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A master equation for a spatial population

model with pair interactions

Daniel A. Birch ∗, William R. Young

Scripps Institution of Oceanography, University of California at San Diego,

La Jolla, CA 92093–0213, USA

Abstract

We derive a closed master equation for an individual-based population model in con-
tinuous space and time. The model and master equation include Brownian motion,
reproduction via binary fission, and an interaction-dependent death rate moder-
ated by a competition kernel. Using simulations we compare this individual-based
model with the simplest approximation, the spatial logistic equation. In the limit of
strong diffusion the spatial logistic equation is a good approximation to the model.
However, in the limit of weak diffusion the spatial logistic equation is inaccurate
because of spontaneous clustering driven by reproduction. The weak-diffusion limit
can be partially analyzed using an exact solution of the master equation applicable
to a competition kernel with infinite range. This analysis shows that in the case
of a top-hat kernel, reducing the diffusion can increase the total population. For a
Gaussian kernel, reduced diffusion invariably reduces the total population. These
theoretical results are confirmed by simulation.

Keywords: clustering; competition kernel; diffusion-reaction; individual-based model;
logistic equation; master equation; pattern formation; population dynamics; repro-
ductive pair correlations; spatial dynamics.

1 Introduction

Pioneering works in population biology proposed the spatial logistic equation
(sle),

Ct = γC − ηC2 + κ∇2C , (1)
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as a model for the growth (γ), saturation (η), and dispersal (κ) of a population
or gene (Fisher, 1937; Kolmogorov, Petrovsky and Piscunov, 1937; Skellam,
1951). Here C(x, t) is the ‘concentration’ of a species, defined via a sample
region dx surrounding a point x at time t as:

C(x, t)dx = expected number of organisms in dx . (2)

Our goal here is to better understand how (1) approximates an individual-
based model. The analogous problem in physics is the derivation of advection-
diffusion-reaction (adr) equations starting from a many-body formulation. A
key issue in passage from an individual-based model to an adr description,
such as (1), is local fluctuations in population density arising from the discrete
nature of individuals and the randomness of birth and death. Emphasizing the
importance of birth and death at an individual level, Bolker and Pacala (1997)
refer to these fluctuations as “demographic stochasticity.” In statistical physics
similar fluctuations arising from the atomistic structure of matter are known
as “intrinsic noise” (van Kampen, 1997).

1.1 The Brownian bug model

The individual-based model studied here is an assembly of organisms (“bugs”)
moving through continuous space and time via diffusion (with diffusivity κ).
The bugs reproduce by binary fission at a constant rate, λ, and die at the
rate determined by an intrinsic constant death rate, µ, plus an extra density-
dependent contribution.

To simplify the model we make the assumption that the density dependence of
the death rate arises only from interactions between pairs of organisms. The
interaction between two individuals separated by a distance r is quantified
by a “competition” kernel, ν(r) (Bolker and Pacala, 1997; Dieckmann, Law
and Metz, 2000; Law, Murrell and Dieckmann, 2003 — bdlmp hereafter).
The mathematical statement of this assumption is that in a population with
k bugs, the death rate of bug q, located at xq, is

death rate of bug q = µ +
k
∑

p=1
p 6=q

ν(|xp − xq|) . (3)

Above, µ is the constant intrinsic death rate. The second term on the right-
hand side of (3) is the interaction of bug q with the other k − 1 bugs in
the population. The competition kernel, ν(r), is a positive function so that
interaction between bugs increases the probability of death.

The competition kernel does not have to be interpreted literally as competition
for a limited resource, nor is it the only means of modeling such an interac-
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tion. For example, Hernández-Garćıa and López (2004, 2005) use a density-
dependent birth rate. In the ecological literature, Bolker and Pacala (1999)
employ a similar strategy using an “establishment probability” to model com-
petition in plant populations. Other possible interpretations of (3) include
cannibalism or the attraction of predators to clusters of prey. Martin (2004)
models nutrient limitation using a hybrid model with individual organisms in
continuous space consuming nutrients defined on a lattice.

The models of Bolker and Pacala (1997, 1999) and Law et al. (2003) are di-
rected at perennial plant populations. In this context, dispersal is coupled to
birth by using a “dispersal kernel” to give each new plant a random displace-
ment from its parent. On the other hand, Brownian bugs move incessantly as
random walkers. See Appendix A for a description of the implementation of
the Brownian bug model.

Young, Roberts and Stuhne (2001) originally used the term “Brownian bug”
for the special case ν(r) = 0. Here we use “Brownian bugs” to refer to the
individuals in the more general model described above.

1.2 The Poisson assumption

We have now introduced two models — the spatial logistic equation in (1)
and the individual-based Brownian bug model. The first is an approximation
to the second if the Poisson assumption is valid. The analog in statistical
physics is the assumption of molecular chaos. The Poisson assumption enters
the derivation of the adr equation (1) through the pair function, G(x, y, t),
defined by 1

G(x, y, t)dxdy = expected number of pairs of organisms with

one member in dx and the other in dy. (4)

C and G are the first two members of a hierarchy of “spatial moments”
or “reduced distribution functions.” Higher members of the hierarchy, such
as the triplet function, T (x, y, z, t), describe correlations between the posi-
tions of three or more organisms. For independently distributed (uncorrelated)
points the higher spatial moments factor into products of the concentration:
G(x, y, t) = C(x, t)C(y, t), T (x, y, z, t) = C(x, t)C(y, t)C(z, t) et cetera.

1 We do not count each individual as a pair with itself, but we do count the pair
1 and 2 as distinct from 2 and 1. Thus in a domain containing n singletons, there
are n(n − 1) pairs. The integral of C(x) over x is the expected value of n, and the
integral of G(x,y) over x and y is the expected value of n2 − n.
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A systematic derivation of the continuum equations corresponding to the
Brownian bug model results in

Ct = γC −
∫

ν(|x − y|)G(x, y, t) dy + κ∇2C , (5)

where γ ≡ λ − µ is the net intrinsic growth rate (see bdlmp and section
5). Equation (5) is exact: the convolution term is the expected death rate
of a bug at x due to interaction with neighboring bugs. In the context of
diffusively limited chemical reactions the competition kernel ν(r) is known
as the reaction kernel, and (5) has long been appreciated as a fundamental
connection between the concentration, C, and the pair function, G (e.g., Doi
1976a,b).

To obtain the spatial logistic equation (1) from the exact expression (5) one
first makes the Poisson approximation

G(x, y, t) ≈ C(x, t)C(y, t) , (6)

and pulls C(x, t) outside the y-integral in (5). Then, with a further scale
separation assumption, one has

C(x, t)
∫

ν(x − y)C(y, t) dy ≈ ηC2(x, t) , (7)

where
η ≡

∫

ν(|y|) dy . (8)

While the validity of these ad hoc approximations is not obvious, the intu-
itive content of (6) is that there are no correlations between the positions of
individuals. Roughly speaking, one trusts that this assumption is justified if
diffusion is strong enough. The upshot is that density dependent population
controls, involving pairs of organisms, are approximated in terms of the sin-
gleton descriptor, C(x, t); this is the origin of the term ηC2 in (1). Note that
the density dependence does not have to come from the mortality term: a
density-dependent birth rate results in the same sle.

For recent work on a nonlocal version of the sle equation (1), obtained by us-
ing approximation (6), but not approximation (7), see Fuentes, Kuperman and
Kenkre (2004), Maruvka and Shnerb (2004), Shnerb (2004), and Hernández-
Garćıa and López (2004, 2005).

