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Abstract

Introduction: Mental disorders are heritable and polygenic. Genome-wide genetic correlations 

(rg) have indicated widespread shared genetic risk across multiple disorders and related traits, 
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mirroring their overlapping clinical characteristics. However, rg may underestimate the shared 

genetic underpinnings of mental disorders and related traits since it does not differentiate mixtures 

of concordant and discordant genetic effects from an absence of genetic overlap.

Method: We applied the bivariate causal mixture model (MiXeR) to summary statistics for 

four mental disorders, four related mental traits, and height from genome-wide association 

studies (n=53,293–766,345). MiXeR estimates the number of ‘causal’ variants for a given trait 

(‘polygenicity’), the number of variants shared between traits, and the genetic correlation of shared 

variants (rgs). We investigated local rg using LAVA.

Results: Among mental disorders, ADHD was least polygenic (5.6K), followed by bipolar 

disorder (8.6K), schizophrenia (9.6K) and major depression (14.5K). Most variants were shared 

across mental disorders (4.4K-9.3K) and between mental disorders and related traits (5.2K-12.8K), 

but with disorder-specific variations in rg and rgs. Overlap with height was small (0.7–1.1K). 

MiXeR estimates correlated with LAVA local rg (r=0.88,p<0.001).

Discussion: There is extensive genetic overlap across mental disorders and related traits, with 

mixed effect directions and few disorder-specific variants. This suggests that genetic risk for 

mental disorders is predominantly differentiated by divergent effect distributions of pleiotropic 

genetic variants rather than disorder-specific variants. This represents a conceptual advance in our 

understanding of the landscape of shared genetic architecture across mental disorders, which may 

inform genetic discovery, biological characterization, nosology, and genetic prediction.

Introduction

Mental disorders are among the most heritable complex human disorders. For schizophrenia, 

bipolar disorder (BIP), major depression (MD) and attention-deficit hyperactivity disorder 

(ADHD), twin studies have estimated broad sense heritabilities of 40–80%.1–4 Genome-

wide association studies (GWAS) have since shown that approximately one third is driven 

by thousands of common genetic variants, each with individually small effect.5 As ever-

expanding GWAS sample sizes bring genetic prediction and stratification tools closer to the 

clinic,6 a better understanding of the complex genetic architecture of mental disorders is 

needed to address questions regarding disease classification and the potential for precision 

medicine in psychiatry.

Larger GWAS sample sizes have also revealed extensive shared genetic risk variants across 

diagnostic categories, mirroring their overlapping clinical characteristics.7 A meta-analysis 

of eight mental disorders identified 109 independent genetic loci associated with two or 

more disorders.8 Interestingly, 11 of these had “discordant” effects, i.e. increased the 

risk of one disorder but decreased the risk of a second.8 This is supported by findings 

from pair-wise analyses,9,10 which have identified hundreds of shared loci between mental 

disorders and related traits such as intelligence11,12 and personality traits,13 with a mixture 

of concordant and discordant effects (fig. 1a). Such extensive “pleiotropy” calls into 

question the traditional conceptualisation of genetic risk, in which a specific set of genes 

are implicated for a specific disorder.14

Nonetheless, most ‘causal’ genetic variants are yet to be discovered at genome-wide 

significance.“Genome-wide” approaches have therefore been developed which quantify 
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genetic overlap beyond genome-wide significance, providing a “bird’s eye view” of the 

landscape of shared genetics across disorders and traits. For example, linkage disequilibrium 

score regression (LDSC) genetic correlation (rg) returns a summary measure of the 

correlation of all SNP effect sizes.15 When applied to 10 mental disorders, this revealed 

widespread weak-to-moderate positive correlations, with strong positive correlations 

between schizophrenia and BIP, and anxiety disorders and MD.16

Although rg is an informative measure of the genetic similarity between two phenotypes, 

it does not capture all dimensions of genetic overlap. Shared genetic variants can have 

either concordant or discordant effects.12,17,18 However, since rg is a genome-wide summary 

measure, it does not differentiate genetic overlap with a mixture of concordant and 

discordant effects from an absence of genetic overlap, returning an estimate close to 0 

in both scenarios (fig. 1a). It is necessary to capture this “missing dimension” of genetic 

overlap to comprehensively describe the shared genetic underpinnings of polygenic mental 

disorders.17 Overlap despite minimal genetic correlation may indicate shared molecular 

mechanisms with implications for how we conceptualise genetic risk for mental disorders.

