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Abstract

PHYLOGENETICS IN THE PANDEMIC ERA

Jakob D. McBroome

The COVID-19 pandemic of 2020 was one of the first major global public

health crises in the post-genomic era, inspiring truly unprecedented levels of viral

genome sequencing. In the realm of phylogenetics, or the reconstruction of ancestral

relationships between extant sequences, essentially no software existed capable of

handling the full dataset in a timely and effective manner. Phylogenetics is critical for

the identification and tracking of major variants, particularly the famous Variants of

Concern (VOC), leading to a desperate need for scalable tools. I, along with several

collaborators, developed an efficient toolkit for the construction, manipulation, and

analysis of massive phylogenetic trees. Our core data structure, the mutation

annotated tree (MAT), is capable of storing millions of SARS-CoV-2 genomes in less

than a gigabyte of data. My key contribution was the development of matUtils, a C++

library and command line toolkit to manipulate these highly compact data files. I

additionally developed BTE, a highly efficient API making our phylogenetics

software available in a Python environment. I subsequently developed analytical

approaches taking advantage of these new tools with the availability and massive

scale of the SARS-CoV-2 data. Among these is scalable phylogeographic inference,

through the daily-updated website Cluster-Tracker. Cluster-Tracker uses a simple

heuristic I developed to efficiently identify and present local transmission clusters for

ix



public health track-and-trace efforts. I also designed an approach to the identification

of novel SARS-CoV-2 strains and integrated it with the popular Pango lineage

system. Altogether, this dissertation presents a body of work contributing

substantially to effective global public health response to the SARS-CoV-2 pandemic.
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Introduction

The COVID-19 pandemic was, in many ways, the first major public health

crisis of the post-genomic era. Tens of millions of SARS-CoV-2 genomes were

sequenced between 2020 and 2023 from all across the world, representing a more

complete picture of its genetic diversity than had ever been seen for any other

pathogen. While the scale of the data created great opportunities for analysis, it also

stressed existing toolkits and software beyond the breaking point. Tools developed for

academic, intensive analysis of a relative handful of samples were unable to scale to

the incredible surge of sequence data. Fixing the so-called “bioinformatics

bottleneck” was one of the greatest challenges presented by the SARS-CoV-2

pandemic, and it is to this challenge that this dissertation is dedicated.

When the pandemic began, I largely abandoned my original research plan to

instead address this unprecedented crisis. Here I present a set of software tools and

analytical approaches I developed to address the massive scale of SARS-CoV-2

sequencing data. This work underlies much of SARS-CoV-2’s global track-and-trace

infrastructure, including the popular Pango lineage system, and BigTree, a dashboard

used by the California Department of Public Health. The impact of this work on the

global response to SARS-CoV-2 cannot be overstated.

In the first chapter, I review the groundwork innovation that supports the rest

of the work- the mutation annotated tree (MAT) data structure. The MAT represents

an extremely efficient representation of genome sequence data, capable of storing

millions of viral genomes in less than a gigabyte of data. While I did not design the
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MAT or the tool which constructs them (UShER), I wrote software for the

conversion, manipulation, and analysis of these data structures (matUtils). The MAT,

as a relatively new innovation, is not commonly supported by other analysis software.

The development of an efficient toolkit for manipulating, extracting, and converting

MATs to other formats was critical to drive the adoption of the MAT as the gold

standard for SARS-CoV-2 genome data sharing. matUtils provides command line

access for the use of this file type, enabling a wide variety of other tools and analyses,

including accurate Pango lineage assignments. I additionally developed BTE, a

Cython-based API which exposed our efficient libraries for MAT analysis to Python.

BTE allows for sophisticated analysis of global SARS-CoV-2 genome datasets in

Python and serves as a critical tool for prototyping, development, and research with

SARS-CoV-2 data. This toolkit for working with MATs is critical to both the

following chapters and to the research and analysis of many other groups globally.

After creating the basic toolkit, I developed scalable analytical methods for

the MAT datasets. In my second chapter, I present a heuristic method for

phylogeographic analysis. Phylogeography, or the analysis of a phylogeny with

respect to a geography, has been generally done with complex modeling software

such as BEAST. These methods, which are designed to extrapolate highly informed

models from relatively little data, require so much time and compute power when

applied to large datasets that their use is simply not feasible for most public health

groups. Public health groups needed a fast approximate method to continuously

update them as to local transmission dynamics and inform any immediate public

2



health actions. My approach is a heuristic, designed to scale linearly with the size of

the phylogeny, that identifies clusters of samples representing a regionally circulating

strain for any number of regions. It is capable of identifying thousands of distinct

infection clusters from millions of samples across dozens of regions in less than two

hours, making it capable of producing nation-wide reports on the latest data on a daily

basis. I therefore created a website to do exactly this, called ClusterTracker.

ClusterTracker is a simple one-page site that displays a table of clusters identified

across each of the fifty United States and an accompanying map colored by interstate

transmission dynamics, updated daily. My method and website code was adopted by

the California Department of Public Health (CDPH), who constructed a county-level

version of the site that produces daily reports of transmission dynamics within

California. This is just one way our MAT structure and surrounding code supports the

analysis of massive genomic datasets for public health action.

In the third chapter, I turn my attention to the identification and tracking of

SARS-CoV-2 lineages. The Pango nomenclature system underlies global

understanding of SARS-CoV-2’s evolution. Pango lineages, such as B.1.1.7, were

commonly reported in the media and were generally the first names applied to

emerging Variants of Concern (VOC) before they were formally named. UShER and

the MAT format were quickly adopted by the Pango group as a stable alternative to

their random forest approach for the assigning of samples to existing Pango labels.

The actual designation process of Pango lineages remained unfortunately ad hoc,

however. New Pango lineages were largely identified through crowdsourced
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proposals, as individual researchers and epidemiologists visualized the data, picked

out strains they thought were potentially worth naming, and made arguments in

Github issue threads. This process is time-consuming, dependent on individual bias,

and not sustainable as researchers and experts move on to the next stages in their

careers. I sought to automate Pango lineage designation, at least in part, by

automatically identifying lineage candidates for review from the latest data. My

approach is based in information theory, attempting to create lineage labels that

represent as much genetic information as possible. I included many additional options

and weighting schema to control the lineage designation system. For example, the

user can strongly emphasize the representation of mutations known to be associated

with increased immune evasion, or of samples from underrepresented parts of the

world. In collaboration with the Pango team, I integrated my designation pipeline into

their designation infrastructure and started producing automated lineage designations

for review. This step streamlined SARS-CoV-2 track and trace at one of the most

fundamental levels, preparing our infrastructure for a future of lower funding and less

researcher hours invested. I additionally generalized my core method for lineage

designation, making it an applicable system for any research group dealing with a

novel pathogen, or for future pathogens with a profusion of sequencing data to sort

through.

This dissertation represents a substantial body of work contributing to the

global response to SARS-CoV-2. I developed scalable tools and methods to open the

bioinformatics bottleneck, leveraging the massive global sequencing effort to inform

4



public health action. Over the course of my dissertation I presented to local public

health offices, collaborated with a variety of research groups and developers, and was

part of a major effort to understand and interpret the ongoing evolution of

SARS-CoV-2. My work will serve evolutionary analysis and tracking for

SARS-CoV-2, and for other pathogens, for years to come.
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Chapter 1

A daily-updated database and tools for

comprehensive SARS-CoV-2 mutation-annotated

trees

[This chapter has been adapted from publication, “A daily-updated database and tools

for comprehensive SARS-CoV-2 mutation-annotated trees” (McBroome et al 2021,

Molecular Biology and Evolution]

1.1: Background

The COVID-19 pandemic has inspired unprecedented levels of genome

sequencing for a single pathogen (Hodcroft et al. 2021). Over a million SARS-CoV-2

genomes have been sequenced worldwide so far, and tens of thousands of new

genomes are getting uploaded daily (Maxmen 2021). This data has enabled scientists

to closely track the evolution and transmission dynamics of the virus at global and

local scales (Deng et al. 2020; Chaillon and Smith 2021; da Silva Filipe et al. 2021).

However, the scale of this data is posing serious computational challenges for

comprehensive phylogenetic analyses (Hodcroft et al. 2021). Platforms like

Nextstrain (Hadfield et al. 2018) have been invaluable in studying viral transmission

networks and genomic surveillance efforts, but they only provide subsampled
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SARS-CoV-2 trees consisting of a tiny fraction of available data, omitting

phylogenetic relationships with most available sequences. A single, comprehensive

SARS-CoV-2 reference tree of all available data could not only facilitate detailed and

unambiguous phylogenetic analyses at global, country and local levels, but may also

help promote consistency of results across different research groups (Turakhia et al.

2020).

The massive volume of SARS-CoV-2 data also poses numerous data sharing

challenges with existing file formats, such as Fasta or Variant Call Format (VCF),

which are bulky and necessitate network speeds and computational capabilities that

are beyond the reach of many research and scientific groups.

1.2: New Approaches

In this work, we simultaneously address the issue of maintaining a

comprehensive SARS-CoV-2 reference tree and its associated data processing,

sharing and analysis challenges. Specifically, we are maintaining and openly sharing

a daily-updated database of mutation-annotated trees (MATs) containing global

SARS-CoV-2 sequences from public databases, without any downsampling (other

than for quality control, see 1.8), including annotations for Nextstrain clades

(Hadfield et al. 2018) and Pango lineages (Rambaut et al. 2020) (Figure A1.1). The

MAT is an extremely efficient data format proposed recently (Turakhia et al. 2021)

which uses a form of phylogenetic compression (Ané and Sanderson 2005) to

facilitate sharing of extremely large genome sequence datasets. An uncompressed

7



MAT of 834,521 SARS-CoV-2 public sequences requires only 65 MB to store and

encodes more information than in a 43 GB VCF containing single-nucleotide

variation of all sequences (the MAT format does not handle insertions and deletions

(Turakhia et al. 2021)) and a 38 MB Newick file containing the phylogenetic tree

topology.

To accompany this database, we present matUtils – a toolkit for rapidly

querying, interpreting and manipulating the MATs included in our database or

constructed with UShER (Turakhia et al. 2021). Using matUtils, common operations

in genomic surveillance and contact tracing efforts, including annotating a MAT with

new clades, extracting specific subtrees, or converting the MAT to standard Newick

or VCF format, can be performed in a matter of seconds to minutes even on a laptop.

We also provide a web interface for matUtils through the UCSC SARS-CoV-2

Genome Browser (Fernandes et al. 2020). Together, our SARS-CoV-2 database and

matUtils toolkit can simultaneously democratize and accelerate pandemic-related

research.

1.3: A daily-updated mutation-annotated tree database of global SARS-CoV-2

sequences

To aid the scientific community studying the mutational and transmission

dynamics of the SARS-CoV-2 virus and its different variants, we are maintaining a

daily-updated database of SARS-CoV-2 mutation-annotated trees (MATs) composed

of public data. Starting with the final Newick tree release dated November 13, 2020,

8



of Rob Lanfear's sarscov2phylo (https://github.com/roblanf/sarscov2phylo) that is

re-rooted to Wuhan/Hu-1 (GenBank MN908947.3, RefSeq NC_045512.2), we have

set up an automated pipeline to aggregate public sequences available through

GenBank (Clark et al. 2007), COG-UK (Nicholls et al. 2020), and the China National

Center for Bioinformation on a daily basis and incorporate them into our MAT using

UShER (see Section 1.8). GISAID data (Shu and McCauley 2017) is not included in

our MATs because its usage terms do not allow redistribution. Similar to GISAID, our

database is subject to the sampling bias resulting from the vast disparity in the

sequencing efforts of various countries (Cyranoski 2021, Figure A1.1B). We also use

the matUtils annotate command (Appendix A1.1) to add Nextstrain clade and Pango

lineage annotations to individual branches of our MAT. As of June 9, 2021, our MAT

consists of 834,521 sequences, includes 14 Nextstrain clade and 895 Pango lineage

annotations for all samples, and is only 65 MB, or 14 MB when gzip-compressed

(Figure A1.1, Table A1.1). To our knowledge, this is the most comprehensive

representation of the SARS-CoV-2 evolutionary history using publicly available

sequences as of June 9, 2021. It can be freely used to study evolutionary and

transmission dynamics of the virus at global, country and local levels, and can be

visualized using the Cov2Tree tool (https://cov2tree.org/) developed by Theo

Sanderson.

9



1.4: matUtils provides a wide range of functions to analyze and manipulate

mutation-annotated trees

We have created a high-performance command line utility called matUtils for

performing a wide range of operations on MATs for rapid interpretation and analysis

in genomic surveillance and contact tracing efforts. matUtils is distributed with the

UShER package (Turakhia et al. 2021) and uses the same mutation-annotated tree

(MAT) format as UShER. matUtils is organized into five different subcommands:

annotate, summary, extract, uncertainty and introduce (Figure 1.1), described briefly

below. We provide detailed instructions for the usage of each module on our wiki

(https://usher-wiki.readthedocs.io/en/latest/matUtils.html).

10
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Figure 1.1: matUtils functions enable fast, user-friendly analysis of
mutation-annotated trees (MATs). (A): An example MAT with tree topology
corresponding to the MAT on the left and the mutation annotations on each node
shown on the right. (B): matUtils annotate allows the user to annotate internal nodes
with clade names. In this example, nodes 1 and 3 are annotated with clade names 19A
and 19B, respectively. This MAT serves as an input to commands shown in panels
C-F. (C): matUtils summary outputs sample-, clade-, and tree-level statistics for the
input MAT. (D): matUtils extract allows users to convert a MAT to Newick format
(left), subset the MAT for a specified clade (center) or mutation (right), among other
functions. (E): matUtils uncertainty outputs parsimony scores, equally parsimonious
placements and neighborhood sizes for each sample of an input MAT. Sample B has
two equally parsimonious placements, as it could also be placed as a descendant of
node 5 with terminal mutations C2G, A4U, and G5C. (F): matUtils introduce can
take a list of samples of interest as input and output the largest monophyletic clade
and regional association index associated with the input population , along with their
predicted introduction nodes and paths. In all panels, user input commands are shown
in large fonts (e.g. "matUtils annotate") and output text from these commands are
shown in monospaced fonts.

11



matUtils Annotate

This function annotates clades in a MAT. One of the central uses of

phylogenetics during the pandemic is to trace the emergence and spread of new viral

lineages. Nextstrain (Hadfield et al. 2018), Pango (Rambaut et al. 2020) and GISAID

(Shu and McCauley 2017) provide different nomenclatures for SARS-CoV-2 variants

that have been used widely in genomic surveillance. Our MAT format provides the

ability to annotate internal branches of the tree with an array of clade names, one for

each clade nomenclature. matUtils annotate provides two methods for annotation: (i)

directly providing the mappings of each clade name to its corresponding node or (ii)

providing a set of representative sample names for each clade from which the clade

roots can be automatically inferred (see Section 1.8). Both methods ensure that the

clades remain monophyletic, but we use the second approach to label Nextstrain

clades and Pango lineages in our SARS-CoV-2 MAT database since it can be

automated using available data (see Section 1.8). matUtils annotate has high

congruence with Nextstrain clades and Pango lineage annotations (Table A1.1).

Once clades are annotated on a MAT, the UShER placement tool (Turakhia et

al. 2021) can assign each newly placed sequence to its corresponding Pango lineage.

This is being used as a feature in Pangolin 3.0

(https://github.com/cov-lineages/pangolin/releases/tag/v3.0) to perform clade

assignments in a fully phylogenetic framework.

12



matUtils Summary

This function provides a brief summary of the available data in the input MAT

file and is meant to serve as a typical first step in any MAT-based analysis. It provides

a count of the total number of samples in the MAT, the size of each annotated clade,

the total parsimony score (i.e. the sum of mutation events on all branches of the

MAT), the number of distinct mutations, phylogenetically-informed translation of

mutations, and other similar statistics.

matUtils Extract

Many SARS-CoV-2 phylodynamic studies involve restricting the analysis to a

smaller tree of interest. While it can be computationally challenging to identify

samples most closely related to a given sample or cluster from over a million other

sequences, it is straightforward to retrieve subtrees from a comprehensive phylogeny.

matUtils extract provides an efficient and robust suite of options for subtree selection

from a MAT. A user can use matUtils extract to subsample a MAT to find samples

that contain a mutation of interest, are members of a specific clade, have a name

matching a specific regular expression pattern (such as the expression

“(IND*|India*)” to select samples from India), among other criteria (see Section 1.8).

matUtils extract also includes options to identify from a MAT sequences which have

descended from long internal branches in the tree, which can sometimes arise from

recombination (Jackson et al. 2021; Turkahia et al. 2021), or those with an unusually

high parsimony score, which are indicative of low-quality sequences (Mai and

13



Mirarab 2018). Notably, matUtils extract can produce an output Auspice v2 JSON

that is compatible with the Auspice tree visualization tool (Hadfield et al. 2018)

(Figure 1.2, see 1.8). matUtils extract can also convert a MAT into other file formats,

such as a Newick for its corresponding phylogenetic tree and a VCF for its

corresponding genome variation data. matUtils extract also provides an option to

resolve all polytomies in a MAT arbitrarily, similar to the muti2di functionality in ape

(Paradis and Schliep 2019), for compatibility with phylogenetic tools that do not

allow polytomies.
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Figure 1.2: matUtils can generate informative visuals with Auspice. The above
trees represent a clade of related B.1.1.7 samples from the USA which secondarily
acquired the potentially important spike protein mutation E484K, which is caused by
the nucleotide mutation G23012A. These trees were obtained by running the
command “matUtils extract -i public-2021-06-09.all.masked.nextclade.pangolin.pb.gz
-c B.1.1.7 -m G23012A -H "(USA.*)" -N 500 -j clade_trees -d clade_out”, which
selects all samples from clade B.1.1.7 which acquired this mutation and are from the
USA, then identifies the minimum set of five hundred sample subtrees which contain
all of these samples, creating an Auspice v2 format JSON for each subtree (Hadfield
et al 2018). This results in thirty-five distinct subtree JSON files of five hundred
samples each in the output directory. Panel A represents the entirety of subtree six as
viewed with Auspice (Hadfield et al 2018), including blue highlights and a branch
label where our mutation of interest occurred. Panel B is zoomed in on this subtree
and its sister clade; at this scale we can read individual sample names and observe
that this specific strain has been actively spreading in the United States during April
2021.

15



matUtils Uncertainty

A fundamental concern in SARS-CoV-2 phylogenetics is topological

uncertainty (Hodcroft et al. 2021), which may result from contaminated sequences or

sample mixtures (Turakhia et al. 2021). The impact of this concern depends on the

biological context of the analysis. matUtils uncertainty provides a topological

uncertainty statistic which computes the number of equally parsimonious placements

that exist for each specified sample in the input MAT. Importantly, matUtils also

allows the user to calculate equally parsimonious positions for already placed

samples. This is accomplished by pruning the sample from the tree and placing the

sample back to the tree using the placement module of UShER (Turakhia et al. 2021)

(see Section 1.8). matUtils uncertainty additionally records the number of mutations

separating the two most distant equally parsimonious placements, reflecting the

distribution of placements across the tree (see Section 1.8). The output file is

compatible as “drag-and-drop” metadata with the Auspice platform, which allows for

a rapid visualization of potentially problematic placements (Figure 1.3).

matUtils Introduce

Public health officials are often concerned about the number of new

introductions of the virus genome in a given country or local area. To aid this

analysis, matUtils introduce can calculate the association index (Wang et al. 2001) or

the maximum monophyletic clade size statistic (Salemi et al. 2005; Parker et al. 2008)

for arbitrary sets of samples, along with simple heuristics for approximating points of

introduction into a region (see Section 1.8).
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Figure 1.3: matUtils uncertainty statistics reveal low-quality sample placements.
This Auspice view of an example subtree is annotated with both equally parsimonious
placements (in color) and neighborhood size (branch label integers). 18 of our 23
samples in the subtree have a single placement and a neighborhood size of 0,
indicating high placement certainty for those samples. Of the five samples with
multiple equally parsimonious placements, one sample has 5 equally parsimonious
placements with an NSS value of 19, indicating a high level of placement uncertainty
for this sample spanning a relatively large neighborhood.
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1.5: matUtils enables rapid analysis of a comprehensive SARS-CoV-2 tree

The matUtils toolkit is designed to scale efficiently to SARS-CoV-2

phylogenies containing millions of samples. Using matUtils, common

pandemic-relevant operations described in the earlier section can be performed in the

order of seconds to minutes with the current scale of SARS-CoV-2 data (Tables

A1.1.2-A1.1.6). For example, it takes only 5 seconds to summarize the information

contained in our June 9, 2021 SARS-CoV-2 MAT of 834,521 samples and only 15

seconds to extract the mutation paths from the root to every sample in the MAT

(Table A1.1.2). Since matUtils is primarily designed to work with the newly-proposed

and information-rich MAT format, it does not have direct counterparts in other

bioinformatic software packages currently, but its efficiency is similar or better than

state-of-the-art tools that offer comparable functionality (Tables A1.1.2-A1.1.6). For

example, matUtils is able to resolve polytomies in a 834,521 sample tree in 9

seconds, a task which takes over 37 minutes using ape (Paradis and Schliep 2019)

(Table A1.1.3). matUtils is also very memory-efficient, requiring less than 1.4 GB of

main memory for most tasks, making it possible to run even on laptop devices.

Certain functions of matUtils (such as extracting subtrees of provided sample

names or identifiers) have also been ported to UCSC SARS-CoV-2 Genome Browser

(Fernandes et al. 2020) and are available from

https://genome.ucsc.edu/cgi-bin/hgPhyloPlace. Our database and utility fill a critical

need for open, public, rapid analysis of the global SARS-CoV-2 phylogeny by health

departments and research groups across the world, with highly-efficient file formats
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that do not require high speed internet connectivity or large storage devices, and tools

capable of rapidly performing large-scale analyses on laptops.

1.6: Maintaining a daily-updated mutation-annotated tree database of global

SARS-CoV-2 sequences

We are maintaining a daily-updated mutation-annotated tree (MAT) database

of global SARS-CoV-2 sequences at

http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/. Our

database is organized into sub-directories sorted by year, month and date. To update

the MATs daily, we have set up a CRON job on a server at UCSC which downloads

SARS-CoV-2 sequences daily from GenBank (Clark et al. 2007) and COG-UK

(Nicholls et al. 2020) (see

https://github.com/ucscGenomeBrowser/kent/blob/master/src/hg/utils/otto/sarscov2ph

ylo/updatePublic.sh which calls other scripts in the same directory). We also include

253 sequences downloaded from the China National Center for Bioinformation

(https://bigd.big.ac.cn/ncov/release_genome) in October 2020 that are not associated

with GenBank IDs.

New sequences are added to the previous day’s MAT using the UShER

placement tool (Turakhia et al. 2021) with options to place the samples in the order of

the fewest ambiguous bases and exclude sequences with 5 or more equally

parsimonious placements. Previously excluded sequences are reconsidered for

placement during each build. We also use matUtils extract to prune samples with 30
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or more private mutations and those internal branches longer than 30 mutations, as

these are highly indicative of error-containing sequences (Mai and Mirarab 2018).

The trees are rooted to Wuhan/Hu-1 (GenBank MN908947.3, RefSeq NC_045512.2),

and nodes with no associated mutations are collapsed (Turakhia et al. 2021). Our first

MAT was created by starting with the last Newick tree release (dated November 13,

2020) of Rob Lanfear's sarscov2phylo (Lanfear and Mansfield 2020) containing

82,358 public sequences, adding the later additional public sequences using UShER.

Each MAT is then annotated with Nextstrain clade and Pango lineage annotations

using matUtils annotate -c with a file containing representative sequences for each

clade/lineage. For Nextstrain clades, Nextclade assignments

(https://github.com/nextstrain/nextclade) for all sequences are used. For Pango

lineages, designated lineage representative sequences from

https://github.com/cov-lineages/pango-designation/ are mapped to the corresponding

public sequence IDs where possible.

In addition to MATs, we provide in each sub-directory: (i) a Variant Call

Format (VCF) file containing the genotypes of public sequences, generated from the

corresponding MAT with matUtils extract such that missing or ambiguous bases have

been imputed by UShER using maximum parsimony (Turakhia et al. 2021), (ii) a

Newick file also generated from the corresponding MAT using matUtils extract (iii) a

tab-separated file containing information about each public sequence e.g. collection

date, location, Nextstrain clade and Pango lineage, (iv) a tab-separated file with

Nextstrain clades assigned to sequences by Nextclade
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(https://github.com/nextstrain/nextclade) and (v) a tab-separated file with Pango

lineages assigned to sequences by pangolin

(https://github.com/cov-lineages/pangolin).