1.3 Reproductive pair correlations

The reproduction of discrete individuals is a compelling reason to expect im-
portant non-Poisson fluctuations and the failure of (6). Brownian Bugs (and
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(a)  500 bugs at λt = 0 (b)  465 bugs at λt = 1

(c)  455 bugs at λt = 5 (d)  741 bugs at λt = 25

Fig. 1. Clustering due to reproductive pair correlations in the Brownian bug model.
The simulation above uses the Monte Carlo method described in Appendix A with
λ = µ = 1, ν(r) = 0 and κ = 10−5. The domain is the unit square (L = 1 and
d = 2) with reentrant boundary conditions. The total population changes due to
random differences between the number of births and deaths.

any real organisms which reproduce via binary fission) are born next to their
sisters. Therefore, reproduction ineluctably creates non-Poisson spatial cor-
relations between pairs (sister cells) of individuals and these correlations are
neglected by the approximation (6) and the adr approach.

The development of reproductive pair correlations is illustrated in Figure 1
using an example studied by Felsenstein in 1975. Felsenstein’s problem is the
special case of the Brownian bug model with ν(r) = 0 and γ ≡ λ−µ = 0; the
average population is constant because the intrinsic birth rate λ is equal to
the death rate µ. With these simplifications there are no interactions between
the bugs: birth and death are independent of the spatial distribution of the
population. Yet the system is still nontrivial. Felsenstein (1975) showed that
the patches in Figure 1 grow larger and further apart with increasing time (see
also Young, Roberts and Stuhne 2001). Mathematicians refer to this special
case ν(r) = 0 of the Brownian bug model as “super-Brownian motion” (Adler,
1997; Etheridge, 2000; Slade, 2002). The unrestrained clumping produced with
ν(r) = 0 has been independently studied by statistical physicists (Zhang, Serva
and Polikarpov, 1990; Meyer, Havlin and Bunde, 1996; Kessler, et al. 1997).

With γ ≡ λ − µ = 0 and ν(r) = η = 0, both (1) and (5) collapse to the
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diffusion equation
Ct = κ∇2C . (9)

If there are N bugs initially in the doubly-periodic L × L domain then the
solution of (9) with the initial condition C(x, 0) = N/L2 is C(x, t) = N/L2.
This answer is correct: the solution of the diffusion equation (9) is the ensemble

average of many realizations of Figure 1. However, because of reproductive pair
correlations the typical realization in Figure 1 is dominated by demographic
stochasticity and is very different from the ensemble average. In other words,
fluctuations are so large that C(x, t) by itself is an insufficient characterization
of the process. Instead the pair function, G(x, t) in (4), carries information
about the size and spacing of the clumps (see section 3).

1.4 The plan

In this article we provide an exact deterministic formulation of the Brown-
ian bug model using an approach known in statistical physics as the master
equation. The master equation contains complete and detailed information
concerning all of the statistical properties of the Brownian bug model. In
a related problem, Bolker and Pacala (1997) and Law, Murrell and Dieck-
mann (2003) (bdlmp) have developed an alternative approach, based on an
unclosed hierarchy of spatial moments. We show that the bdlmp hierarchy
is obtained as a reduction of the master equation. The master equation is
also very complicated and is unlikely to permanently replace either adr or
the bdlmp hierarchy in our affections. Nonetheless, it is useful to possess an
exact formulation without closure assumptions: one can hope to eventually
justify the moment closure strategy by identifying a non-dimensional param-
eter permitting asymptotic reduction of the master equation.

Section 2 is devoted to direct numerical simulation of the Brownian model.
The goal is to survey the parameter space and illustrate the success of (1) in
the strong-diffusion limit, and its failure when diffusion is weak. A surprising
result of section 2 is that depending on the details and strength of the com-
petition kernel the population may increase or decrease in the weak-diffusion
limit. In sections 3 and 4 we formulate a stochastic population model in con-
tinuous space without resort to the bdlmp hierarchy. The resulting master
equation is (44). In section 5 we show that the bdlmp hierarchy follows from
this master equation. In section 6 we obtain an exact solution of the master
equation of section 4 by considering the unrealistic case of a competition ker-
nel with infinite range. In section 7 we use the exact solution from section 6

to explain the result from section 2 that population can increase in response
to decreased dispersal. Section 7 also discusses the dependence of our results
on the structure of the competition kernel. Section 8 is the conclusion.
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2 Simulations and overview of the Brownian bug model

When ν(r) = 0 (as in Figure 1), the only ingredient in the Brownian bug model
with any pretense to biological reality is that a reproductive event introduces
the new individuals at the same location as the parent. The patches evident in
Figure 1 are produced solely by this mechanism and do not require any other
interactions between bugs. Felsenstein (1975) noted that with ν(r) = 0, the
model flagrantly violates reality because of the absence of density dependent
population regulation. The problem is more realistic when a density limiting
interaction is included, such as ν(r) 6= 0 (Bolker and Pacala, 1997; Law,
Murrell and Dieckmann, 2003). Our goal in this section is to illustrate the
behavior of the Brownian bug model in this case using numerical simulation.
Consider then the case of pairwise competition, ν(r) 6= 0 in (3). A simple
example of local interaction is the “top-hat” competition kernel, defined by

ν(r) =







ν0 , if r < a ,

0 , if r ≤ a .
(10)

With the model above, η in (8) is equal to ν0πa2.

We are interested in the case where the length scale of the spatial domain
(e.g., L for an L×L square) is much larger than the range of the competition
kernel, a. In other words, a/L is the first non-dimensional parameter and we
are concerned with the regime

a

L
≪ 1 . (11)

Using the birth-rate, λ, to define a time scale, there are two other non-
dimensional parameters: µ/λ and ν0/λ. The fourth non-dimensional parame-
ter,

a∗ ≡ a

√

λ

κ
, (12)

is a measure of the strength of diffusion. The four non-dimensional parameters
above completely specify the Brownian bug model with the top-hat competi-
tion kernel (10).

2.1 Simulations using the top-hat kernel and µ = 0

Figure 2 shows the total population as a function of time for four different
values of the parameter a∗. The dashed line shows the population predicted
by the spatial logistic equation (sle). The sle prediction is the equilibrium
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Fig. 2. The population as a function of time for four simulations of the Brownian bug
model with density-dependent death rate using the top-hat kernel. The parameters
are a/L = 1/10, λ/ν0 = 20, µ = 0, and a∗ ≡ a

√

λ/κ as noted in the legend. The
dashed line is the sle prediction, N0, in (13).

solution (or carrying capacity) of (1), C = γ/η, times the area L2:

N0 ≡
L2(λ − µ)

πa2ν0
. (13)

(Recall that γ ≡ λ−µ is the net intrinsic growth rate.) In the case with strong
diffusion (a∗ = 1 in Figure 2) the population fluctuates around N0; at a∗ = 4
the sle prediction is a little too high. However, for weak diffusion (a∗ = 16
and 64) the population is distinctly greater than N0. Thus under the top-hat
kernel the average population depends non-monotonically on the diffusivity
(equivalently a∗).

Snapshots of the final states of the simulations in Figure 2 are shown in Figure
3. Panel (a) shows the example with strong diffusion, a∗ = 1; in this case
the spatial statistics are close to Poisson (see section 3 for a quantitative
assessment using the pair function). For weak diffusion, that is large a∗, the
population shows strong clustering — each isolated cluster in panels (c) and
(d) of Figure 3 is a family descended from a single individual. These clusters
in panels (c) and (d) indicate the failure of the Poisson assumption (6).

