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The Alignment Problem in Curriculum Learning
Benjamin Sheller & Patrick Shafto

Department of Mathematics and Computer Science
Rutgers University - Newark

Abstract

In curriculum learning, teaching involves cooperative selec-
tion of sequences of data via plans to facilitate efficient and
effective learning. One-off cooperative selection of data has
been mathematically formalized as entropy-regularized opti-
mal transport and the limiting behavior of myopic sequential
interactions has been analyzed, both yielding theoretical and
practical guarantees. We recast sequential cooperation with
curriculum planning in a reinforcement learning framework
and analyze performance mathematically and by simulation.
We prove that infinite length plans are equivalent to not plan-
ning under certain assumptions on the method of planning, and
isolate instances where monotonicity and hence convergence
in the limit hold, as well as cases where it does not. We also
demonstrate through simulations that argmax data selection is
the same across planning horizons and demonstrate problem-
dependent sensitivity of learning to the teacher’s planning hori-
zon. Thus, we find that planning ahead yields efficiency at the
cost of effectiveness.

Advances in AI and machine learning enable the possi-
bility that artificial systems may autonomously facilitate hu-
man goals, including human learning. Design of such sys-
tems requires addressing a value alignment problem (Russell,
2019; Christian, 2020), which requires interacting with the
system to achieve the desired goals. Toward this end, formal-
izing models of cooperation among agents that bridge human
and machine learning is an important direction for research
(Shafto & Goodman, 2008; P. Wang et al., 2020; J. Wang et
al., 2020; Goodman & Stuhlmüller, 2013; Ho et al., 2021).
We identify a novel value alignment problem in the context
of agents that facilitate learning, and mathematically identify
and computationally test sufficient conditions for value align-
ment in curriculum learning.

Learning may be facilitated by the teacher planning ahead,
which becomes a problem of reinforcement learning. There
exists an extensive literature on curriculum learning (Elman,
1993; Khan et al., 2011; Pentina et al., 2015; Matiisen et
al., 2020; Graves et al., 2017); however, this literature fo-
cuses on naive learners rather than those that reason coop-
eratively about the teacher’s selection of data. Theoretical
results are limited (Milli & Dragan, 2020) and have not sys-
tematically considered the possibility of alignment problems
or their solutions. Recent advances in theoretical foundations
for cooperative inference admit a more unified formal treat-
ment (P. Wang et al., 2020), which is necessary to understand
whether, when, and why alignment problems arise.

We formalize the alignment problem in curriculum learn-

ing via the mathematical condition of consistency. Given a
teacher and learner cooperatively communicating, the teacher
aims to convey a distribution θ on the finite set of possi-
ble hypotheses H to the learner, over an infinite horizon.
That is, if θn denotes the learner’s distribution at the n-th
round of communication, the alignment problem is to have
limn→∞ ∑h∈H |θ(h)− θn(h)| = 0. When the teacher is con-
veying a specific hypothesis h′ to the learner, the distribution
to be learned is θ = δh′ , a Dirac distribution.

We investigate the alignment problem in curriculum learn-
ing by recasting sequential cooperative Bayesian inference
(SCBI) as a Markov decision process (MDP). The first sec-
tion gives background on one-off cooperative inference and
sequential cooperative inference, as well as the interpreta-
tion of SCBI as a Markov chain. We then recast SCBI as
a Markov decision process, distinct from the trivial realiza-
tion of a Markov chain as an MDP, contrasting SCBI with
no planning ahead vs. using a teaching plan which calculates
several steps into the future, and isolating the theoretical basis
of misalignment. One main result of this section is that for a
class of reward/cost functions, planning infinitely far ahead is
equivalent to not planning ahead at all. The other main result
is to give a condition for monotonicity in expectation which
yields a sufficient requirement for alignment.

