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A Probabilistic Framework for Model-Based Imitation Learning

Aaron P. Shon, David B. Grimes, Chris L. Baker, and Rajesh P.N. Rao
{aaron, grimes, clbaker, rao}@cs.washington.edu

CSE Department, Box 352350 University of Washington Seattle WA 98195 USA

Abstract

Humans and animals use imitation as a mechanism for
acquiring knowledge. Recently, several algorithms and
models have been proposed for imitation learning in
robots and humans. However, few proposals o�er a
framework for imitation learning in a stochastic environ-
ment where the imitator must learn and act under real-
time performance constraints. We present a probabilis-
tic framework for imitation learning in stochastic envi-
ronments with unreliable sensors. We develop Bayesian
algorithms, based on Meltzo� and Moore’s AIM hypoth-
esis for infant imitation, that implement the core of an
imitation learning framework, and sketch basic propos-
als for the other components. Our algorithms are com-
putationally efficient, allowing real-time learning and
imitation in an active stereo vision robotic head. We
present results of both software simulations and our al-
gorithms running on the head, demonstrating the valid-
ity of our approach.

Imitation learning in animals and

machines

Imitation is a common mechanism for transfer-
ring knowledge from a skilled agent (the instruc-
tor) to an unskilled agent (or observer) using
direct demonstration rather than manipulating
symbols. Various forms of imitation have been
studied in apes [Visalberghy and Fragaszy, 1990,
Byrne and Russon, 2003], in children (in-
cluding infants only 42 minutes old)
[Meltzoff and Moore, 1977, Meltzoff and Moore, 1997],
and in an increasingly diverse selection of machines
[Fong et al., 2002, Lungarella and Metta, 2003]. The
attraction for machine learning is obvious: a machine
with the ability to imitate has a drastically lower cost of
reprogramming than one which requires programming
by an expert. Imitative robots also offer testbeds for
cognitive researchers to test computational theories,
and provide modifiable agents for contingent interaction
with humans in psychological experiments.

Few previous efforts have presented biologically plau-
sible frameworks for imitation learning. Bayesian
imitation learning has been proposed to accelerate
Markov decision process (MDP) learning for reinforce-
ment learning agents [Price, 2003]; however, this frame-
work chiefly addresses the problem of learning a forward
model of the environment [Jordan and Rumelhart, 1992]
via imitation (see below), and the correspondence
with cognitive findings in humans is unclear. Other

frameworks have been proposed for imitation learn-
ing in machines [Breazeal, 1999, Scassellati, 1999,
Billard and Mataric, 2000], but most of these are not de-
signed around a coherent probabilistic formalism such as
Bayesian inference. Probabilistic methods, and Bayesian
inference in particular, are attractive because they han-
dle noisy, incomplete data, can be tuned to handle realis-
tically large problem sizes, and provide a unifying math-
ematical framework for reasoning and learning. Our ap-
proach is unique in combining a biologically inspired ap-
proach to imitation with a Bayesian framework for goal-
directed learning. Unlike many imitation systems, which
implement only software simulations, this paper demon-
strates the value of our framework through both simula-
tion results and a real-time robotic implementation.

Components of an imitation learning

system

The observer must surmount a number of problems
in attempting to replicate the behavior of the instruc-
tor. Although described elsewhere [Schaal et al., 2003,
Rao and Meltzoff, 2003], we briefly reformulate them as
follows:

1. State identification: Ability to classify high-
dimensional sensor data into a lower-dimensional, rel-
evant state robust to sensor noise. State identifica-
tion should differentiate between the internal state of
the observer (proprioceptive feedback, etc.) and the
state of the environment, including the states of other
agents, particularly the instructor.

2. Action identification: Ability to classify sequences
of states in time.

3. State mapping: Transformation from the egocentric
coordinate system of the instructor to the egocentric
coordinate system of the observer.

