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A displacement reconstruction strategy for long, slender structures from 
limited strain measurements and its application to underground pipeline 

monitoring 

Mayank Chadha, Michael D. Todd 

Department of Structural Engineering, University of California San Diego, La Jolla, CA, USA. 92093-0085 
 

ABSTRACT: 

In this paper, we discuss about reconstructing the global deformed shape of slender structures such as pipelines, 
tethers, or cables from a limited set of scalar surface strain measurements. We present a comprehensive approach 
that captures the effect of curvature, shear, torsion, and axial deformation. Our primary focus is to demonstrate the 
applicability of the approach to aid in damage detection algorithms. This theory utilizes Cosserat rod theory and 
exploit localized linearization approach that helps to obtain local basis function set for the displacement solution in 
director frame. The uniaxial strain vector and the surface strain for the Cosserat beam incorporating the above-
mentioned effects are obtained and used to develop the reverse algorithm to reconstruct global shape of the 
structure. Error analysis due to noise in measured strain values is performed and results are discussed. 

Keyword: Cosserat rod theory, shape reconstruction, local basis function, director frame, underground pipelines  

INTRODUCTION: 

This paper discusses the formulation of global shape sensing algorithm that captures the effect of curvature, shear, 
torsion and axial deformation focusing on the applicability of the shape sensing methodology in civil structures. The 
theoretical framework for shape sensing using finite strain measurements are laid by the work of Todd et al. [1] and 
Chadha and Todd [2]. The formulation holds the Euler-Bernoulli rigid cross-section assumption primarily because 
Poisson’s effect and warping of the cross-section are not the dominant effects in slender structures. 

The global shape sensing of slender structures is desirable in many instances like pipelines, oil exploration, tethers, 
cables, and even non-civil or energy applications like cardiac catheters, surgical tubing, and others. This theory is 
geometrically exact and fully nonlinear; hence it can capture large deformations. The mechanics developed for this 
problem is rooted to the work of Cosserat and Cosserat [3], Simo [4], Simo and Vu-Quoc [5], Iura and Atluri [6], 
and Reissner [7-9].  

As mentioned in [2], the distributed strain sensing may be grouped into non-contact and contact methods. The 
technique illustrated here assumes a contact sensing method. This technique focus on obtaining the local uniaxial 
surface strain measures through any type of multiplexed sensing approach, including fiber Bragg gratings (FBGs), 
Rayleigh backscatter, or conventional resistive strain gauges. 

The remainder of the paper is arranged as follows: section 2 briefs the kinematics of the problem, develops the 
surface strain measurement incorporating the aforementioned deformation effects, and presents a locally-exact 
solution basis on which a global deformed shape is built. Section 3 presents the application of the techniques to 
underground pipeline monitoring in case of seismic events. Section 4 culminates the discussion with conclusions 
and observations. 

KINEMATIC DESCRIPTION 

Geometry of the beam-midcurve and the directors 

We briefly discuss about the theoretical framework developed in [2] as a matter of completion. The global shape of 
the structure is defined by a midcurve (the locus of cross-sectional geometric centroids), and the director triad 
attached to the midcurve. Therefore, in a pure geometric sense, the problem is a single manifold problem with the 
arc length 𝜉! being the manifold parameter. We define the initial unstrained reference configuration by Ω" ⊂ ℝ#. 



We assume that the initial shape is known (in which the strain gauges are attached to the object in a zero-strain 
state), which we assume is straight for simplicity. The geometric description of the configuration of the beam is 
same as defined in [2], which we shall briefly discuss. 

We define an orthogonal frame {𝐄𝐢}. The domain of the beam is defined by the material point {𝜉!, 𝜉%, 𝜉#}, such that 
the origin of the frame {𝐄𝐢} is at {𝜉& = 0} with 𝑖 = 1…3. Let 𝐿' represent the length of midcurve in the undeformed 
reference state Ω' ⊂ ℝ#, such that 𝜉! ∈ [0, 𝐿']. Any configuration of the structure is defined by the mid-curve. The 
position vector 𝛗(𝜉!) = 𝜑&𝐄𝐢, parametrized by the undeformed arclength 𝜉!, represents the midcurve. The 
orientation of any cross-section in the deformed configuration Ω ⊂ ℝ# is defined by the set of orthogonal Cosserat 
director triad {𝐝𝐢(𝜉!)}, such that 𝐝𝐢(𝜉!) = 𝑑&((𝜉!)𝐄𝐣. The vector 𝐝𝟏(𝜉!) is perpendicular to the cross-section and the 
vectors {𝐝𝟐(𝜉!), 𝐝𝟑(𝜉!)} spans the cross-section of the beam at 𝜉!. We note that 