Notation. M ∈ R|D|×|H |>0 is the joint distribution for the
teacher and learner between data and hypotheses, with |D|
many rows and |H | many columns, with M(d,h) the entry of
the joint distribution corresponding to datum d and hypoth-
esis h. Mθ,λ is the joint distribution M normalized using
Sinkhorn scaling to have column sums equal to θ and row
sums equal to λ. That is, for every h∈H , ∑d∈D Mθ,λ

(d,h) = θ(h)

and for every d ∈D , ∑h∈H Mθ,λ
(d,h) = λ(d). π : P (H )→ P (D)

is a teaching strategy used by the teacher for a single round of
teaching, while πN

R : P (H )→ P (D) is the teaching strategy
obtained from π by planning N teaching rounds into the future
and using the random variable R, representing rewards/costs
inherent to the problem. δ

Mθ,λ
(d,−)/λ(d)

is the atomic distribu-

tion on P (H ) with atom Mθ,λ
(d,−)/λ(d); i.e. δ

Mθ,λ
(d,−)/λ(d)

∈

P (P (H )), the space of distributions on the distributions on
hypotheses, where the Markov operator Ψπ in our formalism
is acting. ΨN

π denotes Ψπ : P (P (H ))→ P (P (H )) composed
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with itself N times. Frequently we will shorten the notation
δ

Mθ,λ
(d,−)/λ(d)

to δ(d).

Background
Curriculum learning involves selecting a sequence of learn-
ing problems that lead the learner to a desired knowledge or
capability. We formalize these as a sequence of data that lead
the learner to a target hypothesis. Throughout, we will as-
sume teachers and learners are probabilistic agents reasoning
over discrete and finite spaces of hypotheses h ∈ H and data
d ∈ D . Recall, in standard probabilistic inference, learners
will update their posterior beliefs P(h|d) in proportion to the
product of the prior beliefs, P(h) and the likelihood of the
data, P(d|h), as dictated by Bayes rule.

One-off cooperative inference. Cooperative inference be-
tween probabilistic agents differs from standard Bayesian in-
ference in the second agent, the teacher, who selects the data,
and in that the agents reason about each other’s beliefs. Based
on the shared joint distribution between data and hypotheses,
the teacher reasons about the learner’s beliefs, and samples
data to pass according to the learner’s current distribution on
hypotheses, the joint distribution, and the desired hypothesis
to be conveyed. The learner then reasons based upon what
data they have been passed by the teacher and infers, based
on the shared joint distribution, what hypothesis the teacher is
attempting to convey. This process may be represented math-
ematically by the following system of equations:

PL(h|d) =
PT (d|h)PL0(h)

PL(d)
, PT (d|h) =

PL(h|d)PT0(d)
PT (h)

(1)
where PL(h|d) represents the learner’s posterior probability
for hypothesis h given datum d; PT (d|h) is the probability of
the teacher selecting datum d to convey hypothesis h; PL0(h)
represents the learner’s prior for hypothesis h; PT0(d) is the
teacher’s prior for selecting data d; PL(d) and PT (h) are nor-
malizing constants. Sinkhorn scaling of matrices (i.e. al-
ternating row-column normalization of the joint distribution)
may be used to solve equation (1), and the result is an optimal
entropy-regularized plan for transporting beliefs (P. Wang et
al., 2019, 2020).

Sequential cooperative inference. In sequential coopera-
tive Bayesian inference (SCBI), a teacher and learner partic-
ipate in rounds of learning. To convey a particular hypothe-
sis (or belief on the space of possible hypotheses) from the
hypothesis-space H , in each round the teacher passes a da-
tum d ∈ D to the learner, and the learner updates their be-
lief distribution accordingly. At the end of each round, the
teacher and learner both update their posterior distributions
to become their prior distributions in the next round (J. Wang
et al., 2020). Each round of learning behaves as in cooper-
ative inference, where the system of equations (1) must be
solved. However, at the end of each round, each round differs
in having updated the prior, which is one marginal constraint
for Sinkhorn scaling in (1).

The process of teaching-learning-updating works as fol-
lows: Beginning with the joint distribution Mn of the pre-
vious round and distribution θn ∈ P (H ), which represents
the learner’s beliefs from the previous round of teaching-
learning, where P (H ) is the simplex of probability distribu-
tions on H , the teacher computes the Sinkhorn scaling of Mn
with row sums λ and column sums θn. Call this Mn+1. Here
λ is an underlying distribution on D reflecting inherent bi-
ases in selecting particular data points; λ is typically taken
to be the uniform distribution. Then the teacher uses the dis-
tribution Mn+1θ̂ to sample datum dn+1 from D and passes
it to the learner, where θ̂ is the desired belief on hypotheses
which the teacher wishes to convey, typically a Dirac distri-
bution, corresponding to a corner of the simplex. The learner
then calculates Mn+1 in exactly the same way as the teacher,
then multiplies θn by the likelihood of selecting dn+1. Nor-
malizing gives a distribution θn+1. The process then repeats
inductively, with n replaced everywhere by n+1.