Given the strong clustering with a∗ = 16 and 64, it is not unexpected that
the sle prediction (13) is inaccurate. The surprise in Figures 2 and 3 is that
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(a)  a
*
 = 1, n(λt) = 562 (b)  a

*
 = 4, n(λt) = 593

(c)  a
*
 = 16, n(λt) = 789 (d)  a

*
 = 64, n(λt) = 984

Fig. 3. Snapshots of Brownian bugs in equilibrium (the ending states of the simu-
lations in Figure 2). Notice that the system with weak diffusion (large a∗) is both
clustered and has a larger population than the strong diffusion case in panel (a).
The parameters of these four simulations are λt = 200, a/L = 1/10, λ/ν0 = 20,
µ = 0, and a∗ as indicated in the titles. n is the instantaneous population.

with weak diffusion (a∗ = 16 and 64) the population is elevated well above N0

in (13). This is nonintuitive: one expects a reduction in net death rate (and
hence a higher equilibrium density) the greater the capacity of bugs to escape
from competition with their relatives. In Figure 3(c) and (d), weakly diffusing
bugs huddle together in dense, isolated family clusters, but nonetheless, the
total equilibrium population in Figure 3(c) and (d) is higher than that of the
strongly diffusing case in Figure 3 (a). The key to understanding this curious
property of the weak-diffusion limit is that the increased familial competition
is compensated by even more strongly decreased competition with unrelated
bugs (see section 7). We now show that with the top-hat kernel this peculiar
inverse relation between diffusion and population is found in a large portion
of the parameter space.

Figure 4 shows a survey of the average population, N , as a function of a∗ and
λ/ν0 (with µ/λ = 0 and L/a = 10). The results in Figure 4 are obtained by
estimating the average population from 240 simulations, similar to the four
shown in Figure 2. To obtain stable estimates of the average population we
averaged over long times. For all values of λ/ν0 in Figure 4 the population
tends towards N0 in the strong-diffusion limit (a∗ → 0). This is consistent
with the intuition that strong diffusion enables a bug to quickly explore a
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Fig. 4. The average population divided by the sle prediction (13) as a function
of a∗ ≡ a

√

λ/κ. This figure summarizes the results of 240 simulations using the
top-hat kernel in (10). The sle prediction fails for large a∗ (weak diffusion). The
other parameters are a/L = 1/10 and µ = 0; because µ = 0 extinction is impossible.
The dotted lines indicate the non-percolating regimes.

large environment and so to “feel” the average concentration. Alternatively,
strong diffusion wipes out the non-Poisson correlations generated by repro-
duction and establishes the Poisson independence condition (6). The result
also indicates that in the strong-diffusion limit the only relevant property of
the competition kernel is the integral η in (8).

In Figure 4 all the curves fall below N/N0 = 1 if a∗ is sufficiently small. But
once a∗ is greater than about 5 the situation is more complicated: N/N0 then
has a strong dependence on both a∗ and λ/ν0. It seems unlikely that there is
any simple and comprehensive characterization of the dependence of N/N0 on
a∗ and λ/ν0.

2.2 The Gaussian competition kernel

The curves with λ/ν0 = 20 and 40 in Figure 4 agree with the results obtained
by Hernández-Garćıa and López (2004). These authors, also using a top-hat
kernel, showed that the population of bugs with a density-dependent birth
rate decreased with increased advection.
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Fig. 5. The average population divided by the sle prediction (13) as a function of
a∗ ≡ 2ℓ

√

λ/κ. The simulations above employ the Gaussian competition kernel in
(14). In contrast to Figure 4 the total population decreases monotonically with diffu-
sion. The definition a∗ ≡ 2ℓ

√

λ/κ, associates a length a = 2ℓ with the Gaussian ker-
nel in (14). This ensures that the squared “radius of gyration”,

∫

r2ν(r)dr/
∫

ν(r)dr,
is equal to a2/2 for both the Gaussian and top-hat kernels. As in Figure 4, µ = 0
and a/L = 1/10.

The results in Figure 4 disagree with those of Bolker and Pacala (1997) and
Law, Murrell and Dieckmann (2003). Both of these groups found that increas-
ing dispersal increases the equilibrium population in their individual-based
models and can increase the population above the mean-field prediction. We
were unpleasantly surprised to discover that this discrepancy is due to the
form of the competition kernel. Specifically, Figure 4 is based on the compact
top-hat kernel (10), while Bolker and Pacala (1997) use a Laplacian kernel
and Law et al. (2003) employ a Gaussian kernel:

ν(r) =
η

2πℓ2
e−r2/2ℓ2 . (14)

Repeating our simulations with the Gaussian kernel (14) we find that the
average population always decreases monotonically with decreasing dispersal
(see Figure 5). However, we do not find that increasing dispersal increases the
population above N0; this difference may be due to Bolker and Pacala (1997)
and Law et al. (2003) using models with instantaneous long-range dispersal
and our using a model with binary fission and diffusion. Section 7 has further
discussion of the differences between the Gaussian and top-hat kernels.
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2.3 Nonzero intrinsic death rate, µ 6= 0

Our earlier discussion of the top-hat kernel considered only the special case
µ = 0 (i.e., the intrinsic death rate is zero in the simulations used to generate
Figures 2 through 5). In Figure 6 we consider µ 6= 0 and verify that the
counterintuitive increase of the population with decreasing diffusion persists
with nonzero intrinsic mortality.

With nonzero µ eventual extinction due to a large fluctuation is guaranteed 2 .
However, the extinction time becomes exponentially long as the system size
increases and so in practice one observes a quasi-stationary state in which the
population fluctuates about some mean level (e.g., Doering et al. 2005). The
typical population fluctuations in these µ 6= 0 quasi-equilibria are qualitatively
similar to those in Figure 2 with µ = 0. Thus in the simulations with nonzero
µ we report the “quasi-equilibrium” population, N , and compare N to the sle

prediction N0 in (13). This is illustrated in Figure 6(a), which shows the pop-
ulation as a function of time. The initial population is 500 in all cases and one
can see that the bugs rapidly adjust to their (quasi-)equilibrium populations
for µ/λ = 0.0 and 0.2. With µ/λ = 0.4 the population becomes extinct.

Figure 6(b) shows the quasi-equilibrium population as a function of µ/λ with
fixed λ/ν0 and a∗. This shows that the increase in population above N0 with
weak diffusion and the top-hat kernel is a robust effect which persists for µ/λ
up to about 0.2. For µ/λ > 0.35 fluctuations result in rapid extinction and no
quasi-equilibrium population is obtained.

2.4 The percolation transition with µ = 0

The percolation transition, illustrated in Figures 7 and 8, is a watershed in the
(a∗, λ/ν0) parameter space. If a∗ is small and λ/ν0 is large then a single ini-
tial bug will eventually populate the domain with its descendants. This is the
percolating regime: the expanding family of an ur-bug invades, and eventually
fills, an initially empty domain. On the other hand, if a∗ is large and λ/ν0 is
small then a single bug cannot start an expanding family: pair interactions kill
the bugs before they manage to escape from each other’s competition circles.
(In this subsection we return to the case µ = 0, so that extinction is impossi-
ble.) A non-percolating species is maladapted, and the non-percolating regime
has little biological relevance. Nonetheless, for a complete characterization of
the Brownian bug model, it is important to appreciate the distinction between

2 Extinction is impossible if µ = 0 since a state with one bug can never transition
to zero bugs.
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Fig. 6. (a) n(λt) for µ/λ = 0.0, 0.2, 0.4. (b) The total population N compared to N0

in (13); λ/ν0 = 20 and a∗ = 20 in all cases. N > N0 for all µ/λ < 0.2, indicating
that the enhanced population under weak diffusion and the top-hat kernel persists
with µ 6= 0.

the percolating and non-percolating regimes. In Figures 4 and 5 we indicate
the non-percolating cases by dotting the curves.

