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Evaluating human-like similarity biases at every scale in Large Language Models:
Evidence from remote and basic-level triads.

Simon De Deyne (simon.dedeyne @unimelb.edu.au)
School of Psychological Sciences, University of Melbourne, Australia

Abstract

In the remote triad task, participants judge the relatedness be-
tween randomly chosen words in a three-alternative choice tri-
adic judgement task. While most word pairs in these triads are
weakly related, humans agree on which to choose. This is the-
oretically interesting as it contradicts previous claims that sug-
gest that the notion of similarity is unconstrained in principle
(e.g., Goodman, 1972). Here, we present new evidence from
GPT-4, showing that context-aware LLMs provide excellent
predictions of this task. Moreover, the strength of this effect
was even larger than that found for basic-level comparisons,
which involve highly similar items. Together, this implies that
the similarity of human representations is highly structured at
every scale, even in tasks with limited context. Follow-up anal-
ysis provides insights into how LLMs are successful in this
task. Further implications of the ability to compare words at
every scale are discussed.

Keywords: word meaning; concepts, remote triads, basic-
level comparisons, GPT-4

Introduction

Similarity is a key notion in cognitive science, explaining a
range of phenomena related to concepts, word meaning, cat-
egorization and theories of memory. However, similarity has
been criticised as a theoretical construct for being too flexible
and underspecified to ground cognition. Any pair of objects
can be similar in infinite ways unless one specifies in what
respects two things are similar (Goodman, 1972). The prob-
lem of comparing things without these respects is nicely illus-
trated in idioms about sensible comparisons that seem to be
universally shared among many languages (apples and pears
in Dutch; chalk and cheese in English; shoes and wheels in
Lithuanian; gingerbread and windmills in Polish).

Perhaps surprisingly, empirical work demonstrated that
similarity is sufficiently constrained, with humans exhibit-
ing a large degree of agreement in judging the similarity in
relatively context-free tasks, including judging items from a
category (e.g. vegetables) and even weakly related concepts
randomly sampled from a list of words (De Deyne, Navarro,
Perfors, & Storms, 2012; De Deyne, Navarro, Collell, & Per-
fors, 2021; Richie & Bhatia, 2021). In theory, language-based
models trained on enormous corpora should be able to capture
the same weak relations as they can generalise weak con-
tingencies between words by predicting how words can co-
occur. Several standard benchmarks where humans are asked
to judge the similarity of word pairs suggest this is the case
(Baroni, Dinu, & Kruszewski, 2014; Mandera, Keuleers, &

Brysbaert, 2017). However, more challenging datasets that
cover the range of similarity between (lexicalised) concepts
systematically show that these models struggle to capture the
relations between weakly related (remote) concepts and per-
ceptually rich basic-level comparisons for abstract and con-
crete concepts that are close(De Deyne et al., 2021). To-
gether, these findings suggest that commonly used similar-
ity benchmarks are not always sufficiently discriminating be-
cause the range of similarity is inflated by including both
highly similar and highly dissimilar items, thus boosting pre-
diction metrics. In contrast, the results for more challeng-
ing datasets suggest that models explain only a fraction of
the variance (Richie & Bhatia, 2021; De Deyne, Perfors, &
Navarro, 2016).

This study investigates whether Transformer-based Large
Language Models capture similarity at every scale, based
on new evidence demonstrating that recent transformer-based
models like GPT-4 (see Brown et al., 2020) outperform word
embedding models (Trott, 2023). We do so by re-analysing
two landmark studies that draw similarity judgments at ex-
treme ends of the scale. The first data set is from two stud-
ies that used a remote triad task. In this task, word triples
are sampled randomly, and participants are asked which pair
is strongest related. Due to the random sampling, most
words only have weak similarity relationships. Here, we ask
whether weak similarity is sufficiently encoded in language,
thus providing a test of a more moderate of Goodman’s argu-
ment where similarity might be less constrained if items are
less related. The second set compares basic-level members
of common concrete and abstract categories such as fruits,
vehicles, emotions or sciences. This is an example of a chal-
lenging task at the other (closer) end of the scale since hu-
mans might rely on extralinguistic information, such as per-
ceptual and affective information, when judging similarity
(Richie & Bhatia, 2021; De Deyne et al., 2021). Beyond cov-
ering the extreme ends of the scale, these tasks were selected
for two additional reasons. First, they have previously pro-
vided insight into the limitations of distributional semantic
models derived from text corpora by providing a challenging
test. Second, triadic comparisons used in these tasks have
some advantages over other methods like pairwise ratings as
they don’t require the use of absolute scale but offer a rel-
ative comparison between pairs anchored by a third option,
which might be a discriminating feature between context-free
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and context-aware representations in word embeddings and
Transformer architectures. Below, we briefly review previous
findings for both tasks.

