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EPIGRAPH

”Sir Grummore,” he said coyly, ”has observed a phenomenon, by Jove!”
”A phenomenon?”
”A thing,” explained Sir Grummore.
”What sort of thing?” asked the King suspiciously.
”Something you will like.”
”It has four legs,” added the Saracen.
”Is it animal?” asked the King, ”vegetable or mineral?”
”Animal.”
”A pig?” inquired the King, who was beginning to feel they must be
driving at something.
”No, no, Pellinore. Not a pig. Get pigs out of your head right away. This
thing makes a noise like hounds.”
”Like sixty hounds,” explained Sir Palomides.
”It is a whale!” cried the King.
”No, no, Pellinore. A whale has no legs.”
”But it makes such a noise.”
”Does a whale?”
”My dear fellow, how am I to know?”

-T. H. White, The Once and Future King
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ABSTRACT OF THE DISSERTATION

Studies using Underwater Acoustic Tracking Arrays

by

Eric R. Snyder

Doctor of Philosophy in Oceanography

University of California San Diego, 2024

John A. Hildebrand, Chair

The oceans contain a cacophony of sounds from biological, geological, meteorological,

and anthropogenic sources. As computational power and data storage capabilities have increased,

long-term passive acoustic recordings have been increasingly employed to study the oceans.

Multiple hydrophones can be deployed in a site or region to gain more information on the spatial

properties of acoustic soundscapes. In this thesis, we use hydrophone arrays to track vocalizing

animals and anthropogenic sound sources, and by so doing gain valuable insights into ocean

environments.

Chapter 1 introduces Where’s Whaledo: software toolkit and workflow for efficiently

and reliably localizing and tracking groups of vocalizing animals. Methods were developed to

xiii



identify and remove false detections in small-aperture direction of arrival estimates, associate

detections across widely-spaced instruments using click trains, estimate source locations, and

calculate confidence intervals.

Chapter 2 employs Where’s Whaledo on Ziphius cavirostris in the Tanner Basin, demon-

strating the toolkit’s capabilities by reconstructing the tracks of 143 dives. The localized animals

demonstrated a preference for the steeper bathymetry at the study site, as well as a possible

preference for swimming in groups of two or more animals. 12 of these tracks were used to

estimate the beam pattern of a Zc echolocation click.

Chapter 3 demonstrates the challenges and complexities of long-range propagation by

examining recordings of five vessels performing a coordinated seismic survey using high-intensity

signals from airgun arrays. Using several identifiable patterns in the acoustic data, each arrival

in a 110-minute period was associated with its source vessel so changes in dispersion patterns

could be observed over time. Both ray trace and parabolic equation models were used to simulate

dispersion patterns. Potential causes of differences between the modeled signals and the observed

signals are discussed, and recommendations are made for future analyses.
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Chapter 1

Where’s Whaledo: A software toolkit for
array localization of animal vocalizations

Abstract

Where’s Whaledo is a software toolkit that uses a combination of automated processes

and user interfaces to greatly accelerate the process of reconstructing animal tracks from arrays

of passive acoustic recording devices. Passive acoustic localization is a non-invasive yet powerful

way to contribute to species conservation. By tracking animals through their acoustic signals,

important information on diving patterns, movement behavior, habitat use, and feeding dynamics

can be obtained. This method is useful for helping to understand habitat use, observe behavioral

responses to noise, and develop potential mitigation strategies. Animal tracking using passive

acoustic localization requires an acoustic array to detect signals of interest, associate detections

on various receivers, and estimate the most likely source location by using the time difference

of arrival (TDOA) of sounds on multiple receivers. Where’s Whaledo combines data from two

small-aperture volumetric arrays and a variable number of individual receivers. In a case study

conducted in the Tanner Basin off Southern California, we demonstrate the effectiveness of

Where’s Whaledo in localizing groups of Ziphius cavirostris. We reconstruct the tracks of six

individual animals vocalizing concurrently and identify Ziphius cavirostris tracks despite being

obscured by a large pod of vocalizing dolphins.
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Author summary

Reconstructing the movement of animals from their vocalizations is a powerful method

to observe their behavior in situations where visual monitoring is impractical. Arrays of acoustic

recording devices can be used to determine the location of vocalizing animals and a series of

locations can be linked to form tracks. However, reconstructing tracks requires methods of

determining which animal in a group is vocalizing, finding the same vocalization on multiple

recording devices, and determining the most likely location of the animal based on the relative

times the sound arrived at various recording devices. We have developed a toolkit called Where’s

Whaledo to assist researchers in reconstructing the behavior of these animals using arrays of

acoustic recording devices. This toolkit greatly accelerates the process of reconstructing their

tracks using a combination of automated processes and user interfaces. We use Where’s Whaledo

to reconstruct the tracks of deep-diving beaked whales (Zc). We successfully reconstruct tracks

of groups of up to five whales vocalizing concurrently.

Introduction

Passive acoustic monitoring (PAM) has been increasingly utilized to monitor animals in

the wild [16, 108, 90]. The use of arrays of acoustic sensors has further enabled the localization

of animal sounds, providing additional avenues of research including the study of behavior and a

better understanding of animal population dynamics [77, 14]. Acoustic sensing has advantages

over other common methods that are dependent on observers having suitable weather and lighting

conditions to carry out visual surveys. PAM provides a method for non-invasive, long-term

observations.

Cetaceans in particular are difficult to directly observe, but they produce species-specific

vocalizations for both navigation and communication [75, 108]. Arrays of acoustic recording

devices can be deployed to collect continuous data for months, providing a non-invasive method

for studying cetacean behavior and presence. This method has become essential for studying

2



deep-diving cetacean species, like beaked whales (family Ziphiidae), Sperm whales (Physeter

macrocephalus), Risso’s Dolphins (Grampus griseus), and pilot whales (genus Globicephala),

which are pelagic and often spend relatively little time at the surface [12, 99, 103, 4, 9]. PAM

has provided valuable insights into their behavior despite their elusiveness [6, 12, 37, 11, 27, 47].

For deep-divers, PAM is emerging as an essential method for studying their population

structure and dynamics [63, 46, 88]. This requires a priori knowledge of a number of features,

like group size, vocalization rates, and acoustic detection ranges and probabilities. While some

studies have estimated these parameters using acoustic models or information known about

closely related species or populations, obtaining direct measurements for a specific species

and site would likely improve the estimates [63]. Most of these features can be estimated

by reconstructing tracks from acoustic data. Group sizes can be estimated by identifying the

number of individual tracks in an encounter. Detection ranges and probabilities can be estimated

based on the positions of detected animals. Additionally, passive acoustic localization can

provide valuable information about depths and durations of dives, foraging depths and behaviors,

responses to anthropogenic sounds or other environmental stressors, and insights into potential

harm mitigation strategies.

Passive acoustic localization of cetacean vocalizations using arrays of hydrophones has

been used to reconstruct tracks of a number of cetacean species, like beaked whales, common

dolphins (Delphinus delphis), and sperm whales (Physeter macrocephalus)([37, 11, 106, 69,

38, 10, 27, 95, 47, 40]. Different approaches to localization have been implemented for dif-

ferent configurations of hydrophones, and to observe different species or behaviors of interest.

Many of these studies have used localization to reconstruct two-dimensional approximations of

tracks, either horizontal tracks [110, 41] or depth and range to the instrument [11, 10]. Three-

dimensional localizations have been obtained using an individual hydrophone when accurate

three-dimensional travel-time models could be constructed from measurements of sound speed

profiles and bathymetry data [96].

Time difference of arrival (TDOA) localization uses the times a signal arrived at various

3



receivers to estimate the location of a source. When receivers have sufficient coverage, a received

signal can be localized in three-dimensional space. TDOA has been used to localize a number of

vocalizing animals, including birds [36, 89, 97] bats [53], terrestrial animals [73], and aquatic

animals [71, 37, 6, 106].

Reflections off the surface or refractions due to ray bending, called “multipath arrivals”,

can be used in localization [11, 48, 55, 68, 94, 96, 102]. Often, multpaths can be used to

improve localizations or estimate the range between a source and an array [11, 94]. In cases

where accurate models of multipath propagation can be made and there is significant azimuthal

variation on these propagation patterns, the measured times of arrival of each multipath can

be matched to models to estimate source locations in 3 dimensions from a single hydrophone

[68, 96].

Zc and common dolphins (Delphinus delphis) have been tracked in three dimensions using

a small-aperture volumetric array [106]. The array contained four hydrophones in a tetrahedron

configuration with ≈ 0.5 m spacing between them. By measuring the TDOA between the

hydrophones, the Direction Of Arrival (DOA) of the sound could be estimated as an azimuth

and elevation angle to the animal. The most likely DOA was determined by minimizing the

least squares error between model TDOAs and calculated TDOAs. By identifying differences in

detection amplitude and azimuth angle, two individual Zc whales were tracked by assuming a

constant dive speed.

Localization can be performed by combining both small-aperture and large-aperture

TDOAs [66, 1, 37]. Gassmann et al.[37] demonstrated this embedded array approach by using

two small-aperture volumetric arrays and three single-channel hydrophones to localize and track

Zc offshore of Southern California. With these additional instruments, a total of 22 TDOAs could

be used to estimate the location of a whale: six TDOAs each from two small-aperture arrays,

and ten large-aperture TDOAs from five widely spaced instruments. This approach results in an

overdetermined system which can improve estimation accuracy. However, uncertainty can be

introduced due to ambiguous signal matching across widely spaced instruments. The difficulty

4



increases as the number of sources increases, since the number of vocalizations arriving in the

window of possible TDOAs also increases. To resolve this ambiguity, Gassmann et al.[37]

plotted all possible TDOAs and manually identified the most likely correct TDOA from these

sequences. They then used a maximum likelihood equation to determine the model location that

best fit the measured TDOAs, successfully localizing a total of 11 individual beaked whales in

groups of up to three individuals vocalizing concurrently.

Methods of associating sources automatically are necessary for accelerating the localiza-

tion process. One method for source association is to temporally align sequences of clicks on

widely spaced receivers [6]. If the same pattern of clicks exists in multiple hydrophones, then

these patterns can be aligned to determine which clicks arrived from each source.

Automated tracking methods are emerging which use advanced multi-target tracking

algorithms to identify source associations, remove false detections, and estimate likely tracks

using two volumetric arrays for encounters with simultaneous detections on both arrays. [47].

Due to the directional nature of many species’ echolocation clicks [109, 37], simultaneous

detections become increasingly uncommon as the distance between the instruments increases.

Incorporating single-channel instruments, which are easier and cost less to deploy and recover,

can increase the number of trackable encounters.

In this article, we provide a semi-automated method with opportunities for expert over-

sight to assist in the association of detections. We have developed a user-friendly MATLAB

toolkit that builds on the methods of [106], [6], and [37] to assist researchers in obtaining tracks

from acoustic datasets. To demonstrate the effectiveness of our toolkit, we used it to reconstruct

≈ 80 Zc tracks from a four-month deployment in the Southern California Bight. We were able

to reconstruct tracks for groups of up to five individuals vocalizing concurrently, a significant

improvement over previous methods. We also addressed several challenges in preparing datasets

for localization, including determining instrument locations and array orientations, synchronizing

clocks, and calculating uncertainties. Overall, our toolkit provides an efficient tool for localizing

beaked whales and other vocalizing animals and has the potential to significantly advance our
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understanding of their behavior and ecology.

Methods

Time Difference of Arrival Localization

TDOA localization is a technique that estimates the location of a single sound source by

using the arrival times at which the sound is detected on multiple time-synchronized receivers.

Typically the source origin time is unknown, but the difference in received times between receiver

pairs can be used to determine possible source locations.

There are two forms of TDOA localization that are relevant to our process and are based

on array sensor spacing: large-aperture and small-aperture. Large-aperture TDOA localization

is used when the distance between the source and receivers is on the same order of magnitude

as the distance between the receivers. On the other hand, small-aperture TDOA localization

uses receivers that are much closer together than the distance to the source. In this case, the

propagation of the signal through the arrays can be approximated as a plane wave.

