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Identifiability of Path-Specific Effects∗

Chen Avin, Ilya Shpitser, Judea Pearl
Cognitive Systems Laboratory

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA. 90095
{avin, ilyas, judea}@cs.ucla.edu

Abstract
Counterfactual quantities representing path-
specific effects arise in cases where we are
interested in computing the effect of one variable
on another only along certain causal paths in the
graph (in other words by excluding a set of edges
from consideration). A recent paper[Pearl, 2001]
details a method by which such an exclusion
can be specified formally by fixing the value of
the parent node of each excluded edge. In this
paper we derive simple, graphical conditions for
experimental identifiability of path-specific effects,
namely, conditions under which path-specific
effects can be estimated consistently from data
obtained from controlled experiments.

1 Introduction
Total, direct and indirect effects are important quantities in
practical causal reasoning about legal, medical, and public
policy domains, among others. The task of explicating, and
computing these quantities has been successfully addressed
in the framework of linear structural equation models (SEM),
but encountered difficulties in non-linear as well as non-
parametric models. See for instance[Robins and Greenland,
1992], [Galles and Pearl, 1995], [Pearl, 2001],

In the linear SEM framework, thetotal effectof Z onY is
the response ofY to a unit change in the setting ofZ. On
the other hand, thedirect effectis the effect ofZ on Y not
mediated by any other variable in the model while theindirect
effectis the effect ofZ onY excluding the direct effect.

In non-parametric models, we can define thecontrolleddi-
rect effect as the change in the measured response ofY to a
change inZ, while all other variables in the model, hence-
forth calledcontext variables, are held constant. Unfortu-
nately, there is no way to construct an equivalent notion of
controlled indirect effects, since it is not clear to what val-
ues other variables in the model need to be fixed in order to
measure such an effect.

Recently, a novel formulation ofnatural [Pearl, 2001] or
pure [Robins and Greenland, 1992] effects was proposed

∗This research was partially supported by AFOSR grant
#F49620-01-1-0055, NSF grant #IIS-0097082, and ONR (MURI)
grant #N00014-00-1-0617.

which defined effects in a more refined way by holding vari-
ables constant not to predetermined values, but to values they
would have attained in some situation. For example, the nat-
ural direct effect ofZ onY is the sensitivity ofY to changes
in Z, while the context variables are held fixed to the values
they would have attained had no change inZ taken place.
Similarly, the natural indirect effect is the sensitivity ofY to
changes the context variables would have undergone hadZ
been changed, whileZ is actually being fixed.

Being complex counterfactual quantities, natural effects
tend to have intricate verbal descriptions. It is often easier
to explain such effects using the visual intuitions provided
by graphical causal models. Graphical causal models repre-
sent causal assumptions as graphs, with vertices representing
variables, and edges representing direct causal paths. In such
models, natural direct effect can be interpreted as the effect
along the edgeZ → Y , with the effect along all other edges
’turned off.’ Similarly, the natural indirect effect can be inter-
preted as the effect along all edges except the one betweenZ
andY . Using this interpretation, the suggestive next step in
the study of natural effects is to consider effects along a se-
lect subset of edges betweenZ andY which are calledpath-
specificeffects.

1.1 A Motivating Example
Consider the following example, inspired by[Robins, 1997],
A study is performed on the effects of the AZT drug on AIDS
patients. AZT is a harsh drug known to cause a variety of
complications. For the purposes of the model, we restrict
our attention to two – pneumonia and severe headaches. In
turn, pneumonia can be treated with antibiotics, and severe
headache sufferers can take painkillers. Ultimately, all the
above variables, except headache, are assumed to have a di-
rect effect on the survival chances of the patient. The graphi-
cal causal model for this situation is shown in Fig. 1.

