function of {x|x < x2}.

In this case σ1σ2 = σ1.

Case 2. σ1 is the indicator function of {x|x < x1} and σ2 is the indicator function of {x|x > x2}.

In this case σ1σ2 = 0.

Case 3. σ1 is the indicator function of {x|x > x1} and σ2 is the indicator function of {x|x < x2}.

In this case σ1σ2 is equal to the function σ1 + σ2 − 1.

Case 4. σ1 is the indicator function of {x|x > x1} and σ2 is the indicator function of {x|x > x2}.

In this case σ1σ2 is equal to the function σ2.

This concludes the case d = 1 being the basis of induction.

For d > 1 we consider two possible cases:

Case 1. k + 1 of the vectors v1, · · · , vk+1 are linearly independent for some 1 ≤ k ≤ d.

Without loss of generality, assume that v!, · · · , vk+1 are linearly independent. By a possible

rotation of Rd, we can assume that span {v1, · · · , vk+1} ⊆ span {e1, · · · , ek}, where e1, · · · , ek

are the first k elements of the standard basis of Rd. Let P : Rd → Rk be the projection

on the first k elements of the standard basis of Rd. In Rk, for every 1 ≤ i ≤ k + 1 we

define H ′i =
{
x ∈ Rk|〈P (vi), x〉 = ci

}
and let σ′i : Rk → R be the indicator function of{

x ∈ Rk|〈P (vi), x〉 > ci
}

. Observe that for every x ∈ Rd and 1 ≤ i ≤ k + 1,

σi(x) = σ′i(P (x)). (7.47)

Because k < d, we can apply the induction hypothesis for dimension k and conclude that∏k+1
i=1 σ

′
i is equal to a linear combination of products of k or less of σ′1, · · · , σ′k+1. Because

of (7.47) it follows that
∏k+1

i=1 σi is equal to a linear combination of k or les of σ1, · · · , σk+1.
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Consequently,
∏d+1

i=1 σi =
∏k+1

i=1 σi.
∏d+1

i=k+2 is equal to a linear combination of products of d

or less of σ1, · · · , σd+1.

Case 2. Every set of d vectors from v1, · · · , vd+1 is linearly independent. We split into two

possible subcases.

Case 2a. ∩d+1
i=1Hi = ∅. In this case H1, · · · , Hd+1 are the d+1 affine hyper-planes supporting

the facets of the d-simplex ∆d whose vertices are vj = ∩d+1
i=1,i 6=jhi for 1 ≤ j ≤ d+ 1. We may

assume, without loss of generality, that 0 ∈ ∆d. Let I = {1, · · · , d+ 1}. Let Ia and Ib be

a partition of I into two parts such that if i ∈ Ia, then ci < 0, and if i ∈ Ib, then ci > 0.

Then
∏

i∈Ia σi ·
∏

i∈Ib(1− σi) is the indicator function of the interior of ∆d. Applying (7.46)

of Lemma 7.7.2 yields
∏

i∈Ia(1− σi) ·
∏

i∈Ib σi = 0, which proves the theorem for this case.

Case 2b. ∩d+1
i=1Hi 6= ∅. In this case ∩d+1

i=1Hi is a single point, because v1, · · · , vd are linearly

independent. Without loss of generality we assume that this single point is 0. Consequently,

ci = 0 for 1 ≤ i ≤ d + 1. Let α1, · · · , αd+1 be real numbers, not all zero, such that∑d+1
i=1 αivi = 0. Notice that in this case αi 6= 0 for all 1 ≤ i ≤ d + 1, because every set of d

vectors from v1, · · · , vd+1 is linearly independent.

Define Ia = {1 ≤ i ≤ d+ 1|αi > 0} and Ib = {1 ≤ i ≤ d+ 1|αi < 0}. Notice that Ia and

Ib form a partition of 1, · · · , d+ 1. We claim that

∏
i∈Ia

σi ·
∏
i∈Ib

(1− σi) = 0. (7.48)

Observe that once (7.48) is established we are done, as (7.48) implies that
∏d+1

i=1 σi is a linear

combination of the products of d or less of σ1, · · · , σd+1.

To prove (7.48), notice that the contrary assumption is that there exits a vector u such

that for every i ∈ Ia we have 〈u, vi〉 > 0 and for every i ∈ Ib we have 〈u, vi〉 < 0. It follows

now from the definition of Ia and Ib that for every 1 ≤ i ≤ d+ 1 we have αi〈u, vi〉 > 0. This

is a contradiction as
d+1∑
i=1

αi〈u, vi〉 = 〈u,
d+1∑
i=1

αivi〉 = 〈u, 0〉 = 0. (7.49)

92



This concludes the excerpt from Rom Pinchasi and Moshe Idan.

7.8 Modification to the integral formula of Appendix B in [IS14]

Appendix B of [IS14] gives the solution for

I =

∫ ∞
−∞

g

(
n∑
i=1

%isgn (ξi − η)

)
exp

(
−

n∑
i=1

ρi |ξi − η|+ jνη

)
dη (7.50)

where g is an explicit function of a sum of sign functions. We extend the solution to include

g as a function of a sum of products of sign functions.

I =

∫ ∞
−∞

g (η) exp

(
−

n∑
l=1

ρl |ξl − η|+ jνη

)
dη (7.51)

where, for some m and unique σj ⊆ {1, · · · , n},

g(η) = g

 m∑
l=1

%j
∏
`∈σj

sgn (ξ` − η)

 . (7.52)

As in the original derivation, sgn (ξ` − η) is constant on the interval [ξi, ξi+1] such that

sgn (ξ` − η) , s`i =

 sgn (ξ` − ξi) , i 6= `

−1, i = `
. (7.53)

The definition of (7.53) is clear from Figures 7.2 and 7.3. We can see that when ξ` = ξi,

sgn (ξ` − η) = −1 on [ξi, ξi+1]. When ξ` 6= ξi, we evaluate at ξi to obtain sgn (ξ` − η) =

sgn (ξ` − ξi) on [ξi, ξi+1].
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Figure 7.2: Definition of sgn (ξ` − η) on [ξi, ξi+1] for ` = i

We perform the same procedure as in Appendix B to get

I =
n∑
i=0


ξi+1∫
ξi

g

 m∑
j=1

%j
∏
`∈σj

sgn (ξ` − η)

 exp

[(
−

n∑
`=1

ρ`(ξ` − η)sgn (ξ` − η)

)
+ jνη

]
dη


=

n∑
i=0


ξi+1∫
ξi

g

 m∑
j=1

%j
∏
`∈σj

s`i

 exp

[(
−

n∑
`=1

ρ`(ξ` − η)s`i

)
+ jνη

]
dη

 .