Large Aperture TDOA

The TDOA of a signal between two receivers is determined by the distances between the

source and each receiver, as shown in Eq (1.1).

TDOAi, j =

√
(xs − xi)2 +(ys − yi)2 +(zs − zi)2

c︸ ︷︷ ︸
travel time to instrument i

· · ·

−
√

(xs − x j)2 +(ys − y j)2 +(zs − z j)2

c︸ ︷︷ ︸
travel time to instrument j

, (1.1)

where xs, ys, and zs are the Cartesian coordinates of the source location, xi, yi, zi, x j, y j, and z j

are the locations of the ith and jth receivers, and c is the speed of sound between the source and

receivers.
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The TDOA from a single pair of receivers produces a hyperboloid of potential source

locations, as shown in Fig. 1.1A. The hyperboloid has rotational symmetry about the axis formed

by the two receivers. When a detection is received on multiple receiver pairs, the source location

can be estimated by finding the intersection of the hyperboloids. However, this approach works

best if the receiver pairs are not collinear or somewhat orthogonal to each other and the source is

interior to the region defined by the receivers.

Figure 1.1. Time Difference of Arrival. Graphical representation of the TDOA for both
large and small aperture separation between two sensors. A) Example of a hyperboloid of
possible source locations when the TDOA between two widely spaced receivers is known. B)
Small-aperture TDOA when the signal’s propagation through the array is approximated as a
plane wave. The dashed line represents the wave-front, and −→s is the unit vector normal to the
wavefront.

Small Aperture TDOA

When the distance between receivers is much smaller than the distance to the source, the

calculation of the TDOA can be simplified as a plane wave propagating through the receiver

array. The TDOA is the distance a plane wave travels between the receivers (d) divided by

the speed of sound (c), which can be calculated as the dot product of the vector formed by the

hydrophone pair (
−→
h i, j = h j −hi) and the unit vector pointing from the source to the receiver

(−→s ). Fig. 1.1B and Eq. 1.2 below demonstrate this calculation.
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TDOAi,j =
di, j

c
=

−→s ·−→h i, j

c
, (1.2)

For a pair of receivers, this gives a single angle of arrival estimate, resulting in a cone

of potential source locations. The hyperboloid shown in Fig. 1.1(A) converges to the cone

formed under the plane-wave approximation and introduces negligible error. When multiple

small-aperture receiver pairs are combined, the resulting cones intersect along a single line

referred to as the Direction of Arrival (DOA). The DOA can be estimated from the TDOAs

by placing all hydrophone pairs
−→
h i, j and their corresponding TDOAs into a system of linear

equations, and solving for the unknown values of −→s = ⟨sx,sy,sz⟩.

Since the DOA is a unit vector, it can be more intuitively represented by two angles:

azimuth and elevation. We define the azimuth (az) as the top-down counter-clockwise horizontal

angle, where East is 0◦, and North is 90◦. The elevation (el) angle is the vertical angle, where 0◦

is directly down, 90◦ is horizontal, and 180◦ is upward toward the sea surface. We convert from

−→s to az and el with Eqs. 1.3 and 1.4:

az = arctan2(−sy,−sx), (1.3)

el = 180◦− arccos(−sz), (1.4)

where arctan2 is the 2-argument arctangent (atan2d in MATLAB). We display these values as

pointing from the receiver to the source, which accounts for the negative signs on sx, sy, and sz.

Where’s Whaledo software package

The Where’s Whaledo MATLAB-based software package was designed to help analysts

obtain as many animal tracks as possible by providing easy-to-use tools that allow detections
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to be annotated and tracks of detections to be reconstructed from localized acoustic recordings.

This is done using a combination of automated processing and manual annotation of graphical

data.

Where’s Whaledo is specifically designed to accommodate deployments with two vol-

umetric small-aperture arrays and a variable number of single-channel receivers. To perform

TDOA localization, the package provides methods to detect signals of interest, determine the

time differences of a signal on various receivers, and estimate the most likely source location

associated with those time differences. The Where’s Whaledo toolkit was built in a modular

fashion, so each individual step can be adapted to obtain higher precision results or for different

instrument configurations. The typical workflow is shown in Fig. 1.2.

Detection

Detection steps can be tailored to different species different species using their acoustic

parameters. For detecting Zc echolocation clicks, we used a fourth-order, zero-phase, high-pass

elliptical filter with a cutoff frequency of 20 kHz, a peak-to-peak stop-band ripple of 0.1 dB

and a minimum stop-band attenuation of 40 dB. After filtering, waveform sound pressure levels

greater than approximately 68 dB re 1 µPa2 were identified. Peaks within a ±5 ms window

around a larger peak were removed to avoid multiple cycles within a single echolocation click

from being counted as separate detections. The remaining peak times were retained as potential

click detections.

For the 4-channel data, we cross-correlated the acoustic waveform around each detection

across the other receivers in the array to determine the small-aperture TDOA. The TDOA was

then converted to an azimuth and elevation using Eqs. 1.2, 1.3, and 1.4.

Association with brushDOA tool

A major challenge in localizing multiple sources with widely-spaced instruments involves

identifying the source from which a detection originated. To help analysts with this task, Where’s
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Figure 1.2. The Where’s Whaledo workflow. The typical workflow used to estimate whale
tracks via TDOA localization. The parallelograms indicate data inputs or outputs; the rectangles
represent an automated process; the trapezoids indicate a graphical user interface (GUI).

Whaledo used an iterative process that combines automated association with analyst manual

editing using graphical representations.
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A graphical user interface (GUI) tool called brushDOA was designed specifically for the

purpose of removing false detections, identifying the number of unique sources, and associating

detections across the two small-aperture arrays. Using this interface, an analyst can select data

points to remove them from the dataset or to assign labels. Collections of detections originating

from a single source can be identified by observing the gradual changes in their azimuth and

elevation. When azimuth angles from two sources are too similar to differentiate, their elevation

angles often provide sufficient separation, and vice-versa. Analysts typically focus their efforts

on labeling the array with the most detections and least ambiguity. For example, in Fig. 1.3,

array 2 had more detections and clear separation between the various tracks, making it easier for

the analyst to identify unique sources and assign labels.

Association with Click-Train Correlation tool

After labeling one of the arrays, Click-Train Correlation (CTC) tool is used to associate

detections across the two arrays. The CTC method identifies associations between detections

from different instruments by searching for matching patterns [6]. This involves aligning a set of

detected clicks in a window of time on different instruments to determine which ones originated

from the same source. To accomplish this the method generates click-train vectors ki by setting a

value of one at each detection time:

ki(t) = {1 if there is a detection at time t on instrument i, 0 otherwise. (1.5)

For recordings from instruments with labeled detections, different vectors of kw,i[n] are generated

to include only the echolocation clicks associated with each unique label w. For unlabeled data,

all detections within the window are used to create the click-train vector. Once the click-train

vectors xc,i are generated for each instrument and each whale, they are convolved with a 20 ms

wide Hanning window to give some width to the detections. This accounts for uncertainty in
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Figure 1.3. The brushDOA user interface for editing detections on two 4-channel arrays.
The brushDOA user interface allows analysts to select detections, remove false detections, and
assign color labels to the detections originating from the same source. The interface includes
six plots: azimuth vs. time and elevation vs. time for both arrays, and the azimuth vs. elevation
for both arrays. Each frame above shows the brushDOA interface during four stages of labeling
encounters: 1. The analyst removes false detections caused by other nearby sound sources (e.g.
ADCP pings, dolphins, instrument noise); 2. The analyst assigns labels on one array to each
of the animals present in the encounter using a combination of spatial and temporal separation
of detections; 3. Click-Train Correlation is used to automatically associate detections on the
labeled array with their corresponding detections on the unlabeled array; and 4. The remaining
detections are assigned labels.

the times of arrival and potential changes in the interval between clicks due to a non-stationary

source. The resulting click trains are then cross-correlated, and the location of the peak of the

cross-correlation between two click trains gives an estimate of the TDOA (τw).
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To determine which detections in the unlabeled array are associated with those in the

labeled array, the unlabeled detections that align with the labeled detections after being delayed by

τw are assumed to originate from the same source and are assigned labels accordingly. However,

in cases where both instruments have inadequate detections from the same source, the resulting

click-trains may not correlate strongly and may only produce small peaks with no clear dominant

peak that can be used to estimate τw. To address this, a condition is set to determine if the

click-train correlation has failed due to insufficient detections arriving from the same source.

Specifically, if the highest peak in the cross-correlation is not sufficiently higher than all other

peaks, the click-train correlation is considered to have failed, and no detections in the window

will be assigned labels. As a default parameter, if the second-highest peak is greater than 80% of

the value of the highest peak, it is classified as too ambiguous. This percentage is adjustable by

the user.

Once a sufficient number of detections are associated with CTC, the analyst uses them

to determine which other detections are likely to have originated from the same source based

on their azimuths and elevations. However, in some cases, there may be ambiguity in sources

as the azimuths and elevations of two sources intersect. These sources can still be associated

using CTC from the labeled detections on the other array. Once the labeling process is complete,

the analyst can move on to the next phase of localization by incorporating the single-channel

detections, as shown in the “Combined Data” box in Fig. 2.

The CTC function in Where’s Whaledo allows adjustment of several parameters including:

• the length of the window used in the click-train correlation,

• the width of the Hanning window convolved with each click train,

• the minimum ratio of the highest peak to the second highest peak in the click-train

correlation required to assume the clicks are associated with the same source.

All of these parameters can be adjusted according to the instrument locations, the species of
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Assign labels based on aligned detections

Form click-trains

Align click trains by cross-correlating
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𝜏2 = −0.116 s

Cross-correlate each inst. 1 
click train with inst. 2 click train Delay click trains by 𝜏w to align (Zoomed-in view)

Figure 1.4. Click-Train Correlation. An example of click-train correlation (CTC) using
a window of detections arriving from two sources. The labeled detections (left column) are
separated into two click trains, and each is cross-correlated with the unlabeled click train. CTC
is used to associate detections across instruments and determine the delay which would align the
clicks.

interest, and other features of a deployment. After performing click-train correlation in a window

around one detection, the algorithm steps forward to the next detection and repeats the process.

Once the CTC method is used to associate animals across instruments and estimate an
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approximate TDOA, a fine-scale TDOA measurement is calculated by cross-correlating the

acoustic data. To accomplish this, the expected detection times are used to extract the acoustic

data around each detection. If there is a mismatched sampling rate, the data are resampled, then

filtered and cross-correlated. The time corresponding to the peak in the cross-correlation is used

as the precise large-aperture TDOA measurement.

To ensure accuracy, analysts can use a final interactive view to facilitate the removal of

erroneous TDOAs or reassign labels to detections that are misassociated in previous steps. This

interface is similar to brushDOA and typically requires very few changes.

Monte Carlo Bootstrap Localization

To improve localization accuracy, calculate confidence intervals, and combine multiple

instrument pairs for each detection, a Monte Carlo Bootstrapping approach is implemented

for each detection. First, small gaps in TDOAs are filled in by interpolating between recent

detections. Interpolation is only performed when detections are no more than five minutes apart.

Locations are estimated using either one 4-channel array and one single-channel or two

4-channel arrays. For the first case, the intersection between the DOA of the 4-channel and

the hyperboloid formed by the large-aperture TDOA between the two instruments is found by

calculating the expected large-aperture TDOA at each range step along the DOA line, then taking

the range where the error between the expected and measured TDOA is minimized. When

localizing with two DOAs, the source location is estimated as the point along one DOA where

the distance to any point along the second DOA line is minimized.

A Monte Carlo perturbation method is used to approximate the distribution of locations

that can be estimated from each set of TDOAs. Random perturbations are added to the TDOAs

using a normally distributed pseudo-random number generator (randn in MATLAB) with vari-

ances of σ2
sml (Eq. 1.6) and σ2

lrg (Eq. 1.7) for the small- and large-aperture TDOAs respectively.