The bivariate causal mixture model (MiXeR)19 and local analysis of covariant association 

(LAVA) can shed light on this “missing dimension”. MiXeR circumvents the need to 

identify all ‘causal’ variants by inferring the total number of ‘causal’ variants for each 

trait (univariate), and the total number of shared and unique ‘causal’ variants for a pair of 

traits (bivariate).19 MiXeR also estimates the genetic correlation of shared variants (rgs), 

in addition to rg (fig. 1b). Using MiXeR, we have demonstrated extensive genetic overlap 

across several mental disorders and related traits with mixed effect directions.13,18,21 The 

relevance of mixed effects has been further emphasised by LAVA, which calculates local 

genetic correlations across the genome.22 Despite employing a distinct statistical framework, 

LAVA revealed widespread local genetic correlations across somatic and mental traits with 

mixed effect directions, even in the presence of minimal rg.22 However, neither MiXeR nor 

LAVA have been systematically applied across mental disorders, cognitive and personality 

traits using largest-to-date GWAS.

We applied MiXeR and LAVA to large-scale GWAS of ADHD, BIP, schizophrenia, MD, 

cognitive and personality traits, to characterise their genetic overlap beyond rg. We aimed to 

map a) polygenicity, b) genetic overlap allowing mixed effect directions c) rgs, and d) local 

genetic correlations, using height as a comparator. We compared MiXeR estimates of mixed 

effect directions to LAVA local correlations to validate our findings across two distinct 

statistical frameworks. By charting the landscape of genetic overlap beyond rg, we provide 

insights into the unique and shared genetic architectures underlying psychiatric disorders, 

with implications for how we conceptualise genetic risk for mental disorders and related 

traits.

Methods

Samples

We acquired summary statistics from large-scale GWAS of major mental disorders ADHD, 

BIP, MD, schizophrenia, as well as educational attainment (EDU), general intelligence 
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(hereafter “intelligence”), neuroticism, subjective well-being (SWB), and height (table 1, 

supplementary table 1).15,21–31 Phenotypes were selected based on available sample size 

and the quality of phenotyping procedures (supplementary methods, supplementary tables 

2-3). The final sample included 268,241 individuals with mental disorder and a combined 

sample size of 3,571,567, although there was participant overlap across samples.32 Due to 

the confounding effect of ancestral differences in LD structure and the lack of sufficiently 

powered multi-ancestry samples, samples were restricted to European ancestry. The 

Regional Committee for Medical Research Ethics – Southeast Norway evaluated the current 

protocol and found that no additional institutional review board approval was necessary as 

no individual data were used.

Modelling polygenicity and shared ‘causal’ variants using MiXeR

We applied MiXeR v1.3 to evaluate the unique and shared genetic architecture across our 

included phenotypes.19 MiXeR infers characteristics of the genetic architecture of complex 

traits based on GWAS summary data using Gaussian mixture models, a probabilistic 

model which assumes that a given dataset can be modelled as a “mixture” of pre-defined 

components, each with their own Gaussian (normal) distribution.

MiXeR constructs a univariate mixture model for each trait followed by a bivariate mixture 

model for cross-trait analysis, incorporating minor allele frequency (MAF), sample size, 

effects of LD structure, genomic inflation due to cryptic relatedness and sample overlap into 

the model. Firstly, univariate MiXeR assumes that, for each trait, common genetic variants 

are a mixture of: 1) ‘causal’ variants and 2) non-causal variants. Under this assumption, 

MiXeR estimates the polygenicity (π – fraction of causal variants) and discoverability 

(σ2 – variance of effect size per causal variant) for a given trait using maximum 

likelihood estimation. SNP-based heritability h2
SNP is derived from these estimates. To 

aid interpretation, polygenicity is presented as the number of causal variants with strongest 

effects required to explain 90% h2
snp. A threshold of 90% is applied to prevent extrapolating 

model parameters into variants with infinitesimally small effects.