(7.54)

This is then integrated to get

I =
n∑
i=0


g

(
m∑
j=1

%j
∏
`∈σj

s`i

)
exp

[(
−

n∑̀
=1

ρ`(ξ` − ξi+1)s`i

)
+ jνξi+1

]
jν +

n∑̀
=1

ρ`s`i


−

n∑
i=0


g

(
m∑
j=1

%j
∏
`∈σj

s`i

)
exp

[(
−

n∑̀
=1

ρ`(ξ` − ξi)s`i
)

+ jνξi

]
jν +

n∑̀
=1

ρ`s`i

 (7.55)
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Figure 7.3: Definition of sgn (ξ` − η) on [ξi, ξi+1] for ` 6= i

As in Appendix B of [IS14], the first sum in (7.55) can be manipulated as follows

n∑
i=0


g

(
m∑
j=1

%j
∏
`∈σj

s`i

)
exp

[(
−

n∑̀
=1

ρ`(ξ` − ξi+1)s`i

)
+ jνξi+1

]
jν +

n∑̀
=1

ρ`s`i


=

n−1∑
i=0


g

(
m∑
j=1

%j
∏
`∈σj

s`i

)
exp

[(
−

n∑̀
=1

ρ`(ξ` − ξi+1)s`i

)
+ jνξi+1

]
jν +

n∑̀
=1

ρ`s`i


+

g

(
m∑
j=1

%j
∏
`∈σj

s`n

)
exp

[(
−

n∑̀
=1

ρ`(ξ` − ξn+1)s`n

)
+ jνξn+1

]
jν +

n∑̀
=1

ρ`s`n

=
n∑
i=1


g

(
m∑
j=1

%j
∏
`∈σj

s`i−1

)
exp

[(
−

n∑̀
=1

ρ`(ξ` − ξi)s`i−1

)
+ jνξi

]
jν +

n∑̀
=1

ρ`s`i−1

 ,

(7.56)

using the fact that ξn+1 = +∞ and s`n = −1∀` ≤ n to eliminate the extra term. Since

sii−1 = 1 and s`i−1 = s`i for i 6= `, we can perform a substitution while being careful around
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i = l. Luckily, the exponential goes to zero when i = `. Then, the term becomes

n∑
i=1


g

(
m∑
j=1

%j
∏
`∈σj

s`i−1

)
exp

[(
−

n∑̀
=1

ρ`(ξ` − ξi)s`i−1

)
+ jνξi

]
jν +

n∑̀
=1

ρ`s`i−1



=
n∑
i=1



g

(
m∑
j=1

%j
∏
`∈σj

s`i−1

)
exp

− n∑̀
=1
`6=i

ρ`(ξ` − ξi)s`i

 jνξi


jν + ρi +

n∑̀
=1
`6=i

ρ`s`i



(7.57)

Similarly, the second sum in (7.55) can be manipulated as follows

n∑
i=0


g

(
m∑
j=1

%j
∏
`∈σj

s`i

)
exp

[(
−

n∑̀
=1

ρ`(ξ` − ξi)s`i
)

+ jνξi

]
jν +

n∑̀
=1

ρ`s`i


=

n∑
i=1


g

(
m∑
j=1

%j
∏
`∈σj

s`i

)
exp

[(
−

n∑̀
=1

ρ`(ξ` − ξi)s`i
)

+ jνξi

]
jν +

n∑̀
=1

ρ`s`i


+

g

(
m∑
j=1

%j
∏
`∈σj

s`0

)
exp

[(
−

n∑̀
=1

ρ`(ξ` − ξ0)s`0

)
+ jνξ0

]
jν +

n∑̀
=1

ρ`s`0

=
n∑
i=1



g

(
m∑
j=1

%j
∏
`∈σj

s`i

)
exp

− n∑̀
=1
`6=i

ρ`(ξ` − ξi)s`i

+ jνξi


jν − ρi +

n∑̀
=1
`6=i

ρ`s`i


,

(7.58)

where the extra term is eliminated since ξ0 = −∞ and s`0 = 1∀` ≥ 0.
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Combining the two manipulated terms yields

I =
n∑
i=1


g

(
m∑
j=1

%j
∏
`∈σj

s`i−1

)
jν + ρi +

n∑̀
=1
6̀=i

ρ`s`i

−
g

(
m∑
j=1

%j
∏
`∈σj

s`i

)
jν − ρi +

n∑̀
=1
` 6=i

ρ`s`i

 exp

− n∑
`=1
` 6=i

ρ`(ξ` − ξi)s`i + jνξi



=
n∑
i=1

Gi exp

(
−

n∑
`=1

ρ`(ξ` − ξi)s`i + jνξi

)
(7.59)

where

Gi =

g

(
m∑
j=1

%j
∏
`∈σj

s`i−1

)
jν + ρi +

n∑̀
=1
`6=i

ρ`s`i

−
g

(
m∑
j=1

%j
∏
`∈σj

s`i

)
jν − ρi +

n∑̀
=1
`6=i

ρ`s`i

(7.60)

Alternatively, we can express Gi as

Gi =

g

(
m∑
j=1

%j
∏
`∈σj

s`i

)∣∣∣∣∣
sii=1

jν + ρi +
n∑̀
=1
`6=i

ρ`s`i

−
g

(
m∑
j=1

%j
∏
`∈σj

s`i

)
jν − ρi +

n∑̀
=1
` 6=i

ρ`s`i

=

 g(ξi)

jν +
n∑̀
=1

ρ`s`i


sii=1

− g(ξi)

jν +
n∑̀
=1

ρ`s`i

(7.61)

We do not simplify this further, because in practice, it is easier to leave s`i as defined in

(7.53) rather than explicitly using sign functions. This is due to the complication that not

all terms in g (η) contains sii, whose sign flips depending on which fraction of Gi it is in.

Note that when ξ` = ξi, the term in the exponent is zero, so

exp

− n∑
`=1
6̀=i

ρ`(ξ` − ξi)s`i + jνξi

 = exp

(
−

n∑
`=1

ρ`(ξ` − ξi)s`i + jνξi

)
. (7.62)

Instead of the first form, used in Appendix B, I use the second form to match Gi.
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Scalar Example: The generalized integral formula (7.59) was demonstrated using three

sign functions. For x ∈ R, let

f(x) = g(x) exp

(
−

3∑
i=1

ρi |ξi − x|

)
(7.63)

where

g = s1 + s2 + s3 + s1s2 + s1s3 + s2s3 + s1s2s3 (7.64)

and si = sgn (ξi − x). For

ξ1 = −1 ρ1 = 0.5

ξ2 = 2 ρ2 = 0.2

ξ3 = 3 ρ3 = 0.1

(7.65)

we numerically integrated f(x) from −10 to 10 using a Riemann sum with dx = 0.0001,

which resulted in

Inumerical = 2.0987. (7.66)

Using (7.59), we got

Igeneralized = 2.0986. (7.67)

Note that g(x) could have been simplified to a simple sum, but we left it in the longer form

to show the flexibility of (7.59).