Our script to update the MAT daily is available at

https://github.com/ucscGenomeBrowser/kent/blob/master/src/hg/utils/otto/sarscov2ph

ylo/updateCombinedTree.sh.

1.7: matUtils: Design Overview

matUtils is implemented using the C++ programming language and is

developed and maintained within the phylogenetic placement package of UShER

(Turakhia et al. 2021), since matUtils shares the core mutation-annotated tree (MAT)

data structure with UShER, which helps us ensure cross-compatibility of both tools.

matUtils complements UShER through its ability to analyze and manipulate the MAT

output but can be used as a standalone phylogenetics tool independent of UShER.

Installing matUtils requires installing the UShER package that can be done via (i) a

Docker container (https://hub.docker.com/repository/docker/yatisht/usher), (ii) the

Conda package manager using the bioconda (Grüning et al. 2018) channel

(http://bioconda.github.io/recipes/usher/README.html) or (iii) the installation

scripts that we provide on our GitHub repository (https://github.com/yatisht/usher) for

some recent Linux and MacOS releases. Detailed installation and usage instructions

are available on our wiki: https://usher-wiki.readthedocs.io/en/latest/matUtils.html.
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Several matUtils functions have multi-threaded parallel implementations through

Intel’s Thread Building Blocks library (https://github.com/oneapi-src/oneTBB).

1.8: matUtils: Implementation details

matUtils annotate

matUtils annotate is designed to annotate clades on the internal branches of

the MAT. Our MAT format (specified in

https://github.com/yatisht/usher/blob/master/parsimony.proto) provides an ability to

annotate internal branches with an array of clade names, one for each clade

nomenclature. Each run of matUtils annotate extends the clade name array size in a

MAT by one to accommodate a new nomenclature. Only the node corresponding to a

clade root is labeled with its clade name, as descendants of that node can be

automatically inferred to belong to that clade. Clades can be nested, so that each

sequence can be assigned to a clade corresponding to the lowest-level clade root to

which it is a descendant. matUtils annotate provides two different ways to annotate

clades in a MAT. Both ways, by design, ensure that all clades remain monophyletic.

In the first, a user can directly provide the internal node identifiers corresponding to

the root of each clade. In the second, a user can provide a list of representative

sequences for each clade, such as training data for Pango lineages

(https://github.com/cov-lineages/pango-designation), from which the clade root can

be inferred in the tree. Not all sequences in the tree need to be designated by a clade.

Since the training data is imperfect, and the representative sequences for lineages are
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sometimes non-monophyletic in our tree, we have found the simple approach of using

the most recent common ancestor (MRCA) does not yield accurate results. The

matUtils annotate inference method works instead by first building a “consensus”

sequence (where, by default, the consensus sequence requires an allele to be present

in at least 80% of representative sequences, with lower frequency alleles marked as

ambiguous) for each clade and finding its phylogenetic placement using UShER’s

placement module to obtain the clade root. When multiple equally parsimonious

placements are available for the clade root, the algorithm uses a heuristic formula to

compute the “best fit” for the training data, which rewards the placement containing a

higher proportion of samples designated by that clade in the training data and

penalizes descendants designated by some other clade in the training data. When the

same root is found for multiple clades, the clade with fewest equally parsimonious

placements, followed by the number of representative sequences in the training data,

is prioritized.

matUtils Extract

The extract subcommand acts as a simple prebuilt pipeline with three distinct

stages. The first of these, sample selection, collects the set of samples which fulfill

each of the conditions indicated by input parameters, then gets the intersection of

these sets to identify samples which fulfill all conditions specified on the command.

Multiple conditions can be simultaneously specified in a single command for

selecting samples, such as clade membership, maximum parsimony score, presence of
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a particular mutation, and whether the sample name matches a specific regular

expression pattern, among others. The second stage edits the input tree object to

generate the indicated subtree, either by pruning excluded samples or by generating a

subtree in a parallelized fashion, depending on the size of the chosen sample input.

The third stage generates each of the requested output files representing the final tree.

These files include Newick for pure tree information, parsimony-resolved VCF for

variation information, and Auspice v2 format JSON for both (Hadfield et al. 2018).

VCF production is parallelized for efficiency with large sample selections. A sample

metadata table in CSV or TSV format can be incorporated into the JSON output. The

full list of options can be found at our wiki:

https://usher-wiki.readthedocs.io/en/latest/matUtils.html.

matUtils Uncertainty

matUtils uncertainty can calculate two different metrics for characterizing the

phylogenetic certainty of a sample placement. The first metric is “equally

parsimonious placements” (EPPs), which is the number of places on the tree a sample

could be placed without affecting the parsimony score. An EPP score of 1 indicates a

high placement certainty of a sample in its local neighborhood in that there is a single

most parsimonious placement location for that sample on the entire tree, and a higher

EPP score suggests the sample placement is less certain. This metric is calculated by

computing the number of most parsimonious placements after remapping the input

sample(s) against the same tree (disallowing it from mapping to itself) with UShER’s
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optimized placement module. About 85% of samples in our SARS-CoV-2 MAT

database have an EPP score of 1. The second metric is “neighborhood size score”

(NSS), which is the longest distance (in number of edges) between any two equally

parsimonious placement locations for a given sample. This metric is complementary

to EPPs – when multiple EPPs are possible for a sample, NSS indicates whether the

placement uncertainty is restricted to a small neighborhood (small NSS value) or

spans a large portion of the tree (large NSS value).

matUtils Introduce

matUtils introduce is aimed to help epidemiologists and public health officials

estimate the number of new introductions of the virus in a given area or country. It

includes a command which calculates maximum monophyletic clade size and

association index statistics for phylogeographic trait association for user-provided

input regions. Maximum monophyletic clade size (Parker et al. 2008) is the largest

monophyletic clade of samples which are in the region – it is larger for regions which

have relatively fewer introductions per sample and correlates with overall sample

size. Association index (Wang et al. 2001) is a more complex metric which performs

a weighted summation across the tree accounting for the number of child nodes and

the frequency of the most common trait, such as membership in a particular

geographical region of interest. Association index is smaller for stronger

phylogeographic association and increases with the relative number of introductions

into a region. For association index, matUtils introduce performs a series of
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permutations to establish an expected range of values for the random distribution of

samples across the tree. matUtils introduce also implements the regional weight

heuristic described in chapter 2 of this work.

1.9: Performance benchmarking of matUtils and other phylogenetics software

All performance benchmarking experiments were carried out on a Google

Cloud Platform (GCP) instance n2d-standard-16 with 16 vCPUs (Intel Xeon CPU

E7-8870 v.4, 2.10 GHz) with 64 GB of memory using our public SARS-CoV-2 MAT

dated June 9, 2021. matUtils does not have direct counterparts for its ability to work

with the mutation-annotated tree (MAT) format, but we compared the performance of

matUtils with state-of-the-art tools that offer some comparable functionality on

Newick or VCF formats. Specifically, we compared the most recent version of

matUtils (version 0.3.1) to newick_utils version 1.6 (Junier and Zdobnov 2010),

tree_doctor (from version 1.5 of the phast package; (Hubisz et al. 2011), ape version

5.5 (Paradis and Schliep 2019), and bcftools version 1.7 (Danecek et al. 2011). The

exact commands used for each comparison can be found in Tables A.1.1.2-A.1.1.6,

and the input data used for each comparison can be found at

https://github.com/bpt26/matutils_benchmarking/ (DOI: 10.5281/zenodo.7983499).

Some additional benchmarking tables can be found at the publishing journal in the

supplementary materials (McBroome et al 2021,

https://academic.oup.com/mbe/article/38/12/5819/6361626#322927285).
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1.10: BTE: a Python module for pandemic-scale phylogenetic trees

[This section has been adapted from publication, “BTE: a Python module for

pandemic-scale

mutation-annotated phylogenetic trees” (McBroome et al 2022, JOSS)]

Big Tree Explorer (BTE) is a Python extension of the highly optimized

Mutation Annotated Tree (MAT) C++ library, which underlies the popular and highly

effective phylogenetics tool UShER. BTE is written in Cython and provides an

efficient and intuitive interface for traversing and manipulating mutation-annotated

trees in a Python environment. It can load a mutation-annotated tree structure directly

from a MAT protocol buffer file, provided by UCSC, or from a Auspice-format

JSON. Alternatively, it can automatically infer mutation annotations and create a

MAT from a Variant Call Format (VCF) file and a Newick format tree file. BTE

provides all forms of standard traversal and methods for tree manipulation, including

node and mutation creation, relocation, and deletion. BTE also provides native

support for node-level clade and lineage annotations, such as those included in UCSC

SARS-CoV-2 MAT protocol buffers. BTE's Cython code also includes functionality

not present in the original MAT library, such as nucleotide diversity estimation.

Altogether, BTE provides much of the same basic tree-level functionality as

competing packages, while also supporting mutation and lineage annotations,

allowing any user to take advantage of the powerful MAT data structure.
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While there are multiple Python packages for phylogenetics available

(Huerta-Cepas et al 2016; Talevich et al 2012), none are designed with

mutation-annotated trees in mind and are less optimized for scalability. When

attempting to use these packages with mutation-annotated trees, cumbersome file

conversions to Newick and separate storage of mutations and tree structures adds

substantial overhead to any analysis. BTE is designed explicitly for working with

extremely large mutation-annotated parsimony phylogenetic trees. It is both more

computationally efficient than competing packages and stores mutations and the tree

within a streamlined data structure. BTE makes MATs and pandemic-scale

phylogenies in general more accessible and useful to developers worldwide, helping

to widen the SARS-CoV-2 bioinformatics bottleneck.

1.11: Comparison with Gold-Standard Alternatives

We compared performance of BTE as compared to two other popular

packages for Python phylogenetics, ETE3 and Biopython.Phylo (Huerta-Cepas et al

2016; Talevich et al 2012). Benchmarking was performed by extracting random

subtrees of the specified size from one of UCSC’s global SARS-CoV-2 MATs,

converting the subtree to Newick format, and performing the specified operation with

each package. We both tracked total computation time and profiled memory use for

each tool. Generally, BTE loads and traverses a tree more quickly than competitors,

with a particular advantage at large tree sizes. It also has a substantially improved

implementation for identifying the ancestors associated with a given node, with
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multiple orders of magnitude improvement. In terms of memory use, it is generally

comparable to both ETE3 and Biopython.Phylo, with memory use ranging in the

dozens of Kb for most operations, with up to a few hundred Mb for loading and large

subtreeing operations. BTE can be found at (https://github.com/jmcbroome/BTE;

DOI: 10.5281/zenodo.7983513). All code for benchmarking is available at a

dedicated repository (https://github.com/jmcbroome/bte-benchmark;

10.5281/zenodo.7566955).
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Chapter 2

Identifying SARS-CoV-2 regional introductions

and transmission clusters in real time

[This chapter has been adapted from publication, “Identifying SARS-CoV-2 regional

introductions and transmission clusters in real time” (McBroome et al 2022, Virus

Evolution)]

2.1: Phylogeography

The massive scale of the SARS-CoV-2 sequencing effort has revealed deep

inadequacies in our current methodology for phylogenetic analysis. Tools designed to

work on small, sparse, static datasets have adapted poorly to the demands of a

pandemic where tens of thousands of new genome sequences are generated and

shared daily (Hodcroft et al 2021). Some have made progress by adopting generalized

statistical methods built for large data such as random forest regression (O’Toole et

al), while others have continued to improve on existing methods (Gill et al 2020,

Vöhringer et al 2021), but phylogenetic solutions capable of scaling to millions of

samples need to be developed. While our group, among others, has laid the

groundwork for pandemic-scale phylogenetics (Dellicour et al 2021, Maio et al 2021,

McBroome et al 2021, Schneider et al 2020, Shchur et al 2021, Turakhia et al 2021,
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Ye et al 2021) much remains to be done to translate evolutionary inferences to public

health understanding and action.

The unprecedented scale of the genomic sequencing effort requires novel

approaches to evolutionary, medical, and public health inference. Some groups have

developed phylogenetically informed statistics for identifying mutations associated

with increased transmissibility and other fitness-related parameters (Richard et al

2021, van Dorp et al 2020). In other cases, simple methods- such as the assaying of

groups of identical samples- have been successfully applied to identify superspreader

events and similar infection clusters (Bello et al 2022, Gómez-Carballa et al 2020).

Unfortunately, many analyses still lack scalable or phylogenetically informed

approaches.

The intersection of geography and phylogenetics, phylogeography, has often

relied on heavily downsampled and static trees or limiting their analysis to early

stages of the pandemic (Dellicour et al 2021, du Plessis et al 2021, Lemey et al 2020,

Lemey et al 2021, Lemieux et al 2021, Ragonnet-Cronin et al 2021, Rito et al 2020).

Some authors have analyzed several tens of thousands of samples with a divide and

conquer approach, subdividing the overall tree by lineage and combining separately

inferred results (McCrone et al 2021). Others have had similar success tracking the

introduction and spread of a distinct new lineage over the first weeks after its

emergence (Kraemer et al 2021). While useful for assessing transmissions between

countries and major introductions, downsampling limits our ability to assign specific

samples to regional infection clusters or identify clusters of potential interest. Even
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creative techniques taking advantage of phylogenetic tree structure to make analysis

more tractable will not always be applicable and are limited in their ability to scale to

millions of samples across dozens of regions. Additionally, much of these analyses

are not readily interpretable for an efficient public health response, lacking intuitive

visualization and data exploration tools. There is therefore a significant need for fast,

automated, scalable and interpretable phylogeographic approaches for an effective

public health response to emerging situations.

To address this need, we present here a phylogenetically-informed summary

heuristic (the “regional index”), implementation (matUtils introduce), and data

exploration and visualization tool (Cluster Tracker: https://clustertracker.gi.ucsc.edu/)

for identifying introduction events and associated clusters of descendants in a given

region. Our approach can be used to efficiently identify infection clusters and

evaluate transmission dynamics across dozens of regions and millions of samples.

Results obtained using this method are congruent with gold-standard Bayesian

analyses and are accurate when applied to simulated data. Our visualization platform

enables researchers and public health workers to explore new SARS-CoV-2

introductions across the USA, updated daily with all available global public data. This

work will empower real time research and public-health applications of genomic

epidemiology during the SARS-CoV-2 pandemic and beyond.
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2.2: Cluster Concept and Definitions

A cluster, in terms of our analytical approach, is a set of closely-related

samples from the same region and descended from a common ancestor with a

regional introduction event. Under our definition, the complete set of actively

circulating pathogens in a region will be composed of one or more genetically distinct

clusters, which resulted from unique introduction events. In the phylogenetic tree,

they appear as a set of leaves (samples) from a given geographic region that are

descended from a shared common ancestor. A cluster may be monophyletic or

paraphyletic, depending on whether some descendants of the cluster common

ancestor left the geographic region. We consider location, or region, as a categorical

state across the phylogenetic tree. A regional transmission event is where a child node

is from a different region than the parent node. These patterns reflect cases of infected

travelers moving between regions, followed by local transmission and eventual

sampling of a number of descendant infections.

2.3: A Heuristic for Identifying Introductions and Clusters

The core of our heuristic is the “regional index”, which is a weighted

summary of the composition of descendants of a node of a phylogenetic tree.

Intuitively, if all descendents of an internal node were found in region A, we would

assume that the ancestor represented by that internal node was circulating in region A.

Similarly, if we sampled a virus from region A which had exactly the inferred

genome for this internal node, we would assume the ancestor represented by this node

33



was in region A. The same logic would apply if no descendents were in region A.

Therefore, by computing a heuristic which ranges from 0 to 1 based on the genetic

distance to and composition of downstream descendents under a binary model of

region membership, we can effectively approximate our intuition that the viral

ancestor represented by that node was inside or outside a given region. It is defined as

𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑑𝑒𝑥 (𝐶) =  1

1+
𝐷𝑖
𝐿𝑖
𝐷𝑜
𝐿𝑜

where “Li” is the number of downstream leaves that are in a given region,

“Di” is the minimum total branch length to a leaf descendent in the focal region, and

“Lo” and “Do” are the same for out-of-region leaves (Figure 2.1). On a tree inferred

using maximum-parsimony, total branch length is equivalent to the distance in

mutations between the query node and the descendant leaf.

Figure 2.1: Example Index Calculation. This small example tree demonstrates a
computation of our index, using blue to indicate “out-of-region” and red to indicate
“in-region” leaves. The focal node at the base has an index value below 0.5,
suggesting that it is out-of-region by our heuristic. Our introduction point is therefore
along the long branch below the root, and the ancestor of the downstream in-region
sample cluster would have existed along that branch.
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We apply additional rules to handle cases where C is undefined or can’t be

computed. When a descendent leaf is genetically identical to the internal node and is

in-region, C is 1. Similarly, when a genetically identical leaf is out-of-region, we treat

C as 0. When such identical children exist both in and out of the region, we treat the

node as in-region, as some infection with this genome must have existed in that

region. We do not apply this index calculation to leaf nodes, which do not have

children, and assume simply that the leaf is either in or out of the region as a given.

This requires that each leaf included in the analysis be accompanied by accurate

geographic location metadata.

This heuristic has several useful behaviors. For example, a sample identical to

a specific internal node will always confer complete confidence about the location of

that node, as we have sampled one genome that is identical to the ancestor directly.

This can effectively identify nested clusters, where a new group of infections

resulting from a regional introduction in turn produce clusters in other regions. It also

accounts for the number of leaves downstream in our heuristic, on the assumption that

introductions of a strain from one region to another require the lineage to be locally

circulating in the origin region, but not necessarily lead to significant local

transmission in the target region. This reduces the overall number of introductions we

infer. If we account for the number of descendents, internal nodes will generally be

assigned to the dominant region if distances are similar, reducing the number of

consecutive reciprocal regional transmissions that might be inferred otherwise. Our

heuristic strikes a balance between the principles of descendent composition and
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genetic distance, allowing us to efficiently analyze a large phylogenetic tree with

minimal metadata.

Once indices for a given region have been calculated for each node, the

second step is to identify clusters of samples putatively associated with an

introduction. This is accomplished on a per-sample basis. The path from the sample to

root is traversed and the indices for each ancestor being in the focal region is noted.

Generally, the index declines from 1 to 0 along the ancestry path from leaf to root.

The introduction point is called where the index for an ancestor being in-region is

below 0.5, or the root, whichever is encountered first. 0.5 is our natural cutoff,

representing the index value in a scenario where the composition and distance of

downstream samples in and out of the region are equivalent, but can be adjusted by

the user to modify cluster calling behavior. Once each sample has an ancestor chosen

as the introduction node, they are grouped into clusters that share their ancestral

introduction node. Generally, a larger threshold value will lead to more, smaller

clusters, while a lower threshold value will lead to fewer, larger clusters.

As this heuristic is independent and specific to a region, it can be computed

for an arbitrary number of regions across a single tree in parallel. When multiple

regions are included, origins of putative clusters can be identified after introduction

points are found by examining index scores across all other regions for the origin

node and noting the region with the highest index. This metric can be calculated for

one region of any size in a single post-order traversal with dynamic programming
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(see Section 2.8), which makes it very fast to compute even on extremely large

phylogenies with expansive regions.

2.4: Evaluation of Our Heuristic Method

Our implementation is part of the matUtils online phylogenetics package

(McBroome et al 2021) and uses the efficient mutation annotated tree protocol buffer

format and associated library (Turakhia et al 2021). To test runtime efficiency

conditioned on a tree, we applied random subsampling and recorded time to compute

our heuristic for a single region. We found that it takes less than forty five seconds on

a single thread even for trees of more than two million samples (Table A2.1).

To validate our results, we performed simulations consistent with viral

evolutionary dynamics with inter-region dispersal events using the tools VGSim

(Shchur et al 2021) and phastSim (Maio et al 2021) (see Section 2.8). We found that

our heuristic with default parameters recovered the true geographic location of

internal nodes up to 99.8% of the time under realistic conditions for SARS-CoV-2

across an exactly correct bifurcating tree. We further attempted to model our ability to

correctly recover clusters on a simulated tree with collapsed branches and realistic

mutation rates for SARS-CoV-2. In comparing the clusters we recovered with the true

set, we obtained an adjusted Rand index (Rand 1971) of up to 0.999. This suggests

that our approach is generally quite accurate, though high migration rates or

extremely low mutation rates can be confounding, as these scenarios are associated

with minimal geographic and phylogenetic signal respectively (Table A2.2; see
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Section 2.8). More practically, this implies that our method will perform best when

within-region transmission is substantially more common than between-region

transmission (as in e.g., country-level or state-level analyses).

To compare our results to widely used but much slower (days to months)

analyses, we used our method to replicate a published phylogeographic analysis for

the SARS-CoV-2 pandemic. Alpert et al used Bayesian phylogeography (Lemey et al

2009) to identify 23 distinct introductions of B.1.1.7 into the United States as of

March 4th 2020. We obtained their subsampled tree and applied our heuristic using

country labels to define the relevant regions (see Section 2.8). With our method, we

exactly replicated their identified clusters (Adjusted Rand Index 1.0). Alpert et al

additionally predicted “sink” states, or the state to which each of the 23 introductions

initially transmitted. We find that for all 23 clusters, samples in the identified sink

state are closest or tied for closest in branch length to our inferred introduction point.

This suggests that our approach can produce results congruent with more complex

statistical models in a fraction of the time.

Another relevant method used in similar situations and that scales well to

larger phylogenies is parsimony reconstruction, where region membership is treated

as a character trait and inferred across the tree using the standard Fitch-Sankoff

algorithm (Sankoff et al 1975, Vöhringer et al 2021, Volz et al 2021). This is more

efficient than Bayesian approaches, but is heavily influenced by variation in sampling

and low mutation rates relative to sampling and transmission. We performed a simple

parsimony reconstruction based on the Fitch algorithm (Fitch 1977) similar to that of
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Volz et al on simulated data (Table A2.3). We found that while parsimony performs as

well or better than our heuristic on well resolved trees, when the average number of

mutations per node is less than one and polytomies are common (as in SARS-CoV-2)

our approach has greater accuracy. Our approach is more efficient than the Fitch

algorithm because it requires only a single traversal of the phylogeny to compute.

2.5: Global SARS-CoV-2 Transmission Dynamics and Infection Clusters

Using our method, we traced transmission clusters in 102 countries from

across the world (Figure 2.2A) using the global parsimony phylogenetic tree, built

from 5,563,847 available sequences on GISAID (Shu et al 2017), GenBank (Sayers et

al 2021), and COG-UK (Lancet Microbe 2020) on 11-28-2021 (see Section 2.8).

Cluster size is highly skewed (Figure 2.2C), with approximately 20% of distinct

regional clusters containing 89% of samples. This suggests that the majority of novel

introductions do not lead to the establishment of a new locally-circulating strain,

consistent with previous findings (du Plessis et al 2021).

39



Figure 2.2: Global Distribution of SARS-CoV-2 Transmission Clusters. A: The
log count of clusters detected across each of the 102 countries surveyed. The number
of clusters detected is largely a function of total local sequencing effort. B: The five
countries with the highest representation in the data. The USA and England together
constitute more than half of all available sequences. C: Cluster sizes are consistent
across countries. Most clusters are small, implying most newly introduced
SARS-CoV-2 lineages quickly die out.

Global contributions to sequence repositories are notably biased, with 51% of

all samples belonging to either the USA or the United Kingdom (Figure 2.2B). This is

a significant restriction on global transmission analysis, especially as the inference of

the origin of a cluster is highly dependent on robust sequencing at the origin (see

Section 2.8). We therefore narrowed the next step of our analysis to the United States,
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which has robust and relatively comprehensive sequencing across each state as well

as detailed state-level metadata for the vast majority of available samples.

2.6: SARS-CoV-2 Transmission Into and Across the USA

We identified more than three hundred thousand distinct state-level

SAR-CoV-2 infection clusters in the United States over the course of the pandemic,

as of November 2021 (Figure 2.3). Approximately 84% of these clusters have an

assigned origin using our method (see Section 2.8). Only 7% of our clusters appear to

be of international origin, with the majority reflecting transmission within the USA.