4. Model learning: Learning forward and inverse mod-
els [Blakemore et al., 1998] to facilitate interaction
with the environment.

5. Policy learning: Learning action choices that maxi-
mize a reward function, as observed from the actions
selected by the instructor in each given state.

6. Sequence learning and segmentation: Ability to
memorize sequences of key states needed to complete
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an imitation task; ability to segment imitation tasks,
and to divide tasks into subtasks with particular sub-
goal states.

A Bayesian framework for goal-directed

imitation learning

Imitation learning systems that learn only state and ac-
tion mappings (without modeling the environment or
the instructor’s goals) ignore the separability of the
instructor’s intent from the actions needed to accom-
plish that intent. Systems that use deterministic mod-
els rather than probabilistic ones ignore the stochastic
nature of realistic environments. We propose a goal-
directed Bayesian formalism that overcomes both of
these problems. The notation st denotes the state (both
internal and external to an agent) at time t, and at de-
notes the action taken by an agent at time t. sG denotes
a special “goal state” that is the desired end result of the
imitative behavior. The key to viewing imitation learn-
ing as a model-based, goal-directed Bayesian task is to
identify:

� Forward model: Predicts a distribution over future
states given current state(s), action(s), and goal(s)—
P (st+1|at, st, sG). Models how different actions affect
environmental state.

� Inverse model: Infers a distribution over actions
given current state(s), future state(s), and goal(s)—
P (at|st, st+1, sG). Models which action(s) should be
selected to transition from one environmental state to
another.

� Prior model: Infers a distribution over actions given
current state(s) and goal(s)—P (at|st, sG). Models the
policy (or preferences) followed by a particular in-
structor in transitioning through the environment to
achieve a particular goal.

Thus the prior model involves learning an MDP (or a
partially observable MDP), while the forward model in-
volves learning a “simulator” of how the environment
(possibly including other agents) reacts to actions per-
formed within it. Learning inverse models is a noto-
riously difficult task [Jordan and Rumelhart, 1992], not
least because multiple actions could have mapped from
st to st+1. However, using Bayes’ rule, we can infer the
distribution returned by the inverse model using the for-
ward and prior models:

P (at|st, st+1, sG) ∝ P (st+1|at, st, sG) Pr(at|st, sG) (1)

Equation 1 can be used to either select the maxi-
mum a posteriori action to complete a state transi-
tion, or to sample over a distribution of alternatives,
refining the model (and representing an exploration- ex-
ploitation tradeoff reminiscent of reinforcement learn-
ing). Sampling from the distribution over actions is
also called probability matching. Evidence exists that
the brain employs probability matching in at least some
cases [Herrnstein, 1961, Krebs and Kacelnik, 1991].

Figure 1: AIM hypothesis model for infant
imitation: The AIM hypothesis of Meltzo� and
Moore [Meltzo� and Moore, 1997] argues that infants match
observations of adults with their own proprioceptions using
a modality-independent representation of state. Our compu-
tational framework suggests an efficient, probabilistic imple-
mentation for this hypothesis.

Fig. 1 graphically represents Meltzoff and
Moore’s Active Intermodal Mapping (AIM) hypothe-
sis [Meltzoff and Moore, 1997]. According to this cog-
nitive model, imitation begins with an infant (or other
agent) forming a representation of features in the out-
side world. Next, this representation is transformed into
a “supra-modal,” or modality-independent, representa-
tion of those features. An equivalence detector matches
the current modality-independent representation of the
instructor’s state with a modality-independent represen-
tation of the infant observer’s state. Proprioceptive feed-
back guides the infant’s motor output toward matching
the instructor’s state. Our framework for Bayesian ac-
tion selection using learned models captures this idea of
imitation as a “matching-to-target” process.