The original question considered in this model was the to-
tal effect of AZT and antibiotics treatment on survival. How-
ever, a variety of other questions of interest can be phrased
in terms of natural effects. For instance, what is the direct
effect of AZT on survival, if AZT produced no side effects in
the patient, which is just the natural direct effect of AZT on
survival. See Fig. 2 (a). Similarly, we might be interested in
how just the side effects of AZT affect survival, independent
of the effect of AZT itself. This corresponds to the natural
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Figure 1: The AZT example.A: AZT, P : pneumonia,H:
headaches,B: antibiotics,K: painkillers,S: survival

indirect effect of AZT on survival. See Fig. 2 (b).
Furthermore, certain interesting questions cannot be

phrased in terms of either direct or indirect natural effects.
For example we might be interested in the interactions be-
tween antibiotics and AZT that negatively affect survival.To
study such interactions, we might consider the effect of ad-
ministering AZT on survival in the idealized situation where
the antibiotics variable behaved as if AZT wasnot adminis-
tered, and compare this to the total effect of AZT on survival.
Graphically, this amounts to ’blocking’ the direct edge be-
tween antibiotics and survival or more precisely, keeping the
edge functioning at the level it would have had no AZT been
given, while letting the rest of the edges function as usual.
This is shown graphically in Fig. 3 (a). The edges which we
wish to block will be crossed out in the graph.

1.2 Outline and Discussion of Our Approach

Our goal is to study and characterize situations where path-
specific effects like the one from the previous section can be
computed uniquely from the data available to the investigator.
Our main result is a simple, necessary, graphical conditionfor
the identifiability of path-specific effects from experimental
data. Furthermore, our condition becomes sufficient for mod-
els with no spurious correlations between observables, also
known as Markovian models.

The condition can be easily described in terms of blocked
and unblocked paths as follows. LetX, Y be variables in
a causal modelM inducing a graphG. Then given a set of
blocked edgesg, the corresponding path-specific effect ofX
onY cannot be identified if and only if there exists a nodeW
with an unblocked directed path fromX to W , an unblocked
directed path fromW to Y , and a blocked directed path from
W to Y . For instance, the effects ofA on S are identifiable
in Fig. 2 (a), (b), and Fig. 3 (b), but not in Fig. 3 (a). There-
fore, in general we cannot study the interractions of AZT and
antibiotics in the way described above, but we can study the
interractions of AZT and painkillers. The latter case is made
tractable by an absense of blocked and unblocked paths shar-
ing edges.

Our condition also shows that all identifiable path-specific
effects are ’equivalent’, in a sense made precise later, to ef-
fects where only root-emanating edges are blocked. Thus
identifiable path-specific effects are a generalization of both
natural direct effects, where a single root-emanating edgeis
unblocked, and of natural indirect effects, where a single root-
emanating edge is blocked.
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Figure 2: (a) Natural direct effect (b) Natural indirect effect
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Figure 3: Path specific effects

To obtain this result formally, we treat effects as probabili-
ties of statements in a certain counterfactual logic. However,
rather than manipulating these probabilities directly, wecon-
vert them to subgraphs of the original causal model, and rea-
son about and perform manipulations on the subgraphs. We
then introduce simple counterfactual formulas whose prob-
abilities are not identifiable, and prove that certain simple
graphical conditions must be described by such formulas, and
lack of such conditions leads to subgraphs corresponding to
identifiable effects.

Due to space considerations, the proofs of some lemmas
have been omitted, while the proofs included generally are
missing some technical details. Our technical report contains
the complete proofs.

2 Preliminaries

This paper deals extensively with causal models and counter-
factuals. We reproduce their definitions here for complete-
ness. A full discussion can be found in[Pearl, 2000]. For
the remainder of the paper, variables will be denoted by cap-
ital letters, and their values by small letters. Similarly,sets of
variables will be denoted by bold capital letters, sets of values
by bold small letters. We will also make use of some graph
theoretic abbreviations. We will writePa(A)G, De(A)G,
and An(A)G, to mean the set of parents, descendants (in-
clusive), and ancestors (inclusive) of nodeA in graphG. G
will be omitted from the subscript when assumed or obvious.
If a variable is indexed, i.e.V i, we will sometimes denote the
above sets asPai, Dei, andAni, respectively.



2.1 Causal Models and Counterfactual Logic
Definition 1 A probabilistic causal model (PCM) is a tuple
M = 〈U ,V ,F , P (u)〉, where

(i) U is a set of background or exogenous variables, which
cannot be observed or experimented on, but which can
influence the rest of the mode

(ii) V is a set{V 1, ..., V n} of observable or endogenous
variables. These variables are considered to be func-
tionally dependent on some subset ofU ∪ V .