Mexico and Canada are among the most common international origin regions, in line

with expectations given their long land borders (Table A2.4). England is also

relatively common, likely because it is very well sampled. This indicates that it is

possible that some clusters originate from less sampled intermediate regions and are

assigned to the UK or other highly sampled locations. This suggests that relative

sequencing effort in a given region is an important bias with respect to accurately

identifying the origins of newly identified clusters and results should be interpreted

with caution. International introductions rates are correlated with higher total

sampling and therefore population size, particularly for California, Texas, New York,

Massachusetts, and Florida (Figure 2.3B).

Within the USA, introductions come from a mix of neighboring states and

high-population travel centers (Table A2.5). We attempt to mitigate sampling biases-

resulting from larger populations, higher case rates, increased sequencing, or other
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factors that are not specific to geography- by calculating a log-fold enrichment for

rates of introduction from a given source region (see Section 2.8; Figure 2.4). Note

that while log-fold enrichment may reveal spatial relationships, it does not reflect the

absolute importance of a region as a source or sink of viral transmission.

As with results from international introductions, we also find an enrichment

for introductions that originate in geographically adjacent states. Log-fold enrichment

is more than five times greater for neighboring states than for non-neighboring states

within the USA (p=1.5e-117, Mann-Whitney U). Simple counts of inferred

introductions are also enriched to a lesser extent between geographically adjacent

states (p=2.2e-16, Mann-Whitney U). This suggests that SARS-CoV-2 transmission

over interstate land borders is a major mechanism for spread within the USA. These

results are largely in line with previous results in other viruses (Kozińska et al 2019)

and SARS-CoV-2 (Tiwari et al 2021), suggesting that this heuristic is capturing and

summarizing true geographic structure within the global SARS-CoV-2 phylogenetic

tree.
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Figure 2.3: International and Interstate Introductions across the USA. A: The
log count of clusters identified across the continental USA. California, Texas, Florida,
and New York are associated with the greatest number of unique clusters. B: The
proportion of international introductions in each state plotted against total samples
collected in that state. This relationship is largely linear, reflecting the correlation
between sampling, population size, and levels of international travel. PR (Puerto
Rico) exhibits relatively more international introductions for its sampling than other
territories and states of the United States. C: The distribution of cluster sizes across
states. These are largely consistent with clusters identified at the international level.
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Figure 2.4: Log-Fold Interstate Transmission for the States of California (A) and
Illinois (B). A: Interstate introductions of COVID-19 into California are relatively
more likely to originate on the West Coast, particularly from Nevada. B: Interstate
introductions of COVID-19 into Illinois are relatively more likely to come from the
immediate surroundings, particularly Iowa and Missouri.
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2.7: A Daily-Updated Website To Explore SARS-CoV-2 Clusters in the USA

To make the results of this work broadly useful for the research and public

health community, we have developed a visualization and exploration platform.

Cluster-Tracker is a publicly-available, daily-updated website displaying the latest

results for applying our heuristic to sequences collected from across the United States

of America interactively (clustertracker.gi.ucsc.edu; see Methods; Figure 2.5).

Cluster-Tracker is open-source with a flexible backend pipeline that allows any user

to construct a similar site for any set of regions they have geographic information and

sample identification for (https://github.com/jmcbroome/introduction-website;

10.5281/zenodo.7566936).

Cluster Tracker is composed of two primary sections and some descriptive

text (Figure 2.5). The first section is an interactive map of the United States. In the

default view, this map is colored by the number of clusters detected across each state

throughout the course of the pandemic. The true number of introductions into a given

region is likely to be substantially larger

because many small clusters will not be sampled by ongoing viral surveillance

efforts, but major local transmission clusters should be represented. By clicking on a

state, the site changes to a view specific to that state. In the default view, the map is

colored by the log-fold enrichment of introductions from each other state to that state.

Optionally, the user can switch the color to raw counts of detections with the toggle in

the upper right.
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Figure 2.5: The Cluster-Tracker Site. The Cluster-Tracker tool is updated daily at
clustertracker.gi.ucsc.edu. Users can interactively explore the latest results of our
heuristic applied to each of the continental United States, by sorting the interactive
table, selecting states to focus on in the map, and using the Taxonium tree-viewing
platform to examine clusters of interest in detail.

The second section is a sortable, searchable table display of the highest

priority clusters. In the default view, these are the top 100 clusters overall as sorted by

“growth score”. We define “growth score” as the square root of the number of

samples divided by the number of weeks since the introduction occurred. The goal of

this metric is to weight clusters by relative size and how recently they entered a given

area, so that clusters of interest to public health appear first. When a state is selected,

this table changes to the top 100 clusters obtained from that particular state. Basic

information including clade, lineage, the earliest and latest dates of detection, and

inferred origins are displayed for each cluster. The “inferred origin confidences”

column is the highest or tied for highest regional index among all other regions for
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the parent node to the cluster origin, with a floor of 0.05 below which the cluster is

simply marked “indeterminate”. The “inferred origins” column is the regions which

match these scores, and generally represents our best guess at the origin of this

cluster. The last column of the table contains links to the Taxonium viewer

(https://github.com/theosanderson/taxonium) which will automatically render

the full tree and zoom to the cluster of interest when opened (Figure 2.6). Full results

and the taxonium protocol buffer file, which encodes the tree and all cluster IDs, are

available to be downloaded at the bottom of the page.
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Figure 2.6: Example Clusters in the Taxonium Phylogenetic Tree Viewer. (A) An
example cluster in Texas (member samples circled in red) that is inferred to have
originated from California (Regional Index = 0.94). There are many samples from
California closely related to the cluster’s common ancestor, supporting California as
the most likely origin. (B) A different, much larger, 9,533 leaf cluster in California.
This represents a lineage of SARS-CoV-2 commonly circulating in California,
descended from one of the original introductions of the Delta variant into California
in mid June 2021. Descendants from this cluster have transmitted to other regions
many times, but members of this cluster have been found in California as recently as
December 7th, 2021.
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2.8: matUtils Implementation Details

We implemented a calculation of this heuristic as a part of our online

phylogenetics package, matUtils, under the command “matUtils introduce”

(McBroome et al 2021) (https://github.com/yatisht/usher). Our implementation uses

dynamic programming based on a post-order traversal to compute the regional index

for each node in the tree in a single pass for each region. This is because the four

parameters which define regional index- distance to the nearest descendent and total

descendents for in-region and out-of-region- can be computed from these same

metrics for each child of a node plus the branch length to each child. The total

number of leaves descended from a query parent node is the sum of all leaves

descended from each of their children, and the shortest distance traversed to a leaf is

the minimum of each child’s minimum distance traversed plus the branch length

between that child and the query parent. Therefore, by computing it first for nodes

with only leaf children, then progressively deeper internal nodes, we only have to

reference the children of each internal node and check their stored values instead of

having to traverse from each node. This step is optionally parallelized across distinct

regions, if multiple regions are passed.

The secondary step is an ancestry traversal for each sample in the tree,

identifying the most recent ancestor which has a regional index below the set

threshold, which is inferred to be the introduction point for this lineage. Once

introduction points have been inferred for each sample, samples are grouped by
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shared introduction points into clusters, basic statistics and information are computed,

and results are reported.

Ultimately, our implementation can compute this heuristic, identify clusters,

and report all results in less than two minutes for a tree containing more than two and

a half million samples (Table A2.1). The speed of calculation is a major attraction of

this heuristic approach over more complex Bayesian models. Calculating in minutes

on minimal computing resources makes this method accessible and applicable to

update results daily, identifying clusters and introductions as they occur and new data

is uploaded globally. Accordingly, this implementation underlies our website

Cluster-Tracker, which is updated with all new uploaded data each day and a

recalculation of our heuristic.

Handling Nested Clusters and Unstructured Regions

We implemented a few additional parameters that can be used to control

behavior at the secondary cluster identification step. Once that is useful is setting a

short-range maximum index requirement- that is, looking ahead at some additional

number of ancestors and ensuring that each of those have a lower regional index than

the intended ancestor node. Setting this parameter causes small nested clusters to be

merged into larger overarching clusters. Another useful parameter is a minimum

required branch length between the ancestor inferred to be in-region to its parent; if

the branch length is less than the minimum, then the parent instead of the in-region

node is inferred as the introduction point. Setting this parameter allows sibling
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clusters to be merged if both of their branch lengths are below minimum; this also

resolves unstructured parts of the tree where large polytomies of identical samples

with branch length 0 both in and out of a region are included.

Prioritization and Bias Handling

Another significant point of consideration is cluster prioritization. This cluster

identification method is based solely on the phylogenetic tree and simple

sample-region association, and while this makes it lightweight and flexible,

identifying clusters which died out locally months ago is not of use to public health

offices doing real-time transmission cluster tracking. We therefore in our

implementation sort the output by a “growth score”, defined as the square root of the

number of samples associated with the cluster divided by the time in weeks from the

oldest sample in the cluster to the current date plus one. This means that large, recent

clusters will appear at the top of any output tables, and makes the method more easily

accessible when thousands of clusters are being inferred simultaneously.

When using this method to examine inter-region transmission dynamics, we

rely on comparable and significant levels of sequencing in order to identify

introduction origins. Intuitively, the less sequencing is performed in a region, the less

likely we are to recognize sequences from that region when they appear in another

region. We can compensate for this bias to an extent by calculating log-fold

enrichment of introductions between regions. This is computed as
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𝐿𝑜𝑔 𝐹𝑜𝑙𝑑 𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 (𝐿𝐹𝐸) = 𝑙𝑜𝑔
10

(
 𝐼𝑎𝑏×𝐼𝑥𝑥  

 𝐼𝑎𝑥×𝐼𝑥𝑏 )

Where Iab is introductions from region A to region B, Ixx is introductions from

any region to any region, Iax is introductions from region A to any other region, and

Ixb is introductions from anywhere to region B. This computation can remove biases

in rates of detected introduction which would apply to any pair of regions, but

requires many regions to be computed as points of comparison. This score is used to

color the map on Cluster-Tracker when a state is selected and has a very strong

correlation with geographic distance.

Simulation for Validation

To assay the performance of our heuristic, we fully simulated a pandemic

phylogeny with VGsim (Shchur et al 2021) and phastSim (Maio et al 2021). From the

resulting mutation-annotated tree, we calculated true node region states based on

VGsim’s migration event output and applied our heuristic with matUtils (McBroome

et al 2021). We then computed accuracy as the proportion of internal nodes which

have a heuristic value above 0.5 for the true state. Leaves are excluded from this

calculation as they are taken as an input in our heuristic and will always be 100%

accurate.

For our specific results, we simulated a one-million-leaf SARS-CoV-2 tree

under a simple model with two equivalently-sized regions with an even rate of

migration between them, no strain or site selection and complete immunity for
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recovered individuals (Table A2.2). We included a lockdown parameter starting at 5%

infected and ending at 1% infected, with a 10-fold reduction in transmissivity under

lockdown, and a sampling multiplier of 0.2 in order to deepen the tree by effectively

extending the time for one million samples to be collected.

ARI (Adjusted Rand Index) and IAC (Internal Assignments Correct) are our

quality metrics. ARI represents how well our method correctly groups samples into

true clusters descended from a single introduction event. ARI performs best when

migration is low, leading to large and clean clusters which are easily separated

heuristically, and performs somewhat better when scale is increased. IAC is the

proportion of internal nodes which are assigned to the true region by our heuristic

across the bifurcating tree. It is computed on the correct bifurcating tree because

collapsing true nodes from different regions leads to nodes that are naturally

indeterminate. IAC is generally robust, only performing slightly worse with an

increased migration rate, likely as deeply set internal nodes tend towards

indeterminacy with high distances to many leaves across different regions. This

suggests that the primarily limitation of our heuristic is simply the number of

mutations available to distinguish samples from across varying regions rather than

any structural or fundamental issues.

All code for this simulation is available as a modular and reproducible

Snakemake pipeline at github.com/jmcbroome/pandemic-simulator

(10.5281/zenodo.7566940).
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Global Phylogenetic Tree Construction

At UCSC we maintain a large phylogeny of all GISAID (Shu et al 2017),

GenBank (Sayers et al 2021), and COG-UK (Lancet Microbe 2020) sequences using

the script

https://github.com/ucscGenomeBrowser/kent/blob/master/src/hg/utils/otto/sarscov2ph

ylo/updatePublic.sh and the UShER online phylogenetics suite (McBroome et al

2021, Turakhia et al 2021). Updates are performed daily by obtaining all newly

uploaded sequences from each database and placing them on the previous day’s

global phylogenetic tree with UShER (see McBroome et al).Starting with our

phylogeny updated on 11-28-2021, we pruned all samples with long branch lengths

and path lengths using the matUtils parameters --max-branch-length 45 and

--max-path-length 100 and performed a round of optimization with an SPR radius of

8. The resulting phylogeny contained 5,563,847 samples with a total tree parsimony

of 4,847,954.

Computing USA state transmission

We obtained the latest mutation-annotated phylogenetic tree representing the

entirety of all public samples and all samples available on GISAID on 11-28-2021.

As the standard format for publicly uploaded SARS-CoV-2 sequence identifiers is

“Country/(Area)-CollectingAgencyInfo/Year|Date”, we extracted sample labels for

samples in the USA by identifying samples with names beginning with “USA/“ and

then extracting the two-letter state code, if it matches with a two-state letter code.
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This resulted in 1,764,019 labeled samples belonging to the USA. Samples from

outside the USA were labeled by country; countries and ambiguous labels with less

than 500 samples in GISAID and public data were excluded and their samples

removed. Samples from “mink” were additionally excluded as they may not be from

human sources. The resulting tree contained 5,237,796 of the total of 5,563,847

samples available, reflecting more than 94% of all SARS-CoV-2 genomic data

collected and incorporated to date.

We applied matUtils introduce with default parameters to this tree and sample

set and produced the full by-sample output. After computing basic statistics, we

calculated log-fold enrichment of introductions between all pairs of states, and a

selection of other countries to and from the USA. All code for this paper is provided

at (https://github.com/jmcbroome/cluster-heuristic; 10.5281/zenodo.7566933).

Cluster-Tracker Website Development

All relevant javascript and some example data files are provided at

(https://github.com/jmcbroome/introduction-website; 10.5281/zenodo.7566936). This

github includes a brief description of how to set up a local test site and run the

backend pipeline for generating new results to display for your regions of interest. It

is based on Leaflet (https://leafletjs.com/) and DataTables (https://datatables.net/) for

the primary view, and includes links to the Taxonium tree viewer

(https://taxonium.org/) for detailed cluster exploration.
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We include Python scripts to create the backend data for the website

display, contained in the “data” directory. This includes two versions of the primary

pipeline. One is specific to the United States, which fills in many default parameters

and uses data included in the repository. The second is a more flexible and

configurable pipeline which given a tree, sample labels, and a geojson, can create a

Cluster-Tracker equivalent website for any set of regions.

Comparison with Published Studies

To compare our approach to that of Alpert et al 2021, we retrieved the

Auspice JSON they used to generate Figure 2.3 from

(https://github.com/grubaughlab/CT-SARS-CoV-2) and obtained table S3 from their

supplementary data online, which contains cluster labelings for samples from the tree

represented by the JSON. We converted the Auspice JSON to the UShER MAT

protocol buffer format using python. We labeled all samples in the resulting tree by

their country of origin and ran matUtils introduce with default parameters. The

resulting labels were compared to the cluster labels presented in table S3 and the

Adjusted Rand Index was computed across all labeled samples with scikit-learn

(Pedregosa et al 2011). We performed this analysis twice- once including all samples

in their tree from any region and once excluding samples from the USA in their tree

that were excluded from their clusters. The first method resulted in an ARI of 0.9 and

the second a perfect 1.0; this discrepancy results from a single difference where a pair

of large clusters, sibling to one another, are merged by our results when samples
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excluded from their clusters are included in our analysis. This is because a sample

identical to the parent node of these two sibling clusters from the USA is excluded

from Alpert et al’s clusters. In any case, the clusters we identify are highly concordant

with Alpert et al’s results. All code for this analysis is available on

https://github.com/jmcbroome/cluster-heuristic (10.5281/zenodo.7566933).

2.9: Discussion

The goal of this resource is to make cluster identification, exploration, and

prioritization more accessible and digestible for public health offices and policy

makers. A significant roadblock for public health action is the sheer quantity of daily

new data and the speed with which we can draw inferences from these data.

Cluster-Tracker can assist exploration and prioritization of the latest genome

sequences, quickly identifying the clusters most likely to be of interest for public

health action for a given region. Our construction pipeline is flexible and can be

applied for any set of regions (e.g., county-level), allowing groups anywhere to

construct web interfaces for intuitive SARS-CoV-2 phylogenetic data exploration.

While simple and efficient, our heuristic does exhibit some weaknesses. It is

not a model; while simulations have demonstrated its efficacy in describing simple

patterns of transmission, it can fail to correctly infer more complex scenarios and

requires substantial and dense input data. Simulations indicate that it performs best

with larger and more homogenous regions with low rates of migration, such as

countries. If the user attempts to infer introductions with very small regions with high
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rates of inter-regional transmission, it may fail to properly recapitulate transmission

patterns. Additionally, regionally-biased differences in sequencing effort (Brito et al

2021, Colson et al 2021) can lead to significant biases in raw counts and our ability to

correctly identify introductions, making individual cluster origins difficult to interpret

in many cases. In terms of functional limitations, the heuristic is based on a binary

regional labeling model, and does not have the ability to directly interpret lat-long

coordinates or unique location values for samples like some Bayesian

phylogeographic methods. Overall, it remains a useful tool for quickly assaying viral

diversity and inter-regional transmission patterns on a global scale.

The pandemic has made the need for rapid and powerful tools to unlock the

potential of pandemic-scale genomic epidemiology. The method we developed and

the efficient software package we provide will empower researchers worldwide to

make fast inferences from vast sequence datasets. Our results have revealed

geographic structure at scales below the level of pango-lineage (O’Toole et al 2021)

within the global SARS-CoV-2 phylogeny. We have provided tools and resources

with which to explore this geographic structure and draw useful inferences for

specific areas. Additionally, to empower public health officers and the public to

explore the spread of SARS-CoV-2 across the USA, we developed an accessible

open-source interactive interface for our results, which can automatically compute

and display introductions and clusters with each update to the global phylogenetic

tree. Our work can support public health groups across the world to quickly

understand and apply insights obtained from the latest genomic data.
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Chapter 3

Automated Agnostic Designation of Pathogen

Lineages

[This chapter has been adapted from publication, “Automated Agnostic Designation

of Pathogen Lineages” (McBroome et al 2023, bioarxiv)]

3.1: Pathogen Nomenclature

Pathogen lineage nomenclature, or the designation of epidemiologically

distinct groups below the level of species, are important for facilitating effective

research, treatment, and communication about diseases. Despite the universal

importance and long history of nomenclature systems for pathogens, there remains a

plurality of approaches to apply to new emerging pathogens. These lineage systems

are generally based on some combination of three elements: phenotype, genotype,

and geography. Phenotype-based systems are often predicated on vulnerability to

antibiotics (Collins et al. 1982) or serology (Lancefield 1933); pathogens with

serology based nomenclature systems include Salmonella spp. (Brenner et al. 2000),

dengue viruses (Cuypers et al. 2018; Simmonds et al. 2017), and Streptococcus spp.

(Facklam 2022; Lancefield 1933). Geography-based classification systems may be

appropriate for pathogens where the primary reservoir is in non-human species, such
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as Chikungunya virus (CHIKV) (de Bernadi Schneider et al. 2019) and the Zaire

Ebola viruses (Kuhn et al. 2014). Finally, genotype-based nomenclature divides a

species-wide phylogeny into statistically well-supported, mutually exclusive taxa

generally referred to as “lineages” or “clades”. These groups can be defined as

clusters of samples below a genetic diversity threshold or as the descendents of an

inferred common ancestor on a single phylogeny. Genotype-based classification has

become increasingly common in application to viruses such as RSV (Ramaekers et al.

2020), dengue (Cuypers et al. 2018) and influenza viruses (Anderson et al. 2016).

The COVID-19 pandemic presented a unique challenge to these nomenclature

system approaches. Other diseases often have lineages inferred to have originated

several years to decades in the past, with well-defined characterizing genetic changes.

These stable nomenclatures rarely need active updates, being defined with respect to

a single phylogeny that remains largely unchanged. However, in SARS-CoV-2, a

single mutation may be all that defines a new epidemiologically distinct lineage

(O’Toole et al. 2021). Additionally, the SARS-CoV-2 genomic data is orders of

magnitude greater in volume than that for extant pathogens, as well as constantly

growing as new data is collected (Hodcroft et al. 2021). The expansion of the dataset

means that the SARS-COV-2 phylogeny is regularly updated (McBroome et al 2021),

necessitating further review and updates to any genotype-based lineage system.

The current solution to these challenges is the popular Pango lineage system.

Pango is a genotype-based dynamic lineage nomenclature for SARS-CoV-2

characterized by the manual designation of new lineages from a global phylogenetic

60



tree (Rambaut et al. 2020). Pango lineages are hierarchical and comprehensive,

including hundreds of nested designations for any subgroup of viruses that may be of

concern. When compared to traditional nomenclature, these often initially contain

fewer samples, are less genetically distinct, and are regularly updated as new genetic

data is collected. These small, dynamic lineages serve a critical function in organizing

genetic data for public health tracking efforts. The Pango system has provided initial

names used for all Variants of Concern (VOCs), including B.1.1.7 (Alpha) and

B.1.1.529 (Omicron), and defined the serial replacement of Omicron lineages through

time (BA.1, BA.2, BA.5). Pango has accordingly played a central role in facilitating

effective tracking of and communication about emerging SARS-CoV-2 strains over

the course of the pandemic.

Currently, Pango relies on manual curation and designation, including the

crowdsourcing of lineage proposals on a public forum

(https://github.com/cov-lineages/pango-designation). More than 2500 SARS-CoV-2

variants have been named under the Pango system as of January 2023. The trained

human eye is excellent at distinguishing new lineages of interest from groups of

low-quality or contaminated isolates, but the Pango group’s resources have become

strained as the volume of data has increased and public investment has decreased.

Furthermore, crowdsourced proposals are vulnerable to delays as well as regional and

personal bias, as individual researchers have differing opinions on the importance of

various mutations and are more or less likely to search for clades from specific parts
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of the world. A more objective metric to evaluate candidates for lineage designation

could help to reduce this bias and streamline the lineage proposal and review process.

We propose a simple heuristic approach for the definition and expansion of

genotype-based dynamic nomenclature systems. Our method is rooted in information

theory, optimizing for the representation of sample-level haplotype information. It

requires only a phylogeny with branch lengths scaled to genetic distance, with

additional forms of information emphasizing specific mutations or samples being

optional. It is efficient in application to extremely large phylogenies and produces a

comprehensive hierarchy of genetically distinct lineages. Our lineage system is

flexible and can be effectively weighted in any number of ways, allowing

epidemiologists and researchers to prioritize critical elements for lineage definition

and tracking efforts. Importantly, it can expand a preexisting lineage system, making

adoption of this approach for the maintenance and expansion of existing

nomenclature straightforward. We, in collaboration with the Pango designation team,

have implemented this system as a new input for the existing Pango lineage

designation infrastructure (https://github.com/jmcbroome/autolin; DOI:

10.5281/zenodo.7566921). Additionally, as sequencing technology becomes more

widely applied, both novel and extant pathogens will develop similarly dense and

expanding genomic datasets. This approach will provide a scalable solution to

creating and managing these dynamic lineage systems for any pathogen.
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3.2: The Genotype Representation Index (GRI)

A nomenclature system can be likened to a language, where additional words,

analogous to lineages, are defined for common, unique concepts to reduce the average

number of words per sentence. Along these lines, an effective nomenclature

summarizes a complex phylogeny into useful, distinct categories to facilitate effective

analysis and communication. The lineage hierarchy is generally defined with respect

to a specific rooted phylogeny, where a number of specific ancestral nodes are

designated as lineage roots. Higher-level lineages are divided hierarchically into finer

sublineages. Individual samples, represented as tips of the tree, are members of every

lineage that is rooted in its inferred ancestry. To automate the definition of this

hierarchy, we need some objective measure of distinctiveness or importance that can

be computed for lineages. One approach is to compute a distinctiveness value for

every node on the tree, as individual lineages in these systems are generally defined

as the descendents of a single, specific ancestor. Once we have a node-level measure

of lineage efficacy, we can iteratively construct a nomenclature by selecting

high-value nodes and designating them as new lineage roots. These lineages can then

be presented to an end user, or directly incorporated into an expanding nomenclature.

