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Chen Avin, llya Shpitser, Judea Pearl
Cognitive Systems Laboratory
Department of Computer Science
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Abstract

Counterfactual quantities representing path-
specific effects arise in cases where we are
interested in computing the effect of one variable
on another only along certain causal paths in the
graph (in other words by excluding a set of edges
from consideration). A recent papEPearl, 2001
details a method by which such an exclusion
can be specified formally by fixing the value of
the parent node of each excluded edge. In this
paper we derive simple, graphical conditions for
experimental identifiability of path-specific effects,
namely, conditions under which path-specific
effects can be estimated consistently from data
obtained from controlled experiments.

Introduction

which defined effects in a more refined way by holding vari-
ables constant not to predetermined values, but to values they
would have attained in some situation. For example, the nat-
ural direct effect ofZ onY is the sensitivity ofY” to changes

in Z, while the context variables are held fixed to the values
they would have attained had no changeZirtaken place.
Similarly, the natural indirect effect is the sensitivity Bfto
changes the context variables would have undergoneZzhad
been changed, whilg is actually being fixed.

Being complex counterfactual quantities, natural effects
tend to have intricate verbal descriptions. It is often easier
to explain such effects using the visual intuitions provided
by graphical causal models. Graphical causal models repre-
sent causal assumptions as graphs, with vertices representing
variables, and edges representing direct causal paths. In such
models, natural direct effect can be interpreted as the effect
along the edge&’ — Y, with the effect along all other edges
‘turned off.” Similarly, the natural indirect effect can be inter-

Total, direct and indirect effects are important quantities inpreted as the effect along all edges except the one betifieen

practical causal reasoning about legal, medical, and publiandY’. Using this interpretation, the suggestive next step in
policy domains, among others. The task of explicating, andhe study of natural effects is to consider effects along a se-
computing these quantities has been successfully addresstegt subset of edges betwegrandY” which are callegath-

in the framework of linear structural equation models (SEM),specificeffects.

but encountered difficulties in non-linear as well as non- o

parametric models. See for instarf&»bins and Greenland, 1.1 A Motivating Example

1994, [Galles and Pearl, 1999 Pearl, 200},

In the linear SEM framework, thtal effectof Z onY is

the response of” to a unit change in the setting &f. On
the other hand, thdirect effectis the effect ofZ on Y not
mediated by any other variable in the model whileitidirect
effectis the effect ofZ onY excluding the direct effect.

In non-parametric models, we can define toatrolleddi-

rect effect as the change in the measured respon¥etofa

change inZ, while all other variables in the model, hence- rect effect on the survival chances of the patient. The graphi-
forth called context variables, are held constant. Unfortu- 5| causal model for this situation is shown in Fig. 1.

nately, there is no way to construct an equivalent notion of e original question considered in this model was the to-

controlled indirect effects, since it is not clear to what val- g effect of AZT and antibiotics treatment on survival. How-

ues other variables in the model need to be fixed in order t%ver, a variety of other questions of interest can be phrased
measure such an effect.

Recently, a novel formulation ofatural [Pearl, 2001 or
pure [Robins and Greenland, 1992ffects was proposed

Consider the following example, inspired [fobins, 1997,

A study is performed on the effects of the AZT drug on AIDS
patients. AZT is a harsh drug known to cause a variety of
complications. For the purposes of the model, we restrict
our attention to two — pneumonia and severe headaches. In
turn, pneumonia can be treated with antibiotics, and severe
headache sufferers can take painkillers. Ultimately, all the
above variables, except headache, are assumed to have a di-

in terms of natural effects. For instance, what is the direct
effect of AZT on survival, if AZT produced no side effects in
the patient, which is just the natural direct effect of AZT on

“This research was partially supported by AFOSR grantSurvival. See Fig. 2 (a). Similarly, we might be interested in
#F49620-01-1-0055, NSF grant #11S-0097082, and ONR (MURI)how just the side effects of AZT affect survival, independent
grant #N00014-00-1-0617.

of the effect of AZT itself. This corresponds to the natural



N LNy
Ko/ / \o B K./ \.B K./ / \.B
\; \./ \./
Figure 1: The AZT exampleA: AZT, P: pneumonia,H: (Z) (tf)

headaches3: antibiotics,K: painkillers,S: survival
Figure 2: (a) Natural direct effect (b) Natural indirectesff

indirect effect of AZT on survival. See Fig. 2 (b).