𝐝𝐢(𝜉!) = 𝐐(𝜉!)𝐄𝐢. (1) 

Here, 𝐐(𝜉!) represents family of orthogonal matrices that belongs to 𝑆𝑂(3) rotational groups. Hence, they satisfy 
𝐐𝐐𝐓 = 𝐈 and det𝐐 = 1. 𝐐(𝜉!) being a curve on the manifold 𝑆𝑂(3), the tangent vector to this curve in 𝑆𝑂(3) is 
expressed as 𝐐,/! that represents the tangent space of 𝑆𝑂(3). It can be easily obtained that 𝐐,/!𝐐

𝐓 = 𝐊(𝜉!) such that 
𝐊(𝜉!) is the linear space of skew symmetric matrices. Therefore, there exists an axial vector 𝛋 = κD0𝐝𝐢 associated 
with 𝐊(𝜉!) such that 𝐊(𝜉!)𝐠 = 𝛋 × 𝐠. Here, 𝐠 = gD𝐝𝐢 represents any vector in ℝ#. Therefore, from (1), 

𝐝𝐢,/! = H𝐐,/!𝐐
𝐓I𝐝𝐢 = 𝐊𝐝𝐢 = 𝛋 × 𝐝𝐢. (2) 

The vector 𝛋 = 𝜅̅&𝐝𝐢 represents a Darboux vector associated with the infinitesimal rotation tensor 𝐊, parametrized 
by 𝜉!. Equation (2) represents the differential equation that governs the evolution of the directors and hence the 
cross-sections.  

To define the position vector 𝛗 and the governing differential equation corresponding to 𝛗, we define the following: 

1. Let 𝜃(𝜉!) and 𝜙(𝜉!) represent the pitch and yaw angle of the mid-curve. We define another triad {𝐓, 𝐕, 𝐇} 
that originates from the centroid of each cross-section such that the vector {𝐓, 𝐕} spans the pitch angle 
plane. The vector 𝐓(𝜉!) is the tangent vector to the midcurve. Thus, 𝐇 = 𝐓 × 𝐕. If there is no shearing in 
the beam, the triad {𝐓, 𝐕, 𝐇} coincides with {𝐝𝐢}. The definition is made clear in the Fig. 1 below. 
Therefore, 

Q
𝐓(𝜉!)
𝐕(𝜉!)
𝐇(𝜉!)

R = Q
cos 𝜃(𝜉!) cos𝜙(𝜉!) sin 𝜃(𝜉!) cos 𝜃(𝜉!) sin𝜙(𝜉!)
− sin 𝜃(𝜉!) cos𝜙(𝜉!) cos 𝜃(𝜉!) − sin 𝜃(𝜉!) sin𝜙(𝜉!)

− sin𝜙(𝜉!) 0 cos 	𝜙(𝜉!)
R Z
𝐄𝟏
𝐄𝟐
𝐄𝟑
[ = 𝐖𝟏 Z

𝐄𝟏
𝐄𝟐
𝐄𝟑
[ 

(3) 

 

2. Assume that the deformed arc length coordinate is given by 𝑠. The infinitesimal length of the undeformed 
mid-curve d𝜉! deforms to d𝑠 causing infinitesimal axial strain 𝑒(𝜉!). If the object is subjected to shear and 
torsion, the orientation of the cross-section changes. The tangent vector is no longer perpendicular to the 
cross-section. The shearing effect is quantified by the angles 𝛾!!(𝜉!), 

1
%
− 𝛾!%(𝜉!) and 1

%
− 𝛾!#(𝜉!) 

subtended by the directors 𝐝𝟏, 𝐝𝟐 and 𝐝𝟑 with the tangent vector 𝐓(𝜉!) =
2𝛗
24
, as shown in Fig. 1. Hence 

following relation can be noted: 

𝑒 =
d𝑠 − d𝜉!
d𝜉!