(iii) F is a set of functions{f1, ..., fn} such that eachf i is
a mapping from a subset ofU ∪ V \ {V i} to V i, and
such that

⋃
F is a function fromU to V .

(iv) P (u) is a joint probability distribution over the vari-
ables inU .

A causal modelM induces a directed graphG, where each
variable corresponds to a vertex inG and the directed edges
are from the variables in the domain off i (i.e Pai) to V i for
all the functions. For the remainder of this paper, we consider
causal models which induce directed acyclic graphs.

A Markovian causal modelM has the property that each
exogenous variableU is in the domain of at most one func-
tion f . A causal model which does not obey this property is
called semi-Markovian. By convention, nodes corresponding
to variables inU are not shown in graphs corresponding to
Markovian models.

For the purposes of this paper, we will represent counter-
factual statements in a kind of propositional modal logic, sim-
ilar to the one used in[Halpern, 2000]. Furthermore, the dis-
tribution P (u) will induce an additional probabilistic inter-
pretation on the statements in the logic.

Definition 2 (atomic counterfactual formula) Let M be a
causal model, letX be a variable andZ be a (possibly
empty) set of variables. Then for any valuex of X, and val-
uesz of Z, x is a term, andXz(u) is a term, taken to mean
’the valueX attains whenZ is forced to take on valuesz,
andU attain valuesu.’

For two termst1 andt2, an atomic counterfactual formula
has the formt1 = t2. We will abbreviate formulas of the form
Xz(u) = x asxz(u).

The ’forcing’ of the variables toz is called an intervention,
and is denoted by do(z) in [Pearl, 2000]. Counterfactual for-
mulas are constructed from atomic formulas using conjunc-
tion and negation.

Definition 3 (counterfactual formula)
(i) An atomic formulaα(u) is a counterfactual formula.

(ii) If α(u) is a counterfactual formula, then so is(¬α)(u).

(iii) If α(u) andβ(u) are counterfactual formulas, then so is
(α ∧ β)(u).

The satisfaction of counterfactual formulas by causal mod-
els is defined in the standard way, which we reproduce from
[Halpern, 2000].

Definition 4 (entailment) A causal modelM satisfies a
counterfactual formulaα(u), writtenM |= α(u), if all vari-
ables appearing inα are in M and one of the following is
true

(i) α(u) ≡ t1 = t2 and for the given setting ofu, the terms
t1 andt2 are equal inM .

(ii) α(u) ≡ (¬β)(u) andM 6|= β(u).

(iii) α(u) ≡ (β ∧ γ)(u) andM |= β(u) andM |= γ(u)

Thus a formulaα(u) has a definite truth value inM . If the
valuesu are unknown, we cannot in general determine the
truth of α. However, we can easily define a natural notion of
probability ofα in M as follows:

P (α|M) =
∑

{u|M |=α(u)}

P (u) (1)

We will omit the conditioning onM if the model in ques-
tion is assumed or obvious.

If we consider each value assignmentu as apossible
world, then we can viewP (u) as describing our degree of
belief that a particular world is true, andP (α) as our be-
lief that a particular statement is true in our causal model if
viewed as atype 2 probability structure [Halpern, 1990].

2.2 Submodels and Identifiability
Definition 5 (submodel) For a causal model M =
〈U ,V ,F , P (u)〉, an interventiondo(z) produces a new
causal modelMz = 〈U ,V z,F z, P (u)〉, whereV z is a
set of distinct copies of variables inV , andF z is obtained
by taking distinct copies of functions inF , but replacing all
copies of functions which determine the variables inZ by
constant functions setting the variables to valuesz.

The joint distributionP (V z) over the endogenous vari-
ables inMz is called an interventional distribution, and is
sometimes denoted asPz. For a given causal modelM , de-
fineP∗ as{Pz|Z ⊆ V ,z a value assignment ofZ}. In other
words,P∗ is the set of all possible interventional (or experi-
mental) distributions ofM .

Intuitively, the submodel is the original causal model, min-
imally altered to renderZ equal toz, while preserving the
rest of its probabilistic structure.