The process of deriving the variances is presented in the supplemental materials. DOAs are

estimated using the perturbed small-aperture TDOAs, and source locations are estimated for each
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combination of DOA and large-aperture TDOA available and using both DOAs. This process is

repeated 50 times using different random perturbations.

σsml =

√(
σHk,l

c

)2

+

(
||Hk,l||

c

)2( 1
1002 σ2

hi
+σ2

ray

)
+

(
TDOA(k, l)calc

c

)2

σ2
c +σ2

xcorr. (1.6)

σlrg =

√
σ2

hi
+σ2

h j

c2 +(TDOA(i, j)calc)
2 σ2

c
c2 +σ2

travel time +σ2
drift +σ2

xcorr. (1.7)

Each Monte Carlo location estimate is stored to produce a distribution of potential source

locations for one detection. Location estimates are assigned a weight equal to the inverse of the

variance of the location estimates using the same combination of instruments. A bootstrapping

estimate of the weighted average is used to produce the final source location estimate [29, 33].

This involves randomly replacing location estimates with other estimates in the distribution

and recalculating the weighted average source location estimate (resampling with replacement).

Resampling is repeated 50 times, and the average of the resampled weighted average estimates is

used as the final source location estimate. The 95% confidence intervals are estimated using a

Studentized bootstrap method [29, 26].

Alternative localization approach – DOA intersect

For deployments localizing with two volumetric arrays and no single-channel instruments,

the localization process can be linearized and performed much faster. The process is identical

to the 4-channel data box in Fig. 1.2, but rather than incorporating the single-channels with

click train correlation, the labeled detections from each 4-channel were localized by finding the

closest point of intersection between the two DOA lines. This is done by solving the system of

equations relating the source location to the directions of arrival,
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−→s 1r1 +h1 =
−→s 2r2 +h2 = gi, j,k, (1.8)

where −→s n is the unit vector representing the DOA line for the nth array, rn is the

range from the nth array to the source, and hn are the Cartesian coordinates of the nth array

location (see Fig. 1.5 for a visualization). By finding the values for r1 and r2 which minimize

(−→s 1r1 +h1)− (−→s 2r2 +h2), we can estimate the point along each DOA line where the lines are

closest to intersecting. To do this, a 2x3 matrix S = [−→s 1;−−→s 2] is constructed and R = [r1;r2] is

solved for using MATLAB’s “backslash” (or mldivide) function (Eq. 1.9). This results in two

estimates: g1 =
−→s 1r1 +h1 and g2 =

−→s 2r2 +h2. The final source estimate is the average of g1

and g2.

R = S\(h2 −h1). (1.9)

s1

s1 h1r1 +

s2

gi,j,k

gi,j,k

h1 h2

r1

== +s2 h2r2

r2

Figure 1.5. Visualization of the DOA intersect localization method. An alternative method of
localization when detections are present on both 4-channel arrays is to find the intersection of
the two DOA lines, −→s1 and −→s2 . This is done by solving the Eq. 1.8 using MATLAB’s mldivide
function (Eq. 1.9).

The confidence intervals for this method of localization were obtained using the jackknife

variance estimator [82]. One TDOA and its associated receiver pair is removed from the DOA
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estimation, and a new DOA is estimated using the remaining five TDOAs. A new whale location

is estimated using the intersection point of the newly obtained DOA and the DOA of the other

array using Eq. 1.9. This is repeated for each receiver pair, removing one TDOA and localizing

with the remaining 11, until 12 different whale location estimates have been produced. The

variance of these location estimates is determined and used in the inverse Student’s T distribution

to estimate the 95% confidence intervals.

Case Study - Tanner Basin

Our demonstration of Where’s Whaledo localizes Ziphius cavirostris (Zc, colloquially

referred to as goose-beaked whale or Cuvier’s beaked whale) using a dataset collected during

a four-month deployment about 200 km southwest of Los Angeles, California, in the Tanner

Basin, known for its Zc presence (Fig. 1.6). Four High-frequency Acoustic Recording Packages,

or HARPs [106, 105] were deployed from March 16th to June 11th, 2018. The north and south

HARPs each had a single omnidirectional hydrophone with a sampling rate of 200 kHz moored

approximately 10 m above the seafloor. The east and west HARPs each had volumetric arrays of

four omnidirectional hydrophones in a tetrahedron configuration with ≈ 1 m spacing between

hydrophones. The 4-channel arrays had a sampling rate of 100 kHz and sat ≈ 6 m above the

seafloor on a rigid mast. The distance between each HARP was between 470 and 1075 m.

Oceanographic conditions and Instrument Locations

TDOA localization requires knowledge of receiver locations and the properties of the

medium of propagation that affect travel times. The speed of sound in water depends on various

oceanographic conditions, such as temperature, pressure, and salinity, resulting in both temporal

and spatial variation in sound speed[62, 19, 31]. However, to simplify computation, a constant

sound speed was used for our case study. This approximation is generally acceptable at close

ranges. To quantify the error introduced by the constant sound speed approximation, we estimated

the variations in sound speed using a CTD (Conductivity, Temperature, Depth) profiler mounted
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Figure 1.6. Study site. The case study site where Zc tracks were reconstructed using the Where’s
Whaledo MATLAB toolkit. Site is in Tanner Basin, ≈ 200 km southwest of Los Angeles,
California. Two instrument types were used: single channel instruments (black circles on the left
plot) and 4-channels (black squares).

at the study site. Empirical relationships between sound speed, temperature, salinity, and depth

were used to estimate sound speed from the CTD measurements [62, 19, 31]. The uncertainty in

the assumed sound speed is accounted for in the overall uncertainty of the localization estimates.

Further details on the uncertainty calculations can be found in the supplemental materials.

Each instrument is equipped with an Edgetech acoustic release that can emit an acoustic

ping in response to a ping received from a transducer on the ship. The two-way travel time

of these acoustic signals from various ship locations is used to estimate the positions of the

instruments. The uncertainty in instrument position is incorporated into the overall uncertainty

and is discussed further in the supplemental materials.

To determine the relative positions of the hydrophones in the small-aperture arrays, we

use the plane-wave approximation as shown in Eq. 1.2. Instead of relying on a narrow-band ping,
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we used the broadband engine noise emanating from the ship during the instrument localization

period. The engine noise is bandpass filtered and cross-correlated to estimate the TDOA in

one-second bins. The TDOA’s and the ship location for each one-second bin (obtained from

the ship’s GPS system) are put into a system of equations using Eq. 1.2 to solve for the relative

hydrophone positions within the array.

Clock synchronization

Ensuring clock synchronization is essential for combining data from various receivers

used in localization. While all the receivers within each small aperture array were synchronized,

the large aperture array required a two-step process to correct for clock drift. Initially, we

synchronized the clocks using the pings transmitted by each instrument’s acoustic release during

instrument localization. Then, we used the pings from an Acoustic Doppler Current Profiler

(ADCP) which was deployed concurrently with our instruments and transmitted a 75 kHz ping

approximately every 60 seconds to synchronize the clocks for the remainder of the deployment.

Well 75 kHz is above the Nyquist frequency of the 4-channel instruments (50 kHz), the pings

were recorded as aliased signals of 25 kHz and could still be used for clock synchronization.

Each instrument’s acoustic release was enabled only during the period when it was being

localized. Instrument localization was performed over the course of seven hours, and each

acoustic release was enabled for between one and two hours. The pings were detected with

a narrowband filter and a threshold. Due to the consistency of the amplitude of the pings, a

different threshold was used for each instrument which was well above the noise levels at this

frequency but had a near-zero probability of missed detection. The TDOA was calculated by

cross-correlating the pings detected on each instrument. False detections produced TDOAs

that significantly deviated from the true TDOAs and were manually removed. The clock drifts

were calculated as the values that minimized the errors between the expected TDOAs (based on

instrument locations and sound speed) and the calculated TDOAs.

The ADCP pinged approximately every minute at 75 kHz. Since the 4-channel HARPs
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had a sampling rate of 100 kHz, the aliased frequency of 25 kHz was used to calculate the

TDOA of the ADCP pings. The single-channel data were downsampled from 200 kHz to 100

kHz to deliberately alias the ADCP pings. The TDOA was then calculated by cross-correlating

the detected ADCP pings for the entire deployment. The relative clock drifts between each

instrument pair was then estimated as the change from the expected TDOA (based on the TDOA

of the ADCP pings calculated during localization). A fifth-order polynomial fit was applied to

the resulting clock drift estimates to simplify correcting for clock drift during localization.

Results

In our case study dataset, we used a specialized beaked whale detector in tandem with

DetEdit [87] to identify 600 separate time periods containing Zc detections. Of these initial

periods with detections, 107 contained detections with a high enough SNR and were in close

enough proximity to the instruments for analysts to identify unique individuals in the encounter

using brushDOA. However, many of these individual tracks had too few detections to be reliably

localized; encounters that lasted less than 5 minutes or contained fewer than 300 detected clicks

were removed from analysis, and ultimately approximately 90 encounters contained a sufficient

number of localized detections in succession to be considered usable tracks. These encounters

contained between one and six uniquely identifiable individual animals.

We demonstrate our approach with three examples. The first example is the simplest case,

where source association is unambiguous, and tracks can be obtained quickly and easily. The

second example is an encounter with six whales where source association was more challenging

due to the number of whales vocalizing simultaneously and their proximity to each other. In the

last example, a large pod of vocalizing dolphins obscured the beaked whale vocalizations, but

we were still able to obtain tracks of two individual Zc using DOA information and click-train

correlation.
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Example 1 - Simple source association

In this example, two whales were observed that exhibited both spatial and temporal

separation, facilitating a straightforward association of clicks to each source. The encounter

occurred on June 11, 2018, as the whales both approached the acoustic array. The first whale

swam to the northeast, passing just west of the array, while the second whale swam northward,

moving directly into the center of the array (Fig. 1.7). The distinct spatial and temporal

gap between the whales allowed for unambiguous source association. Click-train correlation

performed well on both tracks, further ensuring accurate source associations. Additionally,

sporadic detections of a possible third and fourth whale occurred during this time period, but

they were insufficient to establish reliable track formations.

Both whales in this example exhibited a dive descent at the beginning of their tracks. The

first whale was positioned more than 3000 m from the center of the array. Since errors in DOA

angle estimates scale with range, this leads to larger confidence intervals when compared to the

much closer second whale. During the dive phase of the second whale, detections were present

only on the west 4-channel and one or both of the single channels. Once the whale reached

foraging depth, all four instruments had a significant number of detections, allowing for optimal

track reconstruction.

Example 2 - Large group size

An encounter involving at least five Zc was identified on April 29, 2018 (Fig. 1.8). The

whales were observed in two distinct clusters: a first group of three whales swimming from the

south and east toward the center of the array at the beginning of the encounter (red, blue, and

yellow), and a second pair following about 10 minutes behind from the same direction (purple

and green).
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Figure 1.7. Zc track reconstructions with clear source association.
The left panel is a map view with time annotations along two separate animal tracks, and the
right panel shows the animals’ depth versus time. The colors represent different whales, and
the semi-transparent shading represents their 95% confidence intervals. Points with circles are
localized with two 4-channel instruments, whereas points with “x” were detected on only one
4-channel and one or two single-channels, Confidence intervals vary due to differences in the
number of instruments used to localize, the position of the whale, or the precision and accuracy
of the TDOAs.

Example 3 - Zc co-occurance with dolphins

An encounter on April 22, 2018 consisted of a group of two Zc echolocating simultane-

ously with a large pod of dolphins (Fig. 1.9). The overlap in the frequencies of both dolphin and

Zc clicks led to a high number of false detections. It is worth noting that dolphin dive depths

are much shallower than Zc, resulting in the elevation angles of the dolphin detections being

closer to 180◦ than the Zc detections. However, when the dolphin group sizes are large, as for

this case, multiple individuals’ clicks arrive within the allowed small-aperture TDOAs, and their

cross-correlations frequently produce erroneous DOA estimates. Consequently, the resulting

DOA plots appear cluttered with detections seemingly coming from all directions, including the

seafloor.
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Nevertheless, the Zc clicks produce reliable TDOA estimates, allowing for their visual

identification in the DOA plots. Dolphin detections could also be identified by their periodicity,

with clicks occurring in clusters that faded in and out every few minutes. This characteristic

made them easier to identify and remove from the analysis.