; 	
∂𝜉!
∂𝑠 =

1
1 + 𝑒, 

𝛗,5. 𝐝𝐢 =
1

1 + 𝑒𝛗,/! . 𝐝𝐢 = c cos 𝛾!& , when	𝑖 = 1
sin 𝛾!& , when	𝑖 = 2,3g 

(4) 



Therefore, 

𝛗,6! = (1 + 𝑒) cos 𝛾!! 	𝐝𝟏 + (1 + 𝑒) sin 𝛾!% 	𝐝𝟐 + (1 + 𝑒) sin 𝛾!# 	𝐝𝟑 = (1 + 𝑒)𝐓 (5) 

3. It is necessary to define the parameters 𝛼!(𝜉!), 𝛼%(𝜉!) and 𝛼#(𝜉!) as the angles subtended by the directors 
𝐝𝟏, 𝐝𝟐 and 𝐝𝟑 with the vector 𝐕 respectively. This is done to define the relation between {𝐓, 𝐕, 𝐇} and {𝐝𝐢}. 
Therefore, from the expression of tangent vector in Eq. (5), we can express 

Q
𝐓(𝜉!)
𝐕(𝜉!)
𝐇(𝜉!)

R = 𝐖𝟐 Z
𝐝𝟏
𝐝𝟐
𝐝𝟑
[ 

(6) 

Therefore, from Eq. (3) and (5) we have, 

Z
𝐝𝟏
𝐝𝟐
𝐝𝟑
[ = 𝐖𝟐

7𝟏𝐖𝟏 Z
𝐄𝟏
𝐄𝟐
𝐄𝟑
[ 

(7) 

The component of the orthogonal tensor 𝐐 in Eq. (1) can be obtained from Eq. (7) in terms of the parameters 
(𝜃(𝜉!), 𝜙(𝜉!), 𝛾!&(𝜉!), 𝛼&(𝜉!)) such that [𝐐𝐓]𝐝𝐢⊗𝐄𝐢 = 𝐖𝟐

7𝟏𝐖𝟏. Note that the following orthogonality constrains hold, 

|𝐓| = |𝐕| = |𝐇| = 1;				|𝐓|,/! = |𝐕|,/! = |𝐇|,/! = 0. (8) 

Therefore, the component of the Darboux vector can be obtained from the Eq. (2) in terms of the deformation 
parameters (𝜃(𝜉!), 𝜙(𝜉!), 𝛾!&(𝜉!), 𝛼&(𝜉!)) and their derivatives, satisfying the constraints in Eq. (8). The expressions 
for 𝜅̅!, 𝜅̅% and 𝜅̅# can be referred to Appendix A.1 in [2]. From Eq. (2) and (5) we arrive at an important equation 
that governs the evolution of the system as, 

⎣
⎢
⎢
⎡
𝛗,𝛏𝟏
𝐝𝟏,𝛏𝟏
𝐝𝟐,𝛏𝟏
𝐝𝟑,𝛏𝟏⎦

⎥
⎥
⎤
= q

0 (1 + 𝑒) cos 𝛾!! (1 + 𝑒) sin 𝛾!% (1 + 𝑒) sin 𝛾!#
0 0 𝜅̅# −𝜅̅%
0 −𝜅̅# 0 𝜅̅!
0 𝜅̅% −𝜅̅! 0

r q

𝛗
𝐝𝟏
𝐝𝟐
𝐝𝟑

r 

(9) 

 

Figure 1: Relationship between {𝒅𝟏, 𝒅𝟐, 𝒅𝟑} and {𝑻, 𝑽,𝑯} material frame of reference 

The strain vector 

The position vector of any material point (𝜉!, 𝜉%, 𝜉#) in the deformed configuration Ω is given as 

𝐑(𝜉!, 𝜉%, 𝜉#) = 𝛗(𝜉!) + 𝜉%𝐝𝟐 + 𝜉#𝐝𝟑. (10) 



The strain vector 𝛜 for this problem is obtained as 

𝛜 =yz
∂𝐑
∂𝜉&

− 𝐝𝐢{
#

0<!

=
∂𝐑
∂𝜉!