Remote triads In the remote triad tasks, participants are
asked to identify the most related pair in a triad with ran-
domly selected options. Because the words in each triad were
randomly sampled, most of them are only weakly related
(e.g. hyena — radish — somersault). Previous work showed
a surprising degree of agreement among participants, and this
finding was replicated in both Dutch (De Deyne et al., 2012)
and English (De Deyne et al., 2021). In both studies, a se-
mantic network model from word association data success-
fully predicted human preferences, even though the words in
the triads were not directly associated, which suggests that
method overlap is unlikely to explain these findings (see also
De Deyne, Navarro, Perfors, Brysbaert, & Storms, 2019).
Key to this prediction was a spreading activation mechanism
based on random walks to address the sparsity of the input, as
each word only has a relatively small set of distinct associates.
In contrast, predicted weak contingencies between words in
word embedding models did not seem to capture these data as
well, with word2vec correlating only r = .52 compared to r =
.74 for the semantic network approach derived from a much
smaller dataset (De Deyne et al., 2016).

Basic-level triads The basic level is the most informative
taxonomic level (Rosch, Mervis, Gray, Johnson, & Boyes-
Braem, 1976). At this level, concrete concepts like cat-
dog or cherry-peach are predominantly grouped into cate-
gories based on perceptual overlap. Previous work has shown
that language models capture this perceptual information only
partially, and the prediction of word embedding models can
be significantly improved by adding perceptual information.
For example, for the basic-level triads data in De Deyne et al.
(2021), adding visual features derived from a ResNet, a CNN
trained on ImageNet, improved performance from r = .64 to
r=.75.

In contrast to concrete concepts, abstract concepts lack a
perceivable referent and are often assumed to be acquired
primarily through language. They are characterized by their
links to other concepts rather than intrinsic properties they
may have (Borghi et al., 2017), making them highly rela-
tional. While there have been many recent theories about
the representation of abstract concepts (Borghi et al., 2017),
several theories highlight the role of internal affective states
to ground abstract concepts (Vigliocco, Meteyard, Andrews,
& Kousta, 2009). Like concrete concepts, cues to affec-
tive information are often encoded extra-linguistically. In a
basic-level triadic comparison task with abstract concepts,
De Deyne et al. (2021) found that adding affective infor-
mation significantly improved the prediction of human data,
from r = .62 to r = .74. Altogether, this suggests that for
both concrete and abstract concepts, basic level comparisons
are challenging for word embedding models for different rea-
sons, even though the words at this end of the scale share a

relatively large number of features.

Current study Based on recent literature, we expect LLMs
to improve significantly over word embedding models. This
would be consistent with their superior performance on other
similarity datasets that are highly discriminative, such as Sim-
Lex and SimVerb, which require strict judgments of similar-
ity (Trott, 2023) by asking participants to consider related
items such as dog - bone or antonyms such as black-white as
dissimilar. It would also be supported by work showing the
ability of models like GPT-4 to capture modal-specific infor-
mation (Marjieh, Sucholutsky, van Rijn, Jacoby, & Griffiths,
2023), which would be crucial in predicting basic-level con-
crete triads. However, other studies show limitations as well.
In a study by Han, Ransom, Perfors, and Kemp (2024), GPT-
4 was evaluated using a large-scale pairwise similarity judg-
ment task with basic-level concepts. GPT-4 outperformed
previous models, but the performance was far from perfect
(p between .38 and .60 for vegetables, reptiles, insects, cloth-
ing, fruit, sports, professions, birds, tools, fish, music instru-
ments, mammals, kitchen utensils), and only three categories
with p > .60 (mammals, vehicles, weapons).