To this end, we define the following index, hereafter referred to as the

“genotype representation index” (GRI) (Figure 3.1).
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The GRI takes values with respect to a specific node on the tree, hereafter

referred to as the “focal node”. Here, N is the number of descendent tips from the

focal node, D is the total branch length from the focal node to the root of the tree or

previously designed parent lineage, and S is the sum of branch lengths from the focal

node to each descendent tip. In natural language, the GRI is the mean branch length

position of the focal node along the ancestry paths of all its descendants, multiplied

by the total number of descendants. The GRI increases both with an increasing

number of descendents (N) and with being closely related on average to those

descendents (lower S). Nodes with an overall high GRI will be closely related to

many descendents, representing a group of consistently genetically distinct samples- a

good choice for lineage labeling. For a mutation-annotated tree (Turakhia et al 2021),

such as those used for SARS-CoV-2, the branch lengths (D and S) are in units of total

mutations across the genome. However, the GRI can be computed on any rooted tree

topology, as long as branch lengths are scaled by genetic distance. The GRI is high

for focal nodes where descendent samples are genetically similar to one another and

the focal node itself is genetically distinct from the rest of the phylogeny, desirable

qualities for lineage designation (Rambaut et al. 2020). The motivation behind this

formulation is presented in the Methods section.

Autolin defines a lineage system based on the GRI by applying a simple

greedy maximization algorithm. Initially, the GRI is computed for each node on the

tree and the node with the highest value is chosen as a new lineage root. Additional

mutually exclusive lineages are defined by disregarding all samples covered by an
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existing lineage label and recomputing the GRI for all remaining samples and their

ancestors. To prevent the retroactive definition of lineage parents that might interfere

with an existing hierarchy, we additionally disregard nodes that are directly ancestral

to existing or newly added lineages. Additional hierarchical lineages are defined

similarly by only considering samples within a specific existing “parent” lineage.

This process is repeated until a desired number of lineage labels have been defined or

all available nodes fail to pass thresholds for designation. This iterative approach is

not guaranteed to find the highest overall GRI lineage configuration among many

possible combinations of lineages, but it scales well to millions of samples and a

rapid pace of lineage updates.
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Figure 1: Computation of GRI. This figure depicts the computation of GRI values
for two nodes on a small example subtree. The base of this subtree is a total distance
of 6 from the last lineage root, represented in purple. The node at the base of this
subtree (A) has a total path length to descendents (S) of 26, 4 total descendents (N),
and is a total distance of 6 from the last root (D), leading to a GRI of 1.92. The lower
child node (B) only has 3 descendents (N), but has a much lower path length (S) and a
longer distance to the last root (D), meaning that it scores much higher at 2.63. In this
case, we would choose to assign a lineage label to the lower child node (B).
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3.3: Adjustments to the Genotype Representation Index

In practice, pathogen lineage nomenclature systems are generally designed for

purposes beyond summarization of a phylogenetic tree. Lineages often carry

connotations of distinct phenotypic behavior, such as serological types, immune

evasion, transmissibility, and other metrics. Some parts of the genome may contribute

more than others to these phenotypes. For example, some spike protein changes are

known to alter immune escape in SARS-CoV-2 (Greaney et al. 2022). Information

about parts of the genome associated with important phenotypes is inherently more

valuable and more worth representing in our lineage system. Accordingly, we may

want to weight our GRI calculation by giving additional value to these mutations

when computing distances. Conversely, we may want to disregard parts of the

genotype that are not informative for phenotypic behavior or that are not readily

interpretable, such as repetitive noncoding sequences or sites prone to recurrent

errors.

The GRI, while based on genotype representation, can be flexibly altered to

focus on the representation of important elements. The original Pango rules for the

definition of SARS-CoV-2 lineages have requirements around evidence for

international transmission and changes to proteins to designate lineages that are more

likely to be epidemiologically important (Rambaut et al. 2020). By using these

weighting schemes for GRI, we can automatically propose lineage designations of

high epidemiological import. This allows researchers to develop fully-informed and

highly applicable nomenclature systems.
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3.4: Sorting and Prioritizing Novel Lineages

In some cases, curators may prefer to designate a smaller number of lineages

that are of higher apparent epidemiological impact, to improve the average impact

and simplicity of the lineage system. In this case, our approach can be applied to

identify a large number of individual lineage candidates, which can then be filtered

and prioritized according to lineage-level statistics. While many simple filters we

support, such as the number of countries a lineage has been detected in, are simply

applied to the tabular report, we do also provide a more informed sorting schema

based on lineage growth.

To sort putative lineages for manual inspection after the initial designation

procedure, we fit a geographically stratified exponential growth model to each

proposed lineage using Markov Chain Monte Carlo (MCMC). Bayesian methods of

this type are appropriate for inference with small, noisy datasets, as the uncertainty in

the model is directly quantified. To summarize, we construct a posterior distribution

of exponential growth coefficient scores filtered through a binomial sequencing

model. Lineage proposals which have a high, low-variance posterior distribution of

growth are more likely to be rapidly expanding and are of high priority for labeling.

Additional information can be found in the Methods section. This model is extremely

simple compared to standard epidemiological models due to the constraints of

available data and necessary speed. Accordingly, it does not directly inform the initial

designation of lineages, but instead serves as an optional out-of-the-box solution for
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users to identify putative lineages of immediate and critical public health importance

without significantly adding to overall compute time for the pipeline.

3.5: Systematic Application to SARS-CoV-2 and Example Designations

As a basic demonstration of our method, we applied the pipeline to the

complete SARS-CoV-2 global public phylogenetic tree, as of 2022-12-11 from

http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/

(McBroome et al. 2021). In the absence of an extant lineage system and considering

all samples, the GRI based approach assigns more than 170,000 lineages to this

phylogeny. These lineages are divided into twelve levels, representing recursive

levels of child lineages, with the first level being trivially defined by the root of the

phylogeny itself. The majority of these lineages are small, with only 10% of

designations being larger than 100 samples. In general, users may wish to restrict

autolin to output only lineages above some minimum size (as in e.g., Rambaut et al.

2021). Of the approximately 2000 Pango lineages included in this phylogeny (Figure

A3.1), more than 1175 are closely matched with a GRI equivalent lineage, including

the major Delta and Omicron lineages. Another 586 Pango have a corresponding GRI

identified lineage with a Jaccard similarity of overlapping samples greater than 0.5

(Figure A3.2). The remaining unmatched 217 lineages are mostly extremely small,

with more than 95% of them including <10 samples in this phylogeny, and therefore

would not pass the default filters for Autolin (Figure A3.3). Overall, the systems are

concordant, especially with regards to major variants.
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To evaluate the utility of our method for maintaining and expanding dynamic

lineage nomenclature specifically, we applied Autolin to the same phylogeny as

above, but built on the extant Pango lineages. We generated 187 new lineage

designations using the default configuration parameters, which only considers

samples collected in the preceding 8 weeks. 24 of these lineages were actively

sampled in December 2022 as of 2022-12-11. These active designations were highly

dispersed in size, with a mean size of 82 samples and a median of 45 samples. The

full report for the active designations is available in Table A3.1.

We fit an exponential growth model to each active lineage (Table A3.1, Figure

3.2) and obtained a 95% confidence interval estimate of the rate of exponential

growth. The average confidence interval for the exponential growth interval was

relatively large (0.07, 0.49), due primarily to the effects of limited sample sizes. 16 of

the 24 lineages had a positive lower interval bound, which is evidence for active

spread in the countries they are present in. The width of the interval is naturally

dependent on the data available; while the average estimate for our lineages is +/- 0.2,

estimates for lineages with at least 50 total collected samples had a much narrower

average value of +/- 0.07. All model confidence intervals are reported in Table A3.1.

All code for fitting and reproducing these results is available at

https://github.com/jmcbroome/lineage-manuscript (10.5281/zenodo.7566938).
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Figure 3.2: Exponential Growth Modeling. The above four plots describe some of
the lineage annotations produced by our method based on the public SARS-CoV-2
data. The black line is the median estimated growth trajectory, while the dotted lines
represent the trajectories that would result from the lower and upper bounds of the
95% credible interval of the growth rate. The x-axis is represented in weeks since first
detection among each country.

This procedure can serve to organize and prioritize lineage designations,

despite suffering from high uncertainty. Figure 3.2 displays a small example selection

of lineages and model fits in further detail. The naming schema matches the Pango

naming schema, with the addition of an “auto” prefix denoting that the lineage in

question was created by our approach and not manually designated by the Pango

team. ”auto.CH.1.1.3”, while exclusive to England, exhibits a very rapid expansion in
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latter weeks that drive a very high, if wide, estimate of growth. “auto.BQ.1.8.3” and

“auto.BA.5.2.9.1” are more international, but less consistent; the latter appears to

grow consistently in the United States, but fluctuates to a much greater degree in

England. Finally, “auto.BE.1.2.2.” is an example of a low-priority designation, with

no strong evidence of positive growth. Altogether, our models are capable of

capturing a diverse set of lineage trajectories and rapidly and effectively identifying

lineages undergoing exponential expansion.

We have collaborated with the Pango team to incorporate our approach into

the existing SARS-CoV-2 lineage designation infrastructure. Statistics such as lineage

size, associated mutations, and geographic localization are computed and reported as

a part of a pull request to the curated Pango repository. Our update includes links to

external data exploration sources such as cov-spectrum (Chen et al 2022) and

taxonium (Sanderson 2022; Kramer et al 2023), as well as programmatic generation

of all files requisite for the incorporation of the new designations. All code for this

procedure can be found at https://github.com/jmcbroome/autolin

(10.5281/zenodo.7566921).

3.6: Application to Other Pathogens

The GRI approach can be used to generate lineage proposals for any

pathogen, with or without an existing base nomenclature. We compared our approach

to a recent Zika (ZIKV) nomenclature proposal (Seabra et al 2022), applying Autolin

directly to their likelihood phylogeny (see Appendix 3). We find high level
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concordance between the automated system and the formal nomenclature (ARI 0.47,

p<0.001) (Figure 3.3). The formal Zika nomenclature proposal is the result of the

application of Bayesian clustering directly on aligned sample haplotypes (Seabra et al

2022), so while this system is genotype-based, it does not directly depend on the

phylogeny. This may explain some of the inconsistencies between these systems,

particularly as regards basal groups like ZA. However, we do see high level

concordance between these groups, particularly in the widespread ZB.2 variants.

Figure 3.3: Comparison of Zika lineage designation. Comparison of a published
proposed lineage system for Zika virus (left tree) based on phylogenetic analyses,
clustering techniques, within- and between-group pairwise genetic distances, and
evolutionary analyses to define genetic groups (Seabra et al 2022) with automated
lineage designation (right tree) visualized on FigTree v.1.4.4.
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We analyzed two additional pathogens, Chikungunya virus (CHIKV) and

Venezuelan equine encephalitis virus complex (VEE). These phylogenies are

provided as Nextstrain Auspice JSON (Hadfield et al 2018), so we used an alternative

implementation of Autolin found at

https://github.com/jmcbroome/automated-lineage-json (DOI:

10.5281/zenodo.7566925) designed to work with arbitrary Auspice JSON formatted

phylogenies. It is provided as both a command line interface tool and as an online

Streamlit app, accessible at

https://jmcbroome-automated-lineage-json-streamlit-app-3adskh.streamlit.app/.

Specifically, we used the currently available nextstrain builds (CHIKV Nextstrain

build 5.1 (https://nextstrain.org/groups/ViennaRNA/CHIKVnext) and VEE Nextstrain

build 2.1 (https://nextstrain.org/groups/ViennaRNA/VEEnext) to generate our novel

lineages.

The rationale for choosing VEE and CHIKV as additional examples stems

from their respective lineage systems. The VEE lineage system relies solely on

serology, disregarding phylogenetic relationships and displaying paraphyletic groups.

Conversely, the CHIKV lineage system is geographically-driven and, although most

often presenting monophyletic groups, relies on arbitrary thresholds to define lineages

based on location. Overall, the CHIKV geographic nomenclature aligns with the

automated lineage designations at its base level (ARI=0.69, p=0.018), with further

breaking down of the tree in certain regions such as the Indian Ocean Lineage (Figure

A3.4). VEE’s serology based nomenclature, by comparison, is paraphyletic and does
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not represent phylogenetic lineages or clades (Forrester et al. 2017, de Bernardi

Schneider & Wolfinger 2023). We elected to present two levels of annotation,

reflecting the distinction between VEE viruses generally and the Venezuelan Equine

Encephalitis Virus (VEEV) and its subtypes. VEEV itself is successfully identified

from the VEE complex by our lineage approach at the first level of annotation

(ARI=0.9, p=0.0003). However, our method was unable to reliably recapitulate

VEEV serotypes at the second level of annotation (ARI=0.28, p=0.25, Figure A3.5),

due largely to the paraphyletic nature of VEEV’s serotype-based nomenclature.

Altogether, these examples show how this method can generate de novo

lineage classification of pathogens, independent of context and consistent with human

intuition. Moreover, the significance of these examples lies in showcasing the

potential advantages of our methodology in mitigating user interference in lineage

classification by updating biased nomenclature systems. This, in turn, enhances the

possibility of epidemiological discoveries that might otherwise be overlooked. This

and similar implementations of the GRI method will be able to support dynamic

lineage systems for any future pathogen.

3.7: Mathematical Underpinnings

A lineage system can be formulated as a sender/receiver information scenario.

The sender possesses the full phylogenetic tree and a lineage system L, while the

receiver possesses only the lineage system L and the associated mutation paths that

define each lineage. S may or may not be a member of any lineage within system L.
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If it is, the receiver already has all ancestry information associated with that specific

lineage L for the sample S. In this scenario, we can compute how much additional

information is required to specify the full ancestry of sample S.

A single site’s state can be represented in a finite number of bits; 2 bits to

represent the state and 15 bits to represent the location, for SARS-CoV-2. Therefore,

the full ancestry path of a given branch can be represented in a finite number of bits,

proportional to the number of mutations separating it from the root.

Therefore, the additional information required to specify the ancestry of sample S,

given a lineage system with a label at branch B, is

Where D(B) is the set of samples descended from a labeled branch B.

We further refined this concept to represent instead the average proportion of

information about sample S conveyed by a lineage B. This normalization procedure

ensures that all samples are treated equally and that the lineage itself is an effective

representation of the member samples. By normalizing to total distance, a cluster of

samples near the reference will be treated the same as a similar group of samples

positioned further from the root, given that the groups are similarly distinct from their

last respective lineage labels. We therefore compute the following:
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We extend this to compute the total amount of information for a system of multiple

lineage branches B. These may be hierarchically arranged, where a single sample is

descended from multiple, nested lineage labels B; in this case, the minimum value is

taken.

When adding a new branch B to this system, we can compute the difference in overall

information represented by this addition. Adding a lineage B will always either

reduce O(Y) or leave it the same, as any altered values summed to O(Y) are replaced

by a smaller value.

The difference between O(Y’) and O(Y) can be computed as the sum of differences in

P(S,B) for all samples where Bn+1 is the terminal lineage of that sample; that is, where

P(S,Bn+1) is the minimum value of P(S,B) for all B. For all other values, P(S,B) is

identical, and therefore can be disregarded.

Our goal is to choose the value of Bn+1 that maximizes the overall difference.

Therefore, we can disregard the first term, since it remains unchanged by the choice
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of Bn+1. The difference between the systems is negatively proportional to the

remaining term.

Samples S where Bn+1 is not the terminal lineage will be valued the same regardless of

the choice of terminal lineage, so this can be further reduced for the purposes of

comparison.

Where Dt is the set of samples for which B is the terminal lineage. As all samples in

Dt(B) are necessarily members of D(B), this is equivalent to the following:

The I(S)/I(S) term simplifies to 1, which can be disregarded when comparing these

values between different choices of Bn because each contains the same scalar.

Simplification leaves a term to which the difference between the systems is directly

proportional.
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In practice, we often track the information about the branch I(B) and the distances to

the descendent samples S from that branch B as explicit quantities.

This equation is the basis of the Autolin heuristic, which is a computationally

practical representation of lineage information content.

3.8: GRI and the Autolin Algorithm

We want to avoid computing the set of samples Dt for each node B on the tree

explicitly, as this requires either repetitive traversal or storing large arrays of values.

The only dependent term on this set of samples S is F(S,Bn+1). We therefore replace

this term by dynamically computing the mean F(S,Bn+1) for all samples S and

multiplying the entire equation by the number of descendents, meaning we only have

to compute this overall equation once. While this is not exactly equivalent to the sum,

except under special conditions, it is strongly correlated with it and can reduce the

effect of outlier samples on the overall computation.

79



This allows us to only track three values for each node- the sum of distances F(S,B),

the number of descendents |D(B)|, and the information of the branch I(B), and only

perform a single computation. The sum of F(S,B) and the number of descendents

|D(B)| can both be dynamically computed by a single reverse postorder traversal of

the tree and stored as single float values.

I(B) can be dynamically computed by a single forward traversal, as the branch length

I(B) is equal to the branch length of B plus the information of its parent. We perform

one pass to compute the sum and count values, and we track I(B) on the forward pass

where candidate nodes are evaluated. With these values for each node, we can

compute the following:

Notationally, we use single letters to refer to the values of these functions for a branch

B.
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This final equation is the GRI heuristic we use to select our lineages. It does not

require identifying the explicit set of descendent samples D(B), which for large

phylogenies either requires storing large vectors in memory or repeated tree traversal,

instead using single values for the sum and count. It also has useful properties; it can

never have a higher value than N, limiting the effect of extremely long branches, and

approaches 0 as S becomes large, where the lineage proposal would be a poor

representative of its descendents.

In the simplest case, the construction of a lineage system will involve the

stepwise addition of lineage labels. Finding the overall system which maximizes the

relative gain for multiple simultaneous lineage definitions is excessively complex and

unscalable for systems of more than a handful of lineages, due to the extremely high

number of possible combinations of lineage labels to evaluate. However, a system of

arbitrary size can be constructed efficiently through a simple greedy stepwise

algorithm, where the best choice for each step is taken without regard for the impact

on potential future choices. Therefore, our implementation computes this metric for

every node on the tree, assigns a new lineage at the highest value node, and then
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repeats this process until no candidates pass minimum thresholds set by the user.

Serial” or non-overlapping lineages, where

Can be assigned by repeating the minimization procedure while disregarding all

samples that are a member of existing lineages. This can be repeated until some

minimum percentage of samples are contained within some set D(L).

“Hierarchical” or nested lineages, where

Can be assigned by treating L1 as the root of the tree, with ancestry information

conveyed with respect to it. There are no other types of lineage relationship, as a

rooted phylogenetic tree is a directed acyclic graph and lineages are always defined as

a monophyletic clade. It is not possible for two clades to partially overlap when they

are defined by internal nodes on a fixed phylogenetic tree.

There is one obvious failure case with this model; if the number of lineage

labels B is not limited or penalized, every node in the tree can be given individual

labels, reproducing the original phylogeny and all accompanying information exactly

in the lineage system. However, this degenerate case is not desirable, as the goal of

lineage systems is generally to compress phylogenetic information to a more

manageable set of groups while keeping key elements. Two simple restrictions are a

minimum lineage size and a minimum distinction from the parental lineage or root.

To require a minimum number of samples to be represented by a putative

lineage label, we define a minimum m and we subtract the weighted mean
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information represented by a theoretical set of m samples with the same path length

distribution from the true information distribution for the node. If the net information

represented is negative, then we reject this node as a candidate for a new lineage

definition. We define the following inequality:

Essentially, we require that N > m, where m is a user selected parameter, in

order to define a new lineage. Setting this to a positive value will produce only

proposed lineages that convey some information about at least that many leaves.

Similarly, we can set a minimum distinguishing distance from the subtree

root/parent lineage. Often lineage designation systems require some number of

unique distinguishing mutations for a new sublineage. We therefore define

When p < D, this value is negative and we reject this candidate node. Setting

this to two, for example, will produce only lineages that convey at least two unique

mutations distinct from the parent lineage or tree root. Combining both of these

filters, we reject nodes where either or both of these inequalities are not passed.

Together, this allows automatic proposals to fulfill standard conditions required by

lineage nomenclature review groups.

Our pipeline implementation includes a substantial set of configurable

parameters. These include minimum lineage size and minimum distinction, as
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outlined above. We also can simply threshold on the GRI itself, ignoring marginal

designations that contain relatively little additional information.

Notably, we can additionally incorporate arbitrary sample-level weighting.

This allows our lineage system to prioritize effective representation of high-interest

samples. R(S), below, is a function representing the “importance” of sample S. This

might be high for a sample S from an undersequenced region, or lower for a sample S

from a heavily sequenced time or place.

Samples from regions that contribute a small percentage of all samples will

have substantially higher weights than ones from regions that contribute a large

percentage of sequences, though all samples will have a weight greater than 1 under

this schema. This is just one potential weighting schema for handling geographic

sequencing bias, and the user can define any schema and set weights on a per-sample

basis.

Similar concepts can apply to computing path lengths- we may consider only

part of the haplotype, or assign additional weight to specific mutations of interest that

we want our lineage system to prioritize representing. We provide options for the user

to select genes of interest for representation, as well as the ability to ignore mutations
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that do not change amino acid content of proteins and represent coding haplotypes

only.

We also provide arbitrary weighting schema for mutations of interest, similar

to samples.. As an example, we provide a parameter that heavily weights mutations

that are predicted to increase vaccine escape (Greaney et al 2022). This parameter

multiplies the escape weight value estimated by the Bloom lab calculator by the

user’s parameter and adding 1. In this schema, mutations that are not predicted to

contribute to immune escape have a weight of 1, while mutations that do contribute

have a weight greater than 1 that is proportional to the strength of escape conferred.

The resulting lineage system is more likely to include designations that have a change

in immune escape. This is just one possible schema and the user can define weights

on a per-mutation basis in our implementation.

All parameters and configuration information used in the production of these

results can be found at 10.5281/zenodo.7566938.

3.9: Bayesian Growth Modeling

Our simplified Bayesian growth model is a geographically stratified estimate

of a fundamental rate of exponential growth over a weekly time series. For lineage L

in country C, we model the true percentage P as increasing in an approximately

exponential fashion. This is appropriate for newly emerging lineages that consist of a

small percentage of total cases in any country where they are found but are

successfully spreading. Each data point consists of the total number of samples from
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lineage L found in a specific country during a specific week. We assume that the

inherent exponential growth coefficient for L is shared across all countries in which it

is found and combine all data points across countries and times for each lineage. The

first week that any sample from lineage L was found in country C is treated as the

initial timepoint (t=0) for data from that country.

We do not directly observe the true percentage of cases P that are of lineage L.

Instead, some number N of all cases are sequenced, and we observe some number X

of these samples to be lineage L. As the number of cases is much larger than the

number of samples, we can model this process as a binomial sampling procedure with

N trials and a probability of success being the true percentage P.

Our Bayesian model combines both this sampling procedure and the

exponential growth model to yield a posterior distribution of growth values which can

explain the behavior of lineage L. Often these distributions are wide, due to sparse

sampling and noise over few datapoints. Additionally, some lineages may not fit an

exponential growth model at all, due to being outcompeted by newly introduced

lineages or simple epidemiological noise, leading to highly variable estimates of

growth. Accordingly, we compute the 0.025 and 0.975 quantiles (95% CI) for this

distribution for each lineage L and sort the output by the lower quantile. Lineages

with a large positive value for the lower quantile will reliably resemble a high

exponential growth model and are more likely to be of epidemiological concern.
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All code for our modeling and reporting process can be found at

https://github.com/jmcbroome/lineage-manuscript (DOI: 10.5281/zenodo.7983421)

and https://github.com/jmcbroome/autolin (DOI: 10.5281/zenodo.7566921).

3.10: Discussion

We have presented a new index-based method, capable of both expanding

existing dynamic lineage systems and generating novel lineage designations for

understudied or emerging pathogens. Originally designed for the demands of the

SARS-CoV-2 pandemic, this approach can be easily applied to any rooted tree with

branch lengths scaled by genetic distance. Our implementation is efficient and

includes several parameters to adjust the behavior of the metric, including prioritizing

the labeling of specific mutations or specific samples and only considering mutations

with effects on specific proteins.

Nonetheless, our approach does exhibit a few potential issues, shared with

many lineage nomenclatures. First, it is defined with respect to a specific phylogeny.

