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Abstract

Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid, play a crucial role in 

cytoprotection by attenuating oxidative stress, inflammation and apoptosis. EETs are rapidly 

metabolised in vivo by the soluble epoxide hydrolase (sEH). Increasing the half life of EETs by 

inhibiting the sEH enzyme is a novel strategy for neuroprotection. In the present study, sEH 

inhibitors APAU was screened in silico and further evaluated for their antiparkinson activity 

against rotenone (ROT) induced neurodegeneration in N27 dopaminergic cell line and Drosophila 
melanogaster model of Parkinson disease (PD). In the in vitro study cell viability (MTT and LDH 

release assay), oxidative stress parameters (total intracellular ROS, hydroperoxides, protein 

oxidation, lipid peroxidation, superoxide dismutase, catalase, glutathione peroxidise, glutathione 

reductase, glutathione, total anti-oxidant status, mitochondrial complex-1activity and 

mitochondrial membrane potential), inflammatory markers (IL-6, COX-1 and COX-2), and 

apoptotic markers (JNK, phospho-JNK, c-jun, phospho-c-jun, pro and active caspase-3) were 

assessed to study the neuroprotective effects. In vivo activity of APAU was assessed in Drosophila 
melanogaster by measuring survival rate, negative geotaxis, oxidative stress parameters (total 

intracellular ROS, hydroperoxides, glutathione levels) were measured. Dopamine and its 

metabolites were estimated by LC-MS/MS analysis. In the in silico study the molecule, APAU 

showed good binding interaction at the active site of sEH (PDB: 1VJ5). In the in vitro study, 

APAU significantly attenuated ROT induced changes in oxidative, pro-inflammatory and apoptotic 

parameters. In the in vivo study, APAU significantly attenuates ROT induced changes in survival 

rate, negative geotaxis, oxidative stress, dopamine and its metabolites levels (p < 0.05). Our study, 
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therefore, concludes that the molecule APAU, has significant neuroprotection benefits against 

rotenone induced Parkinsonism.

Keywords

Parkinson; Soluble epoxide hydrolase; Epoxyeicosatrienoic acids; Neuroprotection; Oxidative 
stress; Inflammation; Apoptosis; APAU

1. Introduction

Parkinson’s disease (PD) is a second most common chronic progressive neurodegenerative 

disorder, characterised by selective loss of nigrostriatal dopaminergic neurons (Bonnet and 

Houeto, 1999; Cummings, 1992; De Virgilio et al., 2016; DeLong and Wichmann, 2009). 

One of the major pathological features of PD is the presence of Lewy bodies in neuronal 

cytoplasm, mainly composed of α-synuclein (α-syn) and ubiquitin (Spillantini et al., 1997; 

Stefanis, 2012). The current treatment strategies such as MAO inhibitors, COMT inhibitors, 

Levodopa, and surgery are focused on the motor and non-motor complications and therefore 

provide only symptomatic relief (Quinn, 1995; Schapira, 2005). Levodopa and other 

medications drastically improve the motor symptoms and quality of life of patients with PD 

in the early stages. Soon later, the patients suffer from dopa-resistant motor symptoms 

(impairment of speech, posture, and balance), DOPA-resistant nonmotor signs (impairment 

of mood, sleep and cognition) and drug-related side effects (psychosis, motor fluctuations, 

gait impairment and dyskinesias) such as hallucinations, dementia, depression, swallowing 

problem, sleep disorder, constipation, fatigue etc. Unfortunately, none of the anti-

parkinsonian therapies, alone or in combination have the ability to halt disease progression 

on a long-term basis (Caraceni et al., 1989; Esposito and Cuzzocrea, 2010; Jankovic and 

Aguilar, 2008; Oertel and Schulz, 2016; Rascol et al., 2003b). It is, therefore, important to 

halt disease progression with neuroprotective agents to effectively manage this disease 

(Rascol et al., 2003b). The major pathological mechanisms contributing to 

neurodegeneration are oxidative stress and inflammation which in turn contribute to 

mitochondrial dysfunctioning, protein aggregation and apoptosis (Morisseau and Hammock, 

2013a; Mullin and Schapira, 2015; Perfeito et al., 2012). Hence there is a need to develop 

molecules which can simultaneous attenuate oxidative stress, inflammation and resulting 

apoptosis in PD.

In the current study, the rotenone being one of the naturally occurring insecticide and 

herbicide was used to closely mimic pathophysiology of the PD. Rotenone is a highly 

lipophilic compound and readily crosses the blood-brain barrier. It is reported to inhibit 

complex-1 activity and causes destruction of dopaminergic neurons through oxidative and 

inflammatory reactions (Schapira et al., 1990; Sherer et al., 2007).

Cytochrome P450 enzyme catalyzes the formation of epoxyeicosatrienoic acids (EETs) from 

arachidonic acid (AA). The EETs are converted to biologically inactive or less active diols 

by one of its major metabolising enzyme soluble epoxide hydrolase (sEH) (Spector, 2009). 

