
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Large-Scale Analysis of Population Structural Variants Using Terabytes of SRA Sequencing 
Data

Permalink
https://escholarship.org/uc/item/45x8w1fr

Author
Shokrof, Moustafa

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/45x8w1fr
https://escholarship.org
http://www.cdlib.org/


 
 

Large-Scale Analysis of Population Structural Variants Using Terabytes of SRA Sequencing Data  
 

By 
 

MOUSTAFA SHOKROF 
DISSERTATION 

 
Submitted in partial satisfaction of the requirements for the degree of 

 
DOCTOR OF PHILOSOPHY 

 
In 
 

Computer Science 
 

in the 
 

OFFICE OF GRADUATE STUDIES 
 

of the 
 

UNIVERSITY OF CALIFORNIA 
 

DAVIS 
 

Approved: 
 

         
C. Titus Brown, Chair 

 
         

Megan Dennis 
         

Fereydoun Hormozdiari 
 

Committee in Charge 
 

2024 
 

 

i 



Copyright © 2024 by

Moustafa Shokrof

All rights reserved.



To Reem, No words can adequately summarize your role in my PhD journey, in

bringing this dissertation to light, and more importantly, in shaping the man I am today.

Although I haven’t walked on water yet, I will never forget your love and support . . .

To Mom and Dad, No matter how physically close or far, starting from living in Mom’s

womb to sleeping in the same room, then a different room, then a different city, and

then a different continent, you always had my back. I couldn’t have achieved anything

without your support and unconditional love . . .

To Lobna, Reem, and Mona, who complete me: each of you helps me in her unique way,

and each of you holds a unique place in my heart

-ii-



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

1.0.1 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 MQF 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 MQF has a lower load factor than CQF . . . . . . . . . . . . . . 7

2.2.2 MQF is usually more memory efficient than CQF . . . . . . . . . 8

2.2.3 MQF is faster than CQF and low-FPR CMS . . . . . . . . . . . . 10

2.2.4 MQF outperforms CMS in real-world problems . . . . . . . . . . 13

2.2.5 MQF is faster than MPHF . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Counting Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.3 Labeling System . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.4 Buffered MQF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.5 Experimental Setup of Benchmarking . . . . . . . . . . . . . . . . 27

2.6 List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 The Great Genotyper 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

-iii-



3.2.1 Metagraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Pangenie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Beagle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Developing a Counting Colored De Bruijn Graph for a Cohort of

Short-Read Sequencing Samples. . . . . . . . . . . . . . . . . . . 38

3.3.2 The Great Genotyper . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Population Genotype correction and phasing . . . . . . . . . . . . 41

3.3.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.5 Genotyping Accuracy Experiment . . . . . . . . . . . . . . . . . . 43

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Selecting Samples to Represent Human Genomic Diversity . . . . 44

3.4.2 Using Sourmash to Correct the Sex Fields of the Samples in the

Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.3 Using kSpider to cluster the 4271 Samples into 28 clusters . . . . 47

3.4.4 Effect of Error Cleaning and Counts smoothing on genotyping Ac-

curacy and the CCDG size . . . . . . . . . . . . . . . . . . . . . . 48

3.4.5 Using Metagraph to Create 920 GB CCDGs from 95 TB of CRAM

Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.6 Achieving Population Genotyping on Standard HPC Servers in a

Matter of Hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.7 Computational Efficiency has Almost no Cost on Accuracy . . . . 52

3.4.8 Assessing the Phasing Accuracy of The Great Genotyper . . . . . 53

3.5 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 The Great Genotyper can help finding pathogenic variants . . . . 55

3.5.2 Expanding the Pangenome: Genotyping HPRC Variants in 1000

Samples with The Great Genotype . . . . . . . . . . . . . . . . . 56

3.5.3 Impute SV by using the extended pangenome . . . . . . . . . . . 58

3.5.4 Fine Map GWAS snps using SVs from the extended Human Pangenome 60

-iv-



3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Cattle Structural Variant Catalog 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Evaluating SV Calling Techniques for Cattle Genomes with Differ-

ent Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 Workflow for Creating a Catalog of Common Structural Variants

in Bos taurus Breeds . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Use all the data: Trio assemblies, long and short reads . . . . . . 73

4.3.2 Building a CCDG Representing Different Cattle Breeds . . . . . . 74

4.3.3 Creating a Catalog of Common Structural Variants in Bos taurus

Breeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Conclusion and Future Work 86

-v-



List of Figures

2.1 MQF has a lower load factor compared to CQF. . . . . . . . . . . . . . . 9

2.2 MQF has a lower load factor compared to CQF in real datasets. . . . . . 10

2.3 Memory consumption comparison between CQF and MQF. . . . . . . . . 11

2.4 Memory consumption comparison between CQF and MQF in real datasets. 11

2.5 Detailed Memory Consumption Comparison of MQF and CQF. . . . . . 12

2.6 Performance comparison of four data-structures: MQF, CQF, CMS, khmer

CMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Insertions rate comparison of four data-structures in real datasets . . . . 14

2.8 Query rate comparison of four data-structures in real datasets: . . . . . . 15

2.9 Query performance Comparison of MQF and MPHF. . . . . . . . . . . . 16

2.10 MQF block structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.11 Number of slots required by CQF and MQF . . . . . . . . . . . . . . . . 18

2.12 A comparison between the number of slots required by CQF and MQF to

represent a k-mer and its count. . . . . . . . . . . . . . . . . . . . . . . . 19

2.13 MQF counters encoding scheme. . . . . . . . . . . . . . . . . . . . . . . 24

2.14 Counters encoder algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 25

2.15 Merging MQFs with external labels. . . . . . . . . . . . . . . . . . . . . 26

2.16 Buffered MQF insertion algorithm. . . . . . . . . . . . . . . . . . . . . . 27

2.17 Buffered MQF query algorithm. . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Indexing Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The Great Genotyper workflow . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Benchmark Genotyping Accuracy Workflow . . . . . . . . . . . . . . . . 43

3.4 Global Distribution of Samples . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Histogram of Samples Across Super Populations . . . . . . . . . . . . . . 46

3.6 Validating Metadata Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Addressing chrY Bias in Clustering . . . . . . . . . . . . . . . . . . . . . 48

3.8 Number of Samples per Cluster and index sizes . . . . . . . . . . . . . . 49

-vi-



3.9 Visualizing Clusters on a World Map . . . . . . . . . . . . . . . . . . . . 50

3.10 F-score comparison between The different parameters of indexing . . . . 51

3.11 Performance comparison between The Great Genotyper and the state of

the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.12 F-score comparison between The Great Genotyper and the state of the art 54

3.13 Coverage effect on genotyping F-score: . . . . . . . . . . . . . . . . . . . 55

3.14 Phasing Accuracy of The Great Genotyper Across Ethnically Diverse Sam-

ples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.15 Allele Frequency distribution for variants in Clinvar . . . . . . . . . . . . 57

3.16 Variant Count Distribution by Allele Frequency in a Superpopulation. . . 58

3.17 Principal Component Analysis (PCA) of genotyping data along chr20 of

the extended pangenome. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.18 Imputation Accuracy Comparison: 1kGP vs. Pangenome Panels. . . . . . 60

3.19 Imputation accurcay for smal variants . . . . . . . . . . . . . . . . . . . . 61

3.20 Linkage Disequilibrium heatmap for haplotype block around rs12567976 . 63

4.1 Evaluation Workflow of SV Callers for Cattle Genomes . . . . . . . . . . 71

4.2 Workflow diagram for creating a catalog of common structural variants for

Bos taurus breeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Upset Plot Comparing different SV callers . . . . . . . . . . . . . . . . . 74

4.4 Comparison of Sourmash Signature Size and Average Genome Coverage . 75

4.5 Histogram of Breeds Represented in the CCDG . . . . . . . . . . . . . . 76

4.6 Samples dendrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Structural Variants Sizes Histogram . . . . . . . . . . . . . . . . . . . . . 79

4.8 Allele Frequency Per Breed Histogram . . . . . . . . . . . . . . . . . . . 80

-vii-



List of Tables

2.1 Number of items (in millions) inserted to achieve a 90% load factor in

compact hash tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Number of items (in millions) inserted to achieve a 90% load factor in

compact hash tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Khmer performance in error trimming and digital normalization using

MQF and CMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Description of all the samples used in MQF chapter . . . . . . . . . . . . 28

3.1 Impact of Metagraph Preprocessing on CCDG size . . . . . . . . . . . . 51

3.2 Variant Counts in HPRC Pangenome . . . . . . . . . . . . . . . . . . . . 57

3.3 Distribution of SVs affecting gene function and in LD with GWAS SNPs. 62

4.1 Catalog Construction Sample Sources . . . . . . . . . . . . . . . . . . . . 72

4.2 CCDG clusters data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Quantitative Breakdown of Structural Variants at Each Stage of Catalog

Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Summary of variant consequences and their impact . . . . . . . . . . . . 81

-viii-



Abstract

Large-Scale Analysis of Population Structural Variants Using Terabytes of

SRA Sequencing Data

Studying structural variants (SV) in populations is crucial since they cause more diversity

and have more effects on gene function than small variants. However, population scale

studies are challenging since finding SV from inexpensive short-read sequencing(SRS)

methods have a high false positive rate. Conversely, long-read sequencing(LRS) are more

accurate for SV discovery but are expensive at a population scale. Here, I develop new

unbiased techniques to study SV in populations that are more scalable than the state-

of-the-art. I show their utility in creating an SV catalog for the cattle breed augmented

with their allele frequency.

-ix-
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Chapter 1

Introduction

Genomic data has experienced explosive growth in the last decade [1], and identifying ge-

nomic variation among these genomes is crucial for understanding how genomes shape us

and all living organisms. This understanding can aid in curing diseases [2], advancing per-

sonalized medicine [3], and enhancing the breeding of plants [4] and animals [5]. Genomic

variation can fall into two categories: small variants, including single nucleotide variations

and insertions/deletions of a size less than 50 bp; and structural variants, variations of a

size greater than 50 bp. SVs can be insertions, deletions, duplications, inversions, copy

number variations, or even a complex composite of different rearrangements. Here, we

are focusing on studying structural variations between genomes in populations.

Studying SVs in populations presents several challenges. First, sequencing a large

number of genomes using Short Read Sequencing (SRS) is affordable, but discovering

SV from SRS samples has a low recall [6]. On the other hand, Long Read Sequencing

(LRS) is more accurate and comprehensive but expensive for population-scale studies.

Moreover, population studies require analyzing a huge number of samples, which poses

both challenges and opportunities. Scalable tools are required for transferring, storing,

and analyzing terabytes of data. However, analyzing a large number of samples opens

the opportunity to leverage population information to increase the accuracy of individual

analyses. Therefore, programs that can take advantage of the abundance of SRS samples

in a joint analysis of SVs in the population will represent a significant advancement to

the field.
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The traditional approach to population-scale SV studies relies on aligning each se-

quence from SRS or LRS to a linear genome [7, 8]. This process generates BAM files.

SVs are identified separately in each sample’s BAM file [9, 10, 11, 12, 13]. Later, these

SV call sets are combined to create SV catalogs and to calculate allele frequencies [14].

We can enhance the catalog by re-genotyping the discovered variants in the SRS mapping

files [15, 16]. Aligning to linear genomes allows reads to be sorted by position. This en-

ables the grouping of reads from the same regions for the analysis of variations, including

small and structural variants. Also, it facilitates the aggregation of individual variant

call sets for population-level analysis. This is done by providing a coordinate system to

compare variants from different samples.

However, this method introduces biases associated with the reference genomes. Many

studies have pointed out these biases in variant analysis [17, 18, 19]. The biases are

especially evident when a single ethnicity is predominant in the reference genome, such

as the European ethnicity in GRCh38. The issue is even more significant in non-human

genomes. For example, a single linear genome reference may not reflect the full genomic

diversity of a species. The assembly of Bos indicus genomes [20] revealed 148.5MB of

novel sequences not found in the Bos taurus ARS-UCD1.2 reference genome [21].

Furthermore, storing sequences in BAM files limits their accessibility for population

studies. These files are indexed by their mapping positions to the linear genome. This

indexing favors sequences that map perfectly to the reference. However, searching for

sequences that do not exist in the genome is problematic. It requires sifting through

numerous unmapped reads. It is also challenging to find sequences divergent from the

reference genome. This is because the reads containing matches may be misplaced.

Moreover, storing sequence data for population studies often necessitates using cloud

storage due to the sheer size of the datasets, which can be problematic. Accessing these

large quantities of data from the cloud can be inefficient and costly, posing a significant

challenge for researchers conducting population-level studies.