− 𝐝𝟏. 
(11) 

Using Eq. (10), following expressions can be obtained, 

∂𝐑
∂𝜉&

= |H𝛗,/! − 𝐝𝟏 + 𝜉%𝐝𝟐,/! + 𝜉#𝐝𝟑,/!I + 𝐝𝟏 = 𝛜 + 𝐝𝟏, when	𝑖 = 1;
𝐝𝐢,																																																																																							when	𝑖 = 2,3.

} 
(12) 

Equation (11) and (12) represent the fact that only the first component of any infinitesimal vector in the undeformed 
state Ω' gets strained to 𝛜 + 𝐝𝟏. Any vector on the cross-section plane of the beam rotates and is not strained. Using 
Eq. (9), (11) and (12), the expression of strain vector in terms of deformation parameters (𝑒, 𝛾!& , 𝜅̅&) becomes 

𝛜 = ~H(1 + 𝑒) cos 𝛾!! − 1I − 𝜉%𝜅̅# + 𝜅̅%𝜉#�𝐝𝟏 + {(1 + 𝑒) sin 𝛾!% − 𝜅̅!𝜉#}𝐝𝟐 + {(1 + 𝑒) sin 𝛾!# + 𝜅̅!𝜉%}𝐝𝟑 (13) 

Consider a point 𝑞 on the surface of the undeformed section on which the strain gauge is attached. If 𝑝 represent the 
midcurve point, the vector 𝐫=> = 𝜉%𝐄𝟐 + 𝜉#𝐄𝟑 represents the position vector of the strain gauge with respect to the 
midcurve for the given section. We represent the magnitude of the vector 𝐫=> as 𝑟 = �𝜉%% + 𝜉#%. The vector 𝐫=> 
makes an angle 𝜎 with 𝐄𝟐. Hence, ξ% = 𝑟 cos 𝜎 and 𝜉# = 𝑟 sin 𝜎.  

To find the scalar value of strain in the strain gauge, we need the orientation of the strain gauge. If 𝜇 is the angle 
subtended by the strain gauge with the vector 𝐄𝟏 in undeformed configuration or 𝐝𝟏 in the deformed configuration, 
the direction of the strain gauge in the deformed configuration is obtained as 𝐧 = cos 𝜇 𝐝𝟏 − sin 𝜇 sin 𝜎 𝐝𝟐 +
sin 𝜇 cos 𝜎 𝐝𝟑 as obtained in [2]. We define the following strain parameters 

𝑆! = H(1 + 𝑒) cos 𝛾!! − 1I; 𝑆% = (1 + 𝑒) sin 𝛾!% ; 𝑆# = (1 + 𝑒) sin 𝛾!# 

𝑆? = 𝑟𝜅̅!; 𝑆@ = 𝑟𝜅̅%; 𝑆A = 𝑟𝜅̅#; 

𝑒 = �(𝑆! + 1)% + 𝑆%% + 𝑆#% − 1. 

(14) 

The scalar strain is obtained as a function of the strain parameters 𝑆& using Eq. (13) and (14) as 

𝜀 = 𝛜. 𝐧 = {𝑆! − cos𝜎 𝑆A + sin𝜎 . 𝑆@} cos 𝜇 − {𝑆% − sin𝜎 . 𝑆?} sin 𝜇 sin 𝜎 + {𝑆# + cos σ	. 𝑆?} sin 𝜇 cos 𝜎 (15) 

 

Solution approach 

We demonstrate the solution for the circular section such that |r=>| is constant for all the strain gauges. The solution 
may be easily extended to the non-circular section based on the theory discussed above. Solution of Eq. (9) requires 
6 strain parameters (𝑆!…𝑆A). This requires 6 strain gauges per cross-sections. Equation (15) can then be inverted to 
obtain the strain parameters (𝑆!…𝑆A).  To obtain the approximate structure, we discretize the object into N 
segments. At the 𝑛BC discretized cross-section H𝜉! = 𝜉!$I, we attach 6 strain gauges with angles 𝜎D,E, at a distance 
of 𝑟D,E = 𝑟 from the centroid, where 𝑚 = 1…6. Thus, the scalar strain at the 𝑛BC cross-section is obtained by, 

εF,G = ~𝑆!$ − cos𝜎D,E . 𝑆A$ + sin𝜎D,E 	 . 𝑆@$� cos 𝜎D,E − ~𝑆%$ − sin𝜎D,E . 𝑆?$� sin 𝜇D,E sin 𝜎D,E
+ ~𝑆#$ + cos𝜎D,E 	 . 𝑆?$� sin 𝜇D,E cos 𝜎D,E 