Furthermore, it is unclear whether LLMs would capture the
relation between weakly related concepts, and we consider
this a strong test to see if these models encode the same biases
that help humans constrain this problem.Given that the relia-
bility of human judgments in the studies included here is high,
with split-half reliability > .90, a considerable amount of sys-
tematic variation remains unaccounted for. Of course, even
though models like GPT-4 are trained on massive datasets,
including perceptual information, it is unclear whether these
data capture human experience if we assume that meaning is
also derived from extra-linguistic emotional and perceptual
data. It is equally unclear if current models require additional
assumptions to explain these data, for example, using differ-
ent similarity comparisons or category-specific weightings as
in Richie and Bhatia (2021). In short, beyond contributing
quantitative improvements in prediction, the current evalua-
tion aims to give insight into what kind of theories we need.
The second part of the paper aims to work towards this goal of
enhancing our understanding of how Large Language Models
approach these tasks by comparing the role of similarity ver-
sus relatedness and pairwise versus triadic judgments. This
will provide insight into whether the model is sensitive to spe-
cific instructions and comparisons, which is important as re-
searchers have previously argued that a single representation
might not be sufficient to capture both (Mandera et al., 2017).
Comparing similarity vs relatedness thus offers an insight into
the ability to modulate the role of similarity or relatedness in
Large Language models.

Remote and Basic-level Triads: Empirical data

Below, we summarise the main characteristics of the datasets
used in this work. Full details can be found in the original
papers (De Deyne et al., 2016, 2021).
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Participants. The participants of the remote triad tasks
consisted of 40 fluent English described in De Deyne et al.
(2016). The participants for the basic-level triad tasks were
taken from De Deyne et al. (2021) and comprised two groups
of 40 native English speakers. The first group judged con-
crete basic category triads, whereas the second group judged
abstract basic category triads (De Deyne et al., 2021).

Materials and Measures. The English stimuli comprised
300 nouns grouped into 100 triads. All items in a triad had
similar word frequency and concreteness and were not di-
rectly associated according to word association norms. The
words were otherwise randomly selected from a large set of
words from the USF (Nelson, McEvoy, & Schreiber, 2004)
and Small World of Words (SWOW) word association norms
(De Deyne et al., 2019).

Procedure. Participants were shown the triads on the cor-
ner of an equilateral triangle and were instructed to select the
most related pair out of three words displayed on the screen,
illustrated by a few examples. Importantly, they were told
that the goal is to evaluate the meaning of these words, not the
similarity between other things like letters or thyme, think of
relatedness broadly and respond to the best of their abilities
even if relatedness was very weak (see De Deyne et al., 2012,
for full instructions).

Triadic comparisons

We used the most current GPT-4 version (0613) available at
the time of writing with a temperature = O through the Ope-
nAI APIL!? The triadic comparison prompts were consistent
with best practices inspired by previous work by Han et al.
(2024). We aimed to keep the instructions consistent between
participants and prompts, and explain below where we de-
viated. Just like the humans, we also included examples to
calibrate the model. We modified the instructions slightly to
provide feedback on the examples and step-by-step instruc-
tions on performing the task and by asking the model to gen-
erate a rating on a 20-point scale. To avoid context effects, all
triads were presented separately. Furthermore, the prompts
were repeated to address order effects by creating a stimulus
list with all six triad permutations of the words x,y and z in
different positions (xy, yx, xz, zx, ¥z, Zy).

Prompt: In this study we want to investigate the degree
to which English nouns can be considered related. We will
present you with three nouns. Your task is to rate the relat-
edness of each pair in the triad on a scale from 0 — 20. A
rating of 0 means the pair have no possible relation. A rating
of 20 means that the pair has the highest possible degree of
relation. Evaluate relatedness solely in regard to the meaning
of the words, rather than the similarity between other things

IScripts and data are available at https://github.com/
SimonDeDeyne/cogsci2024.