2D Example: For x ∈ R2, let

s1 = sgn (1 + x1 + x2) = −sgn (ξ1 − x2)

s2 = sgn (1− x1 + x2) = −sgn (ξ2 − x2)
(7.68)

where ξ1 = −1− x1 and ξ2 = −1 + x1. Then, consider the integral where we integrate with

respect to x2

f(x1) =

∫ ∞
−∞

s1s2 exp (−2 |ξ1 − x2| − 3 |ξ2 − x2|) dx2 (7.69)

Using the generalized integral formula in (7.59),

f(x1) = G1(x1) exp (−3 |ξ2 − ξ1|) +G2(x1) exp (−2 |ξ1 − ξ2|)

= G1(x1) exp (−3 |2x1|) +G2(x1) exp (−2 |2x1|)
(7.70)
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where

G1(x1) =
sgn (ξ2 − ξ1)

2 + 3sgn (ξ2 − ξ1)
− −sgn (ξ2 − ξ1)

−2 + 3sgn (ξ2 − ξ1)

=
sgn (2x1)

2 + 3sgn (2x1)
+

sgn (2x1)

−2 + 3sgn (2x1)

=
sgn (x1)

2 + 3sgn (x1)
+

sgn (x1)

−2 + 3sgn (x1)

G2(x2) =
sgn (ξ1 − ξ2)

2 + 2sgn (ξ1 − ξ2)
− −sgn (ξ1 − ξ2)

−2 + 2sgn (ξ1 − ξ2)

=
sgn (−2x1)

3 + 2sgn (−2x1)
− −sgn (−2x1)

−3 + 2sgn (−2x1)

=
−sgn (x1)

3− 2sgn (x1)
− sgn (x1)

−3− 2sgn (x1)

(7.71)

The integral (7.69) was solved numerically using a Riemann sum and plotted against the

closed-form solution (7.70) in Figure 7.4.

7.8.1 Re-writing output of generalized integral formula in standard form

The solution to the generalized integral formula in (7.59) is compact, but in order to facilitate

incorporating it into an algorithm, it needs to be rewritten in standard form. That is, the

arguments of sli must be explicitly written in the form ψ + θTx.

We start with one term of the output of (7.59)

Ii = Gi exp

(
−

n∑
`=1

ρ`(ξ` − ξi)s`i + jνξi

)
(7.72)

where

Gi =

g

(
m∑
j=1

%j
∏
`∈σj

s`i

)∣∣∣∣∣
sii=1

jν + ρi +
n∑̀
=1
6̀=i

ρ`s`i

−
g

(
m∑
j=1

%j
∏
`∈σj

s`i

)
jν − ρi +

n∑̀
=1
` 6=i

ρ`s`i

=

 g

jν +
n∑̀
=1

ρ`s`i


sii=1

− g

jν +
n∑̀
=1

ρ`s`i

(7.73)
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Figure 7.4: Numerical and generalized (MIF) closed-form solutions to integral formula in

two dimensions

and g is defined in (7.52). Nominally, sli is defined by (7.53), or

sli = sgn (ξl − ξi)

= sgn
(
ψl + θTl x− ψi − θTi x

)
= sgn

(
ψl − ψi + (θl − θi)Tx

)
, sgn

(
ψil + θTilx

)
(7.74)

7.9 Collapsed hyperplanes

When the θ component of hyperplane ξ = ψ + θx vanishes, the hyperplane collapses into a

constant and must be factored out from the standard function expression.
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7.9.1 Example: Collapsed hyperplane

It’s easiest to start with an example. Given a pdf term in standard form such that

fi(x) = g(x) exp

(
−

3∑
j=1

ηj
∣∣ψj + θTj x

∣∣)

g(x) = ρ0 +
6∑
j=1

ρj
∏
l∈σj

sgn
(
ψl + θTl x

) (7.75)

where

ψ =
[
ψ1 ψ2 ψ3

]
θ =

[
θ1 θ2 θ3

]
η =

[
η1 η2 η3

]
ρ =

[
ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

]
σ = {{1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3}}

(7.76)

Let θ2 = 0. The exponential function becomes

exp (−η2 |ψ2|) · exp (−η1 |ψ1 + θ1x| − η3 |ψ3 + θ3x|) (7.77)

The constant factor ζ = exp (−η2 |ψ2|) will be distributed into the coefficient function. In

the coefficient function, term 2 also becomes constant, while terms 4 and 6 simply factor out

constant coefficients as

ρ0 → ρ0 + ρ2sgn (ψ2)

ρ2 → 0

ρ4 → ρ4sgn (ψ2)

ρ6 → ρ6sgn (ψ2)

(7.78)

and

σ → {{1} , ∅, {3} , {1} , {1, 3} {3}} (7.79)
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Terms 1 and 3 now have the same elements as terms 3 and 6, respectively, so they can be

combined as

ρ̄0 = ζ (ρ0 + ρ2sgn (ψ2))

ρ̄1 = ζ (ρ1 + ρ4sgn (ψ2))

ρ̄3 = ζ (ρ3 + ρ6sgn (ψ2))

ρ̄5 = ζρ5

(7.80)

and

σ → {{1} , {3} , {1, 3}} (7.81)

Finally, we can re-index all the terms to get

f̂i(x) = ĝ(x) exp

(
−

2∑
j=1

η̂j

∣∣∣ψ̂j + θ̂jx
∣∣∣)

ĝ(x) = ρ̂0 +
2∑
j=1

ρ̂j
∏
l∈σj

sgn
(
ψ̂l + θ̂lx

) (7.82)

where

ψ̂ =
[
ψ̂1 ψ̂2

]
=
[
ψ1 ψ̂3

]
θ̂ =

[
θ̂1 θ̂2

]
=
[
θ̂1 θ̂3

]
η̂ =

[
η̂1 η̂2

]
=
[
η̂1 η̂3

]
ρ̂0 = ζ (ρ0 + ρ2sgn (ψ2))

ρ̂ =
[
ρ̂1 ρ̂2 ρ̂3

]
= ζ

[
ρ1 + ρ4sgn (ψ2) ρ3 + ρ6sgn (ψ2) ρ5

]
σ̂ = {{1} , {2} , {1, 2}}

(7.83)

7.10 Merging hyperplanes

When two hyperplanes coalesce into one, it is necessary to either merge them into one or to

otherwise keep track of them. This is due to the fact that certain naive implementations of

the integral formulas may result in incorrect sign of certain terms.
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First, we define two hyperplanes ξi and ξj as equal when, for

ξi = ψi + θix, ξj = ψj + θjx, (7.84)

the equation

A ,

 θi

θj

x = 0 (7.85)

has no non-trivial solutions and
ψi
‖θi‖2

− ψj
‖θj‖2

= 0 (7.86)

Equivalently, A has a non-trivial nullspace, or the directions defined by θi and θj are parallel.