Because there is no requirement that interventions in
atomic counterfactuals in a formulaα be consistent with each
other, it is in general impossible to alter the original model
using only interventions in such a way as to make the en-
tire formula true. Thus, we introduce a causal model which
encompasses the ’parallel worlds’ described by the counter-
factual formula.

Before doing so, we give a simple notion of union of sub-
models, as follows:

Definition 6 (causal model union) LetMx, andMz be sub-
models derived fromM . ThenMx ∪Mz is defined to beMx

if z = x, and〈U ,V x ∪ V z,F x ∪ F z, P (u)〉, otherwise.

Definition 7 (parallel worlds model) Let M be a causal
model,α a counterfactual formula. Then the parallel worlds
modelMα is the causal model union of the submodels corre-
sponding to atomic counterfactuals ofα.

We call the joint distributionP (V α) over the endogenous
variables inMα a counterfactual distribution, and will some-
times denote it asPα. In the language of the potential out-
comes framework[Rubin, 1974], we can viewPα as the joint
distribution over the unit-response variables mentioned in α.



The parallel worlds model is a generalization of the twin
network model, first appearing in[Balke and Pearl, 1994], to
more than two possible worlds. It displays independence as-
sumptions between counterfactual quantities in the same way
a regular causal model displays independence assumptions
between observable quantities – by positing counterfactuals
are independent of their non-descendants given their parents.

Given a causal modelM and a formulaα, we are interested
in whether the corresponding counterfactual joint distribution
Pα (or its marginal distributions) can be computed uniquely
from the set of joint distributions available to the investigator.
The formal statement of this question is as follows:

Definition 8 (identifiability) LetM be a causal model from
a set of modelsM inducing the same graphG, Mα a par-
allel worlds model, andQ be a marginal distribution of the
counterfactual joint distributionPα. LetK be a set of known
probability distributions derived fromM . ThenQ is K-
identifiable inM if it is unique and computable fromK in
anyM ∈ M .

It follows from the definition that if we can construct two
models inM with the sameK but differentQ, thenQ is
not identifiable. An important, well-studied special case of
this problem – which we call evidential identifiability of in-
terventions – assumesα is an atomic counterfactual, andK
is the joint distribution over the endogenous variables inM ,
or P (V ). Being able to identify an interventional marginal in
this way is being able to compute the effects of an interven-
tion without having to actually perform the intervention, and
instead relying on passive, observational data.

In this paper we are concerned with identifying probabili-
ties of counterfactuals formulas using the setP∗ of all inter-
ventional distributions ofM as a given. In other words, we
are interested in computing probabilities of counterfactuals
from experimental and observational probabilities.

3 Path-Specific Effects
Our aim is to provide simple, graphical conditions for theP∗-
identifiability of path-specific effects. To do so, we must for-
malize such effects as counterfactual formulas, and translate
the identifiability conditions on the formula to conditionson
the graph.

The following is the formalization of the notion of path-
specific effect in terms of a modified causal model, as it ap-
pears in[Pearl, 2001]:

Definition 9 (path-specific effect) Let G be the causal
graph associated with modelM , and let g be an edge-
subgraph ofG containing the paths selected for effect analy-
sis (we will refer tog as theeffect subgraph). Theg-specific
effect ofz on Y (relative to referencez∗) is defined as the
total effect ofz on Y in a modified modelMg formed as
follows. Let each parent setPAi in G be partitioned into
two partsPAi = {PAi(g), PAi(ḡ)}, wherePAi(g) rep-
resents those members ofPAi that are linked toV i in g,
and PAi(ḡ) represents the complementary set. We replace
each functionf i in M with a new functionf i

g in Mg, defined
as follows: for every set of instantiationspai(g) of PAi(g),
f i

g(pai(g),u) = f i(pai(g), pai(ḡ)∗,u), wherepai(ḡ)∗ takes

the value ofPAi(ḡ)z∗(u) in M . The collection of modified
functions forms a new modelMg. Theg-specific effect ofz
onY , denotedSEg(z, z∗;Y,u)M is defined as the total effect
(abbreviated as TE) ofz onY in the modified model:

SEg(z, z∗;Y,u)M = TE(z, z∗;Y,u)Mg
(2)

whereTE(z, z∗;Y,u)Mg
= Yz(u)Mg

− Yz∗(u)Mg
.

