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ABSTRACT OF THE DISSERTATION 
 
 
 

Development and Application of Ocean Color Algorithms for Estimating Particulate 
Organic Carbon in the Southern Ocean from Satellite Observations 

 
 

by 
 
 

David Benjamin Allison 
 
 

Doctor of Philosophy in Oceanography 
 
 

University of California, San Diego, 2010 
 
 

Professor Dariusz Stramski, Chair 
 
 
 

Empirical algorithms have been developed for estimating surface concentration 

of particulate organic carbon (POC) from remotely-sensed ocean color in the Southern 

Ocean using field data POC, spectral remote-sensing reflectance, Rrs(), and the 

inherent optical properties (IOPs) of seawater.  Several algorithm formulations have 

been considered.  The best algorithm performance was obtained for the power function 

fit POC (mg m-3) = 189.29 [Rrs(443)/Rrs(555)]-0.87 with mean bias of 3%, normalized 

mean square error 7%, and determination coefficient 0.93.  Analysis of match-up 



 

xiv 

comparisons between satellite-derived and in situ POC support application of this 

algorithm in the Southern Ocean.   

The bio-optical relationships on which the POC algorithms are based exhibit 

significant variability mainly due to differing particulate assemblages.  To quantify the 

sources of this variability, Mie scattering modeling and empirical data were used to 

calculate IOPs, POC, and chlorophyll-a content for 21 representative classes of 

particles.  These classes represent colloids, organic detritus, minerals, and various 

plankton species.  By using this reductionist approach, 38 different bulk models of 

seawater were constructed and analyzed.  The utility of this approach in advancing an 

understanding of variability in the POC algorithms is shown; for example, the 

relationship between POC and particulate backscattering is investigated.   

The POC retrieval algorithm based on the reflectance band ratio was applied to 

SeaWiFS satellite data to demonstrate seasonal and interannual variability in POC in 

the Southern Ocean (south of 35oS) from 1997 through 2007.  Typically the surface 

POC concentrations range from 30 to 120 mg m-3 while the monthly means range 

from 70-80 mg m-3.  The seasonal maximum stock of POC (0.6 Pg) integrated within 

the top 100 m of the ocean occurs in December.  The seasonal range of area-

normalized POC is 5.5 - 6.6 g m-2.  The region south of 55oS provides a dominant 

contribution to the accumulation of POC during the productive period of the season.  

During the austral spring, the area-normalized POC accumulates in these high-latitude 

waters at rates from about 0.2 to 0.7 g m-2 month-1.  The comparison of these rates 

with large-scale satellite-based estimates of net primary production indicates that only 

a small fraction (<10%) of production accumulates as POC.
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Introduction 

 

 

The global climate pattern is a complex system dependant on processes ranging from 

solar heating to concentrations of atmospheric gases.  Current concern about the 

increased injection and levels of the greenhouse gas carbon dioxide (CO2) into the 

atmosphere necessitates an understanding of the global carbon cycle and budget.  The 

oceans are a source and sink of carbon in the form of dissolved gases and suspended 

particles.  Estimates of global carbon reservoirs and fluxes have been compiled most 

recently by Houghton [2007], who attempted to separate the natural and anthropogenic 

reservoirs and fluxes between the oceans, atmosphere, and land. 

The current estimate of atmospheric carbon in the form of CO2 is about 

780 PgC [Houghton, 2007].  Oceanic carbon can be divided into: Dissolved Inorganic 

Carbon (DIC) occurring mainly as bicarbonate HCO3
-; Dissolved Organic Carbon 

(DOC) which contributes to Color Dissolved Organic Matter (CDOM); and Particulate 

Organic Carbon (POC) occurring in marine biota.  The total reservoir of carbon in the 

ocean is about 38,000 PgC with the majority occurring in the intermediate and deep 

waters at 36,300 PgC for DIC and 975 PgC for DOC [Houghton, 2007].  The surface 

ocean contains 25 PgC DIC, 700 PgC DOC, and only 3 PgC as POC [Houghton, 

2007].  The large difference (~50x) in total carbon between the atmosphere and ocean 

is due to the chemical buffering of CO2 by the chemistry of seawater.  Less than 1% of 

the DIC in the ocean is dissolved CO2 [Siegenthaler and Sarmiento, 1993]. 
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The flux of carbon between the surface ocean and the atmosphere is controlled 

by the physical processes of air-sea gas exchange.  This process depends upon the 

gradient of CO2 partial pressures (ρCO2) between the ocean and atmosphere and is 

largely a function of chemical processes within the ocean, although episodic biological 

events can draw down surface CO2 concentrations.  This input flux from the 

atmosphere (~92 PgC year-1) is approximately balanced by ventilation of CO2 to the 

atmosphere (~90 PgC year-1) [Houghton, 2007].  The turnover time for inorganic 

carbon in the surface ocean is on the order of 10 years.   

In the euphotic zone of the ocean (the upper 100-150 m), photosynthetic 

primary producers (phytoplankton) convert dissolved carbon to organic matter that is 

stored in POC (living and detrital particles) and DOC.  Collectively, photosynthetic 

phytoplankton in the ocean account for about 40% of the total carbon fixed per year 

(Net Primary Production, NPP) on Earth.  The transport of POC from the surface 

ocean via sinking is part of the biological pump, which provides a mechanism for the 

transport of carbon to intermediate and deep waters as well as to bottom sediments.  

Estimates of the rates of primary production and respiration among living organisms 

in the surface ocean are ~48 PgC year-1 and ~37 PgC year-1 with the excess (~11 PgC 

year-1) being transported to the deep ocean as detritus (POC) [Houghton, 2007].  The 

removal of POC from surface waters to deep waters effectively removes carbon from 

the air-sea system for time scales on the order of the turnover time of the deep oceans, 

about 3000-4000 years.  In steady state this falling POC is recycled at depth into DOC 

and transported back to surface waters via upwelling events.  Burial of carbon within 

the sediments (~0.01 PgC year-1) removes carbon for even longer periods but is 
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episodic and limited to coastal margins [Houghton, 2007].  The magnitude of the POC 

reservoir in the surface oceans is small, about 3 PgC, compared to other carbon 

reservoirs, but it has been estimated that without the biological pump atmospheric CO2 

would be significantly higher. 

The Southern Ocean is one of the most productive oceanographic regions and 

accounts for 20% of the total ocean area on Earth.  During the peak of the austral 

summer (December-February), primary production can fix over 1gC m-2 day-1.  It has 

been proposed that the biological pump is only at 50% of its maximum efficiency with 

respect to the potential sequestration of CO2 in the Southern Ocean [Falkowski et al, 

1998].  In addition, large areas of the Southern Ocean do not utilize all of the available 

macronutrients such as nitrogen and lead to so-called High Nutrient Low Chlorophyll 

(HNLC) areas.  A leading hypothesis for this lack of utilization is iron limitation, 

supported by recent field work such as the SOFEX cruises.  Climate models suggest 

that global warming will increase the transport of aeolian dust to this region, which 

could increase the utilization of these macronutrients and affect the biological pump.  

Understanding and monitoring the current POC reservoirs and fluxes is 

important for predicting future levels of carbon both in the oceans and the atmosphere.  

Satellite remote sensing provides an effective and powerful way to monitor such a 

large range of spatial and temporal scales inaccessible by traditional oceanographic 

means, especially in large remote areas such as the Southern Ocean.  Therefore, 

development, validation, and application of algorithms to estimate POC dynamics 

from satellite observations across the oceanic basin on annual and interannual time 

scales is of primary importance and is the topic of this dissertation.   
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The dissertation is organized into three chapters addressing each of the tasks 

behind a successful POC algorithm.  The first chapter details the development and 

validation of a satellite POC algorithm from empirical relationships derived from in 

situ data.  The second chapter investigates the natural variability seen in the empirical 

relationships by employing a reductionist model of the fundamental optical and 

biochemical constituents.  Finally, the third chapter applies the newly developed POC 

algorithm to satellite data for the Southern Ocean to analyze the temporal and spatial 

variability in the surface POC for 10 years from 1997-2007.  Each of these chapters is 

organized as stand-alone work with a complete introduction, body of work, and 

conclusions. 

The concentration of chlorophyll-a, the primary pigment in phytoplankton, has 

been the basic remote-sensing data product derived routinely since the first satellite 

ocean color mission in 1970s, yet it is carbon, not chlorophyll, which is typically of 

greatest interest to the study of biogeochemical cycles.  Empirical POC algorithms are 

developed because other, more advanced approaches such as semi-analytical 

inversions of ocean color have not yet proven to provide more reliable results or 

perform consistently better than the simple empirical approaches.  The amount of 

simultaneously-collected field data of POC and optical quantities, especially ocean 

reflectance, which are required for the development of empirical algorithms, is very 

limited.  In contrast, relatively large amounts of field data have been collected over the 

years to allow the development of empirical chlorophyll algorithms.  As part of the 

research focus of this dissertation, field data were collected in the Southern Ocean to 

bolster existing databases.  With these data, in Chapter 1, several formulations of 
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algorithm were developed that utilize wavebands available on current satellite ocean 

color sensors, in particular SeaWiFS (Sea-viewing Wide Field-of view Sensor).  The 

algorithms were then evaluated using a match-up data set consisting of field data 

obtained under sunny conditions in conjunction with coincident satellite observations 

with SeaWiFS.  In addition to the data used in the development of the algorithm, 

ancillary data were investigated to provide insights into the sources of variability in 

the algorithms.  These data included the inherent optical properties (IOPs) of seawater, 

specifically the backscattering and absorption coefficients of particulate and dissolved 

components of water, which were collected in parallel to reflectance and POC 

measurements.  These investigations naturally led to the topic for the next chapter in 

this dissertation, the modeling of the empirical relationships behind the POC algorithm 

with a reductionist approach to provide a more rigorous understanding of the 

biochemical and optical relationships. 

 The bio-optical relationships, including those forming a basis of ocean color 

remote sensing algorithms, are known to exhibit significant regional and temporal 

variability in the ocean.  This variability and its limited understanding have been a 

major obstacle for achieving consistently good performance of remote sensing 

algorithms.  A major source of such variability is thought to be associated with 

variations in particulate assemblages, both in composition and relative abundances of 

various particle classes.  Unfortunately, the present understanding of how different 

particle classes contribute to bulk concentrations of seawater constituents such as POC 

and to bulk ocean optical properties is very limited.  This is because the natural 

particulate assemblages have been traditionally described in terms of a few broadly 
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defined classes such as phytoplankton and non-phytoplankton particles.  This 

traditional description is a great oversimplification of reality. 

 In Chapter 2 a reductionist approach [Stramski et al., 2001; 2004] is applied to 

assist in advancing the understanding of bio-optical relationships in terms of the 

detailed composition of particulate assemblages.  Priority is placed on the bio-optical 

relationships involving POC and inherent optical properties of seawater.  The research 

considers 21 classes of particles found in ocean waters which cover the size range 

from 0.015 μm to 200 μm, such as colloids, heterotrophic bacteria, organic detritus, 

mineral particles, and several groups of phytoplankton from picoplankton through 

microplankton size range.  The particle classes were defined to reflect their potentially 

distinctive optical and biochemical roles in the ocean.  Optical and biochemical 

properties were determined via Mie modeling and empirical relationships for each 

particle class.  Representative bulk models of mixtures of particle classes, 38 in total, 

were created by assigning total particle counts for each particle class based on particle 

counts observed in the ocean.  Bulk optical and biochemical properties were then 

calculated for each model and compared against field measurements from the 

Southern Ocean to gain insight into particle class contribution to observed bulk 

properties in the region of primary interest to this study.   

In Chapter 3 the best performing POC algorithm based on the reflectance band 

ratio was applied to SeaWiFS data to examine the seasonal and interannual variability 

in POC within the surface waters of the Southern Ocean during a period from 

September 1997 through December 2007.  Monthly composite maps of the surface 

POC concentration for the entire Southern Ocean (south of 35°S) were generated.  
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Estimates of the monthly average standing stock of POC and the water column 

integrated stock of POC for the regions within the Southern Ocean were calculated.  

Finally, the temporal standing stock of POC and the month-to-month change in POC 

were analyzed for regions within the Southern Ocean.  The analysis of these satellite-

derived results shows the significance of the application of remote sensing of POC to 

advancing knowledge about the dynamics of this oceanic carbon pool and the 

potentially broader impact of this knowledge to the study of carbon cycle and budget. 

 



8 

 

References 

Falkowski, P. G., R. T. Barber, V. Smetacek (1998), Biogeochemical Controls and 
Feedbacks on Ocean Primary Production, Science, 281, 200-206. 

 
Houghton, R.A. 2007. Balancing the global carbon budget. Annual Review of Earth 

and Planetary Sciences 35:313-347. 
 
Siegenthaler, U. & J. L. Sarmiento (1993), Atmospheric carbon dioxide and the ocean, 

Nature, 365, 119-125 
 
Stramski, D., A. Bricaud, and A. Morel (2001), Modeling the inherent optical 

properties of the ocean based on the detailed composition of planktonic 
community, Appl. Opt., 40, 2929-2945. 

 
Stramski, D., E. Boss, D. Bogucki, and K. J. Voss (2004), The role of seawater 

constituents in light backscattering in the ocean, Prog. Oceanogr., 61, 27-56. 
 
 
 
 



9 

Chapter 1.  Empirical Ocean Color Algorithms for Estimating Particulate 

Organic Carbon in the Southern Ocean 

 

 

1.0.  Abstract 

We have examined empirical algorithms for estimating surface concentration 

of particulate organic carbon (POC) from remotely-sensed ocean color in the Southern 

Ocean using field data of POC, spectral remote-sensing reflectance, Rrs(), and the 

inherent optical properties of seawater collected during a number of cruises.  Several 

algorithm formulations have been considered, including direct relationships between 

POC and the blue-to-green band ratios of reflectance and a single wavelength two-step 

algorithm that consists of relationships linking reflectance to the backscattering 

coefficient and POC to the particulate backscattering coefficient at 555 nm.  The best 

error statistics among the algorithms tested were obtained for the power function fit 

POC (in mg m-3) = 189.29 [Rrs(443)/Rrs(555)]-0.87.  This simple band-ratio algorithm is 

based on 85 pairs of field data and shows a small mean bias of about 3%, the 

normalized mean square error of 27%, and the determination coefficient of 0.93.  

These error statistics as well as the analysis of match-up comparisons of satellite-

derived POC and in situ POC determinations support the prospect for reasonably good 

performance of this algorithm in the Southern Ocean.  The two-step empirical 

algorithm operating at 555 nm shows inferior error statistics of the regression fits and 

match-up comparisons compared with the band-ratio algorithm. 
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1.1.  Introduction 

One of the principal goals of optical remote sensing of ocean color is to 

enhance an understanding of ecosystem dynamics and biogeochemical cycles within 

the upper ocean, which has implications to understanding the ocean’s role in climate 

change.  Current satellite missions with ocean color capabilities, such as SeaWiFS 

(Sea-viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging 

Spectroradiometer), and MERIS (Medium Resolution Imaging Spectrometer), have 

provided a means for routine observations of large-scale, global distributions of 

biogeochemically important oceanic processes and variables continuously over a 

number of years with a temporal resolution of the order of days.  Future missions, if 

accomplished with sufficient quality of sensor performance and overlap with current 

missions, would provide highly desirable continuity of uninterrupted time series of 

ocean color data for ocean biogeochemistry and climate research. 

The investigations utilizing satellite ocean color data contribute in many ways 

to understanding variability related to biological and biogeochemical processes, and 

efforts have recently increased to broaden the assortment of data products that can be 

derived from ocean color [see Yoder and Kennelly, 2006; McClain, 2008 for reviews].  

Whereas the concentration of chlorophyll-a, the primary pigment in phytoplankton, 

has been the basic data product derived routinely since the first ocean color mission in 

1970s, it is carbon, not chlorophyll, which is typically of greatest interest to the study 

of biogeochemical cycles.  The particulate organic carbon (POC) in the upper ocean 

represents one of the carbon stocks of substantial interest.  The particulate matter 

containing carbon plays, for example, a central role in oceanic biological pump [Volk 
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and Hoffert, 1985; Longhurst and Harrison, 1989] and carbon-based estimation of 

primary production [Behrenfeld et al., 2005].  The POC stock in the upper ocean is 

highly variable and its large-scale distributions and temporal variations are poorly 

characterized, however.  This is primarily because conventional oceanographic 

sampling has been both temporally and spatially sparse. 

Recent advances in algorithm development for estimating surface 

concentration of POC from satellite measurements of ocean color promise rapid 

expansion of information for understanding distributions and variability of this carbon 

pool in the surface ocean [Stramski et al., 1999; Loisel et al., 2001; Mishonov et al., 

2003; Stramska and Stramski, 2005; Gardner et al., 2006; Pabi and Arrigo, 2006; 

Stramski et al., 2008; Son et al., 2009; Stramska, 2009].  In this study our interest is 

focused on empirical algorithms because other, more advanced approaches such as 

semi-analytical inversions of ocean color have not yet proven to provide more reliable 

results or perform consistently better than the simple empirical approaches.  The 

amount of simultaneously collected field data of POC and optical quantities, 

especially ocean reflectance, which are required for the development of empirical 

algorithms is, however, still very limited.  A small number of studies exist in which 

such adequate data sets, albeit of limited size, were used for the POC algorithm 

development [Stramski et al., 1999; Stramska and Stramski, 2005; Pabi and Arrigo, 

2006; Stramski et al., 2008].  This situation remains in contrast with relatively large 

amounts of field data, which have been collected over the years to allow the 

development of empirical chlorophyll algorithms [e.g., O’Reilly et al., 1998; 2000]. 
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In addition to the limitation of the amount of field data available for the POC 

algorithm development, the geographic coverage of these data has also been restricted.  

It is generally known that the performance of ocean color algorithms can be better if 

algorithms are established and applied on a regional basis, compared with the 

performance of a single algorithm applied indiscriminately to the entire global ocean.  

Several studies proposed the partitioning of the world's oceans into provinces based on 

criteria involving bio-optical properties [Platt and Sathyendranath, 1988; Mueller and 

Lange, 1989; Esaias et al., 2000; Hooker et al., 2000].  An important case of regional 

differences in bio-optical relationships was suggested by comparisons of polar waters 

and lower latitudes [Mitchell and Holm-Hansen, 1991; Mitchell, 1992; Dierssen and 

Smith, 2000; Sathyendranath et al., 2001].  The extent to which these differences are 

significant remains, however, an open question [Marrari et al., 2006].  Therefore, the 

collection and analysis of new datasets consisting of simultaneous field measurements 

of POC and optical variables from various marine environments, including polar 

regions that have been largely under sampled in the past, are of vital importance for 

improving the capability to estimate POC from ocean color. 

In this study we use field data collected on several cruises in the Southern 

Ocean to develop empirical algorithms that relate surface concentration of POC to 

remote-sensing reflectance, Rrs, within the Southern Ocean.  Our specific objectives 

are to explore several formulations of algorithm, which utilize wavebands available on 

current satellite ocean color sensors, in particular SeaWiFS, and to evaluate the 

algorithms using a match-up data set consisting of field data obtained under sunny 

conditions in conjunction with coincident satellite observations with SeaWiFS.  One 
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of the algorithms based on the blue-to-green band ratio of reflectance was recently 

applied to satellite observations of the Southern Ocean over a 10-year period, which 

demonstrates the broader significance of remote sensing of POC for ocean 

biogeochemistry [Allison et al., 2010].  For providing insights into the sources of 

variability in the band-ratio algorithms, in this study we also analyze the field data of 

the inherent optical properties (IOPs) of seawater, specifically the backscattering and 

absorption coefficients of particulate and dissolved components of water, which were 

collected in parallel to reflectance and POC measurements. 

 

1.2.  Methods and Data 

1.2.1.  Field Measurements for Algorithm Development and Validation 

Optical and POC measurements were made during several oceanographic 

cruises within three regions of the Southern Ocean; in the waters near Antarctic 

Peninsula and South Shetland Islands, the Antarctic Polar Frontal Zone (PFZ) within 

the Pacific sector, and the Ross Sea (Figure 1.1).  The stations were located in high-

latitude waters south of 50°S, and most stations were south of 60°S.  For the POC 

algorithm development, field data from six cruises spanning a time period from 1997 

through 2006 are used.  These cruises include: (i) the U.S. Joint Global Ocean Flux 

Study (JGOFS) cruise NBP9711 in the Ross Sea in November-December of 1997 (we 

use a symbol NBP97 for data from this cruise); (ii) two JGOFS cruises REV9801 and 

REV9802 in the PFZ region which took place from January through March 1998 

(symbol for data REV98); (iii) two cruises under the NOAA Fisheries’ U.S. Antarctic 

Marine Living Resources (AMLR) Program in the region of South Shetland Islands 
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and Antarctic Peninsula during the January-March period in 2004 and 2006 (symbols 

AMLR04 and AMLR06); and (iv) one cruise sponsored by National Science 

Foundation during the 2004 AMLR season (symbol for data LMG04).  During each 

cruise vertical profiles of optical data were collected from several instruments either 

mounted on the ship's CTD/rosette system for simultaneous in situ measurements with 

discrete water sampling or deployed shortly before or after the CTD/rosette cast.  

These deployments of the CTD/rosette and optical instruments constitute a common 

station.  Data collected at the common station are considered "coincident in time and 

space" for the purposes of development of the POC algorithms.  We restrict the 

algorithm development to the use of POC and optical data collected at near-surface 

depths (< 10 m) within open water stations where it is reasonable to assume that 

optical properties and suspended particles are dominated by plankton microorganisms 

and plankton-derived organic matter.  In bio-optical studies such waters have been 

customarily referred to as Case 1 waters [Morel and Prieur, 1977; Gordon and Morel, 

1983]. 

For the validation of the algorithms by means of match-up comparisons of 

coincident satellite and in situ data (see section 1.2.5 for methodological details), we 

use field data from AMLR cruises in 2000, 2001, 2002, and 2007, in addition to field 

data from the six cruises listed above.  The AMLR cruise in 2007 provided only one 

match-up data point, however.  These four additional AMLR cruises that were not 

used in the algorithm development provide about 40% of data for our match-up 

comparisons of remote-sensing reflectances and 50% of data for the match-up 

comparisons of POC. 
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1.2.2.  In situ Radiometric Measurements 

Measurements of spectral downwelling irradiance, Ed(z, λ), and upwelling 

radiance in the nadir direction, Lu(z, ) (where z is depth and  light wavelength in 

vacuo), were made within the upper water column with several calibrated radiometers 

(Biospherical Instruments, Inc.) at a number of wavebands in the visible and 

ultraviolet spectral regions.  The radiometric measurements and data processing were 

consistent with methods recommended in NASA protocols [Mueller et al., 2003] and 

more detailed description of our measurements is given in Allison et al. [in press].  

The final data product from these measurements used in this study is the spectral 

remote sensing-reflectance defined as Rrs() = Lw()/Es(), where Lw() is the water-

leaving radiance from the nadir direction just above the water surface and Es() is the 

downwelling plane irradiance incident on the surface.  For the purposes of POC 

algorithm development, our interest in this study is focused on the Rrs() values from 

the blue and green spectral regions. 

 

1.2.3.  POC Determinations 

For the determinations of POC concentration, water samples obtained from 

CTD/rosette casts were filtered onto precombusted 25-mm Whatman glass-fiber filters 

(GF/F).  Our procedure is detailed in Allison et al. [2010] and POC was determined by 

high temperature combustion of sample filters via standard CHN analysis [Parsons et 

al., 1984; Knap et al., 1996].  For the development of the POC algorithms in this 

study, we only consider data collected at near-surface depths (< 10 m). 
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1.2.4.  Measurements of the Inherent Optical Properties (IOPs) of Seawater 

The spectral backscattering coefficient, bb(z, ) was determined from in situ 

measurements with one of several Hydroscat-6 sensors (HobiLabs, Inc.), each with six 

wavebands in the visible range from 440 to 676 nm.  For vertical profiling, the 

Hydroscat-6 instrument was mounted on an optical package and lowered by the ship’s 

winch.  Data were processed with a method described originally by Maffione and 

Dana [1997] with refinements presented in Boss and Pegau [2001].  Those and some 

additional refinements used in processing of our data are described in Stramski et al. 

[2008].  However, because there is no single widely accepted protocol for processing 

backscattering data, we here provide some details.  The coefficient bb is considered to 

be the sum of contributions from pure water backscattering, bbw, and particle 

backscattering, bbp, and the pure water scattering values are required as input for data 

processing.  Theoretical estimates of pure water scattering available in the literature 

show some differences [Morel, 1974; Shifrin, 1988; Buiteveld et al., 1994].  We 

applied the values calculated from the formulas described in Buiteveld et al. [1994], 

which was recently recommended by Twardowski et al. [2007].  These original 

formulas allow the scattering calculations as a function of water temperature T at 

salinity S = 0, but the adjustment for seawater salinity can be made using the 

multiplicative factor of 1 + 0.3 S/37 [Twardowski et al., 2007].  We made such 

calculations for each station where our backscattering measurements were taken, using 

measured values of T and S.  We note that processing of backscattering measurements 

with pure water values of Buiteveld et al. [1994] with salinity adjustment yields 

generally a lower percent contribution of bbw and higher percent contribution of bbp to 
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the total backscattering coefficient, bb, when compared with the use of pure seawater 

scattering values of Morel [1974].  The latter values were usually used in the past in 

this type of data processing.  These differences are discussed in some detail in 

Twardowski et al. [2007] and Stramski et al. [2008]. 

The processing of Hydroscat-6 data also involves the conversion of the particle 

volume scattering function measured with Hydroscat-6 at a backscattering angle 

centered at about 140o to the particle backscattering coefficient.  We used a value of 

1.13 for the conversion parameter,  [Dana and Maffione, 2002].  In addition, the so-

called "sigma" correction of the backscattering coefficient was made with the beam 

attenuation data collected simultaneously (described below).  This correction involved 

the use of a second-order polynomial function of the beam attenuation coefficient. 

After calculation of the sigma-corrected backscattering coefficient, the profile 

data of bb(z, ) were inspected for possible large anomalies and the questionable data 

were rejected.  Then, the data were binned to 1 m intervals, and the up-casts and 

down-casts were averaged to create a single resultant vertical profile for the station.  

The near-surface data (at depths less than ~5 m) were usually discarded because of 

significant signal fluctuations at these shallow depths.  Subsurface values of the 

backscattering coefficient (from below ~5 m) were extrapolated upwards to the 

surface to obtain valid data within the near-surface layer.  For any depth z, our final 

bb(λ) values at Hydroscat-6 wavebands were used to fit a power function, bb(λ)   λ-γ , 

where  is the spectral slope parameter of backscattering coefficient. 

There are two main reasons for performing the power function fit.  First, as the 

Hydroscat-6 wavebands do not necessarily coincide with the SeaWiFS wavebands, 
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this fit provides the bb(λ) values at wavelengths corresponding to nominal center 

wavelengths of SeaWiFS bands.  Second, the use of the spectral fit offers an 

advantage of smoothing out potential positive and negative uncertainties in the 

measured data at individual spectral channels.  These uncertainties may be associated 

with positive and negative biases in manufacturer's calibration at different spectral 

channels or dissimilar temporal drifts in the spectral calibration factors between the 

time of pre- or post-cruise calibration and actual measurements during the cruise.  In 

addition, a power function may also smooth out some environmental effects such as 

the presence of relatively rare large particles that may occasionally affect one of the 

spectral channels, and not other channels, at a particular depth during the cast.  We 

also note that the use of power function fit is reasonable under typical oceanic 

conditions because bb(λ) is expected to be generally a smooth function of   This is 

because in typical oceanic situations in the absence of intense phytoplankton blooms, 

bbw() which itself is a power function of  makes large or dominant contribution to 

bb(). 