In this instance, identifiable Zc tracks were present in array two, while they were less

distinct in array one. Array two was therefore cleaned and labeled, followed by click-train

correlation to determine the most likely Zc clicks on array one (Fig. 1.9). The resulting Zc tracks

approach the array center from the southwest, apparently in a coordinated manner.

Discussion

This study demonstrates the utility of Where’s Whaledo as a tool for reconstructing tracks

using passive acoustic localization. We were able to obtain 90 reliable tracks from a four-month

deployment offshore of Southern California. The process has the potential to be applied to

similar deployments, and further development of the software could expand its usefulness to

other receiver configurations, environments, and species of interest.

Identifying potential tracks and removing erroneous or unreliable detections can be done

with the brushDOA GUI, which allows analysts to efficiently identify and annotate detections

arriving from the same source on a small aperture array. Automated source association between

widely spaced receivers is performed with click-train correlation, which searches for patterns of

clicks arriving from one source in the various receivers. Once detections are correctly associated,

they can be cross-correlated to determine the fine-scale TDOA, then localized using maximum

likelihood comparison with a TDOA model.

A primary localization challenge is categorizing clicks by individual animals. When

the animals are far apart, individuals can be successfully identified in the Azimuth/elevation

plots. This was occasionally challenging with Zc, but for most encounters, distinct tracks could

be identified on at least one of the small-aperture arrays. Calculating the TDOA on the small-
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aperture arrays by cross-correlating a window of time around a detection assumes only one

detection within the window. For species with more individuals or whose interval between clicks

is shorter than the maximum possible TDOA like some dolphin species, this may not hold, and

an alternative method for identifying sources would be necessary. Click-train correlation can be

effective in finding patterns of clicks on separate instruments, but may not work for other species

with less unique click patterns or where detections are too sparse for adequate correlation. In

these cases, analysts may rely on identifying periods of simultaneous elevation change on both

arrays or incorporate other methods to associate detections with sources.

In this study, simultaneous occurrences of Zc and delphinids presented challenges for

tracking beaked whales. One solution would be to use a more sophisticated detector that better

differentiated between each species’ vocalizations, for instance using measurements of peak

frequency and number of cycles within a click to separate species, or using a machine-learning

based detector [76, 107]. However, due to identifiable patterns in the DOA plots, such as higher

elevation angles, periodicity in vocalizations, and a high number of erroneous DOA estimates,

dolphin detections were frequently able to be manually removed by analysts while Zc detections

were retained.

The tracks obtained from our approach often contain spatial offsets in clusters of detec-

tions arriving from the same source, causing the path to appear bifurcated. This is generally due

to different combinations of instruments detecting the echolocation pulses. The most reliable

detections were those that were detected on both 4-channel instruments. Due to the distance

between the two 4-channels in this deployment (1070 m) and the highly directional nature of

Zc echolocation clicks, many detections were only present on one of the 4-channels. Placing

the arrays closer together would increase the number of clicks detected on both 4-channels.

However, this would decrease the range at which reliable localizations were possible. Therefore,

finding the optimal balance between the distance between the arrays and the number of clicks

detected on both 4-channel instruments is crucial. Click directionality also greatly influences

the spatial distribution of tracks obtained, since an encounter is far more likely to be tracked
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when the animal is facing multiple instruments. This may introduce bias into the types of track

obtained at a given site, and a thorough analysis of this spatial bias should be performed for each

deployment.

Where’s Whaledo was developed for and tested specifically on deployments with two

4-channel HARPs and a varying number of single-channel instruments. With some adaptations,

Where’s Whaledo could prove useful with varying instrument configurations, such as large-

aperture only or linear arrays. As of publication, the detector and TDOA estimator included on

the Where’s Whaledo GitHub page were developed for Zc, but the software could be expanded to

be used for localizing other sources, such as baleen whales or anthropogenic sounds.

To improve Where’s Whaledo, a more advanced detector could be used to incorporate

low SNR clicks without generating false detections. Jang et al.[47] implemented a Generalized

Cross-correlation detector on the same dataset, which was effective in removing most false

detections caused by repeated instrument sounds. Additionally, Jang et al [47] used a multi-target

tracking (MTT) algorithm to reconstruct Zc tracks using the two small aperture volumetric

arrays. Components of this algorithm could be incorporated into Where’s Whaledo to automate

the removal of false TDOA measurements and improve source association. By incorporating

estimates of an animal’s swim speed into localizations, the reliability of track reconstructions

could be further enhanced [47, 11].

Conclusion

Passive acoustic localization is a powerful way to track animal movement, which can

provide valuable insights into animal behavior and the parameters needed for density and distri-

bution measurements. Several previous studies have demonstrated the capability of using TDOA

localization of cetacean vocalizations to reconstruct their tracks. Some common challenges

may limit the number of tracks obtained, including efficiently identifying potential tracks in

large datasets, identifying the number of sources, and associating detections to the appropriate
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source. The Where’s Whaledo toolkit provides an efficient and reliable workflow for TDOA

localization of odontocete echolocation clicks. The toolkit is designed for deployments of

hydrophones containing a combination of small-aperture volumetric arrays and single-channel

instruments. Where’s Whaledo includes a number of functions and GUIs to aid in the process

of identifying separate sources, associating detections to each source, removing erroneous or

unreliable detections, and estimating the most likely whale position from the TDOAs.

We demonstrate the utility of Where’s Whaledo by localizing Zc echolocation clicks in the

Tanner Basin. In the four-month dataset, tracks were reconstructed for ≈ 90 individual whales,

with group sizes ranging from one to six individuals. Track reconstructions were successfully

performed in the presence of significant masking due to dolphin echolocation clicks and in

situations where animals were in close proximity. With some adaptations, Where’s Whaledo

could be configured to work with a variety of receiver configurations, environments, and species

of interest.
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Figure 1.8. Zc tracks with large group sizes.
An encounter with five whales vocalizing concurrently. Panels A and B show the map view and
the depth vs. time of the track estimates of all five animals, where the colors correspond to the
same detections shown in the other panels. Panel C shows the map view and depth vs. time
views for each individual separately, where the different colors represent different whales and the
semi-transparent shading represents their 95% confidence intervals. Panel D shows the labeled
azimuths and elevation angles of each of the animals in the encounter.
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Figure 1.9. Reconstructing Zc tracks in the presence of false-detections.
Top left panel shows array-two detections, including: (yellow box) echolocating dolphins and
(red box) two echolocating Zc. Upper right panel illustrates removal of dolphin detections, due to
their higher elevation angles, periodicity (where detections fade in and out on an ≈ 1 min cycle),
and ”fuzziness” (where multiple dolphin clicks present in one window gave erroneous DOAs).
Middle panels show array-one detections (left) before and (right) after dolphin echolocation
removal. Lower panels show maps with tracks of (left) both Zc and (middle and right) individual
animals.
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Chapter 2

Ziphius cavirostris diving behavior in the
Tanner Basin

2.1 Introduction

Ziphius cavirostris (Zc) is an odontocete species found in temperate waters throughout

the ocean [24, 44]. Zc have the broadest distribution of the 24 known beaked whale species and

have both the deepest and longest documented dives of any mammal [81]. They are a species of

interest due to their sensitivity to anthropogenic noise, particularly Mid-Frequency Active Sonar

(MFAS), which has been linked to several mass-stranding events [13, 22, 25, 32, 84, 85]. Better

understanding Zc behavior and distribution would allow for more informed policy implementation

for their protection and could contribute to a better understanding of their role and impacts in

ecosystems.

Like other odontocetes, Zc emit regular echolocation clicks for foraging and navigation

[109]. The regularity of these clicks makes them excellent candidates for passive acoustic studies

[12]. Zc clicks were first described in scientific literature as early as 2002 [35], and a number of

studies since have improved upon these measurements [12, 109, 50]. Zc regularly dive below

1000 m and the median dive duration is approximately one hour [72, 81, 91].

Zc diving behavior has been observed in a number of studies, both with tagging and

passive acoustics. Animals have been recorded regularly diving to depths of over 1000 m

[6, 7, 37, 72, 81, 83, 99], with some dives approaching 3000 m [81, 83]. Data from tags outfitted
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with acoustic recording devices indicate that animals begin echolocating during the dive phase at

a few hundred meters depth, continue echolocating during the entirety of the foraging phase, and

cease vocalizations while ascending [99, 3]. L. Baggett reconstructed 162 Zc tracks from three

different deployments at a site in the Southern California Bight [7] using the intersection of two

direction of arrival (DOA) estimates to two volumetric arrays with the Where’s Whaledo software

package described in chapter 1 [86]. Baggett categorized the localized portions of the dive into

one of three behaviors: initial descent, consistent trajectory, and variable trajectory. Since Zc do

not vocalize during the ascent phase, these portions of the tracks could not be localized.

Zc have been observed both as solitary individuals and in small groups of two to eight

animals [3, 8, 20, 65]. In recent years, efforts have been made to understand the synchronicity and

cooperative nature of beaked whale diving behavior. Simultaneously tagged Zc in the Ligurian

Sea arm of the Meditteranean Sea were observed exhibiting synchronous diving behavior, but

seemed to diverge during foraging [3]. Similarly, tagged whales in the Hatteras Canyon in the

Atlantic also exhibited synchronous diving behavior, and some groups contained multiple adult

males [20]. It is hypothesized that group cohesion near the surface is a predation avoidance

technique, but once the animals are at depth they may forage apart to avoid contending with

each other’s echolocation signals [3, 20]. Passive acoustic localization using two small-aperture

volumetric arrays can provide additional insight into group sizes and the synchronicity of diving

and foraging behavior [7, 37].

Zc have a highly directional echolocation beam, meaning the intensity of the echolocation

click measured in front of the animal is significantly higher than a click measured off-axis

[109, 37, 23]. Click directionality affects the probability of detection, range of detectability, and

probability of missed detection, all of which have implications for density estimation from passive

acoustics [64, 46]. A single oscillating piston model has been proposed as an approximation of

the directivity of odontocete echolocation signals [5].

Some attempts have been made to measure the acoustic beam pattern of a Zc, comparing

the results to the piston model [109, 37]. Zimmer, et al. [109] reconstructed the dives of two
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Zc simultaneously using DTAGs, which are outfitted with accelerometers, magnetometers, and

pressure sensors as well as acoustic recording devices [51]. The estimated relative orientations

between the two animals and calculated the Apparent Source Level (ASL) with relative heading

angle using the vocalizations of one animal recorded on the other animal’s DTAG. The study

found that a piston model with a peak intensity at 15◦ off-axis best fit the data [109]. Gassman,

et al. [37] reconstructed the dives of Zc by localizing echolocation clicks using an array of

bottom-mounted hydrophones. For one of the reconstructed tracks, the animal turned past a

range of angles in relation to three of the hydrophones used. The Source Levels (SL) of each

click were estimated using spherical spreading, and the relative angle of the whale vs SL was

plotted for each detected click. The authors observed a number of high SL detections at an

off-axis angle of 30◦ and proposed a piston model fit centered around this angle [37].

Here, we reconstructed 143 individual dives using the intersection of the Direction of

Arrival (DOA) estimates to two 4-channel volumetric arrays [86]. The instruments were deployed

from March to July of 2018 at a site in the Tanner Basin, located approximately 200 km west of

San Diego, California. The Tanner Basin has a known Zc presence and is approximately 60 km

due south of the US Navy-controlled San Nicolas Island, exposing Zc to MFAS in this region

[74]. From these track reconstructions, we estimated a number of features, including group sizes,

spatial distributions, and dive depths. We selected 12 tracks to use in estimating echolocation

click source levels with heading angle and compared the results to the piston model.

2.2 Methods

2.2.1 Data Collection and Parameter Calculation

To reconstruct Zc behavior through passive acoustic localization, we deployed four

HARPs – two 4-channel arrays and two single-channel moorings (Figure 2.1, Table 2.1).

