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A two-sample Mendelian randomization
study explores metabolic profiling of
different glycemic traits

Check for updates

Tommy H. T. Wong 1,5, Jacky M. Y. Mo1,5, Mingqi Zhou 2,3, Jie V. Zhao 1, C. Mary Schooling 1,4,
Baoting He1, Shan Luo 1 & Shiu Lun Au Yeung1

We assessed the causal relation of four glycemic traits and type 2 diabetes liability with 167
metabolites usingMendelian randomization with various sensitivity analyses and a reverseMendelian
randomization analysis.Weextracted instruments for fasting glucose, 2-h glucose, fasting insulin, and
glycated hemoglobin from the Meta-Analyses of Glucose and Insulin-related traits Consortium
(n = 200,622), and those for type 2 diabetes liability from ameta-analysis of multiple cohorts (148,726
cases, 965,732 controls) in Europeans. Outcome data were from summary statistics of 167
metabolites from the UKBiobank (n = 115,078). Fasting glucose and 2-h glucose were not associated
with any metabolite. Higher glycated hemoglobin was associated with higher free cholesterol in small
low-density lipoprotein. Type 2 diabetes liability and fasting insulin were inversely associated with
apolipoprotein A1, total cholines, lipoprotein subfractions in high-density-lipoprotein and
intermediate-density lipoproteins, and positively associated with aromatic amino acids. These
findings indicate hyperglycemia-independent patterns and highlight the role of insulin in type 2
diabetes development. Further studies should evaluate these glycemic traits in type 2 diabetes
diagnosis and clinical management.

Hyperglycemia, increased insulin, and type 2diabetes likely increase the risk
of cardiovascular disease1. A recent study suggested there were different
roles of four glycemic traits in atherosclerotic and thrombotic conditions2.
Based on theAmericanDiabetesAssociation “Standards ofMedical Care in
Diabetes”, type 2 diabetes may be diagnosed based on different glycemic
traits. Diagnosis can be based on the glucose criteria (including fasting
glucose, 2-h glucose after a 75-g oral glucose tolerance test) or the A1c
criteria (glycated hemoglobin (HbA1c))

3. However, these could lead to
heterogeneity in theprofilingof type2diabetes given these glycemic traits do
not always underlie the same pathophysiology relevant to glucose
homeostasis4. Clarifying the similarities and differences in the association
with downstream metabolites (e.g., lipid subfractions and amino acids) of
these glycemic traits and liability to type 2 diabetes may help clarify the
pathophysiology of these inter-related glycemic traits in various diseases,
such as cardiovascular diseases shown in a previous Mendelian randomi-
zation study2.

Previous observational studies have suggested glycemic traits are
associated with particular metabolites. Studies of Finnish adults (n = 7098)
found that branched-chain amino acids (BCAAs) and ketone body levels
were associated with lower insulin sensitivity and higher risk of type 2
diabetes5,6. Another study of Finnish men (n = 9399) found that higher
concentrations of very low-density lipoproteins (VLDL) subclass particles
were associated with glucose intolerance and newly diagnosed type 2
diabetes7. A small observational study (n = 733) showed HbA1c positively
associated with some BCAAs, such as isoleucine and alanine, and lower
apolipoprotein A1 (ApoA1)8, whilst another small study (n = 155) sug-
gested possible differences in amino acid signatures for prediabetes defined
by different glycemic traits9. Nonetheless, these associations may be sus-
ceptible to residual confounding by obesity and physical inactivity.
AMendelian randomization study, whichmakes use of genetic endowment
randomly allocated at conception, can overcome these limitations10. We
used a Mendelian randomization study to infer the role of each glycemic
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trait (fasting glucose, 2-h glucose,HbA1c, and fasting insulin) and liability to
type 2 diabetes in metabolomic signatures with various sensitivity analyses
and a reverse Mendelian randomization analysis.