The spectral beam attenuation coefficient of suspended particles, cp(z,), 

required for "sigma" correction of backscattering, was measured at two wavelengths 

(488 and 660 nm) with C-Star beam transmissometers (WetLabs, Inc) mounted either 

on the same optical package as the Hydroscat-6 or on the CTD/rosette system.  The 

pure water calibration of beam attenuation data was made using the measurement of 

the clearest water encountered on a given cruise at depths of 250-300 m.  The profiles 

of cp(z, ) were processed with a similar method as the backscattering data for binning 

and determining the surface values.  Also, for each depth z, the final cp(λ) values at C-
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Star wavebands were used to fit a power function, cp(λ)   λ-, where  is the spectral 

slope parameter of particulate beam attenuation.  From this function, the cp(λ) values 

at wavelengths required for "sigma" correction of Hydroscat-6 data were obtained.  

Accurate measurements of beam attenuation at as little as two wavelengths were 

shown to provide a good basis for determinations at other wavelengths [Boss et al., 

2001].  This approach was deemed satisfactory for "sigma" correction as the 

correction introduces only a small change (a maximum of a few percent) in the 

backscattering estimates for the examined waters. 

The spectral particulate absorption coefficient, ap(), was measured with a 

filter-pad technique using a Varian Cary 1E, Varian Cary 100, or Perkin Elmer 

Lambda 18 spectrophotometer [Mitchell et al., 2002].  Discrete water samples were 

collected from CTD/rosette casts and filtered onto the 25-mm GF/F filters.  The 

spectrophotometric measurements on the filters were made in the transmittance mode 

on freshly collected samples on board the ship.  The data were acquired in the spectral 

range from 300 to 800 nm with a 1 nm interval and the correction for the pathlength 

amplification factor was made following Mitchell [1990].  After the ap() 

measurement, the GF/F filter was treated with 100% methanol to remove 

phytoplankton pigments, and the spectrophotometric measurements were then taken 

on the "bleached" filters to determine the spectral absorption coefficient of non-algal 

(detrital) particles, ad() [Kishino et al., 1985].  Assuming that the total particulate 

absorption, ap(), is the sum of the detrital absorption, ad(), and phytoplankton 

absorption, aph(), the latter was calculated as aph() = ap() - ad(). 
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Samples of seawater were also filtered through 0.2 m Nuclepore filters.  The 

filtrate was collected in acid-washed combusted glass bottles for analysis of the 

spectral absorption coefficient of soluble matter, as(), also referred in the literature to 

as aCDOM() where CDOM stands for the colored dissolved organic matter.  The term 

"soluble" accounts for the fact that dissolved inorganic constituents, in addition to 

dissolved organic matter, may contribute considerably to absorption in the far 

ultraviolet [Shifrin, 1988].  The determinations of as() were made following the 

procedure described in Mitchell et al. [2002].  Briefly, the as() spectra between 250 

and 750 nm were measured on board the ship with a spectrophotometer on freshly 

prepared samples of seawater filtrate (Nuclepore 0.2 m pore size) in 10 cm quartz 

cuvettes.  The as() spectra were corrected for an offset measured at 650 (±5) nm, 

which can be attributed mainly to scattering effects.  The exponential fit was made to 

these as() spectra and a blank spectrum was subtracted from the exponential fit to 

achieve the final as() values.  The blank spectrum was obtained from a measurement 

of standard purified deionized water (Milli-Q). 

In this study we use only near-surface estimates of bb(λ), bbp(λ), ap(), aph(), 

ad(), as(), as well as the total absorption coefficient, a() = aw() +ap() +as(), for 

the blue and green spectral wavebands.  The pure water absorption values, aw(), were 

taken from Pope and Fry [1997]. 
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1.2.5.  Satellite Data and Methodology for Algorithm Validation 

To analyze the performance of the POC algorithms, the in situ data of 

reflectance and POC were compared to the closest satellite “match-ups”.  This match-

up, as defined in more detail below, represents the closest spatial and temporal satellite 

and in situ data pair.  For this analysis the Level 2 Merged Local Area Coverage 

(MLAC) and Global Area Coverage (GAC) standard SeaWiFS data products of 

normalized-water leaving radiance, nLw(), were obtained from the NASA Ocean 

Color Web (http://oceancolor.gsfc.nasa.gov /ftp.html) for the entire SeaWiFS mission 

to date (September 1997 through September 2009).  These data result from SeaWiFS 

Reprocessing 5.2.  Because our POC algorithm requires Rrs() as input, the values of 

satellite estimates of nLw() were first converted to Rrs().  This conversion was made 

using the relationship Rrs() = nLw() / Fo(), where Fo() is the extraterrestrial solar 

constant.  The values of Fo() were taken from Thuillier et al. [2003].  After 

determining the satellite estimates of Rrs(), the band-ratio and two-step single 

wavelength POC algorithms were applied to produce the satellite estimate for the POC 

match-up comparisons. 

A match-up is defined as the closest spatial and temporal MLAC satellite pixel 

within a certain threshold to a given in situ measurement.  Specifically, for each in situ 

measurement which occurs at a surveyed latitude and longitude location on a given 

date (see previous discussion on station criteria) the closest, non-flagged, satellite 

pixel was selected.  If this pixel met the temporal constraint of +/- 6 hours and spatial 

constraint of +/- 4 km with respect to the time and location of in situ station, it was 
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considered a successful match-up.  The surrounding m x n pixels were then selected to 

form a statistical representation of the satellite data.  We evaluated 3 x 3, 5 x 5, and 9 

x 9 boxes of pixels.  It was determined that the 3x3 pixel ensemble represented the 

best aggregate selection.  In our analysis, the satellite value for the match-up is then 

the average of all non-flagged pixels within the 3 x 3 collection.  In addition to the +/- 

6-hour temporal window, we also examined more restrictive temporal criteria.  

Whereas the use of the +/- 3-hour temporal window reduced the number of match-up 

data points, the resultant data patterns of match-up comparisons were not significantly 

different from those produced by the analysis with the +/- 6-hour temporal window.  

In our final dataset for match-up comparisons, the average time difference between the 

satellite and in situ measurements is in the range 2.45 - 2.50 hours, depending on 

whether we compare reflectances or POC.  The standard deviation for this time 

difference is 1.54 - 1.61 hours, so the majority of our match-ups actually fall within 

+/- 4-hour window.  We also note that our final match-up dataset includes data 

corresponding to the satellite viewing angle less than 58o and the solar zenith angle 

less than 65o.  Although not identical, our match-up selection criteria are similar to 

those used in a recent study of global dataset by Bailey and Werdell [2006]. 

In addition to using the MLAC data for the match-ups, GAC data was also 

investigated.  Because the resultant MLAC match-up was the average of the 3x3 

pixels it can be argued that the GAC best pixel match-up could also be used because it 

represents a low-pass filtered version of the MLAC data with the filter being every 4th 

pixel.  The benefit of using the GAC data is the true global availability of these data.  

For example, we found that the relationship between GAC best pixel and the MLAC 
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3x3 pixel average for the band-ratio Rrs(443)/Rrs (555) is very good; a linear regression 

has a slope of 0.99 and the correlation coefficient R = 0.98.  This result was obtained 

for 42 observations, which correspond to locations and times of our in situ-satellite 

reflectance match-ups, and suggests that the GAC data could be considered as 

adequate as the MLAC data for the match-up validation analysis.  The results of 

match-up analysis presented in this paper in section 1.3.3 are, however, based on the 

standard approach utilizing MLAC data. 

 

1.3.  Results and Discussion 

1.3.1.  Reflectance Band-ratio Algorithms for POC 

Our basic approach for developing POC algorithms utilizes empirical 

relationships between surface POC concentration and the blue-to-green (BG) band-

ratio of remote-sensing reflectance, Rrs(B)/Rrs(555).  The rationale for such 

relationships is similar to that used in the estimation of chlorophyll-a concentration 

from reflectance band-ratio algorithms.  Variations in the BG reflectance ratio are 

expected to be driven largely by variations in the green-to-blue ratio of the absorption 

coefficient of seawater, which are in turn associated with variations in the particulate 

pool comprising all kinds of POC-containing particles, including phytoplankton, 

heterotrophic organisms, and organic detritus.  All these particle types show higher 

absorption in the blue than in the green spectral region, so their effect on the BG 

reflectance ratio is qualitatively similar.  The variations in the BG ratio as a function 

of POC concentration are expected to be fairly regular in most open ocean waters 

where organic matter is the dominant optical component of seawater and the different 
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types of organic particles exhibit a significant degree of covariation.  Example 

illustration of characteristic variations in remote-sensing reflectance, Rrs(), associated 

with differences in POC concentration is presented in Figure 1.2 using data from the 

Southern Ocean.  The variation in Rrs() with increasing POC is much larger in the 

blue spectral region than in the green. 

Figure 1.3 shows several versions of band-ratio algorithm obtained with our 

field data.  We examined the following band ratios: Rrs(443)/Rrs(555), 

Rrs(490)/Rrs(555), Rrs(510)/Rrs(555), and the maximum band ratio, MBR, that 

represents the largest of the three ratios considered.  The ratio Rrs(443)/Rrs(555) was 

most frequently the largest (55%) and Rrs(510)/Rrs(555) was least frequently the 

largest (15%) amongst the three ratios considered.  We tested two equations for 

relating POC with reflectance ratio; the power function and a function that has the 

form of the current Ocean Chlorophyll 4 (OC4) algorithm [O'Reilly et al., 2000].  

These equations along with the best fit parameters and error statistics are given in 

Table 1.1.  The formulas for calculating the error statistics are given in Table 1.2.  We 

note that all regression analyses used in the development of POC algorithms in this 

study (Figures 1.3 and 1.7, Tables 1.1, 1.3, and 1.4) are based on the ordinary least 

squares Model I regression technique, which is suitable for the analysis of 

experimental data whose aim is to provide predictive relationships between two 

variables [Sokal and Rohlf, 1995].  We also note that the wavelengths of 443, 490, 

510, and 555 nm used in our study are consistent with the wavebands of the satellite 

SeaWiFS sensor [McClain et al., 2004], and these bands are also currently used in the 
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NASA algorithm for estimating chlorophyll-a concentration in the global ocean 

[O’Reilly et al., 1998; 2000]. 

Comparison of the error statistics in Table 1.1 suggests that the performance of 

the examined band-ratio algorithms will be quite similar.  Some differences can be 

expected, however.  The mean normalized bias, MNB, which characterizes the 

systematic error of the regression fit was found to be consistently lower for the simple 

power function fits compared with the OC4-like function fits.  Example differences 

are shown in Table 1.1 for the algorithm based on MBR.  The differences between the 

fits obtained with these two functions, albeit generally small, are also seen in Figure 

1.3.  Overall, for our data set the simple power functions of POC versus 

Rrs(443)/Rrs(555) or POC vs. Rrs(490)/Rrs(555) were found to have slightly better error 

statistics than the other functions tested.  Our analysis suggests that the power function 

POC = 189.29 [Rrs(443)/Rrs(555)]-0.870 is presently the best choice for the applications 

in the Southern Ocean.  For our data set consisting of 85 measurements, this algorithm 

is characterized by MNB of about 3% and the normalized root mean square error, 

NRMS, of about 27%.  This algorithm has been applied in our recent study of seasonal 

and interannual variability in POC within the Southern Ocean on the basis of a 10-year 

time series observations with SeaWiFS [Allison et al., 2010]. 

Our estimates of the best fit power functions show some differences when 

compared with similar analysis of POC and reflectance measurements in other oceanic 

regions [Stramska and Stramski, 2005; Stramski et al., 2008].  For example, the power 

function POC = 203.2 [Rrs(443)/Rrs(555)]-1.034 was obtained with the field data from 

the tropical and subtropical waters of the eastern South Pacific and eastern Atlantic 
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Oceans [Stramski et al., 2008].  The difference between the fitted parameters for this 

low latitude data set and the present Southern Ocean data set is large enough to 

suggest that some variability in the band-ratio algorithms can exist within the open 

waters of the global ocean.  In particular, the 95% confidence intervals for the slope 

parameters for the two compared power function fits do not overlap.  Whereas the 

question of the extent to which the regional differences in the open ocean are 

significant requires further studies, the greatest challenges are expected in coastal 

environments which generally are optically more complex than open ocean waters.  In 

this study, we restricted the algorithm development to the use of surface POC and 

optical data from open water stations where it is reasonable to assume that optical 

properties and suspended particles are dominated by organic matter.  Data from near-

coastal stations visited on the AMLR cruises were excluded from our analysis due to 

potentially large input of terrigenous material.  We also note that some data included 

in our analysis were collected during an intense bloom of Phaeocystis antarctica in the 

Ross Sea where POC was significantly higher than typical open water concentrations 

(see the NBP97 data points for POC > 800 mg m-3 in Figure 1.3). 

The comprehensive suite of optical measurements taken on our cruises in the 

Southern Ocean allows us to provide insight on how the inherent optical properties 

(IOPs) of seawater drive the variations in the BG ratio of reflectance.  Specifically, we 

analyze how the variations in different IOP components associated with particulate 

and soluble water constituents affect the variations in the BG reflectance ratio, which 

is ultimately used as a predictor of POC from remote-sensing algorithms.  It is 

noteworthy that although a general relationship between the ocean reflectance and the 
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absorption and backscattering coefficients has long been recognized and the 

reflectance band-ratio algorithms have long been used in ocean color applications, the 

analysis of simultaneously collected field data of reflectance and the backscattering 

and absorption coefficients of particulate and soluble components, has been 

exceptionally rare within the context of such algorithms [Reynolds et al., 2001].  This 

type of analysis is significant for advancing quantitative understanding of the effects 

of the various component IOPs as the drivers of the main trend as well as the sources 

of common scatter of data points in the empirical band-ratio algorithms. 

Radiative transfer modeling has shown that Rrs() is approximately 

proportional to the backscattering coefficient of seawater, bb(), and inversely 

proportional to the absorption coefficient of seawater, a() [e.g., Gordon et al., 1975; 

Gordon and Morel, 1983; Morel and Prieur, 1977]: 
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where the factor of proportionality in Equation 1.1 is assumed to be the same for B 

and 555 nm.  This is a reasonable assumption for the purpose of our discussion.  Using 

the additive property of IOPs we can partition the total absorption and backscattering 

coefficients of seawater into contributions associated with a few major classes of 
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water constituents, which are amenable to measurement or derivation from 

measurement: 
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where the subscript w denotes pure seawater, s the soluble matter, ph the 

phytoplankton, and d the non-phytoplankton particulate matter (often referred to as 

detrital matter that generally includes contributions from organic detritus, minerogenic 

particles, and heterotrophic organisms).  The total suspended particulate matter (p) is 

the sum of phytoplankton and detrital components (ph+d).  Substituting this 

partitioning of IOPs into Equation 1.2 yields: 
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Having introduced these relationships, we will first look at the dependence of 

the reflectance band ratio on the total IOP coefficients using our field data from the 

Southern Ocean (Figure 1.4).  For illustrative purposes, we choose B = 443 nm but 

the consideration of other blue wavelengths would yield qualitatively similar results.  

As expected from Equation 1.2, the product [bb(443)/bb(555)] [a(555)/a(443)] is a 

good determinant of Rrs(443)/Rrs(555).  This is readily apparent as the data points in 

Figure 1.4a generally fall along the 1:1 line.  Some scatter in the data around this line 

is understandable as, in addition to measurement uncertainties, Equation 1.1 is not an 

exact relationship with a constant factor of proportionality.  Figure 1.4a supports the 

notion that the POC algorithm based on the relationship between POC and 



29 

 

Rrs(443)/Rrs(555) is founded on the relationship between POC and the IOP ratio, 

[bb(443)/bb(555)] [a(555)/a(443). 

Figure 1.4 also displays the band ratio Rrs(443)/Rrs(555) vs. bb(443)/bb(555) 

(Figure 1.4b) and Rrs(443)/Rrs(555) vs. a(555)/a(490) (Figure 1.4c).  These data show 

that whereas Rrs(443)/Rrs(555) varies 40-fold (from about 0.2 to over 7), the 

backscattering band ratio bb(443)/bb(555) has weak variability, ~1.8-fold in the range 

from 1.25 to 2.25 (Figure 1.4b).  In contrast, we see a relatively large >10-fold 

variation from about 0.3 to 3.3 in the absorption band ratio a(555)/a(443) (Figure 

1.4c).  Thus the variation in the green-to-blue absorption ratio is the primary source 

for the variation in the blue-to-green band ratio of ocean reflectance in our data set.  

This result indicates that the ability to estimate POC from the blue-to-green band ratio 

of reflectance derives primarily from the relationship between POC and the green-to-

blue ratio of total absorption coefficient. 

Given the importance of the absorption coefficient, it is instructive to analyze 

the roles of particulate and soluble components of absorption.  This analysis can be 

done by considering the relationships between Rrs(443)/Rrs(555) and the absorption 

band ratio formed by either the particulate or soluble components present in seawater 

(Figure 1.5).  This figure indicates that suspended particulate matter is a very 

important determinant of the relationship between Rrs(443)/Rrs(555) and 

a(555)/a(443), and hence a very important factor underlying the ability to estimate 

POC from Rrs(443)/Rrs(555).  The relationship Rrs(443)/Rrs(555) vs. 

aw+p(555)/aw+p(443) (Figure 1.5a) is good and although it is somewhat steeper than the 

1:1 line, there is a good resemblance to the relationship Rrs(443)/Rrs(555) vs. 
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a(555)/a(443).  For brevity, we here use the symbol aw+p to indicate the sum of the 

absorption coefficients of pure water and particles, aw + ap.  Similarly abbreviated 

symbols are used for other absorption components. 

Within the suspended particulate matter, it is the phytoplankton component 

that appears to be the stronger determinant than detritus of the relationship 

Rrs(443)/Rrs(555) vs. a(555)/a(443) in our data set.  The relationship Rrs(443)/Rrs(555) 

vs. aw+ph(555)/aw+ph(443) is good and it is characterized by somewhat steeper slope 

than the 1:1 line (Figure 1.5b).  In contrast, the relationship involving the detrital 

absorption component, Rrs(443)/Rrs(555) vs. aw+d(555)/aw+d(443), shows larger scatter 

in the data points and generally smaller slope (Figure 1.5c).  The result that the band 

ratio aw+ph(555)/aw+ph(443) is a major IOP component driving the variation in 

Rrs(443)/Rrs(555), is consistent with the observation that phytoplankton dominate the 

total particulate absorption in our data set across the entire range of measured POC 

(Figure 1.6). 

The analysis of the role of absorption by soluble matter (Figure 1.5d) shows 

the largest scatter in data points and the lowest correlation amongst the plots presented 

in Figure 1.5.  This indicates that the variability in the band ratio of soluble absorption 

can be an important source of "noise" in the relationship between the reflectance band 

ratio and IOPs, and hence in the POC band-ratio algorithm.  Nevertheless, the 

comparison of Figures 1.4c and 1.5a shows that regardless of whether the contribution 

of soluble absorption is included or neglected, the degree of correlation between the 

reflectance band ratio and absorption band ratio remains similar. 
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1.3.2.  Single-Wavelength Two-step Algorithm for POC 

In addition to band-ratio algorithms, we examined a single-wavelength two-

step algorithm for estimating POC from ocean reflectance.  This algorithm uses a 

single waveband in the green spectral region and is based on the approach proposed 

originally by Stramski et al. [1999].  The present version of the algorithm consists of 

two empirical relationships, Rrs(555) vs. bb(555) and POC vs. bbp(555) (Figure 1.7).  

When applied to remotely-sensed data from satellite observations, the algorithm 

operates in such a way that bb(555) is first calculated from satellite-derived Rrs(555) 

and then POC is calculated from bbp(555) = bb(555) -bbw(555). 

One reason for exploring the two step algorithms is based on fundamental 

concepts relating the optical properties of the ocean to constituents of seawater.  

Whereas the IOPs of seawater depend solely on seawater constituents, the ocean 

reflectance which is an apparent optical property (AOP), depends on both the IOPs 

and the ambient light field.  The two-step algorithm involves separate relationships, 

first to link the IOP and water constituent concentration (i.e., bb and POC in our 

study), and second to link AOP and IOP (i.e., Rrs and bb in our study).  The linkage 

between Rrs and bb has justification in radiative transfer theory.  Thus, each step of the 

two-step algorithm has an improved mechanistic basis compared with a direct 

relationship between reflectance and water constituent concentration.  Another 

important reason for why we are interested in empirical approaches for POC 

estimation other than those based on the BG reflectance band ratio is associated with 

traditional estimation of chlorophyll-a concentration from the band-ratio algorithms.  

Naturally, if the same reflectance band ratios are used as input to both POC and 
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chlorophyll-a algorithms, then both estimated variables are unrealistically forced to 

always covary.  In contrast, other approaches to POC algorithms, such as the single-

wavelength two-step POC algorithm examined in this study, have the potential for 

decoupling the estimation of POC from the band ratio based estimation of  

chlorophyll-a. 

The relationship which provides a means for estimating bb(555) from Rrs(555) 

shows strong correlation between these variables for our Southern Ocean data set 

(Figure 1.7a).  However, a few data points that were collected during an intense bloom 

of Phaeocystis antarctica in the Ross Sea (NBP97 cruise) show significant departure 

from the trend line.  During this bloom, the concentrations of POC exceeded 800 mg 

m-3 and chlorophyll-a was as high as 12.5 mg m-3.  These bloom data were excluded 

from the calculation of the final regression equation for bb(555) vs. Rrs(555). 

The data of POC vs. bbp(555), representing the second relationship of the two-

step algorithm, show significant scatter (Figure 1.7b).  This result is consistent with 

the expectation that the POC-specific backscattering coefficient in the ocean can 

exhibit considerable variation due to variability in composition and size distribution of 

particulate matter [Stramski et al., 2004].  We note, for example, that the small-sized 

detrital particles were likely less abundant relative to larger particles and 

phytoplankton cells in the Ross Sea compared with the PFZ region [Reynolds et al., 

2001].  This could be a main reason for the fact that the data from the Ross Sea 

(NBP97 cruise) show consistently lower values of bbp(555) at any given POC, if 

compared to data from other regions of the Southern Ocean examined in this study. 
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Given these differences, we have tested the relationship POC vs. bbp(555) 

separately for the data sets from different cruises.  These tests showed that whereas the 

Ross Sea regression (NBP97) is significantly different, the other regression lines from 

the PFZ in the Pacific sector (REV98) and from the region off Antarctic Peninsula 

(AMLR04, LMG04, and AMLR06) are similar to one another.  Therefore, for 

determining the final equations that link POC to bbp(555), we determined two 

regressions; one based on the combined data set from REV98, AMLR04, LMG04, and 

AMLR06 (solid line in Figure 1.7b), and the other based on the NBP97 data (dashed 

line in Figure 1.7b).  This clear differentiation between the NBP97 and other cruises in 

Figure 1.7b supports a notion that regional/seasonal approaches are often required for 

establishing acceptable bio-optical relationships.  Such approaches are based on the 

assumption that characteristic parameters or relationships can be quasi-constant on 

regional and seasonal scales [Platt and Sathyendranath, 1988; Mueller and Lange, 

1989]. 

The equations of the two-step algorithms, the best fit parameters, and error 

statistics are provided in Table 1.3.  The statistical parameters of step 1 and step 2 

equations have reasonably good values.  However, the aggregate error statistics 

calculated from the composite formula of the two-step algorithm caution against the 

use of this algorithm (Table 1.4).  The aggregate errors are significantly larger 

compared with those for the step 1 and step 2 equations considered separately.  For 

example, MNB is about 11% and NRMS over 40% for the composite two-step 

algorithm based on the data collected on all cruises except NBP97.  For the NBP97 

data the errors are higher. 
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We also calculated the differences between the predicted POC from the 

reflectance band-ratio algorithm and the predicted POC from the composite 

formulation of the two-step algorithm.  In these calculations, we used the field data of 

reflectance obtained at 65 stations excluding the Ross Sea.  The Rrs(443)/Rrs(555) ratio 

was used as input to the band-ratio algorithm (see Table 1.1) and Rrs(555) was used as 

input to the composite two-step algorithm in which the coefficients D1 and D2 were 

obtained with data from all cruises except for NBP97 (see Table 1.3).  The POC 

concentrations predicted from the two-step algorithm were found to be higher, on 

average, by nearly 9% than those predicted from the band-ratio algorithm.  This result 

is consistent with higher values of MNB for the two-step algorithm compared with the 

band-ratio algorithms.  The NRMS and RMSE errors are also higher for the two-step 

algorithm.  In addition, whereas we observed regional differentiation in the step 2 

relationship of the single-wavelength algorithm, the band-ratio algorithms are 

expected to be less susceptible to regional differentiation. 

 

1.3.3.  Validation of POC algorithms 

Figure 1.8 compares the match-up observations of remote-sensing reflectances, 

Rrs(443) and Rrs(555), as well as the band ratio Rrs(443)/Rrs(555), obtained from in situ 

and satellite measurements using the match-up criteria described in section 1.2.5.  The 

error parameters and the associated formulas used in the calculations of the errors for 

these match-up data sets are listed in Table 1.5.  These error parameters are the same 

or similar to those presented recently in the validation analysis of SeaWiFS data 

products of water-leaving radiances and chlorophyll a concentration by Bailey and 
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Werdell [2006].  In particular, the median of the ratio of satellite-derived value to in 

situ value for a given variable, MR, provides a measure of overall bias in satellite data 

relative to in situ data.  The semi-interquartile range, SIQR, calculated for the satellite 

to in situ ratio indicates the spread of these data.  The overall degree of agreement 

between the satellite and in situ measurements is provided by the median value of the 

absolute percent difference, MPD, between the satellite and in situ data, and also by 

the root mean square deviation, RMSD, between these data.  The correlation 

coefficient, R, and the slope of the linear regression of satellite versus in situ data are 

also listed in Table 1.5, which provide additional information on how well the satellite 

retrievals agree with the in situ measurements over their dynamic range.  In this 

analysis we used the Model II regression method, in which the functional relationship 

is estimated by the slope of the major (principal) axis of the bivariate dataset.  This 

method is suitable for estimating the functional relationship between the X and Y 

variables when both variables are subject to measurement error, are expressed in the 

same units of measurement, and there is no purpose to derive a predictive relationship 

[Sokal and Rohlf, 1995]. 

The satellite-derived reflectance Rrs(443) tends to overestimate the in situ-

derived values with a median bias of +6.7% (MR = 1.067).  The match-up data set for 

Rrs(443) shows a satisfactory average trend but the scatter in the data points is large 

and the correlation is moderate (Figure 1.8a).  For Rrs(555), most of in situ data fall 

within a relatively small range of values, which is not well matched by satellite data 

(Figure 1.8b).  Whereas the MR at 555 nm is slightly lower than unity indicating 

minimal median bias, most of other statistical parameters indicate poor comparisons at 
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this waveband.  The blue-to-green band ratio Rrs(443)/Rrs(555) shows, however, 

relatively good match-up comparisons (Figure 1.8c).  The median bias is +6.5% and 

the correlation is quite high with R nearly 0.8.  The slope of linear regression is 10% 

higher than unity.  Although there is a significant spread of data, these match-up 

results for Rrs(443)/Rrs(555) are encouraging for the application of the band-ratio 

algorithm for estimating POC. 

