
UC Berkeley
UC Berkeley Previously Published Works

Title
Snowflake: A Lightweight Portable Stencil DSL

Permalink
https://escholarship.org/uc/item/45w9j3z0

ISBN
978-1-5386-3408-0

Authors
Zhang, Nathan
Driscoll, Michael
Fox, Armando
et al.

Publication Date
2017-05-01

DOI
10.1109/ipdpsw.2017.89

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/45w9j3z0
https://escholarship.org/uc/item/45w9j3z0#author
https://escholarship.org
http://www.cdlib.org/

Snowflake: A Lightweight Portable Stencil DSL

Nathan Zhang, Michael Driscoll, Armando Fox, Charles Markley
Electrical Engineering and Computer Science Department

University of California, Berkeley
Berkeley, California, United States of America

{nzhang32, chick}@berkeley.edu, {mbdriscoll, fox}@cs.berkeley.edu

Samuel Williams, Protonu Basu
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, California, United States of America

{swwilliams, pbasu}@lbl.gov

Abstract—Stencil computations are not well optimized by
general-purpose production compilers and the increased use
of multicore, manycore, and accelerator-based systems makes
the optimization problem even more challenging. In this paper
we present Snowflake, a Domain Specific Language (DSL) for
stencils that uses a “micro-compiler” approach, i.e., small,
focused, domain-specific code generators. The approach is
similar to that used in image processing stencils, but Snowflake
handles the much more complex stencils that arise in scientific
computing, including complex boundary conditions, higher-
order operators (larger stencils), higher dimensions, variable
coefficients, non-unit-stride iteration spaces, and multiple input
or output meshes. Snowflake is embedded in the Python
language, allowing it to interoperate with popular scientific
tools like SciPy and iPython; it also takes advantage of
built-in Python libraries for powerful dependence analysis as
part of a just-in-time compiler. We demonstrate the power
of the Snowflake language and the micro-compiler approach
with a complex scientific benchmark, HPGMG, that exercises
the generality of stencil support in Snowflake. By generating
OpenMP comparable to, and OpenCL within a factor of 2×
of hand-optimized HPGMG, Snowflake demonstrates that a
micro-compiler can support diverse processor architectures
and is performance-competitive whilst preserving a high-level
Python implementation.

Keywords-Scientific Computing; Domain-Specific Language;
Python; GPU; Multicore;

I. INTRODUCTION

Stencil computations on structured rectangular grids are
common in scientific simulations, used in upwards of 40% of
the applications at some supercomputing centers. Production
compilers typically perform poorly on these kernels relative
to hand-optimized code, and stencils are not easily encapsu-
lated into hand-tuned libraries, because of the large number
of stencil operators used in practice [1]. With the advent of
multicore and many-core architectures, including GPUs and
other accelerators, and a desire to run applications across
laptops, clusters and high performance supercomputers, it
becomes necessary to write and maintain multiple versions
of an application in order to efficiently use each platform
[2], [3], [4], [5]. This “multiple codebase, multiple backend”
approach requires a variety of programming models and
compilers including OpenMP, OpenCL, and CUDA.

The goal is to allow scientific programmers to write a
single instance of their source code, and provide perfor-

mance portability across multiple architectures with multiple
backends. For example, Halide [6] is an embedded DSL
for image processing kernels that generates optimized code
for CPU and GPU based architectures. Similarly, a number
of general-purpose compilers and domain specific language
projects perform optimizations on stencils from scientific
code, but without the full generality needed by real applica-
tions.

In this paper we introduce Snowflake, a domain-specific
language (DSL) for stencils capable of expressing the com-
plex stencils that appear in scientific code, including strided
domains (e.g., red-black decompositions and multigrid op-
erators), variable-coefficient stencils, in-place/out-of-place
operations, unions of rectangular domains (used in adap-
tive mesh refinement), multiple input and output meshes,
complex boundary conditions, and asymmetric operators.
We also describe the Snowflake compiler architecture, a
just-in-time compiler that cleanly separates the front-end
parsing and analysis from the “micro-compilers” that target
code for different architectures. This makes it easier to
target new architectures, including those with fairly different
computational models. Snowflake’s is embedded in Python,
making it an excellent tool for applications that use popular
tools such as SciPy [7] and iPython [8]. The Snowflake
analysis engine leverages existing symbolic algebra tools in
Python and is based on linear Diophantine equation analysis,
but is extended to support the full generality of our stencil
computations. The interface between the code generator and
the parser/optimizer is narrow, cleanly separating backend
from front-end architecture. To date, we have created back-
ends for C/OpenMP and C/OpenCL. The performance of the
Snowflake generated code on simple stencils is competitive
with, and sometimes superior to, handcrafted code produced
by human experts, starting from a single source code.

Because Snowflake’s DSL is embedded in Python, the
application writer can use all of the other features of the
high-level language (graphing, file processing, and so on)
and even use other embedded DSLs. As a proof of concept,
we have created a Python reference implementation of
the High-Performance Geometric Multigrid (HPGMG) [9]
solver, a complex supercomputing benchmark that takes ad-
vantage of strided domains, complex boundaries, and other

(a) The traditional multiple codebase multiple
backend model. Users write the sections in gray,
generating large amounts of repetitive work

(b) The more modern single codebase multiple
backend model, which emphasizes reusability.
However, support for new platforms is sometimes
lacking, especially if the end-user develops a
non-standard system

(c) The proposed hybrid model which attempts to
solve both problems by enabling the user to write
backends on top of the single codebase multiple
backend model

Figure 1: The two major paradigms when dealing with platform portability are multiple codebase multiple backend and
single codebase multiple backend, both of which suffer from portability issues.