Furthermore, certain interesting questions cannot be A A
phrased in terms of either direct or indirect natural effect * °
For example we might be interested in the interactions be- H / \\ b H / \ b
tween antibiotics and AZT that negatively affect survived. 4 g g g
study such interactions, we might consider the effect of ad- K B K \ 5
[ ]
the antibiotics variable behaved as if AZT wast adminis- /

tered, and compare this to the total effect of AZT on survival
Graphically, this amounts to 'blocking’ the direct edge be-
tween antibiotics and survival or more precisely, keepirg t (a
edge functioning at the level it would have had no AZT been

given, while letting the rest of the edges function as usual. Figure 3: Path specific effects
This is shown graphically in Fig. 3 (a). The edges which we

wish to block will be crossed out in the graph.

ministering AZT on survival in the idealized situation wher ° \ /0 ° \
)

) ) ) To obtain this result formally, we treat effects as proliabil
1.2 Outline and Discussion of Our Approach ties of statements in a certain counterfactual logic. Hagev

Our goal is to study and characterize situations where patf&ther than manipulating these probabilities directly,oo8-
specific effects like the one from the previous section can b¥€'t them to subgraphs of the original causal model, and rea-
computed uniquely from the data available to the investigat SOn @bout and perform manipulations on the subgraphs. We
Our main resultis a simple, necessary, graphical condition then introduce simple counterfactual formulas whose prob-
the identifiability of path-specific effects from experimein  aPilities are not identifiable, and prove that certain sinpl
data. Furthermore, our condition becomes sufficient formoddraphical conditions must be described by such formulas, an
els with no spurious correlations between observables, aldack of such conditions leads to subgraphs corresponding to
known as Markovian models. identifiable effects.

The condition can be easily described in terms of blocked Due to space considerations, the proofs of some lemmas
and unblocked paths as follows. L&t Y be variables in have been omitted, while the proofs included generally are
a causal modeM inducing a grapi‘G_ Then given a set of missing some technical details. Our technical report gdnsta
blocked edgeg, the corresponding path-specific effectf the complete proofs.
onY cannot be identified if and only if there exists a ndtle
with an unblocked directed path froii to W, an unblocked
directed path froni¥ to Y, and a blocked directed path from 2 Preliminaries
W to Y. For instance, the effects of on S are identifiable
in Fig. 2 (a), (b), and Fig. 3 (b), but not in Fig. 3 (a). There- This paper deals extensively with causal models and counter
fore, in general we cannot study the interractions of AZT andfactuals. We reproduce their definitions here for complete-
antibiotics in the way described above, but we can study theess. A full discussion can be found [Bearl, 2000 For
interractions of AZT and painkillers. The latter case is mad the remainder of the paper, variables will be denoted by cap-
tractable by an absense of blocked and unblocked paths shdtal letters, and their values by small letters. Similasigts of
ing edges. variables will be denoted by bold capital letters, sets dfes

Our condition also shows that all identifiable path-specificby bold small letters. We will also make use of some graph
effects are 'equivalent’, in a sense made precise laterf-to etheoretic abbreviations. We will writ#®a(A)q, De(A)q,
fects where only root-emanating edges are blocked. Thuand An(A)q, to mean the set of parents, descendants (in-
identifiable path-specific effects are a generalizationathb clusive), and ancestors (inclusive) of noden graphG. G
natural direct effects, where a single root-emanating éslge will be omitted from the subscript when assumed or obvious.
unblocked, and of natural indirect effects, where a singbé-r I a variable is indexed, i.6/%, we will sometimes denote the
emanating edge is blocked. above sets aRa’, De?, andAn’, respectively.



2.1 Causal Models and Counterfactual Logic (i) a(u) =t; =ty and for the given setting af, the terms
Definition 1 A probabilistic causal model (PCM) is a tuple t1 andt, are equal in}.
M =(U,V,F,P(u)), where (i) a(u) = (=f)(u) and M |~ B(u).

() U is a set of background or exogenous variables, whichjjj) a(u) = (BA7y)(u) and M = G(u) and M = v(u)
cannot be observed or experimented on, but which can Thus a formulax(w) has a definite truth value it/. If the
influence the rest of the mode valueswu are unknown, we cannot in general determine the

(i) Vis aset{V',..,V"} of observable or endogenous truth of . However, we can easily define a natural notion of
variables. These variables are considered to be funcprobability ofa in M as follows:
tionally dependent on some subseltbt) V.