This can be problematic when attempting to maintain lineages over time, as new data

is collected and the phylogeny is updated. Phylogenetic inference is naturally

uncertain, and optimization of an existing phylogeny may alter lineage relationships

or invalidate identified lineages. In rare cases, lineages may need to be retracted or

redefined, as is the case for current Pango lineages when new data suggest alternative

relationships than the one originally used for lineage designation. While these

lineages are generally stable (see Appendix 3), spuriously duplicated samples due to
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redundancy between data sources can lead to inflated lineage counts or spurious

lineage definitions. Appropriate filters, such as removing low-quality or duplicate

samples from the input tree, will be necessary to ensure the stability and viability of

these lineage systems.

Second, SARS-CoV-2 recombines at low rates (Jackson et al. 2021; Turakhia

et al. 2022). The apparently long branches which occur on the phylogeny as a result

of recombination between genetically distinct lineages will often be picked up by this

method as a new lineage annotation, but the ancestry of that lineage annotation cannot

be accurately represented by a single tree topology. In this scenario, a recombinant

lineage may have to be retracted or renamed. Alternatively, lineages identified as

recombinants can receive special designation names. We have previously developed

methods for comprehensively identifying recombinant lineages within SARS-CoV-2

phylogenies (Turakhia et al. 2022) that may facilitate this effort in the future.

One fundamental challenge for SARS-CoV-2 genomic analysis is variation in

sequencing among different parts of the world. The United States of America and the

United Kingdom contribute a massive quantity of data to public repositories

compared to many other countries, and so strains of the virus specifically circulating

in these countries may appear more important if this bias is not corrected for. We

provide options for correction of these biases at multiple steps of our pipeline. First,

we provide methods for users to indicate the base weight that should be assigned to

individual samples, allowing users to emphasize samples from particular regions or

with particular attributes for representation. We additionally provide a built-in
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category-frequency-based weighting scheme for these samples, where samples

labeled as from being from a rare group are given proportionally higher weight; we

have applied this with country as the category, leading to the designation of lineages

specifically representing strains from less well surveilled countries. Second, we

explicitly build regional sequencing bias into our growth modeling, by stratifying the

growth curve by country and normalizing to the total sequence contribution from that

country for that time period. While this may introduce some noise into the model, it

means that rapid growth in two countries with uneven sequencing will be treated

equally. In any case, user discretion in sample weighting parameters used will be

important to mitigate regional sequencing bias.

SARS-CoV-2 is likely to become an endemic pathogen, similar to the

influenza virus (Otto et al. 2021). Accordingly, there is likely to be a long-term

pattern of replacement of existing strains, demanding ongoing designation of new

lineages for effective monitoring of pathogen diversity (Rambaut et al. 2020).

Investing into infrastructure to reduce manual curation will lead to long-term

consistency and effectiveness of designation. Additionally, it is likely that automated

approaches will be faster than many human-based systems, thereby promoting

stability of public and scientific discourse by labeling potentially important lineages

before they are widespread and contributing to major epidemiological patterns

worldwide. The results we present here may serve for consistent, immediate

SARS-CoV-2 lineage designation for years to come.
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Overall, this approach for lineage designation is generic, flexible, and

applicable to future datasets with unclear nomenclature or expansive phylogenies.

With global pathogen sequencing on the rise, and generalized toolkits for the creation

and maintenance of dynamic lineage systems will be critical for future public health

challenges.

Conclusion

In the first chapter, I outlined the mutation annotated tree (MAT) and

described the toolkit I designed for the manipulation of these structures. matUtils,

along with the rest of the Online Phylogenetics Toolkit, was quickly adopted by the

SARS-CoV-2 research community, with more than 250,000 downloads as of January

2023. BTE further expanded the capabilities of our codebase by making it accessible

in Python, one of the most popular scientific programming languages.

In the second chapter, I presented a heuristic approach I developed for the

identification of geographically localized SARS-CoV-2 transmission clusters.

Standard tools were designed for small, sparse datasets with no demand for

immediate output, and failed to produce rapid results to inform public health action.

My method and the accompanying website, ClusterTracker, were adopted as well by

the SARS-CoV-2 public health community, and used directly by the California

Department of Public Health.

In the third chapter, I described an information theory informed approach to

the identification of novel pathogen lineages. While the major implementation of this
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method was focused on identifying and labeling new SARS-CoV-2 strains, the core

approach itself is easily generalized to arbitrary pathogens. I applied it to generate

novel nomenclature for two understudied pathogens, VEE and CHIKV, demonstrating

its capacity to serve as a general framework for the definition of subspecies pathogen

nomenclature. This method was adopted by the Pango team and has become part of

the core workflow that underlies almost all SARS-CoV-2 track and trace procedures.

The COVID-19 pandemic has been an incredibly challenging time for many

people around the world. It has been incredibly limiting in some respects; compared

to most graduate students, I have had little opportunity to attend conferences and

network with other academic researchers. I was largely unable to pursue my original

research program and day to day collaboration with my fellow graduate students was

rare. For me, however, it was also a great opportunity. The COVID-19 bioinformatics

bottleneck opened opportunities for high impact publications and contributions. Most

graduate students can only expect their theses to contribute in some small way to a

niche area of interest; my work, by contrast, has had direct, worldwide impact. I have

been given opportunities to work with public health groups and international

researchers afforded to few. This work will form the foundation of public health

genomics for years to come.
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Appendix 1

Chapter 1 Supplementary Material

Group
Number of
clades/lineages

Training
Size Test Size

Mean
Training
Accuracy

Minimum
Training
Accuracy

Mean
Test
Accuracy

Minimum
Test
Accuracy

Nextstrain 14 651446 184877 0.973 0.972 0.971 0.97

Pangolin 895 651446 184877 0.881 0.881 0.881 0.88

Table A1.1: matUtils annotate can quickly and effectively assign clade lineage
roots. This table was generated by taking training data associated with Nextstrain
clades and Pango lineages from our public repository (lineageToPublicName.gz and
cladeToPublicName.gz), splitting the data 80/20 into training and test sets, and
assigning roots based on the 80% selected training data with matUtils annotate on the
06-09-2021 public MAT tree. Accuracy was scored as the percentage of the training
or test set which matches Nextclade or Pangolin assignments. This process was
repeated 9 times and mean and minimum accuracy values were collected.

Program Command Time (M:S) Memory (kB)

matUtils
matUtils summary -i
public-2021-06-09.all.masked.nextclade.pangolin.pb 0:05.65 987616

matUtils

matUtils extract -i
public-2021-06-09.all.masked.nextclade.pangolin.pb
-S sample-paths.txt 0:13.90 977792

matUtils

matUtils summary -i
public-2021-06-09.all.masked.nextclade.pangolin.pb
-A 0:15.87 984360

newick_utils

nw_stats
public-2021-06-09.all.masked.nextclade.pangolin.nw
k 0:01.14 218920

Table A1.2: Time and memory usage to summarize the tree.

92



Program Command Time (M:S) Memory (kB)

matUtils

matUtils extract -i
public-2021-06-09.all.masked.nextclade.pangolin.pb
-R -t
public-2021-06-09.all.masked.nextclade.pangolin.res
olved.nwk 0:09.43 1224652

ape

t1=read.tree("public-2021-06-09.all.masked.nextclad
e.pangolin.nwk") t1b<-multi2di(t1)
write.tree(t1b,file="public-2021-06-09.all.masked.ne
xtclade.pangolin.resolved.nwk") 37:30.56 735688

Table A1.3: Time and memory usage to resolve all polytomies in the tree.

Program Samples Command Time (M:S) Memory (kB)

matUtils 70

matUtils introduce -i
public-2021-06-09.all.masked.nextclade.
pangolin.pb -s spanish_samples.txt -o
spanish_introductions.txt 0:25.93 976540

matUtils 13302

matUtils introduce -i
public-2021-06-09.all.masked.nextclade.
pangolin.pb -s aus_samples.txt -o
aus_introductions.txt 0:31.23 982104

matUtils 39678

matUtils introduce -i
public-2021-06-09.all.masked.nextclade.
pangolin.pb -s welsh_samples.txt -o
wales_introductions.txt 0:33.67 1003856

matUtils 296257

matUtils introduce -i
public-2021-06-09.all.masked.nextclade.
pangolin.pb -s usa_samples.txt -o
usa_introductions.txt 0:37.12 1271304

matUtils 398396

matUtils introduce -i
public-2021-06-09.all.masked.nextclade.
pangolin.pb -s british_samples.txt -o
british_introductions.txt 0:33.63 1338316

Table A1.4: Time and memory usage to calculate introduction statistics for

subsets of samples within the tree.
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Program Command Time (M:S)
Memory
(kB)

matUtils

matUtils extract -i
public-2021-06-09.all.masked.nextclade.pangolin.pb
-t
public-2021-06-09.all.masked.nextclade.pangolin.nw
k 0:06.38 976628

matUtils

matUtils extract -i
public-2021-06-09.all.masked.nextclade.pangolin.pb
-v
public-2021-06-09.all.masked.nextclade.pangolin.vcf 25:38.85 23406404

Table A1.5: Time and memory usage to convert into Newick and VCF formats.

Replicate 1 Replicate 2 Replicate 3 Average

Program
Samples
Calculated Time (M:S)

Memory
(kB) Time (M:S)

Memory
(kB) Time (M:S)

Memory
(kB)

Time
(M:S)

Memory
(kB)

matUtils 100 1:23.65 2015864 1:18.13 1905420 1:17.99 1798000 01:19.9 1906428

matUtils 500 6:21.72 2166900 6:23.78 2159228 6:21.05 2406620 06:22.2 2244249

matUtils 1000 12:45.96 2395516 12:41.89 2201184 12:30.68 3130644 12:39.5 2575781

Table A1.6: Time and memory usage to determine equally parsimonious

placements for subsets of samples in the tree.

The above tables, along with some additional benchmarking information too lengthy

for inclusion here, can be found at 10.5281/zenodo.7566973.
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Figure A1.1: Our global phylogeny contains 1,234,612 samples as of July 30,
2021. (A): Our database, containing all high-quality publically available
SARS-CoV-2 whole-genome sequences and their clade assignments, is updated daily.
As of July 30, our phylogeny contains 1,234,612 sequences with a total parsimony
score of 1,058,062. Sequences that have 5 or more equally parsimonious placements
on the tree are removed at each build (Supplementary Methods), so the total samples
sometimes drop during successive builds. (B): Distribution of samples from July 30,
2021, phylogeny based on their country of origin. A few countries, such as the United
Kingdom and the United States, have contributed a disproportionately large fraction
of sequences to the public SARS-CoV-2 databases.
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Appendix 2

Chapter 2 Supplementary Material

Sample Count Samples In-Region Time (seconds)

100 25 0.02106654644

1000 250 0.03384798765

10000 2500 0.2106143832

50000 12500 0.9356530309

100000 25000 1.890872002

500000 125000 9.770167351

1000000 250000 19.75107902

2500000 625000 37.4885782

Table A2.1: Basic benchmarking information for our method. For this
benchmark, we took the public tree obtained on 11-08-21 and randomly generated
subtrees containing a set number of samples. We further selected at random 25% of
these samples to be considered in-region, under a single region model. We find that
runtime is approximately linear with the number of samples in the tree (which, in
turn, is correlated with the number of nodes in the tree). Even for a tree of two and a
half million samples and a region with 625,000 samples, a single region on a single
thread doesn’t take more than one minute to compute our heuristic for.
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Scale
Migration
Rate

Nodes
Collapsed

Mutations
Per Node Parsimony ARI Tree Depth IAC

0.001 0.001 569615 1.24 2476860 0.94 19.85 0.998

0.001 0.005 589133 1.16 2316475 0.93 13.8 0.991

0.001 0.01 580482 1.2 2393013 0.89 14.16 0.984

0.001 0.05 583369 1.2 2399857 0.15 17.65 0.943

0.005 0.001 209173 6.08 12166774 0.99 26.86 0.998

0.005 0.005 212422 6.0 11970552 0.95 28.76 0.993

0.005 0.01 220101 5.754 11494897 0.91 25.35 0.987

0.005 0.05 204296 6.47 12746185 0.47 28.995 0.950

0.01 0.001 116730 12.21 24416981
0.99

8 28.54 0.998

0.01 0.005 123025 11.38 22754698 0.95 27.53 0.993

0.01 0.01 111625 12.78 25561431 0.43 30.55 0.988

0.01 0.05 118963 12.1 24166836 0.43 28.47 0.951

Table A2.2: Results from a set of simulations generated via PhastSim and VGsim
(see Methods). For reference, the real tree that we considered in this work had an
overall parsimony of 4,847,954 and a mean tree depth of 35. “Scale” is the parameter
passed to phastSim --scale, representing a scalar applied to the branch lengths to
rescale. Smaller values of scale imply fewer mutations per site per branch. “Migration
Rate” is a reciprocal value representing the rate of migration events between two
equally-sized “regions” under simulation. “Nodes Collapsed” is the number of nodes
which have no mutations on their branch after phastSim, resulting in their collapse
with their parent. “Parsimony” is the total tree parsimony score, or the count of all
mutations across all branches, and also reflects mutations per node and scale. “Tree
Depth” is the mean distance in mutations between the root of the tree and a leaf. ARI,
or adjusted rand index, is the computed adjusted rand index for sample cluster labels
on the final collapsed tree versus the true clusters. True clusters here are defined as
the set of samples which share a single true migration event into their region at their
common ancestor. IAC stands for “internal assignments correct”, or the proportion of
internal nodes which have their true regional states correctly assigned by the heuristic
on the uncollapsed, bifurcating tree.
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Scale
Migration
Rate

Nodes
Collapsed

Mutations
Per Node

Mutation
Parsimony IAC

Parsimony
IAC ARI

Parsimony
ARI

0.0001 0.01 1114193 0.11 223737 0.99 0.94 0.0031 0.00091

0.0001 0.05 1137090 0.12 230852 0.95 0.83 0.0033 0.173

0.0001 0.1 1203907 0.11 214417 0.92 0.77 0.0087 0.0096

0.0001 0.25 1287683 0.12 227881 0.88 0.76
0.0006

7 0.018

0.0005 0.01 940046 0.56 1112307 0.994 0.96 0.77 0.0069

0.0005 0.05 976594 0.56 1116632 0.96 0.82 0.43 0.017

0.0005 0.1 1084199 0.48 968699 0.94 0.83 0.04 0.0239

0.0005 0.25 1188100 0.49 971192 0.895 0.81 0.006 0.028

0.001 0.01 766682 1.19 2377529 0.99 0.90 0.85 0.0015

0.001 0.05 910117 0.99 1987227 0.98 0.85 0.51 0.01

0.001 0.1 909412 1.09 2183873 0.95 0.84 0.23 0.018

0.001 0.25 1149881 0.81 1631128 0.90 0.84 0.021 0.021

0.005 0.01 494106 5.71 11433065 0.99 0.99 0.94 0.115

0.005 0.05 565153 5.61 11216328 0.97 0.95 0.53 0.51

0.005 0.1 525005 6.68 13350037 0.96 0.95 0.33 0.43

0.005 0.25 960374 3.79 7576739 0.913 0.9 0.0997 0.13

Table A2.3: Efficacy on Simulated Data. This table is similar to Table A2.2 with
several columns in common, including “scale”, “migration rate”, “nodes collapsed”,
and “mutations per node”. For clarity here tree parsimony is referred to as “mutation
parsimony”. “IAC” again refers to “internal assignments correct” on the full, correct,
bifurcating tree structure, from our method and from parsimony reconstruction
respectively. Our method is better than parsimony across most conditions at correctly
recovering internal node states under the simulated parameters. The Adjusted Rand
Index (ARI) is a measure representing how effectively true descendent clusters were
recaptured, with scores closer to 1 being more accurate. Again, our method
outperforms parsimony when there are few mutations per node; once the tree is
mostly resolved with several mutations per node, their efficacy becomes comparable.
Overall, our method is more robust than parsimony approaches when applied to
phylogenetic trees with few mutations relative to total sampling, as in the case of
SARS-CoV-2.
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Tables A2.4, A2.5 and Data A2.1: Inferred introduction counts to each of the fifty
United States from international sources, inferred introduction counts between each
of the fifty United States, and full sample accreditation, respectively. These large data
files can be found at 10.5281/zenodo.7566973.

Appendix 3

Chapter 3 Supplementary Material

A3.1: Lineage Stability Analysis

To identify any potential issues with respect to the stability of lineages defined

by Autolin with respect to the SARS-CoV-2 tree, we identified new lineages via

Autolin and tracked the phylogenetic placements of the associated samples over the

following month. We began with the global public phylogeny as of 2023-04-01, and

computed a set of 65 new lineage annotations with Autolin. The new designations

covered 8,951 samples, with a median size of 50 samples per lineage and the majority

being sub-variants of the XBB lineage. We then transferred these designations to each

successive daily tree through 2023-04-30 using matUtils annotate and tracked lineage

membership of the initial 8,951 samples. By the end of the month, the set of samples

covered by all 65 lineages grew to 11,877.

Over the course of the month, only 28 samples changed lineages (0.23% of

samples), affecting 4 of the 65 designations. auto.XBB.1.5.40 was the primary

affected lineage, with 9 samples being added to it and 7 samples being removed, but

these 16 samples only constitute 0.7% of the 2119 samples in this large lineage. A full

table of samples which change lineages can be found in Table A3.2. Overall, we
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observe high stability in our lineage designations with regards to samples that remain

consistently present on the tree.

However, some of these apparent lineage changes and related stability issues

result from duplicated, dropped, or renamed sample data. Several hundred samples

were dropped from the global phylogeny on 2023-04-13 and 2023-04-14, affecting 38

of the 65 lineages. In some cases, this resulted in an apparent decline in lineage

membership; the lineage designation “auto.XBB.1.29.1” began with 12 samples on

2023-04-01, but declined to only 7 by 2023-04-30. It is likely that the majority of

these were replaced with a new name; for example, the sample OX451312.1, a

member of auto.XBB.1.29.1, was dropped from the tree on 2023-04-13. Present

throughout this period, also within auto.XBB.1.29.1, was the sample

Scotland/SCOT-26390/2023|OX451312.1|2023-02-08, with the same tag and date of

collection. It’s likely that the inclusion of OX451312.1 represents a spurious

duplication of this sample within the global phylogeny, perhaps because it was

uploaded separately to different public databases. Of the 12 original samples of

auto.XBB.1.29.1, 5 are dropped on the 13th while matching fuller names with the

same collection date and tag information in auto.XBB.1.29.1. Therefore, the original

12 sample set represents an inflated, spurious group and this marginal lineage

designation must be dropped or revised. It is worth noting, however, that this lineage

remained present throughout the period and the deduplicated samples remained stable

members of this group.
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SARS-CoV-2 is a densely sampled pathogen and most branches are well

supported by many samples worth of data. Additionally, samples incorporated into

the SARS-CoV-2 global public phylogenetic trees used for lineage designation are

rigorously quality filtered to remove low quality consensus sequences. Generally,

lineage designations of more than a few dozen samples are largely stable, with <1%

of samples overall changing designations over the course of weeks. Even in the case

of recombination, where the base of a lineage cannot be properly represented in a

tree, the group itself is generally stable and cohesive. All code for this analysis can be

found at https://github.com/jmcbroome/lineage-manuscript (DOI:

10.5281/zenodo.7983421).

A3.2: Methods for Application to Other Pathogens

To validate that this method can be applied to pathogens other than

SARS-CoV-2, we selected two nextstrain instances for Chikungunya virus and the

Venezuelan Equine Encephalitis complex viruses, which are currently classified based

on their geography and serology, respectively. We applied our generalized

implementation (https://github.com/jmcbroome/automated-lineage-json (DOI:

10.5281/zenodo.7566925)) under default settings for the Auspice JSON files of each

virus (CHIKV Nextstrain build 5.1 available at

https://nextstrain.org/groups/ViennaRNA/CHIKVnext (doi:10.5281/zenodo.7514289)

and VEE Nextstrain build 2.1 available at

https://nextstrain.org/groups/ViennaRNA/VEEnext (doi:10.5281/zenodo.7524848)) to
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obtain lineage assignments. These Nextstrain JSON were generated by the Augur

pipeline (nextstrain-augur v19.1.0, treetime v 0.9.4, iqtree v2.2.0). We then

downloaded the nexus file with annotations from the new JSON file from Nextstrain

and visualized and compared the annotations using FigTree v.1.4.4. Tree figure

comparisons were made by extracting them in pdf format as displayed in FigTree,

mirrored and aligned on a photo editing software. Taxon labels were colored

according to the lineage assignment and were replaced with bars representing the

color of the lineage for best visualization.

There was no available Auspice build for the ZIKV nomenclature (Seabra et

al 2022). We therefore had to construct a MAT to make a file compatible with

Autolin. We obtained the phylogeny directly from the authors and sample names and

lineage assignments from their Supplementary Table 3. We downloaded sample

sequences using the Entrez API and aligned them to the same Zika reference

(KJ776791) used by Seabra et al with minimap2 (Li et al 2018) to produce a VCF. We

then combined this VCF and their likelihood phylogeny into a MAT with likelihood

branch lengths using UShER (Turakhia et al 2021). We applied Autolin to this MAT

with a minimum lineage size of 3 and a minimum distinction (distance in total branch

length from the last annotated lineage) of 0. Finally, we extracted the new lineage

annotations for each sample using matUtils (McBroome et al 2021). Strictly, the

mutations inferred did not affect this process, as the GRI is dependent on the branch

lengths, but constructing the MAT was necessary to make the data compatible with

the Autolin implementation of the GRI. All code to reproduce this process can be
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found at https://github.com/jmcbroome/lineage-manuscript/zika-lineages (DOI:

10.5281/zenodo.7983421). Figure 3.3 was produced as described above with FigTree.

We compared the automated lineage assignments with the previous

nomenclature using the Adjusted Rand Index (ARI). We randomly selected nodes in

the amount of the number of categories found for each annotation to create a

distribution of random ARI’s to evaluate the robustness of the method. By selecting

random nodes within the tree and taking their descendants to construct our null

comparisons, we account for natural correlation from the tree structure, while the

Adjusted Rand Index itself accounts for variations in group sizes. We then compute

the percentile of the true Adjusted Rand Index of our lineage proposals against the

existing nomenclature from the permuted null distribution, yielding the reported

p-values. All code for this can be found at

https://github.com/jmcbroome/lineage-manuscript (DOI: 10.5281/zenodo.7983421).
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Figure A3.1: Pango Lineage Hierarchy. This figure displays the hierarchical and
serial relationships among the defined Pango lineages as of 2022-12-11. Each
individually colored tip (dot) on this tree represents a specific Pango lineage.