ZWe also explore the performance for GPT-3.5. The results were
consistently worse, and inspection of the output demonstrated that
the model struggled to generate relatedness ratings for weak pairs
because it could not find any way they were related.

like letters or rhyme. Think of relatedness in the broad sense.
You will now be provided with instructions to complete the
task. Please explain the process of each step.
Step 1: Closely analyse the semantic relatedness of all possi-
ble pairs. Step 2: Explain to what degree each pair is related
or unrelated. Step 3: On the basis of Step 1 and 2, report the
ratings of semantic relatedness for each pair as instructed.
You will now be provided with two examples of relatedness
ratings. Example 1: Presented: cold; hot; square Response:
cold — hot: 20 cold — square: 0

Now that you have been provided with these practice ex-
amples, you are ready to complete the task. The relation of
word meaning may be very weak. Even then, assign a rating
to each pair. Following is the triad. {x,y,z}.

For most prompts, the model successfully formatted the
response as instructed, which allowed us to extract the word
pair and rating automatically. Occasionally, the model gen-
erated a verbose response, which did not fully conform with
instructions. The prompt was repeated in those cases until the
desired output format was obtained.

Results

Across all model responses, the model adhered to the instruc-
tions and ratings were consistently given for values between 0
and 20. Pairwise orders were summed (e.g. xy = xy + yx), and
aggregated human preferences for pairs xy, xz, and yz were
normalized to sum to one. Like human preferences, model
ratings were normalized by dividing the similarity value of
an option by the total similarity value. Similar to previous
studies, we used Pearson correlations to compare human pref-
erences with model predictions.? A scatterplot of the data in
Figure 1 shows a positive linear relation between human pref-
erences and model predictions. In all cases, the effect sizes
were large (Cohen, 2013), r(298) = .77, Clyps = [.73,.81] for
abstract triads, r(298) = .81, Clos = [.79,.84] for concrete tri-
ads, and r(298) = .84, Clys = [.80,.87] for remote triads.

Similarity vs Relatedness

To better understand what might explain the model’s success,
we investigated the role of instructions and presentation and
how these might interact with different ends of the scale (re-
mote vs basic-level) or different kinds of concepts (abstract
vs concrete). To do so, we contrasted the notion of related-
ness with similarity (Hill, Reichart, & Korhonen, 2016). We
also manipulated the nature of the comparisons by presenting
the triad options in a pairwise format. This allows us to com-
pare the performance with pairwise similarities from previous
top-ranking models more directly. It also allows us to deter-
mine how robust the models are using different tasks. This
is important as previous studies have shown that human mea-
surements using different methods (e.g. pairwise similarity,

3Note that the p-values are somewhat inflated since the observa-
tions are not independent. For this reason, we opted for bootstrapped
confidence intervals and p-values. Results with Spearman correla-
tions were highly consistent with the current results, so we focus on
Pearson to allow for comparability with previous work.
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Figure 1: Scatterplots with human (x-axis) and model predictions (y-axis) for abstract, concrete and remote triads. Influential

cases with Cooks’D >.025 are labelled in the plots.

triads, sorting) result in highly correlated representations. In
contrast, using similar instructions, models like GPT-3 did not
converge on similar representations (Suresh, Padua, Mukher-
jee, & Rogers, 2023).

Beyond comparing different types of comparisons, the cur-
rent comparison also carefully controls the number of judg-
ments, which allows us to determine whether the performance
over at least six aggregated permuted triadic judgments in the
previous section might have boosted performance compared
to cases where ratings are not repeated as often.

