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Abstract

Path-consistency algorithms, which are polynomial for discrete problems, are exponential
when applied to problems involving quantitative temporal information. The source of
complexitystems from specifyingrelationships between pairs of time points as disjunction
of intervals. We propose a polynomial algorithm, called ULT, that approximates path-
consistency in Temporal Constraint Satisfaction Problems (TCSPs). We compare ULT
empirically to path-consistency and directional path-consistency algorithms. When used as
a preprocessing to backtracking, ULT is shown to be 10 times more effective then either
DPC or PC-2.
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Coping With Disjunctions
in Temporal Constraint Satisfaction Problems
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Abstract

Palh-foiisistcncy algoritlmis, vvhicii are polynomial for
iliscrete pioi)leins, are exponential wiien applied to
problem.s involving quantitative temporal information.
The source of complexity stems from specifying rela
tionships bet ween pairs of tinte points as disjunction of
intervals. We propose a polynomial algorithm, called
PLT. that approximates path-consistency in Temporal
Constraint Satisfaction Problems (TCSPs). We com
pare ULT empirically to path-consistency and direc
tional path-consistcncy algorithms. When used as a
preprocessing to backtracking, ULT is shown to be 10
times more effective then either DPC or PC-2.

1. Introduction

Problems involving temporal constraints arise in vari
ous areas of computer science such as scheduling, cir
cuit and program verification, parallel computation
and common sense reasoning. Several formalisms for
expressing and reasoning with temporal knowledge
have been proposed, most notably Allen's interval al
gebra (.-Vllen 83), Vilain and Kautz's point algebra (Vi-
lain 86, Vanbeek 92), and Dean ic Mcdermott's Time
Map Management (TMM) (Dean k McDermott 87).

Recently, a framework called Temporal Constraint
Problem (TCSP) was proposed (Dechter Meiri k. Pearl
91), in which network-based methods (Dechter k Pearl
88, Dechter 92) were extended to include continuous
variables. In this framework, variables represent time
points and quantitative temporal information is repre
sented by a set of unary and binary constraints over the
variables. This model was further extended in (Meiri
91) to include qualitative information. The advantage
of this framework is that it facilitates the following
tasks; (1) finding all feasible times a given event can
occur, (2) finding all possible relationships between two
given events, (3) finding one or more scenarios consis
tent with the information provided, and (4) represent
ing the data in a minimal network form that can pro-

'This work was partially supported by NSF grant IRI-
9157636, by Air Force Officeof Scientific Research, AFOSR
900136, and by Xerox grant.

vide answers to a variety of additional queries.

It is well known that all these tasks are NP-hard.

The source of complexity stems from specifying rela
tionships between pairs of time points as disjunctions
of intervals. Even enforcing path-consistency, which is
polynomial in discrete problems, becomes worst-case
exponential in the number of intervals in each con
straint. On the other hand, simple temporal problems
having only one interval per constraint are tractable
and can be solved by path-consistency. Consequently,
we propose to exploit the efficiency of processing sim
ple temporal problems for approximating path consis
tency. This leads to a polynomial algorithm, called
ULT.

We compare ULT empirically with path-consistency
(PC-2) and directional path-consistency (DPC) Our
results show that while ULT is always a very efficient
algorithm, it is most accurate (relative to full path-
consistency enforced by PC-2) for problems having a
small number of intervals and high connectivity. When
used as a preprocessing procedure before backtracking,
ULT is 10 times more effective then DPC or PC.

The paper is organized as follows. Section 2 presents
the TCSP model. Section 3 presents algorithm ULT:
Section 4 presents the empirical evaluation and the
conclusion is presented in Section 5.

2. The TCSP Model

A TCSP involves a set of variables, A'l,..., .Y„, having
continuous domains, each representing a time point
Each constraint T is represented by a set of intervals
T = (/i,...,/„) = {[ai,6i] [a„,5„]}. For a unary
constraint T over Xi, the set of intervals restricts the
domain such that (uj < Xj < 6i) U ... U (a„ < ,Y, <
b„). For a binary constraint T,j over X,,Xj, the set
of intervals restricts the permissible values for the dis
tance Xj - Xi; namely it represents the disjunction
(ai < Xj - Xi <bi)U...U(a„ <Xj -X, < 6„). All
intervals are pairwise disjoint.