The cytoprotective role of EET’s in various conditions are attributed to their ability to 

attenuate oxidative stress, inflammation, and apoptosis (Lakkappa et al., 2016; Spector and 
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Norris, 2007). One of the novel strategies, therefore, is to inhibit the enzyme sEH and 

thereby promote the cytoprotective benefits of EETs in brain (Terashvili et al., 2012). EET’s 

are broadly distributed in brain regions such as globus pallidus, substantia nigra, thalamus, 

cerebellum, pons, choroid plexus, medulla oblongata and hippocampus (Sura et al., 2008). 

The cytoprotective actions of EET’s such as attenuation of oxidative stress, endoplasmic 

reticulum stress, inflammation, caspase activation and apoptosis in neuronal cells have been 

well studied and reported (Alkayed et al., 1996; Spector and Norris, 2007; Sura et al., 2008; 

Terashvili et al., 2012; Zhang et al., 2007). Our group has previously analyzed and reported 

the possible mechanisms of neuroprotective actions of EET’s in PD (Lakkappa et al., 2016).

Therefore in the current study the administration of sEH inhibitors such as APAU will be 

tested. Since the inhibition of sEH, results in the elevation of EETs which are naturally 

occurring endogenous compounds, their elevation might not pose neurotoxicity or systemic 

toxicity. Which further eradicates the limitations of the current antiparkinson therapies such 

as dopa-resistant motor (speech impairment, abnormal posture, gait and balance problems), 

nonmotor (autonomic dysfunction, mood and cognitive impairment, sleep problems, pain) 

complication and also drug-related side effects (especially psychosis, motor fluctuations, and 

dyskinesias) (Rascol et al., 2003a).

Earlier studies have reported a diverse class of sEH inhibitors such as amides, thioamides, 

ureas, thioureas, carbamates, acylhydrazones, chalcone oxides, and other pharmacophores to 

possess cytoprotective potential in various conditions (Morisseau and Hammock, 2013b; 

Shen, 2010). Among these the N, N’-disubstituted urea such as 12-(3-adamantan-1-yl-

ureido)-dodecanoic acid (AUDA) and 1-adamantan-3-(5-(2-(2-

ethylethoxy)ethoxy)pentyl)urea (AEPU) remained the most studied class of inhibitors 

because of their high potency. However, these inhibitors suffered from rapid in vivo 
metabolism (Anandan et al., 2009; Hwang et al., 2007; Kim et al., 2004; Liu et al., 2009; 

Morisseau et al., 1999, 2002; Tsai et al., 2010) and, therefore, the development was focused 

on piperidine- based di- and tri- substituted urea’s, such as N-(1-(2,2,2-

trifluoroethanoyl)piperidin-4-yl)-N’-(adamant-1-yl)urea (TPAU) and N-(1-acetylpiperidin-4-

yl)-N-(adamant-1-yl)urea (APAU) (Jones et al., 2006). The structure activity relationship 

(SAR) studies on these molecules showed that the introduction of a conformationally 

restricted piperedine group resulted in improved metabolic stability (Liu et al., 2009; Rose et 

al., 2010). In the present study, sEH inhibitor APAU (Fig. 1) was evaluated against rotenone 

(ROT) induced neurodegeneration in N27 cell line and Drosophila model of PD to assess 

there neuroprotective benefits (Shen, 2010).

2. Materials and methods

The sEH inhibitor, APAU was prepared by published procedures and the purity supported by 

proton and carbon NMR and LC- mass spectrometry as well as chromatographic support of 

purity (Hwang et al., 2013; Jones et al., 2006; Kim et al., 2007; Morisseau et al., 2002; Pecic 

et al., 2012; Rose et al., 2010) (Fig. 1). Rotenone, cell culture consumables, α-dinitrophenyl 

(DNP) antibody and protease inhibitor cocktail were purchased from Sigma (Sigma Aldrich, 

India). Fetal calf serum for cell culture was obtained from PAN Biotech (GmBh, Germany). 

Horseradish peroxidase (HRP) conjugated secondary antibodies were obtained from 
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Bangalore Genei (Bangalore, Karnataka, India). Nitrocellulose membrane was obtained 

from Millipore (Billerica, MA, USA). Antibodies for JNK, phospho-JNK, c-jun, phospho-c-

jun, and caspase-3 were obtained from Abcam (Abcam, MA, USA). The primers SOD, CAT, 

IL-6, EPHX-2, COX-1 and COX-2 were obtained from Eurofins Genomics. All other 

chemicals and reagents used were of analytical grade and purchased from SD fine 

Chemicals.

2.1. Docking studies

Docking studies were carried out using Glide, version 6.5, Schrödinger Suite 2012–14, LLC, 

New York, 2014–2, on a Maestro graphical user interface.