(i) Fis a set of functiong f!, ..., f*} such that eactf’ is Pla|M) = Z P(u) 1)
a mapping from a subset & U V' \ {V?} to V?, and {u|Ma(u)}
such that J F' is a function fromlJ to V.. We will omit the conditioning onV/ if the model in ques-
(iv) P(u) is a joint probability distribution over the vari- tON1S assumed or obvious.

ables inlU. If we consider each value assignmemtas apossible
i _ world, then we can viewP(u) as describing our degree of

A causal model/ induces a directed graggh, where each  pglief that a particular world is true, anBi(a) as our be-
variable corresponds to a vertexdhand the directed edges jief that a particular statement is true in our causal motlel i

are from the variables in the domain pf (i.e Pa’) to V* for  yiewed as dype 2 probability structure [Halpern, 1990
all the functions. For the remainder of this paper, we caarsid

causal models which induce directed acyclic graphs. 2.2 Submodels and Identifiability

A Markovian causal moded! has the property that each pefinition 5 (submodel) For a causal model M =
exogenous variablé is in the domain of at most one func- (7, v F, P(u)), an interventiondo(z) produces a new
tion f. A causal model which does not obey this property iscausal modeld/, = (U,V ., F,, P(u)), whereV, is a
called semi-Markovian. By convention, nodes correspogdin set of distinct copies of variables ¥, and F, is obtained
to variables inU are not shown in graphs corresponding topy taking distinct copies of functions #, but replacing all
Markovian models. . _ copies of functions which determine the variablesZrby
f FtOT Ithte FUYpO?EeS of It(hlz p?per, We‘t'WIH rleD“(?jsel?t countergonstant functions setting the variables to valges
actual statements in a kind of propositional modal logjim-s o .
ilar to the one used ih—lalpern,pZO(r))D Furthermore, th%mcliis- The joint distributionP (V') over the endogenous vari-

ables inM, is called an interventional distribution, and is

tribution P(u) will induce an additional probabilistic inter- ; .
pretation on the statements in the logic. s_ometlmes denoted d%. For a given causal modél/, de-

. . fine P, as{P,|Z C V, z avalue assignment &}. In other
Definition 2 (atomic counterfactual formula) Let M/ be a  \yords, P, is the set of all possible interventional (or experi-
causal model, letX be a variable andZ be a (possibly mental) distributions of\/.
empty) set of variables. Then for any valuef X, and val- Intuitively, the submodel is the original causal model, min
uesz of Z, z is a term, andX (u) is a term, taken to mean jmally altered to rendeZ equal toz, while preserving the
'the value X attains whenZ is forced to take on values, rest of its probabilistic structure.
andU attain valuesu. ) Because there is no requirement that interventions in

For two terms; andt,, an atomic counterfactual formula  atomic counterfactuals in a formutabe consistent with each
has the formt; = ¢,. We will abbreviate formulas of the form qther, it is in general impossible to alter the original mode
Xz(u) =z asz.(u). using only interventions in such a way as to make the en-

The *forcing’ of the variables te is called an intervention, tire formula true. Thus, we introduce a causal model which
and is denoted by dej in [Pearl, 200D Counterfactual for- encompasses the 'parallel worlds’ described by the counter
mulas are constructed from atomic formulas using conjuncfactual formula.
tion and negation. Before doing so, we give a simple notion of union of sub-

Definition 3 (counterfactual formula) models, as follows:

; ; ; Definition 6 (causal model union) Let M., and M, be sub-
i) An atomic formulax(u) is a counterfactual formula. ) Sy & T2
M (u) models derived from/. ThenlM, U M., is defined to bé 1,

(i) If a(u) is a counterfactual formula, then so(isa)(u). if 2=, and(U,V,UV,,F, UF,, P(u)), otherwise.
(iii) If a(u) andg(u) are counterfactual formulas, then so is pefinition 7 (parallel worlds model) Let M be a causal
(A B)(u). model,a a counterfactual formula. Then the parallel worlds

The satisfaction of counterfactual formulas by causal modmodelM,, is the causal model union of the submodels corre-
els is defined in the standard way, which we reproduce fronsponding to atomic counterfactuals @f