A binary TCSPcblti be represented by a directed con-
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straiiit graph, where nodes represent variables and an
edge i —j indicates that a constraint T,j is specified.
Every edge is labeled by the interval set (Figtire 1).
Aspecial lime point A'o is introduced to represent the
"beginning of the world". Because all times are rela-
tive'to All, thus we may treat each unary constraint
7; as a binary constraint To, (having the same interval
represeniatioii). For simplicity, we choose Xq = 0.

(I :ii3.-'l

To, = (11.21, (3 411
r., = ((2, l.'.j. [14, 17), (U.201)
r,'2 = ([2 4) (6.7)1
r,, = ((0 4). [6,91, 113.151)

Xj Xj
Tn\ 3 (I < •* I < 2) U (3 < X j < 4)
Tot = (2 < Xj < I M U (M < X3 < 17) U (U^< X3 < 20)
r, » = 12 < V» —.VI < 4) U (6 < X'2 —Xj < 7)

i (0<X*-Xi <4) U (6<X3-Xi <9) U(n<X3-Xi<15)
r^ j s (0 < - xj < 5)

Figure 1: Agraphical representation otaTCSP
where .Vo = 0, .Y, = 1.5, A'i = 4.5, -Yj = 8 is a solution.

A tuple A' = (xi x„) is called a so/alton if
the a.ssignment A'l = xi,...,A„ = x„ satisfies all
the constraints. The network is consistent iff at least
one solution exists. A value 12 is a feasible value of
A", if there exists a solution in which A', = v. The
minimal domain of a variable is the set of all feasible
values of that variable. The minimal constraint is the
tightest constraint that describes the same set of solu
tions. The minimal network is such that its domains
and cbnstraints are minimal.

Definition 1: Let T = ^ —
be two sets of intervals which can cor

respond to either unary or binary constraints.
1. The intersection of T and S, denoted by T ®S,

admits only values that are allowed by both ofthem.
2. The composition ofT and 5, denoted by T®5, ad

mits only values r for which there exists t € T and
s € 5 such that r = t + s.

2 I 0 t 2 > < > * 7 t ♦

S i—

T = ([-1.25,0.25 , [2.75,4.25 }
5 = { -0.25,1.25 , [3.77,4.25 )

7^5= {[-0.25,0.25], [3.75,4.25]}
T®5 = {[-1.50,1.50 , [2.50,5.50, [6.50,8.50]}

Figure 2: Apictorial example of the ®and ®operations.

The ®operation may result in intervals that are not
pairwise disjoint. Therefore, additional processing may
be required to compute the disjoint interval set.
Definition 2: The path-induced constraint on vari
able's ,Y.,A'j is ©Tt;). A con
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straint T,j is path-consistent iff T.; C and path-
redundant in T,j DH'.'j'"' Anot work is p<il/i-fo;i 'ji.s/t
iff all its constraints are path-consistent.

Ageneral TCSP can be converted into an equivalent
path-consistent network by applying the relaxation op
eration T,j - T,j ®Ta. r T.j, using algorithm PC-2
(Figure 3). Some problems may benefit from a weaker
version, called DPC. which can be enforced more effi
ciently.

Algorithm PC-2
1. Q —{(t.k.j)\{i< J)and{k ^ i.j)}
2. while Q ^ {} do
3. select and delete a path (i, k, j) from Q
4. if T„ 54 T,k 0 Tk, then
5. T,j •— Ti; (Till 0 Tkj)
6 if T,, = {} then exit (inconsistency)
7. Q-QU RELATED-PATHS((i,k.j))
8. end-if
9. end-while

Algorithm DPC
1. for 1: — n downto 1 by -1 do
0 for Vi,3 < i such that (t.k).(k,j) € E do
3. if T, # T,k 0 Tk, then
4. T — Eu(«,;)
5. T„-T.j^iT.k^Tk,)
5 if T,, = {} then exit (inconsistency)
7. end-if
8. end-for
9. end-for

Figure 3: Algorithms PC-2 and DPC (Dechter Meiri
k Pearl 91).