2.1.1. Ligand structure preparation—The structures of all the molecules were drawn 

using ChemBioDraw Ultra (Version 12, PerkinElmer Inc.). These structures were then 

subjected to ligand preparation process using LigPrep module of Glide. The energy 

minimization was carried out by using Optimized Potentials for Liquid Simulations-2005 

(OPLS2005) force field.

2.1.2. Protein structure preparation—The X-ray crystal structure of the human sEH 

co-crystallized with ligand N-(2,4-dichlorobenzyl)-4-(pyrimidin-2-yloxy) piperidine-1-

carboxamide (CIU) (PDB ID: 1VJ5) at 2.35 Å resolution was retrieved from the RCSB 

Protein Data Bank (PDB) and used to model the protein structures. In general, the protein 

structure was refined for their bond orders, formal charges and missing hydrogen atoms, 

topologies, incomplete and missing residues and terminal amide groups. The water 

molecules beyond 5 Å of the hetero atom were removed. The possible ionization states were 

generated for the heteroatom present in the protein structure and the most stable state was 

chosen. The hydrogen bonds were assigned and orientations of the retained water molecules 

were corrected. Finally, a restrained minimization of the protein structure was carried out 

using OPLS 2005 force field to reorient side-chain hydroxyl groups and alleviate potential 

steric clashes.

2.1.3. Receptor grid generation—The prepared protein was used for the receptor grid 

construction. The various potential energies of the binding site of the protein were calculated 

based on the grid with a box size of 17 Å. In the receptor grid of the sEH- protein, the 

flexibility was assigned to the hydroxyl groups of tyrosine 334, 381, 465 and aspartate 333.

2.1.4. Validation of docking programme—The extra precision docking accuracy was 

validated by comparing the docked pose of ligand to the co-crystallized ligand pose. The 

Root Mean Square Deviation (RMSD) between the predicted conformation and the observed 

X-ray crystallographic conformation were used for the validation of the programme.

2.1.5. Glide ligand docking—The ligand docking was carried out using the previously 

prepared receptor grid and the ligand molecules. The favourable interactions between ligand 

molecules and the receptor were scored using the Glide ligand docking program (rigid 

docking mode). All the docking calculations were performed using the Extra Precision (XP) 

mode and the force field employed was OPLS 2005.
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2.2. In vitro neurprotective activity

2.2.1. Sample preparation—The sample stock solutions were prepared by dissolving 

the 10 mg of APAU separately in 1 ml of DMSO. The further dilutions were made using 

serum free cell culture media. Rotenone toxin (10 mg) was freshly prepared by dissolving in 

1 ml of DMSO and further dilutions were made using serum free cell culture media for the 

in vitro evaluation. All other reagent for antioxidant studies was freshly prepared before the 

experiments.

2.2.2. Cell culture and maintenance—The N27 (1RB3AN27) rat doapminergic cell 

lines have been used. The cell line was procured form Dr. Curt Freed, University of 

Colorado (U.S.A.). The cells were grown in nutrient RPMI medium 1640 containing 10% 

fetal bovine serum (FBS) and 1X antibiotic solution (100 U/ml penicillin, 100 μg/ml 

streptomycin and 0.25 g/ml amphotericin). Cell lines were maintained in a humid 

atmosphere of 5% CO2 and 95% O2 at 37 °C.

2.2.3. Neuroprotection studies—The sEH inhibitor APAU was screened for 

cytoxicity (at 24 h and 48 h) on N27 cell lines at a concentration range of 0.5–30 μM. The 

ROT induced cytoxicity was evaluated by treating the N27 cell lines with ROT (50–500 nM) 

for 24 h. Further the molecule was screened for its neuroprotective propensity (below its 

cytotoxic doses) against ROT (400 nM) induced toxicity. The cells were seeded into 96 well 

plates (for cell viability assays) and 6 well plates (for evaluation of oxidative stress, 

inflammatory, apoptotic parameters). After 24 h of cell seeding the cells was pre-treated 

with sEH inhibitor APAU for 3 h followed by ROT (400 nM) and incubated for 24 h. After 

24 h the cell viability was assessed (using cells seeded in 96 well plates) by MTT and LDH 

release assay (Pandareesh and Anand, 2013; Vanderlinde, 1985; Wróblewski and Ladue, 

1955). The cells in the 6 well plates were homogenized using cell lysis buffer (2% Triton 

X-100), and the homogenate was used for protein and other biochemical assays 

encompassing of ROS, hydroperoxides, lipid peroxidation, protein oxidation, mitochondrial 

complex-1, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidise (GPx), 

glutathione reductase (GR), glutathione (GSH), and total antioxidant status (TAC) studies.

2.2.4. Redox assays (Detail procedure Table S3)

Redox assay Procedure Reference

ROS After the treatment the intracellular ROS was estimated by the 
oxidationsensitive dye 2′,7′- dichlorfluorescein-diacetate (DCFDA). The 
fluorescence intensity was measured at an excitation wavelength of 485 nm 
and an emission wavelength of 535 nm using Multitechnology plate reader 
(Tecan GmbH, Germany).