If we wish to summarize the path-specific effect over all
settings ofu, we should resort to the expectation of the above
difference, or the expected path-specific effect. To identify
this effect, we need to identifyP (yz) andP (yz∗) in Mg. For
our purposes we can restrict our attention toP (yz), as the
second term corresponds to the quantityP (yz∗) in the origi-
nal modelM , and so is triviallyP∗-identifiable.

In this paper we assume, without loss of generality, edges
in ḡ = G \ g are all along directed paths betweenZ and
Y . The next theorem states that any path specific effect, ex-
pressed as a total effect in the modified modelMg, can be
expressed as a counterfactual formula in the original model
M .

Theorem 1 Every path specific effectP (yz)Mg
has a corre-

sponding counterfactual formulaα in M s.t for everyu,

Mg |= yz(u) ⇐⇒ M |= α(u)

Proof outline: The proof is for causal models with fi-
nite domains. FixM , u, y, z and g. To prove the the-
orem, we need to ’unroll’yz and remove any implicit ref-
erences to modified functions inMg, while preserving the
truth value of the statement. Our proof will use the axiom
of composition, known to hold true for causal models un-
der consideration. In our language, the axiom states that
for any three variablesZ, Y,W , and any settingsu, z, w, y,
(Wz = w ⇒ Yz,w = Yz)(u).

Fix u1. Let S = An(Y )∩De(Z) Then by axiom of com-
position,yz(u1) has the same truth value as a conjunction of
atomic formulas of the formvi

pai(g), whereV i ∈ S, PAi(g)

is the set of parents ofV i in Mg, andpai(g) andvi are suit-
ably chosen constants. Denote this conjunctionα1.

For every termvi
pai(g) in α1 corresponding toV i with

PAi(g) ⊂ PAi, replace it byvi
pai(g),pai(ḡ)∗ ∧pai(ḡ)∗z∗ in the

conjunction, wherepai(ḡ)∗ takes the value ofPAi(ḡ)z∗(u1)
in M . Denote the resultα∗

1. Note thatα∗
1 is in M and

Mg |= yz(u1) ⇐⇒ M |= α∗
1(u1). We construct a sim-

ilar conjunctionα∗
j for every instantiationuj in M . Let

α =
∨

j α∗
j . It’s easy to see the claim holds forα by con-

struction. 2

An easy corollary of the theorem is, as before, that
P (yz)Mg

= P (α)M . Note that differentαi in the proof only
differ in the values they assign to variables inS. SinceM is
composed of functions, the values of variables inS are fixed
givenu, and sinceP (α) =

∑
{u|M |=

W

i
αi(u)} P (u) by def-

inition, we can expressP (α) as a summation over the vari-
ables inS \ {Y }.

For instance, the first term of the path-specific effect in Fig.
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2 (a) can be expressed as

P (sa)Mg2a
=

∑

k,b,p,h

P (sk,b,p,a ∧ kh ∧ bp ∧ pa∗ ∧ ha∗)

=
∑

h,p

P (sa,h,p ∧ ha∗ ∧ pa∗) (3)

which is just the direct effect. The more general case of Fig.
3 (a) can be expressed as:1

P (sa)Mg3a
=

∑

k,b,p,h

P (sk,b,p,a ∧ kh ∧ ba∗ ∧ pa ∧ ha)

=
∑

b

P (sa,b ∧ ba∗) (4)

It looks as if the expressions in Eq. (3) and (4) for the
two effects are very similar, moreover we know that direct
effects are alwaysP∗-identifiable in Markovian models. Sur-
prisingly, the path specific effect of Fig. 3 (a) and Eq. (4) is
notP∗-identifiable as we will show later.

We will find it useful to modify the effect subgraphg while
preserving the value of the path-specific effect. We do so by
means of the following two rules. LetM be a causal model
with the graphG, g an effect subgraph ofG, andḡ = G \ g.
For a nodeV , let in(V ) denote the set of edges incoming into
V , andout(V ) denote the set of edges outgoing fromV , in
G.