MiXeR is extended to a bivariate context by assuming that, for a pair of traits, common 

genetic variants can be described as a mixture of four components – shared ‘causal’ 

variants (1), unique ‘causal’ variants for trait 1 (2) and trait 2 (3), and non-causal variants 

(4). Informed by the model parameters from univariate MiXeR for each trait, bivariate 

MiXeR estimates the shared component’s polygenicity irrespective of effect directions and 

correlation of effect sizes (rgs). The genome-wide genetic correlation (rg) and proportion 

of shared variants with concordant effects are derived from these model parameters. See 

supplementary methods and supplementary fig. 1 for further details.

Analogous to traditional significance testing, model fit is evaluated by calculating the 

difference between the Akaike Information Criterion (AIC) for best-fitting MiXeR estimates 

and a “reference” model. Positive AIC differences are interpreted as evidence that the 

best-fitting MiXeR estimates are distinguishable from the reference model. For univariate 

MiXeR, an “infinitesimal model” in which all variants are assumed to be ‘causal’ is used as 

the reference. For bivariate MiXeR, the best-fitting model is compared to minimum possible 
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overlap and maximum possible overlap. We provide log-likelihood plots in figure S2 to 

visualise the parameter estimation procedure.

Computing local genetic correlations with LAVA

We estimated pairwise local rg using LAVA.22 LAVA complements MiXeR by estimating 

local rg across 2495 semi-independent genetic loci of approximately equal size (~1Mb), 

thus capable of identifying mixed effect directions despite minimal rg. LAVA differs from 

MiXeR because it 1) uses a distinct statistical framework based on a fixed effects model, 

rather than MiXeR’s random effects model, 2) identifies specific shared loci, and 3) is only a 

proxy measure of genome-wide genetic overlap since the number of significantly correlated 

loci is, in part, influenced by the statistical power of input GWAS.22 After computing local 

h2
SNP estimates for each trait, LAVA computes the matrix of local genetic covariance for 

each locus using the method of moments. Sample overlap was controlled using LDSC.23 

Significance testing was performed using simulation-based p-values. We used the false 

discovery rate (FDR) to adjust for multiple testing, reporting loci with FDR<0.05.

Comparing MiXeR and LAVA estimates of effect direction

To test the hypothesis that MiXeR and LAVA-derived measures of mixed effect directions 

were correlated, we calculated the Pearson correlation coefficient for a) MiXeR-estimated 

proportion of shared ‘causal’ variants with concordant effects and b) LAVA-estimated 

proportion of significantly correlated genetic loci with positive correlation. These measures 

are comparable since both are proportions quantifying mixed genetic effects between two 

traits, with 0 indicative of completely discordant effects, 1 completely concordant effects, 

and 0.5 a balance of concordant and discordant effects. These measures differ since MiXeR 

estimates the effect directions of all shared ‘causal’ variants, whereas LAVA only captures 

significantly correlated loci.

Data availability

All data are publicly available or available on request (supplementary table 1). MiXeR 

and LAVA code are available at https://github.com/precimed/mixer and https://github.com/

josefin-werme/LAVA.

Results

Polygenicity

ADHD was the least polygenic mental disorder (N=5,600 ‘causal’ variants explaining 

90% of ADHD’s h2
SNP, SD=400), followed by BIP (n=8,600, sd=200) and schizophrenia 

(n=9,600, sd=200). Intelligence, neuroticism, and subjective well-being were estimated to be 

associated with 11,200–12,500 variants at 90% h2
SNP, while EDU (n=13,200, sd=300) and 

MD (n=14,500, sd=700) were most polygenic (fig. 2). Height was less polygenic (n=4,000, 

sd=100). This pattern of polygenicity was distinct from h2
SNP estimates (fig. 2). Heritability, 

discoverability and power analyses are described in supplementary results, supplementary 

table 4 and supplementary fig. 2.
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Genome-wide genetic overlap beyond genetic correlation