Fig. 2 depicts a block diagram of our architecture.
Like AIM, our system begins by running several feature
detectors (skin detectors, face trackers, etc.) on sen-
sor inputs from the environment. Detected features are
monitored over time to produce state sequences. In turn,
these sequences define actions. The next step is to trans-
form state and action observations into instructor-centric
values, then map from instructor-centric to observer-
centric coordinates. Observer-centric values are em-
ployed to update probabilistic forward and prior models
in our Bayesian inference framework. Finally, combin-
ing distributions from the forward and prior models as in
Eqn. 1 yields a distribution over actions. The resulting
distribution over actions is converted into a single motor
action the observer should take next, with an efference
copy conveyed to the feature detectors to cancel out the
effects of self-motion.

State and action identification

Deriving state and action identity from sensor data
involves task- and sensor-specific functions. Al-
though it is impossible to summarize the extensive
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Figure 2: Overview of model-based Bayesian imita-
tion learning architecture: As in AIM, the initial stages
of our model correspond to the formation of a modality-
independent representation of world state. Mappings from
instructor-centric to observer-centric coordinates and from
the instructor’s motor degrees of freedom (DOFs) to the ob-
server’s motor DOFs play the role of equivalence detector
in our framework, matching the instructor’s motor output to
the motor commands of the observer. E�erence copy provides
proprioceptive feedback to close the motor control loop.

body of work in action and state identification here,
we note recent progress in extracting actions from
laser rangefinder and radio [Fox et al., 2003] and vi-
sual [Efros et al., 2003] data. In most cases, computa-
tional expediency necessitates employment of dimension-
ality reduction techniques such as principal components
analysis, Isomap [Tenenbaum et al., 2000], or locally lin-
ear embedding [Roweis and Saul, 2000]. Saliency detec-
tion algorithms [Itti et al., 1998] may also help reduce
high-dimensional visual state data to tractable size.

Learning state mappings

A prerequisite for any robotic imitation task is to deter-
mine a mapping from the instructor’s state to the ob-
server’s [Nehaniv and Dautenhahn, 2002]. We view this
state mapping problem as an instance of subgraph iso-
morphism, where the goal is to match subgraphs from
the instructor (corresponding to effectors, e.g. limbs) to
their corresponding graphs in the observer. In the sim-
ulation and robotic head results shown below, the map-
pings are trivial; developing detailed graph-theoretic ap-
proaches to mapping from instructor states to observer
states remains an ongoing topic of investigation.

Learning forward models

Numerous supervised and unsupervised ap-
proaches (see e.g. [Jordan and Rumelhart, 1992,
Todorov and Ghahramani, 2003]) have been proposed

to learn models of the environment, and to discover
policies to maximize rewards obtained from the environ-
ment. Evidence demonstrates that infants learn forward
models of how their limbs, facial muscles, and other
body parts react to motor commands, a process referred
to by Meltzoff and Moore [Meltzoff and Moore, 1997]
as “body babbling.” Such forward model learning could
occur both prenatally and during infancy. We anticipate
using well-established supervised algorithms to acquire
forward models of environmental dynamics. Unsuper-
vised learning of forward and inverse models to generate
motor policies is a well-known problem in the reinforce-
ment learning community (see [Kaelbling et al., 1996]
for a survey). In reinforcement learning, an agent’s
internal reward signal alone is used to learn models
of the environment, rather than relying on examples
provided by a teacher as in imitation learning.

Sequence learning and segmentation

Realistic imitation learning systems must be able to
learn sequences of states that define actions, and to seg-
ment these sequences into meaningful chunks for later
recall or replay. Part of our ongoing work is to de-
fine how semantically meaningful chunks can be defined
and recalled in real time. Recent developments in con-
cept learning (e.g., [Tenenbaum, 1999]) suggest how sim-
ilar environmental states might be grouped together, en-
abling development of hierarchical state and action rep-
resentations in machine systems.