Figure A3.2: Jaccard Index Distribution for Pango Lineages. The distribution is
highly bimodal, with a plurality of lineages being perfectly or partially matched by an
automatically identified lineage, but with a substantial body of Pango lineages with
no strong matching label.
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Figure A3.3: Pango Jaccard Indices by Size.We generally find that larger lineages
are recaptured well by Autolin. Pango lineages below size 10 (1 on the log10 scale)
are poorly recaptured because Autolin filters lineage proposals of less than 10
samples by default.
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Figure A3.4: Comparison of CHIKV lineage annotations. Comparison of the
geography lineage designation (left tree) with automated lineage designation (right
tree) of Chikungunya virus, based on a tree previously generated by the Augur
pipeline (Huddleston et al 2021) and visualized on FigTree v.1.4.4.
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Figure A3.5: Comparison of VEE lineage annotations. Comparison of the serology
subtype designation (left tree) with automated lineage designation (right tree) of the
Venezuelan equine encephalitis virus complex (VEE), based on a tree previously
generated by the Augur pipeline (Huddleston et al 2021) and visualized on FigTree
v.1.4.4. According to the current nomenclature, VEE encompasses Everglades virus
(EVEV), Mucambo virus (MUCV), Tonate virus (TONV), Pixuna virus (PIXV),
Cabassou virus (CABV), Rio Negro virus (RNV), Mosso das Pedras virus (MDPV),
Pirahy virus (PIRAV) and the Venezuelan equine encephalitis virus (VEEV) . The
VEEV clade is labeled in the tree.
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Lineage
Name

Parent
Lineage Size

Exponential
Growth
Coefficient
CI

Earliest
Appearance

Latest
Appearance Regions

Nucleotide
Changes

Amino
Acid
Changes

auto.BQ.
1.1.8.1 BQ.1.1.8 23 [0.54 1.48] 2022-10-25 2022-12-02 England

G26526T,
C29353T,
A13581G M:A2S

auto.CH.
1.1.3 CH.1.1 32 [0.33 0.75] 2022-10-17 2022-12-05 England

C28093T,C
21811T,G1
3441A

ORF8:S
67F

auto.BQ.
1.1.24.1

BQ.1.1.2
4 102 [0.33 0.53] 2022-11-01 2022-12-03 England

C5407T,G
25459T

ORF3a:
A23S

auto.BN.
1.4.1 BN.1.4 183 [0.22 0.33] 2022-10-16 2022-12-03

England,
USA,
and
Scotland

C14318T,
G10364A

ORF1ab:
V3367I,
ORF1ab:
T4685I

auto.BQ.
1.1.13.1

BQ.1.1.1
3 65 [0.22 0.5 ] 2022-10-21 2022-12-04

Scotland
and
England G13822A

ORF1ab:
V4520I

auto.BQ.
1.1.12 BQ.1.1 176 [0.210.35] 2022-10-16 2022-12-03

USA,
Scotland,
and
England

C19547T,C
25821T

ORF1ab:
S6428L

auto.BQ.
1.10.2 BQ.1.10 55 [0.2 0.47] 2022-10-17 2022-12-04

USA and
England

A1320C,C
3040T,C92
86T

ORF1ab:
E352A

auto.BQ.
1.5.1 BQ.1.5 71 [0.19 0.36] 2022-10-16 2022-12-05

USA and
England

G25855T,
C823T,T82
00C

ORF3a:
D155Y

auto.CH.
1.1.2.1 CH.1.1.2 16 [0.13 1.12] 2022-10-28 2022-12-02 England A3569G

ORF1ab:
S1102G

auto.BQ.
1.8.3 BQ.1.8 109 [0.12 0.23] 2022-10-17 2022-12-03

England
and
Northern
Ireland A21137G

ORF1ab:
K6958R

auto.BQ.
1.2.1 BQ.1.2 145 [0.11 0.24] 2022-10-16 2022-12-02

England
and USA

G19677T,
C26147T,C
3318T,T24
163C

ORF3a:S
252L,OR
F1ab:P1
018L,OR
F1ab:Q6
471H

auto.BA.
5.1.13 BA.5.1 299 [0.11 0.14] 2022-10-16 2022-12-05

England
and USA

G25352T,
G15451A,
A4595G,C
28567T

ORF1ab:
T1444A,
ORF1ab:
G5063S,
S:V1264
L
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auto.BA.
4.6.3.1 BA.4.6.3 36 [0.10 0.40] 2022-10-17 2022-12-04 England

T11377C,T
4839C,G76
75T

ORF1ab:
I1525T

auto.BA.
5.2.13.1

BA.5.2.1
3 138 [0.08 0.16] 2022-10-16 2022-12-03 England G7743T

ORF1ab:
S2493I

auto.BN.
1.2.2 BN.1.2 31 [0.08 0.51] 2022-10-19 2022-12-01 England

C2574T,C1
915T

ORF1ab:
T770I

auto.BA.
5.2.9.1 BA.5.2.9 255 [0.08 0.15] 2022-10-16 2022-12-04

USA and
England

A27250G,
C14697T,
A12061C,
C10369T,C
18570T,C5
806T,A226
00T

ORF1ab:
E3932D,
S:R346S
,ORF6:I
17V

auto.BQ.
1.18.1 BQ.1.18 22 [0.03 0.53] 2022-10-16 2022-12-06 England C15017T

ORF1ab:
A4918V,
E:S71P

auto.BQ.
1.10.1.1

BQ.1.10.
1 22

[-0.0026
0.73] 2022-11-06 2022-12-05 England

G23401T,
A3481T

S:Q613
H

auto.BE.1
.2.2 BE.1.2 79

[-0.047
0.061] 2022-10-16 2022-12-02 England

C5183T,C2
7393T,C99
79T

ORF1ab:
P1640S

auto.BQ.
1.1.22.1

BQ.1.1.2
2 25

[-0.052
0.72] 2022-11-08 2022-12-01 England

A2977G,C
27213T,C1
9185T,C16
726T

ORF1ab:
H5488Y

auto.BN.
1.3.1.1 BN.1.3.1 28

[-0.107
0.213] 2022-10-16 2022-12-01 England

G20578T,
C3787T,T7
456C

ORF1ab:
V6772L

auto.XBB
.3.2 XBB.3 30 [-0.28 0.27] 2022-10-18 2022-12-02 USA

C29614T,T
22092C,C2
8054T,C81
46T

ORF8:S
54L,S:M
177T

auto.BA.
5.3.5.1 BA.5.3.5 27 [-0.31 0.60] 2022-11-08 2022-12-03 England

C22993T,C
7858T,T15
92C

ORF1ab:
S443P

auto.CR.
1.2 CR.1 10 [-0.56 0.97] 2022-10-31 2022-12-01 England

G15957T,T
22308C S:L249S

Table A3.1: Output Report for 24 New Lineage Designations. This table includes

basic statistics for 24 new lineage designations actively sampled in December 2022.
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Strain Moved Lineage On Date

IND/2947/2023|OQ701301.1|2023-03-10 To auto.XBB.1.16.1.1 2023-04-02

Scotland/SCOT-24049/2022|OX435521.1|2022-12-31 From auto.B.1.1.529.6 2023-04-02

Scotland/SCOT-26462/2023|2023-02-21 To auto.XBB.1.5.8.1 2023-04-02

Scotland/SCOT-26462/2023|OX451476.1|2023-02-21 To auto.XBB.1.5.8.1 2023-04-15

Scotland/SCOT-26819/2023|2023-02-21 To auto.XBB.1.5.8.1 2023-04-02

Scotland/SCOT-26819/2023|OX453590.1|2023-02-21 To auto.XBB.1.5.8.1 2023-04-15

Scotland/SCOT-26821/2023|2023-02-21 To auto.XBB.1.5.8.1 2023-04-02

Scotland/SCOT-26821/2023|OX453648.1|2023-02-21 To auto.XBB.1.5.8.1 2023-04-15

Scotland/SCOT-27434/2023|OX457315.1|2023-03-02 To auto.B.1.1.529.6 2023-04-02

Scotland/SCOT-28483/2023|2023-03-12 To auto.XBB.1.5.8.1 2023-04-06

Scotland/SCOT-28483/2023|OX462874.1|2023-03-12 To auto.XBB.1.5.8.1 2023-04-21

USA/CA-CDC-QDX48192978/2023|OQ728437.1|2023-03-20 To auto.XBB.1.5.40 2023-04-05

USA/CA-CDC-QDX48192979/2023|OQ728624.1|2023-03-20 To auto.XBB.1.5.40 2023-04-05

USA/FL-CDC-QDX47418754/2023|OQ644056.1|2023-03-01 From auto.XBB.1.5.40 2023-04-02

USA/FL-CDC-QDX48193288/2023|OQ782385.1|2023-03-21 From auto.XBB.1.5.40 2023-04-17

USA/FL-CDC-QDX48587517/2023|OQ827304.1|2023-03-31 To auto.XBB.1.5.40 2023-04-22

USA/LA-BIE-LSUH003690/2023|OQ736767.1|2023-03-20 To auto.XBB.1.5.40 2023-04-06

USA/LA-BIE-LSUH003692/2023|OQ736769.1|2023-03-22 To auto.XBB.1.5.40 2023-04-06

USA/M00621433-F1-1/2023|OQ820697.1|2023-03-29 From auto.XBB.1.5.40 2023-04-20

USA/NJ-CDC-QDX48685195/2023|OQ827907.1|2023-04-03 To auto.XBB.1.5.40 2023-04-22

USA/NV-CDC-LC1035085/2023|OQ808432.1|2023-03-30 To auto.XBB.1.5.40 2023-04-19

USA/NY-CDC-QDX47311927/2023|OQ610887.1|2023-02-27 From auto.XBB.1.5.40 2023-04-02

USA/PA-CDC-QDX46827201/2023|OQ577387.1|2023-02-14 From auto.XBB.1.5.40 2023-04-02

USA/PA-CDC-QDX47973735/2023|OQ713000.1|2023-03-15 From auto.XBB.1.5.40 2023-04-02

USA/TX-CDC-QDX47418188/2023|OQ643781.1|2023-02-28 To auto.XBB.1.5.40 2023-04-02

USA/VA-CDC-LC1031818/2023|OQ734369.1|2023-03-25 From auto.XBB.1.5.40 2023-04-06

USA/WA-CDC-UW23032239573/2023|OQ833295.1|2023-03-22 To auto.XBB.1.5.40 2023-04-22

USA/WI-CDC-VSX-A065209/2023|OQ748644.1|2023-03-22 To auto.XBB.1.16.1.1 2023-04-08

Table A3.2: 28 Samples that Change Lineages between 2023-04-01 and
2023-04-30. It’s likely that some of these represent redundant or mislabeled samples,
such as Scotland/SCOT-26462/2023|2023-02-21 and
Scotland/SCOT-26462/2023|OX451476.1|2023-02-21. auto.XBB.1.5.40 is the most
affected lineage, but these samples are <1% of its constituency.
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Appendix 4

Fine-Scale Position Effects Shape the Distribution

of Inversion Breakpoints in Drosophila

melanogaster

[This appendix has been adapted from publication, “Fine-Scale Position Effects

Shape the Distribution of Inversion Breakpoints in Drosophila melanogaster”

(McBroome et al 2020, Genome Biology and Evolution)]

A4.1: Context

The following section is work I completed over the course of 2019 and

published in early 2020, before I pivoted my research program towards addressing the

pandemic bioinformatics bottleneck. Accordingly, it has little to no relation with the

main body of this dissertation. As it represents published scientific work I completed

during my time at UCSC, I chose to include it in this appendix. It represents an

analysis examining the effects of inversion events on local regulatory landscapes and

how that might inform genome structural evolution in Drosophila melanogaster.
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A4.2: Chromosomal Inversions

Chromosomal inversions, which are large genomic regions that are generated

by double-strand breakage and repair in reverse orientation, are widespread in many

natural populations. These rearrangements have a long history of study in Drosophila

species (Dobzhansky 1962; Sturtevant 1917). The primary theories explaining the

prevalence of inversions in natural populations are that suppressed recombination

over the inverted region is favored by natural selection (Corbett‐Detig & Hartl 2012;

Fuller et al 2019; Kapun et al 2016a; Kirkpatrick and Barton 2006; Langley et al

2012; Mukai 1971; Sturtevant and Beadle 1936). Alleles contained in inversions can

interact epistatically or additively to maintain a complex polygenic phenotype such as

body size, stress resistance, fecundity, and lifespan (Hoffmann et al 2004; Hoffmann

and Rieseberg 2008; Kirkpatrick 2010). Inversions that suppress recombination

between alleles that contribute to a beneficial phenotype can be selected for.

Biogeographic data supports this hypothesis; natural populations of Drosophila

melanogaster maintain inversion frequency clines strongly correlated with climatic

clines (Kapun et al 2016a; Kapun et al 2016b; Knibb 1982; Mettler et al 1977; Rane

et al 2015; Simões and Pascual 2018). Furthermore, an ever expanding set of taxa

appear to contain polymorphic inversions that are associated with adaptive

phenotypes (Butlin et al 1982; Huynh et al 2011; Oneal et al 2014). It is increasingly

accepted that a major source of positive selection on chromosomal inversions is the

maintenance of linkage among alleles that are favorable in similar contexts.
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Whereas the potential fitness benefits of maintaining linkage among

synergistic alleles are well established, the impacts of inversion breakpoints on the

individuals that carry them are not well understood. Nonetheless, these impacts are

likely to play an important role in shaping evolutionary outcomes for new

arrangements. An inversion breakpoint that disrupts a key gene sequence could result

in the death or sterility of the individual that carries it, preventing the inversion from

reaching polymorphic frequencies in natural populations. Accumulated evidence is

consistent with the idea that an inversion’s breakpoint positions might have large

impacts on its fitness. The distribution of polymorphic inversion breakpoints along

the genome is not random (Calvete et al 2012; Gonzalez et al 2007; Orengo et al

2015; Pevzner and Tesler 2003; Puerma et al 2014; Puerma et al 2016b; Tonzetich et

al 1988). In fact, many apparently independently formed inversions seem to precisely

share breakpoint locations (Gonzalez et al 2007; Puerma et al 2014; Pevzner and

Tesler 2003; Corbett-Detig et al 2019). Even when inversion breakpoints are not

precisely reused at the molecular level, their broad-scale distributions across the

genome are non-uniform (Pevzner and Tesler 2003; Ranz et al 2007). Though this

pattern is well-established, the factors underlying breakpoint localization and the

fitness of new arrangements are poorly understood.

There are two mechanisms that shape the fine-scale distribution of inversion

breakpoints. First, mutational biases are factors that affect the probability that an

inversion breakpoint occurs at a specific genomic location (Calvete et al 2012;

Guillen and Ruiz 2012; Pevzner and Tesler 2003; Tonzetich et al 1988). In many
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species inversions occur through ectopic recombination between repetitive sequences,

an example of a mutational bias (Guillen and Ruiz 2012), though this is relatively rare

in the melanogaster subgroup (Ranz et al. 2007; Corbett-Detig and Hartl 2012).

Additionally, some evidence indicates that physical instability due to unstable

secondary structure or local chromatin environment may also bias breakpoint

localization (Falk et al 2010). Second, specific breakpoint positions can affect the

fitness of a new arrangement. These “position effects” have been identified in a

variety of organisms (Castermans et al 2007; Frischer et al 1986; Hough et al 1998;

Lakich et al 1993; Puig et al 2004). Deleterious effects associated with breakpoint

positions could hypothetically be as large as positive impacts from the maintenance of

allele complexes contributing to polygenic traits. Deleterious position effects are

therefore expected to limit the number of individual inversions that could evolve and

maintain polygenic phenotypes in the population.

There are several specific factors that could influence the fitness of inversion

breakpoints. First, disruption of gene sequence and enhancer-promoter interactions

can cause mRNA truncation, chimeric transcripts, or misregulation of genes

overlapping and near to breakpoints (Castermans et al 2007; Frischer et al 1986;

Lupianez et al 2016; Ren and Dixon 2015). Previous work has found that common

inversions in D. melanogaster and fixed inversions in D. pseudoobscura are less

likely to disrupt gene coding sequences that would be expected under a random

breakpoint model (Corbett-Detig and Hartl 2012; Fuller et al. 2017), possibly

indicating that natural selection acts against inversions which disrupt gene sequences.

114



However, a mutational bias that preferentially creates breakpoints in intergenic

regions is also consistent with these findings.. Inversions in the D. melanogaster

species group tend to create inverted duplications of sequence at their breakpoints in

the repair process, which can preserve copies of disrupted sequence (Puerma et al

2016b; Ranz et al 2007). Duplication size may therefore also influence the fitness of

an inversion breakpoint because large duplications can avoid disrupting individual

genes. A study in Anopheles gambiae has shown that the inversion 2L+a is likely

viable because it preserves functional copies of disrupted genes through this

mechanism (Sharakhov et al 2006). Location in respect to gene sequence and

duplication size should both contribute to the fitness of a new inversion arrangement.

Factors related to gene regulation may also impact the fitness of newly formed

arrangements. These include Topologically Associated Domains (TADs), chromatin

state, and the locations of insulator elements. TADs are genomic features that appear

in HiC proximity ligation mappings (Lieberman et al 2009) which reflect the physical

folding and arrangement of the genome (Lupianez et al 2016; Jost et al 2014; Sexton

et al 2012). Disruption of these domains may alter local gene expression (Lupianez et

al 2015). Chromatin marks often determine local expression and repressive chromatin

is capable of suppressing nearby gene activity when translocated (Cryderman et al

1998). Boundaries between domains are often associated with insulator elements in

D. melanogaster (Sexton et al 2012). Insulators limit the influence of repressive

chromatin marks and block ectopic enhancer activity, and could therefore act as a

compensatory mechanism to maintain native regulatory environments (Bushey et al
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2008; Gaszner and Felsenfeld 2006; Sigrist and Pirrotta 1997; Yang and Corces

2012). We hypothesize that high-fitness inversions disrupt local gene regulation less

than would be expected by chance, by avoiding disrupting crucial domains or by

colocalization with insulator elements.

Comparisons among fixed, high frequency and low frequency inversions can

reveal the impact of natural selection on chromosomal inversion breakpoints (Caceres

et al. 1997; Corbett-Detig 2016). Because they have persisted and spread within

natural populations, we expect both high population frequency and ancestrally fixed

chromosomal inversion breakpoints to show a biased distribution of features

consistent with higher fitness. Conversely, low-frequency inversions, often identified

in only a single individual within a population, are most likely recently arisen

arrangements. The low-frequency inversions’ breakpoint distribution should therefore

primarily reflect mutational biases. By examining the distributions of fixed, high

frequency, and low frequency inversion breakpoints, we can identify the factors that

shape the fitness of newly-arisen arrangements.

We leverage population resequencing datasets from more than 1,000 D.

melanogaster isolates to detect and de novo assemble both breakpoints of 18 rare

naturally occurring inversions. We compare these ”rare” inversion breakpoints to

known high frequency inversion breakpoints in D. melanogaster (Corbett-Detig and

Hartl 2012) as well as a set of fixed inversion breakpoints between species in the

Melanogaster subgroup (Ranz et al. 2007). By comparing rare, common, and fixed

inversion breakpoints, we find evidence supporting the idea that both mutational
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biases and natural selection play important roles in shaping the fine-scale distribution

of inversion breakpoints in natural populations.

A4.3: Methods

Defining Inversion Categories

In our analysis, we define three classes of inversion population frequency.

Previous work in D. melanogaster has typically referred to four categories of

inversion, “common cosmopolitan”, “rare cosmopolitan”, “recurrent endemic”, and

“unique endemic” (Mettler et al 1977; Krimbas and Powell 1992). The latter half of

each of these terms refers to the geographic distribution of the inversion. As long as

an inversion reached high frequency in any population, it has not been strongly

impacted by negative selection. We label these high-frequency inversions “common”

inversions. We use “rare” to refer to inversions which were found in only single

samples (with the exception of In(2R)Mal, which is present in three samples studied

here). The distribution of rare inversions, while possibly containing high-fitness

inversions that could eventually spread to high frequencies, are likely to primarily

reflect mutational biases in their overall breakpoint distribution. To summarize,

“common cosmopolitan”, “rare cosmopolitan”, and “recurrent endemic” will all fall

under our label “common” while we refer to “unique endemic” as “rare” inversions,

similarly to the analysis in (Corbett-Detig 2016).

The third class in our framework, “fixed” inversions, are inversions that have

gone to fixation within one lineage during divergence of the Drosophila melanogaster
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subgroup (Ranz et al 2007). Originally all fixed inversions occurred as unique events

in a Drosophila ancestor. They subsequently spread until they reached fixation in

populations ancestral to contemporary species in the melanogaster subgroup. These

fixed inversions were discovered by comparing the locations of homologous

sequences in the genomes of between D. melanogaster and its relatives (Lemeunier

and Ashburner 1976) and have been molecularly characterized previously (Ranz et al

2007). It is important to note that the vast majority of these fixed inversions occurred

on the Drosophila yakuba branch and not in a direct D. melanogaster ancestor

(Krimbas and Powell 1992; Ranz et al 2007). The reference genome of D.

melanogaster should therefore generally reflect the ancestral state and the genetic

background on which these inversions originated rather than a derived state evolved

after fixation. Common and rare inversions annotated here occurred in contemporary

D. melanogaster populations and thus in the absence of additional changes unrelated

to genome structure, on a similar genetic background to that on which the D. yakuba

inversions were fixed. The functional annotations used here are also based on the D.

melanogaster standard arrangement, meaning these annotations should represent the

genetic background of all three inversion frequency categories.

Short Read Alignment

We obtained short read data as fastq files from the Sequence Read Archive.

All short read data is described in Lack et al 2016 and was originally produced in

(Pool et al 2012; Lack et al 2015; Mackay et al 2012; Kao et al 2015; Grenier et al.
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2015). We aligned the short read data using bwa v0.7.15 using the “mem” function

and default parameters (Li et al 2013). All post-processing (sorting, conversion to

BAM format, and filtering) was performed in SAMtools v1.3.1 (Li et al 2009). We

filtered these BAM files to include only those alignments with a minimum mapping

quality of 20 or more.

Rare Breakpoint Identification

As in previous works that characterized structural variation using short-insert

paired-end Illumina libraries (e.g. (Corbett-Detig et al 2012; Cridland et al 2010;

Rogers et al 2014), we first identified aberrantly-mapped read “clusters”. Briefly,

here, a cluster is defined as 3 or more read pairs that align in the same orientation (for

inversions, this is either both forward-mapping or both reverse-mapping) and for

which all reads at one edge of the cluster map to within 1 Kb of all other reads in the

cluster. We considered only aberrant clusters where both ends mapped to the same

chromosome arm as the vast majority of inversions in Drosophila are paracentric

(Krimbas and Powell 1992). We required that all read pairs included in a cluster map

a minimum of 500 Kb apart. We then retained only those potential inversions for

which we recovered both forward and reverse mapping clusters there were within 100

Kb of one another. The choice of a maximum distance between possible breakpoint

coordinates was included to reduce the possible rates of false positives and because

none of the known inversions whose breakpoints have previously been characterized

included a duplicated region of 100 Kb or more (Corbett-Detig and Hartl 2012; Ranz
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et al. 2007). When breakpoint assemblies existed in very close proximity or appeared

to delete short sequences, we set the duplication size to 1 base. We further filtered all

breakpoint assemblies that overlapped annotation transposable elements as these are

the primary source of aberrantly-mapping read clusters in previous works (e.g.,

Corbett-Detig and Hartl 2012).

As an additional check for the accuracy of our newly discovered breakpoints,

we compared our distribution of rare breakpoints to the known cytogenetic

distribution and found no chromosomal or by-region differences (p=0.7, chi-square

test; cytogenetic data from Corbett-Detig 2016 who summarized Krimbas and Powell

1992). The short insert size from previous sequencing experiments ranged from

~200bp to ~600bp, which may have led to a non-trivial false negative rate of

breakpoint discovery particularly if the breakpoints contain repetitive elements or

other large DNA insertions. However, we do not expect that these potential false

negatives will bias our downstream analyses, and all previously characterized

inversion breakpoints in the Melanogaster species complex occurred in unique

sequences (Ranz et al. 2007; Corbett-Detig and Hartl 2012). All software used to

perform these analyses is available from the github repositories associated with this

project. Specifically, scripts used for breakpoint detection and assembly are in

https://github.com/dliang5/breakpoint-assembly (DOI: 10.5281/zenodo.7983441).
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De novo Rare Breakpoint Assembly

For each putative inversion, we then extracted all reads for which either pair

mapped to within 5 Kb of the predicted breakpoint position. We converted all fastq

read files to fasta and qual files as is required by Phrap, and we assembled each using

otherwise default parameters but including the “-vector_bound 0 -forcelevel 10”

command line options (Corbett Detig and Hartl 2012; Rogers et al 2014). We then

used blast to align the resulting de novo assembled contigs to the D. melanogaster

reference genome to identify the contig that overlapped the predicted breakpoint

using the flybase blast tool (www.flybase.org/blast). We retained only inversions for

which we could de novo assemble contigs overlapping both breakpoints, and we

further discarded any contigs where the sequence intervening two distant genomic

regions contained sequence with homology to known transposable elements. All of

the assembled breakpoint sequences are available in File S1. Assembly scripts are

available from https://github.com/dliang5/breakpoint-assembly (DOI:

10.5281/zenodo.7983441).

Overlapping Inversions and In(2R)Mal

We also attempted to find sets of overlapping inversions. Briefly, for

overlapping inversions, where one inversion arises on a background that contains

another inversion with one breakpoint inside and one outside of the inverted region,

the breakpoint-spanning read clusters should be largely the same as inversions that

arose on a standard arrangement chromosome. However, the key difference is that
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rather than pairs of forward and reverse mapping read clusters, we expect to observe

two distantly mapping read clusters in the reverse-forward and forward-reverse

arrangements. We applied this approach for the 17 rare inversions that we initially

discovered as well as to all samples that contained common inversions that are known

from previous work (Corbett-Detig and Hartl 2012; Lack et al. 2015). We found only

one such overlapping rare inversion, which is consistent with the known segregation

distorter associated chromosomal inversion In(2R)Mal, which is composed of two

overlapping inversions (Presgraves et al 2009). In our analysis here, we treat these

overlapping inversions as independent, but our results are qualitatively unaffected if

we simply exclude the second inversion.