SCBI as a Markov chain. The process of SCBI can be
realized as a Markov chain on P (H ) (J. Wang et al., 2020).
With Td : P (H )→ P (H ) the map bringing the learner’s prior
to posterior when data d is chosen by the teacher; and τ :
P (H )→ P (D) the map of the teacher’s sample distribution
based on the learner’s prior, and τd the d-th component of this
map, the Markov transition operator for a fixed hypothesis
h ∈H , Ψ(h) : P (P (H ))→ P (P (H )) is defined as:

(Ψ(h)(µ))(E) :=
∫

E
∑

d∈D
τd(T−1

d (θ)d(T ∗d (µ))(θ) (2)

where T ∗d is the push-forward of Td on Borel measures1, µ is
a Borel probability measure on the simplex P (H ), and E ⊆
P (H ) is a Borel measurable subset. Td and τ are computed as
above by using the Sinkhorn scaling of the joint distribution
between data and hypotheses.

P. Wang et al. (2020) consider the problem of a teacher
and learner communicating cooperatively in discrete rounds
of teaching/learning. The teacher and learner reason using
Bayesian inference at each round, without any reference to
what future probability distributions on the available hypothe-
ses might be, and without reference to any costs/rewards the
teacher uses in order to determine what distribution to use to
sample the data which they are passing to the learner. Al-
though there is a discussion of SCBI as a Markov chain in
(P. Wang et al., 2020), there is no extension of the method
to a Markov decision process. Here we extend the formal-
ism to include planning ahead by the teacher, as well as re-
wards/costs the teacher uses in planning in order to bias the
learner towards/away from a particular hypothesis.

Curriculum planning as MDP
Curriculum planning involves the teacher planning several
teaching moves in advance. We may model this using a
Markov decision process (MDP): Let the state space of the

1i.e. T ∗d (µ)(E) = µ(T−1
d (E)).
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Figure 1: Analysis of convergence to the target hypothesis as a function of longer curricula (0-4) for probabilistic action
selection and argmax action selection, given 3 data and 2 hypotheses. We show the probability of the target hypothesis according
to the learner versus # teaching/learning rounds, using X(θ) = θ([true hypothesis]). (left) On average, when the teacher selects
actions probabilistically (i.e. Eq. 3), longer curricula yield a marginal difference. (right) On average, when the teacher selects
actions using argmax, longer curricula is not different from not planning ahead.

process be given by S = P (H ), the probability distributions
on H . Let the action space of the MDP be given by A = D ,
the data available for the teacher to pass to the learner (inter-
pretation: an action d ∈ D corresponds to passing d to the
learner). We fix an underlying distribution λ ∈ P (D), which
represents any inherent bias towards selecting or not select-
ing some particular data. In SCBI (J. Wang et al., 2020), λ

is the uniform distribution. The reward function R may be a
combination of positive and negative pieces (to include costs,
if some hypotheses are particularly undesirable).

The transition probability T (ω|d,θ) of the MDP between
probability distributions ω and θ on H , based upon the
teacher selecting datum d, is λ(d) if ω = Td(θ) and is zero
otherwise. A teaching strategy then consists of a plan π :
P (H ) → P (D), effectively, ‘sample datum d using π(θ)
when the current distribution on hypotheses is θ.’ In SCBI,
the d − th component of the plan π is πd(θ) = τd(θ), i.e.
the adjustment of the teacher’s distribution according to the
learner’s current distribution. The teacher’s strategy can be
made deterministic if πd is an atomic distribution with a sin-
gle atom for every d ∈ D . Throughout this paper we will be
focusing on plans π which amount to the teacher preparing a
curriculum by calculating what might happen in future rounds
of learning based upon the current data selection.

Explicitly, the plan πN
R : P (H )→ P (D) corresponding to

planning ahead N moves based on the teaching strategy π and
a random variable R is realized by the following procedure:

π
N
R (θ)(d) = Norm

(
Mθ,λ

(d,h)EΨN
π δ(d)

[R]+C
)

(3)