R1: If there is a nodeV in G such thatout(V ) ⊆ ḡ, then
R1(g) = (g \ out(V )) ∪ in(V ). See Fig. 4 (a).

R2: If there is an edgee ∈ ḡ, such that for all directed paths
from Z to Y which includee, there exists another edge
e′ ∈ ḡ, which occurs ’upstream’ frome, thenR2(g) =
g \ {e}. See Fig. 4 (b).

Theorem 2 (Effect-Invariant Rules) If R1 is applicable the
R1(g)-specific effect is equal to theg-specific effect. IfR2 is
applicable theR2(g)-specific effect is equal to theg-specific
effect.

Proof outline: The proof is by induction on graph struc-
ture, and is an easy consequence of the definition ofg-specific
effect, and theR1 andR2 rules. 2

Intuitively, R1 ’moves’ the blocked edges closer to the
manipulated variableZ, andR2 removes redundant blocked

1Note that Eq (4) is different from
P

ba∗
P (sa,b ∧ ba∗) which is

just a marginalization over the counterfactual variableba∗

Table 1: The functionsf1
R andf2

R

Z UR R = f1

R(z, uR) R = f2

R(z, uR)
0 1 0 1
0 2 1 1
0 3 1 0
1 1 1 1
1 2 0 0
1 3 0 0

edges. Thus, it is not surprising these two identities cannot be
applied forever in a dag.

Lemma 1 Let M be a causal model,g an effect subgraph.
Then any sequence of applications ofR1 and R2 to g will
reach a fixed pointg∗.

4 Problematic Counterfactual Formulas
Identification of a distribution must precede its estimation,
as there is certainly no hope of estimating a quantity not
uniquely determined by the modeling assumptions. Further-
more, uniqueness frequently cannot be guaranteed in causal
models. For instance, when identifying interventions from
observational data, a particular graph structure, the ’bow-
arc’, has proven to be troublesome. Whenever the graph of
a causal model contains the bow-arc, certain experiments be-
come unidentifiable[Pearl, 2000]. Our investigation revealed
that a similarly problematic structure exists for experimental
identifiability, which we call the ’kite graph’, due to its shape.
The kite graph arises when we try to identity counterfactual
probabilities of the formP (rz∗ ∧ r′z).

Lemma 2 Let M be a causal model, letZ and R be vari-
ables such thatZ is a parent ofR. ThenP (rz∗ ∧ r′z) is not
P∗-identifiable ifz∗ 6= z.

Proof outline: The proof is by counter example. We let
α = rz∗ ∧ r′z, and construct two causal modelsM1 and
M2 that agree on the interventional distribution setP∗, but
disagree onP (α). In fact, we only need 2 variables. The
two models agree on the following:Z is the parent ofR,
UZ , Z andR are binary variables,UR be a ternary variable,
fZ = UZ , andP (uZ), andP (uR) are uniform. The two
models only differ on the functionsfR, which are given by
table 4. It’s easy to verify our claim holds for the two models
for any valuesz∗ 6= z of Z. 2

The next theorem shows how a particular path-specific ef-
fect leads to problematic counterfactuals from the previous
lemma.

Theorem 3 Theg-specific effect ofZ on Y as described in
Fig. 5 (a) is notP∗-identifiable.

Proof: We extend modelsM1 andM2 from the previous
proof with additional variablesV , Y , andUY . We assume
P (uY ) is uniform, and bothP (V, Y |R) and the functions
which determineV andY are the same in both models.

Note that since all variables are discrete, the conditional
probability distributions can be represented as tables. Ifwe
require|R| = |V | and|Y | = |V | ∗ |R|, then the conditional



(a) (b)

Z

R

Y

V

Z

Y

R

Figure 5: (a) Problematic effect (b) The kite graph

probabilities are representable as square matrices. We fix the
functionsfV andfY , as well as the exogenous parents ofV
andY such that the matrices corresponding toP (V, Y |R) and
P (V |R) are matrices are invertible.

Call the extended modelsM3 andM4. Note that by con-
struction, the two models are Markovian. SinceM1 andM2

have the sameP∗, and since the two extended models agree
on all functions and distributions not inM1 andM2, they
must also have the sameP∗.