The analysis of match-up data from various oceanic regions by Bailey and 

Werdell [2006] showed a bias toward underestimation of normalized water-leaving 

radiances.  For example, for their global data set consisting of 629 match-up data 

points at 443 nm and 555 nm, the median bias was -8.5%.  Our much smaller data set 

from the Southern Ocean does not show such trend toward a negative bias.  However, 

the errors characterizing the spread of data (SIQR) and the overall agreement between 

the satellite and in situ match-ups (MPD) in our data set are higher compared with the 

global data set analyzed by Bailey and Werdell [2006].  The differences are most 

significant at the 555 nm waveband.  The previous global and present Southern Ocean 

match-up comparisons indicate that the primary data products derived from satellite 

ocean color measurements, the normalized water-leaving radiances or remote-sensing 

reflectances, are typically within 10% to over 20% of the coincident in situ 

determinations.  The correct interpretation of these discrepancies must account not 

only for the uncertainties in the characterization of satellite instrument that measures 

top-of-atmosphere (TOA) radiances [Barnes et al., 1999; Hooker and McClain, 2000] 

and atmospheric correction algorithm that estimates the water-leaving radiances from 

the TOA radiances [Gordon, 1997; Antoine and Morel, 1999], but also for the 
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uncertainty in the in situ radiometric measurements, which can play a significant role 

in these match-up comparisons [Hooker and Maritorena, 2000]. 

Comparisons of satellite-derived POC and in situ POC determinations are 

shown in Figure 1.9 for the POC band-ratio algorithm utilizing Rrs(443)/Rrs(555) as 

input (Figure 1.9a) and for the single-wavelength two-step algorithm which utilizes 

Rrs(555) as input (Figure 1.9b).  The median bias of satellite POC derived from the 

band-ratio algorithm is about +15% and the MPD error is 32% (Table 1.5).  There is a 

reasonable trend and correlation between the satellite-derived and in situ POC values 

over their dynamic range.  The R value is 0.6 and the slope of the linear regression is 

about 1.1, the latter being about the same as the slope for the band ratio 

Rrs(443)/Rrs(555).  While interpreting these comparisons, it must be stressed, however, 

that the agreement between the satellite-derived POC and in situ POC data cannot be 

expected to exceed the accuracy of the empirical relationships that form the “in-water” 

POC algorithm itself.  For example, whereas the RMSE for our POC band-ratio 

algorithm shown in Figure 1.3a is about 34 mg m-3 (see Table 1.1), the RMSD for the 

match-up data shown in Figure 1.9a is ~45 mg m-3 (see Table 1.5). 

The match-up POC data for the band-ratio algorithm (Figure 1.9a) show 

considerably better agreement than those for the single-wavelength two-step algorithm 

(Figure 1.9b).  This is explained largely by results shown in Figure 1.8 where the 

match-up comparisons for Rrs(443)/Rrs(555) are better than those for Rrs(555).  In 

addition, the error parameters for the single-wavelength algorithm are higher 

compared with the band-ratio algorithm (see Tables 1.1, 1.3, and 1.4).  As a result, the 

match-ups for the single-wavelength algorithm show relatively poor agreement 
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associated primarily with large spread in data points (Figure 1.9c).  For example, the 

median bias is about +27%, MPD is 50%, and R is only ~0.2.  Although our match-up 

analysis does not provide a definite verification of the POC algorithms in the Southern 

Ocean, these results clearly favor the application of the band-ratio algorithm and 

caution against the use of the single-wavelength two-step algorithm at the present 

time. 

 

1.4.  Conclusions 

In this paper we have explored the empirical algorithms for estimating surface 

concentration of POC from remote-sensing reflectance in the Southern Ocean.  

Several algorithm formulations have been tested using field data collected during a 

number of cruises between 1997 and 2006.  The simple power function relating POC 

to the blue-to-green reflectance ratio, Rrs(443)/Rrs(555), promises the best performance 

among the algorithms tested.  The best fit regression function of the band-ratio 

algorithm based on 85 pairs of field data shows a small mean bias of about 3%, the 

normalized mean square error of 27%, and the determination coefficient of 0.93.  In 

practice of remote sensing applications, one has to recognize a compromise between 

acceptable margin of error in satellite data product and scientific benefits from use of 

satellite observations.  The accuracy of the proposed POC algorithm in open ocean 

waters is expected to be comparable to the accuracy of standard empirical chlorophyll-

a algorithms, which are also based on the blue-to-green band ratios of reflectance or 

normalized water-leaving radiance.  As the present study is focused on the Southern 

Ocean, the proposed POC algorithm should be most suited to regional or basin-scale 
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applications within that part of the global ocean.  The benefits from the application of 

this algorithm to the study of seasonal and interannual variability of POC within the 

Southern Ocean have been demonstrated in Allison et al. [in press].  Regional 

differences in the algorithm parameterization are likely to occur as suggested by 

comparisons of the present Southern Ocean algorithms with similar algorithms 

developed recently with field data from lower latitudes within the eastern South 

Pacific and eastern Atlantic [Stramski et al., 2008].  Further studies with more data are 

needed to assess the significance of these differences. 

It is generally recognized that the best way to validate ocean color algorithms 

is to compare algorithm-derived satellite data product with in situ measurements made 

at the same time and location.  Typically the difficulty in validating the algorithms is 

caused by the low percentage of usable ship-based stations for such satellite vs. in situ 

match-up comparisons, especially in high latitude waters.  In addition, the results of 

match-up comparisons for data products such as POC are affected not only by 

imperfect performance of the POC algorithm itself, but also by other factors such as 

uncertainties in satellite sensor characterization and performance, atmospheric 

correction, and in situ measurements.  Despite these limitations, our initial validation 

results support the use of the Rrs(443)/Rrs(555) band-ratio algorithm as the primary 

algorithm for estimating POC from ocean color remote sensing in the Southern Ocean.  

The application of the single-wavelength two-step algorithm which utilizes Rrs(555) as 

input, is not recommended at the present time.  However, further efforts to establish 

POC algorithms that do not use the blue-to-green band ratio are desirable, especially 
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in view of potential benefits from decoupling the POC data product and standard 

chlorophyll-a data product derived from empirical band-ratio algorithms. 

Chapter 1, in full, has been submitted for publication as it may appear in 

Journal of Geophysical Research, Oceans 2010, Allison, David B., Stramski, Dariusz, 

Mitchell, B. Greg.  The dissertation author was the primary investigator and author of 

this paper. 
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1.6.  Figures 

 
 

 
 
 

Figure 1.1.  Three main areas within the Southern Ocean (indicated by boxes) where 
the optical and POC measurements used in the development and validation of POC 
algorithms were made.  The AMLR/LMG, REV, and NBP symbols next to the boxes 
refer to cruises in these areas (see text for details). 
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Figure 1.2.  Example spectra of remote-sensing reflectance, Rrs(), measured on 
different cruises in the Southern Ocean at stations with different levels of surface 
particulate organic carbon (POC).  The name of the cruise/station and the POC 
concentrations are indicated.  The open circles indicate discrete wavebands at which 
the radiometric measurements were taken. 
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Figure 1.3.  Relationships between surface concentration of particulate organic 
carbon, POC, and the blue-to-green band ratio of remote-sensing reflectance, 
Rrs(B)/Rrs(555).  The light wavelength B is 443 nm (panel a), 490 nm (b), and 510 
nm (c).  MBR (panel d) is the maximum band ratio which refers to the maximum 
value of the three band ratios considered.  The data points from several cruises are 
shown by different symbols as indicated in panel (a).  The power function fits to all 
data (solid black lines) and the "OC4-like" function fits (solid grey lines) are also 
shown (see Table 1.1 for regression coefficients and error statistics). 
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Figure 1.4.  Relationships for the blue-to-green reflectance ratio, Rrs(443)/Rrs(555) 
versus (a) the product of the backscattering ratio and the absorption ratio, 
[bb(443)/bb(555)] [a(555)/a(443)], (b) the backscattering ratio, bb(443)/bb(555), and (c) 
the absorption ratio, a(555)/a(443).  The data obtained in surface waters on different 
cruises and the 1:1 line are shown. 
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Figure 1.5.  Relationships for the blue-to-green reflectance ratio, Rrs(443)/Rrs(555) 
versus (a) the band ratio of absorption due to pure water and total particulate matter, 
[aw(555) + ap(555)]/[aw(443) + ap(443)], (b) the band ratio of absorption due to pure 
water and phytoplankton, [aw(555) + aph(555)]/[aw(443) + aph(443)], (c) the band ratio 
of absorption due to pure water and non-phytoplankton particles, [aw(555) + 
ad(555)]/[aw(443) + ad(443)], and (d)  the band ratio of absorption due to pure water 
and soluble matter, [aw(555) + as(555)]/[aw(443) + as(443)].  The data obtained in 
surface waters on different cruises and the 1:1 line are shown. 
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Figure 1.6.  The contribution of phytoplankton absorption to total particulate 
absorption at a light wavelength of (a) 443 nm and (b) 555 nm, across the entire range 
of measured POC.  The data obtained in surface waters on different cruises are shown. 
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Figure 1.7.  (a)  Relationship between surface values of the backscattering coefficient, 
bb(555), and remote-sensing reflectance, Rrs(555).  (b)  Relationship between surface 
concentration of particulate organic carbon, POC, and particulate backscattering 
coefficient, bbp(555).  The data from different cruises and the best fit regression lines 
are shown.  Panel (a) shows the linear fit (solid line).  Two outlying data points (solid 
circles) collected on the NBP97 cruise in the Ross Sea during intense bloom of 
Phaeocystis antarctica were excluded from the regression analysis.  Panel (b) shows 
the power function fit for two data sets, one from all cruises combined with the 
exception of NBP97 (solid line) and the other from the NBP97 cruise only (dashed 
line) (see Table 1.3 for regression coefficients and error statistics). 
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Figure 1.8.  Scatter plots showing match-up comparisons of SeaWiFS-derived and in 
situ data for (a) remote-sensing reflectance Rrs at 443 nm, (b) remote sensing-
reflectance Rrs at 555 nm, and (c) band ratio of remote-sensing reflectance, 
Rrs(443)/Rrs(555).  The match-up data points from different cruises are indicated by 
different symbols with all AMLR cruises grouped together.  The 1:1 line is also 
shown. 
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Figure 1.9.  Scatter plots showing match-up comparisons of SeaWiFS-derived and in 
situ data of POC.  In panel (a) the satellite-derived POC was determined from the POC 
band-ratio algorithm, which utilizes satellite-derived Rrs(443)/Rrs(555) as input to the 
algorithm.  In panel (b) the satellite POC was determined from the single-wavelength 
two-step algorithm utilizing satellite-derived Rrs(555) as input.  The match-up data 
points from different cruises are indicated by different symbols with all AMLR cruises 
grouped together.  The 1:1 line is also shown. 
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1.7.  Tables 

 
Table 1.1.  Summary of fitted equations and error statistics for the band-ratio POC 
algorithms depicted in Figure 1.3.  Power functions POC = A XB  (where X is the blue-
to-green band ratio of remote-sensing reflectance, Rrs(λB)/Rrs(555) or MBR, POC is in 
mg m-3, and A and B are regression coefficients) were fitted by least squares linear 
regression analysis using log10-transformed data of POC and Rrs(λB)/Rrs(555) or MBR.  
The light wavelength λB is either 443, 490, or 510 nm and MBR is the maximum band 
ratio which refers to the maximum value of the three band ratios considered.  All 
regression coefficients and statistical parameters have been recalculated to represent 
the non-transformed data.  For comparison, the error statistics are also shown for the 

following function: 
4

105
3

104
2

1031021 )]([log)]([log)]([log)(log10POC MBRpMBRpMBRpMBRpp  , as such 
formulation is currently used in the Ocean Chlorophyll 4 (OC4) algorithm [see 
O'Reilly et al., 2000].  The coefficients of this fit were obtained by nonlinear 
regression.  R2 is the determination coefficient, RMSE the root mean square error, 
MNB the mean normalized bias, NRMS the normalized root mean square error, and N 
the number of observations (see Table 1.2 for statistical formulas). 
 

POC = A XB : 

X A B R2 
RMSE 

[mg m-3] 

MNB 

[%] 

NRMS 

[%] 
N 

Rrs(443)/Rrs(555) 189.29 -0.870 0.933 34.46 3.22 27.33 85 

Rrs(490)/Rrs(555) 216.54 -1.097 0.915 38.64 3.43 27.81 85 

Rrs(510)/Rrs(555) 232.20 -1.590 0.899 42.12 3.48 28.09 85 

MBR 231.68 -1.054 0.851 51.29 3.66 29.13 85 

 
4

105
3

104
2

1031021 )]([log)]([log)]([log)(log10POC MBRpMBRpMBRpMBRpp   where the fitted coefficients 
are p1 = 2.379, p2 = -1.264, p3 = 0.4669, p4 = 0.1569, and p5 = -0.4541: 

R2 
RMSE 

[mg m-3] 

MNB 

[%] 

NRMS 

[%] 
N 

0.924  37.32 6.43 28.68 85 
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Table 1.2.  Equations used for calculating error statistics shown in Tables 1.1, 1.3, and 
1.4.  Pi is the variable predicted from the regression fit, for example the predicted POC 
concentration (in mg m-3), Oi the measured variable, for example the measured POC 

concentration (in mg m-3), O  the mean value of measured variable, R2 the 
determination coefficient, RMSE the root mean square error (for POC variable the 
units of this error are mg m-3), MNB the mean normalized bias (in percent), NRMS the 
normalized root mean square error (in percent), N the number of observations, and m 
the number of coefficients in the fit.  In the formula for R2, the numerator is the sum of 
squares due to error and the denominator is the sum of squares about the mean. 
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Table 1.3.  Summary of fitted equations and error statistics for the two-step POC 
algorithm depicted in Figure 1.7.  Least squares linear regression analysis was applied 
to calculate the coefficients C1, C2, D1, and D2.  For the step 2 relationship, the 
regression analysis was applied to log10-transformed data of POC and bbp(555).  The 
regression coefficients and statistical parameters have been recalculated to represent 
the non-transformed data.  R2 is the determination coefficient, RMSE the root mean 
square error, MNB the mean normalized bias, NRMS the normalized root mean square 
error, and N the number of observations (see Table 1.2 for statistical formulas).  
bb(555), bbp(555), and bbw(555) are in m-1, POC is in mg m-3, and Rrs(555) in sr-1. 

 
Step 1 equation:  bb(555) = C1 Rrs(555) + C2  

 C1 C2 R2 
RMSE 

[m-1] 

MNB 

[%] 

NRMS 

[%] 
N 

All cruises* 1.2871  -0.0003793 0.922 0.0002977 1.10 13.64 83 

*Except for two NBP97 stations with intense bloom of Phaeocystis and POC > 800 
mg m-3 (see text and Figure 1.7 for more details). 
 

Step 2 equation:  POC = D1 bbp(555)D
2  where bbp(555) = bb(555) - bbw(555) 

 D1 D2 R2 
RMSE 

[mg m-3] 

MNB 

[%] 

NRMS 

[%] 
N 

All cruises 
except for 

NBP97 

10970.5 0.7117 0.566 31.95 4.68 32.03 98 

NBP97 71992.6 0.8582 0.841 102.61 4.29 32.00 18 
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Table 1.4.  Summary of aggregate error statistics for the composite representation of 
the two-step POC algorithm depicted in Figure 1.7.  The composite formulation of the 
algorithm is:  POC = D1 [ C1 Rrs(555) + C2 - bbw(555) ]D

2.  The coefficients C1 and C2 
of the step 1 equation and the coefficients D1 and D2 of the step 2 equation are given 
in Table 1.3.  POC is in mg m-3, Rrs(555) in sr-1, bbw(555) in m-1, R2 is the 
determination coefficient, RMSE the root mean square error, MNB the mean 
normalized bias, NRMS the normalized root mean square error, and N the number of 
observations (see Table 1.3 for statistical formulas).  Fifty one observations include 
measurements taken at stations that were used in the development of step 1 equation, 
step 2 equation, or both equations, and where Rrs(555) and POC were measured.  
Because of variations in water temperature and salinity, the values of pure seawater 
backscattering, bbw(555), vary slightly in our data set around the average value of 
0.0008565 m-1 (standard deviation = 3.688 x 10-6 m-1, N = 159).  This average value 
was used in the calculations of error statistics for the composite representation of the 
two-step algorithm. 
 

 R2 
RMSE 

[mg m-3] 

MNB 

[%] 

NRMS 

[%] 
N 

All cruises 
except for 

NBP97 

0.450 

 

39.38 

 

11.44 

 

43.63 

 

51 

 

NBP97 0.488 82.01 19.78 51.17 18 
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Table 1.5.  Summary of error statistics for the match-up data sets of in situ and 
satellite-derived variables shown in Figures 1.8 and 1.9.  For the POC variable, the 
error statistics are shown for match-ups with satellite retrievals of POC derived from 
two algorithms; first, a band-ratio algorithm utilizing satellite-derived Rrs(443)/Rrs 
(555) (see section 1.3.1 for details), and second, a single-wavelength two-step 
algorithm utilizing satellite-derived Rrs(555) (see section 1.3.2 for details).  The value 
of R is the correlation coefficient between the satellite and in situ data and the slope 
represents a slope of the principal axis of Model II linear regression.  The MR is the 
median ratio of satellite to in situ values and SIQR is the semi-interquartile range for 
this ratio calculated as SIQR = (Q3 – Q1)/ 2, where Q1 is the 25th percentile and Q3 is 
the 75th percentile.  The MPD is the median absolute percent difference calculated as 
the median of the individual absolute percent differences PDi = 100 |Yi – Xi| / Xi where 
Yi is the satellite-derived value and the Xi is the in situ value.  The RMSD is the root 
mean square deviation between the satellite and in situ values calculated as RMSD = [ 
N-1 ∑(Yi – Xi)

2 ]1/2, with the summation from i = 1 to N.  N is the overall number of 
match-up observations and the values in parenthesis indicate the number of in situ 
observations for which satellite match-ups were identified.  Some in situ observations 
were matched with 2 or 3 satellite observations, which correspond to consecutive 
satellite overpasses over the area of in situ station and pass our match-up criteria (see 
section 1.2.5 for details). 

 

Variable R Slope MR SIQR 
MPD 
[%] 

RMSD N 

Rrs(443) 
0.636 1.155 1.067 0.195 20.65 0.00209 sr-1 49 (33) 

Rrs(555) 
0.016 1.381 0.982 0.258 22.48 0.00197 sr-1 48 (33) 

Rrs(443)/Rrs(555) 
0.776 1.106 1.065 0.208 19.89 0.863 48 (33) 

POC (band-ratio 
algorithm) 

0.604 1.097 1.147 0.256 32.43 44.7 mg m-3 72 (44) 

POC (two-step 
algorithm) 

0.193 2.502 1.277 0.635 50.08 140.7 mg m-3 68 (41) 
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Chapter 2.  Analysis of the Contributions of Particle Classes to the Bulk 

Particulate Organic Carbon, Chlorophyll-a, and Optical Properties of Seawater 

 

 

2.0.  Abstract 

 Previous work has suggested the ability to estimate the particulate organic 

carbon (POC) concentration in oceanic waters from the measured inherent and 

apparent ocean optical properties such as particulate backscattering coefficient (bbp), 

particulate beam attenuation coefficient (cp), and remote-sensing reflectance Rrs.  The 

relationships providing a basis for this estimation have been shown to exhibit 

significant variability generally related to spatial and temporal differences in bio-

optical properties of seawater within the world’s oceans.  A major source of this 

variability is thought to be the differing particulate assemblages, both in terms of 

composition and relative abundances.  There is limited information on the relationship 

between the major contributing classes of particles to bulk POC and those that 

dominate inherent and apparent ocean optical properties.  We have used a combination 

of Mie scattering modeling and data from previous laboratory experiments to calculate 

carbon and chlorophyll-a content as well as spectral absorption, scattering, and 

backscattering coefficients for 21 representative classes of particles, each of which 

plays a distinctly different role in marine optics and biochemistry.  These classes 

represent colloids, organic detritus, minerals, and various plankton species or groups 

ranging from heterotrophic bacteria and photoautotrophic cyanobacteria to nano- and 

microphytoplankton.  The particle classes cover a particle size range from 0.015 μm to 
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200 μm, which represents most optically significant particles in the open ocean.  By 

using a reductionist model of particle class properties, 38 bulk models of seawater 

were constructed and analyzed.  These bulk models differ from one another in terms of 

detailed composition of the various particle classes.   

 The utility of this approach in advancing an understanding of variability in the 

critical bio-optical relationships underlying POC algorithms is shown, for example, 

the relationship between POC and particulate backscattering and the relationship 

between POC and the blue-to-green band ratio of backscattering and absorption 

coefficients.  In contrast to traditional approaches in which seawater has been 

parameterized in an overly simplified manner using only a few broadly defined 

categories of water constituents, the reductionist approach presented here provides 

insights into the sources of bio-optical variability with unprecedented detail by 

quantifying the relative contributions of each of the particle classes to bulk POC, 

chlorophyll-a, and optical properties of seawater.  For example, our model simulations 

also suggest the general significance of colloidal particles and minerals to 

backscattering and the significant contributions to POC from the phytoplankton, 

detritus, bacteria, and colloid particle classes.   

 

2.1.  Introduction 

 The bio-optical relationships, including those forming a basis of ocean color 

remote sensing algorithms, are known to exhibit significant regional and temporal 

variability in the ocean.  This variability, and its limited understanding, have been a 

major obstacle for achieving consistently good performance of remote sensing 
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algorithms.  As an example, our previous work showed significant regional differences 

in the relationship between particulate organic carbon (POC) concentration and optical 

backscattering, one of the candidate relationships for remote sensing of POC [Stramski 

et al., 1999].  A major source of such variability is thought to be associated with 

variations in particulate assemblages, both in terms of composition and relative 

abundances of various particle classes.  Unfortunately, the present understanding of 

how different particle classes contribute to bulk concentrations of seawater 

constituents such as POC and to bulk ocean optical properties is very limited.  This is 

because the natural particulate assemblages have been traditionally described in terms 

of a few broadly defined classes such as phytoplankton and non-phytoplankton 

particles.  This traditional description is a great oversimplification of reality. 

 Here we apply a reductionist approach [Stramski et al., 2001; 2004] for 

advancing our understanding of bio-optical relationships in terms of the detailed 

composition of particulate assemblages.  Much of our attention is focused on the bio-

optical relationships involving POC and inherent optical properties of seawater.  We 

consider 21 classes of particles found in ocean waters which cover the size range from 

0.015 μm to 200 μm, such as colloids, heterotrophic bacteria, organic detritus, mineral 

particles, and several groups of phytoplankton from picoplankton through 

microplankton size range.  The particle classes were defined to reflect their potentially 

distinctive optical and biochemical roles in the ocean.  Optical and biochemical 

properties were determined via Mie modeling and empirical relationships for each 

particle class.  Representative bulk models of mixtures of particle classes, 38 in total, 

were created by assigning total particle counts for each particle class based on particle 
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counts observed in the ocean.  Bulk optical and biochemical properties were then 

calculated for each model and compared against field measurements from the 

Southern Ocean to gain insight into particle class contribution to observed bulk 

properties in the region of primary interest to this study. 

 

2.2.  Methods 

2.2.1.  Overview 

 Current ocean color remote-sensing algorithms typically employ a reflectance 

band ratio relationship of a blue-to-green spectral band [O’Reilly et al., 1998] to 

estimate in-water constituents such as particulate organic carbon (POC) or 

chlorophyll-a (Chl) concentrations.  Radiative transfer modeling has shown that the 

spectral remote-sensing reflectance Rrs(λ) is proportional to the spectral backscattering 

coefficient of seawater, bb(λ), and is inversely proportional to the spectral absorption 

coefficient of seawater, a(λ) [e.g., Gordon and Morel, 1983]:    
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where  is light wavelength in vacuo.  The coefficients a(λ) and bb(λ) are the inherent 

optical properties (IOPs) of seawater, which are totally dependent upon seawater 

composition.  The total IOPs of a water body are the sum of the relevant bulk IOPs 

associated with each of the various components of a water body.  For example, the 

total absorption coefficient a(λ) in units m-1 is the sum of the absorption coefficients 

of the pure water aw(λ), soluble or colored dissolved organic matter aCDOM(λ), and 

individual (k) particle components ap,k(λ) which include colloids, organic detritus, 
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minerals, and various plankton species or groups ranging from heterotrophic bacteria 

and photoautotrophic cyanobacteria to nano- and microphytoplankton. 

   
k

kpCDOMw aaaa )()()()( ,    (2.2) 

 The other IOPs, the scattering coefficient b(λ), the backscattering coefficient 

bb(λ), the beam attenuation coefficient c(λ), and the volume scattering function β(Ψ,λ), 

all have similar relationships to their constituent parts.  For example, the total 

backscattering coefficient bb(λ) is the sum of the backscattering coefficients of the 

pure water bbw(λ), bubbles bbbub(λ), and individual particle components bbp,k(λ) 

including bacteria, phytoplankton, detritus, and minerals in the water. 

   
k
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This approach of describing the bulk IOPs in terms of the detailed composition of 

seawater (i.e., a significant number of distinctly different water constituents) can be 

referred to as the reductionist approach [Stramski et al., 2001]. 

The focus in the present analysis is on examining the roles of different particle 

types as primary drivers of bulk seawater IOPs in open ocean waters.  Scattering by 

bubbles is not considered in the present modeling because the dynamic effects of 

bubbles on optics are poorly characterized and our primary interest is on the effects of 

particles .  The absorption coefficient by CDOM is modeled with an empirical 

relationship as a function of the chlorophyll-a concentration.  All particulate 

components are defined and modeled as described below. 
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2.2.2.  Modeling IOPs of particle classes 

 Modeling the IOPs of specific types of marine particles allows for a detailed 

examination of the contribution of the various particle classes to the total bulk 

properties of seawater.  A member of each constituent class can be modeled optically 

with a relative particle size distribution (PSD) and complex index of refraction (m) of 

particles relative to water.  Single particle optical efficiencies, Qi(λ), can be calculated 

using the Mie theory solution to Maxwell’s electromagnetic equations for a 

homogenous sphere [Bohren and Huffman, 1983].  The optical cross section, σi(λ), at a 

given wavelength λ, of a single particle of diameter D and complex index of refraction 

m is then 
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      (2.4) 

where the subscript i represents either the absorption, scattering, backscattering, or 

attenuation optical property.  For example, the single particle cross section for 

absorption σa(λ) = Qa(λ,m,D)D2/4. 

 For a polydisperse group of particles of a single class with size distribution 

N(D)dD, the optical efficiency Qi and particle diameter D are replaced by a 

representative “average” value for the entire group of particles.  The N(D)dD indicates 

the number of particles within the size bin D + dD per unit volume of water.  The 

representative optical cross section for the class is then 

   
4

)),(,()(
2

,,
k

kkiki

D
DmQ

     (2.5) 



67 

 

where the overbar indicates that this is the average property for the representative 

particle of this class.  The bulk IOP for a given (kth) particle class can then be 

calculated as the product of the “average” optical cross section )(,  ki for that class 

and the total number of particles of that class per unit volume of water, Nk.  For 

example, the bulk absorption coefficient for a particular species of phytoplankton 

ap,k(λ) in units m-1 is 

   kkakp Na  )()( ,,       (2.6) 

Note, the conventional nomenclature for the absorption coefficient of phytoplankton is 

aph,k(λ).  In the current work, all particle class optical properties will be referred to 

with the subscripts p for particle and k for class index.  Thus, for any phytoplankton 

class included in our model, aph,k(λ), is referred to simply as ap,k(λ), just like other non-

phytoplankton particle classes. 