Instrument locations were determined by transmitting a ping from a ship-board transducer.

An EdgeTech Acoustic Release mounted on the instruments received the ping and transmitted
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Figure 2.1. Study Site. The case study site where Z. cavirostris tracks were reconstructed
using the Where’s Whaledo MATLAB toolkit [86]. The study site is in the Tanner Basin, ≈ 200
km southwest of Los Angeles, California. Two instrument types were used: single-channel
instruments (circles on the left plot) and four-channels (squares).

one. The two-way travel time (minus the turn-around time) was used to estimate the range to

the instrument. This was repeated for a variety of ship locations, as the ship encircled each

instrument and performed a transect directly above the instrument. The ship locations were

recorded by the ship’s navigational system, an the instrument locations were estimated using

MATLAB’s fmincon. Precise receiver positions within a four-channel array were estimated by

cross-correlating one second bins of bandpass filtered acoustic data of the ship’s engine noise

during the localization circle and transect (100 Hz and 10 kHz 4th order elliptical filter with, with

0.1 dB peak-to-peak passband ripples and 40 dB stopband attenuation). The time corresponding

to the peak of the cross-correlation between two hydrophones was used as the TDOA of the ship

engine sound between those two instruments. By placing all TDOAs and ship locations into a

linear equation, precise hydrophone locations were estimated by matrix inversion.
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Table 2.1. Instrument locations and details.

East West North South
Latitude 32◦ 39.528′ N 32◦ 39.381′ N 32◦ 39.732′ N 32◦ 39.210′ N

Longitude 119◦ 28.624′ W 119◦ 29.230′ W 119◦ 29.053′ W 119◦ 29.069′ W
Depth 1337 m 1338 m 1344 m 1350 m

No. of Channels 4 4 1 1
Sampling Freq. 100 kHz 100 kHz 200 kHz 200 kHz

Periods with Zc presence were identified on the southern HARP using a specialized

beaked whale detector in tandem with DetEdit [12, 87]. For each of these periods, the localization

process was performed, as described in Chapter 1 [86]. Initially, > 600 Zc encounters were

identified. Encounters with no tracks that could be visually identified with the brushDOA

interface were omitted. This could be due to an insufficient number of detections, unreliable or

uncertain source associations, masking due to the presence of dolphins, or excessive distance to

the sensors. 145 encounters were deemed reliable enough to be used for track reconstructions.

When possible, the intersection of the DOA lines was used for track reconstructions. This method

produces more robust location estimates. However, a significant number of tracks had few or no

detections on one of the four-channel instruments, meaning localization could only be performed

by incorporating the single-channel instruments. The subsequent analyses were performed on

the tracks obtained using the DOA intersect. A piece-wise cubic spline fit was applied to the

localizations for final track estimates.

2.2.2 Diving Behavior

Group sizes were estimated using two methods: 1) the number of individual whales iden-

tified within a 60-minute period; and 2) the maximum number of whales vocalizing concurrently

in a 60-minute period. The 60 minute period is approximately the median dive duration of a Zc

observed by Quick, et al. [72]. These measures were obtained by counting the number of unique

labels assigned during an encounter rather than the number of tracks obtained in the azimuth

and elevation plots since a significant portion of animals were only identified on one of the two
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arrays.

L. Baggett proposed grouping observed diving behaviors into one of three categories [7]:

1. Initial decent, where the animal started shallower than 800 m and the change in depth

exceeded 350 m;

2. Consistent trajectory, where the animal remained deeper than 800 m, and its trajectory

remained relatively constant (varied less than 100 m in any direction from the straight

path);

3. Variable trajectory, where the animal varied more than 100 m from the straight path in any

direction.

These categories could serve as a hypothesis for three phases of a dive: the initial dive,

the “transiting” portion while the animal searches for a foraging ground, and the foraging portion.

A fourth phase, when the whale rises to the surface, was not included because the Zc cease

vocalizing during this phase and therefore cannot be localized. The precise values used in the

categorization could be potentially refined with further analysis and may vary at different sites

[7].

2.2.3 Source level estimation

To analyze the directionality of Zc echolocation clicks, nine track segments were selected

where the track estimate turned past a distribution of angles close to on-axis to both of the

single-channel instruments and had a high number of detections on both four-channels during

the turn. For each localized detection, the whale’s heading was calculated. The heading relative

to each single-channel instrument was calculated as the difference between the absolute heading

of the whale and the angle between the whale and the receivers. Broadband peak-to-peak source

levels were estimated by correcting the acoustic data for hydrophone sensitivity and assuming

spherical spreading between the estimated whale position and each single-channel hydrophone.
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A broadband piston model beam pattern was used as a comparison to the measured beam

patterns [5, 37, 109]. The source level B as a function of angle θ of a flat circular piston is given

by:

B(θ) =
∫

∞

−∞
P2(θ , f )W 2( f )d f∫

∞

−∞
W 2( f )d f

, (2.1)

where P is the source level as a function of frequency f and angle θ and W is the variation

in source level with frequency. W ( f ) was calculated by averaging the spectra of ≈ 14,000 clicks

from the 9 tracks selected for beam pattern analysis. The frequencies between 20 and 100 kHz

were used in these calculations. The 4-channel instruments were omitted from SL calculations

since the Nyquist frequency of 50 kHz was too low to capture the full spectrum of a Cuvier’s

click. The frequency-dependent source level is given by:

P(x) = P0
2J1(x)

x
, (2.2)

where P0 is the on-axis source level (217 dB re 1µPa2), J1 is a Bessel function of the first

kind. x is given by:

x =
2π f asinθ

c
, (2.3)

where a is the piston radius and c is the speed of sound. Zimmer et al.[109] and Gassmann

et al.[37] used a piston radius of 20 cm and 25 cm respectively. In this analysis, a sound speed of

c = 1488.4 m
s and a reference intensity of P0 = 217 dB re 1µPa2 were used. Eq. 2.1 creates a

beam pattern centered around a peak angle of 0◦. Zimmer et al.[109] used an off-axis peak angle

of 15◦ and Gassmann et al.[37] used an off-axis peak angle of 30◦, both done by shifting θ by

the offset.
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Table 2.2. Track Categorizations

No. of
tracks

Max. duration
(min)

Min. duration
(min)

Average duration
(min)

Type 1 (Initial Descent) 12 46.8 8.9 30.2
Type 2 (Consistent trajectory) 8 10.7 2.1 4.3
Type 3 (Variable trajectory) 123 40.8 2.5 20.6

2.3 Results

During the study period, we successfully obtained a total of 143 individual reconstructions

of Zc encounters. Tracks were located mostly along the steep canyon wall west of the arraysFigure

2.2 shows the lateral positions of all tracks. Figure 2.3 shows the number of detections localized

to each grid location in x and y using a 100x100 m grid. The majority of detections come from

the west side of the array system, with a peak in detections in between the south and west

instruments. Similarly, the polar histograms of azimuths in Figure 2.4 indicate the majority of

detections arriving from the west of the array system.

Figure 2.6 shows all the tracks categorized into the three dive categories proposed by

Baggett et al. [7] (see Table 2.2). The majority of tracks fell into Type 3 (variable trajectory).

Type 2 (consistent trajectory) had the fewest tracks and the shortest durations. Encounters of less

than two minutes were removed from the analysis.

Figure 2.7 shows nine track segments selected for SL analysis. The maximum SL

observed was 221.3 dB re 1µPa @ 1 m, and the mean SL was 185.3 dB with a standard deviation

of 7.9 dB re 1µPa @ 1 m. Figs. 2.8 and 2.10 show the SL vs horizontal angle of the animals in

relation to each array. Figs. 2.9 and 2.11 show the same estimates using a 3-D estimate of the

whale’s heading.
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Figure 2.2. All Zc tracks. The lateral position of all 143 tracks reconstructed from passive
acoustic localization using two four-channel arrays. The color represents the time since the first
localized detection. Black squares represent the 4-channel arrays and black circles represent
the single-channel instruments. Bathymetric data obtained from the Global Multi-Resolution
Topography database [78]

2.4 Discussion

2.4.1 Preference for Slope in Foraging

Throughout the deployment, the whales demonstrated a clear preference for the western

side of the arrays, potentially using the steep slope in their foraging strategies (Figure 2.2). It is

39



-1300

-1300

-1300

-1300

-1200

-1200

-1200
-1200

-1100

-1100

-1000

-1000

-900

-900

-800

-800

-700

-700

-600

-6
00

-4000 -2000 0 2000 4000
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

0

100

200

300

400

500

600

700

800

N
um

be
r 

of
 d

et
ec

tio
ns

 in
 g

rid

Figure 2.3. Detection locations. A heat map of 100x100 m grid locations in which an animal
was localized at any depth. The instruments are plotted in blue.

important to note that the instrument geometry introduces some biases in the spatial distribution

of obtainable tracks. The first bias is due to the fact that the South instrument was used to identify

potential Zc encounters, causing animals that passed closer to the South instrument to have a

higher likelihood of being detected and tracked. The second bias is due to click directionality –

since a click is more likely to be detected by both four-channel instruments when the whale is

facing both arrays, a bias is introduced when the whales are more aligned with the axis formed

by both arrays. When histograms of the azimuths of all labeled detections on both 4-channel

instruments are plotted, the majority of detections are slope-ward rather than towards the south

instrument (Figure 2.4, top). By overlaying these histograms onto the map, it becomes clear that

the detections on the East instrument demonstrate a bias towards the South instrument; however,

the West instrument still shows a significantly higher presence towards the slope on the west

despite the South instrument being to the south-east (Figure 2.4, bottom).
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Figure 2.4. Detection Angles. TOP: Polar histograms of the estimated azimuths all detections
retained on the West (left) and East (right) four-channel instruments after manual brushing using
brushDOA. BOTTOM: The same polar histograms overlaid on the map, indicating a significantly
higher detection rate of Zc towards the slope.
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Figure 2.5. Group Sizes. Distributions of group sizes, counted both as the number of uniquely
identified tracks within a 60-minute period (left) and the maximum number of animals vocalizing
concurrently in a 60-minute period (right). Mean group sizes were 2.6± 1.7 and 2.1± 1.3
animals for each method respectively.

Figure 2.6. Tracks by type. Tracks as depth vs time (left) and lateral position (right) colored
according to dive type.
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Figure 2.7. Track segments for SL calculation. Lateral positions of track segments used in
source level calculations. An elevation of −90◦ represents the whale being directly above the
instrument, and 0◦ represents the whale being on the same horizontal plane as the instrument.
The roll of the animal could not be estimated and is assumed to be 0◦.

2.4.2 Acoustic Diving behaviors

The low number and short durations of the type 2 (consistent trajectory) tracks most

likely indicate their complete absence from the dataset. The few tracks of this type that were

observed are more likely to be type 3 (variable trajectory) tracks that were too short to observe

the spatial variability necessary to be categorized as such. The lack of type 2 tracks could have a

number of explanations, some of which are outlined below.

• This site may have fallen within a suitable foraging ground making transiting behavior

unnecessary.
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• Due to bathymetric features, transiting whales still varied their trajectory enough to be

categorized as type 3 tracks even if they weren’t actively foraging.

• Transiting behavior happened primarily in a region of the map where detections were

unlikely to be localized.

.

The array configuration likely prevented a significant number of initial descents (type 1

tracks) from being localized. Some encounters contained nearly linearly decreasing elevation

angles indicative of the descent phase, but detections were only present on one of the four-channel

instruments. We attempted to localize some of these dives using one four-channel and one single-

channel instrument but found the depth estimates to be unreliable. Placing the four-channel

instruments closer together could improve the number of localized dives. It would also likely

be beneficial to have the arrays offset vertically by placing two four-channel volumetric arrays

several hundred meters apart on the same mooring. This configuration presents some additional

signal processing challenges to account for array rotation and tilt, but would likely improve depth

resolution and the total number of trackable dives.

2.4.3 Click directionality

The source level estimates in Figures 2.8 and 2.10 confirm strong click-directionality.