Snowflake features; From a single, common Python source,
Snowflake generates C code with OpenMP directives or
OpenCL operations and is competitive with hand-optimized
code.

The contributions of this paper are:

• Development of a domain-specific language,
Snowflake, that is powerful enough to express complex
scientific stencils, including boundary conditions,
strided regions, higher order operators, and multiple
input and output grids.

• Construction of a just-in-time program analysis frame-
work that leverages tools in Python for dependence
analysis within and across stencil sweeps.

• Integration of a Diophantine-based analysis algorithm
that generalizes prior work to handle the full generality
of Snowflake.

• Performance analysis of a scientific benchmark that
exercises Snowflake features and shows performance
close to that of hand-optimized code for both CPU and
GPU architectures.

The paper is organized as follows. Section II describes
the design of the language, whose organizing principle is
the ability to specify application of a stencil over domains
consisting of arbitrary unions of hyperrectangles in arbitrary
dimension. This simplification means, for example, that
boundaries are not treated differently from stencil interiors—
they are simply stencils over different domains. It also
describes the computations Snowflake can represent, many
of which are unsupported by existing stencil frameworks.

Sections III and IV describe the dependency analysis and
compiler, respectively. In particular, they illustrate how the
DSL’s representation of stencils and domains detects depen-
dencies that could cause write conflicts during paralleliza-

tion. Analysis is based on solving systems of Diophantine
equations, and it works both within one stencil operation
and across a group of several serial stencil operations.

Section V presents the results of our implementation of
Snowflake with OpenMP and OpenCL backends. We ported
the High Performance Geometric Multigrid (HPGMG)
benchmark to Python/Snowflake and compare Snowflake-
generated OpenMP and OpenCL code to hand tuned code
on comparable problem sizes. We show that the performance
of Snowflake-generated code is competitive with hand-tuned
code on CPU platforms, and within a factor of 2× of
hand-tuned CUDA on GPU-accelerated platforms. More-
over, as no changes to the Python source code are required,
Snowflake provides a performance-portable implementation
of HPGMG across CPU and GPU architectures. In Sec-
tions VI and VII, we review related and future work.

II. LANGUAGE DESIGN

Table I and Figure 2 summarize the main data structures
in Snowflake, which represent weight arrays, stencils, and
domains. This section gives a rapid overview of the language
by explaining the roles of these data structures and giving
some examples from typical scientific codes.

A. Language Elements and Expressiveness

A 1D WeightArray specifies stencil weights, with the
middle element corresponding to the stencil center point.
In 2D, the array elements are themselves arrays, specifying
the weights along each dimension, so that (for example) a
2D 3× 3 stencil whose center point is 0, 0 would have the
weight array [[w−1,−1, w0,−1, w−1,1], [w0,−1, w0,0, w0,1],
[w1,−1, w1,0, w1,1]] The notation generalizes so that an N-
dimensional weight array consists of arrays nested N-deep.

Element Description
WeightArray In 1D, an array specifying stencil weights with middle element corresponding to the stencil center point; in N

dimensions, arrays nested N deep, specifying weight array in each dimension.
SparseArray Alternative representation of a WeightArray specified as a hashmap whose keys are vector offsets (relative to

stencil center) and values are weights at that vector offset.
Component Associates a WeightArray or SparseArray with a grid.
RectDomain Specifies a start, end, and stride in arbitrary dimensions
DomainUnion A union of RectDomains
Stencil Associates a Component, RectDomain or DomainUnion, and output grid (which can be one of the input grids,

for in-place stencils), and exposes a compile method that generates native code and returns a Python callable
StencilGroup A series of Stencils to be performed consecutively; exposes a compile method that generates native code and

returns a Python callable

Table I: Snowflake’s main data structures, as used in the example in Figure 4.

Figure 2: Relationships among the main stencil computation
elements described in Table I.

A Component associates a weight array with a particular
grid.

A stencil is applied over a RectangularDomain,
which describes a start, end, and stride in arbitrary di-
mensions, or over a DomainUnion, which is a union of
RectangularDomains. RectangularDomains may
contain negative start and end parameters, in which case they
are relative to the grid size. This allows interior, boundary,
and other general stencil definitions to be reused without
redefining the iteration space on each grid size.

Finally, the stencil operator itself associates a
Component, RectangularDomain or DomainUnion,
and another Mesh specifying where the output should go.
The output grid can be one of the input grids, for in-place
stencils.

These language features allow expressing the following
complex stencil behaviors, typical in scientific applications:

1) Striding is the application of the stencil to a subset
of elements in a multidimensional array separated by
constant sized jumps in each dimension (common op-
erations such as restriction or interpolation). Striding
is supported by defining a RectangularDomain.
Striding and coloring (Figures 3a-3b) are supported

by constructing the DomainUnion of multiple such
domains.

2) In-place operations write the result of a stencil into
one of the input arrays, rather than into a new write-
only output array. While rare in image processing,
in-place operations are common in techniques such
as Gauss-Seidel Red-Black stencils and Chebyshev
smoothing.