 Other particle class-specific IOPs can be calculated in similar fashion.  Total 

bulk IOPs of seawater can then be constructed by accumulation, for example, as 

indicated in Equation 2.2, of all constituent classes each with a set of representative 

optical properties dependent on the size distribution and complex index of refraction.  

The approach for generating bulk models is described below in section 2.2.4. 

 

2.2.3.  Modeling POC and Chl for particle classes 

 There is considerable evidence to suggest that POC is related to measurable 

optical properties.  This evidence comes from both field and laboratory studies on bulk 

optical properties and in-water constituents as well as laboratory studies relating single 
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particle optics and single particle carbon concentrations.  The link between these 

single particle relationships and the bulk relationships provides a method to model 

bulk POC from similar particle class inputs as those used in IOP modeling, namely 

particle size distribution and complex index of refraction. 

 Many previous studies have explored the relationship between bulk optical 

properties and in-water constituents based on field data.  Several groups have shown 

that POC can be estimated from the IOP of the particulate beam attenuation coefficient 

cp [Gardner et al., 1993; Bishop, 1999].  Work by Loisel and Morel [1998] has also 

shown that the particulate scattering coefficient, bp(550), can be used to derive an 

estimate of POC.  Stramski et al. [1999] has further extended the scattering – POC 

relationship and looked at particulate backscattering, bbp(λ), as a proxy for POC in the 

Southern Ocean (see also Chapter 1 in this dissertation).  Recent work [Stramska and 

Stramski, 2005; Stramski et al., 2008; Chapter 1 in this dissertation] has also explored 

the relationship between the apparent optical property (AOP) of ocean reflectance and 

POC concentration. 

 Similar work on relating bulk optical properties, cp and bp, to particulate 

organic carbon has been carried out in the laboratory on single species phytoplankton 

cultures [Stramski and Morel, 1990; Stramski and Reynolds, 1993].  For example, in 

the Stramski and Morel [1990] study it was shown that a single species phytoplankton 

culture of cyanobacterium grown under a range of lighting conditions produced a good 

relationship between the measured particulate scattering coefficient at 560 nm, 

bp(560), and bulk carbon concentration. 
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 Laboratory studies have also investigated single particle carbon content and 

single particle optical properties.  The relationship between the cellular carbon content 

and particle size has been studied for many plankton species and taxonomic groups 

[Verity et al., 1992; Montagnes et al., 1994].  Furthermore, there are several studies 

that explore the relationship between intracellular (intraparticle) carbon concentration 

and the real part of the refractive index of planktonic cells [Stramski, 1999; DuRand et 

al., 2002].   

In the present work, the relationship established by DuRand et al. [2002] is used 

to model intraparticle carbon (Cp,k) concentration in units mg m-3 for any given (kth) 

particle class: 

   3922)650(3946,  nC kp     (2.7) 

where n(650) is the real part of the refractive index of the particle class relative to 

water at 650 nm.  The POCk concentration for an assemblage of particles of 

concentration Nk representing a given class is then 
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where the product Cp,k times  6/
3

kD  is the mass of carbon per particle.  DuRand et 

al. [2002] also proposed a model for intraparticle chlorophyll-a (Chlp,k) concentration 

in units mg m-3 for any given (kth) particle class: 

   32.0)676('1244,  nChl kp     (2.9) 

where n´(676) is the imaginary part of the refractive index of the particle relative to 

water at a wavelength of 676 nm where chlorophyll-a exhibits a maximum absorption 
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and other pigments have insignificant contribution to absorption.  The chlorophyll-a 

concentration, Chlk, for an assemblage of particles of concentration Nk representing a 

given class is then 
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where the product Chlp,k times 6/
3

kD is the mass of chlorophyll-a per particle. 

 

2.2.4.  Modeling bulk POC, Chl, and IOPs 

 The use of the above particle-specific models for generating the bulk seawater 

models of POC, Chl, and IOPs allows for a method to directly inspect the contribution 

of representative particle classes (for example, a given kth class) to bulk biochemical 

properties and bulk IOPs.  In addition, the bulk AOPs of the ocean, such as remote 

sensing reflectance, could be modeled using radiative transfer simulations with the 

bulk IOPs as inputs.  In this study radiative transfer modeling is not used, rather, the 

ratio of IOPs is used as a proxy for ocean reflectance as indicated in Equation 2.1.  

Variation of the particle class properties such as size distribution or particle 

concentration and inclusion or exclusion of the particle classes in the mixture of 

particulate assemblages allows for investigation of the effects of the various 

combinations of detailed particle composition on the total carbon concentration 

(POC), chlorophyll-a concentration (Chl), and bulk optical properties (IOPs and 

AOPs) of the ocean.  This in turn results in a more thorough understanding of the 

complexity of the system in terms of optical-biochemical relationships.  This 

reductionist approach is powerful and unique in the areas of ocean optics and bio-
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optical oceanography because seawater is represented in terms of a significant number 

of optically and biochemically important constituent classes, each playing a different 

role in marine optics and biogeochemistry.  In contrast, seawater has traditionally been 

parameterized in a highly oversimplified manner in terms of a few broadly defined 

categories of constituent classes, such as all suspended particles as a single class or all 

phytoplankton species as a single class.  Such an approach cannot satisfactorily 

explain the substantial optical variability in the ocean due to varying composition in 

seawater constituents. 

Bulk properties of seawater, including the POC, Chl, and IOPs, were modeled 

by assemblages of several particle classes which are representative of particles found 

in the world’s oceans.  These particle classes consisted of colloids (COL1-COL3), 

minerals (MIN1-MIN4), organic detritus (DET1-DET5), heterotrophic bacteria 

(HBAC), and various plankton species or groups (PROC, SYNE, SYMA, PEUK, 

NAN1, NAN2, MIC1, and MIC2).  Table 2.1 lists the 21 distinct particle classes used 

in this study.  Values for the average cell size ( kD ), real and imaginary parts of the 

relative index of refraction nk(650) and nk´(676) at 650 nm and 676 nm respectively, 

and carbon (Cp,k) and chlorophyll (Chlp,k) concentration of each component are also 

given in Table 2.1.  Several of the particle classes are permutations of a base class but 

with a different particle size distribution.  For example, detritus was modeled with five 

different size distributions. 

The bulk POC and chlorophyll-a concentrations were calculated as the sum of 

the POCk and Chlk of all particle classes within an entire particulate assemblage from: 
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   
k

kPOCPOC      (2.11) 

   
k

kChlChl       (2.12) 

where POCk and Chlk are obtained from Equations 2.8 and 2.10, respectively. 

 Data that characterize the inherent optical properties of several planktonic 

components were derived from a study based on laboratory measurements of bacterial 

and phytoplankton cultures and modeling of particle optics [Stramski et al., 2001].  

These components include heterotrophic bacteria (HBAC) representing a multispecies 

assemblage of these microbes, and three photoautotrophic picoplankton components, 

Prochlorococcus (PROC), Synechococcus (SYNE), and phycocyanin-rich 

picophytoplankton consisting of Synechocystis and Anacystis marina species (SYMA).  

The data for PROC and SYNE result from averaging different strains of 

Prochlorococcus and Synechococcus species as described in Stramski et al. [2001].  

The optical data for the remaining nanophytoplankton (NAN) and microphytoplankton 

(MIC) components as well as other particle classes (colloids, detritus, minerals) in our 

model were derived from Mie modeling using assumptions about the particle size 

distribution and complex index of refraction.  Colloids (COL) were assumed to have a 

relatively low value (1.04) for the real part of refractive index relative to water, which 

is consistent with the assumption that colloids are largely organic particles with 

significant water content.  Detritus (DET) similarly represents a diverse assemblage of 

non-living organic particles but of larger sizes (> 1 m).  Minerals (MIN) are the only 

particulate component characterized by high refractive index (1.16), which is 
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consistent with inorganic particles.  Naturally, COL, DET, MIN, and HBAC classes 

contain no chlorophyll and MIN classes contain no organic carbon. 

 The particle classes have a representative size distribution either measured 

experimentally or based on a modeled distribution.  The range of particle diameters 

and the basis for the size distributions for each particle class are shown in Table 2.2.  

Note, for example, that nanophytoplankton is represented by two components, small 

nanophytoplankton (NAN1) ranging in size from 2 m to 8 m, and large 

nanophytoplankton (NAN2) from 8 m to 20 m.  The colloidal fraction of particulate 

matter (< 1 m) is also considered in two size classes, small colloids (COL1 and 

COL2 from 0.015 m – 0.2 m in size) and large colloids (COL3 from 0.2 m – 1 m 

in size).  Similarly, the MIN classes cover different size ranges and the DET classes 

were modeled with different size distributions to cover the possible realistic scenarios. 

 For each (kth) particle class (with the exception of HBAC, PROC, SYNE, and 

SYMA where laboratory measurements provided data) the Mie solution for a 

polydisperse collection of particles provides the spectral scattering efficiencies Qi,k() 

for absorption, scattering, backscattering, and attenuation (subscript i).  The 

representative optical cross sections )(,  ki  were then calculated as indicated in 

Equation 2.5.  For HBAC, PROC, SYNE, and SYMA the optical properties were 

derived from laboratory measurements with the exception of backscattering which was 

estimated from Mie calculations [Stramski et al., 2001].  The biochemical properties, 

Cp,k and Chlp,k, were also calculated for all particle classes from the relationships in 

Equations 2.7 and 2.9, respectively.  In the case of minerals (MIN1-MIN4), the 
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intraparticle organic carbon concentration (Cp,k) was assumed to be zero.  

Additionally, the chlorophyll-a concentration per particle (Chlp,k) was set to zero for 

the HBAC, the colloid classes (COL1-COL3), the detritus classes (DET1-DET5), and 

the minerals (MIN1-MIN4).   

 A flow chart depicting the calculations involved in determining the 

representative particle optical cross sections and biochemical values is indicated in 

Figure 2.1.  The inputs to the models are the class-specific relative particle size 

distribution NR,k(D) (i.e., relative concentration of particles in each size bin) and the 

real and imaginary parts of the relative index of refraction of particles, nk() and 

n′k().  A database of these particle properties for each particle class was assembled. 

 Having determined the optical and biochemical properties for each particle 

class, a base bulk model was constructed which represents a realistic collection of 

different particle classes (14 classes in all) at concentrations found in the open ocean.  

The particle classes and corresponding particle concentrations (Nk in units particles per 

m3) included in the base model are described in Table 2.3.  Additional models, as 

defined later, were also created to encompass a broader range of particle assemblages 

found in the ocean.  In the base model there are no mineral particles (Nk  = 0 for 

MIN1, MIN2, MIN3) and no Prochlorococcus (Nk =0 for PROC), the smallest 

photosynthetic picoplankton.  These particle classes are still included in the model but 

the particles concentrations were set to 0.  This inclusion allows for the permutation of 

these classes in other models while still maintaining the core members of the 

particulate assemblage.  The assumptions of the base model are meant to realistically 

represent the open waters within the Southern Ocean, where these particle classes can 
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be reasonably assumed to have very small or negligible contributions to the optical 

and biochemical properties.  The open waters of the Southern Ocean are of primary 

interest to this study.  The particulate IOPs for each particle class k within the bulk 

models is determined by the total particle count per unit volume times the optical cross 

section as indicated in Equation 2.13: 

   )(,,  kikkp NIOP       (2.13) 

where IOPp,k is the particulate absorption, scattering, backscattering, or attenuation 

coefficient for class k, Nk is the total particle count per unit volume for class k, and 

)(,  ki  is the representative particle optical cross section for the class k and IOP i.  

The total POC (POCk) and chlorophyll-a (Chlk) for the class is found by a similar 

method (see Equations 2.8 and 2.10).  Finally, the total bulk particulate IOPs, POC, 

and chlorophyll-a (Chl) concentration for each model is then the sum of contributions 

from each particle class within the model (see Equations 2.13, 2.11, 2.12).  Figure 2.2 

summarizes the steps to achieve the bulk particulate optical and biochemical 

properties for the models. 

As indicated earlier (Equations 2.2 and 2.3), the total IOPs of seawater depend 

not only on the contributions from various suspended particles, but also on the 

contributions of pure seawater, colored dissolved organic matter (CDOM), and 

bubbles.  In the current analysis, for calculating the total IOPs of seawater, the pure 

water absorption values, aw(λ), were taken from Pope and Fry [1997], and the pure 

water scattering bw(λ) and backscattering values bbw(λ), were obtained from the study 

of Morel [1974].  Bubbles were not modeled, so the scattering bbub(λ) and 
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backscattering bbbub(λ) by bubbles were zero.  The CDOM absorption coefficient, 

aCDOM(λ), are modeled empirically as a function of total chlorophyll-a concentration, 

Chl, on the basis of field data from the Southern Ocean [Reynolds et al., 2001]. 

   298.0Chl046.0)400( CDOMa     (2.13) 

CDOM absorption values at other wavelengths λ are then calculated as 

   )400()400()(  S
CDOMCDOM eaa    (2.14) 

where the spectral slope S is 0.0195 nm-1 [Reynolds et al., 2001]. 

 

2.3.  Results 

2.3.1.  Overview 

 A total of 38 models were considered in the present study; 1 base model as 

described above and 37 permutations to that base model by addition or removal of the 

particle classes, changes in the concentration of the particle classes, or changes in the 

particle size distribution for a given class.  Table 2.4 describes each of the models.  

The models were categorized into 7 broad groups: the base model, alternate (scaled) 

base models, addition of living phytoplankton classes, high chlorophyll-a models, 

models containing additional heterotrophic bacteria, models containing additional 

colloids, models containing additional detritus or alternate detrital PSDs, and models 

containing minerals.  Tables 2.5 – 2.11 summarize the changes (scaled values) in the 

base model (Table 2.3) for each of the other 37 models considered within this study.  

Each of these models represents a realization of constituent composition within the 
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ocean.  Analysis of the bulk results and comparison to field data from the Southern 

Ocean for all models is presented in the discussion section 2.4. 

 Four models (highlighted in Tables 2.4, 2.5 – 2.11) are investigated in detail 

below; the base model, the high chlorophyll-a model (I), the detritus-enriched model 

(II), and the minerals-enriched model (IV).  For each model, the input relative particle 

size distribution is presented as well as the selection of the particle class 

concentrations.  For each particle class k, the particle concentration Nk, the particulate 

absorption coefficient at 490 nm (ap,k(490)), the particulate scattering coefficient at 

555 nm (bp,k(555)), the particulate backscattering coefficient at 555 nm (bbp,k(555)), 

the ratio of the total absorption and total backscattering coefficients involving the blue 

and green wavelengths, and the POCk and Chlk concentrations are indicated.  The bulk 

properties for the model are also included.  The relative contributions to the bulk 

bbp(555), POC, and Chl are indicated for each particle class within the model.  These 

four models were chosen as examples of the primary trends in the bulk IOPs, POC, 

and Chl caused by a given particle group (base, high chlorophyll-a, detritus-enriched, 

and minerals-enriched).  A complete listing of all the results, for all models (38), is 

provided in Table 2.16.  The comparison of these results to field data is discussed in 

section 2.4.  

 

2.3.2.  Base Model 

 The base model (Table 2.3) was constructed to represent one possible realistic 

collection of particles found in the Southern Ocean with moderate concentrations of 

POC and chlorophyll-a.  Figure 2.3 shows the particle size distribution of the base 
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model.  The contribution of each particle class to the total PSD is also indicated.  This 

PSD is similar to the Junge type distribution, typically found in open ocean waters, 

which changes with particle diameter as D-4.  Colloids (COL2, COL3) and bacteria 

(HBAC) represent the most numerous particles with over 1014 and 1011 particles per 

m-3 respectively.  The total particle count for all classes within the base model is 3.54 

x 1014 particles per m-3.  Small colloids (COL2) represent over 99% of the total 

particle number within this model.  The total POC concentration is 58.97 mg m-3 and 

the chlorophyll-a concentration is 0.298 mg m-3.  Note that the POC and Chl values 

are comparable to typical values encountered within the open waters of the Southern 

Ocean (see Chapter 3 in this dissertation).  A complete representation of results for the 

base model is listed in Table 2.12. 

 Figure 2.4 indicates the relative contribution of each particle class to the bulk 

model properties bbp(555), POC, and Chl.  Because the colloids represent such a large 

portion of the particle number within this model, it is expected that they would have a 

significant contribution to the backscattering signal, especially as the submicron 

particles have a relatively high backscattering efficiency.  Colloids account for over 

71% of the total bbp(555) in the model.  Colloids (COL2, COL3) and heterotrophic 

bacteria (HBAC) totally dominate particulate backscattering (94%).  All 

phytoplankton classes combined contribute only 3% to bbp(555).  The remaining 3% of 

particulate backscattering is due to detritus (DET1).  Small nanophytoplankton 

(NAN1) account for 41% of the total chlorophyll-a concentration.  Overall 

nanophytoplankton (NAN1, NAN2) contribute 63% to total chlorophyll-a 

concentration with the remaining 20% by microphytoplankton (MIC1), 12% by 
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picoeukaryotes (PEUK), and 5% by cyanobacteria Synechococcus (SYNE).  The POC 

is quite evenly distributed among colloids (28%), detritus (26%), and HBAC (23%).  

The remaining 23% of POC is attributable to all phytoplankton classes. 

 

2.3.3.  High Chlorophyll-a Model 

 The high chlorophyll-a model increases the total phytoplankton particle count 

in the base model by increasing the particle concentrations of several of the 

phytoplankton classes (living photoautotrophic particles).  In addition, increased 

amounts of colloid and detrital particles were added to this model to represent the 

additional non-living organic particles.  This model represents a potential bloom 

condition and was constructed to contain large amounts of POC (phytoplankton 

classes, colloids, and detrital particles) and chlorophyll-a (phytoplankton classes).  

Figure 2.5 shows the particle size distribution of this model where the contributions of 

each particle class to the total PSD is indicated.  The elevated portion of the PSD 

within both the small (NAN1) and large (NAN2) nanophytoplankton size ranges (2-20 

m) is evident in Figure 2.5.  The total POC concentration in this model is 124.77 mg 

m-3 and the chlorophyll-a concentration is 1.769 mg m-3.  A complete representation of 

results for the model is listed in Table 2.13.  

 Figure 2.6 indicates the relative contributions of bbp(555), POC, and Chl for 

each particle class in the high chlorophyll-a model.  Again colloids (COL2, COL3) 

dominate particulate backscattering with bacteria (HBAC) also being an important 

contributor to the bbp(555).  Despite an increased concentration of phytoplankton in 

this model, the combined contribution of all phytoplankton classes to bbp(555) is still 
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small (13%) .  Nanophytoplankton (NAN1, NAN2) and microphytoplankton (MIC1) 

account for about 88% of the total chlorophyll-a concentration, with 71% attributable 

to nanophytoplankton.  POC is largely associated with the nano- and 

microphytoplankton (56%) with the remaining portion distributed nearly uniformly 

among detritus (12%), colloids (13%), and HBAC (11%).  The picophytoplankton 

classes (SYNE and PEUK) contribute about 8% to POC. 

 

2.3.4.  Detritus-enriched Model 

 The detritus-enriched model adds 10 times more detritus (DET1) to the base 

model.  This model was constructed to contain large amounts of POC associated with 

non-living organics relative to the base model.  Figure 2.7 shows the particle size 

distribution of the detritus-enriched model.  The elevated contribution of detritus to the 

PSD over a broad size range from 1 to 200 m is evident.  The total POC 

concentration of the detritus-enriched model is 195.83 mg m-3 and the chlorophyll-a 

concentration is 0.298 mg m-3.  Note that the total POC in this model is significantly 

higher than our estimates of average POC (varying generally from about 70 to 80 mg 

m-3) in the surface waters of the Southern Ocean based on the application of our 

remote-sensing algorithm to satellite data of SeaWiFS [see Chapter 3 in this 

dissertation].  A complete representation of results for the detritus-enriched model is 

listed in Table 2.14. 

 Figure 2.8 indicates the relative contribution of bbp(555), POC, and 

chlorophyll-a for each particle class to the bulk properties of the detritus-enriched 

model.  Colloids (COL2, COL3) account for 56% of the bbp(555) whereas detritus 
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(DET1) accounts for 24% and bacteria (HBAC) for 17% of the bbp(555).  Over 78% of 

the POC is accounted for in the detritus with the majority of the remaining POC in 

colloids (9%) and HBAC (7%).  Only ~7% of POC is associated with all 

phytoplankton classes.  The chlorophyll-a is concentrated in the nano- (63%) and 

microphytoplankton (20%) with another 12% within the picoeukaryotes (PEUK) and 

5% within cyanobacteria (SYNE) classes. 

 

2.3.5.  Small Minerals-enriched Model 

 This model, referred to as the small minerals-enriched model, adds to the base 

model small minerals (MIN2) at a concentration equivalent to the concentration of 

large (organic) colloids (COL3, size range 0.2 – 1 m) present in the base model.  

This small minerals-enriched model was constructed to contain large amounts of small 

inorganic particles with relatively high refractive index, which are expected to produce 

large backscattering signal.  Figure 2.9 shows the particle size distribution of this 

model.  The presence of both small minerals and large colloids over the size range 0.2 

– 1 m is evident, which produces a small, albeit noticeable, elevation in the total PSD 

in that size range.  The total POC concentration is 58.97 mg m-3 and the chlorophyll-a 

concentration is 0.298 mg m-3, just as in the base model because minerals do not affect 

these biochemical variables.  A complete representation of results for the small 

minerals-enriched model is listed in Table 2.15. 

 Figure 2.10 indicates the relative contributions of bbp(555), POC, and 

chlorophyll-a for each particle class in the mineral model.  The addition of the small 

minerals completely changes the budget of the backscattering signal.  Small minerals 
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(MIN2) account for 82% of the bbp(555) whereas colloids account for only 13% and 

HBAC for only 4% of the total bbp(555).  All phytoplankton classes combined remain 

insignificant with <1% contribution.  Because the addition of small minerals did not 

add any chlorophyll-a and carbon, the budgets for Chl and POC remain the same as 

for the base model. 

 

2.4.  Discussion 

2.4.1.  Overview 

 The benefit of the reductionist approach in modeling bulk seawater properties 

is the insight into the relative drivers of a particular signal (bulk IOP, carbon, or 

chlorophyll-a) by different particle classes.  As the four example models indicate, the 

addition of phytoplankton has the strongest effect on chlorophyll-a concentration, the 

addition of detritus on the POC concentration, and the addition of small minerals on 

the backscattering signal.  The consideration of all 38 models and their comparison to 

field data from the Southern Ocean provides greater insight into the roles of different 

particle classes as sources of variability in the bulk optical and biochemical properties 

of ocean waters. 

 The section below presents a comparison of the Southern Ocean field data with 

the model data and provides clues to understanding the variability in the bulk seawater 

properties.  In particular, we show the following  relationships: (i) Chl vs. ap(676); (ii)  

POC:Chl ratio vs. Chl; (iii) the ratio of ad(440)/ap(440) vs. Chl; (iv) POC vs. bbp(555); 

and (v) POC vs. the band ratio of the absorption coefficient to the backscattering 

coefficient with the 490 nm and 555 nm wavelengths involved.  The band ratio of IOP 
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coefficients is a proxy for the band ratio of remote-sensing reflectance (see Equation 

2.1), which is used in the development of our POC remote-sensing algorithm based on 

the blue-to-green band ratio of reflectance [see Chapter 1 in this dissertation].  The 

relationship POC vs. bbp(555) is one of the two relationships used in another POC 

algorithm, which is referred to as a single-wavelength two-step POC algorithm [see 

Chapter 1 in this dissertation].  Thus, the analysis of these algorithm relationships 

within the context of the comparisons of the reductionist models and the field data 

provides a powerful tool for examining the potential variability (or departures) from 

the main trend lines representing the POC algorithm equations.  This analysis has 

significance to understanding the ultimate performance of POC algorithms and 

potential uncertainties in these algorithms associated with natural variability in 

detailed particulate composition of seawater.  In each of the comparisons discussed 

below, the results from all 38 models are overlaid on the field data.  The models are 

colored by group (Table 2.4) to allow for identification of trends associated with 

specific particle classes.  A complete listing of results from all 38 models is presented 

in Table 2.16. 

 

2.4.2.  Field Data 

 Optical, POC, and chlorophyll-a measurements were made during several 

oceanographic cruises within three regions of the Southern Ocean; in the waters near 

the Antarctic Peninsula and South Shetland Islands, the Antarctic Polar Frontal Zone 

(PFZ) within the Pacific sector, and the Ross Sea.  The stations were located in high-

latitude waters south of 50oS, and most stations were south of 60oS (see Figure 1.1 and 
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Figure 3.1).  The field data were collected during six cruises spanning a time period 

from 1997 through 2006.  These cruises include: (i) the U.S. Joint Global Ocean Flux 

Study (JGOFS) cruise NBP9711 in the Ross Sea in November-December of 1997; (ii) 

two JGOFS cruises REV9801 and REV9802 in the PFZ region which took place from 

January through March 1998; (iii)  six cruises under the NOAA Fisheries’ U.S. 

Antarctic Marine Living Resources (AMLR) Program in the region of the South 

Shetland Islands and Antarctic Peninsula during January-March in 2000, 2001, 2002, 

2004, 2006, and 2007; and (iv) one cruise sponsored by the National Science 

Foundation during the 2004 AMLR season.  Data collection and processing 

methodology is detailed in Chapters 1 and 3 in this dissertation.  In the analysis below 

we restrict the field data to the use of POC and optical data collected at near-surface 

depths (< 10 m) within open water stations where it is reasonable to assume that 

optical properties and suspended particles are dominated by plankton microorganisms 

and plankton-derived organic matter.  In bio-optical studies such waters have been 

customarily referred to as Case 1 waters [Morel and Prieur, 1977; Gordon and Morel, 

1983]. 

 

2.4.3.  Chlorophyll-a versus ap(676) 

 Southern Ocean field data for chlorophyll-a concentration vs. ap(676) is 

compared with model results in Figure 2.11.  The field data vary over 3 orders of 

magnitude.  The particulate absorption coefficient ap(676) is affected mostly by 

chlorophyll-a because other phytoplankton pigments and other types of marine 

particles have very small or negligible absorption at 676 nm.  Therefore, a good 



85 

 

correlation between Chl ap(676) and ap(676) can be generally expected.  Although our 

field data support this correlation, there is still a significant scatter in the data points.  

Our model results allow us to explain this scatter in field data, in particular to identify 

particle composition scenarios that are responsible for the distribution of individual 

data points along the main trend line or the departure of data points in different 

directions from the main trend line. 

 The base model is shown as the large black circle in Figure 2.11, and falls well 

within the overall pattern of field data.  This indicates that our base model is 

representative of typical conditions in the Southern Ocean.  The small black circles 

represent the alternate base models.  These models were obtained simply by scaling up 

(10x) or down (1/3x) the base model without any changes in the relative proportion of 

particle classes.  These alternate base models are consistent with the main trend of 

field data.  The large color symbols in Figure 2.11 represent the different model 

groups defined as perturbations to the base model with higher concentrations of 

different particle classes.  Thus, the patterns (vectors) of the color symbols show to 

what extent a given particle class (as represented by the model group) drives the main 

trend of the relationship in question or to what extent a given particle class introduces 

a statistical “noise” into the relationship in question.  A major feature seen in Figure 

2.11 is that the single-class phytoplankton and high chlorophyll-a models (light and 

dark green circles) are a major source of the main trend of increasing chlorophyll-a vs. 

ap(676).  Although this dominant role of phytoplankton in driving the chlorophyll-a 

vs. ap(676) relationship is not surprising, an important result is high consistency 

between the main trend in the field data and a series of models with increased 
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phytoplankton contributions.  These results provide confidence in the ability to 

realistically model the complex optical and biochemical signal with the reductionist 

approach.  In addition, Figure 2.11 shows that introducing a perturbation to the base 

model by adding heterotrophic bacteria (red circles), colloids (brown circles), organic 

detritus (yellow circles), or minerals (blue circles) has a very small or negligible effect 

on the relationship between chlorophyll-a and ap(676).  Again, this is not surprising 

because these particle classes contain no chlorophyll-a and their absorption at 676 nm 

is very weak or undetectable. 