Jagatha et al. 
(2008), 
Ramadasan-Nair et 
al. (2014)

Hydroperoxide Total cellular hydroperoxides were measured using commercially available 
Amplex red kit (A22188, Invitrogen) as per the manufacturer’s instructions.

Gay et al. (1999)

Lipid 
peroxidation

The lipid peroxidation was estimated by using thiobarbituric acid (TBARS) 
with minor modifications, and the malondialdehyde (MDA) content was 
calculated using a molar extinction coefficient of 1.56×105M−1 cm−1

Garcia et al. (2005)

Mitochondrial 
membrane 
potential

The mitochondrial membrane potential (MMP) was estimated by using 
fluorescent dye rhodamine 123 (10 mg/ml) and the fluorescence intensity 
was measured at excitation wavelength of 485 nm and an emission 
wavelength of 535 nm using Multi-technology plate reader (Tecan GmbH, 
Germany).

Pandareesh et al. 
(2016a)
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Redox assay Procedure Reference

SOD The activity of SOD was estimated by measuring degree of inhibition of 
quercetin oxidation. The quercetin at pH 10 undergoes oxidation due to free 
radical chain reaction involving superoxides and hence inhibitable by 
superoxide dismutase (SOD).

Kostyuk and 
Potapovich (1989)

CAT CAT was estimated by measuring the decay of 6mM H2O2 solution at 240 
nm by the spectrophotometric degradation method. An extinction coefficient 
of 43.6 M−1 cm−1 was used to determine the enzyme activity and values 
were expressed as mmol H2O2 degraded/ min/mg of protein.

Aebi (1984)

GPx Glutathione peroxidase (GPx) catalyzes the oxidation of glutathione (GSH) 
by cumene hydroperoxide. In the presence of glutathione reductase (GR) and 
NADPH the oxidized glutathione (GSSG) is immediately converted to 
reduced form with a concomitant oxidation of NADPH to NADP+. The 
decrease in absorbance was measured at 340 nm.

Flohé and Günzler 
(1984)

GR Glutathione reductase (GR) catalyses the reduction of oxidized glutathione 
(GSSG) to reduced glutathione (GSH) in presence of NADPH, which is 
oxidized to NADP+. The decrease in absorbance was measured at 340 nm.

Saydam et al. 
(1997)

GSH The total GSH was estimated by the 5, 5’ dithiobis 2-nitrobenzoic acid 
(DTNB) recycling method.

Banerjee et al. 
(1999), Mythri et 
al. (2007)

TAC Total antioxidant capacity was determined by ABTS radicals scavenging 
assay. Decolourization of ABTS on a time-scale represents the antioxidant 
activity of sEH inhibitors. The concentration of the antioxidant and the 
duration of the reaction were monitored at 734 nm for 3 min at an interval of 
1 min Multi-technology plate reader (Tecan GmbH, Germany).

Pandareesh et al. 
(2016a), Re et al. 
(1999)

Protein oxidation The ROS induced oxidative modification of proteins was estimated by the 
method of oxyblot. The carbonyl groups in the protein side chains are 
derivatized to 2,4-dinitrophenylhydrazone (DNP-hydrazone) by reaction 
with 2,4-dinitrophenylhydrazine (DNPH) and estimated by the method of 
oxyblot

Butterfield and 
Stadtman (1997)

2.2.5. Mitochondrial complex I assay—The mitochondrion was isolated from N27 

cells based on the principal of differential centrifugation. N27 cells were washed in buffer H 

(5 mM HEPES, 210 mM mannitol, 70 mM sucrose, 1 mM EGTA, and 0.5% bovine serum 

albumin) and were resuspended in the same buffer. The cell suspension was homogenized 

and centrifuged at 800 × g for 5 min at 4 °C. The supernatant that was enriched in 

mitochondria was then centrifuged at 10,000 × g for 20 min at 4 °C. The resulting 

mitochondrial pellet was resuspended in buffer H and stored as aliquots at −80 °C for 

estimation of proteins and complex I activity. The complex I assay was carried out according 

to standard protocol (Mythri et al., 2007; Pandareesh et al., 2016b). The specific activities 

with and without ROT were calculated independently. The difference between the two was 

taken as the activity specific to mitochondrial complex I (Mythri et al., 2007; Pandareesh et 

al., 2016b).

2.2.6. Estimation of Apoptotic markers by western blot analysis—JNK, 

phospho-JNK, c-jun, phospho-c-jun, caspase-3 and β-actin expression were analyzed by 

western blotting. Total cellular protein was separated on SDS-PAGE and transferred onto a 

nitrocellulose membrane using an electro blotting apparatus (Bio-Rad, Hercules, CA, USA). 