Alternatively, kmer-based methods offer a solution that circumvents the need to align

reads to reference genomes. These methods break down reads into fixed-size strings

2



(kmers) and compile a list of unique kmers, noting the frequency of each kmer in the

reads. These kmers can be organized into a De Bruijn graph, where each node repre-

sents a kmer and edges connect nodes that share a sequence overlap of k-1. Tools like

Kevlar [22] utilize kmers to identify reads that contain small variants and SVs for variant

calling. Corticall, for example, represents a population of bacteria with a colored De

Bruijn graph, distinguishing samples by color to detect de novo mutations. Beyond SV

calling, applications such as Pangenie [23] and Nebula [24] genotype SVs by identifying

kmers unique to reference and alternative alleles, determining genotypes by the variation

in kmer counts within SRS data. In conclusion, kmer comparison is an efficient alternative

to alignment-based SV analysis methods however it has some limitations. Repeated and

low complexity regions are often collapsed in the De Bruijn graph, making it harder to

study variants in those regions.

Moreover, kmers provide a promising solution to the accessibility issues in population

studies. Recent advancements in data structures and algorithms have made it possible to

store Colored De Bruijn Graphs (CDGs) compactly, while still enabling efficient sequence

search capabilities. For example, Fulgor [25] can represent 150,000 Salmonella genomes

within a 70GB CDG. This kmer index allows users to query by kmers and receive a list

of samples containing that specific kmer, facilitating sequence search functions.

Tools like Metagraph and Reindeer have developed Counting Colored De Bruijn Graphs

(CCDGs), which not only return the presence of a kmer but also its count across the in-

dexed samples. Metagraph created a CCDG that encapsulates 2.5K RNA-seq human

samples in just 27.6GB. Thus, the kmer approach enables the representation of sequences

from thousands of samples in highly efficient data structures, preserving the functionality

for sequence searches.

In this thesis, I investigate the use of kmers and their indexing to address challenges

in population-scale SV studies. I have developed a data structure known as the MQF

(Minimum Quotient Filter) designed to efficiently store De Bruijn graphs with additional

metadata, which facilitates the implementation of colored De Bruijn graphs.

Furthermore, using the Metagraph tool, I have constructed two Counting Colored

3



De Bruijn Graphs (CCDGs) to represent human and cattle populations. The human

population CCDG was generated from 4.2K whole-genome sequencing (WGS) samples

drawn from 140 populations, condensing 95TB of CRAM files into a 925.2GB CCDG.

For the cattle population, I created a 293.8GB CCDG from 1.1K WGS samples spanning

80 breeds. These CCDGs serve as the foundation for the population-scale SV studies

presented in this thesis.

Additionally, I have developed a population genotyping workflow named ”The Great

Genotyper,” tailored for genotyping small and structural variants within a population of

samples. This workflow has demonstrated exceptional speed and unprecedented scala-

bility in genotyping a large number of samples. This scalability allows the algorithm to

leverage population information to enhance genotyping accuracy. Applications of The

Great Genotyper include accurate allele frequency estimation, construction of SV im-

putation panels, and refinement of GWAS SNP mappings using SVs from the human

pangenome.

Finally, I developed a workflow to create a catalog for common SV in cattle breeds. The

workflow merges the mapping-based SV calling approach with the kmer based population

genotyping method implemented in The Great Genotyper. I developed a lenient SV

calling workflow that aggregates SVs from all available data while tolerating some false

positives. Subsequently, we utilized the efficiency of The Great Genotyper to genotype

the identified SVs, compute their allele frequencies, and filter out rare variants, which are

likely errors or novel SVs. The resulting catalog surpasses previous ones in breed coverage

and the number of discovered variants.

1.0.1 Thesis Structure

1. Chapter 2 introduces the Mixed-Counters Quotient Filter (MQF), an associative

data structure that pairs kmers with their counts and additional metadata. It also

describes a buffered MQF variant with a quick insertion algorithm, utilizing external

memory for most of the data structure.

2. Chapter 3 presents The Great Genotyper, a workflow for genotyping variants in

4



population studies using CCDGs rather than raw sequences or mapping files. This

chapter demonstrates The Great Genotyper’s speed, matching state-of-the-art pre-

cision and recall, and explores its potential to transform population genomics.

3. Chapter 4 details our efforts in developing a common SV catalog for Bos taurus

breeds. We benchmark various SV calling methods on Bos taurus genomes and out-

line the process of constructing CCDGs for 1.1K cattle samples. Additionally, we

propose a novel approach for generating SV catalogs, leveraging population geno-

typing to remove false positives and rare variants.
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Chapter 2

MQF

2.1 Introduction

Online algorithms effectively support streaming analysis of large data sets, which is im-

portant for analyzing data sets with large volume and high velocity[26]. Approximate

data structures are commonly used in online algorithms to provide better average space

and time efficiency[27]. For example, the Bloom filter supports approximate set mem-

bership queries with a predefined false positive rate (FPR)[28]. The count-min sketch

(CMS) is similar to Bloom filters and can be used to count items with a tunable rate

of overestimation. However, there are a number of problems with Bloom filters and the

CMS - in particular, they do not support data locality.

The Counting Quotient Filter (CQF) is a more efficient data structure that serves

similar purposes with better efficiency for skewed distributions and much better data

locality[29]. The CQF is a recent variant of quotient filters that tracks the count of its

items using a variable size counter. As a compact hashtable, CQF can perform in either

probabilistic or exact modes and supports deletes, merges, and resizing.

Analysis of k-mers in biological sequencing data sets is an ongoing challenge[30]. K-

mers in raw sequencing data often have a Zipfian distribution, and the CQF was built

to minimize memory requirements for counting such items[29]. However, this advantage

deteriorates in applications that require frequent random access to the data structure,

and where the k-mer count distribution may change in response to different sampling

6



approaches, library preparation and/or sequencing technologies. For example, k-mer fre-

quency across 1000s of RNAseq experiments shows different patterns of abundant k-

mers[31].

Data structures like CMS[32] and CQF[29] also do not natively support associating

k-mers with multiple values, which can be useful for coloring in De Bruijn graphs as well

as other features[33, 34, 35]. Classical hash tables are designed to associate their keys

with a generic data type but they are expensive memory-wise[36]. Tools like jellyfish[37]

and CHTKC[38] use lock free hash tables in its k-mer counting algorithms. Minimal

Perfect Hash Functions (MPHFs) can provide a more compact solution by mapping each

k-mer into a unique integer. These integers can then be used as indices for the k-mers

to label them in other data structures[39]. An implementation capable of handling large

scale datasets with fast performance requires 3 bits per element[40]. However, such a

concise representation comes with a high false-positive rate on queries for non-existent

items. Moreover, unlike hashtables, MPHF does not support insertions or deletions thus

any change in the k-mer set would require rehashing of the original dataset.

In this paper, we introduce the mixed-counters quotient filter (MQF), a modified

version of the CQF with a new encoding scheme and labeling system supporting high

data locality. We further show how Buffered MQF can be used to scale MQF to solid-

state disks. We compare between MQF and the CQF, CMS, and MPHF data structures

regarding memory efficiency, speed performance, and applicability to specific data analysis

challenges. We further do a direct comparison of the CMS to MQF in the khmer software

package for sequencing data analysis, to showcase the benefits of MQF is in real world

applications.

2.2 Results

2.2.1 MQF has a lower load factor than CQF

The load factor is defined as the actual space utilized divided by the total space assigned

for the data structure, and is an important measure of data structure performance. To

compare load factors between the CQF and MQF data structures, instances of both
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Distribution CQF MQF

Z2 402 671

Z3 161 161

Z5 134 134

Kmers 402 671

Uniform 402 1275

Table 2.1. Number of items (in millions) inserted to achieve a 90% load factor in
compact hash tables.

structures were created using the same number of slots (227). Chunks of items from

thirteen datasets with different distributions of item frequencies were inserted iteratively

to be counted in both data-structures while recording the load factor after the insertion

of each chunk. After the insertion of each chunk, both data structures were checked to

confirm having the exact same hashes. The experiments stopped when MQF’s load factor

reached 90%. MQF had lower loading factors for all tested datasets but the difference

was minimal for the dataset with the highest Zipfian distribution (Z=5). The lower the

tested Zipfian distribution the lower the loading factor of MQF (Figure 2.1, Figure 2.2).

A lower loading factor enabled MQF to accommodate >30% of the CQF capacity from a

dataset of real k-mers and to exceed the double CQF capacity with uniform distribution

(Figure 2.1 and table 2.1).

2.2.2 MQF is usually more memory efficient than CQF

Progressively increasing numbers of items were sampled from the real and Zipfian-simulated

datasets. The smallest CQF and MQF to store the same number of items from each

dataset were created. To do that, the q parameter of CQF versus the q and Fsize param-

eters of MQF were calculated empirically. Starting with a small q, CQF and MQF were

tested to count the items. The q was incremented to find the smallest value that enables

the structure to hold the items. MQF was more memory efficient for most real k-mers and

Zipfian-simulated distributions (Figure 2.3-2.4). The tuning of the Fsize parameter enables

MQF to grow in size gradually compared to CQF which has to double in size to fit the min-
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Figure 2.1. MQF has a lower load factor compared to CQF. Chunks of items, from
different distributions of item’s frequencies, were inserted iteratively to matching CQF
and MQF structures. MQF had lower loading factors for all tested datasets with better
performance with more uniform distributions (The further from the 45° line the better
the MQF).

imal increase in items beyond the capacity of a given q value (Figure 2.5). Therefore, com-

paring the optimum parameters used to generate both data structures shows that MQF is

always more memory efficient if Fsize >1, while CQF could be slightly more memory effi-

cient if Fsize = 1. This is more likely to happen if sequencing datasets are highly erroneous

or very polymorphic (e.g. mitochondrial genome sequencing in SRR12989394). This can

also happen if sequencing has a very low coverage, causing most of the k-mers to be single-
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Figure 2.2. MQF has a lower load factor compared to CQF in real datasets. Chunks
of items, from 8 real datasets, were inserted iteratively into matching CQF and MQF
structures. MQF had lower loading factors for all tested datasets (The further from
the 45° line the better the MQF).

tons (e.g. smalls subsets of whole genome sequencing data in ERR992657). MQF comes

with a utility script (https://github.com/dib-lab/MQF/blob/master/include/utils.h) to

allow prediction of the optimal MQF parameters.

2.2.3 MQF is faster than CQF and low-FPR CMS

The in-memory and buffered MQFs were evaluated for speed of insertion and query in

comparison to three in-memory counting structures: CQF[29], the original CMS[32], and

khmer’s CMS[41]. To test the effect of FPR on the performance, the experiment was

repeated for 4 different FPRs (0.1, 0.01, 0.001, 0.0001). All tested structures were con-

structed to have approximately the same memory space except for buffered MQF which

used only one-third of this memory for buffering while the full-size filter is on the disk.
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Figure 2.3. Memory consumption comparison between CQF and MQF. The
graph compares the memory consumption of the smallest CQF and MQF that fits
different datasets. The bigger the value on the y-axes, the more memory the MQF
saved. Sequencing from ERR1050075 was used to generate a representative dataset
for real k-mers.

Figure 2.4. Memory consumption comparison between CQF and MQF in
real datasets. The graph compares the memory consumption of the smallest CQF
and MQF that fit different datasets. The bigger the value on the y-axes, the more
memory the MQF saved.

MQF is guaranteed to hold the same number of items as a CQF having the same number

of slots. The number of slots in CQF was chosen so that the load factor was more than

85% and the MQFs were created with an equal number of slots. Items were sampled to

be counted from the real and Zipfian-simulated datasets. After finishing the insertion, to

assess the query rate, 5M items from the same distribution as the insertion datasets were

queried. Half of the query items didn’t exist in the insertion datasets.
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Figure 2.5. Detailed Memory Consumption Comparison. The numbers on the
CQF curve are the used Q sizes. While the numbers on MQF are (Q size-fixed counter
size).

Distribution CQF MQF

Z2 402 671

Z3 161 161

Z5 134 134

Kmers 402 671

Uniform 402 1275

Table 2.2. Number of items (in millions) inserted to achieve a 90% load factor in
compact hash tables.

MQF has slightly yet persistent faster insertion and query rates compared to CQF

with minimal, if any, effect of the FPR on either structure. The performance of CMS is

better with higher FPR and Khmer’s implementation of CMS doubles the query rate of

the original one. However, MQF is always faster than both CMS unless the FPR is more

than 0.01 (Figure 2.6-2.7-2.8).
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Figure 2.6. Performance comparison of four data-structures: MQF, CQF,
buffered MQF (using 1/3 the size of other structures), Khmer implementation of CMS,
and original implementation of CMS: Insertions rate (left panel) and query rate (right
panel). ERR1050075 is used as a representative dataset for real k-mers. Supplementary
figure 6 and 7 show the comparisons between 8 real datasets. The performance is
plotted as a bar graph where the pattern of each bar shows the cumulative increase in
insertions or queries for different false positive rates.

2.2.4 MQF outperforms CMS in real-world problems

Khmer is a software package deploying a new implementation of CMS for k-mer counting,

error trimming and digital normalization[41]. To test MQF in real-life applications, we

assessed the performance of the Khmer software package using CMS versus our new

implementation using MQF (https://github.com/dib-lab/khmer/tree/MQFIntegration2).