3. Upper-Lower Tightening (ULT)
The relaxation operation Ti) <—Tij ®Tii®Tfcj increases
the number of intervals and may result in exponent!^
blow-up. As a result, the complexity of PC-2 and DPC
is exponential in the number of intervals, but can be
bounded by 0{n^R^) and 0{n^R^), respectively, where
n is the number of variables and R is the range of the
constraints. When running PC-2 on random instances,
we encountered problems for which path-consistency
required 11 minutes on toy-sized problems with 10 vari
ables, range of [0,600], and with 50 input intervals in
each constraint. Evidently, PC-2 is computationally
expensive (also observed by (Poesio 91)).

Aspecial class ofTCSPs that allow efficient process
ing is the Simple Temporal Problem (STP) (Dechter
Meiri k Pearl 91). In this class, a constraint has a sin
gle interval. An STP can be associated with a
edge-weighted graph, Gd< called a distance J^ap , av
ing the same vertices as the constraint graph O; eacn
edge i —j is labeled by a weight Wij representing
the constraint A') - A'. < Wi, (Fipre 4). An Sir
is consistent iff the corresponding d-graph ^4 "
negative cycles and the minimal network of the S
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r I2.4L
13.131 (6.91/

Figure 5: Asample run of ULT. We start with N (Figure I) and compute M' N" V" Tl..r»,f,
^o.d U...ion i,, .. CO,,,,.,., V,. „ ""rL!
Iteration removes two intervals, while the second iteration removes one.

corresponds to the mrnnna/rfisfanrcs of Gj. Fora pro- .cessing example, see figure 4. Alternatively, the mini- l. '̂'"iiiputf TiylUemug (ULT)
mal network of an .STP can be computed by PC-2 in 2 N'" N

steps. 3; ,

Algorithm Upper-Lower Txghlemug (ULT)
1. input: N
2. N"' - N
3. repeat
4. AT _ ;V"'
5. compute N', N", N'".

= L.j)and(u:'' = u.j)
or 3i; {U"' < U")

1. if V17 ((/,"' > L',") output: "Inconsistent."
otherwise output: N'"

Figure G: The ULT algorithm.

• N' is an STP derived from N by relaxing its con
straints to Tlj = [L„, U,j].

• N" is the minimal network of N'.
• N'" is derived from N" and N by intersecting

Algorithm ULT is presented in Figure 6. We can
show that ULT computes a network equivalent to its
input network.

Lenuna 1: Lei N be the input to ULT and R be its
output. The networks N and R. are equivalent.

Regarding the effectiveness of ULT, we can show
that

Loiuiiia 2: Every iteration of ULT (excluding the
last) removes at least one interval.

DislanceGraph
G,

Floyd - Warshail

.Minimal Distance

Algornhm .

Figure 4: Processing an STP. The minimal network i.s in
Figure 5, network

Motivated by these results, we propose an efficient
algorithm that approximates path-consistency. The
idea is to use the extreme points of all intervals associ
ated with a single constraint as one big interval, yield
ing an STP, and then to perform path-consistency on
that STP. This process will not increasing the number
of intervals.

Definition 3: Let T,j = [/i,...,/„,] be the con
straint over variables A',,^; and let Lij, U,j be the
lowest and highest value of TIj, respectively. We de
fine N', N", N'" as follows (see Figure 5):
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This can ho used to show that

Tht'orom 1: Algorithm I'LTterminates in0(n^ek+
e-k-) stills where n is the number of variables, e i.s
the number of edges, and k i.s the maximal number of
intervals m each constraint.

Ill contrast to PC-2, LLT is guaraiiteeil to converge in
(J(( k) Iterations even if tlie interval houiuiaries are not
rational nnnibers. For a sample execution see Figure

AIgorit liin I LT can also be used to identify path-
rt (litndancie s.