Figure 7 shows the populations and x-positions of the bugs in three runs; each
simulation starts with a single bug. The upper plot shows the population as
a function of time for each of three values of λ/ν0: 1, 5, and 7. The value of
a∗ is 10 in all cases and all of the runs start with a single initial bug. The
lower plot shows the x-positions of each bug. The cases of λ/ν0 = 5 and 7
are percolating. Interestingly, the expanding population is strongly clustered
even as it diffuses to fill the domain. The case of λ/ν0 = 1 is not percolating.
Occasionally clusters of bugs will live long enough to diffuse away from each
other. But eventually the clusters collide and one is eliminated.

Figure 8 also shows two cases of percolation and one case of non-percolation.
λ/ν0 = 5 in all cases and again the simulations are started with a single
initial bug. In the cases of a∗ = 12 and 15 the bugs percolate. However, in the
weakest diffusion case (a∗ = 20) the bugs do not percolate. Note that Figure
7 uses stronger diffusion (a∗ = 10) than any of the cases in Figure 8. Together
Figures 7 and 8 show that percolation depends on both the birth rate and the
diffusivity.
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Fig. 7. Three simulations with n(0) = 1, µ = 0 and a∗ ≡ a
√

λ/κ = 10 and the
top-hat kernel. Only the x-position of each bug is plotted. The λ/ν0 = 5 and 7 cases
are offset by 1 and 2 for clarity. The bugs percolate for λ/ν0 = 5 and 7, but not for
λ/ν0 = 1. The large gaps indicate time intervals during which no events occurred.

3 Fock space formulation for population dynamics

The Fock space is a tool for studying the spatial patterns formed by stochas-
tically evolving populations. We begin by summarizing the formalism; for
more details, chapter II of van Kampen (1997) is a useful reference. Suppose
that a variable number of bugs are reproducing and dying in a d-dimensional
space. For example, in a three-dimensional space (d = 3) bug p is at posi-
tion xp = (xp, yp, zp). The total volume of the domain is denoted by Ω. The
dimensions of Ω are (length)d.

At time t, the population is specified by the population size, k, and a vector,
Xk, containing the positions of all k bugs:

Xk ≡ [x1, x2, . . . , xk] . (15)

The Fock space is the set of all possible states. The probability distribution
over the Fock space is given by a set of non-negative functions, Fk(Xk, t),
defined such that

Fk(Xk, t) dXk = Pr{k bugs, with a bug in dx1, another in dx2 et cetera} .
(16)
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Fig. 8. Three simulations with n(0) = 1, µ = 0 and λ/ν0 = 5 and the top-hat kernel.
Only the x-position of each bug is plotted. The a∗ = 15 and 12 cases are offset by
1 and 2 for clarity. The bugs percolate for a∗ = 15 and 12 but not for a∗ = 20.

The normalization is

F0(t) +
∫

F1(X1, t) dX1 +
∫

F2(X2, t) dX2 + · · · = 1 . (17)

Bugs are indistinguishable, so we can freely exchange xp and xq; this is the
permutation symmetry of Fk:

Fk(x1, . . . , xp, . . . , xq, . . .xk, t) = Fk(x1, . . . , xq, . . . , xp, . . .xk, t) . (18)

Any function A defined on the Fock space consists of

{A0, A1(X1), A2(X2), · · · } . (19)

The expectation of A is a sum over k as well as, for each k, a k-fold integral:

〈A〉 ≡ A0F0(t) +
∞
∑

k=1

∫

Ak(Xk)Fk(Xk, t) dXk . (20)

If Ak = 1 then (20) collapses to the normalization condition in (17). Notice
that an expectation may be time and space-dependent, such as the expected
density of bugs at a particular location in a temporally evolving and spatially
inhomogeneous system.
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3.1 Reduced distribution functions

Consider a sample volume V and let χ(x) be the indicator function of V. That
is, χ(x) = 1 if x ∈ V and χ(x) = 0 otherwise. Denote the number of bugs in
V by n. n is a random variable and using the definition of expectation in (20),
with Ak =

∑k
p=1 χ(xp), we get

〈n〉=
〈 k
∑

p=1

χ(xp)
〉

,

=
∞
∑

k=1

∫ k
∑

p=1

χ(xp)Fk(Xk) dXk . (21)

Using the permutation symmetry (18) the k terms in the sum over p are all
equal to the term with p = 1. Thus:

〈n〉=
∞
∑

k=1

k
∫

χ(x1)Fk(Xk) dXk ,

=
∫

χ(x1)f
(1)(x1, t) dx1 , (22)

where the concentration or density of bugs is

f (1)(x, t) ≡
∞
∑

k=1

k
∫

Fk(x, Xk−1, t) dXk−1 . (23)

The concentration can be written more intuitively as

f (1)(x, t) =
〈 k
∑

p=1

δ(x − xp)
〉

. (24)

Equation (24) may be verified by plugging into the definition of the expectation
(20) and once again obtaining (23).

The function f (1)(x, t) is exactly the same as the concentration, C(x, t), intro-
duced previously in (2). In this section we prefer the notation f (1) to emphasize
that the concentration is the first function in a hierarchy of reduced distribu-

tion functions or spatial moments (see bdlmp). One essential point is that 〈〉
denotes the average computed according to the definition in (20). Thus the
concentration is defined via an ensemble average, 〈〉, rather than by coarse
graining. A glance at Figure 1 or 3 shows that this distinction is important.
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Next, consider the expected value of n2:

〈

n2
〉

=
〈 k
∑

p=1

k
∑

q=1

χ(xp)χ(xq)
〉

. (25)

Using the definition of 〈〉 in (20) and the permutation symmetry (18) we find
that

〈

n2 − n
〉

=
∫∫

f (2)(x, y, t)χ(x)χ(y) dxdy , (26)

where

f (2)(x, y, t) =
∞
∑

k=2

k(k − 1)
∫

Fk(x, y, Xk−2, t) dXk−2 , (27)

=
〈 k
∑

p,q=1
p 6=q

δ(x − xp)δ(y − xq)
〉

. (28)

The function f (2) is the same as the pair function, G, defined in (4). Two
other interpretations are helpful. First, the ratio f (2)(x, y)/f (1)(x)f (1)(y) is
the probability of having bugs at x and y relative to the probability of having
bugs at x and y if the bugs were independently distributed. Second, the ratio
f (2)(x, y)dy/f (1)(x) is the conditional probability of having an individual at
dy, given that there is an individual at x.

The functions f (1)(x, t) and f (2)(x, y, t) are the beginning of an infinite hier-
archy of reduced distribution functions. The reduced distribution function of
order s, f (s)(x1, x2, · · ·xs, t), is

f (s)(Xs, t) ≡
∞
∑

k=s

k!

(k − s)!

∫

Fk(Xs, Xk−s, t) dXk−s . (29)

3.2 Some examples of the pair function f (2)

As an illustrative example of the descriptors f (1) and f (2), consider the four
simulations shown in Figure 3. Because the system is spatially homogeneous,
the concentration f (1) (defined via an ensemble average) is constant in each of
the four cases. Thus the concentration does not usefully distinguish between
the different cases in Figure 3.

On the other hand, the pair descriptor f (2) gauges the size and spacing of the
patches in Figure 3. Figure 9 shows estimates of the radial distribution func-

tion, g(r), defined by g(r) ≡ f (2)(r)/f (1)2 . This definition of g(r) is motivated
by considering that g(r) = 1 (actually 1 − 1/n, but we are interested in large
n) for a Poisson process. An intuitive interpretation of the radial distribution
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Fig. 9. Estimates of the radial distribution function, g(r, t), obtained from the simu-
lations in Figure 3. After calculating and binning the separations of all pairs of bug
we use equation (30) to estimate g(r). The smooth curves above are the average
of 9 realizations each. The log-log plot in panel (b) resolves the large peak at very
small r.

function is provided by

f (1)g(r) = average density of bugs at a distance r from a tagged bug. (30)

The a∗ = 1 curve in Figure 9 is very close to g(r) = 1, indicating that the
statistics of the points in Figure 3(a) are close to Poisson.