3) Boundary Conditions are restrictions on boundary
values or values just outside of the boundary to enforce
expected behavior across multiple iterations. These
are also expressed as stencils with (sometimes) large
offsets, or as asymmetric stencils (Figure 3c-3d).

4) Variable-coefficient stencils are those whose coeffi-
cients at each point differ; they are common in ap-
plications such as heat flow where the medium may
be heterogeneous, requiring the stencil to read values
such as flow coefficients from a separate array.

An example serves to illustrate how the language supports
these features.

B. Example: Complex Smoothing

The code in Figure 4 shows how Snowflake expresses
a fairly complex stencil, typical of a scientific application.
The red-black pattern, or checkerboard pattern, is an iteration
ordering used in scientific computing. In a red-black pattern,
or multi-color stencils in general, each element of the array
has a color determined by a union of striding patterns.
Typically in scientific computing, values at the grid boundary
are also constrained. For example, in a Dirichlet boundary,
the value at the boundary of the grid is constrained to be
zero. One common method of emulating this boundary value
when using linear operators is by setting values outside
of the grid in a ghost zone or halo; in this example, the
ghost value immediately outside a boundary cell is set to
the negative of the value immediately inside, to cancel its
effect.

The Snowflake language makes no distinction between
interior passes and exterior boundaries; both are described
as the application of a stencil over a domain, which is any
union of hyperrectangular regions within a multidimensional

(a) Red-Black tiling (b) 4-color tiling (c) Asymmetric stencil used
near grid boundary

(d) 5-point Jacobi stencil

Figure 3: (a) Red-black tiling allows cross-point updates simultaneously at points of the same color, so an update operation
takes only 2 passes. (b) 4-color tilings are common when each update requires the surrounding 3-by-3 neighborhood. Like
red-black tiling, all points of the same color in a 4-color tiling can be updated simultaneously. (c) An asymmetric stencil,
sometimes used near the grid boundary of a standard 5-point stencil (d), results in odd dependency patterns. Purple points
are read from, gray points are written to.

1 top = Component("beta_x", WeightArray([[1]])
2 bot = Component("beta_x", WeightArray([[0], [1], [0]])
3 left = Component("beta_y", WeightArray([[1]]))
4 right = Component("beta_y", WeightArray([[0, 0, 1]])
5 Ax = Component("mesh", WeightArray([[0,top,0], [left, left+top+bot+right, bot], [0, bot,

0]]))
6 b = Component("rhs", WeightArray([[1]]))
7 difference = b - Ax
8 original = Component("mesh", WeightArray([[1]])
9 lambda_term = Component("lambda", WeightArray([[1]]))

10 final = original + lambda_term * difference
11 red = RectDomain((1,1), (-1,-1), (2,2)) + RectDomain(((2, 2), (-1, -1), (2, 2))
12 black = RectDomain((1,1), (-1,-1), (2,2)) + RectDomain(((2,2), (-1,-1), (2,2))
13 red_stencil = Stencil(final, "mesh", red)
14 black_stencil = Stencil(final, "mesh", black)
15 # Dirichlet zero boundary: 1 of 4 stencils shown...
16 top_boundary = Stencil("mesh", Component("mesh", WeightArray([[0],[0],[-1]])),
17 RectangularDomain((1, -1), (-1, -1), (1, 0)))
18 # ...others are rotationally equivalent

Figure 4: This complex-smoothing operation a strided colored (red-black) stencil with Dirichlet boundaries and variable-
coefficients. Nominally, we are solving −∇·β∇x = b, and are doing so by applying the Jacobi operator without dampening
over the red and black points on a checkerboard on alternating iterations. These operators and iteration domains can be
constructed at run-time with no additional cost.

grid. Stencils such as the Gauss-Seidel Red-Black (GSRB)
stencil operate in-place, meaning that the output of the red
points reads from the black points and writes back the red
points, and vice versa.

The core of the GSRB stencil is a 5-point stencil with
variable coefficient arrays βx, βy representing the physical
properties of the space (lines 1–4). In the smooth, we take
the difference between the right hand side of the problem
and the Ax component to find the difference b−Ax (lines
5–7). We finally adjust the grid by this difference multiplied
by a factor λ (lines 8–10).

Having defined the operation, we define the red and black
domains; each is defined as the union (+) of two domains

offset from each other and strided by 2 in each dimension
(lines 11–12). We can now define the main red-black stencil
by associating the operation, its output, and its domain (lines
13–14).

The last step is generating the boundary for a uniform
linear Dirichlet condition in 2 dimensions. This requires four
stencils (top, bottom, left, and right boundaries); for each
one, the cell immediately outside the boundary should be
set to the negative of the value inside the boundary, to make
the boundary cell be zero. Lines 16–17 show how to set up
the stencil for the top boundary; the others are rotationally
equivalent.

Finally, the red and black stencils (lines 13–14) and

the boundary stencils (lines 16–17, plus three rotationally
equivalent boundary stencils omitted for brevity) can be
combined into a StencilGroup, which allows analysis
to identify parallelism across all these stencils as well as
within each one. The next section describes how the analysis
is done.

III. ANALYSIS

One major goal of the Snowflake DSL was to make
analysis of stencils easier in order to ensure correctness
and ease the burden on the optimization process. Given the
highly regular access patterns of stencils and stencil groups,
the inherent parallelism is statically determinable in many
nontrivial cases [10]. These dependencies reduce to a system
of Diophantine equations that determine whether or not a
stencil interferes with itself and other stencils. Diophantine
equations are equations where integer solutions are sought.
For example, the equation x2+y2 = 1 has an infinite number
of general solutions, but only 4 integer solutions: (±1,±1).