(16) 



Therefore, the discretized form of Eq. (9) becomes, 

⎣
⎢
⎢
⎢
⎡
𝛗𝐧,/!
𝐝𝟏𝐧,/!
𝐝𝟐𝐧,/!
𝐝𝟑𝐧,/!⎦

⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 𝑆!$ + 1 𝑆%$ 𝑆#$

0 0
𝑆A$
𝑟 −

𝑆@$
𝑟

0 −
𝑆A$
𝑟 0

𝑆?$
𝑟

0
𝑆@$
𝑟 −

𝑆?$
𝑟 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎡
𝛗𝐧
𝐝𝟏𝐧
𝐝𝟐𝐧
𝐝𝟑𝐧⎦

⎥
⎥
⎤
 

(17) 

We use a localized linear approach, linearizing the coefficient in Eq. (17) locally in each 𝑛BC segment, which is then 
solved analytically.  We use the boundary and continuity condition to solve for the constants of integration. The 
midcurve position vector 𝛗𝐧(𝜉!) and the directors 𝐝𝐢𝐧(𝜉!) are obtained as Eq. (19) in [2]. In the next section, we 
demonstrate some application of the shape sensing algorithm to damage detection in underground pipelines. 

APPLICATION TO DAMAGE DETECTION IN UNDERGROUND PIPELINES 

The underground pipelines are prone to severe damage due to seismic activities like earthquake, liquefaction- 
induced lateral spreading, landslide, and others. These events have global effect on the pipeline configuration. 
Hence, monitoring the performance of underground pipelines during these seismic events and in real time is equally 
important as developing resilient design methodologies for the same. 

Earthquakes causes transient ground deformation and permanent ground deformations. In the simplest sense, the 
primary cause of underground pipeline deformation is the movement of soil mass associated with the seismic 
activities. There is abrupt ground deformation at the margin of landslide. 

The paper by O’Rourke et al [10] describes a large-scale test conducted on high density polyethylene pipelines that 
were subjected to 1.22m of strike-slip displacement at a vertical fault crossing an angle of 65°. We simulate a 
similar kind of pipe deformation except that we do it for a much longer circular pipeline of 500 m with a diameter of 
800 mm. The schematic diagram of the strike-slip fault effecting the underground pipeline is shown in figure [2]. 

 

Figure 2: Schematic diagram of strike-slip fault 

Since we ignore Poisson’s effect, the algorithm is material-independent. We impart the pipeline with the axial strain 
shown in Fig. 3. We model the pipeline such that the left end is fixed. This represents the case where the portion of 
pipeline to the left of the considered portion is not effected by the seismic event. The scalar surface strain values for 
a given deformed shape at the set cross-sections for a strain gauge is obtained analytically using Eq. [15]. The values 
of the strain parameters for the 𝑛BC section {𝑆!$ …𝑆A$} (as required in Eq. [17]) is obtained by solving 6 
simultaneous equations in Eq. [16]. Note that if we include the Poisson’s effect, we will have 7 unknown strain 
parameters. But excluding Poisson’s effect simplifies the equation [16] to depend on {𝑆!$ …𝑆A$}. We fix the angles 

for 6 strain gauges at 𝑛BC cross-section as 𝜎D = �I
?
, I
%
, #I
?
, 𝜋, @I

?
, #I
%
� and 𝜇D = �I

?
, − I

?
, I
?
, − I

?
, I
?
, − I

?
�. The set of 

angles 𝜎D and 𝜇D must be such that Eq. [16] is invertible. 



 

Figure 3: Axial strain along the pipeline 

The curvature is the dominant deformation for the pipeline with this geometric conditions. Hence, we primarily 
consider the deformation to consist of 𝜅̅%, 𝜅̅#, and the axial strain 𝑒. We run the simulation for 6 cases varying the 
number of equally spaced cross-sections 𝑁 = (5, 10, 20, 50, 100), about which the strain gauges are attached. Each 
section has 6 strain gauges. Hence there are 6𝑁 number of total strain gauges in the problem. The displacement of 
the distal end is 51.75𝐄𝟐 + 51.1𝐄𝟐 (in m). 