As the diffusion is reduced (and a∗ ≡ a
√

λ/κ increases) the radial distribution

develops a strong peak at r = 0. This is evident in Figure 9(b). This r = 0
peak is the signature of reproductive pair correlation — if diffusion is very
weak each bug remains close to its ancestors. Thus the r = 0 peak in Figure
9(b) indicates the existence of family clusters in Figures 3(c) and (d) and the
width of the peak estimates the cluster radius.

The radial distribution function of the simulations with a∗ = 16 and 64 in
Figure 9 has an oscillatory structure. The first deep minimum of g(r) indi-
cates the “excluded area” surrounding each isolated family in the lower panels
of Figure 3. The first maximum at nonzero r indicates the nearest-neighbour
families in the first “coordination shell.” These push the next nearest neigh-
bours into the second shell, and so on. Thus there is a sequence of oscillations
with a wavelength related to the range of the competition kernel.
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4 Evolution of the distribution functions: the master equation

Now we use standard arguments (e.g., Feller, 1968, van Kampen, 1997, Ren-
shaw, 1991) to construct the exact equations determining the continuous-time
evolution of the unreduced probabilities Fk(Xk, t) introduced back in (16).
The basic idea is to model the evolution of the Brownian bug population as
a one-step Markov process in continuous space and time. It helps to think of
probability as flowing through the Fock space. For example, probability col-
lects in the state k = 0 when a death occurs in any configuration with just
1 bug at any location x1. Thus the probability of extinction, F0(t), evolves
according to

∂tF0 = µ
∫

F1(x1, t) dx1 , (31)

where µ is the death rate of the lonely bug at x1. The next equation in the
master equation formulation is the evolution of F1(x1, t):

[

∂t − κ∇2
1

]

F1 = −(µ + λ)F1 + 2
∫

(µ + ν12)F2 dx2 . (32)

On the left hand side, diffusion acting on the single bug at x1 is represented
in the usual way; ∇1 is the gradient operator associated with x1. Denoting
the birth rate by λ, the first term on the right hand side of (32) is the loss of
k = 1 configurations due to either the reproduction (λ) or death (µ) of the
single bug.

The second term on the right hand side of (32), involving the integral over
x2, is the flux of probability into configurations with one bug (k = 1) by
death in configurations with two bugs (k = 2). Following Bolker and Pacala
(1997) we model density dependent mortality using the competition kernel
ν(r) introduced in (3); we use the shorthand

νpq ≡ ν(rpq) = ν(|xp − xq|) . (33)

The factor of 2 in front of the integral in (32) accounts for the possibility that
either of the bugs in a k = 2 configuration might die.

At k = 2 we have for the evolution of F2(x1, x2, t):

[

∂t−κ(∇2
1+∇2

2)
]

F2 = λF1δ12−2(µ+ν12+λ)F2+3
∫

[µ+ν13+ν23]F3 dx3 . (34)

The first term on the right hand side, λF1δ12, is the production of configura-
tions with two bugs (k = 2) by birth in configurations with one bug (k = 1).
Here we are using the notation

δpq ≡ δ(xp − xq) . (Not the Kronecker-δ.) (35)

The δ-function ensures that the new bug is introduced at its mother’s location.
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The second term on the right hand side of (34) is the flux of probability
out of k = 2 configurations driven by births at rate 2λ and deaths at rate
2(µ + ν12). The final term on the right hand side of (34) is the production of
k = 2 configurations by a death in k = 3 configurations. The factor ν13 + ν23

accounts for the enhanced mortality of bug 3 due to competition with the
other two bugs in the configuration. The factor of 3 outside the final integral
in (34) accounts for the possibility that any of the three bugs might die in dt.
We turn now to the general case...

4.1 Birth and death

Suppose that a birth occurs in a configuration with k − 1 bugs. The rate of
this process is (k − 1)λ and therefore the ensuing loss of probability from
configurations with k − 1 bugs is

∂tFk−1 + · · · = −λ(k − 1)Fk−1 + · · · . (36)

The corresponding gain of probability in configurations with k bugs is

∂tFk + · · · = +λ(k − 1)BFk−1 + · · · (37)

Above, B, is a “birth operator” that increases the number of x’s from k−1 to
k by introducing all k(k − 1)/2 of the δpq’s, while maintaining normalization
and permutation symmetry. For instance, BF1 = δ12F1, and

BF2 = 1
3
[δ12F2(x2, x3) + δ13F2(x2, x3) + δ23F2(x1, x3)] . (38)

Writing the general expression for B requires some notational elaboration. We
define

Xk|p = Xk with xp deleted . (39)

For example, X4|2 = [x1, x3, x4] and X2|1 = x2. Using this notation, the birth
operator B is

BFk−1 ≡
2

k(k − 1)

∑ ∑

1≤p<q≤k

δpqFk−1

(

Xk|p, t
)

, (40)

Notice there are k(k−1)/2 terms in the double sum above. The normalization
factor 2/k(k − 1) in (40) ensures that

∫

BFk−1 dXk =
∫

Fk−1 dXk−1 , (41)

and thus probability is conserved.
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Because of death, probability leaves configurations with k bugs at a rate

∂tFk + · · · = −


µk + 2
∑ ∑

1≤p<q≤k

νpq



Fk + · · · (42)

The bracketed factor on the right hand side is the total death rate in a config-
uration with k bugs. The probability leaving configurations with k bugs due to
a death flows into configurations with k−1 bugs. This source in the evolution
equation for Fk−1 is constructed by reducing the number of x’s in Fk from k
to k−1 via integration over xk. This reduction must conserve probability and
the permutation symmetry so that:

∂tFk−1 + · · · = +k
∫



µ +
k−1
∑

p=1

νpk



Fk dxk + · · · . (43)

The bracketed term inside the integral is probability per unit time that the
bug at xk dies; the factor k outside the integral accounts for the possibility
that any of the k bugs might die.

4.2 Summary: the master equation

Assembling the results above, the final evolution equation for Fk(Xk, t) with
k ≥ 1 is

[∂t − κ△] Fk =λ(k − 1)BFk−1 −


k(µ + λ) + 2
∑ ∑

1≤p<q≤k

νpq



Fk

+(k + 1)
∫



µ +
k
∑

p=1

νp,k+1



Fk+1 dxk+1 . (44)

The birth operator B is defined in (40) and the k = 0 equation is given in
(31). On the left-hand side of (44)

△ ≡
∞
∑

p=1

∇p·∇p , (45)

is the total Laplacian. Because Fk(Xk) does not depend on xk+1, xk+2, the
operator △ collapses to a finite number of terms when it acts on any Fk.
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5 Reduced distribution functions: the closure problem

The reduced distribution functions or spatial moments defined in (29) sum-
marize the most basic statistics of the population. Using the definition (23)
we obtain the equation for the first reduced distribution function, f (1)(x1, t)
(the concentration), by summing and integrating the master equation (44).
The f (1) equation is (5) with different notation:

(∂t − κ△)f (1) = γf (1) −
∫

ν(x − y)f (2)(x, y, t) dy . (46)

Above γ ≡ λ−µ denotes a net growth rate. Because of the density dependence,
ν(r), the pair function, f (2), appears in (46) as a convolution.