Genome Version, Insulator, and Gene Annotations

All our analyses are based on alignments to D. melanogaster genome version

6.26 (Hoskins et al 2015).We obtained genome annotation data including gene

locations from flybase. We treated long non-coding RNAs as genes for our purposes,

as they perform essential functions and can be disrupted in the same way as

protein-coding genes. We obtained insulator binding site positions from (Negre et al

2010, accession GSE16245). As necessary, we converted the coordinates of genomic

features from genome version 5 to 6 using the flybase coordinate batch conversion

tool (https://flybase.org/convert/coordinates).
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Selection of Public Datasets for Topological Domains and Chromatin Marks

We obtained topologically associated domain (TAD) data including

annotations of chromatin state from Sexton et al. (2012). This dataset is composed of

domains detected by genome-wide chromosome conformation capture sequencing,

HiC, on early-stage embryos, and annotated with an epigenetic state using a

clustering method applied to another source of linear epigenomic data (Sexton et al

2012). Their annotations include four categories: “active”, “null”, “PcG” (polycomb),

and “HP1” (centromeric heterochromatin). For the sake of consistency we refer to

Sexton et al.’s “null” domains as “inactive”. Early stage embryos are likely to be the

environment in which any regulatory disruption induced by inversions is most

deleterious given the sensitive nature of development, which makes this a promising

source of context for our analysis of inversion frequency. This dataset also allows us

to separately analyze breakpoint occurrence within topologically associated domains

and chromatin states in tandem, since they are derived from the same source. It

should be noted, however, that the annotations of these TADs are relatively coarse

and may not reflect the more local environment of an inversion breakpoint.

We therefore performed a second analysis on finer scales using the dataset of

Kharchenko et al (2011, accession GSE25321). This dataset in its raw form consists

of short spans marked with one of a set of chromatin markers, in both a nine-state

model and a thirty-state model. As we desired a representation of the local chromatin

environment around inversion breakpoints, we chose to bin the nine-state
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representation into total counts of bases assigned to a state of the given type over

windows of 10kb. 10kb was selected based on the average heterogeneity of the

windows; we wanted our window size to be as small as possible but for most

windows to contain at least one region with an annotated chromatin state. This

yielded a distribution of values for each window which represented the overall

enrichment of each state in each 10kb span. As we lacked statistical power to evaluate

these mark types individually with our relatively small inversion breakpoint datasets,

we further assigned each 10kb window an activity state based on the majority of

present marks. Windows in which the vast majority of sites were assigned states one

through five, annotated by Kharchenko et al. as being various components of genes

including promoters, exons, and introns, were designated “Active”. Windows where

states six through nine, which include PcG, HP1, and other heterochromatic marks,

were most prominent, were designated “Inactive”. Windows in which both groups

each constituted at least five percent of all marks were designated “Mixed”. This

yields an alternative representation of chromatin environments surrounding inversion

breakpoints that is much finer-grained than the annotations of Sexton et al.

We compared this representation to Sexton et al.’s annotated chromatin states

as an additional check for the validity of our approach. We found that 10kb windows

located within each annotated TAD generally aligned with the annotation of that

TAD, but that substantial heterogeneity of chromatin marks exists within each TAD

span (Figure A4.3). For example, approximately 19% of windows within TADs

annotated as “active” are enriched for chromatin state 9, which is associated with
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extended silenced regions, and conversely 26% of windows within TADs annotated

as inactive are enriched for chromatin state 2, which is associated with the active

transcription. This indicates that one cannot be treated as a direct substitute for the

other.

As a final check on the validity of the domains obtained from Sexton et al, we

obtained polytene domain data from Eagen et al (2015), repeated our analysis, and

found them to be generally consistent with our conclusions. These results may be

found in section A4.12.

Permutations and Statistical Tests

To compare inversion breakpoint positions to a randomized distribution,

permutations for all categories of inversions (rare, common, and fixed) were

performed with 1000 iterations of a group of randomly located breakpoints, holding

the inversion number, duplication lengths, and chromosome arms constant.

Specifically, for each inversion breakpoint, one thousand starting positions were

chosen from a uniform distribution between the start of that chromosome arm and the

end minus the length of the duplication- that is, from the entire set of possible points

for that size of breakpoint. Random breakpoints were located independently for most

tests, as most values were calculated for each breakpoint individually rather than the

inversion as a whole. The exception is the chromatin-blending test, in which we

additionally controlled for inversion lengths to account for the role of inversion length

in biasing pairs of chromatin environments. Features of the genome at each of these
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breakpoints were recorded as our expected value for the random distribution of

breakpoints.

Tests were divided by the nature of the factor. For factors that are a discrete

numerical value for each break, such as distance to an element or length of a

duplication, p-values were calculated as percentiles of real values within a large set of

random distributions. Tests between categories of the distance-based factors and the

duplication length test were performed distribution to distribution with pairwise

Mann-Whitney rank-sum tests.

For categorical values, such as disrupting a gene span or not, rates of category

occurrence were calculated for one thousand permutations. We define disruptions of

genes and other elements as both forward and reverse single-strand breaks occurring

within a single annotated functional element (Figure A4.1). It is important to note that

our method of defining disruption is likely to overestimate the proportion of fixed

inversion breakpoints that truly disrupt genic sequences. Ranz et al (2007)’s method

to identify sequences duplicated by the original break relies on sequence homology,

and in fixed inversions divergence of noncoding sequences can interfere with the

precise identification of breakpoint regions. For example, if the original duplicated

region includes a gene coding span and some non-coding bases, a complete gene copy

will be produced along with a partial duplication (Figure A4.1). Over time, the

non-coding region will tend to accumulate more mutations than the intact gene copy.

In this case, coordinates obtained from BLAST alignments may not detect the

homology between the non-coding regions and instead only yield apparent homology
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from duplication within the conserved gene span. This would be counted as a gene

disruption event by our analysis. This bias will tend to make our analysis conservative

with respect to identifying the impacts of natural selection, because breakpoints are

more likely to be identified within coding regions and because we should tend to

underestimate the sizes of breakpoint adjacent duplicated regions after sequence

homology has decreased. All scripts used to produce the results of the permutation

tests described above are available from the github repository associated with this

project https://github.com/jmcbroome/breakpoint_analysis (DOI:

10.5281/zenodo.7983441).

Lethal and Sterile Phenotype Analysis

Additionally, we obtained phenotype data from Flybase using the query builder

(https://flybase.org/cgi-bin/qb.pl) to get the IDs of all genes which have lethal

phenotypes and sterile phenotypes. This data was incorporated into the gene

disruption analysis and we sought evidence of difference in disruption rates between

genes annotated with these phenotypes and the overall set of annotated genes. Table

A4.2 contains the set of inversion breakpoints which appear to disrupt these genes.

A4.4: Common and Fixed Inversion Breakpoints

Common and fixed inversion breakpoints have been characterized extensively

in D. melanogaster and in the Melanogaster species complex in previous works. We

obtained the breakpoint locations for nine common inversions from (Corbett-Detig
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and Hartl 2012; Lack et al 2016). We note that although population frequencies and

geographic ranges vary among common inversions (Corbett-Detig and Hartl 2012;

Krimbas and Powell 1992; Lack et al 2016), each has reached frequencies of at least

10% within local subpopulations and all have been observed in several

geographically-widespread populations, suggesting that their breakpoints do not

cause strong deleterious fitness consequences. From Ranz et al (2007) we obtained

the breakpoint positions of 26 inversions that have fixed in a lineage since the

common ancestor of the Melanogaster species complex. To confirm that the

breakpoint-adjacent regions have not been modified or updated in the more recent

genome assemblies for either D. melanogaster or D. yakuba, we extracted each

surrounding 100Kb region from the genome that contains the ancestral arrangement

and used BLAST to align these to the genome containing the derived rearrangement.

We recorded the most breakpoint proximal high quality, i.e. BLAST score greater

than 50, sequence alignment as the putative location of the inversion breakpoint.

A4.5: Rare Inversion Breakpoints Discovered

We realigned all sequence data from over 1,000 D. melanogaster natural

isolates that have been sequenced previously using paired-end sequencing methods

(Grenier 2015; Langley 2012; Pool et al 2012; Mackay et al 2012; Lack et al 2015;

Kao et al 2015; summarized in detail in Lack et al 2016). We identified 5,318 short

read clusters that corresponded to possible inversion breakpoints that are a minimum

of one Megabase from each other and for which we found both forward and reverse
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mapping read clusters (Figure A4.4). That is, for a given inversion relative to the

reference genome, we expect to find a cluster of read pairs where both maps in the

“forward” orientation and another cluster where each pair of reads both map in the

“reverse” orientation (Corbett-Detig and Hartl 2012; see Methods). We also searched

for overlapping inversions using a slight modification of this approach (Methods). To

be as conservative as possible with our analysis, we retained only the set for which

we recovered and successfully de novo assembled both breakpoints for a given

inversion. Additionally, we removed any putative breakpoint-spanning contig that

mapped with high confidence to multiple locations in the D. melanogaster reference

genome. We ultimately retained 18 rare inversions. Three of our candidate rare

inversions are corroborated by previous cytological evidence (Huang et al 2014;

Presgraves et al 2009). Similarly, previous molecular evidence (Grenier et al 2015)

supports the identified breakpoints of another chromosomal inversion. The

breakpoints of our putative rare inversions do not show unusual genetic distances

from other samples isolated from the same populations, suggesting that these are

relatively recent events and not older inversions that have recently gone to lower

frequencies (Section A4.13, Table S1).

The genomic and population distributions of candidate rare inversions are

largely consistent with our expectations based on extensive cytological work. First,

our estimated rate of occurrence of rare inversions, 1.6% per genome, is within the

range of estimates from cytological data across diverse populations 0.47%-2.71%

(Aulard et al 2002; Krimbas and Powell 1992). Furthermore, we found no rare
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inversions on the X chromosome, which contains very few chromosomal inversions

in natural populations of this species (Aulard et al 2002; Krimbas and Powell 1992).

However, because we conservatively required that both breakpoints are detected from

discordant short-read alignments and completely assembled de novo, and because we

excluded any breakpoints that contained homology to annotated transposable

elements, it is possible that our approach has underestimated the prevalence of rare

inversions in these datasets. It is also possible that a portion of the rare inversions

may be false positives owing to the challenges of short-read based de novo assembly

and interpretation. Nonetheless, as an additional check to ensure the robustness of our

results, we repeated all of our analyses on the subset of rare inversions which have

been cytologically or molecularly characterized or are very simple in their breakpoint

structures and found no major differences between datasets (Section A4.14).

A4.6: Inversion Breakpoints Could Truncate Coding Sequences

Inversions can strongly disrupt sequences at their breakpoints (Figure A4.1).

This has multiple classes of potential negative consequences, including the truncation

of gene spans and the creation or alteration of enhancer-gene interactions (Castermans

et al 2007; Frischer et al 1986; Lupianez et al 2016; Ren and Dixon 2015). We

investigated interactions with gene spans with the hypothesis that higher-frequency

inversions are more likely to exhibit features which reduce large-scale disruptions of

local functional elements. For each category, we calculated the percentile of the count

of disrupting breakpoints against the permuted distribution, where low percentiles
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correspond to less disruption than expected. All three inversion frequency categories

disrupt annotated gene spans less often than the random expectation (rare p=0.0415,

common p=0.0055, fixed p<0.001, permutation test). The proportion of

gene-disrupting inversions is inversely correlated to population frequency category

(44% of rare inversion breakpoints, 28% of common inversion breakpoints, 24% of

fixed inversion breakpoints).

Our results are consistent with gene disruption being negatively selected after

inversion formation. We note here that the baseline rate of disruption is still relatively

high even in the most conservative category, at 24% of fixed inversion breakpoints.

Nonetheless, for reasons described above (methods), this should be considered a

conservative upper-bound on the rate of gene disruption in the fixed inversion class.

In all cases of putative disruption, the D. yakuba genome contains an intact ortholog;

this indicates that if breakpoints occurred within an annotated gene, they rarely

completely disrupt the coding sequence or that secondary sequence evolution can

suppress the deleterious effects. All putatively disrupting breakpoints within the fixed

inversion class lie within 1000 bases of the start or the end of the disrupted gene

(Table S3). The trend across categories indicates that there is a negative association

between population frequency and the occurrence of inversion breakpoints within

gene sequences in our data.

We also note that rare inversions appear to disrupt genes less often than

expected by chance. This could be explained by the critical nature of many genes to

survival. At a minimum, each inversion must not be lethal for us to discover it. The
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preservation of gene spans by rare inversions may also be explained by a mutational

bias of chromatin state or basepair composition favoring intergenic regions, reducing

gene disruption rates below random expectations. As a final possible explanation we

note that because many of the samples used in this work were inbred, either

intentionally or passively as isofemale lines, inversions that induce recessive strongly

deleterious fitness effects might still be exposed to selection and purged from the line

prior to sequencing.

We further investigated the possible fitness impacts of disrupted gene

sequences by examining the subset of disrupted genes that are annotated as having

lethal or sterile alleles. We expect to observe a reduction in the rates that inversion

breakpoints interrupt genes with lethal alleles and sterile alleles owing to the

importance for organism survival and reproduction. In applying a similar permutation

test as above, but instead asking if inversion breakpoints are less likely than expected

by chance to disrupt essential genes specifically, we do not find a significant decrease

in the rate of essential gene disruptions compared to genes overall (Table S4). We

note that only one gene with an annotated sterile phenotype was disrupted among all

inversion breakpoints considered here. However, we still failed to reject the null

model possibly due to a general paucity of known sterility-inducing genes compared

to unannotated genes.

Furthermore, it is possible that a significant portion of genes remain functional

despite the presence of both breaks within the annotated span. For example, the

common inversion In(X)A disrupts a gene with annotated lethal alleles. The disrupted
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gene, NFAT, encodes an important transcription factor (Keyser et al 2007). The

inversion breakpoint is very near the 5’ start of the gene, where some annotated

transposable element insertions have produced viable alleles (Bellen et al 2011). It is

possible that the breakpoint does not actually render the gene nonfunctional and is

therefore not lethal. Further functional work will be needed to understand the specific

effects of localized gene disruption on individual phenotypes.

A4.7: Larger Inverted Duplications May Prevent Gene Disruption

Duplications that occur during inversion formation may maintain functional

elements and suppress the local gene-interrupting effects of inversion breakpoints.

Paired staggered double-strand breakage is the major mechanism by which inversion

events occur in the D. melanogaster subgroup (Puerma et al 2016b; Ranz et al 2007).

These breaks leave an overhang of sequence at each end of the putative inversion.

After repair in inverted orientation, the result is inverted duplicated regions on either

side of a new inversion with length equal to the overhang left over after the double

strand break (Figure A4.1). To guarantee disruption of a given functional element at

the sequence level without creating a complete duplicate, both sides of a

double-strand break must fall into that same functional element. Longer duplications

are thus less likely to disrupt individual elements. Therefore we hypothesized that

selection will favor longer duplicated regions that minimize impacts on local

sequence functions.
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To test this, we first verified that tandem duplications of inversion breakpoints

which do not disrupt genes are longer than those that do (p=0.0096, Mann-Whitney U

test). Dividing the data by frequency category, we found that common polymorphic

inversions have significantly longer duplications than rare inversions (Figure A4.1,

p=0.0095, Mann-Whitney U test). We did not include fixed inversion breakpoints, as

secondary sequence evolution and gaps between synteny blocks made determination

of exact original duplication length inaccurate and likely an underestimate. These

results are consistent with the idea that long duplications act as a compensatory

mechanism for otherwise negative position effects by preserving intact functional

elements or by maintaining proximity among functional elements within duplicated

regions.

Formally, our analysis is consistent with higher relative fitness of inversions

with longer inverted repeats, but does not necessarily require deleterious effects at

single breakpoints. It is also possible that inversions are positively selected when they

contain larger breakpoint-adjacent duplications because of positive effects associated

with gene duplications or chimeric gene products (Puerma et al 2016). However,

given that microsynteny is largely maintained over evolution and given that the

Drosophila genome contains a high density of functional elements, we favor our

hypothesis that larger repeats can be favored by natural selection because they can

avoid disrupting functional elements.
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Figure A4.1: A) Staggered breakpoints generate duplications. These might

suppress the impacts of sequence disruption. In the single break, the dark blue gene

span is divided in half in the inverted line with no functional copies remaining. In the

double break, the dark blue gene span is duplicated and a functional copy remains to

the right of the break region. B) Common inversion breakpoints exhibit longer

duplications. The boxplots represent duplication lengths of each inversion class.

Note that the Y-axis is in logarithmic scale, and all short deletions were set to length

1.

A4.8: Inversions Could Alter Local Regulatory Environments

Impacts on gene regulation in the regions surrounding inversion breakpoints is

also likely to be an important determinant of inversion fitness. By translocating large

sections of the genome, inversions can reshape local regulatory environments and

interfere with nuclear structures. They can separate enhancers from their gene targets,
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bring chromatin marks of varying kinds into close proximity, and alter the content and

size of local regulatory domains. Translocations of repressive chromatin marks can

lead to the silencing of nearby genes, such as in the phenomenon of position-effect

variegation, which is variable silencing of a gene near a translocated section of

heterochromatin (Cryderman et al 1998; Eissenberg et al 1992; Puig et al 2004;

Shatskikh et al 2018; Vogel et al 2008). Chromatin environments also guide the

activity of different double-strand break repair mechanisms including

non-homologous end joining, which may serve as a mutational bias in the occurrence

of inversions (Lemaître and Soutoglou 2014; Marnef et al 2017). We investigated the

occurrence of inversions in different chromatin domains, hypothesizing that both

mutational biases and selective pressures may influence breakpoints within these

domains.

We examined patterns related to chromatin states and marks at two

resolutions. The coarser resolution is the level of TADs. TADs are often highly

conserved and associated with coordinated gene regulatory blocks (Cavalli and

Misteli 2013). In D. melanogaster, TADs have been identified through

high-resolution chromatin conformation capture, or HiC, sequencing and found to

contain distinct chromatin states (Sexton et al 2012). While any inversion whose

breakpoints occurs within these domains can and does alter relative TAD boundary

positions, inversions with breakpoints that capture boundary elements within

associated duplicated regions might form entirely new boundaries and TADs by

duplicating those boundary elements. We hypothesized that inversion breakpoints
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would be less likely to duplicate boundary elements at higher population frequencies,

as the formation or division of TADs may be more deleterious than resizing them.

Only two polymorphic inversion breakpoints, one rare and one from the

common inversion In(X)A, could have duplicated a boundary element annotated by

Sexton et al (2012). This occurs less often than we would expect by chance for both

categories (rare p=0.02275, rare and common combined p=0.001, permutation test).

As common inversions have a modest sample size (n=9), no level of boundary

duplication for them alone is statistically significant. The low rates of boundary

duplication are relatively invariant across frequency categories, so we speculate that a

mutational bias may protect boundary regions from breakage. This could occur

through a concentration of bound proteins in boundary regions (Sexton et al 2012).

Alternatively, it may be extremely deleterious to duplicate boundary regions, purging

these inversions from our rare inversion dataset as well as from inversions at higher

frequencies.

We also discovered an enrichment of inversion breakpoints within TADs

marked with active chromatin by Sexton et al (2012) (rare p=0.003, common

p=0.055, fixed p<0.001, all categories p<0.001, permutation test). As part of our

hypothesis that mixing chromatin states is deleterious, we investigated correlations

between domain annotations at either end of an inversion- that is, whether the identity

of the domain at one inversion breakpoint is correlated with the domain type at the

other inversion breakpoint. There does not appear to be any enrichment for particular

combinations of chromatin environments around each breakpoint in our inversions
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(p=0.36, chi-square test), suggesting that the biased distribution of inversion

breakpoint chromatin domains is driven by a marginal increase of breakpoints within

active regions rather than a pairwise effect of breakpoint adjacent chromatin domains.

The increased rate of breakpoints in active regions is consistent with a mutational

bias, as it is relatively invariant across frequency categories. This bias could be due to

a difference in the rate of occurrence of double-strand breaks in open chromatin, or it

could be due to a difference in the accuracy and efficiency of double-stranded break

repair in these active environments (Marnef et al 2017).

Because this coarse representation may not fully represent the role of

chromatin environment on inversion occurrence, we additionally examined

enrichment of chromatin marks at a finer scale. Kharchenko et al (2011) created a

genome-wide dataset representing local chromatin mark enrichment, represented as a

computationally-derived nine-state model with high resolution. We binned this data

into windows of 10kb and examined the regions immediately surrounding each

inversion breakpoint for the presence of Kharchenko’s chromatin states, assigning

each window to a general state of “active”, “inactive”, or “mixed”. We found that the

enrichment of inversion breakpoints in active regions was not replicated in this

finer-scale dataset (p=0.59, permutation test; Figure A4.2). It is likely that this is

because on these scales the majority of windows designated “active” contain genes

and breakpoints are less likely to occur within genes than in intergenic regions (see

Section A4.6).
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We discovered an enrichment of mixed chromatin activity states (i.e., both

active and inactive states) in windows around fixed inversion breakpoints (p<0.001,

permutation test) and a decreased occurrence of fixed inversion breakpoints within

windows containing only inactive states (p=0.0075, permutation test; Figure A4.2).

Common inversions show a similar pattern, though with no significant association

between inversion breakpoints and windows containing only active chromatin states,

but with a significant depletion of breakpoints in windows designated inactive

(p=0.026, permutation test). Rare inversion breakpoints appear randomly distributed

with regards to their fine-scale chromatin environments (Figure A4.2). It is possible

that the common inversions would reflect this same pattern with a larger sample size,

but we are limited by the scarcity of high frequency inversions. We additionally

explored whether there is a correlation between local chromatin windows between

two breakpoints of each inversion, but found no statistical enrichment (p=0.25,

chi-square test). Overall these results suggest that high-frequency breakpoints tend to

occur on epigenetic boundaries within regions of the genome that contain some active

chromatin.
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Figure A4.2: Chromatin around Inversion Breakpoints is Active and
Heterogenous. Inversion breakpoints are grouped by frequency into columns, then by
domain annotation from Sexton et al into rows. Each group is further subdivided into
three bars, representing the overall states assigned to the 10kb chromatin windows
around each break in that combination of categories (i.e., using the Kharchenko et al.
dataset for chromatin state assignment, Methods). The Y-axis of each plot is the count
of inversion breakpoints which exist in that combination of states and frequencies.
The plot below the legend displays the intuitive relationship between these two levels
of annotation; that is, the larger domain annotations (triangles) contain a heterogenous
but biased set of local chromatin states (bars).

A4.9: Insulators Maintain Boundaries of Local Regulatory Environments

We discovered an enrichment for inversions within active domains, including

inversions which occur between pairs of active and inactive domains. This led us to

ask whether we can identify a candidate compensatory mechanism that might

suppress the disruption of local regulatory environments by the translocation of

chromatin-defining elements. Insulator elements are key to the structure and function

of genome regulatory networks, serving as structural anchor points, physical blockers
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of enhancer interactions, and boundary elements between TADs or chromatin

compartments (Chung et al 1993; Negre 2010; Roseman et al 1993; Sexton et al

2012). Insulators may reduce or prevent the effects of repressive chromatin on local

gene activity after translocation (Bushey et al 2008; Gaszner and Felsenfeld 2006;

Sigrist and Pirrotta 1997; Yang and Corces 2012). In fact, these elements have been

previously shown to be associated with fixed structural rearrangement breakpoints

that alter local synteny, which includes inversion breakpoints (Negre et al 2010).

Strong association with these elements may act as a compensatory mechanism

that preserves local chromatin state and thereby allows inversions to occur between

heterochromatic and euchromatic regions while minimizing negative consequences

(Figure A4.3A). Insulator element binding sites are strongly associated with local

active and mixed chromatin window states in our data (active p=4.7e-24, mixed

p=2.7e-8, Fisher’s exact test) and correspondingly rare in windows annotated as

inactive (p=2.7e-14, Fisher’s exact test). This further supports that these insulator

elements represent epigenetic boundaries, and a strong association with these

insulator elements may explain the enrichment of mixed chromatin window states

around higher frequency inversions in our data.

Association with insulator elements may also prevent ectopic enhancer

activity, or the activation of genes other than the target gene by an enhancer (Figure

A4.3A). Previous studies have shown developmental disorders can occur in mammals

from inversion rearrangements with no additional mutation via ectopic enhancer

activity (Ren and Dixon 2015; Lupianez et al 2016). Notably, recent data suggests
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inversion breakpoints are rarely associated with local perturbed expression in

Drosophila (Fuller et al 2016; Ghavi-Helm et al 2019; Said et al. 2018; Lavington and

Kern 2017). However, there still appears to be some cases of ectopic

enhancer/promoter interactions as in subdued and Dscam4 (Ghavi-Helm et al 2019).