Genetic overlap across mental disorders—When applying bivariate MIXeR to 

mental disorders, there was a pattern of extensive genetic overlap between the four 

mental disorders, with almost complete genetic overlap across all disorders (fig. 2, 

supplementary table 5). Further, AIC differences indicated that MiXeR-modelled overlap 

was not distinguishable from maximum overlap (supplementary results). This pattern was 

most evident for schizophrenia and BIP which were almost completely overlapping, with 

8.5K (sd=0.3K) shared variants, 0.1K (sd=0.2K) unique BIP variants and 1.1K (sd=0.4K) 

unique schizophrenia variants. Since the number of shared variants was almost equal to the 

total number of ‘causal’ variants, rgs (0.78, SD=0.03) was similar to rg (0.73, sd=0.006), 

providing further evidence of the highly similar genetic architectures of these two psychotic 

disorders.

Extensive genetic overlap was also observed in the presence of weak rg. For example, 

schizophrenia and ADHD also shared large numbers of ‘causal’ variants (5.4K, sd=0.4K), 

with only 0.1K unique ADHD variants, despite possessing the weakest rg (0.19, sd=0.010) 

and rgs (0.26, sd=0.02). This pattern of extensive genetic overlap but weak rg is indicative 

of mixed effect directions, supported by the MiXeR-estimated proportion of shared ‘causal’ 

variants with concordant effects (0.58, sd=0.006).

LAVA local correlations provided further evidence of mixed effect directions across mental 

disorders (fig. 2). This was most evident between schizophrenia and MD (35 positively/9 

negatively correlated loci), although even schizophrenia and BIP were found to share a 

mixture of effect directions despite strong positive rg (123 positively/5 negatively correlated 

loci). Local correlations for schizophrenia and ADHD were not consistent with MiXeR 

estimated mixed effect directions (10 positively correlated loci).

Given MD’s high polygenicity compared to less polygenic disorders like ADHD and 

BIP, there were large differences in the number of shared and unique ‘causal’ variants. 

For example, MD and ADHD shared the smallest number of variants (4.4K, sd=0.4K), 

with many more unique-MD variants (10.1K, 0.6K) than unique-ADHD variants (1.2K, 

sd=0.5K). While they were moderately correlated at the genome-wide level (rg=0.45, 

sd=0.011), shared variants were strongly correlated (rgs=0.93, sd=0.07). AIC differences 

indicated that this analysis was underpowered to provide precise estimates (supplementary 

results). Nonetheless, there would still be strong rgs even in a scenario of complete genetic 

overlap (rgs-max=0.72, supplementary methods). A similar, although less pronounced, 

relationship was evident between MD and BIP. LAVA results supported these findings. All 

five significantly correlated loci for ADHD and MD were positively correlated, while 20 out 

of 22 (91%) were positively correlated between MD and BIP.

Mental disorders and cognitive and personality traits

Mental disorders displayed similarly pronounced genetic overlap with intelligence, EDU, 

neuroticism, and SWB (fig. 3). As for mental disorders, AIC differences indicated that 

the MiXeR-modelled overlap was indistinguishable from maximum possible overlap for all 

analyses besides MD and NEUR, which displayed poor model fit (supplementary fig. 4, 
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supplementary tables 6-7). Prominent mixed effect directions among shared ‘causal’ variants 

were supported by LAVA local correlations (supplementary results).

Genetic overlap with height

Relative to height’s polygenicity (4.0K, sd=0.1K), there was minimal genetic overlap (0.7–

1.1K) with large numbers of unique height (2.9K-3.3K) and mental disorder variants 

(4.9K-13.5K) (fig. 3, supplementary table 8). AIC differences indicated reliable estimates 

for all analyses. See supplementary results for more details.

Comparing MiXeR estimated effect directions with LAVA local correlations

The proportion of loci with positive genetic correlations was significantly correlated with the 

proportion of MiXeR estimated ‘causal’ variants with concordant effects (r=0.88, p<0.001), 

supporting the validity of MiXeR estimates of mixed effect directions (fig. 4). Complete 

LAVA results are presented in supplementary table 9.