[Halpern, 200D We call the joint distributionP(V,,) over the endogenous
Definition 4 (entailment) A causal modelM satisfies a variables inM, a counterfactual distribution, and will some-
counterfactual formulav(w), written M = «(u), ifall vari-  times denote it a$,. In the language of the potential out-

ables appearing iy are in M and one of the following is comes frameworkRubin, 1974, we can viewP, as the joint
true distribution over the unit-response variables mentiomed!. i



The parallel worlds model is a generalization of the twinthe value ofPA%(g).-(u) in M. The collection of modified
network model, first appearing [Balke and Pearl, 1994to  functions forms a new modal,. The g-specific effect of
more than two possible worlds. It displays independence a®nY’, denotedSE,(z, z*; Y, u) s is defined as the total effect
sumptions between counterfactual quantities in the samge wa(abbreviated as TE) of onY in the modified model:

a regular causal model displays independence assumptions
between observable quantities — by positing counterfitua SEy(z, 2% Y, u)y = TE(z, 25 Y, u)um, 2)
are independent of their non-descendants given their fgaren

Given a causal modél/ and a formulay, we are interested WhereT'E(z, 2 Y, u)ay, =Yz (), — Ve (w) )y, -
in whether the corresponding counterfactual joint distiim
P, (or its marginal distributions) can be computed uniquely
from the set of joint distributions available to the invgstior.
The formal statement of this question is as follows:

If we wish to summarize the path-specific effect over all
settings ofu, we should resort to the expectation of the above
difference, or the expected path-specific effect. To idgnti
o ] o this effect, we need to identifi(y.) and P(y.-) in M,. For
Definition 8 (|dent|f|ab|I|ty) Let M be a causal model from our purposes we can restrict our attentionﬂ@z)' as the
a set of modeldV/ inducing the same grap&¥, M, a par-  second term corresponds to the quanity.-) in the origi-
allel worlds model, and) be a marginal distribution of the nal modelrs, and so is triviallyP, -identifiable.
counterfactual joint distributior?,,. Let K be a set of known In this paper we assume, without loss of generality, edges
probal_)ility (_Jlistrib_ut_io_ns d_erived fromV/. Thenq@ is K- ing = G\ g are all along directed paths betwegnand
identifiable in M if it is unique and computable froft in  y "The next theorem states that any path specific effect, ex-
anyM € M. pressed as a total effect in the modified modéj, can be

It follows from the definition that if we can construct two expressed as a counterfactual formula in the original model
models inM with the sameK but different@, thenQ is M.
not identifiable. An important, well-studied special cage o
this problem — which we call evidential identifiability of-in
terventions — assumesis an atomic counterfactual, ard
is the joint distribution over the endogenous variabledn
or P(V). Being able to identify an interventional marginal in My [ y:(u) = M= a(u)
this way is being able to compute the effects of an interven- Proof outline:
tion without having to actually perform the interventiomda '
instead relying on passive, observational data.

In this paper we are concerned with identifying probabili-
ties of counterfactuals formulas using the ggtof all inter-
ventional distributions of\/ as a given. In other words, we
are interested in computing probabilities of counterfatstu
from experimental and observational probabilities.

Theorem 1 Every path specific effed?(y. )., has a corre-
sponding counterfactual formulain M s.t for everyu,

The proof is for causal models with fi-
nite domains. FixM, wu, y, z andg. To prove the the-
orem, we need to 'unrolly, and remove any implicit ref-
erences to modified functions if/,, while preserving the
truth value of the statement. Our proof will use the axiom
of composition, known to hold true for causal models un-
der consideration. In our language, the axiom states that
for any three variableg, Y, W, and any settings, z, w, v,
e Wy=w=Y,, =Y,)(u).
3 Path-Specific Effects Fix u;. Let S = An(Y) N De(Z) Then by axiom of com-
Our aim is to provide simple, graphical conditions for the position,y. (u1) has the same truth value as a conjunction of
identifiability of path-specific effects. To do so, we mustfo atomic formulas of the fornn;ai(g), whereV? € S, PAi(g)
mal[ze sg(_:h t_'—:ffects as _counterfactual formulas, an_d_ weas| s the set of parents df‘ in M,, andpa‘(g) andv' are suit-
the identifiability conditions on the formula to conditioas 5y chosen constants. Denote this conjunctign
the graph. i : : T