After the transfer the membrane was probed against primary antibody β-actin (ab8227), c-

jun (ab32137), phospho-c-jun (ab32385), JNK (55 A8), phosho-JNK (98F2), pro and active 

caspase 3 (ab13585) (Abcam, MA, USA) all (1:500) dilution, followed by horseradish 

peroxidase conjugated secondary antibodies (goat anti-rabbit and antimouse antibodies) 

(Millipore, Billerica, MA, USA) (1:10,000) dilution. The membranes were washed and 
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developed using a chemiluminescence, and the band intensities were captured using 

advanced gel doc systems (G: BOXChemi XT4, Syngene, MD, USA) and the band intensity 

was measured using NIH image J analysis software (Pandareesh et al., 2016b).

2.2.7. Total RNA isolation, c-DNA synthesis and quantitative PCR—The total 

RNA was isolated from N27 cells using RNeasy spin columns (Qiagen, USA) as per the 

manufacturer’s instructions. The cDNA conversion was performed using commercial kit 

(Applied Biosystems (4368814) (CA, USA)). The transcript abundance of antioxidant genes 

such as SOD, CAT, inflammatory markers IL-6, COX-1 and COX-2, sEH gene EPHX-2 

were examined by quantitative PCR. GAPDH was used as housekeeping gene. The primer 

design was performed using Integrated DNA technologies (IDT) and primer-BLAST 

software (Table S2). The PCR reaction mixture containing 2X Eva green PCR ready mix 

(containing dNTPs, 10 μl Taq-Polymerase), 2 ng of total cDNA, and 10 pmol forward and 

reverse primers (Eurofins, India) in a final volume of 20 μl. The cycling program was set as 

follows: one cycle of reverse transcription at 50 °C for 10 min, and 5 min of polymerase 

activation at 95 °C followed by 45 cycles of PCR at 95 °C for 10 s, 58 °C for 30 s. The 

threshold cycle (Ct) of the gene of interest, housekeeping gene and the difference between 

their Ct values (ΔCt) were determined. Normalized gene expression was calculated using 

Life-technologies 7500 software v2.0.6 (Pandareesh et al., 2016b).

2.3. In vivo neuroprotective activity

2.3.1. Sample preparation—The sample stock solutions were prepared by dissolving 

the 10 mg of APAU in 1 ml of DMSO. The further dilutions were made using sucrose 

solution (7% v/v) in sterile water. ROT toxin (500 μM) was freshly prepared by dissolving in 

DMSO and further dilutions were made using sucrose solution (7% v/v) in sterile water for 

the in vivo evaluation. All other reagent for antioxidant studies was freshly prepared before 

the experiments.

2.3.2. Drosophila husbandry and treatment—The wild type (Oregon K) adult, 

male, synchronized 10 day old flies were grown and maintained at 24 ± 1 °C, with 70–80% 

relative humidity and fed on a standard wheat flour-agar diet with yeast granules as the 

protein source (Hosamani, 2009, 2010). A pilot study was carried out by exposing the 

synchronized flies to ROT (10–1000 μM) and APAU (50–1000 μM) separately for about 12 

days to determine the dose required to produce 50% death on days 8. Based on the results 

500 μM ROT (LD50: 500 μM), 50, 100 and 250 μM APAU (LD50 > 1000 μM) were selected 

for the neuroprotection studies (Fig. 7a and b). The flies were divided into 4 groups 

consisting of 50 flies in each group. Group 1 and 2 received vehicle DMSO (0.25% v/v) in 

sucrose solution (7% v/ v)). Group 3 and 4 received APAU at a concentration of 50, 100 and 

250μM, respectively. The vehicle and test solutions were administered as soaked filter paper 

discs. All treatments were started 4 days before ROT treatment. On day 6 all groups received 

ROT (500μM) except normal. The flies were subjected to negative geotaxis study daily and 

sacrificed on day 12 by freezing at −80 °C for 3 min. Drosophila heads were separated using 

a sharp cutter from the rest of body and stored at −80oC for analysis of ROS, hydroperoxide, 

GSH, dopamine and its metabolites.
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2.3.3. Negative geotaxis assay—Twenty adult male synchronized flies were 

transferred into a vertical glass column (Length, 25 cm; diameter, 1.5 cm) sealed on the 

other end. After a brief period of recovery, the flies were gently tapped to the bottom of the 

column. After a minute of recovery, the number of flies reaching the top of the column and 

the flies remained in the bottom of the column were counted separately. The data were 

expressed as percent flies crossed 10 cm mark in 60 s (Pandareesh et al., 2016b).

2.3.4. Redox assay in Drosophila—The heads of 20 flies from each group were 

separated and homogenized in sodium-phosphate buffer (0.1 M; pH 7.4) followed by 

centrifugation (2500×g for 10 min at 4 °C). The supernatant was collected and used for 

estimation of ROS (Jagatha et al., 2008; Ramadasan-Nair et al., 2014), hydroperoxide (Gay 

et al., 1999) and GSH (Banerjee et al., 1999; Mythri et al., 2007) using protocol as employed 

in in vitro studies.