Snowflake can analyze dependencies to identify paral-
lelism across multiple stencils or domains. For example, it
can find parallelism in computing two stencils on different
parts of a grid, or in computing a series of stencils over
a rectangular domain composed of a boundary plus the
interior, as in the example in the previous section.

A. Diophantine Analysis

The primary purpose of analysis is to determine whether
a stencil can be applied in parallel over a union of do-
mains. We use the open-source Python library SymPy1

to find solutions to the system of Diophantine equations
that indicate the presence of a loop-carried dependency.
Furthermore, the presence of a loop-carried dependency
within even polynomial indexing systems is decidable as
the corresponding Diophantine equations can be solved
using the extended greatest common divisor algorithm. The
general Diophantine equation is intractable according to the
Davis-Putnam-Robinson-Matiyasevich Theorem [11], but by
appropriately restricting the types of stencil we permit under
our language, we avoid this problem. We allow the usage
of polynomial indexing, but place primary focus on affine
indexing due to its usage in the restriction and interpolation
operators in stencils. Specifically, affine and polynomial
Diophantine equations can be solved or shown to be unsatis-
fiable using the extended Euclidean algorithm, thus allowing
straightforward analysis.

This technique is used for both verification and auto-
parallelizing within stencils as well as detecting data hazards
across stencil iterations, and can also be used for eliminating
dead stencils and reordering computations. This analysis is
platform independent, and can handle the full generality
of scientific stencils, which do not exercise exponential

1SymPy: http://www.sympy.org/

Figure 5: In the Snowflake workflow, there are two classes
of end users: the scientist (light blue) and the compilers/-
platform expert (teal). Snowflake framework code, which is
provided but extensible, is in lime green.

Diophantine problems, and thus do not incur the MRDP
problem.

In Snowflake, our analyses are performed assuming finite
domains, which allows for executing multiple stencils on the
same set of grids simultaneously assuming that they do not
interfere with each other. This is done by first using well-
understood Diophantine techniques for obtaining symbolic
expressions describing points of potential conflict, followed
by satisfiability computations handled by Sympy.

For example, boundary conditions are able to be expressed
as simple stencils in Snowflake and do not create false de-
pendencies which infinite-domain analyses such as Halide’s
interval analysis would flag.

IV. JIT MICRO-COMPILER

The Snowflake framework invokes a user configurable
JIT stencil compiler with the python AST of the stencil
codes. On the fly, this AST is modified by by multiple
analysis, optimization and translation passes. The result is
rendered into the configured performance language, which is
then handed to an appropriate compiler, producing a binary
which is wrapped in a python callable function which is
then called. These call-ables are cached, for subsequent use.
The compiler architecture cleanly separates the front-end
(platform-agnostic) parsing and analysis from the backend
(platform-specific) code generation, allowing new backends
to be added by users. The encapsulation allows the pro-
grammer to freely mix Snowflake with other code generation
frameworks.

Since Snowflake comes prepackaged with Python, se-
quential C, C with OpenMP, and C with OpenCL micro-
compilers, the compiler expert is only needed when addi-
tional optimizations are requested or unsupported backends
are needed. These existing micro-compilers are implemented

purely in Python, and share their analysis and frontend mod-
ules. The scientist or application programmer is the typical
end-user of other DSLs, and is responsible for constructing
the stencils as well as invoking the kernels. Stencils and their
components may be passed around arbitrarily and be used
to compose StencilGroups or more complex stencils.

To compile the DSL code for a stencil, we call the
compile method on either the Stencil or on a
StencilGroup, which specifies a series of stencils to be
run consecutively and allows the compiler to do cross-stencil
optimizations. The compile method returns a callable that
will do the actual computation. For backends that generate
compiled shared object files, we currently use Python’s built-
in Foreign Function Interface in order to pass parameters
down to lower-level code.

A. Design of the OpenMP Backend

The OpenMP backend makes heavy use of the dependency
analysis in prior sections in order to establish barrier points
in the generated OpenMP code. Since this paper describes
a language and a DSL framework architecture, the OpenMP
backend was implemented using a naive scheduling system.
Each stencil is generated as an OpenMP Task, with larger
stencils being split into subtasks.

The backend inserts barriers if the output of a group
of stencils is needed by the next group of stencils. These
groups were formed greedily; the compiler maintains a list of
stencils in the current group and places a barrier only when
the next stencil depends on the stencils in the existing group.
This dependency analysis technique is used to generate
a DAG of stencil dependencies. The task farming system
promotes greater system usage when encountering NUMA
issues when compared to naive parallel code.

In the OpenMP backend of Snowflake, we implemented
tiling and multicolor reordering, both implemented as trans-
formations on the Snowflake AST tree. Tiling is an arbitrary-
dimension blocking algorithm, which allows the user to
specify a tiling size when compiling the stencil, and provides
a method of tuning tiling sizes. Multicolor reordering is
a loop-interchange optimization that allows Red-Black or
other non-unit stride stencil operations in order to de-
crease slow-memory reads. When examining the variable-
coefficient GSRB performance, it is evident that Snowflake
needs to implement more efficient tiling and iteration meth-
ods in order to achieve speeds closer to those of hand-
optimized code.