Here Norm(·) is normalization to ensure that
∑d(π

N
R (θ)(d)) = 1, Mθ,λ is the Sinkhorn scaling of M

so that for every d ∈ D and h ∈ H , ∑d′∈D Mθ,λ
(d′,h) = θ(h)

and ∑h′∈H Mθ,λ
(d,h′) = λ(d). The h in Equation (3) is the target

hypothesis the teacher desires to convey, R : P (H ) → R
is a random variable representing a reward or cost, and
Ψπ : P (P (H ))→ P (P (H )) is the Markov operator induced
by the teaching plan π, i.e. for a Borel measure µ∈ P (P (H ))

and E ⊆ P (H ) a measurable subset,

Ψπ(µ)(E) =
∫

E
∑

d∈D
πd(T−1

d (θ))d(T ∗d µ)(θ), (4)

and C is a constant so that what is being normalized to
a distribution is non-negative (typically chosen to be ε +

min
{

Mθ,λ
(d,h)EΨN

π δ(d)
[R]|d ∈D,h ∈H

}
, for some small ε).

Frequently we will drop the subscript R, to simplify notation.
Note that the behavior of the teaching/learning inter-

action will vary, depending upon the normalization con-
stant C. On one extreme, as C → 0+, πN

R (θ)(d) →
Norm

(
Mθ,λ

(d,h)EΨN
π δ(d)

[R]
)

. Because of the potential non-
positivity, but the overall normalization, this corresponds to a
signed probability measure. At the other extreme, as C→ ∞,
πN

R (θ)(d)→
1
|D| , independently of θ; i.e. the teacher’s dis-

tribution is the uniform distribution on |D|, regardless of the
learner’s beliefs, hence the teacher’s choice of data is random.
In particular, if C is much greater than the expectation term
for some particular choice of data d, then πN

R (θ) ≈
1
|D| . In

order to make the distribution positive, we must have:

C >

∣∣∣∣∣∣ min
d s.t. Mθ,λ

(d,h)Eδ(d)
[R]≤0

Mθ,λ
(d,h)EΨN

π δ(d)
[R]

∣∣∣∣∣∣ (5)

On the other hand, in order to preserve the teacher’s knowl-
edge and avoid random data selection, we would also like:

C ≤ min
d|Mθ,λ

(d,h)EΨ
N
π δ(d)

[R]>0
Mθ,λ

(d,h)EΨN
π δ(d)

[R] (6)

However, for random variables R which place too high a cost
on some outcomes, versus too small a reward, it may be im-
possible to simultaneously meet these two conditions. That
is, ensuring a positive probability distribution may create a
more uniform distribution for the data which already have a
positive probability of selection, prior to the addition of the
normalization constant C.
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In Equation (3), if R(ω) = ω(h), this corresponds to the
teacher calculating N steps ahead in order to choose the data
at the current step which will increase the likelihood the
learner will be able to infer the target hypothesis in the fu-
ture. Furthermore, we can replace the expectation of the ran-
dom variable ω(h) with an expectation that accounts for re-
wards/costs inherent to the problem. For example, if π is the

SCBI teaching strategy, then π(θ)(d) =
Mθ,λ

(d,h)
θ(h) , where h is the

target hypothesis (P. Wang et al., 2020).
The expectation term of (3) may be simplified as follows,

letting θ̃ = Mθ,λ
(d,−), and assuming that the original teaching

plan follows the scheme of SCBI:

EΨN δ
θ̃
[R(θ)] = ∑

d1,...,dN∈D
τdN (θ̃)τdN−1(TdN (θ̃)) · · ·

τd1(Td2 ◦Td3 ◦ · · · ◦TdN (θ̃))R(Td1 ◦ · · · ◦TdN (θ̃)). (7)

This formula is useful for simulations, as it allows us to re-
place the integral arising from the expectation E

ΨN
π δ(d)

[R] by
a finite (though growing exponentially in the number of steps
planning ahead) sum. The teacher, when planning a curricu-
lum consisting of finitely many data points, can only guide
the learner to a finite number of distributions on hypotheses.

Optimal policy

We may compute the optimal policy as follows:

E

[
∞

∑
t=0

γ
tRat (θt ,θt+1)

]
=

∞

∑
t=0

γ
tR(θt)Pat (θt ,θt+1) =

∞

∑
t=0

γ
tR(θt)λ(d(t))δθt+1,Td(t)(θt )πd(t)(θt) (8)

Assuming that λ is uniform, i.e. the teacher has no under-
lying bias with regards to the data, and also using the fact
that δθt+1,Td(t)(θt ) is only nonzero when Td(t)(θt) = θt+1, this
becomes:

=
1
|D|

∞

∑
t=0

γ
tR
(
Td(t−1) ◦Td(t−2) ◦ · · · ◦Td(0)(θ0)