A real RNA seq dataset with 51 million reads from the Genome in a Bottle project[42] was

used for error trimming and digital normalization; two real-world applications that involve

both k-mer insertions and queries. An exact MQF was used to create a benchmark for

the approximate data structures. It took 5Gb RAM to create the data structure and 45

and 43 minutes to perform trimming and digital normalization respectively. The optimal

memory for MQF and the optimal number of hash functions for CMS were calculated

to achieve the specified false-positive rates. The CMS was constructed with the same

size as the corresponding MQFs. The CMS and MQF versions of Khmer were compared

regarding the speed and accuracy (Table 2.3).

2.2.5 MQF is faster than MPHF

MPHF is constructed by default to fit the input k-mers while MQF would have different

load factor that might affect its performance. To address this question, four growing
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Figure 2.7. Insertions rate comparison of four data-structures in real
datasets: MQF, CQF, buffered MQF (using 1/3 the size of other structures), Khmer
implementation of CMS, and original implementation of CMS. The performance is
plotted as a bar graph where the pattern of each bar shows the cumulative increase in
insertions for different false positive rates.

FPR
Memory

in GB

Error Trimming Digital normalization Error Bound

in CMS
Hash func. In CMS

Time

in Min.
Missed reads with Errors

Time

in Min.

Reads kept

by Error

MQF CMS MQF CMS MQF CMS MQF CMS

10-1 1.8 42 39 11011 445817* 39 37 3253 31143* 13,11 3

10-2 2.6 43 48 1304 404354 41 45 416 24987 14 5

10-3 3.4 44 61 130 311464 42 54 58 21000 15 7

10-4 4.5 44 75 3 292746 42 68 4 18449 16 10

Exact 5 45 - 0 - 43 - 0 - - -

Table 2.3. Khmer performance in error trimming and digital normalization
using MQF and CMS. *Percentages of wrong decisions made by CMS at FPR = 0.1
in error trimming and digital normalization are 0.8% and 0.13% of the total number
of decisions versus 0.02% and 0.01% made by MQF.

subsets of real k-mers were inserted into MQFs of size 255 MB to achieve 60%, 70%, 80%,

and 90% load factors. For labeling, the order of the 1st k-mer in each block was stored

in the external labeling space (See the methods section). MPHFs were constructed with

sizes ranging from 15 to 22 MB to fit the four datasets. All data structures were queried

with 35M existing k-mers and the query times were reported. The MQFs were 10 folds
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Figure 2.8. Query rate comparison of four data-structures in real datasets:
MQF, CQF, buffered MQF (using 1/3 the size of other structures), Khmer implemen-
tation of CMS, and original implementation of CMS. The performance is plotted as a
bar graph where the pattern of each bar shows the cumulative increase in queries for
different false positive rates.

faster than the MPHFs. The query time of the MQF was invariable over the different

load factors (Figure 2.9).

2.3 Discussion

MQF is a new variant of counting quotient filters with novel counting and labeling systems.

The new counting system increases memory efficiency as well as the speed of insertions

and queries for a wide range of data distributions. The labeling system provides a flexible

framework for labeling the member items while maintaining good data locality and a

concise memory representation.

MQF is built on the foundation of CQF. MQF has the same ability to behave as

an exact or approximate membership query data structure while tracking the count of

its members. The insertion/query algorithm developed for CQF enables this family of

compact hashtables to perform fast under high load factor (up to 95%)[29]. CQFs are

15



Figure 2.9. Query performance Comparison of MQF and MPHF.The query
times of 35M existed k-mers were measured for MQF structures with 60%, 70%, 80%,
and 90% load factors and MPHF structures storing matching datasets.

designed to work best for data from high Zipfian distributions. However, previous k-

mer spectral analysis of RNAseq datasets showed substantial deviations from a Zipfian

distribution in thousands of samples[31]. Such variations in distribution are expected

given the variety of biosamples, the broad spectrum of sequencing techniques, and different

approaches to data preprocessing.

MQF implements a new counting system that allows the data structure to work effi-

ciently with a broader range of data distributions. The counting system adopts a simple

encoding scheme that uses a fixed small space alone or with a variable number of the

filter’s slots to record the count of member items (Figure 2.10). Items with small counts

utilize the small fixed-size counters. Therefore, slots, used to be consumed by CQF as

counters for these items, are freed to accommodate more items in the filter. The MQF’s

load factor grows slower than CQF with all distributions except the extreme Zipfian case

(Z=5) where the load factor is almost the same (Figure 2.1). This is why the memory
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requirement for MQFs is usually smaller compared to CQFs under most distributions

despite the extra space taken by the fixed counters (Figure 2.2). The size of the fixed-size

counter is constant independent from the slot size, therefore the memory requirement

for this counter will be trivial with big slots for smaller FPRs and almost negligible in

the exact mode. However, this fixed-size counter comes with an additional advantage for

MQF. Tuning the size of the fixed-size counter enables the filter to accommodate more

items with a slightly larger slot size. This allows the memory requirement for MQF to

grow gradually instead of the obligatory size doubling seen in CQF (Figure 2.2-2.5).

Figure 2.10. MQF block structure. Each MQF block contains 64 slots with their
metadata, a one-byte block offset, and configurable size space to hold the number of
items inserted in the filter before the current block. The metadata of each slot consumes
r bits, one bit for each isOccupied and isRunEnd metadata, and configurable f-bits and
t-bits for the fixed counter and the slot-specific label respectively.

Moreover, the new counting scheme in MQF is simplified compared to that of the

CQF. MQF defines the required memory for any item based solely on its count (Figures
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2.11-2.12). Therefore, an accurate estimation of the required memory for any dataset

can be done extremely quickly by an approximate estimation of data distribution[43, 44].

This is unlike CQF which needs to add a safety margin to account for the special slots

used by the counter encoding technique since it is impossible to estimate the number of

these slots.

Figure 2.11. Number of slots required by CQF and MQF The number of slots
needed by each data structure to represent a k-mer and its count. Since CQF needs
to add special slots for some items CQF(Min) and CQF(MAX) curves are added to
represent the minimum and the maximum number of slots needed by CQF. In this
experiment, both data structures are using 4-bit slot size. The MQF slot size includes
the fixed-size counter.

Regarding the speed of insertions and queries, MQF is slightly faster than CQF (Figure

2.3). This could be explained partially by the lower load factor of MQF and partially by

the simplicity of the coding/decoding scheme of its counting system. Both MQF and

CQF are faster than CMS unless the target FPR is really high (e.g. FPR >0.1) (Figure

2.3). CMS controls its FPR by increasing the number of its hash tables requiring more

time for insertions and queries to happen. In comparison, quotient filters use always

one function but with more hash-bits to control the FPR, with a minimal effect on the
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Figure 2.12. A comparison between the number of slots required by CQF and
MQF to represent a k-mer and its count. A dataset of 144 items was created
in the form of k-mer and its count. All possible values of hash reminders of size 4
(16 items) are created with counts in the range starting from 1 to 256. Items were
inserted into both data structures and the number of slots needed was recorded. Each
cell in the figure displays the ratio of memory requirements on the log scale calculated
as Log(((slot size * #slots) in MQF)/((slot size * #slots) in CQF)) represented as a
heat map where reddish shades mean that MQF needs fewer slots than CQF.

insertion/query performance (Figure 2.3). With high FPR (e.g. FPR = 0.1), CMS uses

fewer hash functions and is better performing than MQF. A quotient filter or CMS with a

FPR = δshould have the same probability of item collisions. However, the quotient filter

will be more accurate because CMS has another type of error with a probability (1-δ),

which incorrectly increases the count of its items. This error is a “bounded error” with a

threshold that inversely correlates with the width of the CMS[32]. In another sense, some

applications might deploy CMS with a smaller table’s width to be more memory efficient

19



than MQF if the application can tolerate a high bounded error.

Buffered MQF can trade some of the speed of insertions and queries for significant

memory reduction by storing data on disk. The buffered structure was developed to

make use of the optimized sequential read and write on SSD. The buffered structure

processes most of the insertion operations using the bufferMQF that resides on memory,

thereby limiting the number of access requests to the MQF stored on the SSD hard drive.

Sequential disk access happens when the bufferMQF needs to be merged to the disk.

This approach is very efficient for insertions but not for random queries which require

more frequent SSD data access. Therefore, bufferMQF is best used for the applications

where insertions represent the performance bottleneck e.g. k-mer counting applications5

and sequencing dataset indexing[45]. Moreover, in k-mer analysis of huge raw datasets,

buffered MQF can be used initially to filter out the low abundant k-mers (i.e. likely

erroneous k-mers), then an in-memory MQF holding the filtered list of k-mers could be

used for subsequent application requiring frequent random queries. This allows multistage

analyses where a first pass eliminates likely errors to minimize the memory requirements

of computationally demanding applications like in the case of widely used graph-based

algorithms[46, 47]

CMS is commonly used for online or streaming applications as long as their high error

rate can be tolerated[48]. MQF has a better memory footprint in the approximate mode

for lower error rates and thus can compute with CMS for online applications. A major

advantage of quotient filters compared to CMS is the dynamic resizing ability in response

to the growing input dataset[29]. The buffered version of MQF can be very useful when

the required memory is still bigger than the available RAM. We should, however, notice

that online applications on MQF cannot make use of the memory optimization that could

be achieved with an initial estimation of the filter parameters. A new version of the Khmer

software that replaces CMS with MQF proves the new data structure more efficient in

real-life applications. The MQF version is faster than the one with CMS unless the target

FPR is high. Also, MQF is always more accurate than CMS although both structures

have the same FPR. This behavior of CMS is due to the high error bound of its counts.
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Unlike CQF, MQF is designed to be a more comprehensive associative data structure.

MQF comes with a novel labeling system that supports associating each k-mer with

multiple values to avoid redundant duplication of k-mers’ keys in separate data structures.

There are two types of labels: Internal labels adjacent to each item to achieve the best

cache locality by storing labels next to the k-mer. However, it has a fixed size and thus

practically useful when a small size label is needed. The second labeling system is to label

the k-mers with one or more labels stored in external arrays while using the k-mer order

in the MQF as an index. External labeling is very memory efficient mimicking the idea

of the minimal perfect hash function (MPHF)[39, 40]. MPHF undoubtedly has the least

memory requirement of all the associative data structures[40] However, MQF has better

performance in both the construction and query phases. For construction, both structures

require initial k-mer counting. MQF needs just an extra O(N) operation to update the

block labels where N is the number of its unique k-mers. MPHF has to read then rehash

the list of unique k-mers possibly more than once which makes it slower than MQF. For

query operations, MQF is 10x faster regardless of the load factor of MQF (figure 2.9).

Furthermore, MQF offers more functionality and has fewer limitations than MPHF.

MQF is capable of labeling a subset of its items which saves significant space for many

applications. For example, k-mer analysis applications may want to only label the frequent

k-mers, as an intermediate solution between pruning all the infrequent k-mers and labeling

all the k-mers. Moreover, MQF allows online insertions and deletions of items as well

as merging of multiple labeled MQFs (See the methods) while MPHF - which doesn’t

store the items - needs to be rebuilt over the whole dataset, which requires reading and

rehashing the datasets. Furthermore, MQF can be exact, while MPHF has false positives

when queried with novel items that don’t belong to the indexed dataset.

2.4 Conclusion

MQF is a new counting quotient filter with a simplified encoding scheme and an efficient

labeling system. MQF adapts well to a wide range of k-mer datasets to be more memory

and time-efficient than its predecessor in many situations. A buffered version of MQF has
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a fast insertion algorithm while storing most of the structure on external memory. MQF

combines a fast access labeling system with MPHF-like associative functionality. MQF

performance, features, and extensibility make it a good fit for many online algorithms of

sequence analysis.

2.5 Methods

MQF Data structure: MQF has a similar structure to CQF with a different scheme

of metadata that enables different counting and labeling systems (Figure 2.10). Like the

CQF, the MQF requires 2 parameters, r and q, and creates an array of 2qslots; each slot

has r-bits. In MQF, Qi is the slot at position i where i = 1 . . . 2q. The MQF maintains

the block design of CQF where each block has 64 slots with their metadata and one extra

byte of metadata called Offset to enhance the query of items[29]. Both MQF and CQF

have two metadata bits to accompany each slot: isRunEndi and isOccupiedi. In the MQF,

each slot i has extra metadata, a fixed-size counter with a value (Fi) and a configurable

size (Fsize). There are also two optional fixed-size parts of metadata allocated to allow

different styles of labeling. Every slot has specific labeling (STi) with a configurable size

(STsize>= 0), and every block ( j ) has an optional space of a configurable size designed

to store the number of items in the previous blocks.

The MQF uses the same insertion/query algorithm of CQF[29]. In brief, suppose item

I, repeated c times, is to be inserted into Q. A hash function H is applied to I to generate

a p-bit fingerprint (H(I)). H(I) value is split into two parts, a quotient and remainder.