Discussion

In this cross-trait genetic analysis of ADHD, BIP, MD, schizophrenia, and cognitive and 

personality traits, we systematically quantified genetic architecture beyond genome-wide 

genetic correlations. We found marked differences in polygenicity but extensive genetic 

overlap across all mental disorders, cognitive, and personality traits, with few disorder-

specific variants. These findings were supported by LAVA local correlations which also 

revealed patterns of mixed effect directions concealed by estimates of genome-wide genetic 

correlations. This indicates that, rather than a predominance of disorder-specific risk 

variants, there may be a set of highly pleiotropic variants which influence the risk of diverse 

mental disorders and related traits. By extension, phenotypic specificity may be largely 

driven by the distribution of effect sizes and effect directions across this pool of pleiotropic 

variants rather than variants unique to each phenotype.17 Building on previous work 

highlighting extensive overlap across mental disorders,13,17 this represents a conceptual 

advance in our understanding of the genetic architecture of mental disorders, which may 

inform strategies for genetic discovery, biological characterization, and psychiatric nosology, 

providing the foundations for the development of precision psychiatry and treatment 

stratification across diagnostic boundaries.

First, we used univariate MiXeR to show that the genetic architectures of mental traits 

exhibit fundamental differences beyond heritability, with differences in polygenicity across 

the eight included traits. Among mental disorders, this was most pronounced between 

ADHD and MD, although lower polygenicities have recently been reported for migraine24, 

cortical MRI measures, and other somatic traits.24–26 While the neurobiological and clinical 

implications of these findings are currently speculative, it is possible that polygenicity is a 

marker of heterogeneity at the neurobiological and/or clinical level. For example, ADHD 

may represent a more neurobiologically and/or clinically homogenous population than MD. 

By extension, polygenicity may be a useful marker of genetic heterogeneity, which could 

be used to test the effect of biomarkers or clinically defined sub-groups on the genetic 

make-up of a given disorder. Differences in polygenicity may also be due to differences 
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in biological complexity or negative selection.27,28 More deeply-phenotyped samples and 

improved functional characterisation of genetic loci are required to provide further insights.

Using bivariate MiXeR, we found extensive genetic overlap across mental disorders and 

cognitive and personality traits. This pattern was present in scenarios of weak genome-wide 

genetic correlation, such as MD and cognition, as well as strong genome-wide correlations, 

such as BIP and schizophrenia. The former is indicative of a balance of shared variants 

with concordant and discordant effect directions on each trait, a pattern we replicate using 

LAVA. These findings build on previous evidence demonstrating extensive genetic overlap 

between SCZ, BIP, MD and intelligence, with widespread mixed effect directions.11,17 

Together, this indicates that most common variants which influence the genetic risk for 

diverse mental phenotypes are highly pleiotropic and may have both risk-enhancing and 

risk-reducing effects on different disorders and traits. Consequently, it may be the specific 

distribution of effect sizes of highly pleiotropic variants which predominantly contribute to 

the development of a given mental disorder rather than a set of phenotype-specific variants.

This conceptual insight extends the current theories of genetic susceptibility for mental 

traits and disorders. These are traditionally based on the assumption that a specific set of 

genes are implicated for a given mental disorder with varying degrees of genetic overlap 

across disorders, reflected by their genetic correlations.8,16,29 However, this is inconsistent 

with the extent of genetic overlap observed when accounting for mixed effect directions, 

which may provide a better conceptual framework for the neurobiology of mental traits 

and disorders. The brain is a complex organ with abundant pleiotropy across different 

brain regions,30 brain functions,31 and mental traits.32 Thus, it is likely that differences in 

activity in the same neurobiological systems alter diverse mental traits and disorders but 

the magnitude and direction of effect may differ across and within diagnostic categories, 

exemplified by evidence of increased glutamatergic neurotransmission in schizophrenia33 

but decreased transmission in MD.34 This is also consistent with the fact that most 

genetic variants associated with mental disorders reside within regulatory elements rather 

than coding regions.35 Allelic variation may therefore “tune” neurobiological pathways in 

different directions, resulting in phenotypic differences mediated by the same pathways.36 

By applying statistical tools that allow for mixed effect directions and estimation of effects 

sizes, new insight into neurobiological substrates for mental disorders is possible.