Methods
This is a two-sample Mendelian randomization study using summary sta-
tistics from genome-wide association studies (GWAS), which relies on the
three instrumental variable assumptions11. First, the instruments should be
strongly associatedwith the exposure of interest. Second, there should be no
unmeasured confounding of instruments on outcome. Third, the instru-
ments should be independent of the outcome given the exposure and the
confounders.

Genetic predictors of glycemic traits
We selected genetic instruments that were genome-wide significant
(p < 5 × 10−8) and uncorrelated (r2 < 0.001) for fasting glucose (mmol/L),
2-h glucose (mmol/L), fasting insulin (natural log transformedpmol/L), and
HbA1c (%) from the Meta-Analyses of Glucose and Insulin-related traits
Consortium (MAGIC), using data only from participants of European
ancestry (n = 200,622)12. In this GWAS, participants with either type 1 or
type 2 diabetes, who reported taking diabetes-related medications, had a
fasting glucose ≥7mmol/L, 2-h glucose ≥11.1mmol/L, or HbA1c ≥ 6.5%
were excluded12. Genetic associations of glycemic traits were obtained using
multivariable linear regression adjusted for age, sex, body-mass index (BMI)
(except for HbA1c), study-specific covariates, and genomic control. The
impact of collider bias due toBMI adjustmentwasminimal according to the
original GWAS12,13.

Genetic predictors of type 2 diabetes
We selected genetic instruments that were genome-wide significant
(p < 5 × 10−8) and uncorrelated (r2 < 0.001) related to liability to type 2
diabetes from the largest GWAS to-date, using data only from partici-
pants of European ancestry (148,726 cases, 965,732 controls)14. Type 2
diabetes cases were ascertained using study-specific criteria, including
diagnosis codes, hospital admission records, biochemical results (fasting
glucose ≥ 7.0 mmol/L, or 2-h glucose ≥11.1 mmol/L, or HbA1c ≥ 6.5%),
and use of diabetes-related medications14. The genetic associations with
type 2 diabetes were obtained using multivariable logistic regression
adjusted for age, sex, and the top 10 principal components for genetic
ancestry. Given type 2 diabetes is a binary variable, the interpretation of
the correspondingMendelian randomization study estimates using these
instruments should be in terms of liability to type 2 diabetes15, consistent
with earlier Mendelian randomization studies using diseases as the
exposure16–18.

Genetic associations with metabolomic markers
We obtained genetic associations with circulating metabolomic markers
(n = 115,078) from UK Biobank summary statistics, accessed via MR-
Base19. In brief, a range of circulating metabolomic markers were quan-
tified in non-fasting EDTA-plasma samples collected from a random
subset of the UK Biobank participants using a high-throughput nuclear
magnetic resonance (NMR) spectroscopy platform from Nightingale
Health, the technical details of which have been published20. We con-
sidered all 167 metabolomic biomarkers measured as outcomes,
including amino acids, lipids, apolipoproteins, and lipoprotein subclass
distribution and excluding glucose (Supplementary Data 1). Measure-
ments of all metabolomic markers were inverse rank-normalized.
Genetic associations with each biomarker (in standard deviations) were
obtained using a linear mixedmodel with a random effect accounting for
potential confounding due to population stratification and genetic
relatedness, with adjustment for age, sex, fasting status, and genotyping
array21,22. Whenever genetic instruments for glycemic traits and liability
to type 2 diabetes were not available, proxy instruments (pairwise
r2 ≥ 0.8) were identified based on the 1000 Genomes Phase 3 dataset
(version 5, CEU reference population)23.

Statistical analyses
We aligned the effect estimates for both exposure and outcome
studies so that they corresponded to the same effect allele. Given that
palindromic instruments (G > C and A > T) have the same allele
notation on both the forward and reverse strand, we additionally
used effect allele frequency (EAF) to ensure the alleles in both studies
referred to the same strand direction. However, variants with
ambiguous EAF (0.42 < EAF < 0.58) were excluded from the analyses.
For each genetic instrument, we calculated the instrument strength
for the Cragg-Donald F statistic using F = N�K�1

K
R2

1�R2, with an F sta-
tistic >10 indicating weak instrument bias is unlikely24,25. We also
calculated the variance of each glycemic trait explained by the
selected instruments (R2) based on F statistics, effect estimates,
standard errors of the instruments, and the corresponding GWAS
sample size26,27. We assessed the association of each glycemic trait and
liability to type 2 diabetes with each circulating metabolite using
inverse variance weighted with multiplicative random effects, which
assumes no unbalanced horizontal pleiotropy28.