2.3.5. Estimation of Dopamine and its metabolites in Drosophila by LC–
MS/MS—The pooled 40 flies’ whole body homogenate was mixed with 1.25 g of activated 

charcoal and was agitated over night for removal of endogenous analytes. The extract was 

further filtered using Whatman filter paper. The filtrate was spiked with dopamine, DOPAC, 

HVA and L-phenylalanine (internal standard (IS)) at a concentration range of 5–2000 ng/ml. 

The proteins were precipitated with acetonitrile, centrifuged at 5000 × g rpm for 10 min. The 

10 μl of clear supernatant of calibration standards and samples were injected into UFLC-

ESI-QQQ mass spectrometer (Shimadzu 8030, Japan). The data acquisition was performed 

by using Lab solutions software (Shimadzu, Japan). The chromatographic separation was 

achieved on Jones C18 (50 × 4.6 mm; 3μ). The mobile phase was a mixture of methanol (A) 

and 0.1% acetic acid (B) in the ratio of 20:80 (v/v) with a flow rate of 0.5 ml/min isocratic 

elution mode. Detection was performed using positive (dopamine (154.05 > 137.05) and IS 

(166.15 > 120.10) and negative (DOPAC (167.05 > 123.10) and HVA (181.05 > 137.15)) 

MRM modes. DA, DOPAC and HVA were quantified by response factor (peak area of 

analyte/peak area of IS) and expressed in ng/mg protein (Phan et al., 2013) (Fig. S4 and 

Table 3).

2.4. Determination of protein

Protein concentrations in N27 cells and Drosophila head homogenates were determined by 

the Bradford method using bovine serum albumin as standard (Bradford, 1976).

2.5. Statistical analysis

The data were expressed as the mean ± standard deviation (SD). Statistical significance was 

determined by one way ANOVA followed by Bonferroni post hoc test to assess differences 

between the groups. Values were considered significant, if p < 0.05.

3. Results

3.1. In silico docking study

The docking programme validation results reveal a very good agreement between the 

localization of ligand upon docking and the crystal structure. The RMSD between the 
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predicted conformation and the observed X-ray crystallographic conformation of the ligand 

N-(2,4-dichlorobenzyl)-4-(pyrimidin-2-yloxy) piperidine-1-carboxamide was found to be 

0.130 (Figure S2).

The results reveal a good glide score of APAU. The molecules received lipophilic, 

hydrophobic enclosure, hydrophobically Packed H-bond, hydrophobically packed correlated 

H-bond, hydrogen bonding, electrostatic, site map and low molecular weight rewards. In 

addition, the molecules received rotatable bond penalties (Table S1). The sEH inhibitor, 

APAU showed hydrogen bond with tyrosine 334, 381, 465 and aspartate 333 residues and 

these interactions were similar to co-crystal sEH inhibitor N-cyclohexyl-N’-(4-

iodophenyl)urea (PDB ID: 1VJ5-CIU) (Figure S3). This confirms the good binding ability 

of the inhibitor.

3.2. In vitro neuroprotection study

The ROT at a dose of 400 nM produced significant cell death (approximately 50%) and 

induced significant changes in oxidative, inflammatory and apoptotic parameters when 

compared to Control, indicating a significant neurodegeneration. APAU showed a significant 

protection against ROT induced changes in the neuronal cell viability and LDH leakage at a 

concentration range of 2.5–10 μM (Fig. 2a–c). APAU (2.5 μM) also attenuated the ROT 

induced changes in oxidative stress (total intracellular ROS, hydroperoxides, protein 

oxidation, lipid peroxidation, SOD, CAT, GSH, GPx, GR, TAC, mitochondrial complex-1 

activity, and mitochondrial membrane potential), inflammation (IL-6, COX-1 and COX-2), 

and apoptotic parameters (JNK, phospho-JNK, c-jun, phospho-c-jun, and active caspase-3) 

(Tables 1–2; Figs. 4–6).

3.3. In vivo neuroprotection study

ROT exposure at 500 μM for 6 days induced approximately 50% mortality (Fig. 7a) and 

significantly altered oxidative stress parameters (ROS, hydroperoxide, GSH) and DA, 

DOPAC and HVA levels in Drosophila head when compared to control (p < 0.05), indicating 

a significant neurodegeneration. The molecule APAU showed significant decrease in 

mortality when compared to ROT induced neurodegeneration (Fig. 7c). APAU also 

attenuated the ROT induced changes in oxidative stress parameters, locomotor 

dysfunctioning and improved ROT induced alteration DA, DOPAC and HVA levels (p < 

0.05) (Fig. 7d and Table 3).

4. Discussion

In the present study sEH inhibitor APAU was screened for its neuroprotection activity. In 
silico results confirm a good binding interaction of the molecules at the active site of sEH 

(PDB: 1VJ5) (Table S1 and Figure S3). ROT is a potent mitochondrial complex-I inhibitor 

reported to induce neurotoxicity specific to dopaminergic neurons through mitochondrial 

dysfunctioning, and ROS production (Alam and Schmidt, 2002; Panov et al., 2005). ROT 

induced disturbance in the natural oxidation and reduction equilibrium has been reported to 

induce oxidative stress mediated modifications to DNA, lipids, and proteins followed by 
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activation of microglia and generation of pro-inflammatory mediators leading to apoptosis 

(Dexter et al., 1989; Floor and Wetzel, 1998; Liang et al., 2015) (Fig. 8).