Tﬁe Following is the formalization of the notion of path- Fpr every termvi’ai(g)_ N o correspondmg _tOV _Wlth
specific effect in terms of a modified causal model, as it ap£A‘(9) € PA*,replace itbyv, . . ,.i(5)- Apa’(g):- inthe
pears inPearl, 2001 conjunction, wherea®(g)* takes the value aP A% ().« (u1)

Definition 9 (path-specific effect) Let G be the causal " M. Denote the resulby. Note thataj is in M and
graph associated with modelZ, and letg be an edge- Mo [ y:(u1) <= M = aj(u;). We construct a sim-
subgraph ofG containing the paths selected for effect analy-Ilar conjunctlo,n a; for every mstant_latlonuj in M. Let
sis (we will refer tog as theeffect subgraph). Theg-specific = @ = V; aj. It's easy to see the claim holds farby con-
effect ofz on Y (relative to reference:*) is defined as the Struction. o
total effect ofz on Y in a modified model/, formed as An easy corollary of the theorem is, as before, that
follows. Let each parent se?A’ in G be partitioned into ~ P(y=)m, = P(a)n. Note that differenty; in the proof only
two parts PA' = {PAi(g), PAi(g)}, where PA(g) rep-  differ in the values they assign to variablesdn SinceM is
resents those members BfA® that are linked toV* in g, cpmposed of fynctions, the values of variableSiare fixed
and PA’(g) represents the complementary set. We replac@ivenu, and sinceP(a) = 31, vy, a,(u)y P(w) by def-
each functionf* in M with a new functiory; in Mg, defined inition, we can expres®(«) as a summation over the vari-
as follows: for every set of instantiatiopa’(g) of PA*(g),  ablesinS\ {Y'}.

fi(pa'(g),w) = f'(pa‘(g), pa’(g)*,w), wherepa'(g)* takes For instance, the first term of the path-specific effect in Fig



h Table 1: The functiong} and f3
\l/ W (1-} (1_} R= fr(z,ur) | R= [i(z,ur)

b AY — L A% v — \ Z UR
A K | IR :
ow ow 0] 2 1 1
oy oy oy oy 0 3 1 0
1 1 1 1
(a) (b) 1] 2 0 0
1 3 0 0

Figure 4: Bold edges represent directed pathgaRule (b)
Rs Rule
edges. Thus, itis not surprising these two identities cabao

2 (a) can be expressed as applied forever in a dag.

Lemma 1l Let M be a causal modely an effect subgraph.

P(8a)My2e = Z P(skbp.aNkn Aby ADax A hay) Then any sequence of applications®f and Ry to g will
k,b,p,h reach a fixed poing*.
= P a,hp N ha* A Dax 3 -
Z (Satp Pa:) 3 4 Problematic Counterfactual Formulas

h,p
Identification of a distribution must precede its estimatio
as there is certainly no hope of estimating a quantity not
uniquely determined by the modeling assumptions. Further-
more, uniqueness frequently cannot be guaranteed in causal
P(sa)Mysa = Z P(skbp.a Nkn Abas Apa A ha) models. gor instance?, Whe)r/1 identifyingginterventions from
observational data, a particular graph structure, the “bow
= Z P(Sap A bar) (4) arc’, has proven to be troublesome. Whenever the graph of
b a causal model contains the bow-arc, certain experiments be
come unidentifiablgPearl, 2000 Our investigation revealed
that a similarly problematic structure exists for expetirad
identifiability, which we call the 'kite graph’, due to itsape.
The kite graph arises when we try to identity counterfactual
probabilities of the formP(r,- A ).

which is just the direct effect. The more general case of Fig
3 (a) can be expressed &s:

k,b,p,h

It looks as if the expressions in Eq. (3) and (4) for the
two effects are very similar, moreover we know that direct
effects are alway®, -identifiable in Markovian models. Sur-
prisingly, the path specific effect of Fig. 3 (a) and Eq. (4) is
not P,-identifiable as we will show later.