B. Design of the OpenCL Backend

The OpenCL backend uses a tall-skinny blocking method,
using two-dimensional tiles which are then rolled upwards
through the remaining dimensions. Work on non-unit stride
stencils such as those found in GSRB is currently in
progress.

V. PERFORMANCE

We evaluate Snowflake’s ability to provide single-source
performance-portability on stencil computations running on
CPU and GPU-accelerated platforms. Given its complexity
and use of many different stencils on varying array sizes,
we use HPGMG, the High Performance Geometric Multigrid
supercomputer benchmark developed by Lawrence Berkeley
National Lab, as a driver [9]. Geometric multigrid is a
structured grid-based linear algebra algorithm that uses a
series of restriction, smoothing, and interpolation operations
to numerically approximate solutions to partial differential
equations in near-linear time. Since the publicly-maintained
reference implementation of HPGMG uses MPI+OpenMP
for parallelism and blends functionality with hand opti-
mizations, porting it to new platforms is difficult and time
consuming. A happy side effect of porting it to Python/S-
nowflake is that we now have a reference implementation
that is source- and performance-portable, requiring only a
new Snowflake backend to port the benchmark to other
platforms.

A. Experimental Setup

For our evaluations, we used two platforms. All CPU
experiments were conducted on an Intel Core i7-4765T
running at 2.0GHz without exploiting TurboMode or Hyper-
Threading (superfluous for memory-intensive computations
on out-of-order processors). GPU experiments were con-
ducted on a NVIDIA K20c GPU. The CPU has a STREAM
Triad bandwidth of about 22.2GB/s while the GPU has
an Empirical Roofline Toolkit [12] bandwidth of about
127GB/s. We had exclusive access to all systems.

For comparison purposes, we compare Snowflake perfor-
mance (number of unknowns / solve time) to the 2nd order,
hand-optimized OpenMP and OpenMP+CUDA versions of
HPGMG [9], [13]. Note, as our CPU-based system has only
a single NUMA node, we have disabled MPI parallelism in
HPGMG and have only used OpenMP. We configured our
benchmarks (Snowflake or native) to run 10 V-Cycles instead
of the default 1 F-Cycle, and configured it to use two GSRB
smooths (4 stencil sweeps) for pre- and postsmoothing.

In order to provide context, we evaluate the performance
of three standalone stencil computations — the canonical
7-point constant-coefficient Laplacian, a Jacobi smoother
(xn+1 = xn + 2

3D
−1(f − Lxn) where L is the 7-

point constant-coefficient Laplacian above), and a Gauss-
Seidel, Red-Black smoother using a variable-coefficient 7-
point Laplacian. Note, each of these operators requires an
interspersed (boundary / red / boundary / black) Dirichlet
boundary condition stencil to be applied over the surface
of the problem domain. As multigrid requires applying a
smoother across multiple grid spacings, we also evaluate the
performance of the variable-coefficient GSRB (in isolation)
across a range of problem sizes. Finally, we build a complete
geometric multigrid solver using Snowflake representations

for the smoother, residual, restriction, interpolation, and
boundary condition stencils.

Owing to the limitations of our testbeds and an incom-
patibility with the Intel compiler, Snowflake was compiled
with GCC version 4.9 with -std=c99 -03 -fgcse and
-fPIC flag for linking. The OpenCL backend additionally
used -lOpenCL with OpenCL version 1.2. HPGMG was
compiled with ICC 14.0 with -03 -openmp. In all exper-
iments, we conducted an untimed warmup phase (e.g. 10
v-cycles) followed by the benchmarking phase.

B. Roofline Performance Bound

We use the Roofline Model [14], [15] to qualify the
performance we attain relative to the capabilities of the target
CPU and GPU platforms. To that end, for each stencil,
we calculate the asymptotic compulsory memory traffic
per stencil (24, 40, and 64 bytes per stencil for constant-
coefficient 7-point Laplacian, constant-coefficient Jacobi,
and variable-coefficient GSRB respectively), and for each
platform, we use the modified STREAM [16] benchmark
shown in Figure 6 to measure the memory bandwidth for
the read-dominated memory access patterns endemic to
stencil computations. The ratio of these two terms provides a
fundamental, speed-of-light performance bound (stencils/s)
for each operator for each platform. Note, we assume no
capacity or conflict misses and always assume write-allocate
cache behavior coupled with the inability of the compiler to
automatically generate cache bypass instructions. Similarly,
we use DRAM bandwidth regardless of problem size.

1 void tuned_STREAM_Dot(double scalar)
2 {
3 int j;
4 #pragma omp parallel for

reduction(+:beta)
5 for (j=0; j<N; j++)
6 beta += a[j]*b[j];
7 }

Figure 6: Modified STREAM benchmark using the dot
product in order to approximate the read-dominated memory
access patterns of stencil computations.