 

2.4.4.  POC:Chl ratio versus chlorophyll-a 

 Figure 2.12 shows a relationship between the ratio of POC to chlorophyll-a 

(abbreviated as POC:Chl) and the chlorophyll-a concentration, with the field data 

from the Southern Ocean varying over three orders of magnitude.  There is 

considerable interest in understanding the POC:Chl ratio because it has the potential to 

provide information about the relative roles of phytoplankton and non-phytoplankton 

POC in seawater and the physiological status of phytoplankton.  The field data show 

that there is a general covariation, with an increase of POC:Chl as Chl decreases.  In 

low chlorophyll-a waters, the relative contribution of non-phytoplankton organic 

carbon to total POC is expected to be generally higher compared with high 

chlorophyll-a waters. 

 The modeled results are also indicated in Figure 2.12 with the base model 

(large black circle) located near the center of the field data pattern.  This is again an 

indication that the base model is representative of typical conditions within the 
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Southern Ocean in terms of POC and Chl concentrations.  Two major vectors are 

evident in the modeled results.  The first is the addition of organic detritus (yellow 

circles) and colloids (brown circles), which drives only the POC concentration as 

evidenced in an increase in the POC:Chl ratio at a constant chlorophyll-a 

concentration.  The second vector (green circles) indicates the dominant driver of the 

main trend of the presented relationship.  This vector results from the addition of 

phytoplankton classes above the concentrations of the base model, and it follows the 

main trend of field data well.  The high chlorophyll-a models (dark green circles) are 

farther away from the base model than the single-class phytoplankton models (light 

green circles), which reflects the differences in the phytoplankton cell and chlorophyll 

concentrations between these models.  The inclusion of the organic detritus and 

colloids in the high chlorophyll-a models perturbs the POC:Chl to Chl relationship 

away from the dominant trend (light green vector) of the phytoplankton models and 

indicates the complex relationships of the aggregate ensembles of particle classes.  

Increases in HBAC (red circles) and organic detritus (yellow circles) only change the 

POC:Chl ratio, because heterotrophic bacteria and detritus contain carbon, but not 

chlorophyll-a.  The perturbation of the base model with the addition of minerals has 

no effect on this relationship, and the alternate base models indicate a possibility for a 

significant range of Chl values at a given POC:Chl ratio. 

 

2.4.5.  ad(440)/ap(440) versus chlorophyll-a 

 The ratio of the detrital absorption coefficient ad(440) to the total particulate 

absorption coefficient ap(440) (abbreviated as ad:ap) as a function of chlorophyll-a 
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concentration is presented in Figure 2.13.  The ratio of ad:ap provides insight into the 

contribution of non-algal particles to particulate absorption, so the difference 1 - ad:ap 

specifies the contribution of phytoplankton absorption.  The field data from the 

Southern Ocean show a significant range of the ad:ap ratio, with most values 

indicating the 10%-40% contribution of non-algal absorption to particulate absorption 

in the blue spectral region at  = 440 nm.  This result implies that phytoplankton 

absorption is a dominant source of particulate absorption at blue wavelengths.  

Although there is considerable scatter in the data points, the relatively low 

contributions of non-algal absorption of ~ 10% (thus the highest contributions of 

phytoplankton absorption of ~ 90%) were typically observed in waters with high 

chlorophyll-a concentration on the order of a few milligrams per m-3. 

For the base model (large black circle), the ratio ad:ap is about 0.3 which is 

consistent with typical field values.  The perturbations of the base model with the 

addition of non-chlorophyll types of particles (colloids, HBAC, organic detritus, or 

minerals) produce variation only in the values of ad:ap, and not chlorophyll-a.  While 

the addition of minerals has a small effect on the absorption ratio, the models with the 

addition of organic detritus (yellow circles), organic colloids (brown circles), or 

heterotrophic bacteria (red circles) at sufficient concentrations suggest that such 

scenarios of particulate composition can be responsible for relatively high contribution 

(>40%) of non-algal absorption to the particulate absorption.  Such relatively high 

contributions are observed on rare occasions in our Southern Ocean data set with 

maximum values over 60%.  The second set of models (light green circles in Figure 

2.13) indicates a more complex relationship with the addition of phytoplankton to the 
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base concentrations.  The pattern of these phytoplankton models is generally 

consistent with a tendency for a decrease in ad:ap with increasing phytoplankton 

concentration as parameterized in Figure 2.13 in terms of chlorophyll-a.  However, 

these phytoplankton models exhibit a significant scatter around the main trend.  The 

high chlorophyll-a models (dark green circles) show one of the lowest values of ad:ap 

< 0.1 among the models, but again these models also show variation in the absorption 

ratio at a given chlorophyll-a concentration.  Interestingly, the different perturbations 

of the base model with increased phytoplankton chlorophyll-a concentration show a 

significant scatter in the modeled data points rather than a well-behaved relationship.  

This result is to some extent consistent with the significant scatter of field data.  Note 

also that the alternate base models (smaller black circles) point to a possibility for a 

significant range of Chl values at a given ad:ap ratio. 

 

2.4.6.  POC versus bbp(555) 

 The relationship between POC and the particulate backscattering coefficient at 

555 nm, bbp(555), is presented in Figure 2.14.  This relationship is a component of the 

2-step POC retrieval algorithm as described in Chapter 1.  As depicted by the field 

data (grey circles) in Figure 2.14, the relationship between POC and bbp(555) is 

characterized by considerable scatter of the data points (see also Figure 1.7b and 

relevant discussion in Chapter 1).  As before, the modeled results aid in understanding 

this variability.  The base model (large black circle) is within the central portion of the 

field data which further supports a very good capability of our modeling approach.  

The main trend of the POC vs. bbp(555) relationship is shown to be driven largely by 
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colloids (brown circles), and also to large extent by heterotrophic bacteria (red 

circles).  The inclusion of single-class phytoplankton models (light green circles) and 

the high chlorophyll-a models (dark green circles) has little effect on the bbp(555) but 

has a pronounced effect on the POC concentration.  Therefore, these particle 

composition scenarios are capable of introducing significant statistical noise around 

the main overall trend of the relationship.  The increased concentrations of organic 

detritus (yellow circles) also have a strong POC signal with relatively little effect on 

bbp(555), so these particle assemblages can also produce a statistical noise in the 

relationship.  According to these modeling results, the observed regional 

differentiation between the Ross Sea data and other Southern Ocean data presented in 

Figure 1.7b (Chapter 1) are most likely attributable to the differences in the 

phytoplankton and detrital particle composition between these regions.  Figure 2.14 

also shows that the addition of minerals (blue circles), which contain no POC but 

produce strong backscattering, can be a major source of data scatter in the relationship.  

This result cautions against the use of particulate backscattering as a proxy for POC in 

waters where significant amount of minerogenic particles might be present, especially 

in coastal regions.  Further reductionist modeling is required for greater understanding 

of the complexity in the POC vs. bbp(555) relationship and for potential improvements 

in this type of POC algorithm. 

 

2.4.7.  POC versus Backscattering:Aborption ratio 

 Equation 1.2 in Chapter 1 shows that the product of the blue-to-green band 

ratio of backscattering coefficient times the green-to-blue ratio of the absorption 
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coefficient can serve as a good proxy for the blue-to-green ratio of remote-sensing 

reflectance.  This is an important relationship because it indicates that we can use a 

band ratio of IOP coefficients to approximate the behavior of the band ratio of ocean 

reflectance.  Owing to this approximation we can use our reductionist models to 

examine how the different particle classes affect the POC ocean color algorithm based 

on the reflectance band ratio.  We recall that such band-ratio algorithms were found in 

this study to provide the best candidate remote-sensing algorithms for estimating POC 

in the Southern Ocean (see Chapter 1) and that such a band-ratio algorithm was 

selected to examine the seasonal and interannual variability in POC within the 

Southern Ocean from satellite observations (Chapter 3). 

 Figure 2.15 depicts the relationship between POC and the product of bulk IOP 

ratios, [bb(490)/bb(555)] x [a(555)/a(490)].  The IOP parameter is a proxy for the 

reflectance band ratio, Rrs(490)/Rrs(555).  The field data (grey circles) show a 

characteristic non-linear decrease in POC with increasing value of the IOP parameter, 

which is consistent with the reflectance band-ratio algorithm for estimating POC.  

Like the other relationships discussed above, the base model (large black circle) is 

positioned well within the “cloud” of field data.  Most importantly, our modeling 

results show that the main trend of the POC band-ratio algorithm is best explained by 

phytoplankton models.  The “vector” associated with single-class phytoplankton 

models (light green circles) very closely follows the main trend line of the field data.  

All other particle composition scenarios considered in our modeling show the potential 

to introduce scatter of data points in the band-ratio algorithm.  This potential for 

statistical noise is associated not only with the addition of minerals (blue circles), 
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colloids (brown circles), heterotrophic bacteria (red circles), and organic detritus 

(yellow circles), but also to some extent with variability in particle composition at 

high chlorophyll-a concentrations (dark green circles). 

 

2.5.  Conclusions 

 Modeling a bulk population of marine particles based upon the summation of 

contributions of distinct classes of particles has allowed us to gain insight in the 

relative effects of each class on bulk POC, chlorophyll-a, and optical properties such 

as particulate backscattering coefficient and the product of band ratios of absorption 

and backscattering coefficients which serves as a proxy of the blue-to-green band ratio 

of remote-sensing reflectance.  Our modeling results show the power of this approach 

for learning about the origins of bio-optical variability in the ocean.  For example, we 

show clear decoupling between the particle classes that contribute to backscattering 

and chlorophyll, and also some degree of decoupling between backscattering and 

POC.  Our model simulations suggest the general significance of colloidal particles 

and minerals (if present in sufficient amount) to backscattering.  The various particle 

classes including phytoplankton, detritus, bacteria, and colloids can be significant 

contributors to POC, and their roles depend on the variation in the relative abundance 

of particle classes.  As expected, the increase in the abundance of phytoplankton 

classes relative to other classes drives the relationship between the bulk chlorophyll 

and the absorption coefficient in the red part of the spectrum.  Changes in other 

particle classes introduce little noise to this relationship.  The POC:Chl ratio is 

additionally affected by non-phytoplankton POC-bearing particles. 
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Our model simulations also show that the general trend of POC versus 

backscattering relationship can be driven largely by colloidal particles and bacteria.  

The increase in relative abundance of phytoplankton, organic detritus, and minerals 

(>1 m in size) introduces mostly statistical noise into this relationship.  Importantly, 

whereas the noise produced by increases in phytoplankton and detritus is associated 

with significant change in POC accompanied by relatively small change in 

backscattering, the opposite effect is produced by minerals which increase 

backscattering without a change in POC.  These findings are essential for the 

interpretation of the performance of POC algorithms that use the backscattering 

coefficient.  Finally, our example models show the roles played by different particle 

classes in the POC algorithm based on the blue-to-green ratio of ocean reflectance.  

Here the major particles that drive the relationship are phytoplankton classes.  

Colloids, bacteria, and detritus all produce noise that propagates in a similar direction.  

Minerals produce noise in a clearly different direction.  These results highlight a 

unique value of the presented analysis and point to a need for mechanistic approaches 

in the development of further improvements in optical remote sensing of POC or other 

biochemically important seawater constituents. 
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Figure 2.1.  Schematic representation of the calculation of the database of properties 
for particle classes.  The inputs to the Mie theory and empirical models are the spectra 
of complex index of refraction relative to water, relative particle size distribution, and 
the average particle diameter for the class.  For each particle class, the inputs generate 
class carbon and chlorophyll-a concentration per particle and the particle optical cross 
sections.   
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Figure 2.2.  Flow chart to calculate bulk properties for a given model from single 
particle class properties.  The inputs are the class particle concentration for each class 
included in the model and the database of optical and biochemical particle properties.  
For each particle class, the inputs generate class bulk properties of IOPs and class 
POC and chlorophyll-a concentrations.  The sum of all class properties is then the bulk 
properties for the model. 
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Figure 2.3.  Density function of particle size distribution (PSD) for the base model.  
The contributions of each particle class are indicated as explained in the figure legend.  
The total PSD is indicated in the inset, and for the most part it is consistent with a 
Junge type power law ~D-4. 
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Figure 2.4.  Relative contribution of each particle class to the bulk properties of 
bbp(555), POC, and chlorophyll-a for the base model. 
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Figure 2.5.  Density function of particle size distribution for the high chlorophyll-a 
multi-class phytoplankton bloom model.  The contributions of each particle class are 
indicated as explained in the figure legend.  The total PSD is indicated in the inset. 
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Figure 2.6.  Relative contribution of each particle class to the bulk properties of 
bbp(555), POC, and chlorophyll-a for the high chlorophyll multi-class phytoplankton 
bloom model. 
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Figure 2.7.  Density function of particle size distribution for the 10-fold increase in 
detritus model.  The contributions of each particle class are indicated as explained in 
the figure legend.  The total PSD is indicated in the inset. 
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Figure 2.8.  Relative contribution of each particle class to the bulk properties of 
bbp(555), POC, and chlorophyll-a for the detritus-enriched model. 
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Figure 2.9.  Density function of particle size distribution for the addition of small 
minerals model.  The contributions of each particle class are indicated as explained in 
the figure legend.  The total PSD is indicated in the inset. 
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Figure 2.10.  Relative contribution of each particle class to the bulk properties of 
bbp(555), POC, and chlorophyll-a for small minerals-enriched model. 
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Figure 2.11.  Comparison of field data and model results for the relationship between 
the bulk chlorophyll-a concentration and the bulk particulate absorption coefficient 
ap(676).  Field data are indicated as grey circles.  The base model is shown as the large 
black circle, and the smaller black circles correspond to the alternate base models.  
Additional models are represented by colored symbols as indicated in the legend. 
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Figure 2.12.  Comparison of field data and model results for the relationship between 
the bulk POC:Chl ratio and the bulk chlorophyll-a concentration.  Field data are 
indicated as grey circles.  The base model is shown as the large black circle, and the 
smaller black circles correspond to the alternate base models.  Additional models are 
represented by colored symbols as indicated in the legend. 
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Figure 2.13.  Comparison of field data and model results for the relationship between 
the ratio of bulk non-algal (ad) to bulk particulate absorption (ap) coefficients at 440 
nm as a function of bulk chlorophyll-a concentration.  Field data are indicated as grey 
circles.  The base model is shown as the large black circle, and the smaller black 
circles correspond to the alternate base models.  Additional models are represented by 
colored symbols as indicated in the legend. 
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Figure 2.14.  Comparison of field data and model results for the relationship between 
the POC concentration and the particulate backscattering coefficient at 555nm, 
bbp(555).  Field data are indicated as grey circles.  Field data from the Ross Sea are 
indicated by the grey circles with darker border.  The base model is shown as the large 
black circle, and the smaller black circles correspond to the alternate base models.  
Additional models are represented by colored symbols as indicated in the legend.  The 
dashed line represents the best fit to the field data (excluding the Ross Sea data). 
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Figure 2.15.  Comparison of field data and model results for the relationship between 
the bulk POC concentration and the inherent optical property (IOP) parameter, 
[bb(490)/bb(555)] x [a(555)/a(490)], which represents a proxy for the ocean 
reflectance band ratio, Rrs(490)/Rrs(555).  Field data are indicated as grey circles.  The 
base model is shown as the large black circle, and the smaller black circles correspond 
to the alternate base models.  Additional models are represented by colored symbols as 
indicated in the legend.  The dashed line represents the best fit to the field data.  The 
presented relationships in the data are representative for other combinations of the 
blue and green wavebands such as 443 and 555 which were identified as the best pair 
of bands for the POC algorithm discussed in Chapter 1. 
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2.7.  Tables 

 
Table 2.1.  Listing of the 21 unique particle classes available for modeling.  Values 
for the average equivalent spherical diameter D̄k , the real part of the refractive index 
at 550 nm nk(550), imaginary part of the refractive index at 676 nm nk′(676), 
intracellular (intraparticle) carbon concentration Cp,k and intracellular chlorophyll-a 
concentration Chlp,k are shown for each particle class.  The values of Cp,k were set to 
zero for mineral particles.  Similarly, the values of Chlp,k were to zero for HBAC, 
MIN-1MIN4, DET1-DET5, and COL1-COL3. 
 

Label Particle Class 
D̄k  

(um) 
nk(650) 

 
nk′(676)   

x 103 
Cp,k 

(mg m-3) 
Chlp,k 

(mg m-3) 
HBAC Heterotrophic Bacteria 0.50 1.05 - 2.39E+08 - 
PROC Generic Prochlorophyte 0.65 1.05 10.03 2.19E+08 1.22E+07 
SYNE Generic Synechococcus; 1.04 1.05 2.98 2.24E+08 3.38E+06 
SYMA Generic phycocyanin-rich 

picophytoplankton 1.40 1.06 2.77 2.43E+08 3.13E+06 
NAN1 Small nanophytoplankton 2.86 1.04 3.54 1.82E+08 4.08E+06 
NAN2 Large nanophytoplankton 10.78 1.04 3.54 1.82E+08 4.08E+06 
MIC1 Microphytoplankton (1) 29.75 1.04 3.54 1.82E+08 4.08E+06 
MIC2 Microphytoplankton (2) 27.38 1.04 3.54 1.82E+08 4.08E+06 
PEUK Picoeukaryotes 1.61 1.04 3.54 1.82E+08 4.08E+06 
DET1 Detritus (1) 1.50 1.04 0.083 1.82E+08 - 
DET2 Detritus (2) 1.50 1.04 0.083 1.82E+08 - 
DET3 Detritus (3) 1.77 1.04 0.083 1.82E+08 - 
DET4 Detritus (4) 1.51 1.04 0.083 1.82E+08 - 
DET5 Detritus (5) 1.74 1.04 0.083 1.82E+08 - 
MIN1 Very small minerals 0.02 1.16 0.083 - - 
MIN2 Small minerals 0.29 1.16 0.083 - - 
MIN3 Large minerals (1) 1.50 1.16 0.083 - - 
MIN4 Large minerals (2) 1.50 1.16 0.083 - - 
COL1 Small colloids (1) 0.05 1.04 0.083 1.82E+08 - 
COL2 Small colloids (2) 0.05 1.04 0.083 1.82E+08 - 
COL3 Large colloids 0.25 1.04 0.083 1.82E+08 - 
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Table 2.2.  Values for the smallest and largest diameter and the basis for the size 
distribution are shown for each particle class described in Table 2.1.  The size 
distribution is either based on measured data as indicated by reference or a modeled 
power function. 
 

 
Label Particle Class 

smallest 
diameter 

(m) 

largest 
diameter

(m) Particle Size Distribution Source 
HBAC Heterotrophic 

Bacteria 0.1 1.5 data (Stramski et al.; 2001) 
PROC Generic 

Prochlorophyte 0.25 1.12 data (Stramski et al., 2001) 
SYNE Generic 

Synechococcus; 0.44 2.45 data (Stramski et al., 2001) 
SYMA Generic 

phycocyanin-rich 
picophytoplankton 0.7 2.26 data (Stramski et al., 2001) 

NAN1 Small 
nanophytoplankton 2 8 D-4 (this study) 

NAN2 Large 
nanophytoplankton 8 20 D-4 (this study) 

MIC1 Microphytoplankton 
(1) 20 200 D-4 (this study) 

MIC2 Microphytoplankton 
(2) 20 200 D-4 (this study) 

PEUK Picoeukaryotes 1.2 2.2 D-4 (this study) 
DET1 Detritus (1) 1 200 D-4 (this study) 
DET2 Detritus (2) 1 200 D-4, D<=10um; D-4.7, D>10um (this study) 
DET3 Detritus (3) 1 200 D-3.3 (this study) 
DET4 Detritus (4) 1 200 D-4, D<=10um; D-3.3, D>10um (this study) 
DET5 Detritus (5) 1 200 D-3.3, D<=10um; D-4, D>10um (this study) 
MIN1 Very small minerals 0.01 0.2 D-4 (this study) 
MIN2 Small minerals 0.2 1 D-4 (this study) 
MIN3 Large minerals (1) 1 200 D-4 (this study) 
MIN4 Large minerals (2) 1 200 D-4, D<=10um; D-4.7, D>10um (this study) 
COL1 Small colloids (1) 0.015 0.2 average data (Stramski and Wozniak, 2005) 
COL2 Small colloids (2) 

0.015 0.2 
average data (Stramski and Wozniak, 2005) 

with smoothing 
COL3 Large colloids 0.2 1 data (Stramski and Wozniak, 2005) D-6 
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Table 2.3.  Definition of base model.  The base model consists of 14 particles classes 
(4 of which have 0 contribution) representative of particles classes found within the 
Southern Ocean.  Included in the model are the phytoplankton classes, non-living 
organic colloids and detritus, minerals, and bacteria.  For each class, the total particle 
concentration (Nk) of the class is indicated. 
 
Label Particle Class Total Particle Concentration, Nk (m

-3) 
MIN1 Very small minerals      -- 
COL2 Small colloids (2) 3.50E+14 
HBAC Heterotrophic Bacteria 5.00E+11 
COL3 Large colloids 3.00E+12 
MIN2 Small minerals      -- 
PROC Generic Prochlorophyte      -- 
SYNE Generic Synechococcus; 7.00E+09 
SYMA Generic phycocyanin-rich picophytoplankton      -- 
PEUK Picoeukaryotes 4.00E+09 
DET1 Detritus (1) 1.00E+10 
MIN3 Large minerals (1)      -- 
NAN1 Small nanophytoplankton 1.70E+09 
NAN2 Large nanophytoplankton 2.00E+07 
MIC1 Microphytoplankton (1) 5.00E+05 
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Table 2.4.  Listing of all (38) particle models.  Each model consists of a selection of 
particle classes defined in Table 2.2.  The models are divided into 7 groups defined by 
general characteristics.  The highlighted models are discussed in the results section. 
 
Model Group (Count) ID Model Description 
Base Model (1) I Representative of Southern Ocean  
Alternate Base Models (3) 
 I 10x the concentration of each particle class in base model 
 II 1/3x the concentration of each particle class in base model 
 III Base model with 1x the MIC2 concentration  
Single-Class Phytoplankton Models (10) 
 I Base model + 5x the SYNE concentration 
 II Base model + 5x the PEUK concentration 
 III Base model + 5x the NAN1 concentration 
 IV Base model + 5x the NAN2 concentration 
 V Base model + 5x the MIC1 concentration 
 I* Base model + 10x the SYNE concentration 
 II* Base model + 10x the PEUK concentration 
 III* Base model + 10x the NAN1 concentration 
 IV* Base model + 10x the NAN2 concentration 
 V* Base model + 10x the MIC1 concentration 
High Chlorophyll-a Models (3) 
 I Base model + high chlorophyll-a associated classes 
 II Base model + high chlorophyll-a associated classes 
 III Base model + high chlorophyll-a associated classes 
HBAC Models (2) 
 I Base model + 5x HBAC concentration 
 II Base model + 10x HBAC concentration 
Colloid Models (4) 
 I Base model + 5x the COL2 concentration 
 II Base model + 10x the COL2 concentration 
 III Base model + 5x the COL3 concentration 
 IV Base model + 10x the COL3 concentration 
Detritus Models (8) 
 I Base model + 5x the DET1 concentration 
 II Base model + 10x the DET1 concentration 
 III Base model + 1x the DET2 concentration (replace DET1) 
 IV Base model + 5x the DET2 concentration (replace DET1) 
 V Base model + 10x the DET2 concentration (replace DET1) 
 VI Base model + 1x the DET3 concentration (replace DET1) 
 VII Base model + 1x the DET4 concentration (replace DET1) 
 VIII Base model + 1x the DET5 concentration (replace DET1) 
Mineral Models (7) 
 I Base model + small minerals at 0.1x COL3 
 II Base model + small minerals at 0.5x COL3 
 III Base model + small minerals at 1.0x COL3 
 IV Base model + large minerals at 0.1x DET1 
 V Base model + large minerals at 0.5x DET1 
 VI Base model + large minerals at 1.0x DET1 
 VII Base model + large minerals at 1.0x DET2 
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Table 2.5.  Alternate base model definitions.  The alternate base models are scaled 
versions of the base model presented in Table 2.3.  Model I is 1/3x the particle 
concentration for each class.  Model II is 10x the particle concentration for each class.  
Model III replaces the PSD1 for microphytoplankton (MIC1) with the alternate PSD2 
(MIC2), the concentration is the same. 
 
Label I II III 
MIN1 - - - 
COL2 1/3x 10x 1x 
HBAC 1/3x 10x 1x 
COL3 1/3x 10x 1x 
MIN2 - - - 
PROC - - - 
SYNE 1/3x 10x 1x 
SYMA - - - 
PEUK 1/3x 10x 1x 
DET1 1/3x 10x 1x 
MIN3 - - - 
NAN1 1/3x 10x 1x 
NAN2 1/3x 10x 1x 
MIC1(2) 1/3x 10x 1x PSD2 
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Table 2.6.  Definitions of single-class phytoplankton models.  Each model indicated 
has an additional single phytoplankton class added to the base model at either 5x or 
10x (indicated by an * in the model ID) the particle concentration in the base model. 
 
Label I(*) II(*) III(*) IV(*) V(*) 
MIN1 - - - - - 
COL2 1x 1x 1x 1x 1x 
HBAC 1x 1x 1x 1x 1x 
COL3 1x 1x 1x 1x 1x 
MIN2 - - - - - 
PROC - - - - - 
SYNE 5x (10x) 1x 1x 1x 1x 
SYMA - - - - - 
PEUK 1x 5x (10x) 1x 1x 1x 
DET1 1x 1x 1x 1x 1x 
MIN3 - - - - - 
NAN1 1x 1x 5x (10x) 1x 1x 
NAN2 1x 1x 1x 5x (10x) 1x 
MIC1 1x 1x 1x 1x 5x (10x) 
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Table 2.7.  Definitions of models created to contain high chlorophyll-a 
concentrations.  Each model indicated has multiple phytoplankton classes, colloids, 
and detritus added to the base model at the indicated scaling of the particle 
concentration in the base model.  The phytoplankton classes could represent the living 
component in a bloom condition whereas the colloids and detritus are the resultant 
non-living organic matter.  The highlighted model (I) is discussed in more detail in the 
results section. 
 
Label I II III 
MIN1 - - - 
COL2 1x 1x 1x 
HBAC 1x 2x 2x 
COL3 1x 1x 1x 
MIN2 - - - 
PROC - - - 
SYNE 1x 1x 1x 
SYMA 2x 2x 2x 
PEUK 5x 5x 5x 
DET1 1x 2x 5x 
MIN3 - - - 
NAN1 5x 5x 5x 
NAN2 10x 10x 10x 
MIC1 5x 5x 5x 
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Table 2.8.  Definitions of models created to contain high concentrations of 
heterotrophic bacteria (HBAC).  Models I and II contain 5x and 10x the concentration 
of HBAC found in the base model respectively. 
 