The quotient (qi) is the most significant q bits while the remainder (ri) is the remaining

least significant r bits. The filters store ri in a slot Qj where where j is determined by

linear probing stating from qi. One or more slots can be used to store the count of the

same item. If the required slots for the item or its count are not free, all the consecutive

occupied slots starting from this position will be shifted to free the required space. All

items having the same q are stored into consecutive slots and are called a run. Items in

the run are sorted by ri, and isRunEnd of the last slot in the run is set to one. isOccupied

(qi) is set to one if and only if there is a run for qi. Therefore, there is one bit set to one in
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each isOccupied and isRunEnd for each run. To query item I, a Rank and Select method

is applied on the metadata arrays to get the run start and end for qi. Then all the items

in the run are searched linearly for the slot containing ri. The subsequent one or more

slots can be decoded to get the count of item I. CQF uses a special encoding scheme to

recognize these counting slots but MQF utilizes the fixed-counter metadata element (see

below).

2.5.1 Counting Scheme

MQF uses variable-length integers to encode the k-mers count as shown in figure 2.13. It

uses as many slots as required to encode the count while using the fixed-size space of the

slots to mark the last slot. To do so, each fixed-size space in all slots before last is assigned

its max value (Fmax), while the fixed-size space of the last slot stores the most significant

bits of the count (Fi) where (Fi¡Fmax). If the value of the most significant bits is equal to

Fmax , an extra slot with zero bits will be added (see example 3 in Figure 2.13). For an

item with count c, the fixed-size space of the item’s slot is enough for counting until C

/textgreater= Fmax where the number of required slots for counting can be calculated as

Ceiling(abs(log2(c−fmax)−fsize)
r

) + Floor( cs
fmax

) where cs represents the decimal value of the

most significant bits.

In comparison to the CQF, the MQF does not use special slots to resolve ambiguities,

which is more memory efficient. The counter encoding algorithm is described in Figure

2.14.

2.5.2 Parameter Estimation

For offline counting applications, the MQF parameters (q, r, Fsize) can be even more op-

timized for each dataset to create the most memory-efficient filter that has enough slots

to fit all unique items and their counts. The q parameter defines the number of slots (N)

in MQF where q = log2(N). The required numbers of slots for items and their count can

be estimated from the cardinality of the target dataset, as with CQF. The r parameter

is calculated from the equation r = p-q where p is the total number of hash-bits used

to represent each item. In the exact mode, p equals the exact output of a reversible
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Figure 2.13. MQF counters encoding scheme.Items and their counts are stored
in n slots and n fixed counter as shown in the general rule. Each example stores the
same item but different count (count = 3, 4864, or 466).

hash function. In the inexact mode, p is controlled by the target FPR (δ) according

to the equation q = log2(
N
δ
) described before[29]. The Fsize parameter defines the size

of the fixed-size counter. This is critical because if a given MQF has too few slots for

items in a dataset, the bigger MQF would have to double the number of slots causing

a big jump in the memory requirement. To avoid that jump, MQF can use larger fixed

size counters to decrease the number of slots required in counting on the expense of a

slight increase in the slot size. MQF comes with a utility script (https://github.com/dib-

lab/MQF/blob/master/include/utils.h) to enable the calculation of the optimum param-

eters.

2.5.3 Labeling System

MQF can map each item to its count as well as other values, which we call “labels”. Labels

in MQF have two different systems. An internal labeling system stores the associated value

for every key in the data structure, like a hash table. This label has a fixed size defined
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Figure 2.14. Counters encoder algorithm.The Algorithm encodes the item and its
count into one or more slots. The first slot is reserved for the item’s remaining, and
the variable number of slots follows to encode the item’s count.

at the initialization of the MQF and is practically useful when a small size label is needed

(e.g. one or two bits). The second labeling system labels the block. We use this label to

store the number of items inserted in the MQF before each block. This enables labeling

the items of the filter by separate arrays matching the order of the items in the filter, a

behavior that can act as a minimal perfect hash function[40]. The naive way to compute

the items’ order is to find the item in the MQF and iterate backward until the beginning

of the filter to count the number of the preceding items, which is an O(N) operation.

The MQF stores the number of items that exist before each block; therefore, the MQF

iterates only to the beginning of each block, which is an O(1) operation. The number of

previous items for each block is computed after the MQF is constructed. Any additional

insertions or deletions of items would only require re-calculation of the block label values

with no need to re-analyze the original data. Moreover, labeled MQFs can be updated by

merging multiple labeled MQFs and their external labeling arrays. External label arrays
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need to be merged after merging the labeled MQFs. To do so, the new items’ order is

recomputed in the final MQF. Then, labels in the input external arrays can be copied into

a new external array according to the new item order. Such a function has to consider

resolving the conflicts of items happening in multiple-input MQF and labeled by different

external labels (Figure 2.15).

Figure 2.15. Merging MQFs with external labels.Ri is the remaining part of item
i, and Ti is the external label of the item. Merging the input MQF produces a final
MQF with a new order of its member items. All labels in the input external arrays are
copied into a new external array according to this new order of the items. However,
the implementation of the merge function has to resolve the conflict of R3 labels which
exist in both input structures with two labels.
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2.5.4 Buffered MQF

The Buffered MQF is composed of two MQF structures: a big structure stored on SSD

called onDiskMQF, and an insertion buffer stored in the main memory called bufferMQF.

OnDiskMQF uses stxxl vectors[49] because of the performance of their asynchronous IO.

The bufferMQF is used to limit the number of accesses on the OnDiskMQF and change

the access pattern to the on-disk structure from random to sequential. As shown in

the insertion algorithm in Figure 2.16, all the insertions are done first on bufferMQF;

when it is full, the items are copied from bufferMQF to OnDiskMQF, and bufferMQF is

cleared. The copy operation edits the onDiskMQF in a serial pattern which is preferred

while working on SSD because many edits will be grouped together in one read/write

operation. Figure 2.17 shows the query algorithm. The queried items are inserted first to

temporary MQF and sequential access is done to query the items from the OnDiskMQF.

The final count is the sum of the bufferMQF and the ondiskMQF.

Figure 2.16. Buffered MQF insertion algorithm. Insertion Algorithm for inserting
items in the Buffered MQF. It inserts the item in the in-memory data structure. The
on-memory structure is merged into the on-disk structure when it is filled.

2.5.5 Experimental Setup of Benchmarking

A total of 13 datasets (5 simulated and 8 real sequence data) were used in the experiments

to cover a broad spectrum of fragment selection approaches and sequencing platforms.

Three datasets called z2, z3, and z5 were simulated to follow Zipfian distribution using

three different coefficients: 2, 3, and 5 respectively. The bigger the coefficient the more
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Figure 2.17. Buffered MQF query algorithm. Query algorithm for retrieving
counts for a list of items in the Buffered MQF. First, insert all the items in the list
into a temporary MQF. Second, iterate over the list of items in the temporary MQF
and query both the in-memory and on-disk structures.

singletons in the dataset[50]. A fourth dataset was simulated from a uniform distribution

with a frequency equal to 10. Another dataset was simulated to mimic single-end 100 bp

DNA Illumina sequencing from human chromosome 20 using ART simulator[51]. The re-

maining 8 datasets represent k-mers sampled from real sequencing datasets (ERR1050075,

SRR11551346, SRR12801265, SRR12924365, SRR12937177, ERR992657, SRR12873993,

SRR12989394). Throughout the manuscript, each dataset is referred to by its accession

number. Table2.4 enlists all the datasets with their description. A k-mer size of 25

nucleotides was used in all experiments.

Sample Accession Description

ERR1050075 PolyA selected mRNA sequencing of Homo sapiens

SRR11551346 Whole Exome sequencing of Homo sapiens

SRR12801265 3’ mRNA-Seq - Mouse B cell lymphoma

SRR12924365 Single-cell sequencing RNA of Mice

SRR12937177 RAD-Seq with Ion Torrent for Cucurbita argyrosperma subsp

ERR992657 DNA Whole-genome sequencing

SRR12873993 RNA immunoprecipitation sequencing (RIP-Seq) - human cells infected with Ebola virus

SRR12989394 DNase-seq of mitochondrial genome of Mukaria Splendida

Table 2.4. Description of all the samples used in MQF chapter.

Experiments were conducted to compare the performance, memory, and accuracy of

MQF with the state-of-the-art counting structures CQF, CMS, and MPHF. Unless stated

otherwise, CQF and MQF used the same number of slots, and the same slot size while
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the fixed counter of MQF was set to two. The slot size was calculated to achieve the

target FPR as described in the parameter estimation section (see Methods). To create

comparable CMS, the number of the tables in the sketches was calculated using ln(1
δ
) as

described before[32]. The table width was calculated by dividing the MQF size by the

number of tables. The MPHF was created using the default options in the BBhash repo

(https://github.com/rizkg/BBHash). An Amazon AWS t3.large machine with Ubuntu

Server 18.04 was used to run all the experiments. The instance had 2 VCPUS and 8GB

RAM with a 100GB provisioned IOPS SSD attached for storage. All codes used in the ex-

periments can be accessed through the MQF GitHub repository (https://github.com/dib-

lab/2020-paper-mqf-benchmarks).

2.6 List of abbreviations

� MQF: mixed-counters quotient filter.

� CQF: counting quotient filter.

� FPR: false positive rate.

� CMS: count-min sketch.

� MPHF: Minimal Perfect Hash Functions
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Chapter 3

The Great Genotyper

3.1 Introduction

Maya Angelou once beautifully articulated, ’In diversity, there is beauty and there is

strength.’ This concept is strikingly relevant in genomic studies, highlighting the neces-

sity of investigating genetic diversity across large cohorts and populations to enhance our

understanding of evolution [52, 53], genetic adaptations [54], and gene-disease associa-

tions [55, 56]. Genome diversity arises from various types of variations: single nucleotide

variants (SNV), small insertions and deletions (less than 50bp), and structural variants

(larger than 50bp). Structural variants (SVs) contribute to genomic diversity at a rate 15

times greater than SNVs [57] and have a more pronounced impact on gene function[33].

Yet, SVs are less studied than smaller variants because the abundant short-read sequenc-

ing (SRS) methods have a high false positive rate. Conversely, Long-read technologies are

more accurate but expensive for the population scale. Investigating SVs in populations

can deepen our understanding of genomics and offer insights into ourselves and other

organisms.

Variant calling from long read sequences (LRS) offers greater reliability in terms of

precision and recall [6], using mapping [13, 58, 59] or assembly-based approaches [60].

Datasets of LRS are on the rise as the technology becomes more affordable. For exam-

ple, the Human Pangenome Reference Consortium (HPRC) is increasing the number of

samples from 47 to 350 [61], and Chinese researchers [62] developed a pangenome from
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58 samples of 36 distinct Chinese ethnic minority groups. The number of pangenomes

for other organisms is also growing substantially [20, 63, 64, 65]. However, the amount

of LRS data available still pales in comparison to SRS. Consequently, there is an urgent

need to develop computational techniques that leverage the high-quality variant discovery

of LRS while capitalizing on the abundance of SRS.

Short-read alignment approach for detection of SVs yields a low and unreliable recall

rate, ranging from 10% to 70% [6]. Moreover, mapping reads to a linear genome reference

introduces bias towards the subpopulation predominantly represented in the reference

genome assembly, such as the European subpopulation in GRCh38 [17, 18, 19]. Addi-

tionally, merging SV callsets from different individuals presents its own set of challenges.

The same SV can display shifted coordinates across different samples [12]. In essence,

the inherent limitations of calling SV from SRS complicate studying SV on a population

scale.

To address the shortcomings of SV callers, dedicated genotypers examine the presence

and genotype of SVs -whether called from SRS or LRS- in SRS samples [24, 66, 67, 68, 23].

For instance, Paragraph [66] and Graphtyper2 [68] realign the reads to a variation-aware

graph and determine the genotypes from the realignment, thus mitigating the mapping

bias. Pangenie [23] was developed to genotype phased variants from pangenomes using

kmers specific to all possible alleles to overcome the mapping bias entirely. Uniquely, Pan-

genie integrates both genotyping and imputation simultaneously, leveraging the phasing

information of the variants in the pangenome to infer genotypes in regions with absent

coverage. As a result, Pangenie achieves superior outcomes compared to other SV geno-

typers.

Genotyping SVs yields higher recall and precision than detecting those variants by

directly calling them in the same SRS samples. For instance, Huddleston et al. [69]

employed LRS to analyze SVs in two human genomes. They found that 90% of these

SVs were missing in the 1000 Genomes callset. Yet, 61% of these SVs could be genotyped

using short-read sequencing. Therefore, many recent population-scale studies adopted a

joint approach of variant calling and genotyping. Initially, variants are called from a small
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number of LRS samples or a larger number of SRS samples. Subsequently, the discovered

SVs are merged and genotyped in a larger cohort of SRS [16]. For instance, Kirsche

et al. [70] employed Paragraph [66] to genotype variants detected from 31 LRS samples

in a population of 1.3k SRS samples from the the 1000 Genome Project (1kGP) [71].