C. CPU and GPU Performance

Multigrid solvers, and applications in general must com-
pose a number of stencils together. It is imperative any
system deliver performance for a variety of stencil computa-
tions. Figure 7 presents Snowflake performance with either
the OpenMP or OpenCL backends for three different sten-
cils/smoothers on a fixed 2563 problem. We include perfor-
mance comparisons to the equivalent operations in HPGMG
and HPGMG-CUDA as well as to a Roofline-inspired
DRAM performance bound. Unfortunately, HPGMG-CUDA

0.0

1.0

2.0

3.0

4.0

5.0

6.0

CC 7pt
Stencil

CC
Jacobi

VC
GSRB

CC 7pt
Stencil

CC
Jacobi

VC
GSRB

Core i7-4765T K20c GPU

St
en

ci
ls

/s
 (1

0^
9)

Performance for 256^3

HPGMG
Snowflake
Roofline Bound

Figure 7: Snowflake productively delivers performance
across architecture and operators — generated OpenMP
and OpenCL compared to HPGMG, HPGMG-CUDA, and
the Roofline (DRAM) performance bound for a fixed 2563

problem. Note, HPGMG-CUDA does not include a constant-
coefficient 7-point Stencil.

does not include a bare 7-point constant-coefficient Lapla-
cian stencil, but only includes it in the context of a smoother.
As we can see Snowflake/OpenMP performance does very
well, delivering performance close to HPGMG and the
Roofline. Conversely, it is clear the additional low-level
optimizations found in NVIDIA’s HPGMG-CUDA are nec-
essary as Snowflake’s OpenCL backend underperforms. As
we assume a write-allocate cache architecture, GPU Roofline
estimates for the Laplacian and Jacobi may underestimate
performance potential (HPGMG-CUDA exceeds a Roofline
underestimate). Nevertheless, it is clear Snowflake was able
to deliver performance portability within a factor of 2×
across CPUs and GPUs from a single-source description.

In order to realize a high-performance multigrid solver
— O(N) solve time in the number of variables N —
one must deliver constant performance across a range of
exponentially-varying problem sizes. Figure 8 shows perfor-
mance for the variable-coefficient GSRB smoother across the
range of problem sizes found in a multigrid solver. Observe
that runtime decreases with problem size as bound by
Roofline. Moreover, Snowflake OpenMP and OpenCL per-
formance track the hand-optimized HPGMG and HPGMG-
CUDA performances. Note, the smallest 323 problem likely
fits in the CPU L3 cache and can thus greatly surpass the
(DRAM-based) Roofline bound.

Figure 9 shows the overall (smooth, residual, interpo-
lation, restriction, boundary condition stencils for all grid
sizes) multigrid solver performance for both the hand-

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

25
6^

3

12
8^

3

64
^3

32
^3

25
6^

3

12
8^

3

64
^3

32
^3

Core i7-4765T K20c GPU

Ti
m

e
(s

ec
on

ds
)

VC GSRB Smoother Time

Snowflake
HPGMG
Roofline Bound

Figure 8: Snowflake execution time for the variable-
coefficient GSRB smoother with generated OpenMP and
OpenCL compared to HPGMG, HPGMG-CUDA, and
Roofline as a function of problem size. Note, small problems
exceed the DRAM-based Roofline bound because they fit in
cache. Performance across scales is critical to realizing a
high-performance multigrid solver.

optimized HPGMG and HPGMG-CUDA as well as the
Snowflake OpenMP and OpenCL generated code running on
CPUs and GPUs. Observe that Snowflake delivers very sim-
ilar performance on a CPU to the hand-optimized HPGMG
(memory bandwidth bound). Conversely, Snowflake perfor-
mance on the GPU is roughly half the performance of hand-
optimized CUDA — no surprise given multigrid is usually
dominated by operations on the finest grids (largest arrays)
for which Figure 8 highlighted performance differences.
Future optimization effort will attempt to improve the quality
of the generated OpenCL code.

VI. RELATED WORK

Much work has been focused on optimizing stencils (a
special case of loop nests) by improving general static
analysis and transformation techniques. PLuTo [17] and
PENCIL [18] apply the polyhedral model to recognize,
estimate the profitability of, and effect loop transformations.
The CHiLL framework [19], [20] also uses polyhedral anal-
ysis, but it eschews automatic techniques in favor of user-
provided scripts that direct loop transformations. General-
purpose compilers usually fall short of hand-optimized im-
plementations, and their generality inhibits portability across
architectural backends.

Domain-specific languages are another means of achiev-
ing fast, portable stencils, but DSLs for stencils have yet to

0

2

4

6

8

10

12

14

16

Core i7-4765T K20c GPU

D
O

F/
s

(1
0^

6)

GMG Solver Performance

Snowflake
HPGMG

Figure 9: Single source Snowflake GMG solve performance
is comparable to hand-optimized HPGMG on CPUs and pro-
ductively attains nearly half the performance of optimized
HPGMG-CUDA on GPUs for a 2563 problem.

handle the full complexity of scientific codes and present a
challenge for inter-operability with legacy code. PATUS [21]
separates the stencil definition from the implementation
strategy to enable auto-tuning. Halide [6] enforces a similar
separation, and optimizes pipelines of image processing
stencils via interval analysis. Halide does not support bound-
ary conditions because they conflict with the assumption
that stencils are implicitly applied over infinite grids. The
Pochoir Compiler [22] implements stencils via a cache-
oblivious algorithm. It supports complex boundary condi-
tions, but it does not support variable-coefficient stencils
because each stencil can only be associated with one array.
SDSL [23] attempts to combine domain-specific knowledge
with the polyhedral model. It supports boundary conditions
and variable-coefficient stencils, but SDSL cannot express
stencils that do interpolation or restriction because it defines
stencils in terms of additive offsets, rather than the requisite
multiplicative offsets. Lastly, neither Halide, Pochoir, or
SDSL support in-place stencils, and thus cannot express in-
place GSRB.