)
·

πd(t)
(
Td(t−1) ◦Td(t−2) ◦ · · · ◦Td(0)(θ0)

)
·

·πd(t−1)
(
Td(t−2) ◦ · · · ◦Td(0)(θ0)

)
· · ·πd(0)(θ0)

The optimal policy which maximizes the expectation term in
Equation 8 is therefore the argmax over all possible functions
d : N→D , where the action at step t is d(t−1), and argmax
over functions π : P (H )→ P (D). Note that Equation 8 is
the same as Equation 7 with a factor of 1

D in front, N → ∞,
reverse indexing, and a discount factor γ∈ [0,1]. This implies
that taking an argmax over the distribution in Equation 3 gives
a finite horizon approximation of the optimal policy.

Theorem 1 The optimal policy is given by the following:

lim
γ→1

argmaxπargmaxd:N→DE

[
∞

∑
t=0

γ
tR(θt)

]
=

argmaxπ lim
N→∞

argmaxd:{0,...,N−1}→Dπ
N(θ0) (9)

Proof: Note that normalization does not affect which entries
of πN(θ) are larger than others, so we have:

lim
N→∞

argmaxd:{0,...,N−1}→Dπ
N
d(N−1)(θ0)

= lim
N→∞

argmaxd:{0,...,N−1}→D

(
Mθ,λ

(d(N−1),h)EΨN
π δ(d)

[R]+C
)

= lim
N→∞

argmaxd:{0,...,N−1}→D

(
Mθ,λ

(d(N−1),h)EΨN
π δ(d(N−1)

[R]
)

= lim
N→∞

argmaxd:{0,...,N−1}→D

(
Td(N−1)(θ)(h)EΨN

π δ(d(N−1)
[R]
)

Because Td(N−1)(θ)(h) is multiplied by every term of the ex-
pectation sum, we obtain that the above is equal to:

= lim
N→∞

argmaxd:{0,...,N−1}→D

(
E

ΨN
π δ(d(N−1)

[R]
)
= lim

γ→1
E

[
∞

∑
t=0

γ
tR(θt)

]

Taking the argmax over policies π : P (H ) → P (D) then
yields the result. �

The policy πd(t)(θ0) which satisfies the argmax above at
time step t should be the Dirac distribution δd(t), where d(t)
is the optimal choice of datum at time t. We may therefore
obtain an estimate of the optimal policy by taking the argmax
of πN as N becomes progressively larger.

SCBI vs SCBI with planning. When preparing a curricu-
lum, if the teacher does not plan ahead, they may base their
teaching strategy for each round on Bayesian inference. This
amounts to an initial teaching strategy of SCBI. However,
if the same Bayesian teacher plans a curriculum which in-
cludes infinitely many data points, and uses the random vari-
able R(θ) = θ(htarget) in their planning in order to effectively
sample data points leading the learner to a stronger belief in
the true hypothesis, the usual process of SCBI is recovered.

Theorem 2 Suppose that π : D→H is a teaching plan and R
is a reward/cost such that for every d ∈D , limN→∞E

ΨN
π δ(d)

[R]

exists, and is independent of d. Then π∞
R := limN→∞ πN

R exists
and is equal to the SCBI teaching strategy.

Proof: Let θ ∈ P (H ), and d ∈ D , and suppose that the
teacher is teaching hypothesis h ∈H . To ease the readability,
we will drop the subscript R on the teaching plan. Then:

lim
N→∞

π
N(θ)(d)= lim

N→∞

Mθ,λ
(d,h)EΨN

π δ(d)
[R]

∑d′M
θ,λ
(d′,h)EΨN

π δ(d)
[R]

=
Mθ,λ

(d,h)

∑d′M
θ,λ
(d′,h)

=
Mθ,λ

(d,h)

θ(h)

(10)
This is the formula used in the standard SCBI teaching strat-
egy at each round of learning. �
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Figure 2: Analysis of convergence as before using reward R(θ) = 10 ·dL1(θ,δhbad)−dL1(θ,δhtrue). On average, when the teacher
selects actions probabilistically (upper left) or deterministically (argmax) (upper right) curricula yield worse outcomes. The
average reward is shown in (lower). Planning ahead leads to misalignment between learners and teachers, when the teacher
attempts to avoid an undesirable hypothesis. Note that further planning ahead reduces misalignment, consistent with the fact
that planning sufficiently far ahead is equivalent to not planning at all.