The ROT induced inhibition of mitochondrial complex-1 leads to leakage of electron from 

respiratory chain resulting in generation of ROS. The increased ROS levels were 

significantly attenuated by pretreatment with APAU as confirmed by DCFDA and 

hydroperoxide assay (Table 1). The sEH inhibitor APAU also significantly restored ROT 

mediated mitochondrial complex-I dysfunctioning (Guo et al., 2013) (Fig. 3). The abnormal 

increase in ROS levels results in peroxidation of membrane lipids and damage to 

mitochondrial membrane permeability. The pre-treatment with sEH inhibitors, APAU 

significantly attenuated the ROS induced lipid peroxidation and altered mitochondrial 

membrane potential as confirmed by TBARS and rhodamine 123 florescence assays (Table 

1). Further the ROS mediated protein oxidation leads to loss of protein functions was 

significantly attenuated by APAU as confirmed in results of DNPH oxyblots (Fig. 4). In 

addition, the ROT induced decline in activity of anti-oxidant enzymes such as GSH, SOD, 

CAT, GR, and Gpx was significantly prevented by pre-treatment with APAU (Table 2). The 

beneficial effect of these molecules on the total anti-oxidant status was supported by the 

results of ABTS assay (Table 2).

A variety of studies over the last few years support the hypothesis that the broad activity of 

sEH inhibitors and the epoxy fatty acids is that they stabilize on many disease states, arise 

from a reduction in the endoplasmic reticulum stress response which is in turn stimulated by 

excess release of ROS (Sirish et al., 2016).

ROT is reported to decrease the mRNA expression of SOD, CAT which was significantly 

improved by pre-treatment with APAU (Fig. 6) (Javed et al., 2016). The ROT is also 

reported to stimulate activation microglia resulting in increased production of Pro-

inflammatory mediators (Jiang et al., 2017; Klintworth et al., 2009; Tetsuka et al., 1996) 

such as IL-6, COX-1 and 2 which was significantly normalized by pretreatment with APAU. 

These data support the anti-inflammatory role of APAU (Fig. 6). The ROT induced impaired 

cellular redox state results in stress induced activation of JNK1/2, c-jun phosphorylation, 

and caspase 3 resulting in apoptosis (Li et al., 2003; Moungjaroen et al., 2006). The current 

study results show that pre-treatment with APAU inhibited caspase 3 activation by 

preventing phosphorylation of JNK and c-jun. These molecule, therefore may act by 

inhibiting both intrinsic and extrinsic pathways of apoptosis (Dhanasekaran and Reddy, 

2008; Liu et al., 2011; Ma et al., 2012) (Fig. 5a–c). Similar kind of studies were reported by 

Maia Terashvili and group, showing the neuroprotective role of 14,15-EET and sEH 

inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) against H2O2 induced 

neurodegeneration in N27 cell lines (Terashvili et al., 2012).

In the Drosophila model ROT treatment induced dose dependent mortality, locomotor 

dysfunctioning and dopamine depletion (Fig. 7a–d). Previously ROT was reported to induce 

site specific dopaminergic neurodegeneration via inhibition of mitochondrial complex-1 

mediated ROS production in flies (Coulom and Birman, 2004). The pre-treatment with 

APAU significantly attenuated the ROT induced deficits including restoration of DA and its 

metabolites and antioxidant status (Table 3). The present study results therefore support the 
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neuroprotective benefits of APAU. However, the use of APAU has advantages over current 

antiparkinson’s medication, as they have no drug induced side effects. The elevation of 

endogenous EETs might not impose motor and non-motor dysfunctioning as seen in current 

antiparkinson’s medications (Rascol et al., 2003a). Due to lack toxic effects of EET’s, 

APAU might be a safe drug of choice, to be used as a prophylactic, in prevention of 

neurological disorders. Our study also reported the restoration of rotenone induced 

Complex-1 dysfunctioning which is one of the major cause of the neurodegeneration in PD 

(Schapira et al., 1990). In addition, studies have reported the elevated levels of EET’s 

improve mitochondrial functions in cardiac cells (Akhnokh et al., 2016; Batchu et al., 2012). 

However, the exact mechanism of action of EET’s on mitochondrial functions is still under 

research, which may indeed need further exploration. Since PD is a multiple 

neurodegenerative disorder, the reported simultaneous inhibition of oxidative stress, 

inflammation and apoptosis by EET’s will have an added advantage over the current 

antiparkinson medication. Therefore, the use of APAU alone or in combination with existing 

drug therapy with dopamine replacement may prove to be a drug of choice for PD.