Sensitivity analyses
Sensitivity analyses were conducted to assess the robustness of the results,
which involved estimators relying on different assumptions. These included
the weighted median, which requires at least 50% of the weighted estimates
to be derived from valid instruments29, and MR-Egger, which allows all
instruments to be pleiotropic as long as the instrument strength is inde-
pendent of the direct effect, at the expense of a lower statistical power30. We
also used the MR-Egger intercept term to explore the presence of unba-
lanced horizontal pleiotropy, where a statistically significant (p < 0.05)
intercept implies its presence30. As shown in a previous GWAS, genetic
instruments related to HbA1c displayed possible horizontal pleiotropic
effects via hemoglobin12. Therefore, we conductedmultivariableMendelian
randomization (MVMR) for HbA1c-related analyses to control for hor-
izontal pleiotropy by adjusting for hemoglobin concentration31. Genetic
associations with hemoglobin concentration were obtained from the largest
GWAS to date, which pooled data from the BloodCell Consortium andUK
Biobank and included 563,946 participants of European ancestry32. The
genetic associations with hemoglobin concentration were obtained using
multivariable linear regression adjusted for age, sex, principal components
for genetic ancestry, and cohort specific-covariates32. The effect allele of each
genetic variant was aligned to that for HbA1c

19.We reported estimates from
both MVMR- inverse variance weighted and MVMR-MR-Egger because
the latter is robust to directional pleiotropy33. Horizontal pleiotropy was
assessed using the MVMR-MR-Egger intercept.

Reverse Mendelian randomization
To assess possible reverse causation, we conducted a reverse Mendelian
randomization study to assess the association of NMR measured metabo-
lomics (n = 157) on type 2diabetes risk andglycemic traits.However, wedid
not include the panel on amino acids (n = 10) given this overlaps with
ongoing and published work34–36.

Statistics and reproducibility
All statistical analyses were conducted using R version 4.0.5, with the
“TwoSampleMR”19 package used for data harmonization, extraction and
alignment, univariable Mendelian randomization analyses, and the
“MendelianRandomization”37 package used for MVMR.We calculated the
number of principal components that explained 99% of the variance of the
167 metabolic measures using individual-level data from the UK Biobank
(Application 14684), which gave 25 principal components. Given that 5
exposures were considered in this study, the threshold for statistical sig-
nificance was set at p < 0.0004 (0.05/25/5).

Ethics approval
This study only used publicly available summary statistics from relevant
GWAS and UK Biobank, thus no ethics approval is required. Respective
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ethics approvals have been obtained by the GWAS investigator from all
participating studies and the UK Biobank investigators from the North
West Multi-center Research Ethic Committee.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Genetic predictors for glycemic traits and liability to type 2
diabetes
We selected 67 genetic instruments for fasting glucose (R2: 4.7%, F statistics:
25 to 1662), 14 genetic instruments for 2-h glucose (R2: 1.3%, F statistics: 26
to 111), 74 genetic instruments for HbA1c (R

2: 5.6%, F statistics: 25 to 1392),
38 genetic instruments for fasting insulin (R2: 1.4%, F statistics: 22 to 173),
and 228 instruments for liability to type 2 diabetes (F statistics: 29 to 3136)
(SupplementaryData 2). Based on the F statistics, therewas little evidence of
weak instrument bias. Supplementary Fig. 1 shows the process on instru-
ment selection.

The association of fasting glucose and 2-h glucose with circu-
lating metabolites
Associations of all exposures with circulating metabolites are presented in
Figs. 1–4. Results for fasting glucose and 2-h glucose are shown in Sup-
plementary Data 3 and 4. None of the associations of these two glycemic
traits with any of the metabolites achieved statistical significance.