Consider theg-specific effect shown in Fig. 5 (a). From
Theorem 1 we can express the path-specific effect inM3

g in
terms ofM3, In particular:

P (yz)M3
g

=
∑

rv

P (yrv ∧ rz∗ ∧ vz)M3

=
∑

r,v,r′

P (yrv ∧ rz∗ ∧ vr′ ∧ r′z)M3

=
∑

r,v,r′

P (yrv)M3P (vr′)M3P (rz∗ , r′z)M3

The last step is licensed by the independence assumptions en-
coded in the parallel worlds model ofyrv∧rz∗ ∧vr′ ∧r′z. The
same expression can be derived forP (yz)M4

g
. Note that since

P∗ is the same for both models they have the same values
for the interventional distributionsP (yrv) andP (vr′). Note
that sinceP (Y |R, V ) andP (V |R) are square matrices, the
summing out ofP (Y |R, V ) andP (V |R) can be viewed as a
linear transformation. Since the matrices are invertible,
the transformations are one to one, and so if their composi-
tion. SinceP (yrv) = P (y|r, v) andP (vr′) = P (v|r′), and
sinceP (rz∗ ∧ r′z) is different in the two models, we obtain
that P (yz)M3

g
6= P (yz)M4

g
. Since adding directed or bidi-

rected edges to a graph cannot help identifiability, the result
also holds in semi-Markovian models. 2

5 Main Result
The main result of this section is that a simple sufficient
and necessary (in Markovian models) graphical criterion ex-
ists. This condition is easily stated and can be derived from
the effect subgraphg in linear time. By contrast, the only
other methods known to us for obtaining identifiability re-
sults of probabilities of general counterfactual logic formulas
are proof search procedures based on results in[Galles and

Pearl, 1998], [Halpern, 2000]. Such procedures are far less
intuitive, do not have running time bounds, and cannot be
used to obtain non-identifiability proofs.

First let’s define this criterion:

Definition 10 (Recanting witness criterion) Let R 6= Z be
a node inG, such that there exists a directed path ing fromZ
to R, a directed path fromR to Y in g, and a direct path from
R to Y in G but notg. ThenZ, Y , andg satisfy the recanting
witness criterion withR as a witness

The recanting witness criterion is illustrated graphically as
the ’kite pattern’ in Fig. 5 (b). The name ’recanting witness’
comes from the behavior of the variableR in the center of
the ’kite.’ This variable, in some sense, ’tries to have it both
ways.’ Along one path fromR to Y , R behaves as if the
variableZ was set to one value, but along another path,R
behaves as ifZ was set to another value. This ’changing of
the story’ ofR is what causes the problem, and as we will
show it essentially leads to the the existence of a nonP∗-
identifiable expression of the type discussed in section 4.

To proceed, we must make use of the following helpful
lemmas: Letg be an effect subgraph ofG andg∗ the fixed
point ofR1 andR2. Let g∗ = G \ g∗.

Lemma 3 g∗ satisfies the recanting witness criterion iffg
does. Moreover, ifg∗ does satisfy the criterion, then there
exists a witnessR s.t out(R) ∩ g∗ 6= ∅. If g∗ does not, then
g∗ ⊆ out(Z).

Lemma 3 states that repeated applications of rulesR1 and
R2 preserves the satisfaction of the recanting witness crite-
rion. Moreover, if the witness exists in the fixed pointg∗, then
some outgoing edge from it is blocked. If the witness does not
exist ing∗, then only root-emanating edges are blocked.

Lemma 4 Assume theg∗-specific effect ofZ on Y is P∗-
identifiable. LetE be any set of edges ing∗. Letg′ = E∪g∗.
Then theg′-specific effect ofZ onY is P∗-identifiable.

Lemma 4 states that if a path specific effect is not identi-
fied, then adding blocked directed edges ’does not help,’ in
that the effect remains unidentified. Now we can state and
prove the main results:

Theorem 4 If g satisfies the recanting witness criterion, then
theg-specific effect ofZ onY is notP∗-identifiable.