We will find it useful to modify the effect subgraghwhile ~ Lemma 2 Let M be a causal model, le¥ and R be vari-
preserving the value of the path-specific effect. We do so byables such thaf is a parent ofR. ThenP(r.- A7) is not
means of the following two rules. Lét/ be a causal model P.-identifiable ifz* # z.
with the graphG, g an effect subgraph af, andg = G \ g.
Foranodé/, letin(V') denote the set of edges incoming into
V, andout(V') denote the set of edges outgoing frémin
G.

Proof outline: The proof is by counter example. We let
a = r,- Ar’, and construct two causal modelg! and
M? that agree on the interventional distribution &t but
disagree onP(«). In fact, we only need 2 variables. The
Ry: If there is a nodé/ in G such thatout(V) C g, then two models agree on the followingZ is the parent ofR,
Ri(g9) = (g \ out(V)) Uin(V). See Fig. 4 (a). Uz, Z and R are binary variabled/r be a ternary variable,

Ry If there is an edge € g, such that for all directed paths fz = Uz, a”‘?' P(uz), andP(U_R) are “'?ifo”“- T_he two
from Z to Y which includee, there exists another edge Models only differ on the functiongg, which are given by
¢’ € g, which occurs 'upstream’ from, thenRa(g) = table 4. It's easy to verify our claim holds for the two models
g\ {e}. See Fig. 4 (b). for any values:* # z of Z. . o
The next theorem shows how a particular path-specific ef-

Theorem 2 (Effect-Invariant Rules) If R, is applicable the  fect leads to problematic counterfactuals from the previou
R, (g)-specific effect is equal to thespecific effect. IRz iS  |emma.

applicable theRs(g)-specific effect is equal to thespecific
eﬁgct_ 2(9)-sp a s Theorem 3 The g-specific effect o onY as described in

. , _ ) Fig. 5 (a) is notP,-identifiable.
Proof outline: The proof is by induction on graph struc-

ture, and is an easy consequence of the definitignspfecific Proof: We extend modeld/' and A7* from the previous
effect, and thek, and R, rules. o proof with additional variabled”, ¥, andUy. We assume
Intuitively, R; 'moves’ the blocked edges closer to the P(uy) is uniform, and bothP(V,Y|R) and the functions

manipulated variabl¢Z, and R, removes redundant blocked Which determind” and}” are the same in both models.
Note that since all variables are discrete, the conditional

!Note that Eq (4) is different from_, . P(sa» Aba-)whichis  probability distributions can be represented as tablesvelf
just a marginalization over the counterfactual varighle require|R| = |V] and|Y| = |V x |R|, then the conditional



z z Pearl, 1998 [Halpern, 200D Such procedures are far less
L4 4 intuitive, do not have running time bounds, and cannot be
used to obtain non-identifiability proofs.
First let's define this criterion:
;\ ° Definition 10 (Recanting witness criterion) Let R # Z be
oV a node inG, such that there exists a directed pathyifrom Z
/ to R, a directed path fronR to Y in g, and a direct path from
° ° RtoY in G but notg. ThenZ, Y, andg satisfy the recanting
Y Y witness criterion withR as a witness
(a) (b) The recanting witness criterion is illustrated graphicals

the ’kite pattern’ in Fig. 5 (b). The name 'recanting witness
comes from the behavior of the variabizin the center of
the ’kite.” This variable, in some sense, 'tries to have ittbo
ways. Along one path fronR to Y, R behaves as if the
probabilities are representable as square matrices. Wesfix t variable Z was set to one value, but along another padth,
functions fyy and fy, as well as the exogenous parentdof behaves as i was set to another value. This 'changing of
andY” such that the matrices corresponding®@,Y'|R) and  the story’ of R is what causes the problem, and as we will

Figure 5: (a) Problematic effect (b) The kite graph

P(V|R) are matrices are invertible. show it essentially leads to the the existence of a fpn
Call the extended model&/® and M*. Note that by con- identifiable expression of the type discussed in section 4.
struction, the two models are Markovian. Sine€ andM? To proceed, we must make use of the following helpful

have the samé,, and since the two extended models agredemmas: Lety be an effect subgraph @f andg* the fixed
on all functions and distributions not ih/! and M2, they  point of R; andR,. Letg* = G \ g*.
must also have the sani.