When ψi = ψj = 0, θi and θj may be anti-parallel and still satisfy the above conditions, so

the hyperplanes must still be merged, but the signs are opposite.

In practice, one is limited to machine precision and must decide whether that is actually

too small. Perhaps a higher threshold is needed to coalesce hyperplanes which are “close

enough”, though care must be taken to avoid overdoing it and corrupting the expressions

for the pdf or characteristic functions.

7.10.1 Example: Merging hyperplanes when computing characteristic function

It’s easiest to start with an example. Given a pdf term in standard form such that

fi(x) = g(x) exp

(
−

3∑
j=1

ηj
∣∣ψj + θTj x

∣∣)

g(x) = ρ0 +
6∑
j=1

ρj
∏
l∈σj

sgn
(
ψl + θTl x

) (7.87)
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where

ψ =
[
ψ1 ψ2 ψ3

]
θ =

[
θ1 θ2 θ3

]
η =

[
η1 η2 η3

]
ρ =

[
ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

]
σ = {{1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3}}

(7.88)

Let hyperplanes 1 and 2 be coincident and are equal to within a scale factor ζ so that

ψ1 + θT1 x = ζ
(
ψ2 + θT2 x

)
=⇒ ψ1

ζ
+
θT1
ζ
x = ψ2 + θT2 x (7.89)

(7.90)

Replacing hyperplane 2 with hyperplane 1 results in the following changes

η2

∣∣ψ2 + θT2 x
∣∣ = η2

∣∣∣∣ψ1

ζ
+
θT1
ζ
x

∣∣∣∣
=
η2

|ζ|
∣∣ψ1 + θT1 x

∣∣
ρ2sgn

(
ψ2 + θT2 x

)
= ρ2sgn

(
ψ1

ζ
+
θT1
ζ
x

)
= ρ2sgn (ζ) sgn

(
ψ1 + θT1 x

)
ρ4sgn

(
ψ1 + θT1 x

)
sgn

(
ψ2 + θT2 x

)
= ρ4sgn

(
ψ1 + θT1 x

)
sgn

(
ψ1

ζ
+
θT1
ζ
x

)
= ρ4sgn (ζ) sgn

(
ψ1 + θT1 x

)2

= ρ4sgn (ζ)

ρ6sgn
(
ψ2 + θT2 x

)
sgn

(
ψ3 + θT3 x

)
= ρ6sgn

(
ψ1

ζ
+
θT1
ζ
x

)
sgn

(
ψ3 + θT3 x

)
= ρ6sgn (ζ) sgn

(
ψ1 + θT1 x

)
sgn

(
ψ3 + θT3 x

)

(7.91)
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Note that sgn (ζ) almost always equals 1, since the only time two hyperplanes coincide when

θT1 θ2 < 0 is when ψ1 = ψ2 = 0. The parameters then become

ψ̄ =
[
ψ1 ψ1 ψ3

]
θ̄ =

[
θ1 θ1 θ3

]
η̄ =

[
η1

η2
|ζ| η3

]
ρ̄0 = ρ0 + ρ4sgn (ζ)

ρ̄ =
[
ρ1 ρ2sgn (ζ) ρ3 ρ5 ρ6sgn (ζ)

]
σ̄ = {{1} , {1} , {3} , {1, 3} , {1, 3}}

(7.92)

Combining like terms and shifting the old index 3 in σ to the vacated index 2 yields

ψ̂ =
[
ψ1 ψ3

]
θ̂ =

[
θ1 θ3

]
η̂ =

[
η1 + η2

|ζ| η3

]
ρ̂0 = ρ0 + ρ4sgn (ζ)

ρ̂ =
[
ρ1 + ρ2sgn (ζ) ρ3 ρ5 + ρ6sgn (ζ)

]
σ̂ = {{1} , {2} , {1, 2}}

(7.93)

To reiterate, the indices in σ̂ reflect the positions of elements of ψ̂ and θ̂.

7.11 Algorithm for computing characteristic function in R2

Since it is not practical to show the characteristic function(CF) for the general case in Rn,

we will instead provide an algorithm for computing the CF in R2. For each term in φX|Y ,
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we have

φiX|Y (ν1, ν2) =

∫
R
ejν1x1

∫
R
f iX|Y (x)ejν2x2 dx2 dx1

=

∫
R
ejν1x1

∫
R
gi(x) exp

(
−

mi∑
l=1

ηl |ψl + θlx|+ jν2x2

)
dx2 dx1

,
∫
R
ejν1x1I i2(ν2, x1) dx1

(7.94)

7.11.1 Isolate x2

We first evaluate the inner integral I i2(ν, x1). Similarly to the propagation step, we multiply

f iX|Y by an exponential, exp (jν2x2), and manipulate the argument ψl + θTl x to look like

ξl − x2.

For θl2 6= 0,

ρ̃q = ρq
∏
l∈σq

−sgn (θl2)

ξ̃l = −ψl + θl1x1

θl2

η̃l = ηl |θl2|

(7.95)

Note that x1 is actually implicit, so when we write this algorithm in code, we have to

implicitly carry it forward.

For θl2 = 0, the particular element is constant with respect to x2, so it is not considered

a hyperplane for this integral. Therefore, if σq \ l 6= ∅,

σ̃q = σq \ l

ρ̃q = ρqsgn (ψl − θl1x1) .
(7.96)

This moves the constant exponential exp (−ηl |ψl − θl1x1|) out of the integral to join exp (jν1x1).

In gi(x), sgn (ψl − θl1x1) moves out to join ρq as a constant coefficient.