 

Figure 4: Exact deformed shape (orange curve) of pipeline vs. the reconstructed shape of the pipeline (dotted black) 

 

Figure 5: Exact directors (𝐝𝟏 in red, 𝐝𝟐 in blue, 𝐝𝟑 in green) compared to the predicted directors (dotted arrows) 



Figure 4 compares the reconstruction of the midcurve result (dotted black) for three cases of 𝑁 = (5, 10, 100), with 
the exact deformed shape (orange). Figure 5 compares the reconstruction of the cross-sections by plotting the exact 
directors obtained using forward model (𝐝𝟏 in red, 𝐝𝟐 in blue, 𝐝𝟑 in green) with the directors predicted by the shape 
sensing algorithm (represented by dotted vectors). It is observed that the error is recognizable for 5 sensor locations 
(spacing of 100 m) with root mean error of 44 m. An excellent convergence is observed in the shape sensing with 
increase of sensor locations. For 𝑁 = 10 and 100, the rms error is merely 2.354	m and 0.015	m, respectively, 
which justifies an excellent shape reconstruction. Figure 6 compares the exact component of position vector of 
midcurve 𝛗 and the director 𝐝𝟏 with the predicted components for 𝑁 = 5, 10 and 50. 

In the ideal case, the strain gauge reading is noise-free. However, practicality dictates that an uncertainty/error 
analysis be performed, as real strain gages have noise. As in [1] and [2], to examine these influences for a first-order 
assessment of robustness, we add uniformly distributed random noise to the strain values at a [-5,5] microstrain level 
and at a [-50,50] microstrain level before inputting these values into the shape sensing algorithm. We run fifty such 
realizations in the Monte-Carlo sense and evaluate the average rms error for different numbers of sensor counts. In 
fact there are three primary sources of error: the first is the error due to approximations in solving Eq. (17), the 
second is the error due to noisy strain gauge readings, and the third is the uncertainty in the boundary conditions. 
Figure 7 represents the average rms error for the position vector at various noise levels. The black curve represents 
the error for the no noise or the ideal case, where the primary cause of deviation is the approximations in the 
algorithm. The red and blue curves represent the error due to [-5,5] and [-50,50] microstrain noise, respectively. It is 
observed that the error depends on the noise level and the complexity of deformation. The error reduces at a rate 
greater than exponentially with the increase of sensor count. 

 

Figure 6: Comparison of the component of exact (solid black curve) vectors 𝛗 and 𝐝𝟏 with the predicted 
components for five, ten and fifty strain gauge locations (red dot, green dot, black dot respectively). 

 

Figure 7: Root mean square error for no noise (black curve), [-5,5] micro strain noise (red curve) and [-50,50] 
micro strain noise (blue curve) 



CONCLUSION 

In this paper, we discussed about the shape sensing algorithm useful for the general three-dimensional shape 
reconstruction of slender structures. The problem bears the nature of a single manifold problem where the 
configuration of the structure is defined by the midcurve and the director triad. The methodology presented uses 
geometrically exact and nonlinear Cosserat rod theory, thereby making the method appropriate to capture large 
deformation involving finite strain. The formulation captures the effects due to elongation, shear, and curvatures 
(𝑒, 𝜅̅!, 𝜅̅%, 𝜅̅#, 𝛾!!, 𝛾!%, 𝛾!#) assuming Euler-Bernoulli’s rigid cross-section assumption.  

We established the expression for the surface strain measure in terms of the strain parameters. The discretized form 
of the governing differential equations for the midcurve position vector and director are obtained, and the global 
solution to the set of differential equations obtained is determined using the continuity conditions and the boundary 
conditions. 

 The primary purpose of this paper is to demonstrate the ability of this shape sensing methodology to monitor the 
deformed shape of underground pipelines, important for seismic monitoring applications. It is known that the 
underground pipelines are severely affected due to seismic activities like earthquake, landslide, and liquefaction.  

We simulated a deformed shape for a portion of pipeline 500m long and 800mm in diameter and attempted to 
reconstruct its shape by our algorithm. Excellent reconstruction is obtained for as low as 10 sensor locations (50m 
spacing, 60 sensors in total). We observed that the rms error decays with increase in sensor count. Therefore, the 
shape reconstruction method discussed above can serve as a useful aid in a damage detection strategy that involves 
knowing the displacement shifts in the pipeline. 
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