The association of HbA1c with circulating metabolites
Higher HbA1c was associated with higher free cholesterol in small LDL
(Fig. 4). Estimates from both MR Egger and weighted median were direc-
tionally consistent. No evidence of horizontal pleiotropy was observed
(Supplementary Data 5). After adjusting for hemoglobin usingMVMR, the
positive association ofHbA1c with free cholesterol in small LDLwas slightly
attenuated (Supplementary Data 6).

The association of fasting insulin with circulating metabolites
There were 42 associations of higher fasting insulin with circulating meta-
bolites that achieved statistical significance, while only two had a positive
effect estimate (Supplementary Data 7). Notably, higher fasting insulin was
associated with higher aromatic amino acids (phenylalanine and tyrosine)
(Fig. 1). Higher fasting insulinwas associatedwith lower apolipoproteinA1,
total cholesterol, HDL-cholesterol and other lipid components inHDL, and
total cholines (Fig. 2). There was also a consistent inverse association of
fasting insulin with lipoprotein subfractions in medium HDL, large HDL,
and very large HDL, as well as IDL (except for triglycerides) (Fig. 4). No
evidence of horizontal pleiotropy was observed for any of these associations
(Supplementary Data 7).

The association of liability to type 2 diabetes with circulating
metabolites
There were 88 associations of type 2 diabetes with circulating metabolites,
comprising 34 positive and 54 inverse associations (SupplementaryData 8).
Themetabolomic signature of type 2 diabetes includedmost fasting insulin-
associated signals (38 out of 42), except for degree of unsaturation in fatty
acids, acetone (Fig. 1), phospholipids in medium HDL, and total lipids in
medium HDL (Fig. 4). Besides aromatic amino acids, type 2 diabetes was
also associated with higher BCAAs (isoleucine, leucine, valine and total
BCAA), amino acid (alanine) and glycoprotein acetyls (Fig. 1). Moreover,
type 2 diabetes showed positive associations with total triglycerides, trigly-
cerides in HDL, and triglycerides in VLDL (Fig. 2). Consistently, positive
associations of type 2 diabetes with lipoprotein subfractions in large VLDL,
very large VLDL, and chylomicrons and extremely large VLDL were found
(Fig. 3). There was a consistent inverse association of type 2 diabetes with
lipoprotein subfractions in large LDL, mediumHDL, large HDL, very large
HDL and IDL (except triglycerides) (Fig. 4).

The association of circulating metabolites with glycemic traits
and T2D risk
In the reverse Mendelian randomization analyses (Supplementary
Data 9–13), there were no associations of circulating metabolites with
fasting glucose and 2-h glucose (Supplementary Figs. 2–4). Linoleic acidwas
associated with lower HbA1c (Supplementary Fig. 2). However, HDL-
cholesterol and cholesteryl ester in HDL were inversely associated with
fasting insulin, suggesting potential reverse causation (Supplementary
Fig. 3). There were 19 circulating metabolites associated with lower type 2
diabetes risk, of which 10overlappedwith the associations of type 2 diabetes
with metabolites, such as LDL-cholesterol and subfractions (cholesterol,
cholesteryl ester, free cholesterol, phospholipids, total lipids) in large LDL
(Supplementary Data 13).

Discussion
This Mendelian randomization studies explored the metabolomic sig-
natures of different glycemic traits and liability to type 2 diabetes. Specifi-
cally, fasting glucose and 2-h glucose did not impact lipid profile, consistent
with a previousMendelian randomization study but not other observations
studies9,38,39, although these studies did not investigate 2-h glucose. HbA1c

was positively associated with LDL-cholesterol, as well as with free choles-
terol and phospholipids in LDL, which were consistent with a previous
Mendelian randomization study conducted in Chinese (n = 11,935)40 and
other observational studies41. Although these glycemic traits were broadly
used in defining type 2 diabetes, we found that liability to type 2 diabetes had
a strikingly different metabolomic signature compared to fasting glucose
and 2-h glucose, and HbA1c, such as higher BCAAs, aromatic amino acids,
alanine, and lower lipoprotein subfractions, which has been reported in a
previousMendelian randomization study38.Our study adds by showing that
metabolomic signatures associated with liability to type 2 diabetes resemble
the signatures for fasting insulin, which implies that signals of liability to
type 2 diabetes cannot be solely explained by hyperglycemia but is likely
more related to the consequence of elevated insulin.