The platform portability problem has been a perennial
challenge and there have been many attempts to leverage a
higher-level language to abstract away platform differences.
Perhaps the most popular example is the Java programming
language, designed to separate the user from the system.

While JIT code generation is not new, our Python-based
code generation is based on the Python-to-C and Python-
to-GPU work done by Catanzaro et al. [4] and Kamil
et al. [24]. Like their work, we expose code generation
at the pattern level, as opposed to the assembly level or

intermediate-representation level. Like Kamil’s work, we
selectively specialize only those parts of a Python program
that use our embedded DSL, so the same application can
combine Snowflake with other code-generation frameworks.

Like the above work and also Olukotun et al. [3], our
goal is that scientists can use a productivity-level language
to describe algorithms most of whose code will ultimately
be run in an efficiency-level language. DSL design and
implementation has been a popular method for resolving
the platform portability problem by specializing a subset
of computations. Pochoir [22] and Halide [6] have been
successful within the stencil domain.

Our backend optimization framework is similar to
Rose [25], a compiler framework and toolkit for creating
code-to-code translators, optimizers, and compilers.

Diophantine equations have been used to analyze individ-
ual stencils but we believe our extension to detect dependen-
cies across multiple stencils (e.g. between the face stencils
and the interior stencils) and to do this analysis on unions
of domains for multi-color stencils (i.e. GSRB) is novel.
Traditional Diophantine analysis assumes an infinite domain,
while our analysis works with finite domains, which allows
it to recognize (for example) that our linear Dirichlet edges
don’t interact with our faces. Finite-domain dependency
analysis also lets us run multiple different stencils on the
interior at the same time if they are non-overlapping. The
Halide framework assumes an infinite domain, and doesn’t
support in-place stencils.

VII. FUTURE WORK

We plan to evaluate Snowflake on a more diverse set
of platforms including the Intel Knights Landing manycore
processor. In addition, the performance on GPUs is less
than ideal, and in order to fully and efficiently accommodate
scientific stencils the performance will need to be closer to
hand-written code. We plan to augment the OpenCL micro-
compiler and explore the creation of CUDA, OpenACC, or
OpenMP 4 micro-compilers.

We will incorporate dead-stencil elimination and reorder-
ing optimizations into our dependency analysis framework.
We will extend the analysis to mark stencils for fusion
and reordering by analyzing dependencies and memory
access patterns. Extended dependency analysis will likely
also include extracting dependency graphs of stencils and
we hope to eventually make decisions on splitting across
multiple backends (i.e. CPU and GPU) in order to increase
parallelism.

Finally, we’re exploring the development of new backends
to target distributed-memory systems via MPI or UPC++.
Happily, this will also provide performance on NUMA
node architectures (e.g. multisocket Xeons) by running one
process per NUMA node.

VIII. CONCLUSIONS

In this paper, we presented a novel solution to the
performance portability problem for stencils on structured
grids, probably the most important computational kernel
in scientific computing due to both it prevalence across
scientific domains and the difficulty of packaging all pos-
sible stencil operators into a hand-optimized library. Our
Snowflake language balances the simplicity of a domain-
specific approach, while providing the full generality of
boundary conditions, strided iteration spaces, update-in-
place operations, and other features required for real scien-
tific applications. Our simple yet powerful analysis engine
is able to handle the full generality of Snowflake sten-
cils, including variable-coefficient stencils, through the JIT
approach and micro-compiler backend architecture, which
makes it easy to retarget Snowflake to new architectures.
While we do not yet support all known stencil optimizations,
our code is competitive with hand-optimized code for CPU
multicore and GPU-accelerated architectures. This is even
more significant because Snowflake is embedded in Python.
Moreover, we included a Roofline analysis to show that the
Snowflake code is close to the best possible performance of
a given system.

Both functional and performance portability of scientific
applications has become the primary software engineering
concern in scientific computing today, with the diverse ar-
chitectural models requiring special language annotations or
completely new languages. Trends suggest that this problem
will only get worse as architectures are emerging with new
levels of memory and new kinds of accelerators optimized
for particular types of computation. The Snowflake approach
shows that by tailoring the language to a narrow domain,
and leveraging powerful algebraic tools in analysis, one can
produce highly optimized code across diverse architectures
in a framework that is extensible to new architectures and
manageable in terms of code size and complexity.

ACKNOWLEDGMENTS

This research used resources in Lawrence Berkeley Na-
tional Laboratory and the National Energy Research Scien-
tific Computing Center, which are supported by the U.S.
Department of Energy Office of Science’s Advanced Scien-
tific Computing Research program under contract number
DE-AC02-05CH11231. Research at UCB partially funded
by DARPA Award Number HR0011-12-2-0016, the Center
for Future Architecture Research, a member of STARnet, a
Semiconductor Research Corporation program sponsored by
MARCO and DARPA, and ASPIRE Lab industrial sponsors
and affiliates Intel, Google, Hewlett-Packard, Huawei, LGE,
NVIDIA, Oracle, and Samsung. Any opinions, findings,
conclusions, or recommendations in this paper are solely
those of the authors and does not necessarily reflect the
position or the policy of the sponsors.

REFERENCES

[1] K. Yelick, “Programming Models for SOCs in HPC
(A play in 3 Acts),” http://www.socforhpc.org/wp-
content/uploads/2015/10/PACT2015 Yelick-SOCHPC-
2015.pdf, SOCHPC Keynote, 2015.