Label I II 
MIN1 - - 
COL2 1x 1x 
HBAC 5x 10x 
COL3 1x 1x 
MIN2 - - 
PROC - - 
SYNE 1x 1x 
SYMA 1x 1x 
PEUK 1x 1x 
DET1 1x 1x 
MIN3 - - 
NAN1 1x 1x 
NAN2 1x 1x 
MIC1 1x 1x 
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Table 2.9.  Definitions of models containing increased concentrations of colloids.  The 
4 models indicated in the table increase the concentration of colloids in the base 
model.  Models I and II increase the small colloids (COL2) concentration of the base 
model by 5x and 10x respectively.  Models III and IV add 5x and 10x more large 
colloids (COL3) to the base model respectively. 
  
Label I II III IV 
MIN1 - - - - 
COL2 5x) 10x 1x 1x 
HBAC 1x 1x 1x 1x 
COL3 1x 1x 10x 10x 
MIN2 - - - - 
PROC - - - - 
SYNE 1x 1x 1x 1x 
SYMA - - - - 
PEUK 1x 1x 1x 1x 
DET1 1x 1x 1x 1x 
MIN3 - - - - 
NAN1 1x 1x 1x 1x 
NAN2 1x 1x 1x 1x 
MIC1 1x 1x 1x 1x 
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Table 2.10.  Definition of the organic detritus models.  The 8 models have additional 
detritus added to the base model.  Models I and II add an additional 5x and 10x 
detritus to the base model with the original particle size distribution (DET1).  Models 
III-V replace the PSD for detritus in the base model with an alternate PSD for detritus 
(DET2) at concentrations of 1x, 5x, and 10x respectively of the concentration within 
the base model.  Models VI-VIII replace the PSD for detritus (DET1) in the base 
model with an alternate PSDs for detritus (DET3, DET4, DET5) at the same 1x 
concentration of the base model.  The highlighted model (II) is discussed in the results 
section. 
 
Label I II III IV V VI,VII,VIII 
MIN1 - - - - - - 
COL2 1x 1x 1x 1x 1x 1x 
HBAC 1x 1x 1x 1x 1x 1x 
COL3 1x 1x 1x 1x 1x 1x 
MIN2 - - - - - - 
PROC - - - - - - 
SYNE 1x 1x 1x 1x 1x 1x 
SYMA - - - - - - 
PEUK 1x 1x 1x 1x 1x 1x 
DET1 5x 10x 1x 

(DET2) 
5x 

(DET2) 
10x 

(DET2) 
1x 

(DET3,4,5) 
MIN3 - - - - - - 
NAN1 1x 1x 1x 1x 1x 1x 
NAN2 1x 1x 1x 1x 1x 1x 
MIC1 1x 1x 1x 1x 1x 1x 
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Table 2.11.  Definitions of the mineral models.  The 7 models add minerals to the base 
model.  Model I has the addition of very small minerals (MIN1) at 10x the particle 
concentration of the small colloids (COL2) found in the base model.  Models II-IV 
add small minerals (MIN2) to the base model at 0.1x, 0.5x and 1x the particle 
concentration of large colloids (COL3) found in the base model.  Models V-VII add 
large minerals (MIN3) to the base model at 0.1x, 0.5x and 1x the particle 
concentration of detritus (DET1) found in the base model.  Model VII adds large 
minerals to the base model with the alternate PSD (MIN4) at 1x the concentration of 
detritus (DET1) in the base model.  The highlighted model (IV) is discussed in the 
results section. 
 
Label I II III IV V VI VII VII 
MIN1 10x 

(COL2) 
- - - - - - - 

COL2 1x 1x 1x 1x 1x 1x 1x 1x 
HBAC 1x 1x 1x 1x 1x 1x 1x 1x 
COL3 1x 1x 1x 1x 1x 1x 1x 1x 
MIN2 - 1/10x 

(COL3) 
1/2x 

(COL3) 
1x 

(COL3) 
- - - - 

PROC - - - - - - - - 
SYNE 1x 1x 1x 1x 1x 1x 1x 1x 
SYMA - - - - - - - - 
PEUK 1x 1x 1x 1x 1x 1x 1x 1x 
DET1 1x 1x 1x 1x 1x 1x 1x 1x 
MIN3 - - - - 1/10x 

(DET1) 
1/2x 

(DET1) 
1x 

(DET1) 
1x 

(DET1) 
(MIN4) 

NAN1 1x 1x 1x 1x 1x 1x 1x 1x 
NAN2 1x 1x 1x 1x 1x 1x 1x 1x 
MIC1 1x 1x 1x 1x 1x 1x 1x 1x 
 



120 

 

Table 2.12.  Results for the base model.  The IOPs and POC and Chl concentrations, 
are indicated for each particle class k within the model as well as the bulk results for 
the model as a whole. 
 
 Nk ap,k(676) bp,k(555) bbp,k(555) ak(555)*bb,k(490) 

ak(490)  bb,k(555) 
POCk Chlk 

Units [m-3] [m-1] [m-1] [m-1] [unitless] [mg m-3] [mg m-3] 
        
Bulk 3.54E+14 5.50E-03 8.12E-02 5.73E-04 3.21 58.972 0.298 
        
MIN1 - - - - - - - 
COL2 3.50E+14 1.28E-04 9.00E-04 2.94E-04 - 11.100 - 
HBAC 5.00E+11 8.60E-05 2.12E-02 1.26E-04 - 13.556 - 
COL3 3.00E+12 6.50E-05 2.20E-03 1.16E-04 - 5.499 - 
MIN2 - - - - - - - 
PROC - - - - 6.65 - - 
SYNE 7.00E+09 3.48E-04 2.23E-03 6.26E-06 5.61 0.995 0.015 
SYMA - - - - 6.65 - - 
PEUK 4.00E+09 8.04E-04 3.86E-03 4.79E-06 5.34 1.631 0.037 
DET1 1.00E+10 1.82E-04 2.58E-02 1.78E-05 - 15.206 - 
MIN3 - - - - - - - 
NAN1 1.70E+09 2.49E-03 2.07E-02 6.54E-06 4.61 5.477 0.123 
NAN2 2.00E+07 1.02E-03 3.75E-03 1.26E-06 5.18 2.870 0.064 
MIC1 5.00E+05 3.75E-04 5.89E-04 5.24E-07 5.41 2.636 0.059 
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Table 2.13.  Results for the example high chlorophyll-a model (model I).  The IOPs 
and POC and Chl concentrations, are indicated for each particle class k within the 
model as well as the bulk results for the model as a whole. 
 
 Nk ap,k(676) bp,k(555) bbp,k(555) ak(555)*bb,k(490) 

ak(490)  bb,k(555) 
POCk Chlk 

Units [m-3] [m-1] [m-1] [m-1] [unitless] [mg m-3] [mg m-3] 
        
Bulk 3.54E+14 2.97E-02 2.18E-01 6.38E-04 1.77 124.777 1.769 
        
MIN1 - - - - - - - 
COL2 3.50E+14 1.28E-04 9.00E-04 2.94E-04 - 11.100 - 
HBAC 5.00E+11 8.60E-05 2.12E-02 1.26E-04 - 13.556 - 
COL3 3.00E+12 6.50E-05 2.20E-03 1.16E-04 - 5.499 - 
MIN2 - - - - - - - 
PROC - - - - 6.65 - - 
SYNE 1.40E+10 6.96E-04 4.46E-03 1.25E-05 5.28 1.990 0.030 
SYMA - - - - 6.65 - - 
PEUK 2.00E+10 4.02E-03 1.93E-02 2.40E-05 4.15 8.157 0.183 
DET1 1.00E+10 1.82E-04 2.58E-02 1.78E-05 - 15.206 - 
MIN3 - - - - - - - 
NAN1 8.50E+09 1.25E-02 1.04E-01 3.27E-05 2.94 27.386 0.615 
NAN2 2.00E+08 1.02E-02 3.75E-02 1.26E-05 3.27 28.700 0.645 
MIC1 2.50E+06 1.88E-03 2.95E-03 2.62E-06 4.64 13.182 0.296 
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Table 2.14.  Results for the example detritus-enriched model (model II, 10x DET1).  
The IOPs and POC and Chl concentrations, are indicated for each particle class k 
within the model as well as the bulk results for the model as a whole. 
 
 Nk ap,k(676) bp,k(555) bbp,k(555) ak(555)*bb,k(490) 

ak(490)  bb,k(555) 
POCk Chlk 

Units [m-3] [m-1] [m-1] [m-1] [unitless] [mg m-3] [mg m-3] 
        
Bulk 3.54E+14 7.13E-03 3.14E-01 7.33E-04 2.64 195.825 0.298 
        
MIN1 - - - - - - - 
COL2 3.50E+14 1.28E-04 9.00E-04 2.94E-04 - 11.100 - 
HBAC 5.00E+11 8.60E-05 2.12E-02 1.26E-04 - 13.556 - 
COL3 3.00E+12 6.50E-05 2.20E-03 1.16E-04 - 5.499 - 
MIN2 - - - - - - - 
PROC - - - - 6.65 - - 
SYNE 7.00E+09 3.48E-04 2.23E-03 6.26E-06 5.61 0.995 0.015 
SYMA - - - - 6.65 - - 
PEUK 4.00E+09 8.04E-04 3.86E-03 4.79E-06 5.34 1.631 0.037 
DET1 1.00E+11 1.82E-03 2.58E-01 1.78E-04 - 152.060 - 
MIN3 - - - - - - - 
NAN1 1.70E+09 2.49E-03 2.07E-02 6.54E-06 4.61 5.477 0.123 
NAN2 2.00E+07 1.02E-03 3.75E-03 1.26E-06 5.18 2.870 0.064 
MIC1 5.00E+05 3.75E-04 5.89E-04 5.24E-07 5.41 2.636 0.059 
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Table 2.15.  Results for the example mineral-enriched model (model IV, inclusion of 
small minerals).  The IOPs and POC and Chl concentrations, are indicated for each 
particle class k within the model as well as the bulk results for the model as a whole. 
 
 Nk ap,k(676) bp,k(555) bbp,k(555) ak(555)*bb,k(490) 

ak(490)  bb,k(555) 
POCk Chlk 

Units [m-3] [m-1] [m-1] [m-1] [unitless] [mg m-3] [mg m-3] 
        
Bulk 3.57E+14 5.65E-03 1.98E-01 3.27E-03 2.48 58.972 0.298 
        
MIN1 - - - - - - - 
COL2 3.50E+14 1.28E-04 9.00E-04 2.94E-04 - 11.100 - 
HBAC 5.00E+11 8.60E-05 2.12E-02 1.26E-04 - 13.556 - 
COL3 3.00E+12 6.50E-05 2.20E-03 1.16E-04 - 5.499 - 
MIN2 3.00E+12 1.52E-04 1.17E-01 2.70E-03 - - - 
PROC - - - - 6.65 - - 
SYNE 7.00E+09 3.48E-04 2.23E-03 6.26E-06 5.61 0.995 0.015 
SYMA - - - - 6.65 - - 
PEUK 4.00E+09 8.04E-04 3.86E-03 4.79E-06 5.34 1.631 0.037 
DET1 1.00E+10 1.82E-04 2.58E-02 1.78E-05 - 15.206 - 
MIN3 - - - - - - - 
NAN1 1.70E+09 2.49E-03 2.07E-02 6.54E-06 4.61 5.477 0.123 
NAN2 2.00E+07 1.02E-03 3.75E-03 1.26E-06 5.18 2.870 0.064 
MIC1 5.00E+05 3.75E-04 5.89E-04 5.24E-07 5.41 2.636 0.059 
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Table 2.16.  Bulk IOPs, POC, and Chl results for all models. 
 

ID ap(676) 
[m-1] 

Chl 
[mg m-3] 

bbp(555) 
[m-1] 

POC 
[mg m-3] 

POC 
Chl 

ad(440) 
 ap(440) 

a(555)*bb(490) 
a(490)  bb(555) 

Base Model 
 5.50E-03 2.98E-01 5.73E-04 5.90E+01 1.98E+02 2.87E-01 3.21E+00 

Alternate Base Models (3) 
I 5.50E-02 2.98E+00 5.73E-03 5.90E+02 1.98E+02 2.87E-01 1.05E+00 
II 1.81E-03 9.85E-02 1.89E-04 1.95E+01 1.98E+02 2.87E-01 4.45E+00 
III 5.35E-03 2.75E-01 5.70E-04 5.29E+01 1.92E+02 2.71E-01 3.25E+00 

Single-Class Phytoplankton Models (10) 
I 6.89E-03 3.59E-01 5.98E-04 6.30E+01 1.76E+02 2.26E-01 2.95E+00 
II 8.71E-03 4.45E-01 5.92E-04 6.55E+01 1.47E+02 1.87E-01 2.81E+00 
III 1.55E-02 7.90E-01 5.99E-04 8.09E+01 1.02E+02 1.16E-01 2.30E+00 
IV 9.56E-03 5.56E-01 5.78E-04 7.05E+01 1.27E+02 1.97E-01 2.77E+00 
V 7.00E-03 5.35E-01 5.75E-04 6.95E+01 1.30E+02 2.56E-01 3.01E+00 
I* 8.63E-03 4.34E-01 6.29E-04 6.79E+01 1.57E+02 1.79E-01 2.69E+00 
II* 1.27E-02 6.28E-01 6.16E-04 7.37E+01 1.17E+02 1.30E-01 2.45E+00 
III* 2.79E-02 1.41E+00 6.32E-04 1.08E+02 7.70E+01 6.63E-02 1.79E+00 
IV* 1.46E-02 8.78E-01 5.84E-04 8.48E+01 9.65E+01 1.41E-01 2.41E+00 
V* 8.87E-03 8.31E-01 5.78E-04 8.27E+01 9.95E+01 2.26E-01 2.82E+00 

High Chlorophyll-a Models (3) 
I 2.97E-02 1.77E+00 6.38E-04 1.25E+02 7.05E+01 6.78E-02 1.77E+00 
II 3.00E-02 1.77E+00 7.82E-04 1.54E+02 8.68E+01 1.05E-01 1.71E+00 
III 3.05E-02 1.77E+00 8.36E-04 1.99E+02 1.13E+02 1.56E-01 1.66E+00 

HBAC Models (2) 
I 5.84E-03 2.98E-01 1.08E-03 1.13E+02 3.79E+02 4.66E-01 2.81E+00 
II 6.27E-03 2.98E-01 1.71E-03 1.81E+02 6.07E+02 5.94E-01 2.48E+00 

Colloid Models (4) 
I 6.01E-03 2.98E-01 1.75E-03 1.03E+02 3.46E+02 4.50E-01 2.83E+00 
II 6.65E-03 2.98E-01 3.22E-03 1.59E+02 5.32E+02 5.73E-01 2.56E+00 
III 5.76E-03 2.98E-01 1.04E-03 8.10E+01 2.71E+02 3.81E-01 2.78E+00 
IV 6.08E-03 2.98E-01 1.61E-03 1.08E+02 3.64E+02 4.68E-01 2.45E+00 

Detritus Models (8) 
I 6.23E-03 2.98E-01 6.44E-04 1.20E+02 4.02E+02 4.75E-01 2.92E+00 
II 7.13E-03 2.98E-01 7.33E-04 1.96E+02 6.56E+02 6.06E-01 2.64E+00 
III 5.44E-03 2.98E-01 5.70E-04 5.40E+01 1.81E+02 2.70E-01 3.23E+00 
IV 5.94E-03 2.98E-01 6.32E-04 9.48E+01 3.18E+02 4.26E-01 3.01E+00 
V 6.56E-03 2.98E-01 7.08E-04 1.46E+02 4.89E+02 5.47E-01 2.77E+00 
VI 6.76E-03 2.98E-01 6.19E-04 1.69E+02 5.65E+02 5.22E-01 2.84E+00 
VII 5.73E-03 2.98E-01 5.80E-04 7.96E+01 2.67E+02 3.42E-01 3.14E+00 
VIII 5.86E-03 2.98E-01 5.92E-04 8.94E+01 3.00E+02 3.88E-01 3.08E+00 
Mineral Models (7) 

I 5.51E-03 2.98E-01 8.43E-04 5.90E+01 1.98E+02 2.84E-01 3.04E+00 
II 5.57E-03 2.98E-01 1.92E-03 5.90E+01 1.98E+02 2.74E-01 2.68E+00 
III 5.65E-03 2.98E-01 3.27E-03 5.90E+01 1.98E+02 2.63E-01 2.48E+00 
IV 5.52E-03 2.98E-01 6.73E-04 5.90E+01 1.98E+02 2.84E-01 3.14E+00 
V 5.60E-03 2.98E-01 1.08E-03 5.90E+01 1.98E+02 2.72E-01 2.95E+00 
VI 5.71E-03 2.98E-01 1.58E-03 5.90E+01 1.98E+02 2.59E-01 2.78E+00 
VII 5.65E-03 2.98E-01 1.55E-03 5.90E+01 1.98E+02 2.65E-01 2.81E+00 

 



125 

 

2.8.  References 

Bishop, J. K. B. (1999). Transmissometer measurement of POC, Deep-Sea Res. Part I, 
46, 353–369. 

 
Bohren, C. F. and D. R. Huffman (1983), Absorption and scattering of light by small 

particles, J. Wiley and Sons, New York. 
 
DuRand, M., R. Green, H. Sosik, and R. J. Olson (2002). Diel variations in optical 

properties of Micromonas pusilla (Prasinophyceae). J. Phycol.. 38, 1132-1142. 
 
Gardner, W. D., I. D. Walsh, and M. J. Richardson (1993), Biophysical forcing of 

particle production and distribution during a spring bloom in the North Atlantic, 
Deep Sea-Res. Part II, 40, 171–195. 

 
Gordon, H. R. and A. Morel (1983), Remote assessment of ocean color for 

interpretation of satellite visible imagery - A review.  Lecture notes on coastal and 
estuarine studies, 114 pp., Springer-Verlag, New York. 

 
Loisel, H. and A. Morel, A. (1998), Light scattering and chlorophyll concentration in 

case 1 waters: A reexamination. Limnol. Oceanogr., 43, 847-858. 
 
Montagnes, D. J., J. A. Berges, P. J. Harrison, and F. J. R. Taylor (1994), Estimation 

of carbon, nitrogen, protein, and chlorophyll a from volume in marine 
phytoplankton. Limnol. Oceanogr., 39, 1044–1060. 

 
Morel, A. (1974), Optical properties of pure water and pure sea water, in Optical 

Aspects of Oceanography, edited by N. G. Jerlov and E. Steeman-Nielsen, pp. 1-
24, Academic Press, New York. 

 
Morel, A. and L. Prieur, L. (1977), Analysis of variations in ocean color. Limnol. 

Oceanogr., 22, 709-722. 
 
O'Reilly, J. E, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, 

M. Kahru, and C. R. McClain (1998), Ocean color chlorophyll algorithms for 
SeaWiFS, J. Geophys. Res., 103, 24937–24953. 

 
Pope, R. and E. Fry (1997), Absorption spectrum (380-700 nm) of pure water .2. 

Integrating cavity measurements. Appl.Opt., 36, 8710-8723. 
 
Reynolds, R. A., D. Stramski, and B. G. Mitchell (2001), A chlorophyll-dependent 

semianalytical reflectance model derived from field measurements of absorption 
and backscattering coefficients within the Southern Ocean, J. Geophys. Res., 106 
(C4), 7125–7138. 

 



126 

 

Stramska, M., and D. Stramski (2005), Variability of particulate carbon concentration 
in the north polar Atlantic based on ocean color observations with Sea-viewing 
Wide Field-of-view Sensor (SeaWiFS ), J. Geophys. Res., 110, C10018, 
doi:10.1029/2004JC002762. 

 
Stramski, D., A. Bricaud, and A. Morel (2001), Modeling the inherent optical 

properties of the ocean based on the detailed composition of planktonic 
community, Appl. Opt., 40, 2929-2945. 

 
Stramski, D., and A. Morel (1990), Optical properties of photosynthetic picoplankton 

in different physiological states as affected by growth irradiance, Deep-Sea Res. 
37, 245-266. 

 
Stramski, D., E. Boss, D. Bogucki, and K. J. Voss (2004), The role of seawater 

constituents in light backscattering in the ocean, Prog. Oceanogr., 61, 27-56. 
 
Stramski, D., R. A. Reynolds, M. Kahru, and B. G. Mitchell (1999), Estimation of 

particulate organic carbon in the ocean from satellite remote sensing, Science, 285, 
239-242. 

 
Stramski, D., and R. A. Reynolds (1993), Diel variations in the optical properties of a 

marine diatom. Limnol. Oceanogr., 38, 1347-1364. 
 
Stramski, D., R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. 

Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre (2008), 
Relationships between the surface concentration of particulate organic carbon and 
optical properties in the eastern South Pacific and eastern Atlantic Oceans, 
Biogeosciences, 5, 171-201. 

 
Verity, P. G., C. Y. Robertson, C. R. Tronzo, M. G. Andrews, J. R. Nelson, and M. E. 

Sieracki (1992). Relationships between cell volume and the carbon and nitrogen 
content of marine photosynthetic nanoplankton, Limnol. Oceanogr., 37,1434–
1446. 

 

 



127 

Chapter 3.  Seasonal and Interannual Variability of Particulate Organic Carbon 

within the Southern Ocean from Satellite Ocean Color Observations 

 

 

3.0.  Abstract 

We use field data of particulate organic carbon (POC) concentration and 

spectral remote-sensing reflectance, Rrs(), to develop an empirical algorithm for 

estimating POC from ocean color in the Southern Ocean.  The algorithm based on the 

band ratio Rrs(443)/Rrs(555) is used in conjunction with SeaWiFS satellite data to 

demonstrate seasonal and interannual variability in POC from 1997 through 2007.  

The surface POC concentrations generally range from 30 to 120 mg m-3.  On a whole 

basin scale (south of 35oS), the monthly means are mostly 70 - 80 mg m-3.  The 

seasonal signal is weakest at lower latitudes within the Sub-Antarctic Zone and most 

pronounced at higher latitudes (>55oS).  The area-integrated stock of water column 

POC in the upper 100 m shows small interannual variations and no clear evidence for 

long-term trend during the examined 10-year period.  The seasonal maximum of the 

POC stock occurs in December and reaches a value of about 0.6 Pg of carbon for the 

entire basin south of 35oS.  The seasonal range of area-normalized POC is between 

about 5.5 and 6.6 g m-2.  The region south of 55oS provides a dominant contribution to 

the accumulation of POC within the Southern Ocean during the productive period of 

the season.  During the austral spring, the area-normalized POC accumulates in these 

high-latitude waters at rates from about 0.2 to 0.7 g m-2 month-1.  The comparison of 
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these rates with large-scale satellite-based estimates of net primary production 

indicates that only a small fraction (<10%) of production accumulates as POC. 

 

3.1.  Introduction 

The Southern Ocean is a unique oceanic domain that encircles the globe 

providing a link for exchanges of water masses and climatically significant quantities 

between the world’s major ocean basins and atmosphere.  Numerous recent studies 

have been motivated by a need to advance an understanding of the role of the Southern 

Ocean in regulating atmospheric CO2 over time scales relevant to climate change and 

how the ecosystem structure and biogeochemical cycles of the Southern Ocean 

respond to climate change [e.g., Sarmiento and Orr, 1991; Sarmiento et al., 2004; Le 

Quéré et al., 2007].  The Southern Ocean, in particular a region of the Antarctic 

Circumpolar Current between 40o and 60oS, has been identified as a contemporary net 

sink for atmospheric CO2 on an annual basis, but the magnitude of this sink is not 

firmly established [e.g., Metzl et al., 1999; Takahashi et al., 2002; McNeil et al., 

2007]. 

The drawdown of atmospheric CO2 into the ocean is favored by: (i) the 

increase in the CO2 solubility in the cold high-latitude surface waters that sink to form 

the deep waters of the ocean, and (ii) biological uptake of CO2 via phytoplankton 

photosynthesis in the euphotic zone of the ocean, which results in the production of 

particulate and dissolved forms of organic carbon that is then partly exported into the 

deep sea.  The ice-free Southern Ocean is the largest of several oceanic regions with 

high-nutrient low-chlorophyll (HNLC) characteristics, where major macronutrients 
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(nitrate, phosphate, silicate) occurring in significant concentrations in surface waters 

are under utilized by autotrophic processes [Martin et al., 1991; Mitchell et al., 1991; 

Banse, 1996].  These characteristics indicate that the capacity of the biological pump 

to export organic carbon out of the euphotic layer within the majority of the Southern 

Ocean is less than its potential maximum.  Recent experimental and modeling studies 

showed, however, relatively high estimates of efficiency of the biological pump 

exporting particulate organic carbon (POC) [Honjo et al., 2000; Trull et al., 2001; 

Schlitzer, 2002].  Potential changes in the efficiency of the Southern Ocean’s 

biological pump are of interest because they may affect air-sea CO2 fluxes and levels 

of atmospheric CO2 [e.g., Knox and McElroy, 1984; Sarmiento and Toggweiler, 1984; 

Siegenthaler and Wenk, 1984]. 

An assessment of biological controls of the carbon cycle, including the 

efficiency of the biological pump and air-sea CO2 fluxes, requires determinations of 

various carbon reservoirs as well as the processes responsible for transformations and 

transport of carbon, such as primary production, remineralization, and export of 

organic carbon.  POC in the surface ocean, which consists of autotrophic and 

heterotrophic plankton and biologically-derived detrital particles, is one of the 

reservoirs of substantial importance.  The biological pump that exports organic carbon 

out of the surface ocean is effected largely by sinking particles, which provides a 

mechanism for a long-term storage of atmospheric CO2 in the deep ocean [Volk and 

Hoffert, 1985; Longhurst and Harrison, 1989].  In addition, the net change of POC in 

the surface ocean is a component of net community production (NCP), which is 

defined as gross primary production minus respiration by all the autotrophic and 



130 

 

heterotrophic organisms [e.g., Eppley, 1989].  As the NCP describes the net amount of 

organic carbon produced, it is equivalent to the net amount of inorganic carbon 

biologically consumed in surface waters.  Therefore, the NCP integrated within the 

euphotic layer over a certain period of time determines the role of biological activities 

for the inorganic carbon budget in surface waters and can also provide a useful 

constraint for estimating export production out of the euphotic layer if sufficient 

information about carbon mass balance components, including the net change of POC, 

is available [Bates et al., 1998; Hansell and Carlson, 1998; Sweeney et al., 2000; 

Sabine et al., 2004]. 

The stock of POC in the upper ocean is highly variable and its large-scale 

distributions and long-term variations are poorly characterized.  Historically, the large-

scale estimates of this variability have been difficult to derive with confidence, 

primarily because conventional oceanographic sampling has been both temporally and 

spatially sparse.  Recent efforts to develop remote sensing algorithms for estimating 

POC in the upper ocean from satellite imagery of ocean color offer significant 

potential for extending temporal and spatial scales of observations in marine 

biogeochemical studies [Stramski et al., 1999; Loisel et al., 2001; Mishonov et al., 

2003; Stramska and Stramski, 2005; Gardner et al., 2006; Pabi and Arrigo, 2006; 

Stramski et al., 2008; Son et al., 2009].  The commonly accepted empirical approach 

to develop algorithms for estimating seawater constituent concentrations from the 

spectral ocean reflectance (ocean color) requires the simultaneous collection of in situ 

data of relevant optical quantities and seawater constituents.  Whereas relatively large 

amounts of such field data have been collected over the years to allow the 
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development of chlorophyll algorithms [e.g., O’Reilly et al., 1998; 2000], the amount 

of data relevant for the POC algorithm development is much more limited.  Only a 

few studies exist in which the development of POC algorithms is based on an adequate 

suite of simultaneously collected in situ data that include POC, ocean reflectance, and 

inherent optical properties (IOPs) of seawater [Stramski et al., 1999; Stramska and 

Stramski, 2005; Pabi and Arrigo, 2006; Stramski et al., 2008].  Clearly, due to the 

limited availability of adequate field data and their limited geographic coverage, 

further work in this direction is required. 