Procedure

In the relatedness condition, the instructions were as follows:
In this study we want to investigate the degree to which En-
glish words can be considered related. Words are related if
they co-occur in similar situations or have similar meanings.
Your task is to rate the relatedness of a word pair on a scale
from 0 — 20. A rating of 0 means the pair have no possible
relation. A rating of 20 means that the pair has the high-
est possible degree of relation. Evaluate relatedness solely
in regard to the meaning of the words, rather than the sim-
ilarity between other things like letters or rhyme. Think of
relatedness in the broad sense. You will now be provided with
instructions to complete the task. Please explain the process
of each step. Step 1: Closely analyse the semantic related-
ness of the pair. Step 2: Explain to what degree the words are
related or unrelated. Step 3: On the basis of Step 1 and 2,
report the ratings of semantic relatedness as instructed. You
will now be provided with examples of relatedness ratings.
Presented: cold — hot Response: cold — hot: 19 Presented.:
love — affection Response: love — affection: 16 Presented:
frog — square Response: frog — square: 0 Presented: dog —
bone Response: dog — bone: 13 Presented: car — city Re-
sponse: car — city: 12 Now that you have been provided with
these examples, you are ready to complete the task. The rela-
tion of word meaning may be very weak. Even then, assign a
rating to each pair. Format your response as follows wordl —
word2: rating. Following is the pair.

The instructions for the similarity condition were gener-

ated by changing the wording from relatedness to similarity
and updating the examples. The opening was changed to In
this study we want to investigate the degree to which English
words can be considered synonymous. Two words are syn-
onyms if they have very similar meanings. Synonyms repre-
sent the same type or category of things. Your task is to rate
the similarity of a word pair on a scale from 0 — 20. The ex-
amples were changed to: cold - hot: 4, alligator - crocodile:
18, dog - bone: 2, car - city: 4.

The instructions were repeated three times for x-y and y-x
pairwise judgements to match the triadic condition. How-
ever, the ratings obtained across these iterations were highly
similar correlations between .98 and .99. The final model pre-
diction corresponded to the average across the three iterations
and words in both orders.

Results

Similar to previous studies, the models were compared by
calculating the Pearson correlation between human prefer-
ences and model predictions. The results for the related-
ness ratings were highly consistent with the results obtained
for triadic prompts. For basic-level comparisons, the results
were r(298) = .81, Clys = [.76,.84] for abstract triads and
r(298) = .74,Clys = [.69,.79] for concrete triads. As before,
the correlation was even higher for remote triads r(298) =
.85, Clys = [.81,.88]. The highly similar effect sizes across
triadic and pairwise relatedness instructions suggest that an-
choring a third word is unnecessary to obtain the performance
reported in the previous section. The results for the similarity
instructions were (298) = .79, Clgs = [.71,.84] for abstract,
r(298) = .77, Clys = [.73,.81] for concrete, and r(298) = .80,
Clys = [.75,.85] for remote triads.

One possibility is that relatedness and similarity make
independent contributions across different tasks. To com-
pare the role of relatedness and similarity, we conducted a
relative importance analysis using the relaimpo R package
(Gréomping, 2006). The results in Figure 2 show that regard-
less of the task, relatedness and similarity both contribute to
predicting human preferences. For concrete triads, the effect
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of similarity was significantly larger than relatedness, and this
difference was significant, A = —.07,Clos = [—0.14,—0.01],
with similarity explaining a larger portion of the variance
compared to relatedness. For remote triads, the difference
between relatedness and similarity was also significant, A =
.10,CIys = [0.04,0.21], with relatedness explaining a larger
portion of the variance than similarity. This suggests the
model differentiates between constructs, and performance in-
teracts with the task.

Remote triads
r=0.88

Abstract triads
r=0.82

Concrete triads
r=0.78

Related Similar Related Similar Related Similar

Figure 2: Relative importance with bootstrapped confidence
intervals for a regression model predicting human preferences
from pairwise relatedness and similarity GPT-4 ratings.

GPT-4 vs SWOW  Previous studies have shown that simi-
larity derived from word association data consistently outper-
forms word embedding models trained on text corpora (e.g.,
De Deyne et al., 2021; Richie & Bhatia, 2021). In this sec-
tion, we replicate these results and extend them to investigate
how both models capture complementary information. Fol-
lowing the procedure described in De Deyne et al. (2021),
we obtained r(298) = .82, Clys = [.78,.86] for abstract basic-
level triads, r(298) = .760 Clys = [.71,.80] for concrete tri-
ads and r(298) =.76, Clyps = [.71,.81] for remote triads. This
shows that depending on what prompting is used, the re-
sults for SWOW were better for basic-level triads, whereas
GPT-4 provided a better account for remote triads. To inves-
tigate whether the contributions between both models made
an independent contribution to the prediction of human data,
we again performed a relative importance analysis, which
partitions both model’s contribution to the R-square value.
Bootstrap significance tests that compared effect sizes are
shown in Figure 3. As can be seen from the figure, both
models made comparable contributions, except for remote
triad comparisons, where the effect was significantly larger
for GPT-4, with the difference between GPT-4 and SWOW,
A = .18,Clys = [.08,.29]. Moreover, in terms of explanation,
a combined model resulted in performance gains in all three
conditions.