This suggests that new ectopic interaction may be promoted by inversions but that

these interactions rarely impact overall expression levels.

Our data show that inversion breakpoints are significantly closer to insulator

elements than would be expected for randomly distributed breakpoints (rare

p=0.0446, common p<0.001, fixed p<0.001, permutation test, Figure A4.3). Common

inversion breakpoints are significantly closer to insulators than are rare inversions

breakpoints (p = 0.0373, Mann-Whitney U test), fixed and common inversion

breakpoints are not statistically different (p=0.312, Mann-Whitney U test) and fixed

inversion breakpoints are significantly closer to insulator elements than are rare

inversion breakpoints (p=0.00242, Mann-Whitney U test). We asked whether

insulators are found within or outside the duplicated regions and found no evidence

for any directionality to the association (Figure A4.5). We additionally note that

insulator binding sites are much more common in active topologically associated

domains (Figure A4.6), and that correspondingly inversions in active regions are

somewhat more closely associated with insulators across frequency categories

(p=0.075, Mann-Whitney U test).

Because inversion breakpoints tend to occur in active domains, the enrichment

for proximity to insulator elements might result from the increased density of
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insulator elements within those regions and not for selection for proximity to

insulators per se. We saw a bias towards breakpoints situated in active domains,

particularly among fixed inversions. We therefore tested for an association between

fixed inversion breakpoints that occur within inactive domains and proximity to

insulator elements. After controlling for the domain type, the close proximity of

insulators persists, suggesting the observation is partially independent of the

correlation between active domains and insulators (p=0.03, Mann-Whitney U test).

We thus conclude that this is not likely to be a strong confounding factor for our

insulator association results. Conversely, if proximity to insulators is beneficial for

any reason, this may explain the enrichment of mixed chromatin states around

high-frequency inversions.

While these results are consistent with the idea that insulators are a

compensation mechanism preventing misexpression, our speculation is not directly

proven here. A recent work discovered a lack of gene expression differences over and

around inversion breakpoint regions in balancer chromosomes (Ghavi-Helm et al

2019). Because they are maintained as heterozygotes, balancer chromosomes are

shielded from selection in homozygotes in a similar fashion to rare inversions. We

investigated proximity to insulator elements as a potential cause for this lack of

misexpression associated with the balancer chromosome inversion breakpoints but

found no association (p=0.57, Mann-Whitney). The result challenges our specific

hypothesis because Ghavi-Helm et al. found minimal differential gene expression

around balancer inversion breakpoints despite the lack of insulator association. The
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association between proximity to insulators and population frequencies is robust in

our data, but Ghavi-Helm et al’s results suggest it may not be necessary to prevent

disruption of gene expression. A potential explanation may be that insulators affect

more subtle gene expression phenotypes. For example, if the presence of insulator

elements decreases the variance in expression across cells or facilitates coordinated

timing of expression during development, this might not be reflected in mean

expression values obtained via bulk RNA-seq. Regardless of the mechanism, our

results suggest that inversions, and possibly synteny changes in general, are more fit

when associated with insulator elements in the D. melanogaster genome.
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Figure A4.3: A) Insulators could prevent chromatin repression across inversion
breakpoints. This pair of hypothetical inversions have four breakpoints that do not
disrupt gene spans. The left inversion breakpoint is in a repressive gene-free
chromatin landscape indicated by blue chromatin marks, while the other is between
two genes separated by an insulator element. After inversion, repressive chromatin
marks are relocated to be adjacent to one of the genes, but their repressive effect is
blocked by the insulator. The check mark indicates normal gene expression, while the
cross indicates disrupted gene expression. 3B) Insulators block enhancer activity.
This simple example displays how an inversion may translocate an enhancer into the
proximity of a new gene. In this example, the enhancer’s activity is blocked by the
presence of an insulator, in grey. 3C) Higher population frequency correlates with
insulator proximity. The distributions of distances are from breakpoints to the
nearest insulator element. Note that the y-axis is a logarithmic scale. The dashed grey
line is the expected median distance of a random-breakpoint model.

A4.10: Cross Feature Analysis

Each of the features that we examined in this work do not exist in isolation,

and it is possible that interactions among features also impact the fitness of new

arrangements. Our primary hypothesis for insulator association is that it compensates
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for the negative effects of other features; for example, mixing chromatin may be

permissible when insulator elements near the inversion breakpoint suppress

expression modifying effects (see Section A4.9). Therefore we performed several

cross analyses between the features explored here both without condition and

conditioning on population frequencies of inversions studied in this work. The results

of the cross-feature analysis are described in Section A4.15. We discovered a few

obvious associations between features, such as gene disruption and active chromatin,

which is expected given that active chromatin is typically associated with genes. We

discovered no feature correlations based on population frequency, though this may be

due to the modest sample sizes, which likely limited our power to detect interaction

effects among features considered here.

Despite our lack of statistical power, we do observe individual cases where a

combination of features may mitigate negative fitness effects. For example, in the

common polymorphic inversion In(2L)t the first breakpoint is in a region containing

active chromatin states while the second is in a region that contains inactive states.

The active region breakpoint is less than 1Kb from an insulator binding motif; it may

be that insulator binding at this site limits the influence of repressive chromatin on the

other side of the breakpoint. The common polymorphic inversions In(2R)NS, In(3L)P,

and In(3R)K are similarly arranged, with breakpoints occurring in regions of active

and inactive chromatin marks and with an insulator binding site very near to the

active region breakpoint. Consistent with this idea, Said et al (2018) recently showed

that breakpoint adjacent genes in In(2L)t and In(3R)K are expressed at similar levels
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between standard and inverted arrangements. These breakpoint arrangements of

common inversions are therefore qualitatively consistent with the idea that insulator

elements could suppress deleterious consequences of mixing chromatin states.

A4.11: Conclusion

In this work, we present evidence that mutational biases and natural selection

have played a role in shaping the fine-scale distribution of chromosomal inversion

breakpoints in the D. melanogaster subgroup. Natural selection likely plays a role in

maintaining gene sequences, as we found that high-frequency inversions are less

likely to disrupt gene coding spans and that they produce correspondingly longer

tandem duplications. We also identified two levels of association between chromatin

activity and inversion frequency- there appears to be a mutational bias towards

occurrence in active regions of the genome, but inversions also tend to occur in areas

with locally mixed chromatin states. We found evidence explaining this second

pattern consistent with natural selection for the association of inversion breakpoints

with insulator elements, which are in turn strongly associated with these mixed

chromatin states. Our analyses therefore clarify the mutational context and fitness

impacts of novel chromosomal inversions in natural populations and guide future

research into specific fitness and gene regulatory impacts of chromosomal inversions.

A stronger understanding of the factors underlying the distribution of

polymorphic inversions is requisite for the study of their evolutionary impact.

Although it is possible that breakpoint effects sometimes increase the fitness of new
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arrangements, such as by creating new expression patterns of transposed loci or

chimeric transcripts (Puerma et al 2016), our data are consistent with the conclusion

that selection acts against breakpoints that disrupt functional elements within

breakpoint regions, consistent with studies in other Drosophila species (Fuller et al

2017). Factors that mitigate fitness costs determine what parts of the genome can

tolerate polymorphic inversions that maintain complex phenotypes. Variations in

these factors may also explain differences in the formation and role of inversions

across species. Before an inversion can be selected for recombination suppression or

other features it must form in a genomic context where the presence of inversion

breakpoints is not immediately and strongly detrimental. Given two additional

features of chromosomal inversions, (1) the de novo mutation rate is likely very low

(Krimbas and Powell 1992), and (2) the conditions for a new arrangement to be

favored by natural selection are sometimes restrictive (Charlesworth et al 2018;

Kirkpatrick and Barton 2006; Hoffmann et al 2008), the impacts of fine-scale

inversion breakpoint positions on the fitness of new arrangements suggest that the

availability of suitable, high fitness arrangements may often be rate-limiting for

adaptive evolution when suppressed recombination is favorable.

A4.12: Supplementary- Breakage Within Polytene Domains

Polytene chromosomes are bundles of highly replicated chromosomes created

in some salivary gland cells in Drosophila melanogaster (Urata et al 1995). These

highly duplicated homologous chromosomes are aligned along their entire length and
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overall compartmentation shared between homologs is visible (Urata et al 1995).

These domains were found to represent large-scale TADs (Eagen et al 2015). We

performed a separate analysis examining HiC-derived TADs from polytene

chromosomes, sourced from Eagen et al (2015). Eagen et al included in their work a

direct comparison with the dataset of Sexton et al, which showed substantial

concordancy, making these results comparable. It is notable that the dataset created by

Eagen et al (2015) has TADs that are substantially larger with a mean length of 200k,

versus the mean 100k of Sexton et al (2012)’s domains (p=5.5x10-59, Mann-Whitney

U test). Of additional importance is that Sexton et al (2012)’s domains are continuous

along a chromosome- that is, there were no regions in between TADs not assigned to

a TAD. This is a confounding issue for examining the occurrence of inversion

breakpoints within non-TAD regions, as only the telomeres are not assigned to some

TAD. Eagen et al (2015), by contrast, has substantial gaps between their TADs, with a

median of 105kb of space between each annotated TAD. These gaps allow us to

analyze the frequencies of inversion breakpoints within versus between annotated

TADs.

Fixed inversion breakpoints were less likely to be found within polytene

domains (p=0.01, permutation test). Common and rare polymorphic inversion

breakpoints do not exhibit significant reduced occurrence within polytene TAD

domains (rare p=0.1; common p=0.09; permutation test). As the fixed inversions

primarily occurred on lineages other than Drosophila melanogaster, the co-evolution

of polytene domains as a consequence of previously fixed inversions is unlikely to be
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the explanation for this pattern. We therefore conclude that there may be a weak

pattern of a reduction of inversion breakpoint formation within TADs versus

inter-TAD regions, at least among TADs which are reflected as bands in salivary

polytene chromosomes. Our conclusions are further complicated by the fact that

polytene chromosomes only occur in specific cell types, such as salivary glands, and

so their domains may not represent functional units applicable to most cell types.

Further exploration of the spatial conformation of the genome directly around these

breakpoint regions is needed before stronger conclusions about this relationship can

be made.

A4.13: Supplementary- Breakpoint Sequence Divergence

We verified the likely ages of our discovered rare inversions by comparing

overall strain divergence between the inverted strains and all other strains. If an

inversion had persisted for a long period of time at low frequencies, its breakpoint

regions should display excess divergence compared to other strains within the same

populations. Divergence values were first calculated as “# of mismatches / (# of

matches + # of mismatches)” between each pair of strains with an assembly, where a

match was when two bases at a point were concordant and mismatch discordant,

discounting any points where either assembly in the pairwise comparison was

ambiguous. Each strain then had its mean divergence value from the set of

comparisons to all other strains calculated and the distribution of those values was
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used to calculate the percentile of average divergence. The results of this analysis are

located in table SA4.1.

A4.14: Supplementary- Robustness to Variation in Breakpoint Structures

Limitations of short read sequencing technologies prevent us from verifying

the chromosome order has actually changed when no single read pair spans an entire

breakpoint region. Some of our candidate rare inversion breakpoints could also be

consistent with duplication in one genomic region and insertion in reverse orientation

without actual inversion of the intervening chromosome. If these occur, it would

manifest as an apparent inversion with a duplication for at least one breakpoint (i.e.,

the transposed region). We note that this mechanism certainly does not explain all

candidate rare inversions with breakpoint duplication structure as one

cytologically-verified inversion, In(2R)Mal, includes one inversion with only a single

breakpoint duplication. Other, more complex structural variants could also generate

breakpoints consistent with inverted structures, including potentially two duplications

plus transposition. It is not known how common these phenomena are relative to

inversion, but note that most common and fixed inversion breakpoints do show

evidence of duplication.

We therefore identified and reanalyzed a set of highest-confidence rare

inversions which have been cytologically or molecularly characterized previously or

have very simple and obvious breakpoint structures that are not consistent with any

other simple rearrangement (i.e. “cut-and-paste” breakpoints with no associated
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duplications). This “high confidence” set includes In(2L)DL3, In(2R)Y1a,

In(2L)MAL_1, In(2L)MAL_2, In(3L)DL10, and In(3R)Gb. We find that gene

disruption by rare inversions is more common in this set (75% versus 44% of

breakpoints interrupt genes) and not significantly reduced relative to random

expectations (p=0.886, permutation test). Furthermore, high confidence rare inversion

breakpoints are more likely to interrupt genes than are common inversion breakpoints

(p=0.0236, Fisher’s exact test). Consistent with our results from the full set we find

no statistical evidence for further reduced disruption of lethal and sterile genes.

Additionally, the high-confidence rare inversion breakpoints have shorter inverted

duplications than common inversion breakpoints (p=0.0002, Mann-Whitney U test).

We note that the apparent increases in the rates of gene disruption and decreases in

the sizes of breakpoint-associated duplications in this subset of breakpoints are likely

due to the fact that duplication length is one element used to determine inversion

confidence. Including the full set of candidate inversion breakpoints is therefore

conservative for testing these hypotheses.

Additionally, we find that high-confidence rare inversion breakpoints occur at

a greater rate than expected in domains annotated as active by Sexton et al (p=0.001,

permutation test) as with the full candidate rare inversion set. They do not occur at

significantly higher rates in active chromatin fine-scale windows, however (p=0.44,

permutation test). There does not appear to be any relationship between the types of

domain each inversion’s pair of breakpoints occur in at any scale (domains p=0.1,

windows p=0.3, chi-square tests). The high-confidence rare inversion breakpoints are
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significantly associated with insulators (p=0.024, percentile) but are further from

insulators than common inversions (p=0.044, Mann-Whitney U test) and marginally

further than fixed inversions (p=0.087, Mann-Whitney U test). As we state in the

main text, colocalization with insulator elements may in part reflect the tendency for

breakpoints to occur in active chromatin windows. The high-confidence rare

inversion breakpoints appear to behave similarly to the entire set in regards to both

chromatin and insulators despite the reduced statistical power.

Overall, our results are not strongly affected by the exclusion of the

lower-confidence rare inversion breakpoints, where there are slight differences they

make our reported results more conservative, and we do not believe that the inclusion

of rare inversions with breakpoint proximal duplications is confounding for our

findings in this work.

A4.15: Supplementary- Cross feature correlation analyses: chromatin windows,

gene disruption, and insulator proximity

None of the features we explore are completely independent and it is possible

that associations with one factor could bias our analysis of another. We therefore

performed several cross-correlation analyses where we evaluated associations

between features in our dataset and looked for patterns of association among them.

Generally, comparisons between a categorical feature such as gene disruption and a

continuous feature such as duplication size were performed by conditioning on the

categorical feature and performing Mann-Whitney rank-sum tests comparing the
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conditional distributions of the continuous feature. Comparisons between continuous

features were performed with linear regression and a Wald test. Comparisons between

categorical features were performed with a Fisher’s Exact test of the proportions of

categories conditioned on the other category type. Many of the tests were not possible

as conditioning on multiple features and frequency category often left sample sizes

too small to retain sufficient statistical power to identify important differences.

Tests involving specific categories of domain breakage were all nonsignificant

due to low sample sizes, with no obvious biases. We instead focused on local

chromatin window activity as a possible influence on other factors by subsetting the

dataset to breakpoints with these window features. Inversion breakpoints in inactive

windows were not tested against mixed or active windows as the sample size within

inactive windows was too small for statistical significance. Local chromatin window

activity being active versus mixed did not exert a direct influence on breakpoint

proximity to insulator elements (p=0.54, Mann-Whitney U test).

Some tests related to gene disruption did yield significant results. Duplication

size among breakpoints which do not disrupt genes are larger than those that do

(p=0.0096, Mann-Whitney U test) which is expected given our definition of gene

disruption. Inversion breakpoints which disrupt genes are also less associated with

insulator elements (p=0.015, Mann-Whitney U test), likely because insulator binding

sites are only rarely found within coding regions. Inversions which disrupt genes

largely occur in active chromatin regions (p=0.01, Fisher’s Exact test), likely because

active chromatin marks exist across gene coding spans.
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Chromatin window state and gene disruption were also associated with one

another; breakpoints in active regions were more likely to disrupt genes than those in

inactive regions (p=0.01, Fisher’s Exact test). This is likely due to the nature of active

chromatin regions and their association with gene transcription. This effect is most

robust among rare inversion breakpoints (p=0.051, Fisher’s Exact test), though the

statistical strength declines due to low sample size. The effect disappears when

looking at common inversion breakpoints (p=0.19, Fisher’s Exact test) and fixed

inversion breakpoints (p=0.55, Fisher’s Exact test), likely because these categories

interrupt genes less frequently than rare inversions in general regardless of chromatin

window state.

Finally, insulator proximity and duplication size were uncorrelated (p=0.98,

Wald test). Overall, we conclude that there are some connections between features

such as chromatin window size and gene disruption, but that these effects are not

strongly related to the frequencies of inversions examined here and therefore unlikely

to confound our frequency category comparison.
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Figure A4.4: Mapping positions along the genome representing inversion
breakpoints. (A) Mapping positions along the genome from which short reads that
support the presence of inversion breakpoints are derived. (B) Mapping positions
along the genome where those reads will map on the standard arrangement reference
genome that does not have this inversion. Read pairs that map in forward-forward
orientation on the reference genome are shown in blue, read pairs that map in
reverse-reverse orientation are shown in red. Finally, reads whose pair does not map,
presumably because it overlaps the breakpoint, are shown in green. All reads show, as
well as their unmapped pairs and additional adjacent standard mapping read pairs,
were used to de novo assemble breakpoint adjacent regions.
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Figure A4.5: Insulator Distance Distribution: Vertical swarmplot of insulator
distance values in a 10kbp window on either side of the set of breakpoints. The x-axis
is the distance in bases for each permuted insulator. Grey dots are permuted
expectations; black is real data. No directional enrichment is evident.
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Figure A4.6: Chromatin Marker State Windows- Insulators and Domains

The above figure displays the pairwise relationships between the domain chromatin
annotations, the 10kb chromatin windows, and the distribution of insulator binding
sites. A the density of insulator elements per base between domains with varying
annotations. We can see that insulators are much denser in active regions. B The 10kb
chromatin windows surrounding insulator elements (upper) and across the entire
genome (lower). We can see that the windows which contain insulator elements are
strongly enriched for active and mixed chromatin states. C is the third pairwise
relationship, that between the 10kb chromatin windows and the domain chromatin
annotations. We see that domains annotated “Active” are strongly enriched for both
active and mixed chromatin states, “Null” domains are relatively evenly split between
states, “PcG” domains are primarily inactive and mixed, and “HP1” domains have
very little active windows. Note that a chromatin window labeled “N/A” means there
was no marker information in that window, which likely indicates highly repetitive
regions or a lack of any kind of distinct marker enrichment.
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Name Percentile
Inversion
Divergence

Most Diverged
Value

Least Diverged
Value

Count of
Missing
Assemblies

In(2L)DL1_1 78.17258883 0.013337749 0.015094053 0.010209212 0

In(2L)DL1_2 1.52284264 0.00772233 0.010368947 0.007557807 0

In(2L)DL2_1 41.66666667 0.007548929 0.009924965 0.006788092 2

In(2L)DL2_2 6.25 0.003030571 0.004950918 0.00295072 2

In(2R)DL4_1 52 0.00493158 0.009634861 0.004113951 10

In(2R)DL4_2 90 0.006984834 0.008292514 0.003785763 15

In(2R)MAL_1_1 72.08121827 0.008800419 0.010477536 0.005842443 0

In(2R)MAL_1_2 80.7106599 0.016620079 0.018559695 0.012634134 0

In(2R)MAL_2_1 99.49238579 0.005584235 0.005657727 0.003371302 0

In(2R)MAL_2_2 9.137055838 0.009280233 0.013281644 0.008329574 0

In(3L)DL5_1 97.87234043 0.009548998 0.009715444 0.00578075 1

In(3L)DL5_2 12.76595745 0.005099891 0.008850537 0.004851756 1

In(3L)DL6_1 81.21827411 0.012675769 0.015284631 0.010456063 0

In(3L)DL6_2 84.26395939 0.013024658 0.014283207 0.009468615 0

In(3L)DL7_1 32.98969072 0.00750953 0.010768587 0.005973036 11

In(3L)DL7_2 80.44692737 0.009858011 0.012344136 0.006002733 26

In(3L)DL9_1 18.59296482 0.004877904 0.008827557 0.004398443 6

In(3L)DL9_2 54.87179487 0.008071974 0.011122911 0.00655541 10

In(3R)G_1 93.33333333 0.003646416 0.004202843 0.00207387 40

In(3R)G_2 80 0.004841514 0.005379021 0.003319676 35

In(3R)DL12_1 15.52795031 0.000987473 0.00185542 0.00079961 44

In(3R)DL12_2 30.81395349 0.002945007 0.006007908 0.002326722 33

In(3R)DL14_1 85.40145985 0.012131614 0.01330209 0.009463809 0

In(3R)DL14_2 72.99270073 0.004730172 0.005748614 0.002839291 0

Table A4.1: Breakpoint Divergence. This table displays for each breakpoint the

name and sequence divergence of the breakpoint as well as the highest and lowest

divergences observed, and the number of stains missing assemblies over the

breakpoint region. This table only includes versions for which an assembly of the

chromosome arm for that strain was available. No annotated inversion-bearing strain
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was either the most or least divergent strain in its population in a window of 10

kilobases around the breakpoint, indicating that these inversions are likely not

exceptionally old.

Label Chromosome Frequency Gene Interrupted
Allele
Phenotype

In(2R)MAL_1 2R Rare FBgn0034389 Lethal
In(2R)MAL_2 2R Rare FBgn0024189 Lethal
In(3L)DL10 3L Rare FBgn0036447 Lethal
In(3R)Gb 3R Rare FBgn0015589 Lethal
In(3R)DL14 3R Rare FBgn0038211 Lethal
In(3R)DL14 3R Rare FBgn0250823 Lethal
In(3R)Dl14 3R Rare FBgn0029881 Sterile
In(X)A X Common FBgn0030505 Lethal
In(2L)t 2L Common FBgn0031403 Lethal
X(1) X Fixed FBgn0026089 Lethal
2L(1) 2L Fixed FBgn0031646 Lethal
2L(1) 2L Fixed FBgn0031968 Lethal
2L(7) 2L Fixed FBgn0051678 Lethal

Table A4.2: Inversion Allele Phenotypes. This table is a display of all lethal

phenotype genes disrupted by our breakpoint dataset.
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Fixed Inversion Ortholog Present? Distance in bp to nearest edge of disrupted gene span

X(1) Yes 101

X(2) Yes 278

X(5) Yes 126

X(6) Yes 928

2L(1) Yes 33

2L(1) Yes 278

2L(2) Yes 125

2L(6) Yes 323

2L(7) Yes 202

2L(7) Yes 1

2L(8) Yes 71

3L(1) Yes 68

3R(7-8) Yes 626

Table A4.3: Breakpoints Disrupting Genes. This table contains all fixed

breakpoints that appear to disrupt a gene regardless of whether the gene is annotated

with lethal or sterile phenotypes. We note that in all cases there is a D. yakuba

ortholog to the gene present and that the closest distance between a forward or reverse

strand break and a span edge is less than 1000 bases. This suggests that all of these

disruption events are false positives due to bias and low accuracy of breakpoint

estimation in the rare category (see Section A4.5).
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Frequency Allele Phenotype
p-value of
reduction

Rare Lethal 0.57

Rare Sterile 0.53

Common Lethal 0.54

Common Sterile 0.35

Fixed Lethal 0.36

Fixed Sterile 0.21

Table A4.4: Deleterious Phenotype p-values

These are the non-significant p-values for all categories of strongly deleterious

phenotype annotated for genes possibly disrupted. The lack of significance may be

due to a combination of low sample size and the nature of the drop in gene disruption

rates. As gene disruption levels drop among higher-frequency inversions, and as only

a small proportion of genes are annotated with either phenotype, we lack power to

detect differences in the rates of disruption for these genes.

Data A4.1

This file contains the sequences of the breakpoint-spanning contigs for the

candidate rare inversions in fasta format. It can be downloaded at

10.5281/zenodo.7566973.
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