Proof: Let M be our model and assume thatg satisfies the
recanting witness criterion. By Lemma 3 so doesg∗, letR be
the witness from the lemma s.te = R → V is in g∗. Assume
the g-specific effect is identifiable, By Theorem 2 so is the
g∗-specific effect. Letg′ be the path specific effect obtained
by adding all edges tog∗, bute. By Lemma 4 theg′-specific
effect is alsoP∗-identifiable. Now by composing the func-
tions in g′ we can obtain a new modelM ′ which is exactly
the model of Fig. 5 (a)2 andP (yz)Mg′

= P (yz)M ′

g′
. From

Theorem 3 we know thatP (yz)M ′

g′
is not P∗-identifiable,

hence, neither isP (yz)Mg′
and theg′-specific effect is not

P∗-identifiable. Contradiction. 2 To illustrate the use of

2or a similar model where we “cut” the edgeR → V and not the
edgeR → Y



the theorem, consider the example in Eq. (4) from Section 3.
The expression

∑
b P (sa,b ∧ ba∗) =

=
∑

b,p

P (sa,b ∧ bp′ ∧ p′a∗)

=
∑

b,p,p′

P (sa,b,p ∧ bp′ ∧ p′a∗ ∧ pa) (5)

=
∑

b,p,p′

P (sa,b,p ∧ bp′)P (p′a∗ ∧ pa)

The first two steps are by definition, the last step is licensed
by the parallel worlds model corresponding to the formula in
Eq. 5. The theorem shows that, as in this example, non-
identifiability arises because formulas of the formp′a∗ ∧ pa

appear whenever the recanting witness criterion holds.

Theorem 5 If g does not satisfy the recanting witness crite-
rion, then theg-specific effect ofZ onY is P∗-identifiable in
Markovian models.

Proof: From theorem 2 we have thatP (yz)Mg∗
= P (yz)Mg

.
Sinceg does not satisfy the recanting witness criterion, by
Lemma 3 all the edges ing∗ emanate fromZ. From Theorem
1 there is a formulaα(g∗) corresponding toP (yz)Mg∗

that
contains only atomic counterfactuals of the formvi

pai . Since
all blocked edges emanate fromZ, it can be easily observed
that for each two atomic counterfactuals inα(g∗), vi

pai , v
j

paj ,
i 6= j. This follows, since we only introduce atomic coun-
terfactuals withdo(z∗) where we cut edges. Now since in
Markovian models any two different variables are indepen-
dent if you set all their parents, all the atomic counterfactual
in α(g∗) are independent of each other which makes the ex-
pressionP∗-identifiable. 2

For example, we stated earlier that theg specific effect of
Fig 3 (b) is identifiable, this is true sinceg does not satisfy
the recanting witness criterion. In particular the expression
for the path-specific effect is:

P (sa)Mg3b
=

∑

k,b,p,h

P (sk,b,p,a ∧ kh ∧ ba ∧ pa ∧ ha∗)

=
∑

h

P (sh,a ∧ ha∗) (6)

=
∑

h

P (sh,a)P (ha∗)

As before, the first two steps are by definition, and the last
step is licensed by the parallel worlds model correspondingto
the formula in Eq. 6. But now note thatP (sh,a), P (ha∗) ∈
P∗, therefore the above expression can be computed from ex-
periments.

6 Conclusions
Our paper presented a sufficient and necessary graphical con-
ditions for the experimental identifiability of path-specific ef-
fects, using tools from probability theory, graph theory, and
counterfactual logic. We related identifiable path-specific ef-
fects to direct and indirect effects by showing that all such
effects only block root-emanating edges.

While it is possible to give a sufficient condition for iden-
tifiability of general counterfactual formulas in our language,
using induction on formula structure, this does not give a
single necessary and sufficient condition for semi-Markovian
models. The search for such a condition is a good direction
for future work.

Another interesting direction is to consider special cases
of causal models where path-specific effects can be identified
even in the presence of the ’kite’ – this is true in linear mod-
els, for instance.

Finally, our result assumes causal models with finite do-
mains, and ’small’ graphs. An interesting generalization is
to consider causal models with ’large’ or infinite graphs and
infinite domains. Such models may require adding first-order
features to the language.
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