These figures indicate a range of angles between ±30◦ where the highest intensity signal can

be detected. This is likely due to limits in the precision of angle and animal position estimates

rather than physiological features. This localization method is unable to capture small variations

in animal positions, so it is unclear how much the animal’s true heading varies compared to the

estimated heading from the track reconstructions. The animal’s roll cannot be measured and is

assumed to be 0◦ (i.e. the whale is not tilting).

Source level estimates may also contain some inaccuracies due to the proximity to the

instruments and hydrophone sensitivity; at the ranges between the animals and hydrophones, an
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on-axis click may likely have been clipped in the acoustic data. Tracks at greater ranges would not

have been as subject to clipping but would have had less precision in angle and range estimates.

This could be accounted for in future studies either by placing a hydrophone further from the

four-channel arrays or by using hydrophones with higher clipping levels. Incorporating more

track segments into future analyses of source levels with angle may help determine directionality

and beampattern asymmetry with more precision.

2.4.4 Future Work

The configuration of instruments used in localization could be altered to improve local-

ization tracking results. There is a tradeoff when localizing with two volumetric arrays: if the

arrays are placed further apart many encounters become untrackable due to insufficient detections

on both arrays, but if the instruments are placed closer together the region over which track

reconstructions are possible is greatly reduced. The distance between the arrays (1076 m) in this

deployment caused a significant number of encounters to be removed from the analysis. This is

largely due to click-directionality since the animal must either be on-axis or in close proximity to

be detected. This problem could be alleviated by deploying more volumetric arrays. For example,

replacing the single-channel instruments with volumetric arrays in this deployment would have

significantly increased the number of tracks localized and allowed for more straightforward

evaluation of probability and range of detection needed for density estimates. In this specific

case, single-channels were deployed because the 100 kHz sampling rate of the four-channels

cannot capture the full bandwidth of a Zc echolocation click, making single-channels necessary

for SL estimates and other acoustic analyses. However, improved CPU speeds have allowed for

the development of 200 kHz sampling rates for four-channel HARPs.

Another potentially valuable configuration is two volumetric arrays deployed on a long-

line mooring. Many of the Zc dives were only captured on one of the arrays, but placing

both arrays in vertical alignment with a separation of 700-800 m would likely increase the

number of simultaneous detections during the dive phase and also improve the precision of these
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localizations. Array tilt and rotation would add complications during the data processing, but by

incorporating compass measurements and aligning azimuths of detection on both instruments,

it is likely these factors would not add much uncertainty. While this configuration would

reduce the horizontal range over which localizations were possible, it would be valuable for

improving vertical resolution. The horizontal range could be improved by deploying multiple

array moorings.

2.5 Conclusions

Passive acoustic localization provides several valuable insights into beaked whale diving

and echolocation behavior. We reconstructed a total of 143 Zc tracks using TDOA localization

on two four-channel volumetric arrays, ranging in duration from 2.1 to 46.8 minutes. 12 of these

contained behavior consistent with the descent phase. The vast majority of tracks were present

West of the arrays, where the bathymetric data indicated a steep slope. Since it is unlikely this

slope preference was due to a bias in the localization algorithm or array configuration, it is most

likely a preference exhibited by the animals themselves, possibly a strategy to aid in foraging.

Zc have a highly directional echolocation click, which has a significant effect on ranges of

detection and acoustic density estimates. Some previous studies have attempted to characterize

the beam pattern of a click by estimating the SL as a function of the angle of the animal in

relation to a receiver [37, 109]. Both of these studies estimated the highest intensity signal to

arrive at an angle other than 0◦ (i.e. directly in front of the animal), which may be the result

of Zc skull asymmetry [23]. However, by analyzing 9 track segments ideal for beam angle and

source level estimation, we found a range of angles between ±30◦ at which the highest intensity

signal may be found. This range is likely due to precision in track reconstructions rather than a

physiological feature, and further research is required to more adequately characterize the beam

pattern.
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Figure 2.10. Source Level vs. Beam Angle of all track segments. The estimated source level
vs. beam angle of all detections in Figure 2.8 combined onto one scatter plot (Left) and as a
two-dimensional histogram (right). On the left plot, the piston model described in Eq. 2.1 is
plotted as the black line, where the negative and positive angles of the piston model have been
shifted by +30◦ and −30◦, respectively. Axes, icons, and colors are the same as described in
2.8. The dashed line represents the piston model used by Zimmer, et al.[109] with a radius of 20
cm and an offset of ±15◦. The dotted lines show the piston model used by Gassmann et al.[37]
with a radius of 25 cm and an offset of ±30◦. In both piston models, the positive angles have
been shifted so the peak is at +15 or +30 degrees and the negative angles have been shifted so
the peak is at -15 or -30 degrees.

Figure 2.11. Source Level vs. 3-D Beam Angle of all track segments combined. The source
level vs. beam angle in 3-D estimated from all tracks in Figure 2.8 displayed on the same axes.
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Chapter 3

Echoes Across the Gulf: Challenges of
long-range localization of broadband
sources in the Gulf of Mexico

3.1 Introduction

Time-difference of arrival (TDOA) localization, in its simplest form, assumes that a

signal propagates in a direct path and at a constant velocity between the source and receivers.

This simplification is sufficient for ocean acoustic localization problems at close ranges and when

sound speeds are relatively constant. At greater distances, the complexity of the environment

must be accounted for to accurately estimate a source location from passive acoustic recordings.

Surface reflections, refraction in the water column due to sound speed gradients, and interactions

with sediment and bathymetry all add complications to using long-range signals in TDOA

localization problems [49, 100]. To account for these complications, a thorough understanding

of how ocean and bathymetric properties affect acoustic travel times is required.

3.1.1 Airguns

Seismic surveys are regularly performed in the Gulf of Mexico (GOM) to identify

potential oil deposits beneath the ocean floor. These surveys use airguns, a high-intensity,

impulse-like source to make observations of the reflectivity of different layers in the seafloor.

A single airgun injects a high-pressure air bubble into the water, which rapidly expands and
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collapses causing an acoustic pressure wave to radiate outward. This process creates an initial

pulse and several subsequent pulses at decreasing amplitudes as the bubble volume repeatedly

expands and collapses [79]. An ideal seismic source is a single impulse to avoid complications

in separating reflections from the various pulses. Various methods have been implemented to

reduce the bubble ringing. These include: injecting a second burst of bubbles from the airgun

to distort the structure of the ringing [67]; using a screen to destroy the bubble immediately

after the first bubble collapse [54]; and firing arrays of airguns with varying bubble volumes

simultaneously so the ringing pulses occur at differing intervals, thereby allowing the initial

pulses to be amplified by summing without substantially amplifying the ringing pulses [101, 30].

In offshore environments, the high intensity of airgun noise can have a significant impact

on ocean soundscapes extending hundreds of kilometers [45]. The soundscape of the Gulf of

Mexico is dominated by the noise of airguns at frequencies < 100 Hz with levels > 90 dB re

1µPa2/Hz at < 40 Hz [104].

3.1.2 Propagation modeling

There is widespread interest in estimating the propagation of an airgun array at long

ranges to assess the impacts of seismic surveys on local marine fauna. Often, transmission loss

is assumed to be spherical in deep water and at close ranges, and cylindrical in shallow water

and at long ranges. However, sound speed profiles, bathymetry, and sediment properties all have

a significant impact on the transmission loss with range. Numerous studies and assessments

have instead used propagation models to estimate the transmission loss of airgun signals across

long ranges. Often, these models are implemented using freely available software that runs on 2-

dimensional range slices, like RAM Parabolic Equation (PE) modeling [21, 28, 42, 60, 59, 61, 93].

Additionally, the complexity of the Gulf of Mexico’s current system and bathymetry likely

causes significant 3-dimensional propagation effects that cannot be captured by 2-dimensional

propagation models [57].

DeRuiter et al. used both the ray tracing software RAY [15] and PE modeling software
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RAM [21] to model travel times of airgun pulses in the Gulf of Mexico and compared the

results to measurements obtained by hydrophones in DTAGs attached to two sperm whales [28].

Ray tracing produces straightforward travel time estimates by integrating along the ray path.

PE modeling computes a complex frequency-domain estimate of the wave field and must be

converted to a time-domain signal to estimate travel times. DeRuiter et al.used Fourier pulse

synthesis, where the 2-D PE propagation model output is multiplied by the frequency spectrum

of a source signal before the inverse Fourier transform is computed [49]. While they found good

agreement between the two model types, they noted some significant mismatch between the

modeled and measured travel times. The mismatch was attributed to imprecise model parameters,

like inaccurate bathymetry and sound speed profile estimates and not accounting for source

directionality [28].

The 2-D approximation is convenient and widely used in ocean acoustic propagation

modeling as it greatly reduces computation time. While for many applications and environments

this approximation suffices, there are numerous scenarios in which 3-D should not be ignored

[18, 17, 80, 98]. Many seismic surveys are performed on continental shelves, where sloped

bathymetry causes effects akin to acoustic propagation in a wedge [18, 43, 52]. In more recent

years, 3-D PE modeling was developed and applied to airgun propagation in the Gulf of Mexico

[57, 58]. The study modeled a 50 Hz signal on a ≈ 30 km2 section of the Gulf using both 3-D PE

and a series of 2-D PE range slices to compare the effects of out-of-the-vertical-plane refections.

They found differences of > 10 dB in portions of the modeled region where 3-D effects were

most prominent [57]. We found no papers using 3-D propagation models to estimate the travel

times of airgun signals.

3.1.3 This contribution

Here, we analyzed a 110-minute period on January 2, 2015 where five ships were

performing a coordinated seismic survey in the GOM. Time-difference of arrival localization

of the airgun sounds recorded on five widely spaced hydrophones was used to both estimate
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the ship locations and determine five average sound speeds between the airguns and each of the

five hydrophones. We used both ray trace and PE 2-D propagation models to estimate the travel

times between one ship and receiver. The modeled data are compared to the real data. Using a

series of simplified 2-D and 3-D ray trace models we provide potential explanations for patterns

seen in real data and for the mismatch between data and model outputs.

3.2 Methods

The acoustic data presented here were collected from five locations in the northern and

eastern GOM instrumented with High-frequency Acoustic Recording Packages (Fig. 3.1.). For

these deployments, the instrumentation package was located at or near the seafloor with the

hydrophone sensor tethered to the instrument and buoyed approximately 10 m above the seafloor.

All acoustic data were converted to sound pressure levels based on hydrophone and electronic

system calibrations. Three of the recording sites (Mississippi Canyon - MC, Green Canyon - GC,

and Dry Tortugas - DT) were located in deepwater (at 980, 1100, and 1300 m respectively). Two

sites (Main Pass - MP and DeSoto Canyon - DC) were located on the continental shelf (at 86,

and 268 m respectively).

A 110-minute period on January 2, 2015, from 02:40 to 04:30 UTC was selected for

analysis due to its significant airgun presence. Publicly available AIS data were used to identify

the MMSI ships with airgun-towing capacity in the area during the analysis period. Five of these

ships were performing synchronized transects consistent with seismic surveying. The latitudinal

and longitudinal positions of the ships during the 110-minute analysis period are shown in (3.2).

3.2.1 Associating received signals to sources

Software was developed to separate sequences of airgun pulses into those from a single

source ship. The code is applied to wav format audio files from a single acoustic recorder. The

code starts by running a peak detector with a specified threshold on a short segment of data

(typically 5 minutes). Within the 5-minute window typically 10-30 airgun peaks are detected.
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Figure 3.1. Map of ship locations and sites. All HARP locations used for TDOA localization
of airgun arrivals are plotted as red and white squares. The ship locations from the AIS data
during the study period are shown as the colored lines inside the white circle. A more zoomed-in
view can be seen in Fig. 3.2

The cross-covariances of the detected peaks are then examined, and groups of peaks with both

high covariance and approximately (+/- 1 s) consistent inter-pulse-interval are designated as

potentially originating from the same source. The 5-minute time series is then displayed with

each arrival marked in a color associated with its presumed source. Manual editing is allowed to

correct for errors in identification and the process is repeated on another data segment, advanced

by only one-half the data window to allow the already identified pulses to act as a guide for

successive identifications. In this way, a process of discovery can occur to recognize the number

of separate sources represented in the data. It is presumed that differences in both the source

signature and the propagation path result in differences in the received waveform.