These findings also have clinical implications. Firstly, evidence of extensive genetic overlap 

with limited trait specificity underscores the limited extent to which our current categorical 

diagnostic system maps on to underlying biological processes.37 These findings may 

therefore be more consistent with dimensional approaches to psychiatric nosology which 

allow for specific combinations of symptoms as well as interactions with other mental 

traits, as proposed by the RDoC or HiTOP taxonomies.38,39 This may also help to explain 

the large degree of comorbidity and the prominence of overlapping clinical characteristics 

observed across mental disorders. Alternatively, once greater proportions of the SNP-based 

heritability of mental disorders have been characterized, it may be possible to parse the 

heritable component into constituent biological processes. This may enable construction 

of a personalised, biologically-informed diagnostic system, similar to the “palette model” 

proposed for diabetes.40 As the era of large-scale case control GWAS transitions towards 
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deeply phenotyped clinical and population samples,41 it will be of great interest whether 

sub-phenotyping results in more specific genetic signals. This will also be highly relevant for 

the clinical application of polygenic risk scores, which not only require improved explained 

variance but also the ability to discriminate across diagnostic groups or clinically relevant 

decisions.

Despite the pervasive overlap, the number of shared and unique ‘causal’ variants varied 

across phenotypic pairs, sometimes revealing the presence of strongly correlated shared 

variants despite moderate genome-wide genetic correlation. This pattern was most evident 

between ADHD and MD, a finding supported by LAVA. This suggests that, although a 

large proportion of MD associated variants are not associated with ADHD, those which are 

shared have highly similar effects. This mirrors recent findings from a genomic structural 

equation modelling (Genomic SEM) approach that clustered MD with neurodevelopmental 

disorders including ADHD.8 This may indicate distinct clinical sub-groups with higher 

rates of co-morbidity, or shared involvement of specific molecular mechanisms with similar 

effects on both disorders. Further investigation of the shared genetic architecture of ADHD 

and MD may prove fruitful for the identification of underlying biological mechanisms and 

new treatment targets.42–44

There was substantially less genetic overlap between mental disorders and height, with 

approximately one thousand shared ‘causal’ variants across all pair-wise analyses. This 

may represent non-specific “background” genetic overlap observed across all polygenic 

traits, or alternatively may capture highly pleiotropic transcription factors or regulatory 

elements which influence diverse traits across distinct tissues and systems. Please refer to 

supplementary discussion for an extended discussion on the relevance of our findings to the 

p-factor hypothesis.

This study had limitations. Only samples of European ancestry and common genetic variants 

were included due to limited availability of trans-ancestral and sequenced samples. Both 

EDU and SWB are influenced by social factors, and neither can be considered direct 

measures of cognition or personality. Nonetheless, there is a lack of well-powered GWAS 

of more specific measures within either domain and they provide useful insights alongside 

intelligence and neuroticism. We also cannot exclude the possibility of co-morbidity or 

misdiagnosis across psychiatric samples. However, the extent of the overlap observed and 

its consistency across mental traits indicate that this alone cannot explain our findings. 

In addition, for all pair-wise analyses of mental disorders and related traits, besides 

MD and neuroticism, the AIC differences were negative when compared to maximum 

possible overlap. This indicates that MiXeR modelled estimates of genetic overlap are 

indistinguishable from maximum overlap as measured by AIC, and so must be interpreted 

with caution. It is important to note, however, that the overlaps presented are still the best-

fitting estimates as determined by maximum likelihood estimation. Finally, given the need 

to maximise sample sizes, it was not possible to perform replication analyses in independent 

samples. Nonetheless, we use both MiXeR and LAVA to triangulate our findings using 

different statistical frameworks. Our univariate measures are further supported by recent 

findings using Fourier Mixture Regression (FMR),45 which predicts required sample sizes 

for a given proportion of explained heritability, like MiXeR (supplementary material). For 
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schizophrenia, BIP and neuroticism, which were common to both analyses, there was high 

concordance of predicted sample sizes required to explain 90% SNP-heritability.