Similarly, Graphtyper2 [68] was used to build a graph using SVs detected in SRS of 50k

Icelandic samples [68] or 2k dogs [15]. The graphs were then re-genotyped with the same

SRS samples to enhance recall. Conversely, muCNV leverages population information

to refine genotyping, by modeling the read mapping statistics across a population of

samples to enhance the genotyping accuracy. Goo Jun et al. [14] employed MuCNV

to jointly genotype TopMed SV structural variants across 139k SRS samples. Lastly,

The HPRC [61] utilized Pangenie to genotype pangenome variants in 3,202 samples from

1kGP [71].

Population genotyping methods, although swift and scalable, do not address the N+1

problem. Introducing a single new variant necessitates downloading and reprocessing

all the raw data, which is unfeasible for most labs. Current approaches are not effi-

cient enough to keep up with the rapid generation of pangenomes and population-specific

variant catalogs. Genotyping these variants in the available SRS can elevate population

genetics to new heights. The SV N+1 challenge also impacts disease gene discovery studies

in probands [2]. LRS can produce phased, high-quality SVs, and finding pathogenic vari-

ants requires filtering out common variants and limiting the search scope to rare variants.

However, matching these variants to public databases is challenging, and the reliability

of allele frequencies in SV catalogs like genomeAD [72] is questionable if they were cal-

culated in small cohorts, in different subpopulations, and/or using low recall techniques.

Genotyping new variants in a large population, covering all subpopulations if possible,

provides a more accurate and informative AF calculation.

Shifting gears in population genomics, we present “The Great Genotyper”, an alignment-

free genotyping pipeline for both SV and small variants. We show how it can genotype four

thousand human samples from different subpopulations in mere hours, without the need

for 95TB of raw sequences . Instead, it uses a Counting Colored Debruijn Graph (CCDG)
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of size 1TB. The CCDG needs to be created once from the raw sequences of a given pop-

ulation by retaining the kmers and their counts in a compressed form. The CCDG offers

a realistic solution for the N+l problem because it can be re-used for genotyping any

new list of variants in this population . In addition to unprecedented performance, The

Great Genotyper’s genotyping accuracy is similar to the state of the art since it uses the

Pangenie genotyping model for phased variants and improves the genotyping quality with

population derived information. Moreover, The Great Genotyper applies the Pangenie

model on unphased variants by initially phasing them using the CCDG. Therefore, we

were able to demonstrate how to merge different gene catalogs with pangenome-derived

variants in one phased panel of 4k human samples. The panel was utilized for fine mapping

of GWAS peaks and imputation of common SVs.

3.2 Background

The Great Genotyper stands on the shoulders of state-of-the-art methods to deliver both

scalable and accurate population genotyping. It harnesses the power of Metagraph for the

creation and querying of Counting Colored de Bruijn graphs. Also, it employs Pangenie’s

genotyping model for single sample genotyping, and leverages Beagle for imputation and

phasing. In this section, we delve into the key tools that have been instrumental in

propelling The Great Genotyper to its unparalleled levels of performance and precision.

3.2.1 Metagraph

Genomic sequences can be represented using De Bruijn graphs, where each k-mer is a

node and an edge is formed if the k-mers representing the two nodes share k-1 bases.

An evolution of the standard De Bruijn graph is the Colored De Bruijn Graph, which

can represent multiple samples by conceptually associating each sample with distinct

colors [73]. The process of creating a colored De Bruijn graph is often referred to as

k-mer indexing [74, 45]. While Colored De Bruijn Graphs (or k-mer indexes) merely

track which samples contain each k-mer, Counting Colored De Bruijn Graphs (CCDG)

also record the k-mer abundance for each sample, paving the way for a wider range of

applications. Nonetheless, constructing a CCDG for thousands of samples is a formidable
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challenge, demanding efficient algorithms and data structures.

Metagraph [75] and REINDEER [76] provide succinct data structures to house the

CCDG. Both tools harness the principle that related k-mers often share similar metadata,

thereby building the index around the dataset’s unitigs. For our purposes, we opted for

Metagraph to generate a CCDG for 4,271 samples that represent the global populations.

This CCDG encapsulates k-mers from all the samples along with their respective counts.

These k-mers and their counts are subsequently leveraged by The Great Genotyper during

the population genotyping process.

The indexing algorithm of Metagraph begins with k-mer counting using KMC [77]

for each sample. Following this, a graph is constructed based on the KMC counts. This

allows Metagraph to apply optional error-cleaning techniques inspired by mccortex [78].

These cleaning algorithms tackle three primary types of errors:

1. They eliminate tips in the graph smaller than twice the k-mer size. Here, “tip” refer

to unitigs connected from only one end in the graph.

2. They discard unitigs with k-mer abundance falling below a certain threshold. This

threshold can be automatically determined based on the data.

3. K-mer counts are smoothed by retaining the average k-mer count for the unitig as

opposed to individual k-mer counts.

These strategies significantly reduce the memory footprint of the final CCDG while

sacrificing minimal information. After error cleaning of individual graphs, Metagraph

constructs a combined graph by merging all individual graphs. Subsequently, it appends

each sample’s k-mer counts to this composite graph. The k-mer counts undergo further

optimization by smoothing to minimize their size in the data structure. Ultimately, the

resulting graph can be several hundred times smaller than the initial raw data, preserving

most of the genuine k-mers and their respective counts.

3.2.2 Pangenie

Pangenie genotype phased small and structural variants in SRS samples using a k-mer-

based method. This involves extracting a set of k-mers unique to the variants targeted for
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genotyping. The genotyping and imputation processes leverage a Hidden Markov Model,

inspired by the Li-Stephen imputation model [79]. This model utilizes the k-mer counts

from the extracted unique k-mers, and it imputes genotypes for variants lacking k-mer

support if k-mer support is found for a proximate variant on the same haplotype. I will

elucidate the workings of the Pangenie software, beginning with its method for unique

k-mer extraction and the criteria behind this. Subsequently, I will delve into the Hidden

Markov Model employed for genotyping and imputation.

While it may initially seem counter-intuitive to use kmers in genotyping due to the

loss of information about the context of kmers in the genome, tools like Nebula [24] and

Pangenie [23] have leveraged the fact that variations create new unique kmers that are

not found elsewhere in the genome. For instance, a Single Nucleotide Polymorphism

(SNP) can give rise to 31 new 31-mers, some of which are exclusive to specific regions

in the genome. Similarly, the breakpoints of deletions and insertions generate additional

unique kmers, with inserted sequences contributing many specific kmers that can tag the

insertion.

Nebula and Pangenie employ distinctive methodologies to identify these variant-specific

kmers, omitting kmers present in other regions, and these are referred to as unique kmers.

Extracting unique kmers begins by generating a kmer list from the reference genome

in the variation region to represent the wild type. Subsequently, the reference sequence is

altered to recruit the variation, and kmers are extracted from these mutated sequences.

Reference and mutated kmers are then filtered to remove those present in other genomic

regions to mitigate inaccurate signals.

Following this, we count the kmers in the refined list of kmers to obtain the kmer

counts from SRS. This kmer list is further refined by discarding kmers with counts ex-

ceeding double the sample average. These kmers are unreliable as they may originate

from regions duplicated in the sample genome or from regions that are collapsed in the

reference genome. Duplicated regions in the sample genome can lead to inflated kmer

counts, making it harder to accurately determine the correct genotype from the kmer

counts. On the other hand, collapsed regions in the reference genome can falsely suggest
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a kmer is unique, causing it to be retained when it actually exists in other parts of the

genome and should have been filtered out in the previous filtration step.

The Hidden Markov Model genotypes and impute a big chunk of variants at once. To

define the Model, assume H is the number of haplotypes in the reference panel. Given a

list of variants V of size vsize, with Vi as the i
th variant, we create a set of nodes Nv,l,m for

each Vv, where l,m ∈ [0, H], representing all possible phased genotypes. Each node Nv,l,m

connects to all nodes of Nv−1,l,m and Nv+1,l,m, barring the first and last nodes which have

connections on one side only.

Emission Probability

The Emission probabilities for each node are determined by calculating the probability

of the genotype representing the node given the counts of the unique kmer found in the

sample.

Let us assume Hv,l represents the sequence of Haplotype l at the vth Variant. Ad-

ditionally, let’s define Kv as the set of unique k-mers of size K extracted from all the

Haplotype sequences Hv,l, where v ranges from 0 to vsize and l ranges from 0 to H. The

expected copy number of each kmer k, CNv,l,m,k, with respect to Haplotypes l and m, is

calculated using Equation (1).

CNv,l,m,k =



0, Kv[k] /∈ Hv,l ∪Hv,m

1, Kv[k] ∈ Hv,l \Hv,m

1, Kv[k] ∈ Hv,m \Hv,l

2, Kv[k] ∈ Hv,l ∩Hv,m


(1)

Let’s assume the observed count of the kth unique kmer, Kv[k], is denoted as OKv[k].

We calculate the expected probability of the observed count given the assumed copy

number, P (OKv[k] | CNv,l,m,k), as described in Equation (2). Here, F represents a

Poisson distribution, where the mean of the distribution is λ
2
when CNv,l,m,k equals to 1

and 2, respectively. When considering CNv,l,m,k = 0, we utilize a geometric distribution

with mean λ. This approach allows for the detection of some k-mers that may occur due

to sequencing errors, rather than being solely attributable to the presence of the variant.
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P (OKv[k]|CNv,l,m,k) =


G(λ), CNv,l,m,k = 0

F (λ
2
), CNv,l,m,k = 1

F (λ), CNv,l,m,k = 2

 (2)

Finally, we compute the emission probability for node Nv,l,m using Equation (3). This

equation assumes that the kmer counts are independent of each other, and calculates the

final probability as the product of all individual probabilities. However, it is important to

note that the counts of overlapping kmers are not independent. Integrating the overlap

information would overly complicate the algorithm. Therefore, Equation (3) provides an

approximation of the true emission probability.

Emission(Nv,l,m) =
∏
k∈Kv

P (OKv[k]|CNv,l,m,k) (3)

3.2.2.1 The Transition Probability

The transition probabilities between nodes are computed using the linkage disequilibrium

equation from the Li-Stephen model, which increases when j and k are the same for both

connected nodes and are closely located in the genome.

3.2.2.2 Genotyping Algorithm

The forward-backward algorithm is then employed to calculate the probability of each

node based on the given emission and transition probabilities, and the genotype is sub-

sequently inferred from the node with the highest probability. This refined methodology

ensures precise identification and imputation of variants, thereby affirming the reliability

and precision of genotyping in phased variants derived from pangenomes.

3.2.3 Beagle

Beagle is software designed to phase and genotype variants using a reference panel. It

requires a multi-sample VCF file as input, which contains population genotypes for a set

of variants. Notably, these genotypes don’t have to be comprehensive; Beagle can impute

missing haplotypes statistically by modeling the linkage disequilibrium via the Li-Stephens

HMM. Moreover, Beagle can phase the genotypes, thereby producing a reference panel
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suitable for imputing and phasing other samples. In terms of processing time and accuracy,

Beagle competes favorably with state-of-the-art solutions and can manage hundreds of

thousands of samples efficiently. Owing to its capabilities, Beagle has been utilized to

build reference panels using data from projects like UK Biobank and TOPMed [80].

3.3 Methods

3.3.1 Developing a Counting Colored De Bruijn Graph for a

Cohort of Short-Read Sequencing Samples.

Creating a CCDG(also called indexing) for thousands of SRS is challenging, as the size of

the raw data surpasses our available resources. Both number of samples and number of

unique kmers affect the performance of indexing. Without rigorous kmer removal based

on their counts, the number of unique kmers is predominantly driven by errors. However,

aggressive kmer trimming may impede genotyping accuracy by incorrectly eliminating

low coverage regions, creating a trade-off between performance and final index size and

genotyping accuracy. Additionally, metadata are not always reliable due to potential

human annotation errors.

To address these challenges, we adopted a strategy of minimal kmer trimming, elimi-

nating kmers with counts fewer than three to preserve genotyping accuracy, and distribut-

ing closely related samples across multiple CCDGs. Given the potential annotation errors

and heterogeneous sources, metadata is not the optimal solution for identifying related

samples.

Figure 3.1 delineates our workflow to balance between genotyping accuracy and man-

aging the constraints of dataset size and resource availability. Also it mitigates the impact

of metadata inaccuracies.

Sequencing Data are stored on cloud repositories like SRA in CRAM, FASTQ, or SRA

formats. A single 30X human WGS sample, in CRAM format, is approximately 15GB,

which can be reduced to around 1.2 GB when stored as unitigs in gzipped fasta format

and kmer counts in gzipped format. Therefore, to conserve disk space, data is downloaded

and processed in chunks, with the deletion of raw and intermediate files post-processing.