5. Conclusion

The study results concludes the sEH inhibitors, APAU, shows significant neuroprotective 

benefits. This molecule has the potential to target multiple neurodegenerative pathways and, 

therefore, can prevent disease progression. APAU, therefore, has a unique potential which is 

not available with the currently used antiparkison agents.
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Abbreviations

sEH soluble epoxide hydrolase

EETs epoxyeicosatrienoic acids

PD Parkinson’s disease

COX cyclooxygenase

LOX lipoxygenase

AA arachidonic acid
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MAO monoamine oxidase

COMT catechol-O-methyl transferase

APAU 1-(1-acetypiperidin-4-yl)-3-adamantanylurea

ROT rotenone

SOD superoxide dismutase

ROS reactive oxygen species

CAT catalase

IL-6 Interleukin-6

EPHX-2 epoxide hydrolase 2

COX cyclooxygenase

PDB protein data bank

RMDS root-mean-square deviation

GPx glutathione peroxidase

GR glutathion réductase

GSH glutathione

ABTS [22′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)]

TAC total antioxidant status

DNP α-dinitrophenyl

HRP horseradish peroxidase

JNK c-jun N-terminal kinases

XP extra precision

FBS fetal bovine serum

RPMI Roswell Park Memorial Institute

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

LDH lactate dehydrogenase

DCFDA 2′,7′-dichlorfluorescein-diacetate

TBARS thiobarbituric acid

MDA malondialdehyde

MMP mitochondrial membrane potential
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DTNB 5, 5′ dithiobis 2-nitrobenzoic acid

DNPH 2,4-dinitrophenylhydrazine

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)

EGTA Ethylene Glycol Bis(2-aminoethyl Ether)tetraacetic Acid

DMSO dimethyl sulfoxide

DA dopamine

DOPAC 3,4-dihydroxyphenylacetic acid

HVA homovanillic acid

IS internal standard
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Fig. 1. 
Chemical structure of APAU.
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Fig. 2. 
(a) Dose dependent effect of ROT (1–500 nM) on N27 cell viability assessed by MTT assay. 

The data represent mean ± SEM of three independent experiments. *p < 0.05 versus Control 

group. (b) Protective effect of APAU (2.5–10 μM/ml) against ROT (400 nM) induced 

cytotoxicity assessed by MTT assay. The data represent mean ± SEM of three independent 

experiments. #p < 0.05 versus Control group and *p < 0.05 versus ROT group. (c) Protective 

effect of APAU (2.5–10 μM/ml) against ROT (400 nM) induced LDH leakage. The data 

represent mean ± SEM of three independent experiments. #p < 0.05 versus Control group 

and *p < 0.05 versus ROT group.
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Fig. 3. 
Effect of APAU (2.5 μM/ml) on ROT (400 nM) induced altered mitochondrial complex I 

activity in N27 cell model. The data represent mean ± SEM of three independent 

experiments. #p < 0.05 versus control group and *p < 0.05 versus rotenone group.
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Fig. 4. 
Effect of APAU (2.5 μM/ml) on ROT (400 nM) induced protein oxidation, as determined by 

estimation of protein carbonyls by oxyblot. The data represent mean ± SEM of three 

independent experiments. #p < 0.05 versus Control group; *p < 0.05 versus ROT group and 
$p < 0.05 versus Control group.
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Fig. 5. 
(a-c): Effect of APAU (2.5 μM/ml) on ROT (400 nM) induced alterations in apoptotic 

marker proteins - phospho c-jun, phospho JNK and caspase 3 analyzed by using western 

blot. Quantification of the individual bands in the blot is represented by bar graphs below the 

blots. The data represent mean ± SEM of three independent experiments. #p < 0.05 versus 
control group; *p < 0.05 versus ROT group and $p < 0.05 versus Control group.
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Fig. 6. 
Effect of APAU (2.5 μM/ml) on ROT (400 nM) induced altered expression of redox genes 

(SOD, CAT), and inflammatory markers (COX-1 and 2, IL-6) assessed by RT-PCR. The data 

represent mean ± SEM of three independent experiments. #p < 0.05 versus Control group; 

*p < 0.05 versus ROT group and $p < 0.05 versus Control group.
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Fig. 7. 
a, b, c, and d: Protective effect of APAU on ROT-induced mortality and locomotor deficits in 

the Drosophila model of PD. Dose dependent lethality response expressed as percent 

mortality among adult male Drosophila exposed to various concentration of ROT (10–1000 

μM) and APAU (50–1000 μM) is shown in Fig. 7a, and b; c shows the % mortality among 

the flies pre-treated with APAU (50–100 μM) for 5 days, followed by co-treated with both 

APAU and ROT for 7 days. Fig. 7d shows the improvement in the locomotor deficits by 

APAU (50–100 μM) as determined by negative geotaxis assay. The data represented in 

percentage, where n=2. Analyzed by using one way analysis of variance followed by 

Bonferroni post test.
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Fig. 8. 
sEH inhibitors APAU mediated neuroprotection against ROT induced toxicity.
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