As with all study designs, the validity of Mendelian randomization
studies dependsonassumptions42.WhilstMendelian randomization studies
are less susceptible to confounding due to the use of genetics randomly
allocated at conception and weak instrument bias was unlikely given the
high F statistics, there could be issues with violation of exclusion restriction
assumptions where there were signs of horizontal pleiotropy for some
analyses. However, the results of sensitivity analyses, which utilized esti-
mators based on different sets of assumptions for validity, gave similar
conclusions and hence the associations were unlikely driven completely by
the violationof assumptions.Weacknowledge that 37.5%of theparticipants
in the GWAS of type 2 diabetes also provided data for the outcome GWAS
but biases arising from using two-sample Mendelian randomization
methods were likely little given the large F statistics for the instruments. For
MR-Egger, the high instrument variability (I2GX for all included instruments
of type 2 diabeteswas 0.99) indicated that biases inMR-Egger estimates due
to sample overlap are likely minimal43,44. Furthermore, we were not able to
explore the effect of type 2 diabetes on metabolic signatures since we only
instrumented on liability to type 2 diabetes. As such, results from liability to
type 2 diabetes should be interpreted with caution15, where the results could
be amixture of both causes, consequences andmerely biomarkers related to
type 2 diabetes in the general population with some diagnosed with type 2
diabetes45. Despite these limitations, Mendelian randomization studies in
general give findings more consistent with randomized controlled trials
than conventional observational studies46.

Previous observational studies showed positive associations of fasting
glucose with BCAAs9, cholesterols in VLDLs, or saturated and unsaturated
fatty acids, as well as with lower phospholipids and sphingomyelins39.
However, confounding cannot be ruled out completely, especially as these
studies had limited sample sizes which impacted the ability to adjust for
confounders. Furthermore, reverse causation could be an issue, where
prospective cohort studies showed these metabolomic markers associated
with higher risk of impaired fasting glucose47. The lack of association in our
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study supported that these previous observations were likely non-causal.
Our study is also explored the association of 2-h glucose with metabolomic
signature, which showed null associations with included metabolomic
signatures.

HbA1c is oftenused toproxy average glucoseover 2–3months.As these
associations were not observed for fasting glucose, these may reflect dif-
ferences in hyperglycemia being proxied by these two glycemic traits or
glycemia-independent effects of HbA1c. One possibility is hemoglobin48,
whichHbA1c is strongly linked to andmay also impact lipid levels, although
these associations remained after adjusting for hemoglobin usingMVMR49.
Similarly, other diseases such as glucose-6-phosphate dehydrogenase

deficiency and changes in iron homeostasis markers may also reduce
HbA1c

50. Better understanding of the underlying mechanisms has sub-
stantial implications for understanding the impact of hyperglycemia, as
proxied by fasting glucose, 2-h glucose or HbA1c.

The similarities in metabolic signature between liability to type 2 dia-
betes and fasting insulin, but not other glycemic traits, imply signals asso-
ciated with type 2 diabetes liability are likely the result of elevated insulin in
response to insulin resistance instead of overall hyperglycemia. The lipid
signatures, such as inverse associations with IDL and HDL and potentially
positive association with VLDL, were similar to a previous smaller Men-
delian randomization although that study only focused on liability to type 2
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Fig. 1 | Heatmap of associations of genetically predicted glycemic traits (fasting
glucose, 2-h glucose, HbA1c and fasting insulin) and of genetic liability to type 2
diabetes with amino acids, fatty acids, and various low-molecular weight meta-
bolites. Circulating metabolites include: amino acids, aromatic amino acids,
branched-chain amino acids, fatty acids, biomarkers of fluid balance, glycolysis