Corollary 3 With π the standard SCBI teaching strategy and
R(θ) = θ(h), where h is the target hypothesis, planning in-
finitely far ahead is identical to not planning ahead at all.

Proof: By the proof of ((J. Wang et al., 2020), Theo-
rem 3.5), limN→∞E

ΨN
π µ[θ(h)] = 1, for any Borel measure

µ ∈ P (P (H )). The claim then follows from Theorem 2
above. �

The corollary says that the limit of planning infinitely far
ahead using SCBI is identical to SCBI with no planning
ahead! Intuitively, this makes sense: in the infinite limit, the
teacher is considering all possible infinite strings of data to
pass to the learner; however, most of the strings will be in-
distinguishable as the learner approaches a particular belief
on the true hypothesis, and so only the short-term behaviour
of the strings is important. Furthermore, because the proof
in P. Wang et al. (2020) also shows that the convergence is
monotone increasing; this implies that not planning ahead is
the optimal teaching strategy when the reward at each round
is equal to the probability that the learner would select the
target hypothesis out of all hypotheses.

Figure 1 compares planning ahead up to four steps for two
hypotheses and three data points, using R(θ) = θ(h), with
h the hypothesis to be taught, assuming actions are selected
probabilistically. The vertical axis is the learner’s probability
of choosing h as the correct hypothesis if they were to ran-
domly guess, while the horizontal axis represents the number
of rounds of teaching/learning. The plot was created by ran-
domly generating 1500 initial joint distributions, performing
50 rounds of teaching-learning with each 30 times, then aver-

aging over the learner’s performance.

An interesting feature of planning ahead with R(θ) =
θ(htarget) is that if the teacher uses the deterministic proce-
dure of argmax instead of sampling from the distribution to
choose data to pass to the learner, the choice is the same for
every number of steps planning ahead; i.e., in this case, local
maximization is global maximization (see Figure 1).

Other random variables are available to use in the ex-
pectation: for example, if there is one particular hypothesis
which the teacher wishes to avoid, while biasing the learner
toward the true hypothesis, the random variable could be
R(θ) = 10 · dL1(θ,δhbad)− dL1(θ,δhtrue), where dL1(·, ·) is the
L1 distance between θ and δh represented as points of a sim-
plex. In this case, there is non-monotonic behaviour, as the
teacher overcompensates for trying to move the learner away
from the ‘bad’ hypothesis, which subsequently may lead the
learner closer to a neutral hypothesis than to the true hypoth-
esis. See Figure (2), in particular the trajectories correspond-
ing to planning ahead one step and two steps, where the prob-
ability that the learner selects the true hypothesis decreases.

Guaranteed alignment via monotonicity. One of the key
results of (P. Wang et al., 2020) is the consistency of SCBI.
Consistency here refers to the convergence in expectation of
the learner’s belief distribution to a Dirac distribution on the
target hypothesis over the infinite limit of teaching rounds.
In particular, P. Wang et al. (2020) shows that if monotonicity
holds, i.e. EΨπµ[θ(h)]−Eµ[θ(h)]> 0, where h is the target hy-
pothesis, then consistency and hence alignment follows. By
writing out the equation above for monotonicity with π re-
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placed by πN
R , for some choice of rewards/costs R, we obtain

a condition for monotonicity and hence for alignment. For
EΨπR µ[θ(h)] and Eµ[θ(h)], we may obtain an explicit condi-
tion for when EΨπR µ[θ(h)]≥ Eµ[θ(h)]. Hence:

Theorem 4 Monotonicity holds if and only if for any µ ∈
P (H ): ∫

∆
∑
d

πd(θ) · (Td(θ)(h)−θ(h))dµ(θ)> 0 (11)

Proof: Throughout this proof, we rewrite π(θ)(d) as πd(θ)
for ease of readability. Expanding EΨπµ[θ(h)]−Eµ[θ(h)] us-
ing the definition of Ψπ yields:∫

∆
∑
d

πd
(
T−1

d (θ)
)

θ(h)d(T ∗d µ)(θ)−
∫

∆

θ(h)dµ(θ)

= ∑
d

∫
T−1

d (∆)
πd(θ)Td(θ(h))dµ(θ)−

∫
∆

θ(h)dµ(θ)

=
∫

∆
∑
d

πd(θ) · (Td(θ)(h)−θ(h))dµ(θ)