In summary, we have used advanced statistical modelling to demonstrate both considerable 

similarities yet also fundamental differences in the genetic architecture of ADHD, BIP, 

schizophrenia and MD, alongside cognitive and personality traits. Despite extensive genetic 

overlap and few trait-specific variants, there were distinct patterns of genetic correlations 

with widespread mixed effect directions. This suggests that it is the specific distribution of 

effect sizes of highly pleiotropic variants that predominantly contribute to the development 

of mental disorders and related traits, rather than a set of disorder-specific variants. This 

represents a conceptual advance in our understanding of the genetic risk of mental disorders, 

suggesting that normative and pathological mental traits, and the biological processes 

underlying them, exist on the same dimensions in genomic space. These findings place 

greater emphasis on efforts to improve the specificity of psychiatric diagnostic categories, 

potentially offering a means to test the genetic heterogeneity of hypothesized sub-groups 

through estimates of polygenicity. This may aid efforts to refine the current nosological 

system, with potential for improved translation of genetic findings into clinically meaningful 

prediction and stratification tools, and improved drug target identification.
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Figure 1. 
MiXeR model concepts. Features of genetic overlap beyond genetic correlation (rg) 

characterized by MiXeR (Venn diagrams). a) Mixed effect directions. While rg captures 

genetic overlap with (i.) predominantly concordant or (ii.) discordant effects, it is incapable 

of differentiating (iii.) genetic overlap with a balance of concordant and discordant effects 

from (iv.) an absence of genetic overlap, returning an estimate of 0 in both scenarios. In 

contrast, MiXeR quantifies the number of shared ‘causal’ variants (Venn diagrams) and so 

identifies genetic overlap also in the presence of mixed effect directions. b) Correlation 
of shared variants (rgs). rg does not differentiate (i.) extensive genetic overlap with a 

small majority of concordant effect directions from (ii.) smaller overlap with a majority 

of concordant effect directions, returning weak positive rg in both scenarios. In contrast, 

MiXeR-estimated rgs returns an equivalent estimate to rg in scenario i) but a higher estimate 

in scenario ii) (same concept applies to weak negative rg / discordant scenarios).
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Figure 2: 
Along the diagonal, univariate MiXeR estimates for each mental disorder. h2

SNP=SNP-

based heritability estimate; polygenicity90= number (in thousands) of causal variants with 

strongest effects required to explain 90% SNP-based heritability. MiXeR-modelled genome-

wide genetic overlap and genetic correlations (top right) and LAVA local correlations 

(bottom left) across bipolar disorder (BIP), attention-deficit hyperactivity disorder (ADHD), 

major depression (MD) and schizophrenia (SCZ). Top right: MiXeR Venn diagrams 

showing the number of shared and disorder-specific ‘causal’ variants in thousands for 

each pair of disorders. Genome-wide genetic correlation (rg) and genetic correlation of 

shared variants (rgs) are represented by the colour of the disorder-specific (rg) and shared 

regions (rgs), respectively. All analyses besides MD and ADHD had positive AIC differences 

when comparing modelled estimates to minimum possible overlap but negative compared to 

maximum overlap, indicating that MiXeR estimates were indistinguishable from maximum 
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overlap. * For MD and ADHD, both AICs were negative, indicating that the analysis 

was not sufficiently powered to provide precise estimates of genetic overlap. Variation in 

polygenicity estimates for SCZ are due to variation in univariate MiXeR results across the 