38



Figure 3.1. Indexing Workflow The diagram outlines the workflow implemented to
construct the kmer indexes for the thousands SRS samples. The process initiates with
the downloading and preprocessing of the samples, involving the identification of unit-
igs and normalization of their counts. Sourmash is then employed to create signatures
from the unitigs, facilitating swift comparison between samples. Any discrepancies
in metadata are identified through the examination of Sourmash signatures. Subse-
quently, kSpider is utilized to develop a dendrogram for all the samples, and sample
clusters are computed based on this dendrogram. Finally, a kmer index is generated
for each cluster using metagraph.

Upon the download of each sample, we employ kmc for kmer counting, setting the

minimum count to 3 to filter out singletons and doubletons, which are most likely errors.

Metagraph is utilized to identify the unitigs and retain only the average kmer count per

unitig, thus smoothing kmer counts. This smoothing reduces the size of the kmer counts

to one-tenth while maintaining high genotyping accuracy.

From each unitig, we calculated sourmash signatures using a k size of 51 and sub-

sampling to the scale of 1 to 10k, which entails keeping a hash for every 10,000 kmers.

Sourmash signatures are very small and can be compared with each other very efficiently

to gain insights about the datasets. We use the signatures to find discrepancies in the

metadata. Moreover, they can be used to identify clusters in the samples to aid in creating

the CCDG, instead of relying solely on the metadata for clustering. Therefore, errors in

the metadata can be discovered by examining the clusters.

We next identify subsets of samples characterized by maximal intra-subset similar-

ity. Initially, kSpider calculates pairwise similarities between all samples based on their

Sourmash signatures. We employ hierarchical clustering using the Scipy library [81] to

construct a dendrogram visualized in Figure 3.7 by iTOL [82]. Finally, we utilize Meta-
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graph to construct CCDGs for each cluster independently.

3.3.2 The Great Genotyper

The Great Genotyper begins its workflow with a list of CCDGs and a list of variants,

which can be either phased or unphased. As demonstrated in the green workflow in

Figure 3.2, it processes all input variants across the samples in the CCDGs. The initial

step entails extracting k-mers unique to the variant region. These k-mers are then used to

query the counts in all samples present in the CCDGs. Unphased variants are genotyped

by comparing the counts of the unique k-mers to the average sample coverage in Fast

Genotype mode.

Figure 3.2. The Great Genotyper workflows The Figure describes three distinct
workflows to create reference panels, each illustrated with a different color of arrow.:
The red workflow creates a high-quality reference panel from phased variants, the
green workflow creates the panel from variants without phasing information, and the
blue workflow enhances the green panel by phasing the input variants then following
the red workflow. Each of these workflows utilizes three specific processes: Unique
k-mer Extractor, Extract Phasing Information, and High-Quality Genotype. These
procedures are based on a scaled-up version of the Pangenie model, which enables
the simultaneous processing of thousands of samples. “Population Genotype correc-
tion and phasing” scrutinize genotypes by evaluating the genotyping quality across all
samples. Once completed, the removed genotypes are re-estimated using a statistical
imputation process, implemented by Beagle [83, 80]. Beagle also uses the results from
the population genotype to phase all variants, thereby generating a reference panel
based on the input variants. Lastly, “Fast genotyping” produces initial genotypes for
all the samples in the population database by comparing the k-mer counts of unique
k-mers to the average sample coverage.
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The genotype of unphased variants are identified using emission probability equa-

tions(3). Essentially, we compute the probability for all three possible genotypes and

select the variant’s genotype based on the highest probability, as described in Equation

(3).

GT = arg max
gt∈{0/0,0/1,1/1}

P (gt|KC) (3)

In contrast, for phased variants, genotyping is achieved via a Hidden Markov Model

(HMM) based on the Li-Stephen model [79], as implemented in Pangenie (the red workflow

in Figure 3.2). This HMM fulfills a dual role of genotyping and imputation. Genotyping

is done in the same way as the previous methods, and if the evidence for certain variants

is low, the HMM will impute their genotypes provided it can genotype nearby variants

on the same haplotype.

Following the primary genotyping of samples by either model, the genotyping results

undergo a population level assessment and correction. The population-wide genotyping

confidence for each variant allows the identification of the likely erroneous genotypes.

Subsequently, those genotypes with low genotyping confidence undergo statistical impu-

tation using the high confidence genotypes of the whole population as a reference panel.

This step involves phasing of all the population variants as well.

As the HMM genotyping model demonstrates superior recall compared to the simple

genotyping model for unphased variants, The Great Genotyper provides an optional sec-

ond run to enhance the recall. In this second run, input variants are phased using the

reference panel from the first run, and the HMM is employed, as indicated by the blue

workflow in Figure 3.2.

3.3.3 Population Genotype correction and phasing

The preceding steps process each sample in isolation. In this step, we optimize the

genotype quality of each sample by leveraging the power of all samples in the kmer

index. The process initiates by identifying high-confidence genotypes in the initial results,

produced by the sample-wise genotyping methods, either Fast or HMM. Following this, a

reference panel is assembled, comprised of the high-confidence genotypes.
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Subsequently, Beagle [83, 80] is employed to statistically impute the filtered, lowcon-

fidence genotypes derived from the reference panel, simultaneously phasing the resultant

variants, thereby yielding phased genotypes for all samples.

It is crucial to note that Beagle employs a different HMM model, albeit one very

similar to the one used in the High-Quality mode. However, there is a divergence in the

way linkage disequilibrium is calculated. In Beagle, linkage disequilibrium is computed

statistically from the high-confidence genotypes within the created reference panel. In

contrast, The High-Quality HMM step calculates it based on the phasing information

provided by the user in the input variants.

The synergy between these two imputation methods does not only enhance the results

of genotyping but also broadens the application scope for the Higher Quality HMMmodel,

enabling its use even when phasing information is absent in the input VCF, as described

in the blue arrows in figure 3.2.

The genotyping models yield a confidence measure for the output genotypes, deducing

the likelihoods of all possible genotypes and selecting the one with the highest probability.

The confidence level is derived from the difference between the highest probabilities and

the other probabilities: a larger difference correlates to higher confidence.

The components driving these probabilities can primarily be distilled into two factors:

the number of unique kmers discovered for each variant haplotype and the count of these

kmers in the sample. The first factor is a constant across all samples since it is determined

only from the reference genome and variant. However, the second factor varies per sample.

Some samples may present robust evidence for a particular genotype, while others may

not due to either low coverage of the region in the sample or the exhibition of a different

haplotype not present in the input haplotypes.

To filter out low-confidence variants, we calculate the median of genotype confidences

for each genotype and discard genotypes falling below this median. This approach allows

us to establish a variable threshold calculated using the results from all the samples,

providing a balanced way to sift through the variants. For variants abundant in unique

kmers, this threshold will be high, while more challenging variants will have a lower
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threshold, accommodating the varying levels of confidence in different scenarios.

3.3.4 Experimental Design

This section outlines the experimental designs for the benchmarking experiments con-

ducted to compare the accuracy of The Great Genotyper with the state-of-the-art geno-

typing tools: Pangenie, GraphTyper2, Paragraph, and GATK.

3.3.5 Genotyping Accuracy Experiment

The Genotyping accuracy experiment assesses the proficiency of genotyping tools in geno-

typing both small and structural variants. These variants are identified from the NA12878

sample and are then evaluated within short-read samples from HG00731, HG00512, and

HG01891.

Figure 3.3. Benchmark Genotyping Accuracy Workflow The figure represents
the workflow for the benchmarking experiment. The gold color represents samples:
HG00731, HG00512, and HG01891, and the blue represents the NA12878 sample.

This experiment is structured into two components. The first component involves

creating a Truth Set and Test Sets. A Truth Set is established using the same algorithm

applied in Pangenie for creating phased variants (including small variants and structural

variants) from haplotype-resolved assemblies. For HG00731 and HG00512, haplotype-

resolved assemblies from [84] were utilized, while assemblies from the Human Pangenome
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Project [85] were used for HG01891. This workflow aligns the assemblies to the reference

genome using minimap2 [7] and identifies variants using PAV tools [84], applying each

haplotype assembly independently. Subsequently, the resulting VCFs are merged using

bcftools [86]. Additionally, the workflow generates a confidence region on the reference

genome, ensuring that only one segment from the assembly maps to it to avert misas-

semblies. Variants within this confidence region are deemed suitable to represent the full

truth in these regions.

For the test VCF, assemblies of NA12878 were downloaded from GIAB [42], and the

identical workflow was applied to call the test variants. The overlap between the test

variants and the Truth Sets is then calculated, with variants found in both samples being

categorized as true positives and those found only in the test set as true negatives.

The second component is running the Genotypers and Benchmarking them. Subse-

quently, different genotypers are executed on the test variants (NA12878) and short-read

samples of HG00731, HG00512, and HG01891. The genotyping results are then compared

against the truth set. The benchmarking outcomes are stratified based on whether the

variant is located in a repeat region or not and are also classified by type and size: SNP,

Indel(< 50bp), Insertions/deletions( > 50bp), and complex Insertions/Deletions, where

“complex” denotes that the variation generates more than one breakpoint.

3.4 Results

3.4.1 Selecting Samples to Represent Human Genomic Diver-

sity

To capture the genomic diversity of humanity, we compiled a sample list amalgamating

three prominent sequencing projects: the 1000 Genome Project (1kGP) [87], the Hu-

man Genome Diversity Project (HGDP) [88], and the Simon Genome Diversity Project

(SGDP) [89]. Each project harbors a distinctive vision and utilizes different resources for

selecting samples to be sequenced, but all have conducted whole genome sequencing with

an approximate depth of 30x.

The 1kGP has sequenced 3,202 samples encompassing 26 populations. Conversely,
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while HGDP and SGDP covered a more extensive range of populations, 56 and 137 re-

spectively, they have fewer samples per population, totaling 828 and 276 respectively.

The broader coverage of HGDP and SGDP enables the identification of common genomic

variations across humanity. Additionally, the depth of the 1kGP provides a deeper un-

derstanding of genomic variations within selected populations.

This amalgamation yielded 4,271 unique samples and 35 redundant samples, repre-

senting 140 populations. The distribution of these unique samples is depicted in Figure

3.4. As illustrated in Figure 3.5, over 1,000 samples originate from Africa. East Asia,

South Asia, and West Eurasia contribute around 800 samples each, with the remaining

samples distributed across the Americas, the Middle East, and Oceania.

Figure 3.4. Global Distribution of Samples The map demonstrates the represen-
tational breadth of selected samples across global populations. Small circles denote
samples from the SGDP and HGDP datasets, while the larger circles represent those
from the 1KG project, providing an overview of the coverage of world populations by
these samples.

3.4.2 Using Sourmash to Correct the Sex Fields of the Samples

in the Metadata

We exploited the lightweight nature of Sourmash to perform fast comparisons over the

signatures for quality control purposes. The sex of the samples was determined by calcu-

lating the containment between the sample’s signature and the signature of chromosome

Y from GRCh38 reference genome.

Male samples exhibited an average overlap ratio of 0.65(SD=0.039), while the average
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Figure 3.5. Histogram of Samples Across Super Populations:The histogram
displays the distribution of samples from each superpopulation selected for indexing
in the CCDG.

for female samples was 0.08(SD=0.003). We concluded that this method can reliably

determine the sex of the samples.

We observed four discrepancies between the sex values calculated by Sourmash and

the sex provided in the metadata. For further verification, we calculated the average

coverage of reads on chrY from the cram files.

Results of the average coverage and Sourmash overlap ratio are illustrated in Figure

3.6. Both graphs exhibit the same pattern, leading us to conclude that the metadata

needs adjustment.
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Figure 3.6. Validating Metadata Accuracy: This figure illustrates the discrepan-
cies in metadata through a dual comparison. On one the left, it presents the average
coverage of chrY for samples with incorrect metadata. On the right, it displays the
overlap ratio between the sourmash signature of the samples and that of chrY. The
color of the bars represents the sex as provided in the metadata, with blue bars de-
noting male and pink bars denoting female. Ideally, blue bars should be larger than
pink bars; however, inconsistencies arise due to errors in the metadata. The ratio of
control samples aligns with expectations.

3.4.3 Using kSpider to cluster the 4271 Samples into 28 clusters

Initially, kSpider calculated pairwise similarities between all samples based on their Sour-

mash signatures. We employed hierarchical clustering using the Scipy library [81] to

construct a dendrogram visualized in Figure 3.7 by iTOL [82].

The initial attempt to construct a dendrogram was not entirely successful, with Figure

3.7.A illustrating clusters encompassing samples from various continents. Upon closer

inspection, it was revealed that samples of identical sex but differing subpopulations were

more similar to each other than to those of the opposite sex and same subpopulation. To

address this sex bias, we subtracted the signature of chrY from all samples, resulting in

a more homogeneous dendrogram, as depicted in Figure 3.7.B.