If σiq \ l = ∅, the entire q term in gi(x) is constant with respect to x2, and it is then
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grouped with the constant coefficient ρi0 as

ρ̃i0 = ρi0+ρilsgn (ψil − θi,l1x1) (7.97)

These new parameters now define term i in a new form

f̃ iX|Y = g̃i(ξ̃l − x2) exp

(
−

m̃i∑
l=1

η̃l

∣∣∣ξ̃l − x2

∣∣∣+ jν2x2

)
(7.98)

7.11.2 Integration with respect to x2

After the conditioning in the first stage, we can use the generalized integral formula (7.59)

to integrate with respect to x2 to get

I i2(ν2, x1) =

m̃i∑
j=1

Gij(ν2, x1) exp

− m̃ij+m̄ij∑
l=1
l 6=j

η̃il

∣∣∣ξ̃il − ξ̃ij∣∣∣+ jν2ξ̃ij

 (7.99)

where

Gij(ν2, x1) =
g̃†i

(
ξ̃ij

)
jν2 + ηij +

m̃ij∑
l=1
l 6=j

ηilsgn
(
ξ̃il − ξ̃ij

)

−
g̃i

(
ξ̃ij

)
jν2 − ηij +

m̃ij∑
l=1
l 6=j

ηilsgn
(
ξ̃il − ξ̃ij

)
(7.100)

g†
(
ξ̃ij

)
refers to g̃i(x1) for which sgn (0) is evaluated as 1 instead of the usual −1, m̄ij

accounts for any constant terms that were factored out of the first integration, and

ξil − ξij = (ψil − ψij)− (θil − θij)x1

, ψijl + θijlx1

(7.101)

Unfortunately, we will not be able to flatten the resulting Gij(ν2, x1), since it has non-

constant ν2 which are not in sign functions.
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7.11.3 Re-index terms

Since each term i produces m̃i terms, φX|Y is a sum of sum of terms, whose indexing can

be cumbersome to manage. Therefore, we can re-index all of the sub-terms from the first

integration so we again have a sum of the form

φX|Y (ν1, ν2) =

∫
R
jνx1

[
N∑
i=1

Gi(ν2, x1) exp

(
−

mi∑
j=1

η̃il |ψil + θilx1|+ jν2ξi

)]
dx1

=
N∑
i=1

[∫
R
Gi(ν2, x1) exp

(
−

mi∑
j=1

ηil |ψil + θilx1|+ jν1x1 + jν2ξi

)
dx1

] (7.102)

where the previous ij indices now become the new i indices, and N now accounts for all the

sub-terms. Note that we also remove the tilde.

7.11.4 Isolate x1

We can integrate each term separately once more to obtain a term of φX|Y . As in the first

integral, we must isolate x1 in order to use the integral formula. For θil 6= 0,

ξ̂il =
ψil
−θil

η̂il = ηil |θil|

ρ̂il = ρilsgn (−θil)

(7.103)

When θil = 0, the corresponding constant exponential exp (−ηil |ψil|) is factored out of the

integration and the corresponding constant sgn (ψil) is accounted for in Gi similarly to the

first integration. Note that this will affect both the numerator and denominator of Gi,

though the denominator is straight-forward because it will not have products of signs to deal

with.

Equation (7.102) then looks like

φX|Y (ν1, ν2) =
N∑
i=1

[
ejν2ψi

∫
R
Gi(ν2, x1) exp

(
−

mi∑
j=1

η̂il

∣∣∣ξ̂il − x1

∣∣∣+ jν1x1 + jν2θix1

)
dx1

]
(7.104)
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Note that exp (jν2ψi) and exp (ν2θix1) both came from ξ̃ij in (7.99).

7.11.5 Integration with respect to x1

Finally, we can use the integral formula to integrate each term of φX|Y to get

φiX|Y =

mi∑
j=1

Ĝij(ν1, ν2) exp

− mij∑
l=1
l 6=j

η̂il

∣∣∣ξ̂il − ξ̂ij∣∣∣+ jν1ξ̂ij + jν2

(
ψi + θiξ̂ij

) (7.105)

where

Ĝij(ν1, ν2) =
G∗i

(
ν2, ξ̂ij

)
jν1 + jν2θi + η̂ij +

∑
l=1
l 6=j

η̂ilsgn
(
ξ̂il − ξ̂ij

)

−
Gi

(
ν2, ξ̂ij

)
jν1 + jν2θi − η̂ij +

∑
l=1
l 6=j

η̂ilsgn
(
ξ̂il − ξ̂ij

)
(7.106)

and G∗(ν2, ξ̂ij) denotes Gi(ν2, x1) evaluated at ξ̂ij where sgn (0) is evaluated to 1 instead of

the normal −1. Gi(ν2, x1) is the re-indexed Gij(ν2, x1) defined in (7.100).

7.11.6 Simplify characteristic function

After the second integration (the outer integration), the characteristic function has the form

φX|Y =
N∑
i=1

ˆ̂Gi(ν1, ν2) exp (ci1 · jν1 + ci2 · jν2 + ci3) (7.107)

where

Ĝi(ν1, ν2) =

ai1
ai2+jν2

− ai3
ai4+jν2

ai5 + jν1 + ai6 · jν2

−
bi1

bi2+jν2
− bi3

bi4+jν2

bi5 + jν1 + bi6 · jν2

(7.108)

and ai1, · · · , ai6, bi1, · · · , bi6 and ci1, · · · , ci3 are constants.
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7.12 Example: Normalization of fX1|Y1
in R2

Given independent initial densities fX11 and fX12 with means x̄1, x̄2 and spread parameter

α, the initial pdf is

fX1(x1) =
1

2α
exp

(
− 1

α
|x̄1 − x1|

)
1

2α
exp

(
− 1

α
|x̄2 − x2|

)
=

1

4α2
exp

(
− 1

α
|x̄1 − E1x1| −

1

α
|x̄2 − E2x1|

) (7.109)

where for E1 =
[

1 0
]

and E1 =
[

0 1
]
,

Given measurement Y1 = {z1} and using (3.17), where H =
[
h1 h2

]
, h1 6= 0, h2 6= 0,

the unnormalized conditional pdf, fX1|Y1 , is given by

fX1|Y1(x1|z1) =
1

2γ
exp

(
− 1

α
|x̄1 − E1x1| −

1

α
|x̄2 − E2x1| −

1

γ
|z1 −Hx1|

)
(7.110)