Consider the;-specific effect shown in Fig. 5 (a). From
Theorem 1 we can express the path-specific effed/jhin

Lemma 3 ¢* satisfies the recanting witness criterion iff
does. Moreover, ifj* does satisfy the criterion, then there
exists a witnes® s.tout(R) N g* # (. If g* does not, then

terms of M, In particular: 9* C out(2).
P(yz)Mg = Z P(Yry ATox Avy) s Lemma 3 states that repeated applications of rigsand
rv R preserves the satisfaction of the recanting witness crite-

rion. Moreover, if the witness exists in the fixed pajiit then
some outgoing edge from it is blocked. If the witness does not
exist ing*, then only root-emanating edges are blocked.

/
= Z,P(y“’)MSP(“’“’)M‘gP(TZ*’Tz)M3 Lemma 4 Assume the*-specific effect ofZ on Y is P.-
ner identifiable. LetE be any set of edges irt. Letg’ = EUg*.
The last step is licensed by the independence assumptiens efhen they’-specific effect of onY is P;-identifiable.

1 /
coded in the parallel Wgrlgs r_noc(jjelij ATZ*,(}”{" ?hrzt. The Lemma 4 states that if a path specific effect is not identi-
same expression can be derivedfjyy. ) ;. Note thatsince o "then adding blocked directed edges ‘does not help, in

P, is the same for both models they have the same valuegat the effect remains unidentified. Now we can state and
for the interventional distribution® (y,.,) and P(v,+). Note  prove the main results:

that sinceP(Y'|R, V) and P(V|R) are square matrices, the o ) ) o
summing out ofP(Y|R, V) andP(V |R) can be viewed as a Theorem 4 If g satisfies the recanting witness criterion, then
linear transformation. Since the matrices are invertible, theg-specific effect o onY is not P, -identifiable.

the transformations are one to one, and so if their composipraof: Let M be our model and assume thasatisfies the
tion. SinceP(y,,) = P(y|r,v) andP(v,1) = P(v[r), and  recanting witness criterion. By Lemma 3 so dgéslet R be
sinceP(r.- A r.) is different in the two models, we obtain the witness from the lemma s.t= R — V is in g*. Assume
that P(y-) g # P(yz)uy. Since adding directed or bidi- the g-specific effect is identifiable, By Theorem 2 so is the
rected edges to a graph cannot help identifiability, thelresu *-specific effect. Le’ be the path specific effect obtained

= Z P(Ypyy AT Avpr A70)ps

ro,r’

also holds in semi-Markovian models. o by adding all edges tg9*, bute. By Lemma 4 they’-specific
_ effect is alsoP,-identifiable. Now by composing the func-
5 Main Result tions in g’ we can obtain a new modall’ which is exactly

The main result of this section is that a simple sufficient!n® model of Fig. 5 (@and P(y.)a,, = P(y:)ar,- From
and necessary (in Markovian models) graphical criterion exTheorem 3 we know thaP(yz)M;, is not P,-identifiable,

ists. This condition is easily stated and can be derived fronhence, neither is(y.),, , and theg/-specific effect is not
gl

the effect subgrapl in linear time. By contrast, the only - p_jqengifiable. Contradiction. o To illustrate the use of
other methods known to us for obtaining identifiability re-

sults of probabilities of general counterfactual logiafnoilas 2or a similar model where we “cut” the edge— V' and not the
are proof search procedures based on resuliGalles and edgeR — Y



the theorem, consider the example in Eq. (4) from Section 3. While it is possible to give a sufficient condition for iden-

The expression ", P(sq, A ba+) = tifiability of general counterfactual formulas in our larme,
using induction on formula structure, this does not give a
_ Z P(sap Aby Apl.) single necessary and sufficient condit'ic.m fpr semi—Mar.imvi_
ab 7 p ar models. The search for such a condition is a good direction
bip for future work.
= Z P(Sa,pp A by APl ADa) (5) Another interesting direction is to consider special cases
b of causal models where path-specific effects can be idehtifie
, even in the presence of the ’kite’ — this is true in linear mod-
= > Plsapp Aby)P(pl Apa) els, for instance.
b,p.p’ Finally, our result assumes causal models with finite do-

The first two steps are by definition, the last step is licensednains, and 'small’ graphs. An interesting generalization i
by the parallel worlds model corresponding to the formula into consider causal models with "large’ or infinite graphs and
Eq. 5. The theorem shows that, as in this example, noninfinite domains. Such models may require adding first-order
identifiability arises because formulas of the fopin A p,  features to the language.
appear whenever the recanting witness criterion holds.
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