Once separated into individual sources, additional steps are involved in fine-scale tem-
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Figure 3.2. Map of ship locations and site MC, and plot of depths at ship locations.
LEFT: A map of the ship locations (color lines, indicated by the legend in the top left) relative to
site MC (red square in the bottom left).
RIGHT: The corresponding depths at each location (right). The time axis on the depths vs time
plot is in minutes since the first received time for each ship. The colors correspond to the same
ships on the left plot.

poral alignment of pulse sequences, and the ability to time-align sequences from two or more

sources. Timing of the airgun shot firing is not regular in time at the source vessel but is instead

constantly adjusted to adapt to the speed of the source vessel (producing a consistent spacing over

ground) and also adjusted to deconflict the arrival of each source array at the various receivers.

This results in an irregular shot interval for each airgun array source. Once the details of the shot

timing have been determined for a single receiver, they become useful to find the shots from that

source same vessel on other receivers, greatly facilitating subsequent analysis.

3.2.2 Environmental characterization

A range of environmental parameters are needed to model the interaction of sound with

the marine environment. Primarily, it is important to consider the sound speed and its variation

with depth. For this work we obtained sound speed profile estimates from the MIT Generalized

Circulation Model (MITgcm) [2], which contain daily estimates of temperature, salinity, and

depth at approximately 5 km lateral resolution. These values were converted to sound speed

estimates using Mackenzie [62], since it uses depth as an input rather than pressure and the
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MITgcm estimates specify estimates of salinity and pressure with depth. Bathymetric data for

the Gulf of Mexico were obtained from the Global Multi-Resolution Topography Data Synthesis

(www.gmrt.org), selected for latitudes 24-30 N and longitudes 92-80 W, with a resolution of

0.0005 degrees for both dimensions. A sediment profile was appended beneath the bathymetric

data, based on core measurements from OPD Leg 308 core 1324 ( see Figure 38 of Flemings,

et al. [34]) for the top 200 m beneath the seafloor, and assuming a linear sound speed gradient

between 200 - 1000 m to arrive at a speed of 2000 m/s at 1000 m below the seafloor. Basement

rocks are assumed to occur at 1000 m below the seafloor and are assigned a sound speed of 3000

m/s at the top of an infinite half-space. In practice, the sound paths of interest are found to be

reflections between the sea-surface and the water-sediment interface, or rays that turn within the

upper portion of the sediment. Little or no long-range sound propagation is found to interact

with the basement rocks.

All ranges between source and receiver and along the bathymetric profiles were calculated

using the WGS-84 reference ellipsoid as implemented by the MATLAB function DISTANCE

which computes geodesic arc length and azimuth assuming that the points lie on the reference

ellipsoid.

3.2.3 Propagation modeling between sources and receivers

We used two methods to model underwater acoustic propagation between source and

receiver locations: ray trace and parabolic equation.

Ray tracing

Ray trace models were generated for a variety of simplified environments by way of

demonstrating principles of acoustics necessary for interpreting the data. These models were

generated using ZRAY, a MATLAB-based ocean acoustic ray-tracing package adapted from RAY

[15, 39]. To demonstrate the effect of 3-D propagation in a wedge, Bellhop 3-D was run for a

perfect wedge environment [70].
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In ray theory, the arrival patterns in an environment can be characterized using the

horizontal velocities of various paths of propagation, referred to herein as the group velocity

vg,m:

vg,m =
Tm

r
, (3.1)

where Tm is the travel time of the mth ray and r represents the range between the source

and receiver. We can also define the phase velocity, vp,m, given as the additional travel time

required for a particular ray path to travel to the receiver from two adjacent source positions:

vp,m =
∆Tm

∆r
, (3.2)

where ∆Tm = Tm(r)−Tm(r−1) is the additional travel time of the mth arrival and ∆r is

the change in range due to the moving source. In the simplest environment, where the sound

speed is constant and both the surface and bottom are perfectly reflecting, the group and phase

speeds are a function of the launch angle (θ ) and sound speed (c): vg,m = ccosθ , and vp,m = c
cosθ

.

This also gives the relationship c =√vg,mvp,m for all m rays. vg,m can be easily obtained from

a ray trace model using the calculated travel time and range for each ray. To calculate vp,m, a

second model is calculated with the source position moved by a small amount (100 m in these

examples). Ray paths between the two models can be matched by identifying the ray in the

second model which has the smallest difference in launch angle from a given ray in the first

model and also has the same number of surface and bottom reflections or turning points. The

difference in travel time of the matching rays is then used in Eq. 3.2 to calculate vp,m (see Fig.

3.3 and Fig. 3.4). In cases where rays are refracted away from the surface or bottom, the points

where the ray reaches a local maximum or minimum depth (the upper and lower turning points)

are used to identify matching rays between two source positions.

Some complexity can be added to the models and the phase and group speeds can still

be calculated by matching rays between two models, as long as the models are similar enough
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Figure 3.3. Isovelocity ray plots. A selection of eigenrays for an isovelocity environment with
perfectly reflecting boundaries. The top plot represents a range between source and receiver of
100 km and the bottom plot represents a range of 100.1 km. The source is at a depth of 10 m, the
receiver at 1000 m, and the rigid bottom is 1050 m.
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Figure 3.4. Group and phase speeds for an isovelocity environment. By matching rays
between the two ray trace models in Fig. 3.3, the phase and group speeds were calculated for the
various rays in the isovelocity environment. The x-axis represents the angle from the horizontal
at which the ray was launched.

to produce matching ray paths. The models were run using a Munk sound speed profile, which

is often used as an approximation of ocean sound speeds with depth, and a linearly increasing
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sound speed beneath the Munk profile as an approximation of a sediment layer rather than a

rigid bottom (Fig. 3.5). The eigenrays calculated using this environment for both a range of

100 and 100.1 km (Fig. 3.6). The ray plots at both source were ranges exhibit a high level of

similarity, allowing us to calculate the phase and group speeds of each ray by matching rays

with the same number of bounces and similar launch angles (Fig. 3.7). Since rays launched at

steeper angles penetrate deeper into the sediment layer, the average instantaneous velocity c for

the rays increases with the absolute value of the launch angles. Despite this, the relationship of

c =√vgvp still holds, where c now represents the average velocity along the ray path rather than

a constant water velocity.
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Figure 3.5. Munk sound speed profile with sediment layer. The sound speed with depth, c(z),
of a Munk sound speed profile with an upward refracting sediment layer. The sediment layer is
linearly increasing from 1550 m/s at 1050 m depth to 3000 m/s at 2050 m depth.

When the environment has a slope, however, the relationship between the phase and

group speeds begins to change, and the average instantaneous speed can no longer be estimated

using c =√vgvp. Fig. 3.8 demonstrates the effect of a sloped bottom on a ray, whereupon each

reflection the ray’s trajectory becomes closer to horizontal. When the bottom slopes in the other

direction, it has the opposite effect and the rays become more vertical. In the ray paths shown

in Fig. 3.9, the slope is much more subtle and the effect is smaller, but the slope still causes
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Figure 3.6. Ray plot for Munk SSP with sediment layer. A selection of eigenrays for an
environment with depth-dependent sound speed and a refracting sediment layer, shown in Fig.
3.5. The top plot represents a range between source and receiver of 100 km and the bottom plot
represents a range of 100.1 km. The source is at a depth of 10 m, the receiver at 1000 m, and the
sediment layer is shown as the black dotted line.
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Figure 3.7. Group and phase speeds for a Munk SSP with sediment layer. By matching rays
between the two ray trace models in Fig. 3.6, the phase and group speeds were calculated for the
various rays. The x-axis represents the angle from the horizontal at which the ray was launched.

the phase speeds and group speeds to diverge at different rates (Fig. 3.10). In this example,

the estimated water velocity is increasingly underestimating the actual water velocity using
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c =√vgvp since the rays are more horizontal at the source than at the receiver, and therefore

have a lower phase speed than a flat bottom would produce. (Note that since in both the models

and the real data, we move the source rather than the receiver to estimate phase speeds, we are in

actuality measuring the phase speed at the source). Fig. 3.11 demonstrates the inverse, when

the depth at the receiver is greater than at the source. Fig. 3.12 shows group and phase speeds

calculated from a range of sloped bathymetries.

Figure 3.8. A ray reflecting off a sloped bottom. An example of a ray’s trajectory becoming
more horizontal, and therefore its phase speed decreasing, as it reflects off of a sloped bathymetry.
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Figure 3.9. Ray plot for a sloped bathymetry. A selection of eigenrays for an environment
with sloped rigid bathymetry, and constant sound speed. The top plot represents a range between
source and receiver of 100 km and the bottom plot represents a range of 100.1 km. The source is
at a depth of 10 m, the receiver at 1000 m, and the bathymetry is shown as the black line.
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Figure 3.10. Group and phase speeds
for an upward-sloped bathymetry. The
phase and group speed estimates for ray
trace models with a slope of −5×10−3 de-
grees.
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Figure 3.11. Group and phase speeds
for a downward-sloped bathymetry. The
phase and group speed estimates for ray
trace models with a slope of 5× 10−3 de-
grees.

Figure 3.12. Dispersion patterns for various sloped bathymetries (isovelocity and perfectly
reflecting boundaries).
LEFT: The phase and group speed estimates for ray trace models with sloped bathymetries. The
depth at the receiver was fixed at 1050 m and the depth at the source ranged from 550 to 1550 m.
The phase speed (black line) is always the same since the x-axis of the plot are the ray launch
angles from the source and the phase speed is calculated at the source.
RIGHT: A synthetic waterfall plot of the arrivals for the various sloped bathymetries. As the
source moves to shallower water, the various rays arrive in closer temporal proximity.

Ray matching between models becomes more difficult as models get more complex,

particularly when range-dependent bathymetry is added. Small changes in the launch angle can

lead to significantly different ray paths when the bathymetry is rough. Group speeds can still be

coarsely estimated using ray travel times. However, phase speeds cannot be estimated by ray
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matching since the number of surface and bottom bounces/turning points does not necessarily

indicate a similar ray path. For ray models using more realistic environments, only group speeds

are reported.

In the previous models, the environments are run on a 2-D range slice, and any 3-

D propagation effects are ignored. Fig. 3.13 shows that when rays are launched in a sloped

bathymetry, 3-D effects cannot be ignored. In the figure, rays that are launched upslope eventually

reflect back downslope. Every time a ray reflects off the seafloor, its azimuth angle shifts slightly

more down-slope. The effect is that the rays appear to curve as they enter shallow water. The

amount of curvature depends on both the azimuth and inclination of the launched ray, as more

vertically launched rays will have more bottom reflections and undergo more downslope curving.

Figure 3.13. 3-D rays in a wedge. An example of the ray patterns in a wedge-shaped ocean run
in Bellhop 3D [70]. The surface and bottom were modeled as perfectly reflecting and the water
sound speed was a constant 1500 m/s. The horizontal contour lines show the depth changing in
the y-direction. The coloring of the rays is related to the launch angle and was applied to allow
more visual separation of the various ray paths.
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Parabolic Equation Modeling

Parabolic Equation (PE) models were first applied to ocean acoustics in the 1970s, and

have since become a popular method for modeling range-dependent propagation [49, 56, 92].

PE estimates the acoustic pressure field for an individual frequency by assuming azimuthal

symmetry and approximating a solution to the 2-dimensional Helmholtz equation as a function

of range r and depth z [21, 49, 92]. More recently, PE has been extended to 3-dimensional

modeling [58], however, the 2-dimensional PE modeling software RAM was used for modeling

the acoustic propagation between source and receiver locations [21]. Parabolic equation (PE)

models were run on a version of RAM adapted for MATLAB by Matthew Dzieciuch (SIO, pers.

comm). PE models were run on frequencies from 1 to 99 Hz with a spacing of 0.03125 Hz. The

time-domain signal at the receiver was estimated by mirroring the complex conjugate of the

model output above the Nyquist frequency of 100 Hz and taking the inverse Fourier transform.