A Bayesian algorithm for inferring intent

Being able to determine the intention of others is a
crucial requirement for any social agent, particularly
an agent that learns by watching the actions of oth-
ers. Recent studies have revealed the presence of “mir-
ror neurons” in monkey cortex that fire both when an
animal executes an action and when it observes oth-
ers performing similar actions. These findings sug-
gest a neurological substrate for intent inference in pri-
mates [Rizzolatti et al., 2000]. One appealing aspect of
our framework is that it suggests a probabilistic algo-
rithm for determining the intent of the instructor. That
is, an observer can determine a distribution over goal
states based on watching what actions the instructor ex-
ecutes over some period of time. This could have appli-
cations in machine learning systems that predict what
goal state the user is attempting to achieve, then offer
suggestions or assist in performing actions that help the
user reach that state. The theory could lead to quantita-
tive predictions for future cognitive studies to determine
how humans infer intent in other intelligent agents.

Our algorithm for inferring intent uses applications of
Bayes’ rule to compute the probability over goal states
given a current state, action, and next state obtained
by the instructor, P (sG|st+1, at, st). This probability
distribution over goal states represents the instructor’s
intent. One point of note is that P (st+1|at, st, sG) ≡
P (st+1|at, st); i.e., the forward model does not depend
on the goal state sG, since the environment is indifferent
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to the desired goal. Our derivation proceeds as follows:

P (st+1|at, st, sG) =
P (st+1, st, at, sG)

P (at, st, sG)
(2)

P (st+1|at, st, sG) =
P (sG|st+1, at, st)

P (sG|at, st)

P (st+1, at, st)

P (at, st)
(3)

Because P (st+1|at, st, sG) ≡ P (st+1|at, st), and since
P (at,st)

P (st+1,at,st)
= 1

P (st+1|at,st)
:

P (sG|at, st) = P (sG|st+1, at, st) (4)

P (sG, at, st)

P (at, st)
= P (sG|st+1, at, st) (5)

P (at|sG, st)P (sG, st)

P (at, st)
= P (sG|st+1, at, st) (6)

P (at|sG, st)P (sG, st) ∝ P (sG|st+1, at, st) (7)

P (sG|st+1, at, st) ∝P (at|sG, st) P (st|sG) P (sG)(8)

The first of the terms in Eqn. 8 represents the prior
model. The second term represents a distribution over
states at time t, given a goal state sG. This could be
learned by, e.g., observing the instructor manipulate an
object, with a known intent, and recording how often
the object is in each state. Alternatively, the observer
could itself “play with” or “experiment with” the object,
bearing in mind a particular goal state, and record how
often each object state is observed. The third term is a
prior over goal states; it can be derived by modeling the
reward model of the instructor. If the observer can either
assume that the instructor has a similar reward model
to itself (the “like-me” hypothesis [Meltzoff, 2002]), or
model the instructor’s desired states in some other way,
it can infer P (sG).

Interestingly, these three terms roughly match
the three developmental stages laid out by Melt-
zoff [Meltzoff, 2002]. According to our hypothesis, the
first term in Eqn. 8 corresponds to a distribution over
actions as learned during imitation and goal-directed
actions. This distribution can be used if all the ob-
server wants to do is imitate body movements (the first
step in imitation that infants learn to perform accord-
ing to Meltzoff’s theory of development). The second
term in Eqn. 8 refers to distributions over states of ob-
jects given a goal state. Because the space of actions
an agent’s body can execute is presumably much less
than the number of state configurations objects in the
environment can assume, this distribution requires col-
lecting much more data than the first. Once this second
term is learned, however, it becomes easier to manip-
ulate objects to a particular end—an observer that has
learned P (st|sG) has learned which states of an object or
situation “look right” given a particular goal. The com-
plexity of this second term could explain why it takes
babies much longer to learn to imitate goal-directed ac-
tions on objects than it does to perform simple imitation
of body movements (as claimed in Meltzoff’s theory). Fi-
nally, the third term, P (sG), is the most complex term
to learn. This is both because the number of possible
goal states sG is huge, and the fact that the observer
must model the instructor’s distribution over goals indi-
rectly (the observer obviously cannot directly access the