To get from the penultimate line to the final line, we use the
fact that Td : ∆→ ∆ is a homeomorphism of the simplex. �

From this equation, we can see that if the δ
Mθ,λ

(d,−)
expec-

tation of R is overly negative for a hypothesis for which
Td(θ)(h) > θ(h), while Td′(θ)(h) < θ(h) for other hypothe-
ses, monotonicity will be broken. This implies that if the
teacher places a heavy cost on a hypothesis lying close in
belief-space to the target hypothesis, the curriculum of the
teacher may over-emphasize moving away from the heavy
cost hypothesis, at the expense of potentially converging to
a more neutral hypothesis. Here two hypotheses h1 and h2
‘lying close in belief-space’ means that with respect to the
initial joint distribution M, the L1 distance on the simplex
P (D) between M(−,h1) and M(−,h2) is small. This implies
that whatever data the teacher passes to the learner will affect
both rows similarly.

Related work
The mathematical theory of cooperative communication as
optimal transport has been explored (P. Wang et al., 2020;
Yang et al., 2018; P. Wang et al., 2019). Sequential coopera-
tion as utilized in this paper, including proofs of stability and
rates of convergence, may be found in (J. Wang et al., 2020).

Cooperative inference and reinforcement learning appear
together in several contexts. For example, cooperative in-
verse reinforcement learning is centered around cooperative
inference (Hadfield-Menell et al., 2016; Fisac et al., 2020),
and cooperative inference and reinforcement learning often
appear in the coordination of multiple agents, e.g. (Pesce &
Montana, 2020). Milli & Dragan (2020) consider misalign-
ment in terms of levels of theory of mind recursion. Our work
differs in considering the problem of developing curricula to
foster learning and offers novel theoretical and simulation-
based insights into the possibility of misaligned curricula.

In curriculum learning (Elman, 1993), a learner is pre-
sented with carefully chosen examples or tasks, often in-
creasing in complexity and carefully curated by the teacher.
Such strategies are used in human cognition when teaching-
learning complex tasks (Khan et al., 2011), and curriculum
learning is a useful method in machine learning for gradually
revealing complex concepts (Bengio et al., 2009). Curricu-
lum learning is used, for example, in neural networks in or-
der to maximize learning efficiency (Graves et al., 2017), and
multitask learning (Pentina et al., 2015). Curriculum learn-
ing has been included into the framework of a partially ob-
servable Markov decision process in Matiisen et al. (2020);
Narvekar & Stone (2018). In Matiisen et al. (2020), the stu-
dent is not directly observable by the teacher and the actions
of the teacher correspond to teaching the learner on a certain
task for a specific number of iterations. In Narvekar & Stone
(2018), curriculum design is viewed as transfer learning, and
the problem of learning a meta-policy is addressed. Our ap-
proach is distinctive in focusing on the alignment problem
and offering strong mathematical proofs.

It is attractive to consider curricula that actively avoid com-
mon misconceptions. We are not aware of prior work in cur-
riculum learning that does so, but it is common in reinforce-
ment learning to consider worlds with negative reward, which
is equivalent. In education, dealing with misconceptions most
typically occurs through direct negation; for example, by in-
cluding incorrect examples for students to correct (Heemsoth
& Heinze, 2014) and through refutation texts (Tippett, 2010).
Evidence suggests that such efforts are only effective when
students know enough about the domain and are most effec-
tive at avoiding the misconception rather than inducing the
correct belief.

Conclusion

We investigate the possibility of alignment problems in cur-
riculum learning by building recent theoretical advances
in modeling cooperation. Recasting sequential cooperative
Bayesian inference (SCBI) as a Markov decision process
(MDP) enables the inclusion of curriculum learning to a
teacher and learner cooperatively learning in multiple rounds
of interactions. Through theoretical and simulation-based
analysis, we show that curriculum planning introduces brit-
tleness that leads to misalignment when the curriculum intro-
duces additional costs, for example when avoiding a miscon-
ception, or when the teacher has imperfect knowledge of the
learner. SCBI without curriculum planning offers competi-
tive rates of convergence and desirable theoretical guarantees
across our theoretical and simulation analyses. We also show
that under simple assumptions on the reward/cost, e.g. taking
the reward to be the probability that the learner will select the
correct hypothesis, myopia appears to be optimal: planning
ahead can actually decrease the rate of convergence, while
converging to no planning as the number of steps ahead tends
to infinity.
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