related metabolites, inflammation, and ketone bodies. The estimates were obtained
from Mendelian randomization analyses using the inverse variance weighted
method. Asterisks depict statistical significance (p < 0.0004). BCAA branched-chain
amino acid.
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diabetes51. Our finding concerning insulin is also consistent with a previous
study showing insulin resistance associated with higher BCAAs52, possibly
via decreased BCAAmetabolism due to impaired insulin action53. Previous
studies have debated whether BCAA is a cause of insulin resistance53,

althoughpreviousMendelian randomization studies suggestedanon-causal
role of BCAAs in insulin resistance54. Additional mechanistic studies would
beuseful to identify thedifferent roles ofBCAAs, insulin, and type 2diabetes
and hence targets of intervention.
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Fig. 2 | Heatmap of associations of genetically predicted glycemic traits (fasting
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Although this study used Mendelian randomization, which is less
susceptible to confounding, we caution readers with several limitations
when interpreting the findings. First, valid causal inference depends on
satisfying the instrumental variable assumptions when fully assessing
pleiotropy is challenging55. Nonetheless, several sensitivity analyses with

different assumptions about pleiotropy yielded consistent conclusions.
Second, since this study utilized data from European populations only, our
findings may not generalize to other populations. Assessing metabolic sig-
natures across ethnicities would be helpful, when suitable GWAS becomes
available. Third, there were signs of reverse causation for lipids related traits
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glucose, 2-h glucose, HbA1c and fasting insulin) and of genetic liability to type 2
diabetes with lipoprotein subclasses in very small, small, medium, large, very
large VLDL, and chylomicrons and extremely large VLDL. The estimates were

obtained from Mendelian randomization analyses using the inverse variance
weighted method. Asterisks depict statistical significance (p < 0.0004). VLDL very
low-density lipoprotein.

https://doi.org/10.1038/s42003-024-05977-1 Article

Communications Biology |           (2024) 7:293 6



after correcting for multiple comparisons, which were consistent with
previous Mendelian randomization studies56,57. However, these results
should be interpreted with caution, in particular the instruments used for
NMR measured traits could be pleiotropic, where correction of horizontal

pleiotropy may not be adequate using standard sensitivity analyses. Based
on thefindings from this study, future studieswithmore specific hypotheses
(e.g., focusing on specific lipid phenotype), coupled with the use of MVMR
which could better account for horizontal pleiotropy via other lipids, and the
use of larger lipid GWAS58, will help ascertain the findings from our reverse
Mendelian randomization study2,59,60. Fourth, genetic instruments for gly-
cemic traits were obtained fromMAGIC, which excluded participants with
type 2 diabetes. Although such an approach should reduce the likelihood of
reverse causation, this may inevitably introduce possible selection bias42.
Lastly, the metabolomic markers used in this study were mainly related to
lipids although other markers relevant to type 2 diabetes, such as BCAAs,
were also included. Whether there are shared signatures in other metabo-
lomic markers across glycemic traits require further investigation.

In conclusion, fasting glucose, 2-h glucose, and HbA1c had little evi-
dence of a metabolomic signature for the metabolites considered. Fasting
insulin and liability to type 2 diabetes had similar metabolic signatures
encompassing a wide range of lipids and amino acids. As such, glycemic
traits likely reflect symptomsof type 2diabeteswhile insulin alsohas a role in
the pathophysiology of type 2 diabetes independent of hyperglycemia. The
distinct characterization of these inter-related glycemic traits may help us
better understand the mechanisms underpinning the relation of these traits
with downstream clinical outcomes such as cardiovascular diseases, as well
as diagnosis and clinical management of type 2 diabetes using these traits.

Data availability
Summary statistics of glycemic traits are available from the MAGIC, with
details provided in Supplementary Data 2. Summary statistics of NMR
metabolites are available from the IEU GWAS database (https://gwas.
mrcieu.ac.uk/), with the IDs for each metabolite listed in Supplemen-
tary Data 1.
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