To obtain the equation for the pair function, f (2)(x1, x2, t), we again sum and
integrate the master equation (44) using the definition of f (2) in (28). The
calculation is very similar to that for f (1) and the result is

(∂t − κ△)f (2) = 2λδ12f
(1) + 2 (γ − ν12) f (2) − (ν13 + ν23) ⋆ f (3) . (47)

In (47) the convolutions, now denoted by ⋆, are integrals over x3. The term
involving δ12 = δ(x1 − x2) is the source of reproductive pair correlations. For
good measure, we also give the triplet equation

(∂t − κ△)f (3) = 2λ
(

δ12f
(2)(x2, x3) + δ13f

(2)(x2, x3) + δ23f
(2)(x1, x3)

)

+ (3γ − 2(ν12 + ν13 + ν23)) f (3)

−(ν14 + ν24 + ν34) ⋆ f (4) . (48)

The last term on the right hand side of the f (2) equation contains f (3), and
f (4) appears in the f (3) equation with the convolution indicating integration
over x4. In general, if ν(r) 6= 0, the equation for each reduced distribution
function contains the reduced function of the next higher order. In order to
make practical use of these equations it is necessary to truncate the hierarchy
(see bdlmp). Indeed, just as the master equation (44) is analogous to the
Liouville equation of statistical mechanics, the spatial moment hierarchy of
bdlmp above is analogous to the bbgky hierarchy of statistical mechanics.

We note that the closure problem of the spatial correlation functions and the
development of patchiness due to reproductive pair correlations are indepen-
dent issues. The closure problem is due solely to pair interactions e.g., the
term involving ν(|x − y|) in (5). With ν(r) = 0 there is no closure problem
and (9) is an exact (but inadequate) adr description of the spatial structure
of the population in Figure 1 and G(x, y, t) can also be found exactly in this
case.
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Fig. 10. The global competition model with a/L = 1, λ/ν0 = 20, µ/λ = 0, κ = 10−4.
By λt = 20 only a single family is extant. The radial distribution function in panel
(c) has been averaged over 49 realizations for smoothness; the dashed curve is the
d = 2 solution in (73).

6 Exact equilibrium solution of the master equation with infinite-

range competition

In this section we discuss the case of infinite-range competition. This means
that the competition kernel is a constant

ν(r) = ν0 , (49)

and that the pairwise interaction does not decay with separation. With a
constant competition kernel the interaction between bugs is global: every bug
“feels” every other bug, no matter how distant. In this infinite-range case one
can directly extract information from the master equation, without descent
to the moment hierarchy and closure assumptions. Before turning to these
analytic considerations, a simulation of the global competition model is shown
in Figure 10. The initial condition is the Poisson distribution of bugs shown in
panel (a). Eventually the system reaches equilibrium with the bugs in a single
clump, as in panel (c). This patch is the family of descendants from a single
ur-bug, which has eliminated all other families from the domain. Thus, despite
the simplicity of the infinite-range competition kernel, the spatial distribution
of the equilibrium population is non-trivial.
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6.1 The probability of k bugs with global competition

The global competition case is soluble because the distribution of the bugs in
space has no effect on the population dynamics. Specifically, consider

pk(t)≡
∫

Fk(t) dXk ,

= probability of k bugs at time t. (50)

With infinite-range competition, and µ = 0, integration of the master equation
(44) over all space yields a set of differential equations for the pk(t)’s:

ṗ1 =−λp1 + 2ν0p2 ,

ṗ2 = λp1 − (2λ + 2ν0)p2 + 6ν0p3 , (51)

and in general

ṗk = λ(k − 1)pk−1 − [kλ + k(k − 1)ν0]pk + ν0k(k + 1)pk+1 . (52)

This is a simplified version of the logistic process in Kendall (1949) whose
equilibrium solution is given in Renshaw (1991):

pk =
1

k!

(

λ

ν0

)k
1

exp(λ/ν0) − 1
. (53)

It is easy to check (53) by substitution into (52). We have also confirmed
that the statistics of the fluctuating population in the simulation of Figure
10 conforms to the equilibrium probability distribution in (53). Of course this
solution for pk gives us no information about the spatial structure of the cluster
in panel (c) of Figure 10.

6.2 The spatial structure of the population with global competition

The solution of the global competition model without integration over space
now proceeds as follows: With µ = 0 we see from (31) that F0 is constant. In
other words, if µ = 0 then k = 1 configurations can never transition to k = 0.
Thus we now take F0 = 0 and begin by writing (44) in the form

∂tFk = Rk + Sk , (54)

where
Rk ≡ (k − 1)λBFk−1 − k(k − 1)ν0Fk + κ△Fk , (55)
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and
Sk ≡ k(k + 1)ν0

∫

Fk+1 dxk+1 − kλFk . (56)

Notice that we have used the infinite-range assumption to pull ν0 outside the
xk+1-integral above. We solve the steady system (∂tFk = 0) by demanding
that Rk and Sk separately vanish (detailed balance). To appreciate how this
procedure works, and to reach an inductive proof, we write out the first few
terms explicitly. At k = 1 we have

R1 ≡ κ△F1 ,

S1 ≡ 2ν0

∫

F2 dx2 − λF1 . (57)

At k = 2:

R2 ≡ λδ12F1 − 2ν0F2 + κ△F2 ,

S2 ≡ 6ν0

∫

F3 dx3 − 2λF2 , (58)

and, for good measure, at k = 3:

R3 ≡ 2
3
λ [δ12F2(x2, x3) + δ13F2(x2, x3) + δ2,3F2(x1, x3)] − 6ν0F3 + κ△F3 ,

S3 ≡ 12ν0

∫

F4 dx4 − 3λF3 . (59)

The homogeneous and isotropic equilibrium solution is now found with the
ansatz

Fk(Xk) =
1

k!

(

λ

ν0

)k
Fk(Xk)

eλ/ν0 − 1
. (60)

For (60) to satisfy the normalization condition (17) we require

∫

Fk(Xk) dXk = 1 . (61)

The guess in (60) and (61) is motivated by the form of the spatially integrated
solution in (53).

Starting with k = 1, to make the ansatz (60) satisfy (57) and (61) we take

F1 = Ω−1 , and
∫

F2(r) dr = F1 , (62)

where Ω is the area of the domain. Turning to k = 2, substituting the ansatz
(60) into (58), and demanding that R2 = 0, gives

ℓ2△F2 − 2F2 + 2F1δ(r) = 0 , (63)

where
ℓ2 ≡ κ/ν0 . (64)
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Above r ≡ x2 −x1, and because of isotropy and homogeneity F2 is a function
only of r ≡ |r| so that △F2 = 2∇2

r
F2. Integrating (63) over dr we now see that

the integral constraint on F2 in (62) is satisfied — this is the first indication of
how the ansatz works. But demanding that S2 = 0 in (58) now gives another
integral constraint

∫

F3 dx3 = F2 . (65)

Now at k = 3, substituting the ansatz (60) into (59) gives

ℓ2△F3 − 6F3 + 2 [δ12F2(r23) + δ13F2(r23) + δ23F2(r13)] = 0 , (66)

and also ∫

F4 dx4 = F3 . (67)

Integrating (66) over x3 and using (63) shows that F3 indeed satisfies the
integral constraint in (65).

The considerations above work at every order. Demanding that Sk = 0 gives
the integral constraint

∫

Fk+1 dxk+1 = Fk . (68)

The condition Rk = 0 determines Fk as the solution of

ℓ2△Fk − k(k − 1)Fk + k(k − 1)BFk−1 = 0 . (69)

Integrating the equation above over dxk verifies that Fk satisfies the integral
constraint obtained at the previous order, k − 1. The essential intermediate
identity used in this inductive proof is

(k + 1)
∫

BFk dxk+1 = 2Fk + (k − 1)B
∫

Fkdxk , (70)

where B is the birth operator defined in (40).