From the dendrogram, fifteen clusters were extracted and subsequently refined man-

ually to ensure each encompasses between 100-350 samples, the number of samples per

cluster is detailed in Figure 3.8. To illustrate the coherence of our clusters, they are plotted
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Figure 3.7. Addressing chrY Bias in Clustering The figure depicts two attempts
to create a dendrogram for the 4271 samples. The outer circles consist of fine lines,
each representing a sample, with the color of the lines signifying the population of
the sample as per the metadata. The dendrogram is displayed within these circles,
delineating the clusters. Excluding chrY hashes yields more homogeneous clusters, as
illustrated in the left dendrogram.

on the world map in Figure 3.9, demonstrating how geographically proximate populations

tend to be grouped into the same cluster. Additionally, thirteen samples that did not align

with any clusters were prudently omitted to mitigate the risk of contamination.

3.4.4 Effect of Error Cleaning and Counts smoothing on geno-

typing Accuracy and the CCDG size

We investigated the influence of Metagraph’s sample preprocessing on genotyping accu-

racy to determine the best parameters for optimal results. The error cleaning and kmer

count smoothing algorithms employed by Metagraph are outlined in subsection 3.2.1. We

generated several CCDGs from subsamples of the HG00731 SRS at coverages of 5x, 10x,

20x, and 30x. Each CCDG was constructed using different parameters, which are summa-

rized in Table 3.1, along with the final sizes of the CCDGs. Subsequently, we assessed the

precision and recall of genotyping by conducting the experiment described in Subsection
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Figure 3.8. Number of Samples per Cluster and index size This figure de-
picts the distribution of samples across each cluster, as determined by the clustering
algorithm, on the left y-axis. Concurrently, on the right y-axis, it showcases the cor-
responding final index size for each cluster.

3.3.5.

Additionally, we considered logging the kmer counts as a preprocessing step. While

our benchmarking methodology aligned with the approach described in subsection 3.3.5,

for this study, we created the input CCDG from subsamples of HG00731 SRS at coverages

of 5x, 10x, 20x, and 30x. The resultant CCDGs sizes is showcased in table

Results in figure 3.10 and table 3.1 indicate that preprocessing methods do not impact

samples with coverage exceeding 20x. For coverages of 10x and 5x, logging the counts was

the most influential, significantly decreasing both the f-score and the final CCDG size. On

the other hand, smoothing led to a nominal drop in the f-score but notably reduced the

CCDG size. Cleaning had a moderate impact on the f-score and caused a slight reduction

in the CCDG size. The findings from this experiment were instrumental in guiding our

decision-making regarding preprocessing parameters.
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Figure 3.9. Visualizing Clusters on a World Map We are visualizing the out-
come of a clustering algorithm on a world map. Each circle on the map represents
a population. The size of each circle shows the number of samples we have from
that population, and the color of each circle shows the cluster to which most samples
from that population are assigned. The visualization of the clustering results generally
aligns well with the geographical locations on the map, with some exceptions. This
is because the coordinates on the map represent where the samples were analyzed,
not the original locations of the populations. For instance, we have African samples
(colored red), European samples (colored blue), and Gujarati Indian samples (colored
light blue) that were sequenced in the US, and Sri Lankan samples sequenced in the
UK.

3.4.5 Using Metagraph to Create 920 GB CCDGs from 95 TB

of CRAM Files

We employed the Metagraph indexing workflow to generate a distinct index for every

cluster. From an initial size of 95 TB in the input CRAM files, the total size of all

clusters was reduced to 925.2 GB, yielding a space savings of 100x. Figure 3.8 graphically

presents the size of each cluster in tandem with the count of samples they contain
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Figure 3.10. F-score comparison between the different preprocessing param-
eters Metagraph’s preprocessing techniques influence the genotyping f-score. These
techniques include Smoothing Counts, where only the average kmer count per unitig
for each sample(smooth10000000) is retained instead of preserving the individual kmer
counts(smooth1); Log Counts, which involves saving the log of kmer counts to conserve
space; and Clean, the error cleaning algorithm in the Metagraph framework described
in subsection 3.2.1.

Index Name Smoothed Counts Log Counts Cleaned CCDG size(GB)

smooth10000000 log clean Y Y Y 1.42

smooth10000000 log noClean Y Y N 1.59

smooth10000000 noLog clean Y N Y 1.62

smooth10000000 noLog noClean Y N N 1.80

smooth1 log clean N Y Y 1.76

smooth1 log noClean N Y N 1.92

smooth1 noLog clean N N Y 3.00

smooth1 noLog noClean N N N 3.30

Table 3.1. Impact of Metagraph Preprocessing on CCDG size: The table
demonstrates how preprocessing methods like Smoothing Counts, Log Counts, and the
Clean algorithm alter the size of the final CCDG. Smoothing Counts simplifies kmer
data to averages per unitig, Log Counts compresses kmer information logarithmic
ally, and Clean removes errors, as detailed in Metagraph’s framework described in
subsection 3.2.1.

3.4.6 Achieving Population Genotyping on Standard HPC Servers

in a Matter of Hours

The performance evaluation of the Great Genotyper was conducted in two modes: Fast-

genotyping and High quality(HMM). Using the Fast genotyping mode, the Great Geno-
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typer efficiently genotyped 700k variants in 1,000 samples within a span of just 72 minutes.

In contrast, when operated in the High-quality mode, the processing time increased to 3

hours and 45 minutes. Notably, both modes effectively utilized a single machine without

exceeding a memory usage of 150 GB, as delineated in Figure 3.11.

To contextualize this efficiency, Pangenie required close to an hour to genotype the

700k variants in one sample, while GraphTyper2 consumed approximately two hours

for the same task. If these durations are extrapolated to accommodate the processing of

1,000 30x samples, both Pangenie and GraphTyper2 would presumably necessitate several

weeks to complete the genotyping process using a single machine. This underscores the

remarkable proficiency of the Great Genotyper in both its operational modes.

Figure 3.11. Performance comparison between The Great Genotyper and
the state of the art Running time and memory of different tools used to genotype
700K phased variants (SV and small variants). The Great Genotyper is genotyping
1,000 30x samples, while the other genotypers are working on only one 30x sample.

3.4.7 Computational Efficiency has Almost no Cost on Accuracy

We executed the experiment detailed in subsection 3.3.5 to compare the precision and

recall of the Great Genotyper with other state-of-the-art genotypers. In this experiment,
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the genotypers were provided with SV and small variants derived from the NA12878

haploid-resolved assemblies, alongside a short read sample from 30x SRS of HG00731.

Additionally, The Great Genotyper was supplied with an extra 1000 samples to harness

population information, thereby refining the genotyping accuracy. The results can be

seen in Figures 3.12. The Great Genotyper’s HMM and Pangenie demonstrates a su-

perior f-score for SV variants in most scenarios. When focusing on small variants, it

maintains a comparable f-score to GATK, except in the context of genotyping complex

indels. Fast Genotyping generally has a lower F-score than other methods, but a second

pass significantly improves the f-score. It surpasses the performance of other methods in

many cases, but still ranks just behind the Great Genotyper’s HMM. In summary, the

Great Genotyper consistently delivers competitive or superior genotyping accuracy across

different scenarios.

Figure 3.13 shows the effect of sample coverage on the F-score of The Great Genotyper

and other methods. All methods showed an expected decrease in accuracy for coverages

5x and 10x. However, Pangenie, The Great Genotyper HMM, are giving the best results

for genotyping SV at low coverage. The Great Genotyper Kmers-only genotyping model

is affected by lowering the sample’s coverage, but the F-score was significantly enhanced

using the second pass HMM.

3.4.8 Assessing the Phasing Accuracy of The Great Genotyper

In Figure 3.12, we observe a significant improvement in the genotyping f-score of unphased

variants using two second pass methods. This enhancement is achieved by initially phasing

the unphased input variants based on their genotyping results within the population via

fast genotyping. Subsequently, this phased information is harnessed by the second pass

using the high-quality HMM model. To evaluate the quality of phasing, we carried out

an experiment, as shown in Figure 3.14. It reveals that the switch error rates fluctuate

between 4-7%.

For this experiment, we began with phased small variants and SVs sourced from

haploid-resolved assemblies representing diverse subpopulations. We then stripped these

variants of their phasing information and introduced the unphased variants to the fast
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Figure 3.12. F-score comparison between The Great Genotyper and the state
of the art The figure illustrates the F-scores of different genotyping methods, differ-
entiating between SNPs/indels (under 50 bp) and larger insertions/deletions (above 50
bp). F-scores for Variants located in repeated regions are shown as bars, while those
in non-repeated regions are shown as circles. Additionally, Variants are categorized
based on the complexity of their genomic location.

genotyping model within The Great Genotyper, genotyping them across 1000 samples.

The outcome from this stage then serves as a reference panel to phase the unphased

variants. Finally, we compared the results against the original phased variants using

whatshap [90].

3.5 Use Cases

We have investigated how the unparalleled efficiency and accuracy of The Great Geno-

typer at the population level can revolutionize genomic studies. In this section, we utilize

a subset of the index from 1000 samples to demonstrate various use cases. Firstly, we

examined The Great Genotyper’s potential in Mendelian disease studies by genotyping

the entire ClinVar database and comparing the allele frequencies of pathogenic and benign

variants. Additionally, we employed The Great Genotyper to genotype HPRC pangenome

variants across the 1000 samples. Our findings indicate that expanding high-quality vari-

ants from the pangenome to a larger number of samples paves the way for applications
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Figure 3.13. Coverage effect on genotyping F-score. The figure illustrates the
effect of coverage on the F-scores of different genotyping methods, differentiating be-
tween small variants (under 50 bp) and SV (above 50 bp). F-scores for variants located
in repeated regions are shown as bars, while those in non-repeated regions are shown as
circles. Additionally, variants are categorized based on the complexity of their genomic
location.

such as phasing and imputation of small as well as structural variants in unprecedent-

edly large cohorts. Furthermore, it provides insights into the haplotype structure of these

variants, enabling the fine mapping of GWAS SNPs using SVs from the pangenome.

3.5.1 The Great Genotyper can help finding pathogenic variants

We used the fast genotyping method to genotype the ClinVar database variants in the

1000 samples. In Figure 3.15, we visualized the allele frequency results for both benign and

pathogenic variants using box plots, stratified by their significance. Almost all pathogenic

variants had zero allele frequency in the healthy population, while benign variants showed

a wider range of frequencies. This indicates that calculating allele frequencies of candidate

variants in indices of 1000s sample can be a reliable metric for prioritizing rare variants

when investigating their pathogenicity
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Figure 3.14. Phasing Accuracy of The Great Genotyper Across Ethnically
Diverse Samples The figure illustrates the phasing accuracy of The Great Geno-
typer, showcasing switch error rates derived by comparing its phasing results against
haplotype-resolved assemblies. The analysis encompasses 8 samples from a variety of
ethnic backgrounds.

3.5.2 Expanding the Pangenome: Genotyping HPRC Variants

in 1000 Samples with The Great Genotype

We downloaded the HPRC pangenome in the form of a decomposed VCF to ensure com-

patibility with the Great Genotyper. The VCFs contained 8.5 M variants, and the counts

per variant type are summarized in Table 3.2. Subsequently, we genotyped these vari-

ants across three chromosomes: chr1, chr5, and chr20, within the 1000 samples present

in the prebuilt CCDG. The resulting output maps HPRC variants to GRCh38 coordi-

nates and provides phased genotypes for these samples. To evaluate the representation

of the HPRC pangenome within our dataset, we analyzed the allele frequencies across

the human population. Figure 3.16 displays a histogram of these frequencies, stratified

by population. This visualization clearly indicates a balanced representation of variants
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Figure 3.15. Allele Frequency distribution for variants in Clinvar The box plots
summarize the distribution of allele frequencies for variants in the ClinVar database,
categorized by their clinical significance.

across most populations.

Variant Type Count

SNV 3,807,964

Indels(<50 bp): 1,346,326

Deletions 597,069

Insertions 65,7889

Complex 91,368

SV(>50bp): 84,445

Deletions 17,188

Insertion 48,988

Complex 18,269

Table 3.2. Variant Counts in HPRC Pangenome The table details the number of
variants from the decomposed VCF of the HPRC pangenome for Chromosomes chr1,
chr5, and chr20, categorized by their type.

The generated VCF is termed as the ’extended pangenome’. We computed the Princi-

pal Component Analysis (PCA) for the extended pangenome using the Hail library. The
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Figure 3.16. Distribution of HPRC Allele Frequency in human populations.
This histogram depicts the number of HPRC pangenome variants within distinct allele
frequency ranges stratified by population.

resulting V-shaped visualization is presented in Figure 3.17. In the sections that follow,

we’ll discuss how leveraging these high-quality variants can enable a variety of genomic

applications.

3.5.3 Impute SV by using the extended pangenome

The extended pangenome can serve as a reference panel akin to reference panels produced

by the 1kGP project [87] but with SV for the first time. In this section, we demonstrate

the precision and recall of imputing both small and structural variants.