We can ignore the
1

4α2
and

1

2γ
because it will get taken care of when we normalize. The

normalization factor of (7.110) is given by

fY1 =

∫∫
R2

fX1|Y1(x1) dx

=

∫
R

∫
R

exp

(
− 1

α
|x̄1 − E1x1| −

1

α
|x̄2 − E2x1| −

1

γ
|z1 −Hx1|

)
dx2 dx1

=

∫
R

∫
R

exp

(
− 1

α
|x̄1 − x1| −

1

α
|x̄2 − x2| −

1

γ
|z1 − h1x1 − h2x2|

)
dx2 dx1

=

∫
R

exp

(
− 1

α
|x̄1 − x1|

)∫
R

exp

(
− 1

α
|x̄2 − x2| −

1

γ
|z1 − h1x1 − h2x2|

)
dx2 dx1

,
∫
R
I2(x1) exp

(
− 1

α
|x̄1 − x1|

)
dx1

(7.111)

Assuming h2 6= 0, we isolate x2 of the inner integral to get

I2(x1) =

∫
R

exp

(
− 1

α
|x̄2 − x2| −

1

γ
|z1 − h1x1 − h2x2|

)
dx2

=

∫
R

exp

(
− 1

α
|x̄2 − x2| −

|h2|
γ

∣∣∣∣ z1

h2

− h1

h2

x1 − x2

∣∣∣∣) dx2

,
∫
R

exp (−η1 |ξ1 − x2| − η2 |ξ2 − x2|) dx2

(7.112)
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where

η1 =
1

α

ξ1 = x̄2 + 0 · x1 , ψ1 + θ1x1

η2 =
|h2|
γ

ξ2 =
z1

h2

+
−h1

h2

x1 , ψ2 + θ2x1

(7.113)

Using the generalized integral formula (7.59), we obtain

I2(x1) = g1(x1) exp (−η2 |ξ2 − ξ1|) + g2(x1) exp (−η1 |ξ1 − ξ2|)

, I21(x1) + I22(x1)
(7.114)

where

g1(x1) =
1

jν2 + η1 + η2sgn (ξ2 − ξ1)
− 1

jν2 − η1 + η2sgn (ξ2 − ξ1)

g2(x1) =
1

jν2 + η2 + η1sgn (ξ1 − ξ2)
− 1

jν2 − η2 + η1sgn (ξ1 − ξ2)

(7.115)

7.12.1 Integrate term 1 with respect to x1

Let’s expand I21(x1) and perform the second integration separately from I22(x1).

I11 =

∫
R
I21(x1) exp

(
− 1

α
|x̄1 − x1|

)
dx1

=

∫
R
g1(x1) exp

(
−η2 |ξ2 − ξ1| −

1

α
|x̄1 − x1|

)
dx1

=

∫
R
g1(x1) exp

(
−η2 |(ψ2 − ψ1) + (θ2 − θ1)x1| −

1

α
|x̄1 − x1|

)
dx1

=

∫
R
g1(x1) exp

(
−η2 |(ψ2 − ψ1) + θ2x1| −

1

α
|x̄1 − x1|

)
dx1

(7.116)
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where

g1(x1) =
1

η1 + η2sgn (ξ2 − ξ1)
− 1

−η1 + η2sgn (ξ2 − ξ1)

=
1

η1 + η2sgn ((ψ2 − ψ1) + (θ2 − θ1)x1)
− 1

−η1 + η2sgn ((ψ2 − ψ1) + (θ2 − θ1)x1)

=
1

η1 + η2sgn ((ψ2 − ψ1) + θ2x1)
− 1

−η1 + η2sgn ((ψ2 − ψ1) + θ2x1)

(7.117)

Next, we isolate x1 to get

I11 =

∫
R
g1(x1) exp

(
−η2 |(ψ2 − ψ1) + θ2x1| −

1

α
|x̄1 − x1|

)
dx1

= ejν2ψ1

∫
R
g1(ν2, x1) exp

(
−η2 |(ψ2 − ψ1) + θ2x1| −

1

α
|x̄1 − x1|

)
dx1

= ejν2ψ1

∫
R
g1(ν2, x1) exp

(
−η2 |θ2|

∣∣∣∣ψ2 − ψ1

−θ2

− x1

∣∣∣∣− 1

α
|x̄1 − x1|

)
dx1

, ejν2ψ1

∫
R
g1(ν2, x1) exp

(
−η̂11

∣∣∣ξ̂11 − x1

∣∣∣− η̂12

∣∣∣ξ̂12 − x1

∣∣∣) dx1

(7.118)

where

g1(x1) =
1

η1 + η2sgn ((ψ2 − ψ1) + θ2x1)
− 1

−η1 + η2sgn ((ψ2 − ψ1) + θ2x1)

=
1

η1 + η2sgn (−θ2) sgn
(
ψ2−ψ1

−θ2 − x1

) − 1

−η1 + η2sgn (−θ2) sgn
(
ψ2−ψ1

−θ2 − x1

)
,

1

η1 + ρ̂11sgn
(
ξ̂11 − x1

) − 1

−η1 + ρ̂11sgn
(
ξ̂11 − x1

)
(7.119)

and

η̂11 = η2 |θ2|

η̂12 =
1

α

ρ̂11 = η2sgn (−θ2)

ρ̂12 = 0

ξ̂11 = −ψ2 − ψ1

θ2

ξ̂12 = x̄1

(7.120)
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We can then use the generalized integral formula (actually, the original (7.3) works just fine)

to get

I11 = G11 exp
(
−η̂12

∣∣∣ξ̂12 − ξ̂11

∣∣∣)+G12 exp
(
−η̂11

∣∣∣ξ̂11 − ξ̂12

∣∣∣)
= G11 exp (c11 · jν1 + c12 · jν2 + c13)

+G12 exp (c21 · jν1 + c22 · jν2 + c23)

(7.121)

where

G11 =
g1(ξ̂11)

jν1 + η̂11 + η̂12sgn
(
ξ̂12 − ξ̂11

) − g1(ν2, ξ̂11)

jν1 − η̂11 + η̂12sgn
(
ξ̂12 − ξ̂11

)
=

1
jν2+η1+ρ̂11

− 1
jν2−η1+ρ̂11

jν1 + η̂11 + η̂12sgn
(
ξ̂12 − ξ̂11

) − 1
jν2+η1−ρ̂11 −

1
jν2−η1−ρ̂11

jν1 − η̂11 + η̂12sgn
(
ξ̂12 − ξ̂11

)
,

a11
a12+jν2

− a13
a14+jν2

a15 + jν1 + a16 · jν2

−
b11

b12+jν2
− b13

b14+jν2

b15 + jν1 + b16 · jν2

G12 =
g1(ξ̂12)

η̂12 + η̂11sgn
(
ξ̂11 − ξ̂12

) − g1(ν2, ξ̂12)