In this study we use field data collected on several cruises in the Southern 

Ocean to develop an empirical algorithm that relates surface concentration of POC to 

the blue-to-green band ratio of remote-sensing reflectance, Rrs.  Our primary objective 

is to apply the algorithm to satellite data of Sea-viewing Wide Field-of-View Sensor 

(SeaWiFS) and examine seasonal and interannual variability in POC within the 

surface waters of the Southern Ocean during a period from September 1997 through 

December 2007. 

 

3.2.  Field Experiments 

Optical and POC measurements were made during several oceanographic 

cruises within three regions of the Southern Ocean spanning a time period from 1997 

through 2006.  These regions include the waters near Antarctic Peninsula and South 

Shetland Islands (LMG04, AMLR04, and AMLR06 cruises), the Antarctic Polar 

Frontal Zone (PFZ) within the Pacific sector (REV98 cruises), and the Ross Sea 

(NBP97 cruise) (Figure 3.1).  The stations were located in high-latitude waters south 
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of 50oS.  Most stations were south of 60oS.  During each cruise vertical profiles of 

optical data were collected from several instruments either mounted on the ship's 

CTD/rosette system for simultaneous in situ measurements with discrete water 

sampling or deployed shortly before or after the CTD/rosette cast.  These deployments 

of the CTD/rosette and optical instruments constitute a common station.  Data 

collected at the common station are considered "coincident in time and space" for the 

purposes of development of the POC algorithm.  The measurements of direct interest 

to this study include in situ vertical profiles of radiometric quantities from which the 

remote-sensing reflectance was determined and the analysis of water samples for the 

determinations of POC concentration.  We restrict our algorithm development to the 

use of POC and optical data from open water stations where it is reasonable to assume 

that optical properties and suspended particles are dominated by plankton 

microorganisms and plankton-derived organic matter. 

 

3.2.1.  In situ Radiometric Measurements 

Underwater vertical profiles of spectral downwelling irradiance, Ed(z, ), and 

upwelling radiance in the nadir direction, Lu(z, ) (where z is depth and  light 

wavelength in vacuo), were made with several calibrated radiometers (Biospherical 

Instruments, Inc.), each having a number of wavebands in the visible and ultraviolet 

spectral regions.  Specifically, we used MER-2040 and MER-2048 profiling 

radiometers that were mounted on an optical package lowered by the ship’s winch, or 

PRR-600 and PRR-800 radiometers deployed as free-falling instruments. 
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The radiometric measurements and data processing were consistent with 

methods described in NASA protocols [Mueller et al., 2003].  Profiles were visually 

inspected for quality, the data were binned into 1-m depth intervals, and the near-

surface data (usually the top 3-5 m) were rejected from the analysis to avoid surface 

wave effects.  A depth range within the upper mixed layer (typically 5-20 m) was then 

selected for extrapolation of Ed(z, ) and Lu(z, ) to immediately beneath the sea 

surface using the vertical attenuation coefficients for downwelling irradiance (Kd) and 

upwelling radiance (KLu).  The estimates of Ed(z = 0-, ) and Lu(z = 0-, ) just beneath 

the surface were propagated through the surface to yield the above-water estimates of 

downward irradiance, Ed(z = 0+, ) ≡ Es(), and water-leaving radiance, Lu(z = 0+, ) ≡ 

Lw().  The effective coefficients for propagating Ed and Lu through the water-air 

interface were: Ed(z = 0+, )/Ed(z = 0-, ) = 1/0.957 and Lu(z = 0+, )/Lu(z = 0-, ) = 

0.5425.  The value of 0.5425 for the transmittance coefficient for Lu corresponds to the 

refractive index of water, nw = 1.343, which is a reasonable value representative of the 

visible spectral range [e.g., Mobley, 1994]. 

In the final step of computations, the spectral remote sensing-reflectance just 

above the water surface was obtained as Rrs() = Lw()/Es().  With the values for the 

effective transmittance coefficients for radiance and irradiance assumed in this study, 

the relationship between Rrs() and its counterpart reflectance just below the surface 

is:  Rrs() = 0.519 Lu(z = 0-, )/Ed(z = 0-, ).  For the purposes of POC algorithm 

development, our interest in this study is focused on the Rrs() values from the blue 

and green spectral regions. 
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3.2.2.  POC Determinations 

Discrete water samples were collected from Niskin bottles triggered at several 

depths within the upper water column extending typically to 200 m during 

CTD/rosette profiles.  For the determinations of POC concentration, suspended 

particles were collected by filtration under low vacuum of measured volumes of water 

samples onto precombusted (450°C for 4 hours) 25-mm Whatman glass-fiber filters 

(GF/F).  After filtration, the samples were rinsed with 0.01N HCl to remove inorganic 

carbon, transferred to sterile glass vials, dried at 55°C in a clean oven, and stored until 

post cruise analysis in the laboratory.  POC was determined by high temperature 

combustion of sample filters via standard CHN analysis [Parsons et al., 1984; Knap et 

al., 1996].  Blank filters were also collected during the cruises to quantify background 

POC.  Precombusted blank GF/F filters were placed on the filtration rig with a small 

amount of deionized water for the same period of time needed to filter samples of 

seawater.  The blank filters were then processed the same way as sample filters. 

The final values of POC concentration were calculated by subtracting the mass 

of organic carbon on blank filters from the mass of carbon on sample filters, and then 

dividing this result by the measured volume of filtered sample.  For the AMLR04, 

LMG04, and AMLR06 cruises, replicate POC samples were taken for each depth 

examined and averaged to produce the final POC concentration; otherwise the POC 

estimate was obtained from the analysis of a single sample filter.  For the development 

of the POC algorithm we only consider data collected at near-surface depths (< 10 m).  

The POC data between the surface and the depths exceeding 100 m are considered in 
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the development of the relationship between the surface POC and the water-column 

integrated (0-100 m) POC stock. 

 

3.3.  Results and Discussion 

3.3.1.  Reflectance Band-ratio Algorithm for POC 

Our approach for developing algorithms to estimate surface POC concentration 

from ocean reflectance relies on empirical relationships between surface POC and the 

blue-to-green (BG) band-ratio of remote-sensing reflectance, Rrs(B)/Rrs(555).  The 

rationale for the POC band-ratio algorithm is similar to that used to estimate 

chlorophyll-a concentration from reflectance band-ratio algorithms.  Specifically, in 

the case of POC algorithm, variations in the BG ratio can be viewed as being driven 

largely by changes in the spectral absorption coefficient of seawater associated with 

varying concentrations of all kinds of POC-containing particles, which include not 

only pigmented phytoplankton but also organic detritus and heterotrophic organisms.  

All these POC-containing particle types show higher absorption in the blue than in the 

green spectral region, so their effect on the BG ratio is expected to be qualitatively 

similar. 

We examined the relationship between the surface POC and the following 

band ratios of reflectance: Rrs(443)/Rrs(555), Rrs(490)/Rrs(555), Rrs(510)/Rrs(555), and 

the maximum band ratio, MBR.  MBR represents the largest of the three ratios 

considered.  Rrs(443)/Rrs(555) was most frequently the largest (55%) and 

Rrs(510)/Rrs(555) was least frequently the largest (15%) amongst the three ratios 

considered within our data set.  Note that the bands centered at 443, 490, 510, and 555 
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nm are consistent with the SeaWiFS wavebands [McClain et al., 2004], and these 

bands are currently used in the NASA algorithm for estimating chlorophyll-a 

concentrations in the global ocean [O’Reilly et al., 1998; 2000].  We tested two 

equations for fitting the data of POC versus reflectance ratio.  One equation is the 

power function and the other equation has the form of the current Ocean Chlorophyll 4 

(OC4) algorithm [O'Reilly et al., 2000]. 

The simple power function of POC versus Rrs(443)/Rrs(555) was found to have 

slightly better error statistics than the other algorithms tested.  This power function is 

POC = 189.29 [Rrs(443)/Rrs(555)]-0.870, which is shown in Figure 3.2 along with the 

data points.  Presently this algorithm appears to be the best choice for the applications 

in the Southern Ocean.  For our data set consisting of 85 measurements that were used 

to derive this algorithm, the mean normalized bias is 3.2%, the normalized root mean 

square error is 27.3%, and the determination coefficient is 0.933 [see Stramski et al., 

2008 for formulas for calculating the error statistics]. 

The best fit coefficients for the Southern Ocean algorithms show some 

differences when compared with the previous analysis of POC and reflectance 

measurements taken in other oceanic regions [Stramska and Stramski, 2005; Stramski 

et al., 2008].  For example, the coefficients of the power function POC = A 

[Rrs(443)/Rrs(555)]B for the data from the tropical and subtropical waters of the eastern 

South Pacific and eastern Atlantic Oceans examined in Stramski et al. [2008] were A = 

203.2 and B = -1.034.  These differences support the notion that some variability in the 

empirical band-ratio algorithms can be expected within the open waters of the global 

ocean.  Naturally, the optically complex coastal environments present even greater 
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research challenges for ocean color algorithms.  In this study, we restricted the 

algorithm development to the use of data from open water stations and we excluded 

data from near-coastal stations visited on the AMLR cruises due to potentially 

significant input of terrigenous material.  Some data included in our analysis were 

collected during an intense bloom of Phaeocystis antarctica in the Ross Sea where 

POC was significantly higher than typical open water concentrations (see the NBP97 

data points for POC > 800 mg m-3 in Figure 3.2). 

It is of interest to note that the use of the blue-to-green reflectance band ratios 

as inputs to POC and chlorophyll-a algorithms implies that both estimated variables 

are forced to always covary.  However, because the band-ratio algorithms for POC and 

chlorophyll-a are described by different nonlinear functions, the ratio of the two data 

products will not be constant over the dynamic range of these variables.  Nevertheless, 

further work on approaches that have potential for more effective decoupling of the 

remote sensing estimations of POC and chlorophyll-a appears to be warranted 

[Stramski et al., 2008]. 

 

3.3.2.  Satellite Estimates of POC in the Southern Ocean 

To evaluate the spatial, seasonal, and interannual variations of surface POC in 

the Southern Ocean, we applied our power function algorithm based on the band ratio 

Rrs(443)/Rrs(555) to the SeaWiFS-derived Rrs().  For this analysis the Level 3B 

standard SeaWiFS data products of normalized-water leaving radiance, nLw(), binned 

to a 9x9 km equal-area grid within monthly intervals spanning a period of over 10 

years from September 1997 through December 2007 were obtained from the NASA 
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Ocean Color Web.  These data result from SeaWiFS Reprocessing 5.2.  Because our 

POC algorithm requires Rrs() as input, the satellite estimates of nLw() were first 

converted to Rrs() using the relationship Rrs() = nLw() / Fo(), where Fo() is the 

extraterrestrial solar constant.  The values of Fo() were taken from Thuillier et al. 

[2003].  After determining the satellite estimates of Rrs(), the POC algorithm was 

applied to produce the monthly composites of POC distribution within the Southern 

Ocean. 

 

3.3.2.1.  Surface Concentration of POC 

Maps of monthly mean POC concentrations obtained by averaging data for 

each month over a 10-year period are displayed in Figure 3.3.  The valid pixels of 

ocean color data are determined through standard NASA processing after screening 

for clouds, sun glint, ice cover, atmospheric correction failure, and other failure 

conditions (e.g., negative Rrs).  The white areas in the maps reflect data that are 

flagged as invalid with this standard processing.  Because of multiyear averaging of 

monthly composites, significant seasonal change in the white area seen in Figure 3.3 

can be attributed primarily to winter darkness, short day length, low solar elevation, 

and seasonal variation in sea ice extent at high latitudes.  Other factors, such as cloud 

cover, appear to have smaller contribution to the extent of data gaps in these multiyear 

average maps.  During the austral autumn, winter, and early spring, large amounts of 

invalid (flagged) satellite data limit our investigation of POC to lower latitudes, 

generally north of 50o-55oS.  The POC maps for July and August have no valid data 

south of 55oS.  The spatial pattern and seasonal change of white areas in Figure 3.3 for 
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August through April resemble monthly images of sea ice coverage obtained from 

passive microwave remote sensing [Comiso et al., 1993; Parkinson, 2004].  For May-

July the white areas are also largely related to NASA-flagged invalid ocean color data 

due to large solar zenith angle. 

One of the most striking features of the POC distributions displayed in Figure 

3 occurs at latitudes of about 35-40oS within the Subtropical Frontal Zone, STFZ.  

This zone separates the nitrate replete subantarctic waters of the Southern Ocean from 

the lower latitude nitrate-deplete subtropical gyres where primary production is very 

low [Belkin and Gordon, 1996].  A significant north-to-south increase in POC is 

observed throughout the year within STFZ all around the globe. 

The monthly distributions of POC show significant spatial variability within 

the Southern Ocean.  Elevated POC concentrations generally occur within and 

downstream of coastal and shelf areas, in regions of major fronts, and areas associated 

with sea ice retreat.  These areas of elevated POC are generally consistent with 

previous satellite-based estimates of enhanced chlorophyll-a concentrations and 

primary production in the Southern Ocean [Comiso et al., 1993; Sullivan et al., 1993; 

Arrigo et al., 1998; Moore and Abbott, 2000; Arrigo et al., 2008].  For example, 

among the coastal and shelf regions, high POC values often exceeding 150 mg m-3, are 

seen off the east coast of South America, in waters surrounding and downstream of 

Kerguelen Islands (~50oS, 70oE), off southern Australia and New Zealand, and in 

some shelf and coastal areas around the Antarctic continent.  High POC values are 

observed in parts of the Ross Sea from December through the rest of austral summer, 
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which can be attributed to the development of phytoplankton blooms in areas of sea 

ice retreat [Arrigo and McClain, 1994; Arrigo and van Dijken, 2003]. 

Bands of elevated POC associated with fronts are also apparent in the Atlantic 

and Indian sectors of the Southern Ocean.  These bands occur within two major frontal 

zones, the Subtropical Frontal Zone, STFZ, and the Polar Frontal Zone, PFZ.  Moving 

from low to high latitudes, the STFZ is bounded by the North Subtropical Front, 

NSTF, and the South Subtropical Front, SSTF, and the PFZ is bounded by 

Subantarctic Front, SAF, and the Polar Front, PF [Belkin and Gordon, 1996].  These 

frontal structures encompass the flow of the Antarctic Circumpolar Current, ACC.  

The major oceanic regime north of PFZ is generally regarded as the Sub-Antarctic 

Zone (SAZ).  The regime from the PF southward to the continental margins of 

Antarctica is the Antarctic Zone (AZ) [Orsi et al., 1995, McNeil et al., 2007].  The AZ 

encompasses Antarctic surface water masses which are widely subject to winter ice 

and the effects of melting within the marginal ice zone. 

By showing the multiyear monthly means of POC based on averaging data 

from a 10-year period, Figure 3.3 highlights the persistent POC features that occur 

consistently every year or nearly every year in the same areas of the Southern Ocean.  

The spatial distribution of POC in any given month can, however, vary considerably 

from year to year.  Example illustration of this variability is provided in Figure 3.4, 

which compares a 10-year mean distribution of POC for the month of January with the 

distributions for January 1999, 2001, and 2006.  One can see, for example, that the 

region of very low POC in the southeastern Pacific sector and extending through the 

southern part of the Drake Passage is significantly more pronounced in January 1999 
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compared with other images.  Another example is the presence of relatively large area 

of elevated POC within the southeastern Atlantic sector in January 2006.  This feature 

has a much less pronounced expression in other images. 

The statistical characteristics of seasonal variability in surface POC are 

presented in Figures 3.5 and 3.6.  These calculations were made for the entire 

Southern Ocean, which for the purpose of this study is defined as the area south of 

35oS.  The latitude of 35oS is close to the mean position of the North Subtropical Front 

that is often used to mark the northern border of the Southern Ocean [e.g., Belkin and 

Gordon, 1996; Moore and Abbott, 2000; MacCready and Quay, 2001].  During the 

months from November through February, which encompass the peak of the growing 

season for phytoplankton at high latitudes, the probability density functions of POC 

are generally broader and show higher frequency of occurrence of relatively high POC 

> 100 - 150 mg m-3 compared with the rest of the year (Figure 3.5). 

The mean and mode values of POC obtained from these probability 

distributions show moderate seasonal variation (Figure 3.6a).  The maximum value of 

monthly mean POC slightly above 80 mg m-3 is observed in December.  Similarly 

high values occur in November and January.  The minimum monthly mean POC 

during the austral winter is below 70 mg m-3, but it is important to recall that the 

estimation of winter values exclude large areas south of 50o - 55oS due to the lack of 

valid SeaWiFS data.  The standard deviation varies from about 40 to 50 mg m-3 for the 

different months.  For each month the standard deviation about the mean represents 

the combined effect associated with both the spatial variation of POC within the 

Southern Ocean and the year-to-year variation.  As the probability distributions 
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generally display asymmetry (see Figure 3.5), the mode is smaller than the mean POC 

(Figure 6a).  For the months of February, March, and April the difference between 

these statistical parameters is largest, about 15 mg m-3. 

To illustrate the geographic distribution of POC seasonality, we also calculated 

zonally averaged POC concentration (Figure 3.6b).  The Southern Ocean shows a 

significant degree of north-south differentiation by zone in physical, chemical, and 

biological characteristics [e.g., Deacon, 1982; Pollard et al., 2002].  We defined three 

latitudinal zones, 35o - 45oS, 45o - 55oS, and south of 55oS.  As the zones were 

determined simply by latitude, they can only be roughly related to major oceanic 

regimes or ecological provinces that are typically defined on the basis of fronts, 

bathymetry, sea ice coverage, and other physical or biogeochemical features.  The 35o 

- 45oS zone overlaps largely with the Subtropical Frontal Zone, STFZ, and 

encompasses significant parts of the major oceanic regime of the Sub-Antarctic Zone 

(SAZ).  This region is also within the ecological province that was referred to as the 

Subantarctic Water Ring (SWR) in the satellite-based study of chlorophyll 

distributions and primary production in the Southern Ocean [Moore and Abbott, 

2000].  The latitude band between 45oS and 55oS also largely coincides with the SAZ 

and the SWR province, especially in the Pacific sector where the mean path of the 

Antarctic Polar Front (PF) is located south of 55oS [Gille, 1994; Orsi et al., 1995; 

Belkin and Gordon, 1996; Moore et al., 1999].  Over much of the Atlantic sector and 

also within the Indian Ocean sector (approximately between 50oW and 150oE), the 

mean path for the PF is, however, generally north of 55oS and can extend as far north 

as 50oS.  In these areas the 45o - 55oS band includes the Polar Frontal Zone. 
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The large expanses around the Antarctic continent within the latitudinal zone 

south of 55oS also comprise more than just one major oceanic domain or ecological 

province.  As a result of a large latitudinal range in the position of the PF of more than 

10o (due to steering by continents, islands and bathymetry), the areas south of 55oS 

generally include both the PFZ and AZ in the Pacific sector, and the AZ in the Atlantic 

and Indian Ocean sectors.  At these high latitudes, several distinct ecological regions 

can be defined on the basis of the variability in the extent of the sea ice cover, 

bathymetry, and proximity to land, such as the Permanently Open Ocean Zone 

(POOZ), the Seasonal Ice Zone (SIZ) that contains the Marginal Ice Zone (MIZ), and 

the coastal and continental shelf zone [Tréguer and Jacques, 1992; Arrigo et al., 1998; 

Moore and Abbott, 2000; Arrigo et al., 2008]. 

Figure 6b compares the seasonal progression of zonally averaged POC 

concentration.  Weakest seasonality is observed in the 35o - 45oS zone where the 

highest monthly mean POC of about 80 mg m-3 occurs in October-November and the 

lowest POC of about 70 mg m-3 in February-March and then again from June through 

September.  This seasonal variation is somewhat weaker than that calculated for the 

entire Southern Ocean south of 35oS.  Our results for low latitudes within the Southern 

Ocean are consistent with earlier analysis of weak seasonality of phytoplankton 

pigment concentration in subantarctic waters [e.g., Banse, 1996].  In the 45o - 55oS 

band, the seasonal signal of POC is stronger, varying between the maximum of about 

90 mg m-3 in December and a minimum of 60 mg m-3 in August.  At higher latitudes 

south of 55oS, the seasonality is even more pronounced.  Whereas the maximum mean 

POC in December is relatively high (~87 mg m-3), the winter minimum drops to 
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values close to 50 mg m-3.  We emphasize, however, that no satellite ocean color data 

are available in the months of May, June, and July south of 55oS, which prevents the 

estimation of winter values. 

Figure 3.6c shows the monthly mean ratio of ocean area with valid ocean color 

data to the total ocean area for the entire Southern Ocean and the three latitudinal 

regions considered.  These values are calculated relative to the total ocean area within 

a given region including the areas permanently covered by ice.  During winter, the 

satellite data coverage is limited not only within the region south of 55oS but also to a 

significant extent within the 45o - 55oS latitudinal zone.  Only the northernmost zone 

between 35oS and 45oS exhibits consistently high monthly mean percentage (~96-

98%) of valid ocean color pixels throughout the year. 

 

3.3.2.2.  The Upper Water-column Stock of POC 

Our field data show that the surface POC concentration is reasonably well 

correlated with the mass of POC integrated within the upper water column between 

the sea surface and a depth of 100 m (Figure 3.7).  At each station the POC 

determinations were usually made at 4-6 discrete depths from near surface to 150 m.  

These data were used to obtain the relationship in Figure 3.7.  The limit of 100 m was 

chosen because our in situ measurements of spectral downwelling irradiance, Ed(z, ), 

indicated that the 1% level of surface irradiance at 490 nm is, on average, at a depth of 

about 70 m (standard deviation SD = 30 m, number of observations 65).  The light 

close to the 490 nm waveband is usually most penetrating in open ocean waters.  To a 

first approximation, we assume that the 100 m depth delimits the biologically active 
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layer where most organic carbon production via photosynthesis occurs in the open 

waters of Southern Ocean.  The top 100 m layer was used in previous biogeochemical 

studies of the Southern Ocean, in which the upper water column primary production, 

net community production, POC stock, and POC export were examined [Gardner et 

al., 2000; Buesseler et al., 2001; Sweeney et al., 2000; Arrigo et al., 2008]. 

Using the relationship from Figure 3.7 and satellite-derived monthly maps of 

surface POC concentration, we calculated the area-integrated water-column standing 

stock of POC within the upper 100 m of the Southern Ocean.  Because at any given 

time SeaWiFS data are not available for the entire area of the Southern Ocean, it is 

important to describe in detail the method that we use to calculate the area-integrated 

stock of POC.  For these calculations the Southern Ocean south of 35oS was first 

divided into 1o circumpolar latitudinal bands.  Each of these bands was further divided 

into sectors that have a 10o longitudinal extent.  For each sector of 1o (in latitude) x 10o 

(in longitude) and for each month, we calculated a representative value of monthly 

mean area-normalized water-column integrated POC, denoted as POC area,sector [in 

units of g m-2].  This value of POC area,sector was obtained by converting the monthly 

mean surface concentration of POC [mg m-3] to water-column integrated POC [g m-2] 

(using the relationship from Figure 3.7) for each pixel within the sector where the 

SeaWiFS data are available, and then averaging the results for all these valid pixels 

within each sector.  Next, the area-integrated value of water-column POC within the 

sector, POCint,sector [Pg = 1015 g], was determined as a product of POC area,sector and the 

entire ocean area of the sector, Asector [m
2].  We note that this method of calculations 
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essentially allows filling of “sporadic” gaps in SeaWiFS data within a given sector (for 

example, due to clouds, sea ice, sunglint, etc.), and therefore to account for the entire 

area of the sector, provided that there are some valid pixels within the sector.  In this 

method we assume that the data from the valid pixels provide an average value of 

POC area,sector, which is representative for the entire sector.  Hence, the size of each 

sector is reasonably limited in spatial extent, i.e. 1o (in latitude) x 10o (in longitude).  

In summary, our method of calculating the area-integrated POC includes the ocean 

area that is somewhat larger than the area of valid pixels themselves, and excludes the 

ocean area that is permanently (during a given month) inaccessible to ocean color 

observations, such as high latitude waters due to winter darkness, ice cover, and large 

solar zenith angle.  In short, in our method a relatively small-area “box” (sector) is 

first chosen (1 deg x 10 deg), the average value based on valid pixels within that box 

is calculated, and then this average value is assigned to all invalid pixels within the 

box. 

In the final step of calculations, the total area-integrated standing stock of POC 

within the top 100 m water column was estimated by summing up all values of 

POCint,sector corresponding to all sectors within a region of interest.  As in the analysis 

above, these regions include the entire Southern Ocean south of 35oS and the three 

zones, i.e., the 35o-45oS zone, the 45o-55oS zone, and the high-latitude region south of 

55oS.  The final results of monthly means of area-integrated water-column POC for 

these four major regions are denoted as POCint,>35, POCint,35-45, POCint,45-55, and 

POCint,>55 [in units of Pg of carbon], respectively. 
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In the calculations of POCint,>35, POCint,35-45, POCint,45-55, and POCint,>55, we 

also tested alternative algorithms using sectors with higher resolution in longitude than 

10o, specifically 2o and 5o.  As expected, the estimates of area-integrated POC stocks 

decreased somewhat with a decrease in the size of the sector because using larger 

sectors increased the probability of valid pixels that were then used to represent the 

entire sector.  For example, for the entire Southern Ocean, the POCint,>35 stocks from 

the calculations using the highest resolution, i.e., the 1o (in latitude) x 2o (in longitude) 

sectors, were lower on average by about 1.9% than the results from our standard 

calculations with the 1o x 10o sectors.  In this study we report the results from the 

calculations based on the 1o x 10o sectors. 

Because the estimates of area-integrated POC stock depend on the ocean area 

that is applied in the calculation of these estimates, it is important to show the portion 

of ocean area, referred to as “applied” ocean area, Aappl, which contributes to these 

final estimates of area-integrated POC.  Figure 3.8 shows the monthly mean values of 

Aappl as a fraction of the total ocean area.  These values are based on averaging data 

from a 10-year period from October 1997 through September 2007.  The year-to-year 

variations for any given month were small, less than a few percent.  As expected, the 

applied ocean area is generally higher than the ocean area actually associated with 

valid ocean color pixels shown in Figure 3.6c because of the “filling” of the full sector 

if some valid pixels are observed for that sector.  For the 35o-45oS latitudinal zone, the 

applied area Aappl,35-45 always equals to the total ocean area, i.e. every sector within this 

zone has always valid pixels with SeaWiFS data (this is not explicitly displayed in 

Figure 8).  In the 45o-55oS region, the applied area Aappl,45-55 shows a drastic decrease 
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in June-July compared with the rest of the year.  There is a strong seasonal variation in 

the applied area in the region south of 55oS, Aappl,>55, from zero in May-July to over 

90% in December-March.  As a result, the applied area for the entire Southern Ocean, 

Aappl,>35, also shows a seasonal variation, with Aappl,>35 reduced to less than 50% of the 

total ocean area in June.  We note that the total ocean area for the entire Southern 

Ocean south of 35oS is about 9.26 x 1013 m2.  The total ocean area for the latitude zone 

35o-45oS is 3.23 x 1013 m2, for the latitude zone 45o-55oS is 2.80 x 1013 m2, and for the 

high-latitude region south of 55oS is 3.23 x 1013 m2. 