This looks like a pyrrhic victory because it is increasingly difficult to solve
(69) as k increases. However if we are content with the reduced distribution
functions f (1) and f (2) then we can make progress. The key is that the integral
constraint (68) greatly simplifies the definition of f (s)(Xs). Specifically, one
finds that

f (s)(Xs) =
(λ/ν0)

s

1 − e−λ/ν0

Fs(Xs) . (71)

Thus, remarkably, Fk and f (k) are proportional to the function Fk defined by
(69). Explicitly then, using (62) and (71), the equilibrium concentration with
infinite-range competition is

f (1) =
λ/ν0

1 − e−λ/ν0

1

Ω
. (72)
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To obtain the pair function we assume that ℓ ≪ Ω1/d and solve (63). Using
(71) the result is:

f (2) =
(λ/ν0)

2

1 − e−λ/ν0

1

Ωℓ2
×















(ℓ/2) exp(−|r̄|) , d = 1 ;

(2π)−1K0(|r̄|) , d = 2 ;

(4πr)−1 exp(−|r̄|) , d = 3 .

(73)

Above, r̄ ≡ r/ℓ.

7 Weak diffusion, and the form of the competition kernel

The infinite-range competition of section 6 seems contrived. But this special
case helps explain the result from section 2 that the total population can
increase in response to decreasing diffusion. In particular, notice that the non-

dimensional parameter a∗ ≡ a
√

λ/κ is increased by either reducing diffusion,
κ, or increasing the range, a. To illustrate this correspondence, Figure 11 shows
a simulation with a/L = 1/10 with no diffusion (that is a∗ = ∞). In this
case bugs cannot move away from their parents, and so each surviving family
occupies a single point marked with the symbol ×. The circles in Figure 11
have radius a/2 (not a!). If any of the circles overlapped then the families they
contain would be competing. However, none of the circles overlap in Figure 11,
and therefore each surviving family in the non-diffusive case effectively acts as
an independent realization of the global competition case in Figure 10. Thus,
with no diffusion, the system spontaneously forms a pattern that eliminates
competition between surviving families, and the size of each family follows the
exact same statistics as an ensemble with global competition, namely pk in
(53). The result of this pattern is the elevated population in Figure 11, where
N = 1.7N0. We emphasize that the simulation in Figure 11 is obtained with
no diffusion. But we expect the case of weak diffusion, that is a∗ ≫ 1, to
behave similarly.

7.1 Optimal packing with the top-hat kernel

The counterintuitive result that the population increases as diffusion decreases
(see Figure 4) may be rationalized by considering the case of no diffusion and
deliberately packing as many families into the plane as possible by minimizing
inter-family competition. The solution is to place the families on a triangular
lattice with edge length a, the competition radius, so that there is then no
inter-family competition. This arrangement results in each family occupying a
hexagonal territory with apothem a/2 and area a2

√
3/2. Using (53) to obtain
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Fig. 11. The non-diffusive case in d = 2 at λt = 100. Only 50 of the original
2000 families have survived. The total population N ≈ 1.7 × N0, where N0 is the
population predicted by the sle in (13). The locations of the surviving families
are indicated by the × symbol and the circles have radius a/2. Overlap between
circles would indicate competition between surviving families. The parameters for
this simulation are λt = 100, a/L = 1/10, λ/ν0 = 20, λ/µ = ∞, a∗ = ∞.

the expected population of a single family, the expected aggregate population
is then

N =
2L2

√
3a2

λ

ν0

1

1 − e−λ/ν0

. (74)

Recall now that for the top-hat kernel the stationary solution of the sle

(1) predicts that the aggregate population is N0 = L2λ/πa2ν0. The ratio
of the population of the hexagonally packed case in (74) to N0 is therefore
N/N0 = 2π/

√
3 ≈ 3.63 3 . The lesson is that by deliberately cultivating the

bugs in a triangular lattice the aggregate population can be greatly increased
above that of the strong-diffusion limit, N0.

Of course, in the simulations of Figure 4 and Figure 11 the families are never
optimally packed, and so the ratio N/N0 is always well below the optimal
level 3.63, but N/N0 is greater then one. The optimal packing calculation
correctly indicates how organizing the population into well-separated families
might elevate the total population above that of the strong-diffusion limit, N0

in (13). In simulations with weak diffusion the inter-family spacing is evident

3 We are interested in the regime with λ/ν0 substantially larger than one and so
we are neglecting exp(−λ/ν0) in (74)
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in the radial distribution function: the peaks of g(r) are separated by a little
more than a, the competition radius (see Figure 9). The width of the big peak

at the origin, ℓ =
√

κ/ν0, is obtained from the solution in the previous section.

7.2 A family of competition kernels and the weak-diffusion limit

We showed in section 2 that in the weak-diffusion limit the aggregate pop-
ulation is sensitive to the form of the competition kernel. This sensitivity is
strikingly illustrated by comparing the top-hat result in Figure 11 to zero-
diffusion simulations using the Gaussian competition kernel in (14). With a
Gaussian kernel there is an unavoidable interaction even with distant neigh-
bours. Consequently one finds with a Gaussian kernel that at very long times
there is a single surviving family 4 . With the Gaussian kernel, organization
into a non-competitve pattern is impossible.

To explore the transition between the Gaussian and top-hat cases more fully
we now consider a family of competition kernels, ν(r, m), with a parameter
m controlling the shape of the kernel: m = 0 is the top-hat kernel and m =
∞ is the Gaussian kernel. Specifically, we propose the following family of
competition kernels:

ν(r, m) =











(m+1)η
πR2

m

[

1 −
(

r
Rm

)2
]m

, if r ≤ Rm ,

0 , if r ≥ Rm .
(75)

The range, Rm in (75) is defined by

Rm = a
√

1 + 1
2
m , (76)

where a is the “integral length.” This definition ensures that the kernel is
normalized for all m,

η =
∫

ν(r, m) dx , (77)

and that the squared “radius of gyration” ,

∫

r2ν(r, m)dx

/∫

ν(r, m) dx , (78)

is equal to a2/2. Thus the integral length a grossly characterizes the distance
over which ν(r, m) falls from its central maximum to a substantially smaller

4 If ν ∼ exp(−r2/a2) then the final two surviving families compete with a weak
interaction, proportional to exp(−S2/2ℓ2), where S is separation of the families
which is comparable to the system size L. Thus with Gaussian interaction one family
drives the other to extinction over a time which diverges like roughly exp(+L2/2ℓ2).
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Fig. 12. (a) The kernel in (75) as a function of r for various values of m. The
Gaussian limit is ν(r,∞) = 2η exp(−2r2/a2)/πa2. (b) The steady-state population
as a function of m. In these simulations a/L = 10, a∗ = 20, µ = 0 and λπa2 = 20η.

value. By analogy with section 2, we measure the strength of diffusion relative

to the integral scale a using the non-dimensional parameter a∗ ≡ a
√

λ/κ. Note

that if m is large, so that ν(r, m) approaches a Gaussian, then the range Rm

is much larger than the integral length a.

Figure 12 (a) shows ν(r, m) deforming smoothly from a top-hat to a Gaussian
as m increases from zero to infinity. To probe the effect of the competition-
kernel shape on the average population we fix a∗, a/L, λ and η and vary
only the shape parameter m. The sle then predicts that the total population
is N0 = λL2/η. Figure 12 (b) shows the average populations obtained from
simulations using different values of m. In the cases of m = 0, 1/4, 1/2 the
average population exceeds the sle prediction N0. However, as m increases
and the kernel widens the population falls below N0 = λL2/η. Thus we pass
smoothly between the top-hat and Gaussian limits by varying only the shape
parameter m. There are significant changes in the total population during this
transition.