DoKiiitiuii 4: Aconstraint T,j is redundant-prone iff,
after applying ULT, 7,"' is redundant in A'"'.

Lemma 3; 7,'" is path-redundant in A"" if T" C
I'J "
Corollary 1: A single interval constraint 7,. is
redundant-prone iffT;'j =

Consequently, after applying ULT to aTCSP, we can
te>t the condition in Corollary I and eliminate some re
dundant constraints.

A brute-force algorithm for solving a TCSP decom
poses it into separate STPs by selecting a single inter
val from each constraint (Dechter Meiri ic. Pearl 91).
Fach STP is then solved separately and the solutions
are combined. Alternatively, a naive backtracking al
gorithm will successively assign an interval to a con
straint, as long as the resulting STP is consistent.'
Once inconsistency is detected, the algorithm back
tracks. Algorithm ULT can be used as a preprocess
ing stage to reduce the number of intervals in each
constraint and to identify some path-redundant con
straints. Since every iteration of ULT removes at least
one interval, the .search space is pruned. More impor
tantly, if LLT causes redundant constraints to be re
moved, the search space may be pruned exponentially
in the number of constraints removed. Note however
that the number of constraints in the initial network
is I while following the application of ULT, DPC or
P( "-"2, the constraint graph becomes complete thus the
number of constraints is O(n-),

4. Empirical Evaluation
We conducted two sets ofexperiments. One comparing
the efTiciency and accuracy of ULT and DPC relative
to PC-2, and the other comparing their effectiveness
as a preprocessing to backtracking.

Our experiments were conducted on randomly gener
ated .sets of instances. Our random problem generator
uses live parameters; (1) it, the number of variables,
(2) k, the number of intervals in each constraint, (3)

'We call this prore.-s "labeling the TCSP".
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Efficiency of L'LT. DPC. PC-2. PC-1120 reps)
on 10 variables, tightness ,95. Pc=O.I4

IU">» ' . j „ ,

Number of Intervals

Approximatinn Quality relative to PC
on 10 variables, tightness .95, Pc=.l4

* 0 to 40 «0 80

Number of Intervals

Figure 8: Theexecution time and quality of the approx
imation obtained by DPC and ULT to PC. Each point
represents 20 runs on networks with 10 variables. 95
tightness, connectivity Pc = 14 and range [0,600).

R = [Inf.Sup], the range of the constraints, (4) 7/,
the tightness of the constraints, namely, the fraction
of values allowed relative to the interval [Inf.Sup], and
(5) Pc, the probability that a constraint 7]j exists.
Intuitively, problems with dense graphs and loose con
straints with many intervals should be more difficult.

To evaluate the quality of the approximation
achieved by ULT and DPC relative to PC-2. we
counted the number of cases in which ULT and DPC
detected inconsistency given that PC-2 detected one.
From Figure 8. we conclude that when the number of
intervals issmall, DPC is faster than ULT but produces
weaker approximations. When the number of intervals
is large, DPC is much slower but is more accurate. In
addition, we observe that when the number of intervals
is very large, DPC computes a very good approxima
tion to PC-2, and runs about 10 times faster.

In Figure 9 we report the relative quality of ULT
and DPC for a small (3) and for a large (20) number
of intervals, as a function of connectivity. As the con
nectivity increa,ses, the approximation quality of both



vnon-*'"" '''"" l.> I'f
111 JiiilirviN. liyliliKx> .'»5

I.Ill 111; "u iiK' 'ii« ii;ii

Connfclivity parMim-tiT Pc

ApproximaliiiiiQuality relative to PC
on 10 variables. 20 intervals, tightness .05

0.1)6 1I1-18 0 10 01: 0 14 II 16 11,18 020

Connectivity parameter Pc

Figure 9: Quality of the approxiinatioii vs connectivity
on problems with II) variables, tightnes.s .9.5 anil range
[0.600], We measuriil on |>rol)lcms of 3 intervals (top)
where each point represents 1000 runs, anil on 20 inter
vals (bottom) where each point represents 100 runs.