The large seasonal changes in the applied ocean area at high latitudes shown in 

Figure 3.8 contribute to the estimation of area-integrated POC stock.  Therefore, in 

addition to calculating the area-integrated stock for the applied ocean area, we also 

estimated the potential values of the area-integrated POC stock for the entire ocean 

area in each region considered (Table 3.1).  These latter estimates were obtained by 

multiplying the applied ocean area-based estimates of POC stock by the ratio of the 

total ocean area to the applied ocean area.  These simple scaling calculations were 

made for all months and regions considered, with the exception of May, June, and July 

in the region south of 55oS, where no satellite data are available. 

Figure 3.9 shows the two estimates of the area-integrated stock of POC within 

the top 100 m of the water column.  The results are presented for the monthly mean 

values based on averaging the data over a 10-year period from October 1997 through 

September 2007.  The interannual variations for any given month were small (the 

coefficient of variation typically less than 3%) and no evidence of a decadal trend was 

observed.  The seasonal signal in the area-integrated POC is clearly observed, 
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especially during the October-April period for the entire Southern Ocean basin (south 

of 35oS), the 45-55oS zone, and the southernmost region (> 55oS) where this signal is 

most pronounced.  The seasonality of POCint,>35, POCint,45-55, and POCint,>55 is seen in 

both the estimates based on the applied ocean area and those scaled up to the total 

ocean area.  The seasonal maximum occurs in December.  In contrast, the POC stock 

at lower latitudes within the 35o-45oS zone shows smaller seasonal changes with a 

maximum earlier in the season during the September-November period.  We recall 

that in this region, the applied ocean area equals to the total ocean area, so both 

estimates of POCint,35-45 are identical. 

The differences between the two estimates of area-integrated POC in Figure 

3.9 are obviously largest during the winter months when the applied ocean area 

represents the smallest fraction of total ocean area.  With the exception of the 35-45oS 

region, the area-integrated POC stocks based on the applied ocean area show a sharp 

decline during the winter in comparison to the estimates that are scaled up to the total 

ocean area.  Whereas no attempt is made to estimate the winter stocks south of 55oS 

because of the total lack of data, one can reasonably expect that the true total winter 

stocks for the entire Southern Ocean will fall between the two estimates displayed in 

Figure 9.  Such expectation also applies to the 45-55oS region.  Obtaining winter 

estimates with higher level of confidence would require the knowledge of POC stocks 

within large ocean regions covered with ice, which is not available.  However, because 

POC is not zero for ocean water inaccessible by ocean color satellite observations, we 

expect the total POC stocks to be closer to values scaled to the full ocean area. 
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The differences between the two estimates of area-integrated POC stocks are 

smallest during the austral summer maximum (Figure 3.9).  In December, the total 

area-integrated stock of POCint,>35 within the Southern Ocean reaches a value of about 

0.6 Pg of carbon.  It is noteworthy that the three parts of the Southern Ocean defined 

in our study, the 35o-45oS latitudinal zone, the 45o-55oS zone, and the region south of 

55oS, each contribute approximately 0.2 Pg to POCint,>35 during the summer 

maximum.  We also estimate that the 10-year mean value of POCint,>35, as determined 

over the period from October 1997 through September 2007, is between 0.46 Pg and 

0.56 Pg.  The lower estimate is based on the calculations for the applied ocean area 

and the higher estimate is based on the calculations scaled up to the total ocean area. 

Because the estimates of area-integrated stock of POC within the upper ocean 

can be useful for biogeochemical modeling, we provide the monthly mean values of 

POCint,>35, POCint,45-55, POCint,45-55, and POCint,>55 in Table 3.1.  These estimates are 

based on scaling our calculations up to the total ocean area for each region considered.  

One may expect that the estimates shown in Table 3.1 represent the upper bound for 

the actual POC stocks within the entire ocean areas (including areas with no valid 

satellite ocean color data).  As noted earlier, we expect the true value to be closer to 

the estimates scaled to total ocean area.  Nevertheless, the values presented in Table 

3.1 should be viewed with caution, especially for winter months.  Note, for example, 

that the winter values for the entire Southern Ocean are based on scaling up 

information acquired at latitudes less than 55oS to the entire ocean area that includes 

latitudes greater than 55oS. 
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Although the processes of seasonal accumulation or decline of organic carbon 

pools in the surface layer of the ocean are now well recognized, the rates of POC 

changes at large basin and global scales remain uncertain but are required as part of a 

comprehensive understanding of oceanic mediation of the global carbon cycle.  The 

rate of change of area-integrated POC stock within the 100 m upper water column can 

be determined by time-differencing the satellite-derived data presented in Figure 3.9.  

For example, during the October-November-December period the net accumulation of 

POC within the entire Southern Ocean is 0.047-0.049 Pg month-1 (on the basis of 

calculations for the applied ocean area) or 0.018-0.026 Pg month-1 (on the basis of 

scaling to total ocean area).  The seasonal accumulation of POC stops in January.  The 

high-latitude waters south of 55oS provide a dominant contribution to the net 

accumulation of POC within the entire Southern Ocean during the productive season.  

The average net accumulation of POC south of 55oS during the October-November-

December period is 0.035-0.046 Pg month-1 (on the basis of calculations for the 

applied ocean area) or 0.014-0.018 Pg month-1 (on the basis of scaling to total ocean 

area). 

Figure 3.10 shows time-series of monthly values of area-normalized stocks of 

POC within the top 100 m layer for the entire Southern Ocean (POCarea,>35) and its 

three regions (POCarea,35-45, POCarea,45-55, and POCarea,>55) throughout the entire period 

examined from September 1997 to December 2007.  These estimates (in units of g m-

2) were obtained respectively as the ratios:  POCint,>35/Aappl,>35, POCint,35-45/Aappl,35-45, 

POCint,45-55/Aappl,45-55, and POCint,>55/Aappl,>55.  In contrast to the area-integrated POC 

stocks, the area-normalized estimates are virtually insensitive to the size of sectors and 
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the magnitude of applied area used in the calculations.  The estimates calculated using 

different sizes of the sectors agree to within 1% regardless of the month throughout 

the period of the study. 

The seasonal range of POCarea,>35 is between about 5.5 and 6.6 g m-2.  This 

seasonal variation occurs around the multiyear average value of 6 g m-2.  Similar 

values of the area-normalized POC stock are observed in the three regions although 

seasonal variability is clearly the largest at latitudes south of 55oS.  Within this high-

latitude region, the seasonal minimum of POCarea,>55 is about 5 g m-2 and the 

maximum can reach 7 g m-2. 

Some interannual variations in the area-normalized stocks of POC are also 

observed.  For example, the summer maximum of POCarea,>35 exceeds slightly the 

value of 6.6 g m-2 in December of 1998, 1999, 2003, 2005, and 2006.  In December 

2001 and 2007, the POCarea,>35 value is about 6.4 g m-2. 

From Figure 3.10 one can also estimate net changes in the area-normalized 

POC stock.  Within the entire Southern Ocean, the highest monthly accumulation rates 

are observed in the period between September and November, when the rates can 

exceed 0.3 g m-2 month-1.  The seasonal accumulation of POC over a period between 

August and December is on average 0.99 g m-2 (SD = 0.12 g m-2) based on a 10-year 

data set.  For the high-latitude region south of 55oS, the monthly accumulation rates of 

area-normalized POC stock are, on average, 0.43 g m-2 month-1 during September-

November period and 0.56 g m-2 month-1 in November-December period.  The 

maximum accumulation rate at latitudes > 55oS occurs between November and 

December 2006 and exceeds 0.7 g m-2 month-1.  The 10-year mean seasonal 
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accumulation of POC for a period from August through December south of 55oS is 

1.64 g m-2 (SD = 0.25 g m-2). 

 

3.3.3.  Potential Significance of Satellite Observations of POC 

Monitoring the rates of change in organic carbon pools in the ocean at large 

basin scales using satellite-derived data such as those shown in Figures 3.9 and 3.10 

provides a means for advancing a methodology to diagnose rates and fluxes of 

relevance to the global carbon cycle and to constrain the uncertainties of carbon 

budgets.  As an example, the satellite-derived net accumulation or decline of POC in 

the upper ocean can be used in a carbon mass balance approach to constrain estimates 

of other components of the carbon budget, including export of organic carbon from the 

euphotic layer.  The uncertainties and scarcity of various data required for rigorous 

mass balance calculations make this exercise difficult, in particular for large scale 

calculations within the Southern Ocean.  Although such calculations are outside the 

scope of this paper, we can illustrate this point schematically using a simplified carbon 

mass balance approach that is based on biological drawdown of dissolved inorganic 

carbon (DIC) within the euphotic layer. 

Because of utilization and production of CO2 during photosynthesis and 

respiration, biologically-mediated change in dissolved inorganic carbon (DIC)bio is 

equivalent to net community production, NCP, which is the difference between gross 

primary production, GPP, and total community respiration, R.  The NCP process can 

result in: (i) the net change of POC stock in the euphotic zone, POC; (ii): the net 

change of DOC (dissolved organic carbon) stock, DOC; and (iii) export of organic 
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carbon, POCexp + DOCexp, from the euphotic zone to the deep ocean, largely as sinking 

biogenic particles (i.e., POCexp).  Hence, we can write:  GPP - R = POC + DOC + 

POCexp + DOCexp or NPP - Rh = POC + DOC + POCexp + DOCexp, where NPP is 

the net primary production and Rh the heterotrophic respiration (NPP = GPP - Rp 

where Rp is phytoplankton respiration).  This simplified budget neglects the exchange 

of organic carbon laterally via advection and the contribution of calcium carbonate 

dynamics, and it also assumes that the export term represents the net vertical exchange 

between the euphotic zone and the underlying layer.  The accumulation, decline, and 

export of POC generally exert strong control on the NCP balance.  In particular, 

during time periods of enhanced seasonal phytoplankton growth, the large impact of 

biology on the carbon budget is typically associated with accumulation and export of 

POC. 

As an example of such simplified analysis, we can compare our satellite-based 

estimates of POC obtained from Figure 3.10 with large-scale satellite-based 

estimates of NPP in the Southern Ocean during the most productive months.  Large-

scale estimates of other components of carbon mass balance are generally not 

available or exhibit significant range, so the pursuit of rigorous closure of mass 

balance is difficult at this time.  There have been several studies utilizing satellite data 

to estimate distributions of primary production in the Southern Ocean [Arrigo et al., 

1998; Moore and Abbott, 2000; Arrigo et al., 2008].  For example, at the peak of the 

productive season, the daily rates of NPP within the 100 m upper layer of the pelagic 

province of the Southern Ocean south of 50oS were estimated to range from 300 to 

400 mg C m-2 day-1 [Arrigo et al., 2008].  Although regional estimates of production 
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within the marginal ice zone and shelf provinces can be higher, especially during 

spring phytoplankton blooms, the size of these provinces is much smaller than the 

pelagic province.  Thus, the estimates of area-normalized production for the pelagic 

province obtained by Arrigo and co-workers are approximately representative of the 

entire high-latitude portion of the Southern Ocean, and they can be compared to our 

POC data for the region south of 55oS.  We also note that at the December seasonal 

peak, other available large-scale estimates of NPP within the high-latitude regions 

south of the Polar Front (including Permanently Open Ocean Zone, Marginal Ice 

Zone, and Seasonal Ice Zone) are close to 10 g C m-2 month-1 (see Plate 7 in Moore 

and Abbott, 2000).  This result is consistent with the range of daily rates obtained by 

Arrigo and co-workers. 

Compared to the productivity estimates, it is remarkable that the highest 

seasonal accumulation rates, POC, in the high-latitude region south of 55oS based on 

our time-series of monthly data in Figure 10 are, on average, only about 19 mg C m-2 

day-1.  These rates are observed in the November-December period.  The maximum 

POC accumulation rates of 24 mg C m-2 day-1 were observed in 2006. 

An important result from this comparison of POC and NPP is that the POC 

accumulation rates are less than 10% of net primary production within the high-

latitude portion of the Southern Ocean during the most productive part of the season.  

To support this comparison, we also verified that our area-normalized accumulation 

rates of POC are nearly the same regardless of whether we use the region south of 

55oS or south of 50oS (the latter was used in the study of primary production by Arrigo 

and co-workers).  Similar results indicating that POC is a small percentage of NPP, 
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is obtained by comparing our estimates of POC representing the entire Southern 

Ocean during the most productive period (which are generally less than 12 mg C m-2 

day-1) with primary production estimates for oceanic regions south of 35oS (see Plate 7 

in Moore and Abbott, 2000). 

Given that POC is less than 10% of NPP, the major fraction (>90%) of NPP 

according the mass balance approach must be accounted for by the sum of DOC, 

POCexp, DOCexp, and Rh.  In open ocean regions away from land such as most of the 

Southern Ocean, a significant portion of the DOC pool is derived from local primary 

production.  As a result, biologically refractory and semilabile DOC can accumulate in 

the surface layer where it is then available for export via convective mixing and deep 

water formation [e.g., Duursma, 1963; Carlson et al., 1994; Hansell et al., 2002].  It 

has been shown, for example, that during the austral summer in the eutrophic system 

of the Ross Sea, the fraction of net community production (NCP) accumulating in the 

upper 150 m as DOC ranges from about 3 to 37% with an average of 14% [Hansell 

and Carlson, 1998].  During periods of maximum accumulation of total organic 

carbon in the Ross Sea, POC was shown to account for most of this accumulation, 

and not DOC [Carlson et al., 2000].  In the context of our comparative analysis of 

large-scale estimates, one may expect that DOC probably does not exceed 10% of 

NPP.  Therefore, approximately 80% or more of NPP during the most productive 

months within the upper water column of the Southern Ocean appears to be partitioned 

as the sum of remineralization (Rh) and export (POCexp + DOCexp). 
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The existing data also suggest that both respiration and export terms can be 

large or dominant.  For example, typical estimates of biological carbon export for open 

ocean waters of the Southern Ocean during late spring and summer months range 

between 150 and 300 mg C m-2 day-1 [e.g., MacCready and Quay, 2001 and references 

therein].  The estimates of community respiration, R, in the mixed layer of the Polar 

Front region in the Indian Ocean sector during early spring were observed in the range 

180 - 420 mg C m-2 day-1 [Aristegui et al., 2002].  Measurements during late spring 

and summer months in the Pacific sector showed even higher rates of community 

respiration and suggested a significant contribution of phytoplankton respiration 

[Dickson and Orchardo, 2001].  These respiration and export data are supportive of 

our satellite-derived POC in a qualitative sense.  Whereas the export and respiration 

rates represent a large fraction or are comparable to the magnitude of NPP, our data 

indicate that a small fraction of NPP (<10%) accumulates as POC.  As there exists 

significant physical and biological heterogeneity within the Southern Ocean [e.g., 

Patterson, 1985; Gille and Kelly, 1996; Constable et al., 2003; Longhurst, 1998], 

these large-scale estimates of low accumulation of POC during the productive season 

are, however, not necessarily representative of the Southern Ocean on regional scales.  

In some Antarctic waters with extremely intense seasonal phytoplankton blooms, for 

example in the Ross Sea, the POC accumulation can represent a much larger fraction 

of primary production [Carlson et al., 2000; Gardner et al., 2000]. 
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3.4.  Conclusions 

In this study we apply an empirical remote-sensing algorithm for estimating 

surface POC concentration from ocean color in the Southern Ocean.  Using our 

algorithm based on the blue-to-green reflectance band ratio, we demonstrate 

variability in POC within the Southern Ocean on seasonal and interannual time scales 

during a decade of SeaWiFS satellite mission.  Our results show that surface POC 

concentrations in the Southern Ocean (i.e. at latitudes south of 35oS) generally fall 

within the range of low to moderate values, from about 30 to 120 mg m-3.  On a whole 

basin scale, the monthly means are mostly between 70 to 80 mg m-3 and the 

probability of occurrence of POC concentrations above 200 mg m-3 is very low 

(Figures 3.5 and 3.6a).  The seasonal signal in POC is weakest at lower latitudes 

within the Sub-Antarctic Zone and most pronounced at higher latitudes (>55oS). 

Our estimates of the total area-integrated stock of water column POC in the 

upper 100 m of the Southern Ocean show no clear evidence for a long-term trend in 

the POC stock during the examined 10-year period from 1997 through 2007.  The 

seasonal variations range from a maximum of 0.6 Pg of carbon in December to a 

winter minimum, which is uncertain primarily due to incomplete coverage of the 

ocean area with valid satellite data (Figure 3.9).  We estimate, however, that the winter 

minimum occurring during the June-August period is within a range of 0.24-0.51 Pg, 

and probably closer to the upper limit value.  During the seasonal maximum 

(December), the three regions, the 35o-45oS latitudinal band, the 45o-55oS band, and 

the region south of 55oS, each contribute approximately 0.2 Pg to the total area-

integrated stock of POC within the upper 100 m of the Southern Ocean.  The seasonal 
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range of area-normalized water column POC for the entire Southern Ocean (>35oS) is 

between 5.5 and 6.6 g m-2, and for the high-latitude region (>55oS) from 5 g m-2 to 7 g 

m-2 (Figure 3.10).  The high-latitude region south of 55oS provides a dominant 

contribution to the accumulation of POC within the Southern Ocean during the 

productive period of the season between September and December when the net 

increase in POC occurs.  Then, in these high-latitude waters, the area-normalized POC 

accumulates at rates between 0.2 and 0.7 g m-2 month-1.  The comparison of these rates 

with large-scale satellite-based estimates of primary production indicates that only a 

small fraction (<10%) of production accumulates as POC. 

Despite limitations of optical remote sensing at high latitudes, especially 

during winter months, the presented capability to monitor POC from satellite 

observations will be important to further extend our understanding of the role of POC 

in ecosystem and carbon dynamics in the Southern Ocean and ecological responses to 

changing climate.  As changing climate and environmental conditions can affect 

critical carbon fluxes and partitioning of carbon among various reservoirs, the analysis 

based on satellite observations presented in this study establishes a reference point for 

potential future change in the pool of particulate organic carbon in the Southern 

Ocean.  Also, because the change in POC stock is one of the components of net 

community production that describes the carbon mass balance associated with 

biological processes in the surface ocean, the time-series satellite observations of POC 

can advance an understanding of key questions of the biologically-mediated carbon 

cycle, such as whether oceanic biota act as sources or sinks of carbon and the capacity 

of the oceanic biological pump to draw down increased levels of atmospheric CO2. 
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Chapter 3, in full, is a reprint of material as it appears in Journal of 

Geophysical Research, Oceans 2010, Allison, David B., Stramski, Dariusz, Mitchell, 

B. Greg.  The dissertation author was the primary investigator and author of this paper. 
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3.6.  Figures 
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Figure 3.1.  Locations of stations in the Southern Ocean where the optical and POC 
measurements used in the development of POC algorithms were made.  The NBP97 
stations were visited during the U.S. Joint Global Ocean Flux Study (JGOFS) cruise 
(NBP9711) in the Ross Sea in November-December of 1997.  The REV98 stations 
represent the JGOFS cruises REV9801 and REV9802 which took place from January 
through March 1998.  The AMLR stations were visited during the January-March 
period in 2004 and 2006 on the AMLR04 and AMLR06 cruises of the NOAA 
Fisheries’ U.S. Antarctic Marine Living Resources Program.  Additionally, one set of 
data was collected during the 2004 AMLR season by a National Science Foundation 
sponsored cruise LMG0402. 
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Figure 3.2.  Relationship between surface concentration of particulate organic carbon, 
POC, and the blue-to-green band ratio of remote-sensing reflectance, 
Rrs(443)/Rrs(555).  The data points from several cruises are shown as indicated (the 
REV98 data are from two cruises REV9801 and REV9802).  The power function fit to 
all data is also shown (solid black line). 
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Figure 3.3a.  The multiyear monthly mean values of POC concentration in the surface 
waters within the Southern Ocean.  Each map was obtained by averaging monthly data 
collected over a 10 year time period as indicated.  The austral spring-summer months 
are shown.  The POC concentrations were derived by applying our algorithm based on 
the Rrs(443)/Rrs(555) band ratio to the Level 3B standard binned data of SeaWiFS-
derived remote-sensing reflectance.  For mapping of surface POC concentrations, the 
data are projected to an equidistant azimuthal projection.  Areas in white represent no 
satellite data due to winter darkness, sea ice cover, persistent cloudiness, atmospheric 
correction failure, or other algorithm failure conditions (e.g., low solar elevation, 
negative Rrs).  The latitude gridlines are shown for 35oS, 45oS, 55oS, and 65oS.  The 
meridians 0o-180o and 90oE-90oW are also shown. 
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Figure 3.3b.  The multiyear monthly mean values of POC concentration in the surface 
waters within the Southern Ocean.  Each map was obtained by averaging monthly data 
collected over a 10 year time period as indicated.  The autumn-winter months are 
shown.  The POC concentrations were derived by applying our algorithm based on the 
Rrs(443)/Rrs(555) band ratio to the Level 3B standard binned data of SeaWiFS-derived 
remote-sensing reflectance.  For mapping of surface POC concentrations, the data are 
projected to an equidistant azimuthal projection.  Areas in white represent no satellite 
data due to winter darkness, sea ice cover, persistent cloudiness, atmospheric 
correction failure, or other algorithm failure conditions (e.g., low solar elevation, 
negative Rrs).  The latitude gridlines are shown for 35oS, 45oS, 55oS, and 65oS.  The 
meridians 0o-180o and 90oE-90oW are also shown. 
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Figure 3.4.  Comparison of the monthly mean distribution of POC concentration in 
the surface waters within the Southern Ocean for the month of January based on 
averaging data from a time period between January 1998 and January 2007, with the 
monthly mean distributions for the month of January in three example years: 1999, 
2001, and 2006.  Areas in white represent no valid satellite data.  The latitude gridlines 
are shown for 35oS, 45oS, 55oS, and 65oS.  The meridians 0o-180o and 90oE-90oW are 
also shown.
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Figure 3.5.  The probability density functions of the surface POC concentration within 
the Southern Ocean (south of 35oS) for each month based on the month-by-month 
analysis of SeaWiFS data over a 10-year period from October 1997 through 
September 2007.  These distributions were created using bins of constant width 
(0.025) for the log-transformed POC.  For a given month (e.g., January), the number 
of occurrences of POC values within every bin was counted and summed up for all 10 
years (i.e., January 1998, January 1999, January 2000, etc..., January 2007).  To 
determine the final value of the probability density at a mid-point of a given bin, the 
ratio of the total count within the bin to the overall total count summed up over all bins 
was multiplied by 100 and divided by the bin width.  In these calculations, the bin 
width represents the difference in POC between the two end-points of the bin 
expressed as ordinary values of POC (i.e., not logarithmically transformed).  For 
example, for a bin whose mid-point is POC = 10 mg m-3 the bin width is about 0.576 
mg m-3, and for the mid point of POC = 100 mg m-3 the bin width is about 5.76 mg m-

3. 
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Figure 3.6.  (a)  Seasonal progression of monthly mean (solid circles) and mode 
values of surface POC concentration within the entire Southern Ocean (south of 35oS) 
corresponding to the probability density functions presented in Figure 5.  The standard 
deviation is also shown.  (b)  Comparison of the monthly mean POC concentration 
from panel (a) with similar monthly means for the three latitudinal zones:  35o-45oS, 
45o-55oS, and south of 55oS.  (c)  Monthly mean values of the ratio of ocean area with 
valid ocean color data pixels to the total ocean area for the entire Southern Ocean and 
the three latitude bands (see symbols in panel b) based on the month-by-month 
analysis of SeaWiFS data over a 10-year period from October 1997 through 
September 2007. 
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Figure 3.7.  The relationship between the water column POC integrated from the sea 
surface to 100 m depth and the surface concentration of POC obtained from our field 
data collected on several cruises in the Southern Ocean (as shown in Figure 1).  The 
best fit linear equation is:  POC (water column integrated in g m-2) = 0.04737 
(±0.00141) x POC (surface concentration in mg m-3) + 2.16672 (±0.22816).  The 
standard errors of the estimates of the regression coefficients are given in parentheses, 
the squared correlation coefficient is 0.91, and the number of observations is 115. 
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Figure 3.8.  Monthly mean values of the ratio of the applied area to the total ocean 
area within the entire Southern Ocean (> 35oS) and the two major regions (45o-55oS 
and south of 55oS) based on averaging over a 10-year period from October 1997 
through September 2007.  The data for the latitude band 35o-45oS are not displayed 
because the values in that region are 1 for all months. 
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Figure 3.9.  Monthly mean values of area-integrated stock of POC within the 100 m 
upper water column based on averaging over a 10-year period from October 1997 
through September 2007 for (a) the entire Southern Ocean (> 35oS), (b) the 35o-45oS 
and 45o-55oS regions, and (c) the region south of 55oS.  The open symbols represent 
the calculations for the applied ocean area.  The grey solid symbols represent the 
calculations scaled up to the total ocean area (see text for details).  For the 35o-45oS 
region these two calculations yield identical results for all months.  There is no data at 
latitudes > 55oS for May, June, and July. 
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Figure 3.10.  Time-series of monthly mean values of area-normalized stock of POC 
within the 100 m upper water column within the entire Southern Ocean (> 35oS) and 
the three major regions 35o-45oS, 45o-55oS, and south of 55oS.  There is no data at 
latitudes > 55oS for May, June, and July. 
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3.7.  Tables 

Table 3.1.  The monthly mean values (in units of Pg of carbon) of the area-integrated 
stock of POC within the top 100 m of the ocean derived from satellite observations of 
ocean color.  These results were calculated by averaging data from a 10-year period 
from October 1997 through September 2007.  The percent values in parenthesis 
represent the coefficient of variation due to interannual variability.  The results are 
shown for the entire basin of the Southern Ocean and the three regions within the 
Southern Ocean.  The presented values of the area-integrated stock of POC correspond 
to the entire ocean area within each region, and were calculated by scaling up the 
calculations based on the so-called “applied” ocean area (see text for details of the 
methods). 

 

Month 
Southern Ocean  

>35oS 
35 - 45oS 45 - 55oS > 55oS  

January 0.591  (1.3%) 0.195  (2.2%) 0.181  (3.5%) 0.215  (3.1%) 

February 0.571  (1.6%) 0.192  (2.2%) 0.176  (3.0%)) 0.203  (2.3%) 

March 0.553  (1.2%) 0.191  (1.8%) 0.172  (2.0%) 0.190  (1.5%) 

April 0.530  (1.2%) 0.196  (1.4%) 0.165  (2.3%) 0.169  (2.0%) 

May 0.544  (1.7%) 0.197  (1.4%) 0.158  (2.8%) no data 

June 0.543  (2.3%) 0.192  (1.9%) 0.157  (4.2%) no data 

July 0.525  (2.0%) 0.189  (1.7%) 0.152  (3.0%) no data 

August 0.505  (1.3%) 0.191  (1.5%) 0.151  (1.1%) 0.163  (2.0%) 

September 0.528  (1.2%) 0.201  (1.4%) 0.157  (1.2%) 0.170  (2.1%) 

October 0.561  (1.1%) 0.208  (1.4%) 0.168  (0.9%) 0.185  (1.9%) 

November 0.588  (1.0%) 0.207  (2.3%) 0.182  (2.9%) 0.199  (2.1%) 

December 0.607  (1.1%) 0.201  (2.4%) 0.189  (1.7%) 0.217  (2.0%) 
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