instructor’s reward model). The observer must rely on
features of its own reward model, as well as telltale signs
of desired states (e.g., states that the instructor tends to
act to remain in, or that cause the instructor to change
the context of its actions, could be potential goal states)
to infer this prior distribution. The difficulty of learning
this distribution could explain why it takes so long for
infants to acquire the final piece of the imitation puzzle,
determining the intent of others. We did not explic-
itly design the terms in our intent inference algorithm
to match childhood developmental stages; rather, the
derivation follows from the inverse model formulation in
Eqn. 1 and straightforward applications of Bayes’ rule.

Simulation results

Fig. 3 demonstrates imitation results in a purely sim-
ulated environment. The task is to reproduce observed
trajectories through a maze containing three different
goal states (maze locations marked with ovals). This
simulated environment simplifies a number of the issues
mentioned above: the location and value of each goal
state is known by the observer a priori; the movements
of the instructor are observed free from noise; the for-
ward model is restricted so that only moves to adjacent
maze locations are possible; and the observer can detect
when it is next to a wall (although it does not know a
priori that it cannot move through walls).

The observer first learns a forward model by interact-
ing with the simulated environment for 500 simulation
steps. The instructor then demonstrates 4 different tra-
jectories to the observer (1 to the white goal, 2 to the
light gray goal, 1 to the dark gray goal), allowing the ob-
server to learn a prior model. Fig. 3(a) shows the maze
environment used in our simulations. Fig. 3(b) shows a
sample training trajectory (black arrows) where the in-
structor moves from location (1,1) to the goal state at
(3,3). The solid white line (over arrows) demonstrates
the observer reproducing the same trajectory after learn-
ing. The observer’s trajectory varies somewhat from the
instructor’s due to the stochastic nature of the environ-
ment. Fig. 3(c) shows another training trajectory, com-
prising 47 steps, where the instructor moves toward the
white goal (goal 1). The observer’s task for this tra-
jectory is to estimate, at each time step of the trajec-
tory, a distribution over which goal state the instruc-
tor is headed toward. During the inference process, the
observer does not have direct knowledge of the actions
selected by the instructor; it must infer these by moni-
toring state changes in the environment. The graph in
Fig. 3(d) shows this distribution over goals, where data
points represent inferred intent averaged over epochs of
8 simulation steps each (i.e., the first data point on the
graph represents inferred intent averaged over simula-
tion steps 1-8, the second data point spans simulation
steps 9-17, etc., with the last epoch spanning 7 simula-
tion steps). Note that the estimate of the goal is correct
over all epochs. The algorithm is particularly confident
once the ambiguous section of the trajectory, where the
instructor could be moving toward the dark gray or the
light gray goal, is passed. Performance of the algorithm
would be enhanced by more training; only 4 sample tra-

1240



1 10 20
1

10

20

1 10 20
1

10

20

1 10 20
1

10

20

 1 24 47
0

0.2

0.4

0.6

0.8

1

Simulation step

P
(s

G
|a

t,s
t,s

t+
1) Goal 1

Goal 2
Goal 3

c) d)

a) b)

Figure 3: Simulated environment for imitation learn-
ing: (a) Maze environment used to train observer. Thick
black lines denote walls; ovals represent goal states. Lightness
of ovals is proportional to the probability of the instructor se-
lecting each goal state (re
ecting, e.g., relative reward value
experienced at each state). (b) Example trajectory (black
arrows) from the instructor, ending at the second goal. Re-
production of the trajectory by the observer is shown as a
solid white line overlying the arrows; inference is performed
as in Eqn. 1. The instructor required 23 steps to reach
the goal; the observer required a slightly larger number of
steps due to both the stochastic nature of the environment
and imperfect learning of the forward and prior models. (c)
Instructor’s trajectory in the intention inference task. (d)
Graph showing a distribution over instructor’s goal states, as
inferred by the observer at di�erent time points in the sim-
ulation. Note how the actual goal state, goal 1, maintains a
high probability relative to the other goal states throughout
the simulation. Goal 2 brie
y takes on a higher probability
due to limited number of training trajectories.

jectories were presented to the algorithm, meaning that
its estimates of the distributions on the right hand side
of Eqn. 8 were extremely biased.