TLT anil DPC increases. Note again that I'LT is more
accurate for a small niimber of intervals while DPC
dominates for largo niimhor of intervals.

We me.isiireil t he luimher of iterations performeil by
CLT. and P('-|-' (Figure 10). We observe that
for our henchmarks, I'LT iierformeil I iteration (e.x-
cliiding the termination iteration) in most of the cases,
while PC-1 and P('-"2 performed more (DPC performs
only one iteration).

In the second set of experiments we tested the power
of I LT. DPC and PC-J as preproces.sing to backtrack
ing. Wit hout preprocessing, tlie problems could not be
solved using the naive backtracking. Our preliminary
tests ran on 20 problem instances with 10 variables and
3 intervals and none terminated before lOOOOOO STP
checks. We therefore continued with testing backtrack
ing following preprocessing by ULT, DPC and PC-2.

brute force path-coii.sistency algorithm (Dechter
Meiri i: Pearl).

lli'r.ili<iii counl iif I'l.T. PC-2. I'C-I

" .^1 .^1

NumluT i(f inlcrvab

Iteraliiin rnunt for ULT. PC-2. PC-1

-

IK

\(i

U

"

— 10

*0

z

OOij 010 0,1: 014 016 0 18 0,20

Connectivity Parameter Pc

Figure 10: The number of Iterations I LT. PC-2 and
PC-1 performed (excluding the termination iteration) on
problems with 10 variables. 20 intervals. Pc - I t. and
tightness ,95. Each point represents 20 runs.

Testing the consistency of a labeling recpiires solving
the corresponding STP. .An inconsistent STP repre
sents a dead-eiul. Therefore, we counted the number
of inconsistent STPs tested before a single consistent
one was found and the overall time reqiiireil (including
preprocessing). The results are presented in Figure II
on a logarithmic scale. We observe that I LT was
able to remove intervals effectively ami appears to bi
lbo most effective as a preprocessing procedure. For
additional experiments with path-consistency for ipial-
itative temporal net works see (Lailkin A" Reinefehl 92)

Summary and conclusion
In tiiis paper we presented a polynomial approximation
algorithm to path-consistency for temporal constraint
problems,called ULT. Its complexity is0(n^ek+€-l:-).
in contrast to path-consistency which is exponential in
k. where n is the number of variables, e is the number
of constraints and k is the maximal number of intervals
per constraint. We also argued that ULT can be used
to effectively identify some path-redundancies.

We evaluated the performance of DPC and ULT em-
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l<H('k(rackiii{( efficiency
iKinK IJI.T. DPC. PC prvprnceuing

u;i, m;2 n;4 n:6 o:s

Connectivity Parameter Pc

Backtracking EfBciency
asiiig ULT. DPC, PC as preprocessing stage

Connectivity Parameter Pc

Figure 11: Backtracking performance following prepro
cessing by ULT, PC-2 and PC-1 respectively, on prob
lems with 10 variables, 3 intervals, and tightness .95.
Each point represents 20 runs. The time includes pre
processing.

pirically by comparing their run-time and quality of
output relative to PC-2. The results show that while
ULT is always very efficient, it is most accurate (i.e.
it generates output closer to FC-2) for problems hav
ing a small number of intervals and high connectiv
ity. Specifically, we saw that: 1. The comple.Kity of
both PC-2 and DPC grows e.xponentially in the num
ber of intervals, wiiile the comple.xity of ULT remains
almost constant. 2. When the number of intervals is

small, DPC is faster but produces weaker approxima
tions relative to U LT. When the number of intervals

is large, DPC is much slower but more accurate. 3.
For a large number of intervals, DPC computes a very
good approximation to PC-2, and runs about 10 times
faster. 4. When used as a preprocessing procedure be
fore backtracking, ULT is shown to be 10 times more
effective then either DPC or PC-2.

Finally, our experimental evaluation is by no means
complete. We intend to conduct additional experi
ments with wider range of parameters and larger prob
lems.
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