Discussion

To what degree do large language models capture structure
at every scale? To investigate this question, we compared
how a large language model, GPT-4, accounted for both re-
mote and basic-level items. Across two evaluations, GPT-4

Concrete triads Abstract triads Remote triads
r=0.381 r=0.86 r=0.88
1.0+
0.8
~N
o
uw— 0.6+
o
X 0.4+
0.2 1
0.0 1
GPT-4 SWOW GPT-4 SwOw GPT-4 SWOW

Figure 3: Relative importance with bootstrapped confidence
intervals for a regression model predicting human preferences
from pairwise GPT-4 and SWOW relatedness ratings.

captured human behaviour extremely well in both an abso-
lute sense and relatively, compared to previous models with
correlations consistently >.74 at the basic level and >.84 for
remote triads. These results were robust and held regard-
less of whether the model was prompted to perform triadic
or pairwise judgments. Despite the different nature of the
task, the performance for remote triads was on par with that
of basic-level comparisons, which suggests that remote struc-
ture is well-represented in humans and Large Language mod-
els alike. This refutes strong claims about similarity being
too flexible or ill-determined (Goodman, 1972). Here, we
tested a more moderate version, which showed that similar-
ity is potentially underconstrained in distributional semantic
representations based on language, especially when distribu-
tional overlap would be spurious. This idea is put to the test
in remote triads. It also suggests that compared to word em-
beddings (cf De Deyne et al., 2021), perceptual/emotional in-
formation is sufficiently encoded when comparing concrete
and abstract basic-level words.

Comparison with previous work

Previous work has investigated the prediction using word em-
bedding models such as word2vec. At the basic level, the
correlations in De Deyne et al. (2021) with word embeddings
trained on a balanced corpus were .64 for concrete triads and
.62 for abstract triads, with similar results obtained for GloVe
(Pennington, Socher, & Manning, 2014). The same word em-
beddings were also used to predict remote triads in (De Deyne
et al., 2016) and were correlated .52. This suggests that the
boost in performance in transformer-based language models
is consistent with previous work using challenging pairwise
similarity benchmarks such as SimLex (Trott, 2023).

The findings can also be compared with recent work on
basic-level similarity in word embeddings that uses a differ-
ent approach. Richie and Bhatia (2021) conducted a study
with basic-level comparisons for categories such as vehicles,
birds, or sports. They found that learning category-specific
weights for word embedding dimensions in a supervised way
substantially improved similarity judgments compared to un-
weighted embeddings and correlations of .53 for unweighted
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embeddings compared to .73 for weighted ones. However, it
should be noted that the correlations for the best-performing
word embedding model were still lower than those matched
to SWOW, and considering the current results for GPT-4, they
are likely to be lower to recent transformer-based LLMs as
well. Other work has suggested word embeddings might be
fundamentally limited in simultaneously capturing similar-
ity and relatedness (Mandera et al., 2017), which could ex-
plain the difficulty of capturing a strict notion of similarity
(Mandera et al., 2017; Richie & Bhatia, 2021). Our find-
ings suggest LLMs are less affected by this, and both types of
representations can be obtained through prompting. Without
specific prompting strategies, recent work by Digutsch and
Kosinski (2023) showed that GPT-3.5’s semantic activation
primarily reflects semantic rather than associative similarity.
While space does not permit us to go into GPT-3.5, our find-
ings on similarity vs relatedness suggest that prompting can
be used to modulate different types of activation, and the flex-
ibility to access these relations might contribute to GPT-4’s
superior performance for different scales and domains.