3.3 Results

During the 110-minute analysis period, each ship was increasing its distance to receiver

MC. The ships were traversing upslope for the majority of the analysis period. Ships 1,2,

and 4 began turning and heading into deeper water around the 82, 88, and 80-minute marks,

respectively (Fig. 3.2). Ship 3 did not turn during this period and continuously moved into

shallower water. Ship 5 turned slightly at the 80-minute mark and remained at a relatively

constant depth thereafter. Fig. 3.14 shows the received data of the five separate sources on

receiver MC as waterfall plots sorted by time. Each of the time-series plots shows a pattern of

arrivals that changes throughout the analysis period. The time-differences between arrivals are

shortest for each ship when the depth at the source is shallowest. This resembles the pattern

observed in the simplified ray trace models, where, by varying the source depth along a sloped

bathymetry, the time-differences between arrivals decrease as the source depth decreases (Fig.

3.2).
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The waterfall plot of the PE model for ship 1 to receiver MC also shows a similar

dispersion pattern, where the time-differences between arrivals is directly related to the depth at

the ship locations (Fig. 3.15). The PE model predicts a significantly longer duration signal than

is exhibited by the real data. Comparing the real data and PE model spectrograms for the first

shot in the dataset in Fig. 3.16 also reveals a significantly longer duration signal in the model.

The model also is more attenuated at higher frequencies. When all the spectra are stacked and

sorted by range, the data and model both exhibit striations in the frequencies (Fig. 3.17). The

striations in the real data shift in frequency at a greater rate than those exhibited by the model.

The ray travel times for a more realistic environment were modeled in ZRAY and used to

estimate group speeds as a function of ray launch angle for all ship positions of ship 1 to receiver

MC (Fig. 3.18). The data are sloped downward as the launch angle moves further from the

horizontal. There may be some pattern of group speeds increasing as the bathymetric depth at the

ship location increases, although this is obscured by the noisiness of the group speed estimates.

The group speeds of the first arrival were calculated from the travel times in both the ray

trace and PE models. The ray model on average had a higher estimated group speeds, although

the estimated speeds were much noisier than the PE model group speed estimates. The sound

speed between all ship locations and site MC estimated using the TDOAs was about 20 m/s

slower than either model predicted (see Fig. 3.19).

3.4 Discussion

The ray trace examples with simplified slopes shown in Fig. 3.12 imply that as a source

moves into shallower water, the time between each arrival will shorten. The group speeds for

all slopes decrease as the launch angle gets less horizontal, but the rate at which it decreases is

directly tied to the slope: as the bottom depth at the source location decreases, the group speeds

for all arrivals get closer together, which causes the time between the various arrivals to decrease.

This pattern can also be seen in the real data for site MC (Figs. 3.14 and 3.2): as each ship travels
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into shallower water, the time between arrivals shortens, and when the ships turn and move back

into deeper water the arrivals separate again. Each ship can be matched to its waterfall plot by

identifying the time at which each ship is in the shallowest water and matching that to time when

the waterfall plot shows the shortest time between arrivals.

Attempting to replicate the dispersion as a function of depth at the source on a more

realistic model environment in ZRAY does not as clearly exhibit this pattern (Fig. 3.18). This is

likely due to the noisiness of the travel time estimates produced by ray tracing over long distances

with rough bathymetry. The group speeds estimated by the PE model for the first arrival are less

noisy, and follow the pattern of being inversely related to the depth at the source.

3.4.1 Comparison of Data and PE model outputs

In comparing the PE model output and the real data, four areas of mismatch become

evident: the frequencies contained in the received signal, the duration of the time domain signal,

the dispersion patterns, and the estimated group speeds of the first arrivals. While some of this

mismatch may be inaccuracies in the model parameters (e.g. sediment depth and composition,

water sound speeds, attenuation) or source signature (e.g. unknown spectrum of the individual

airgun arrays, or the directionality of the arrays), the cause of much of this mismatch could also

potentially be attributed to the 2-D approximation used in the model. The straight-line path

between the source locations and site MC runs perpendicular to the slope of the bathymetry,

likely causing some 3-D propagation effects comparable to propagation in a wedge-shaped

ocean.

The frequency mismatch is most clearly seen in Fig. 3.16, where the real signal’s

bandwidth is from 5-75 Hz but the PE model shows is significantly more attenuated above 50

Hz. In attempting to reduce the duration of the signal in the model to better match the data,

the attenuation coefficients in the sediment were increased. While this reduced the signals’

duration, this caused higher frequencies to be over-attenuated due to the frequency dependence

of attenuation. The PE model does not account for energy being refracted out of the 2-D range
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slice between the source and receiver due to the sloped bathymetry running nearly perpendicular

to the range slice.

Although the model and real data’s dispersion patterns share common traits, there are

also some notable differences. The spectrograms in Fig. 3.16 both show some frequency

dispersion in the lower frequencies consistent with modal dispersion. The lowest frequencies

arrive slightly delayed in comparison with the higher frequencies. In the real data, this dispersion

happens most clearly in the 5 to 12 Hz band, but in the model data, the dispersion is more

evident in the 4 to 8 Hz band. The mismatch might be a result of 3-D propagation effects,

where energy propagates upslope to different depths and refracts back downslope to the receiver.

Since frequency dispersion is determined by the depth of the seafloor, the propagation paths that

reach shallower water are likely to have different frequency dispersion patterns than the 2-D

approximation predicts.

The group speeds of the first arrival from the PE and ray models may also be higher than

the group speeds calculated from the TDOA inversion due to the wedge-effect. Fig. 3.13 shows

some rays that propagate nearly horizontally, but these rays are the paths that have very few

interactions with the seafloor. With the downward refracting sound speed in the real environment,

every ray has interacted multiple times with the bathymetry before arriving at the receiver. This

would have the effect of only up-slope propagating rays reaching the receiver after curving back

down-slope. The paths are therefore longer than the distance between the source and receiver,

causing the sound speed estimates to be lower than the 2-D approximation.

3.5 Conclusion

Understanding the complexities of these environments is crucial for addressing long-

range ocean acoustic propagation problems. The dispersion patterns are affected by sound

speed profiles, sediment properties, and bathymetries. 2-D ray trace modeling on simplified

environments reveals that the time between arrivals is tied to the slope of the bottom between
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the source and receiver; as the water depth at the source decreases, the time between arrivals

also decreases. 3-D ray trace demonstrates the effect of a sloped seafloor running perpendicular

to the axis formed by the source and receiver. Rays may propagate up-slope and refract back

down-slope towards the receiver. The extent of the refraction depends on both the azimuth and

inclination of the ray’s launch angle.

Five ships performing a coordinated seismic survey were identified in the Gulf of Mexico

on January 2, 2015, from 02:40 to 04:30 UTC. Five HARPs were within recording distance

of the survey during this period. The vessels were equipped with airgun arrays, which were

deployed and discharged systematically. Each vessel sequentially discharged its array, with an

interval of 10 seconds between successive discharges. The signals were detected in the acoustic

data using a peak detector. Peaks originating from the same source were associated using a

combination of cross-covariances between detections, expected intervals between pulses, and

manual verification.

2-D Parabolic Equation (PE) models [21] were run for range slices between site MC and

96 positions of ship 1 during the same period obtained from public AIS data. The models were

run using a broadband source of 1 to 99 Hz with a spacing of 0.03125 Hz. The time series were

reconstructed by taking the inverse Fourier transform of the model output at the receiver location.

The dispersion patterns observed in the PE model data showed some similarities to

the patterns observed in the real data. Primarily, the seafloor depth at the source location

was directly tied to the time between arrivals, as predicted by the simplified ray models with

sloped bathymetries. However, the PE model differed from the real data in some notable ways.

The spectra of the real data were more broadband and exhibited a slightly different frequency

dispersion pattern. The duration of the modeled data was significantly higher than that of the

real data.

An average first-arrival group speed between all ship locations and each receiver were

estimated iterative approach. First, ships were localized using TDOA grid-search localization

with an approximate sound speed estimate. Then, using those ship positions and the measured
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TDOAs, five sound speeds were estimated, one for each hydrophone. Using the new sound speed

estimates, the ships were localized again and the process was repeated five times. The sound

speeds estimated using the TDOA inversions were significantly lower than the sound speeds

calculated by both the PE and ray models.

3-D propagation effects may explain much of the mismatch between the model outputs

and observations. The slope of the bathymetry running nearly perpendicular to the path between

the ship locations and receiver MC causes ray paths to travel up-slope and refract back down-

slope to the receiver. Since the rays are traveling a further distance than would be expected by

a 2-D approximation, the group velocities estimated from the real data are likely lower than

the models would predict. Additionally, the rays propagate into shallower water, which could

lead to different frequency dispersion patterns and help explain the mismatch between the real

and modeled spectrograms. Thus, 3-D modeling is necessary for accurate travel-time estimates

and dispersion characteristics. 3-D effects may have important implications for estimating and

assessing the impacts of proposed sound-producing activities, like seismic surveys. Further

development of 3-D modeling tools with experimental verification of these models would lead to

a better understanding of these impacts and the situations where 3-D modeling may be required.

Additional mismatch may be due to inaccuracies in the model parameters or source signature

(since the directionality of the airgun signals was not accounted for).
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Figure 3.15. PE Model waterfall plot of ship 1 to receiver MC.
The time series (left) and spectra (right) of each shot were modeled using RAM Parabolic
Equation method, and plotted as a waterfall plot.
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Figure 3.16. Spectrograms of first shot from ship 1 to MC–PE model and real data.
The spectrograms of the acoustic data (left) and PE model (right) for the first shot from ship 1 to
site MC. Spectrograms were calculated using a 200-point Kaiser-Bessel window with β = 7.85,
95% overlap. Prior to calculating the spectrogram, the real data were down-sampled from
f s = 2000 Hz to f s = 200 Hz to match the sampling rate used in the PE model.
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Figure 3.17. Spectra of data from ship 1 to MC sorted by range–PE model and real data.
The spectra of the acoustic data (left) and PE model (right) from ship 1 to site MC, sorted by
range between the ship and the receiver. The color scale represents the linear intensity of the
spectra at each range slice, normalized by the maximum intensity in the entire track.
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Figure 3.18. Group speeds vs. launch angles estimated from ray trace on a realistic
environment for all source positions of ship 1 to site MC. The group speeds (color dots)
estimated using more realistic bathymetry, sediment properties, and sound speed profiles in ZRAY.
The color scale represents the depth of the bathymetry at the ship location.
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Figure 3.19. Group speed estimates of first arrival, estimated from ray trace, PE, and
TDOA inversion for ship 1, site MC. A comparison of the estimated group velocities of the first
arrival from both PE and ray models and compared with the estimated sound velocity between all
the ship locations and site MC, obtained by iteratively localizing using the TDOAs of each shot
to each receiver then solving for a single estimate of sound speed between all the ship locations
and each receiver.
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[110] Ana Širović, John A. Hildebrand, and Sean M. Wiggins. Blue and fin whale call source
levels and propagation range in the Southern Ocean. The Journal of the Acoustical Society
of America, 122(2):1208–1215, 08 2007.

85


	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Dissertation
	Where's Whaledo: A software toolkit for array localization of animal vocalizations
	Ziphius cavirostris diving behavior in the Tanner Basin
	Introduction
	Methods
	Data Collection and Parameter Calculation
	Diving Behavior
	Source level estimation

	Results
	Discussion
	Preference for Slope in Foraging
	Acoustic Diving behaviors
	Click directionality
	Future Work

	Conclusions

	Echoes Across the Gulf: Challenges of long-range localization of broadband sources in the Gulf of Mexico
	Introduction
	Airguns
	Propagation modeling
	This contribution

	Methods
	Associating received signals to sources
	Environmental characterization
	Propagation modeling between sources and receivers

	Results
	Discussion
	Comparison of Data and PE model outputs

	Conclusion

	Bibliography