−η̂12 + η̂11sgn
(
ξ̂11 − ξ̂12

)
=

1

η1+ρ̂11sgn(ξ̂11−ξ̂12)
− 1

−η1+ρ̂11sgn(ξ̂11−ξ̂12)

η̂12 + η̂11sgn
(
ξ̂11 − ξ̂12

) −
1

η1+ρ̂11sgn(ξ̂11−ξ̂12)
− 1

−η1+η̂11sgn(ξ̂11−ξ̂12)

−η̂12 + η̂11sgn
(
ξ̂11 − ξ̂12

)
,

a21
a22+jν2

− a23
a24+jν2

a25 + jν1 + a26 · jν2

−
b21

b22+jν2
− b23

b24+jν2

b25 + jν1 + b26 · jν2

(7.122)

and

a11 = 1 b11 = 1 c11 = ξ̂11

a12 = η1 + ρ̂11 b12 = η1 − ρ̂11 c12 = ψ1

a13 = 1 b13 = 1 c13 = −η̂12 |ξ12 − ξ11|

a14 = −η1 + ρ̂11 b14 = −η1 − ρ̂11

a15 = η̂11 + η̂12sgn
(
ξ̂12 − ξ̂11

)
b15 = −η̂11 + η̂12sgn

(
ξ̂12 − ξ̂11

)
a16 = 0 b16 = 0

(7.123)
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and

a21 = 1 b21 = 1 c21 = ξ̂12

a22 = η1 + ρ̂11sgn
(
ξ̂11 − ξ̂12

)
b22 = η1 + ρ̂11sgn

(
ξ̂11 − ξ̂12

)
c22 = ψ1

a23 = 1 b23 = 1 c23 = −η̂11 |ξ11 − ξ12|

a25 = −η1 + ρ̂11sgn
(
ξ̂11 − ξ̂12

)
b25 = −η1 + ρ̂11sgn

(
ξ̂11 − ξ̂12

)
a27 = η̂12 + η̂11sgn

(
ξ̂11 − ξ̂12

)
b27 = −η̂12 + η̂11sgn

(
ξ̂11 − ξ̂12

)
a29 = 0 b29 = 0

(7.124)

7.12.2 Integrate term 2 with respect to x1

We repeat the integration for I22(x1), though by careful inspection, we can say that for

η̂21 = η1 |θ2|

η̂22 =
1

α

ρ̂21 = η1sgn (θ2)

ρ̂22 = 0

ξ̂21 =
ψ1 − ψ2

θ2

ξ̂22 = x̄1

(7.125)

We can then use the modified integral formula (actually, the original works just fine) to get

I12 = G21 exp
(
−η̂22

∣∣∣ξ̂22 − ξ̂21

∣∣∣)+G22 exp
(
−η̂21

∣∣∣ξ̂21 − ξ̂22

∣∣∣)
= G21 exp (c11 · jν1 + c12 · jν2 + c13)

+G22 exp (c21 · jν1 + c22 · jν2 + c23)

(7.126)

where

G21 ,
a11

a12+jν2
− a13

a14+jν2

a15 + jν1 + a16 · jν2

−
b11

b12+jν2
− b13

b14+jν2

b15 + jν1 + b16 · jν2

G22 ,
a21

a22+jν2
− a23

a24+jν2

a25 + jν1 + a26 · jν2

−
b21

b22+jν2
− b23

b24+jν2

b25 + jν1 + b26 · jν2

(7.127)
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and

a11 = 1 b11 = 1 c11 = ξ̂21

a12 = η2 + ρ̂21 b12 = η2 − ρ̂21 c12 = ψ1

a13 = 1 b13 = 1 c13 = −η̂22

∣∣∣ξ̂22 − ξ̂21

∣∣∣
a14 = −η2 + ρ̂21 b14 = −η2 − ρ̂21

a15 = η̂21 + η̂22sgn
(
ξ̂22 − ξ̂21

)
b15 = −η̂21 + η̂22sgn

(
ξ̂22 − ξ̂21

)
a16 = 0 b16 = 0

(7.128)

and

a21 = 1 b21 = 1 c21 = ξ̂22

a22 = η2 + ρ̂21sgn
(
ξ̂21 − ξ̂22

)
b22 = η2 + ρ̂21sgn

(
ξ̂21 − ξ̂22

)
c22 = ψ1

a23 = 1 b23 = 1 c23 = −η̂21

∣∣∣ξ̂21 − ξ̂22

∣∣∣
a24 = −η2 + ρ̂21sgn

(
ξ̂21 − ξ̂22

)
b24 = −η2 + ρ̂21sgn

(
ξ̂21 − ξ̂22

)
a25 = η̂22 + η̂21sgn

(
ξ̂21 − ξ̂22

)
b25 = −η̂22 + η̂21sgn

(
ξ̂21 − ξ̂22

)
a26 = 0 b26 = 0

(7.129)

Once the CF is in the standard form, the equations for finding the moments are identical

to those in the previous example for fX1 !

7.13 First two moments in R2 using characteristic functions

The first two moments in R2 are

E [X] =

 1
j
∂φ
∂ν1

1
j
∂φ
∂ν2


ν=0

E
[
XXT

]
=

 −∂2φ
∂ν21

− ∂2φ
∂ν1∂ν2

− ∂2φ
∂ν1∂ν2

−∂2φ
∂ν22


ν=0

(7.130)
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where

∂φ

∂ν1

=
∂G

∂ν1

· ε+G · ∂ε
∂ν1

∂φ

∂ν2

=
∂G

∂ν2

· ε+G · ∂ε
∂ν2

∂2φ

∂ν2
1

=
∂2G

∂ν2
1

· ε+ 2
∂G

∂ν1

· ∂ε
∂ν1

+G · ∂
2ε

∂ν2
1

∂2φ

∂ν1ν2

=
∂2G

∂ν1ν2

· ε+
∂G

∂ν1

· ∂ε
∂ν2

+
∂G

∂ν2

· ∂ε
∂ν1

+G · ∂2ε

∂ν1ν2

∂2φ

∂ν2
2

=
∂2G

∂ν2
2

· ε+ 2
∂G

∂ν2

· ∂ε
∂ν2

+G · ∂
2ε

∂ν2
2

(7.131)

The first partial derivatives with respect to ν1 and ν2 are

∂G

∂ν1

= −
Na

∂Da
∂ν1

D2
a

+
Nb

∂Db
∂ν1

D2
b

∂G

∂ν2

=
−Na

∂Da
∂ν2

+Da
∂Na
∂ν2

D2
a

−
−Nb

∂Db
∂ν2

+Db
∂Nb
∂ν2

D2
b

∂ε

∂ν1

= jc1ε

∂ε

∂ν2

= jc2ε

(7.132)

where

∂Na

∂ν1

= 0

∂Da

∂ν1

= ja8

∂Na

∂ν2

=
−ja1a3

(a2 + jν2a3)2 −
−ja4a6

(a5 + jν2a6)2

∂Da

∂ν2

= ja9

(7.133)

and the corresponding partials for the Nb, Db terms are the same except using b coefficients.