Implications

The implications of this work go further than merely show-
ing what others have already argued, namely that LLMs like
GPT-4 capture human-like biases, and their prediction repre-
sents a jump in performance over previous models, although
remain far from perfect in more challenging settings (Han et
al., 2024). While demonstrating this remains important at this
stage, the current implications, especially those related to the
remote triad findings, might explain one aspect of why these
models work so well in many cases. Not only are these mod-
els trained on vast amounts of data, but the relations between
weakly related words are sufficiently constrained in language,
despite Goodman (1972)’s concerns, and resemble that of hu-
mans. The ability to do so is foundational to other similarity-
based approaches that rely on weak similarity. This included
methods that rely on anchor words (e.g., good, bad) to con-
struct any kind of dimensional constructs, notably sentiment
or stereotypes (Lewis & Lupyan, 2020). Similarity towards
anchor words is likely to be weak, a property it shares with
other similarity-based approaches used to predict iconicity
ratings, semantic dimensions (i.e. judging age, size, dan-
ger of objects) (Grand, Blank, Pereira, & Fedorenko, 2022),
metaphor generation, or creativity (e.g., Divergent Associa-
tion Test, Chen & Ding, 2023).

The consistent performance of prediction similarity at ev-
ery scale also has implications for semantic theories that posit
different mechanisms or processes to judge different types
of concepts (e.g. thematic integration for abstract concepts,
(Bassok & Medin, 1997), or category-specific weightings for
basic-level comparisons, (Richie & Bhatia, 2021)). Related-
ness by itself already provided a parsimonious account of var-
ious concepts and relations (see Figure 2), except for concrete
concepts where similarity was more important. This demon-
strates how different types of relatedness (with similarity be-
ing more narrowly defined) interact with knowledge domain

and distance. Unlike concrete concepts, abstract concepts are
supposed to be more relational (Borghi et al., 2017). A com-
parison between relatedness and similarity prompts was con-
sistent with his view.

Limitations and Future Directions

While the current results suggest that LLM can account for a
wide range of human similarity data, these findings do not
address cognitive plausibility (especially when considering
the massive amount of training data) or questions about how
language might encode modal-specific perceptual or affective
information (due to the multimodal data, and Reinforcement
Learning from Human Feedback part of GPT-4’s training). A
second practical limitation of using LLMs is that large models
can only be approached using an API, which affects replica-
bility. Using simple measures such as a fixed temperature,
the results varied only slightly across different runs. How-
ever, they may likely vary between different model check-
points.* One of the outputs we have not considered so far
is the explanations given by the model as part of the guided
triadic prompting. For example, for clown-rabbit-finger, the
model considered clown and rabbit to be related in “a context
of a circus or a magic show where a clown might pull a rab-
bit out of a hat”, clown and finger related through a context
where “clown uses his fingers to perform tricks or to apply
makeup”, and rabbit and finger through a context in which “a
person uses their fingers to pet a rabbit”. Again, over differ-
ent runs, the types of explanations tend to vary slightly, but
inspection of a large range of outputs suggests systematicity
in the types of relations they encode. Future work could con-
sider how this relates to reports by De Deyne et al. (2012),
who asked participants to explain their choices, which were
subsequently coded using a semantic relation ontology. Most
choices were based on thematic information when judging,
and to a lesser degree, internal features or category informa-
tion was used. This finding was most pronounced for remote
triads, whereas triadic judgments for more specific artifact
and animal domains used a higher proportion of featural and
taxonomic relations. This pattern is largely consistent with
the relative importance of relatedness and similarity reported
in these tasks.

Conclusion

Recent Large Language Models like GPT-4 capture similar-
ity at every scale, from comparisons between weakly related
concepts to closely related basic-level comparisons. This
ability to capture weak similarity among words with limited
additional context suggests another principle that might ex-
plain the performance of LLMs across a large range of tasks
where this type of similarity matters, pointing towards simi-
larity being sufficiently constrained in language when words
occur in vastly different contexts.

#Note that the cost of running GPT-4 model predictions factors in
our ability to systematically investigate the role of different check-
points or minor instruction variations.
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