We can rationalize the result in Figure 12 (b) by repeating the optimal packing
calculation (74) using the kernel in (75). To completely eliminate interfamily
competition the families are separated by the range Rm in (76) instead of
a. But the intrafamily competition is given by ν(0, m). We find that in the
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optimal configuration the generalization of (74) is

N =
2πλL2

√
3(m + 1)η

1

1 − e−λ/ν0

. (79)

Taking the Gaussian limit (m → ∞), with fixed system size L, we see that the
total population vanishes with optimal packing. It is amusing that if m ≤ mc,
where

mc =
2π√

3
− 1 ≈ 2.63 , (80)

then the optimal value in (79) is greater than N0 = λL2/η 5 . In other words,
if m ≤ mc then farming is more productive than rapid dispersion.

8 Conclusions and discussion

We have derived the master equation (44) for an individual-based model with
constant reproductive rate and a death rate depending only on pairwise inter-
actions. The master equation is exact, but also complicated and intractable.
However, from the master equation one can derive the exact equations for the
reduced distribution functions, for example (46), (47), and (48), and so make
contact with earlier work based on this open hierarchy of moments (bdlmp).
With non-zero ν(r) the equations for the reduced distribution functions form
an open hierarchy. One must seek closure via approximation, the simplest
being the Poisson assumption (6). The Poisson assumption yields the famil-
iar spatial logistic equation (1). Through simulation we have shown that the
predictions of the sle are a valid approximation of the underlying individual-
based model only if diffusion is strong in the sense that a∗ is small. If the
diffusion is weak then the total population predicted by the sle can be too
high or too low depending on the parameters (Figure 4) and the form of the
competition kernel (Figure 12). The spatial logistic equation totally misses
the percolation transition and predicts populations that are much too high for
non-percolating parameter values. All these failures of the sle are due to the
strong reproductive correlations which void the Poisson assumption (6) unless
a∗ ≪ 1.

We have discussed two special complementary cases in which exact analytic
results are possible. First, in the non-interacting case, ν = 0, the hierarchy
of reduced distribution functions closes without approximation. Felsenstein
(1975) obtained the pair function in this case, and it is easy to repeat his cal-
culation by solving (47) with ν = 0. This is the very simplest model describing
patchiness and cluster formation. As such, the case ν = 0 is important because

5 The populations in Figure 12 (b) drop below N0 for m ≈ 0.6 < mc. This indicates
that these simulations are far from optimal packing.
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Fig. 13. (a) 797 bugs at λt = 2000, with a top-hat kernel a∗ = 20. (b) The radial
distribution function for (a). (c) 433 bugs at λt = 2000, with a Gaussian kernel and
a∗ = 20. (d) The radial distribution function for (c).

reproductive pair correlations continue to operate even with nonzero ν. The
second case in which exact analytic results are possible is the infinite-range in-
teraction model of section 6. This solution is useful in understanding the case
of very weak diffusion (e.g., as in Figure 11). In this second case the bdlmp

hierarchy is unclosed and so this analytic solution provides the only example
of exact closure known to us.

For the case of weak diffusion, a∗ ≪ 1, the shape of the competition kernel
becomes important. The optimal packing calculation (74) helps us understand
this irksome sensitivity to seemingly unimportant details of the competition
kernel, such as the weak exponential tail of the Gaussian. For compact kernels
like the top-hat — or small m in (75) — the average population is greater
than the sle prediction. However, for diffuse kernels such as the Gaussian —
or large m in (75) — the average population is always less than the sle

prediction (Figure 12). Both these results are consistent with calculations
based on maximizing the population by arranging non-interacting families
of bugs on a hexagonal lattice.

A point of discussion in previous papers (Hernández-Garćıa and López, 2004;
Shnerb, 2004) has been the cause of clusters such as those in Figures 1, 3,
and 13. Invoking the non-local version of the sle mentioned after (8), these
authors attribute the clusters to an instability of the homogeneous state which
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is controlled by the Fourier transform of the competition kernel. This non-local
sle theory predicts that a spatially uniform population is a stable solution
with the Gaussian kernel, but is unstable with the top-hat kernel. However the
Gaussian simulation in Figure 13 (c) and (d) is strongly clustered. Thus the
nonlocal sle proves unreliable in the weak-diffusion limit. The main difference
between the two radial density functions in Figure 13 is depth of the first
minimum and the strength of the successive oscillations. These features are
stronger in the top-hat case in Figure 13 (b), indicating greater long-range
spatial order in the positions of the clusters. But contrary to the predictions
of the nonlocal sle, spontaneous cluster generation is a robust feature of both

Gaussian and top-hat kernels.

To avoid the curious behavior of the top-hat kernel and the infinite-range inter-
actions of the Gaussian kernel one might prefer a kernel that is both compact
and smooth, such as m = 2 in (75). This ensures that families separated by
a distance greater than the range cannot drive each other to extinction. Ob-
viously, the value of m could vary between species and a density-dependent
death rate may not be the ideal mechanism for modeling interactions between
organisms. However, the main point is that the precise shape of the compe-
tition kernel can have a dramatic effect on the outcome of models and one
can plausibly speculate that in the weak diffusion limit this extends to other
forms of interactions.

We conclude by mentioning one aspect of the model which, with hindsight, we
regard as unfortunate, or at least special. We have followed bdlmp and made
the death rate depend on the local density using the competition kernel. An
alternative model assumption is to make the birth rate depend on the local
density through a similar construction (e.g., Hernández-Garćıa and López,
2004 and 2005; Bolker and Pacala 1999). At the crude level of the sle there is
no difference between these model strategies: they both produce a quadratic
saturation term. However it is likely that the resulting individual-based models
have different properties in the low-diffusion limit. We believe that in many
situations density-dependent birth is likely to be a better model of intra-
specific competition than density-dependent mortality.

Appendix A

The Brownian bug model can be simulated on a computer as follows: First,
prepare the initial condition (t = 0) by randomly and independently placing
k0 ≫ 1 Brownian bugs (idealized as points) in the L × L square domain. For
simplicity we consider the domain to be periodic.

Second, repeat the following sequence of steps until the desired simulation time
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has elapsed: determine the time to the next event (birth or death), determine
the type of event, determine which bug performs the event, execute the event,
and diffuse all bugs.

The simulation is event-driven and advanced through time using exponentially
distributed inter-event times in the manner described by Renshaw (1991).
The time to the next event, τ , is equal to − ln(Y )/R where Y is a uniformly
distributed random number on (0, 1) and R is the total rate of events (births
and deaths). If the population is k bugs, the total rate is R = B + D, where
B is the birth rate:

B = λk , (81)

and D is the death rate:

D = µk + 2
∑ ∑

1≤p<q≤k

ν(|xp − xq|) . (82)

The calculation of the double sum in D is the most time consuming routine
in the simulation and is performed using the neighbor-counting scheme in
Rapaport (1995). The periodicity of the domain must be taken into account
by calculating the distance between two bugs in the x-direction (and similarly
in the y-direction) according to

|x1 − x2| = minimum{abs(x1 − x2), L − abs(x1 − x2)} . (83)

A second uniformly distributed random number determines whether the event
is a birth (with probability B/R) or a death (with probability D/R). A third
random number determines which bug performs the event. If the event is a
birth then each bug is equally likely to have performed the event. If the event is
a death then the probability of selecting a particular bug is weighted according
to the magnitude of that bug’s contribution to the death rate in (82).

Finally, every bug diffuses with diffusivity, κ, which amounts to a step of
normally distributed length with root mean square value 2

√
κτ in a random

direction (uniformly distributed on (0, 2π)). Periodic boundary conditions are
used to handle bugs which diffuse out of the domain.
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