Real-time application in a robotic head

We have also implemented our probabilistic approach in
a Biclops active stereo vision head (Fig. 4(a)). The head
follows the gaze of a human instructor, and tracks the
orientation of the instructor’s head to determine where
to look next. Gaze following [Brooks and Meltzoff, 2002,
Scassellati, 1999] (Fig. 4(b)) represents a key step in the
development of shared attention, in turn bootstrapping
more complicated imitation tasks. Our system begins
by identifying an image region likely to contain a face
(based on detecting skin tones and bounding box as-
pect ratio). We employ a Bayesian pose detection algo-
rithm [Wu et al., 2000] that matches an elliptical model
of the head to the human instructor’s face. Our algo-
rithm then transforms the estimated gaze into the Bi-
clops’ egocentric coordinate frame, causing the Biclops
to look toward the same point in space as the human
instructor. We trained the pose detector on a total of 13
faces, with each training subject looking at 36 different
targets; each target was associated with a different pan
and tilt angle relative to pan 0, tilt 0 (with the subject
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Figure 4: Gaze tracking in a robotic head: (a) Bi-
clops active stereo vision head from Metrica, Inc. (b) In-
fants as young as 9 months can detect gaze based on head
direction; older infants (≥ 12 months) use opened eyes as
a cue to detect whether they should perform gaze tracking
(from [Brooks and Meltzo�, 2002]). (c) Likelihood surface
for the face shown in (d), depicting the likelihood over pan
and tilt angles of the subject’s head. The region of highest
likelihood (the brightest region) matches the actual pan and
tilt angles (black X) of the subject’s face shown in (d).

looking straight ahead).
Fig. 4(c) depicts a likelihood surface over pan and tilt

angles of the instructor’s head in the pose shown in Fig.
4(d). Our system generates pan and tilt motor com-
mands by selecting the maximum a posteriori estimate
of the instructor’s pan and tilt, and performing a sim-
ple linear transform from instructor-centric to egocentric
coordinates. Out of 27 out-of-sample testing images us-
ing leave-one-out cross-validation, our system is able to
track the angle of the instructor’s head to a mean error of
±4.6 degrees. 1 Our previous efforts [Shon et al., 2003]
demonstrated the ability of our system to track the gaze
of an instructor; ongoing robotics work involves learning
policy models specific to each instructor, and inferring
instructor intent based on object saliency.

Conclusion

This paper describes a Bayesian framework for imitation
learning, based on the AIM model of imitation learning
by Meltzoff and Moore. The framework emphasizes im-
itation as a “match-to-target” task, and promotes sepa-
ration between the dynamics of the environment and the
policy a particular teacher chooses to employ in reach-
ing a goal. We have sketched the basic components for
any imitation learning system operating in realistically
large-scale environments with stochastic dynamics and
noisy sensor observations. Our model naturally leads
to a Bayesian algorithm for inferring the intent of other

1We de�ne error as:

E =

√

(

θpan � θ̂pan

)2

+
(

θtilt � θ̂tilt

)2

where θ is the true angle, and θ̂ is our system’s estimate of
the angle.
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agents. We presented preliminary results of applying
our framework to a simulated maze task and to gaze fol-
lowing in an active stereo vision robotic head. We are
currently investigating the ability of the framework to
scale up to more complex robotic imitation tasks in real-
world environments. We are also exploring the connec-
tions between our probabilistic framework and findings
from developmental psychology.
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