The second partial derivatives are as follows

∂2G

∂ν2
1

=
− ∂
∂ν1

(
Na

∂Da
∂ν1

)
D2
a +Na

∂Da
∂ν1
· ∂
∂ν1
D2
a

D4
a

−
− ∂
∂ν1

(
Nb

∂Db
∂ν1

)
D2
b +Nb

∂Db
∂ν1
· ∂
∂ν1
D2
b

D4
b

=
Na

∂Da
∂ν1
· ∂
∂ν1
D2
a

D4
a

−
Nb

∂Db
∂ν1
· ∂
∂ν1
D2
b

D4
b

(7.134)
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where we use
∂Na

∂ν1

= 0 and
∂2Da

∂ν2
1

= 0. Next, we have the cross derivatives

∂2G

∂ν1∂ν2

=
− ∂
∂ν2

(
Na

∂Da
∂ν1

)
·D2

a +Na
∂Da
∂ν1
· ∂
∂ν2
D2
a

D4
a

−
− ∂
∂ν2

(
Nb

∂Db
∂ν1

)
·D2

b +Nb
∂Db
∂ν1
· ∂
∂ν2
D2
b

D4
b

=
−∂Na

∂ν2
· ∂Da
∂ν1
·D2

a +Na
∂Da
∂ν1
· ∂
∂ν2
D2
a

D4
a

−
−∂Nb

∂ν2
· ∂Db
∂ν1
·D2

b = Nb
∂Db
∂ν1
· ∂
∂ν2
D2
b

D4
b

(7.135)

where we use
∂2Da

∂ν1∂ν2

= 0. Finally, we have

∂2G

∂ν2
2

=

∂
∂ν2

(
−Na

∂Da
∂ν2

+Da
∂Na
∂ν2

)
·D2

a −
(
−Na

∂Da
∂ν2

+Da
∂Na
∂ν2

)
· ∂
∂ν2
D2
a

D4
a

−
∂
∂ν2

(
−Nb

∂Db
∂ν2

+Db
∂Nb
∂ν2

)
·D2

b −
(
−Nb

∂Db
∂ν2

+Db
∂Nb
∂ν2

)
· ∂
∂ν2
D2
b

D4
b

=

(
−∂Na

∂ν2
· ∂Da
∂ν2
−Na · ∂

2Da
∂ν22

+ ∂Da
∂ν2
· ∂Na
∂ν2

+Da
∂2Na
∂ν22

)
·D2

a −
(
−Na

∂Da
∂ν2

+Da
∂Na
∂ν2

)
· ∂
∂ν2
D2
a

D4
a

−

(
−∂Nb

∂ν2
· ∂Db
∂ν2
−Nb

∂2Db
∂ν22

+ ∂Db
∂ν2
· ∂Nb
∂ν2

+Db
∂2Nb
∂ν22

)
·D2

b −
(
−Nb

∂Db
∂ν2

+Db
∂2Nb
∂ν22

)
· ∂
∂ν2
D2
b

D4
b

=
D3
a
∂2Na
∂ν22
−
(
−Na

∂Da
∂ν2

+Da
∂Na
∂ν2

)
· ∂
∂ν2
D2
a

D4
a

D3
b
∂2Nb
∂ν22
−
(
−Nb

∂Db
∂ν2

+Db
∂2Nb
∂ν22

)
· ∂
∂ν2
D2
b

D4
b

(7.136)

where we use
∂2Da

∂ν2
2

=
∂2Db

∂ν2
2

= 0.

The second partials for the exponential term are

∂2ε

∂ν2
1

= −c2
1ε

∂2ε

∂ν1∂ν2

= −c1c2ε

∂ε

∂ν2

= −c2
2ε

(7.137)
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where

∂2Da

∂ν1∂ν2

=
∂

∂ν2

∂Da

∂ν1

=
∂

∂ν2

ja9 = 0

∂2Db

∂ν1∂ν2

=
∂

∂ν2

∂Db

∂ν1

=
∂

∂ν2

jb9 = 0

∂2Da

∂ν2
1

=
∂2Db

∂ν2
1

= 0

∂2Da

∂ν2
2

=
∂2Db

∂ν2
2

= 0

∂

∂ν1

(
Na

∂Da

∂ν1

)
=

∂

∂ν1

(
Nb
∂Db

∂ν1

)
= 0

∂

∂ν1

D2
a = 2Da

∂Da

∂ν1

= j2a8Da

∂

∂ν1

D2
b = 2Db

∂Db

∂ν1

= j2b8Db

∂2Na

∂ν2
2

=
∂

∂ν2

∂Na

∂ν2

= − 2a1a
2
3

(a2 + jν2a3)3 +
2a4a

2
6

(a5 + jν2a6)3

∂2Nb

∂ν2
2

=
∂

∂ν2

∂Nb

∂ν2

= − 2b1b
2
3

(b2 + jν2b3)3 +
2b4b

2
6

(b5 + jν2b6)3

∂

∂ν2

(
Na

∂Da

∂ν1

)
=
∂Na

∂ν2

· ∂Da

∂ν1

+Na ·
∂2Da

∂ν1∂ν2

=
∂Na

∂ν2

· ∂Da

∂ν1

∂

∂ν2

(
Nb
∂Db

∂ν1

)
=
∂Nb

∂ν2

· ∂Db

∂ν1

+Nb ·
∂2Db

∂ν1∂ν2

=
∂Nb

∂ν2

· ∂Db

∂ν1

∂

∂ν2

(
Da

∂Na

∂ν2

)
=
∂Da

∂ν2

· ∂Na

∂ν2

+Da ·
∂2Na

∂ν2
2

∂

∂ν2

(
Db
∂Nb

∂ν2

)
=
∂Db

∂ν2

· ∂Nb

∂ν2

+Db ·
∂2Nb

∂ν2
2

∂

∂ν2

D2
a = 2Da

∂Da

∂ν2

∂

∂ν2

D2
b = 2Db

∂Db

∂ν2

(7.138)

Note that the first and second moments use the normalized characteristic function φk|k

by using fYk to normalize φ̄k|k. In practice, we can apply the normalization factor either

before or after computing the moments, since it’s just a scale factor over a sum.
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