[2] J. Holewinski, T. Henretty, K. Stock, L. Pouchet, A. Rountev,
and P. Sadayappan, “High-performance computing for stencil
computations using a high-level domain-specific language,”
hpc.pnl.gov/conf/wolfhpc/2011/talks/JustinHolewinski.pdf.

[3] T. Rompf, A. K. Sujeeth, H. Lee, K. Brown, H. Chafi,
M. Odersky, and K. Olukotun, “Building-blocks for perfor-
mance oriented dsls,” IFIP Working Conference on Domain-
Specific Languages, 2011.

[4] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel,
K. Keutzer, J. Shalf, K. Yelick, and A. Fox, “Sejits: Getting
productivity and performance with selective embedded jit spe-
cialization,” Workshop on Programming Models for Emerging
Architectures, 2009.

[5] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R.
Atreya, and K. Olukotun, “A domain-specific approach
to heterogeneous parallelism,” in Proceedings of the
16th ACM Symposium on Principles and Practice of
Parallel Programming, ser. PPoPP ’11. New York,
NY, USA: ACM, 2011, pp. 35–46. [Online]. Available:
http://doi.acm.org/10.1145/1941553.1941561

[6] J. Ragan-Kelly, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe, “Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines,” Programming Language Design and
Implementation, 2013.

[7] E. Jones, T. Oliphant, P. Peterson et al., “Open source
scientific tools for Python,” 2001.

[8] F. Pérez and B. E. Granger, “IPython: a system for
interactive scientific computing,” Computing in Science and
Engineering, vol. 9, no. 3, pp. 21–29, May 2007. [Online].
Available: http://ipython.org

[9] “HPGMG: High-performance geometric multigrid reposi-
tory,” https://bitbucket.org/hpgmg/hpgmg/.

[10] J. Holewinski, L. Pouchet, and P. Sadayappan, “High-
performance code generation for stencil computations on gpu
architectures,” International Conference on Supercomputing,
2012.

[11] M. Davis, Y. Matiyasevich, and J. Robinson, “Hilbert’s tenth
problem. diophantine equations: positive aspects of a negative
solution,” Proc. Symp. Pure Math, vol. 28, pp. 323–378, 1976.

[12] T. Ligocki, “Roofline toolkit.” [Online]. Available: https:
//bitbucket.org/berkeleylab/cs-roofline-toolkit

[13] “HPGMG-CUDA: High-performance ge-
ometric multigrid (CUDA) repository,”
https://bitbucket.org/nsakharnykh/hpgmg-cuda.

[14] S. Williams, A. Watterman, and D. Patterson, “Roofline:
An insightful visual performance model for floating-point
programs and multicore architectures,” Communications of
the ACM, April 2009.

[15] S. Williams, “Auto-tuning performance on multicore com-
puters,” Ph.D. dissertation, EECS Department, University of
California, Berkeley, December 2008.

[16] J. D. McCalpin, “STREAM: Sustainable Memory
Bandwidth in High Performance Computers,”
https://www.cs.virginia.edu/stream/.

[17] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayap-
pan, “A practical automatic polyhedral program optimization
system,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Jun. 2008.

[18] R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse,
C. Reddy, S. Verdoolaege, A. Betts, A. F. Donaldson,
J. Ketema, J. Absar, S. v. Haastregt, A. Kravets, A. Lokhmo-
tov, R. David, and E. Hajiyev, “Pencil: A platform-neutral
compute intermediate language for accelerator programming,”
in 2015 International Conference on Parallel Architecture and
Compilation (PACT), Oct 2015, pp. 138–149.

[19] C. Chen, J. Chame, and M. Hall, “CHiLL: A framework
for composing high-level loop transformations,” University
of Utah, Tech. Rep., 2008.

[20] P. Basu, A. Venkat, M. Hall, S. Williams, B. V. Straalen,
and L. Oliker, “Compiler generation and autotuning of
communication-avoiding operators for geometric multigrid,”
in 20th Annual International Conference on High Perfor-
mance Computing, Dec 2013, pp. 452–461.

[21] M. Christen, O. Schenk, and H. Burkhart, “PATUS: A
code generation and autotuning framework for parallel
iterative stencil computations on modern microarchitectures,”
in Proceedings of the 2011 IEEE International Parallel
& Distributed Processing Symposium, ser. IPDPS ’11.
Washington, DC, USA: IEEE Computer Society, 2011,
pp. 676–687. [Online]. Available: http://dx.doi.org/10.1109/
IPDPS.2011.70

[22] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk,
and C. E. Leiserson, “The pochoir stencil compiler,” in
Proceedings of the twenty-third annual ACM symposium on
Parallelism in algorithms and architectures. ACM, 2011,
pp. 117–128.

[23] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-
performance code generation for stencil computations on gpu
architectures,” in Proceedings of the 26th ACM International
Conference on Supercomputing, ser. ICS ’12. New York,
NY, USA: ACM, 2012, pp. 311–320. [Online]. Available:
http://doi.acm.org/10.1145/2304576.2304619

[24] S. Kamil, D. Coetzee, and A. Fox, “Bringing parallel per-
formance to python with domain-specific selective embedded
just-in-time specialization,” in 10th Python in Science Con-
ference (SciPy 2011), Austin, TX, July 2011.

[25] “Rose compiler infrastructure,” http://rosecompiler.org.