20 iterations. Bottom left: Volcano plots of LAVA local genetic correlation coefficients (rho, 

y-axis) against -log10-p values for each pairwise analysis per locus. Larger dots represent 

significantly correlated loci after FDR-correction. MiXeR estimated rg and rgs, and LAVA 

estimated rho are represented on the same blue to red colour scale.
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Figure 3: 
MiXeR Venn diagrams illustrating MiXeR modelled genetic overlap, genome-wide genetic 

correlation (rg) and genetic correlation of shared variants (rgs) between mental disorders and 

a. cognitive traits: intelligence (INT) and educational attainment (EDU), b. personality 
traits: neuroticism (NEUR) and subjective well-being (SWB), and c. height. The number 

of unique and shared ‘causal’ variants are presented in thousands and illustrated by the size 

of the unique and shared regions of the Venn diagrams. Rg and rgs are provided beneath 

each diagram and are represented by the shading of the unique (rg) and shared (ρβ) regions, 

ranging from −1 (dark blue) to +1 (dark red). The SNP-based heritability (h2
SNP ) for each 

trait is provided beneath each trait label. All analyses besides NEUR and major depression 

(MD) and all height analyses had positive AIC differences when comparing modelled 

estimates to minimum possible overlap but negative compared to maximum possible 

overlap, indicating that the estimates were indistinguishable from maximum overlap. *For 
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NEUR and MD and all analyses involving height, both AIC differences were positive. 

However, there was unstable model fit for NEUR and MD compared to minimum possible 

overlap. These results should be interpreted with caution. Variation in polygenicity estimates 

for SCZ and SWB are due to variation in univariate MiXeR results across the 20 iterations.
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Figure 4: 
Scatter plot comparing the proportion of LAVA-estimated independent genetic loci with 

significant positive genetic correlation against MiXeR-estimated proportion of shared 

‘causal’ variants with concordant effects. Each individual point represents an individual 

pairwise analysis. Mental disorder by mental disorder (yellow) are clustered around high 

concordance consistent with higher genetic correlation, height by mental disorders/mental 

traits are clustered around 0.5 concordance, consistent with minimal genetic correlation and 

mixed effects, while disorders by mental traits and mental traits by mental traits (“Other 

mental traits”) are distributed across the spectrum of concordance. Both methods emphasise 

the presence of mixed effect directions across most analyses. However, note that LAVA local 

correlations were generally more extreme than MiXeR, possibly due to LAVA’s tendency to 

identify the most strongly correlated loci which are most likely to be significant.
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Table 1:

Overview of included samples.

Phenotype Source Phenotyping strategy n cases (n 
controls)

Genome-wide 

loci
1

Mental disorders

Schizophrenia PGC-SCZ 346 Clinical diagnosis, structured diagnostic 
interviews, or health registry review

53,386 (77,258) 177

Bipolar disorder PGC-BIP 347 Structured diagnostic interviews or health 
registry diagnoses

41,917 (371,549) 61

Major depression PGC-MDD 2 + 
23andMe48

Structured diagnostic interviews or health 
registry diagnoses of MDD or self-report of 
Depression or clinical Depression

135,458 (344,901) 44

ADHD PGC-ADHD 249 Structured diagnostic interviews or health 
registry diagnoses

19,099 (34,194) 12

Mental traits

Intelligence CTG50 Neurocognitive test of intelligence or sub-
domains

269,867 213

Educational 
attainment

SSGAC (including 
UKB)51

Self-reported years of completed education
766,345

2 448

Neuroticism CTG52 Questionnaire response to psychometric scale
390,278

2 107

Subjective well-being 23andMe53 Questionnaire response to ordinal item “how 
satisfied are you with your life?”

252,053 4

Somatic comparator

Height GIANT (including 
UKB)54

Anthropometric measurement 709,706 1292

PGC=Psychiatric Genomics Consortium, SCZ=schizophrenia, BIP=bipolar disorder, MDD=major depressive disorder, ADHD=attention-deficit 
hyperactivity disorder, CTG=Complex trait genetics, SSGAC=social science genetic association consortium; UKB=UK Biobank, GIANT=The 
genetic investigation of anthropometric traits consortium.

1 Since the original studies used different procedures for locus definition, we present the number of genome-wide loci using a standardized 

FUMA-based procedure for locus definition to enable cross-phenotype comparison (see supplementary methods).35

2 Original samples for educational attainment and neuroticism included 23andMe sub-cohorts which are not publicly available and so sample sizes 
are smaller than the original samples.
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