Our methodology follows an experiment detailed in GLnexus [91]. Pseudo-microarray

call variants were generated for Genome in a Bottle (GIAB) [42] benchmark samples

(HG002, HG003, HG005, and HG006). We extracted variants from the truth sets at sites

utilized in Illumina Infinium OmniExpress-24, simulating the genotyping of those samples

with this microarray.

Subsequently, we used the extended pangenome to impute the small and structural

variants. We employed the 1kG reference panel [87] exclusively for the imputation of small
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Figure 3.17. Principal Component Analysis (PCA) of genetic data from chr20
of the extended pangenome. Each dot represents an individual, with colors indi-
cating their respective population groups. The clustering based on the genetic data
aligns well with the individuals’ geographical origins.

variants. For small variant imputation, we conducted benchmarking using hap.py(v0.3.12)

against the GIAB truth sets. Structural variant imputation for sample HG002 was bench-

marked against NIST(V0.6) [92] with truvari [93] (v3.5.0).

The extended pangenome exhibited commendable precision and recall for small variant

imputation, as depicted in figure 3.18. When compared to the 1kG reference panel,
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it displayed marginally reduced precision. In terms of recall, the extended pangenome

exhibited decreased recall for SNPs but a significantly higher recall for indel imputation.

These results hint at the potential of enhancing imputation panels by capitalizing on the

high-quality variants of the pangenome.

Figure 3.18. Imputation Accuracy Comparison: 1kGP vs. Pangenome Pan-
els. This figure presents a comparison of imputation precision and recall between using
the 1kGP reference panel (in blue) and the pangenome reference panel (in green).

Conversely, the extended pangenome showcased remarkable results in imputing com-

mon structural variants, achieving a precision and recall of 65%, as illustrated in figure

3.19. This imputation recall surpasses the recall of SV calling from 30x SRS using Manta.

However, employing SNPs and indels called from 30x SRS via DeepVariant as input

for SV imputation resulted in both lower precision and recall than imputation using the

pseudo microarray. In conclusion, extended pangenomes can also be leveraged to augment

microarray genotypes with common SVs.

3.5.4 Fine Map GWAS snps using SVs from the extended Hu-

man Pangenome

The extended pangenome provides detailed insights into the haplotype structure of com-

mon variants. To elucidate the potential phenotypic impacts of these variants, we explored

the Linkage Disequilibrium (LD) between SVs and neighboring variants. Our aim was
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Figure 3.19. SV Imputation vs. Direct Calling Accuracy The figure con-
trasts the precision and recall of structural variant (SV) imputation using an extended
pangenome against the direct variant calling from short-read data with Manta and
from PacBio HiFi data using PBSV.

to identify co-occurring variants that might offer insights into their phenotypic effects.

We initiated our investigation by annotating the SVs in chromosomes 1, 5, and 20 using

AnnotSV [94] (v3.3.6). This revealed that approximately 4,000 SVs affect gene structures,

as illustrated in table 3.3. Proceeding further, we computed the pairwise LD for each of

these 4,000 variants with all the variants located within a 1MB window surrounding them.

Our analysis indicated that 2,012 SVs exhibited a strong association with a neighboring

variant, having an r2 value greater than 0.8.

We utilized the identified associations to illuminate potential causal variants in GWAS

studies. Searching the GWAS catalog, we found that 253 of the 4k SVs have a strong

association with a GWAS SNP. Notably, 12 of these SVs affect the exons of genes. This

list can be instrumental in elucidating the phenotypic effects of the SVs and pinpointing

the causal variants for the traits examined in the GWAS study.

We delved deeper into one particular example from our list. We identified GWAS

SNP rs12567976, which is linked to the ’High light scatter reticulocyte percentage of

red cells’, to be in linkage disequilibrium with two SVs. The SNP rs12567976 exhibits
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SV Affecting Gene Structure

Affecting Introns 3866

Affecting Exons 169

Total 4035

SV Affecting Genes & in LD with other variants

Affecting Introns 1941

Affecting Exons 71

Total 2012

SV Affecting Genes & in LD with GWAS SNPs

Affecting Introns 241

Affecting Exons 12

Total 253

Table 3.3. Distribution of SVs affecting gene function and in LD with GWAS
SNPs. This table summarizes the count of SVs that affect gene structures and have
association with GWAS SNPs or other variants.

a strong association (r2 = 0.9903) with the variant (ID=>5549119>5549121), a 22-bp

deletion at Chr1:212897047-212897068, affecting an exon of FLVCR1. Furthermore, it

has a strong association (r2 = 0.9865) with another variant (ID =>5548884>5548886),

a 32-bp deletion at Chr1:212891335-212891366, impacting an intron of the same gene. A

visualization of the LD heatmap can be seen in figure 3.20. This figure highlights a distinct

haplotype block spanning 1KB, providing insights into the genetic variance mechanisms

of the FLVCR1 gene.

3.6 Discussion

The Great Genotyper serves as a practical solution for population genotyping at very

large scales. It offers the capability to genotype a new set of variants, whether small or

structural, in 4K SRS samples in just a matter of hours. More importantly, it provides

a novel solution for the chronic N+l problem by eliminating the need to download a

cumbersome 100 TB of CRAM files.

Instead, the Great Genotyper operates using a prebuilt CCDG for human populations
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Figure 3.20. Linkage Disequilibrium heatmap for haplotype block around
rs12567976: The figure depicts the linkage disequilibrium for rs12567976 in rela-
tion to 9 variants from the extended pangenome. Among them, the variant with
ID >5548884>5548886 represents a 32-bp deletion, and the variant with ID
>5549119>5549121 is a 22-bp deletion. Both of these deletions impact the gene
structure of FLVCR1.

that is approximately 1 TB in size, effectively decoupling the intensive data preprocessing

from the actual genotyping process. In terms of input, the Great Genotyper is versatile;

it accepts any set of phased or unphased variants in VCF format, along with the reference

genome. The outcome is the phased genotypes of all input variants in the indexed samples.

A significant advantage is that the Great Genotyper does not sacrifice quality for

scalability. On the contrary, the scalability feature empowers the tool to jointly genotype

thousands of samples, which, in turn, enhances the genotyping quality even more. kmer-
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based genotypers such as Nebula and Pangenie have previously demonstrated the potential

of kmers for precise genotyping. They leveraged the specificity of certain kmers to variants,

using shifts in the counts of these kmers as indicators to genotype the variants. The Great

Genotyper elevates this approach, considering the counts of these kmers across an entire

population of samples. This innovation facilitates the calculation of a confidence measure

for each genotype based on the collective population data.

Furthermore, the tool is equipped to impute missed genotypes through a two-tiered

approach. Initially, imputation is rooted in the phasing information of the variants, either

provided as input or derived from the CCDG. Subsequently, the Great Genotyper inte-

grates Beagle, leveraging the high-confidence genotypes within the population to further

impute genotypes. This dual-phase imputation process ensures that the Great Genotyper

can deliver performance on par with Pangenie, even if some data is compromised during

the kmer count preprocessing prior to the creation of CCDG.

The enhanced accuracy and scalability of the Great Genotyper has paved the way for

new applications in genomics. For instance, accurate allele frequencies can now be directly

derived from sequences rather than merging information from sparse studies or variation

databases that rely on variant calling in SRS studies. Accurate determination of allele

frequencies plays a pivotal role in pinpointing causal variants in disease-gene discovery

studies.

Furthermore, simultaneous genotyping and phasing of common variants enables un-

precedented resolution in understanding the haplotype structure with and across popula-

tions. As an example, we genotyped variants of the HPRC pangenome in 1,000 samples

to produce what we call an “Extended Pangenome (EP)”. We presented how EP can be

used to impute common structural variations (SVs) with a recall rate that surpasses some

short reads caller like Manta.

Taking our analysis further, we explored the Extended Pangenome for SVs in high

linkage disequilibrium with GWAS SNPs. We limited our focus to 4,000 SV variants

impacting gene structures in three chromosomes. Intriguingly, we discovered that half of

these SVs exhibited strong associations with at least one GWAS SNP. We are optimistic
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that our findings will contribute to a deeper comprehension of the relationship between

genotype and phenotype concerning these structral variants.

The Great Genotyper has revolutionized scalable and accurate population genotyping

by representing variants and SRS samples in kmer space. The tool achieves its scalability

by preprocessing the SRS samples into CCDG, effectively decoupling the intensive data

preprocessing from the actual genotyping process. This preprocessing also significantly

reduces the data size from the SRS raw reads or CRAM format, facilitating easier sharing

and reuse of the CCDG.

Although the Great Genotyper has proven effective in generating high-quality geno-

types for both small and structural variants, it does have certain limitations. Firstly, some

variants cannot produce specific kmers because the kmers from the alternate sequences

may also exist in other parts of the genome. Such variants cannot be genotyped precisely

by kmer-based approaches. This limitation, however, is partially offset through impu-

tation. Furthermore, genotyping copy number variants is beyond the capabilities of the

current version of the Great Genotyper. While it is not an insurmountable challenge, it

would require that a dedicated genotyping model be developed. Another constraint is that

the Great Genotyper utilizes two separate imputation models, as they are implemented in

two distinct tools, Pangenie and Beagle. A unified model tailored specifically for imputing

genotypes using the kmers in the CCDG might not only enhance the accuracy but could

also boost the performance.

The Great Genotyper is the inaugural step in utilizing kmer indexing for population

genotyping, opening many doors for future genomic applications. Creating more CCDGs

to represent specific subpopulations or individuals exhibiting specific traits, like autism,

is crucial for understanding the role of genomics in these cohorts. Moreover, while most

population studies have been conducted on humans [95], it isn’t due to a lack of data. The

Sequence Read Archive (SRA) [96] is a vast reservoir of short-read samples for non-human

organisms. Generating CCDGs for these samples could facilitate population-scale studies

for other species.

The current CCDG for the human population, and the additional CCDGs to be created
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for other cohorts, are invaluable resources with potential applications that extend beyond

genotyping. For instance, variants can be directly called from the graph using methods

such as corticall [97]. Additionally, it can aid in subsetting pangenomes by selecting

segments of the pangenome that have kmers present in a specific population, thereby

creating a more streamlined pangenome tailored to that population. We encourage the

community to explore and uncover more ways to harness the extensive genomic diversity

revealed by the CCDG.

In conclusion, The Great Genotyper has transformed population genotyping into a

routine task with its flexible CCDG representation of populations. Its scalability allows

improving genotyping quality by using population information. This tool’s practical-

ity aids in expanding variant lists into broader dimensions, revealing complex genomic

details. We demonstrated its potential in applications such as creating SV imputation

panels, finding SV associations with variants from databases like the GWAS catalog, and

accurately calculating allele frequencies. The CCDG, comprising 4,000 human samples,

contains a vast genomic variation spectrum, accessible through The Great Genotyper

or other methods, leading to enhanced genomic insights. Producing more CCDGs for

additional cohorts or species will further optimize the use of existing SRS samples.

3.7 List of abbreviations

� SNV: Single Nucleotide Variant

� SV: Structural Variant

� SNP: Single Nucleotide Polymorphism

� SRS: Short Read Sequencing

� LRS: Long Read Sequencing

� HPRC: Human Pangenome Reference Consortium

� 1kGP: 1000 Genome Project

� HGDP: Human Genome Diversity Project
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� SGDP: Simons Genome Diversity Project

� GIAB: Genome in a Bottle

� CCDG: Counting Colored Debruijn Graph

� HMM: Hidden Markov Model

� PCA: Principal Component Analysis

� LD: Linkage Disequilibrium

� EP: Extended Pangenome

� SRA: Sequence Read Archive
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Chapter 4

Cattle Structural Variant Catalog

4.1 Introduction

Structural variants (SVs) are genomic alterations exceeding 50 base pairs in size and

can manifest as insertions, deletions, inversions, copy number variations, or complex re-

arrangements. Such variants have been demonstrated in humans to disrupt genes and

significantly affect gene expression [98]. Investigating SVs across different cattle breeds is

essential for identifying functionally impactful variants that correlate with economically

important traits. For instance, research has revealed associations between SVs in bovine

genomes and key agricultural traits such as fertility [99], immunity [100], and milk pro-

duction [101]. The creation of a comprehensive SV catalog encompassing a wide array

of breeds is vital for advancing bovine genomic research, elucidating complex traits, and

providing insights to livestock breeders.

Creating a catalog of common SVs to represent the vast diversity of cattle breeds

presents significant challenges. It necessitates the collection of a large number of samples

to uncover the genome diversity between the breeds and to compute statistics such as

allele frequency, which help differentiate common variants from rare ones. Short Read

Sequencing (SRS) technologies offer a cost-effective approach for detecting SVs across

numerous samples. However, studies have indicated that SV calling from SRS data may

suffer from unreliable precision and recall [6]. Conversely, Long Read Sequencing (LRS)

has shown unprecedented performance in identifying SVs through mapping or assembly-
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based methods. Nevertheless, the cost of LRS remains prohibitive for extensive application

across the many cattle breeds. Additionally, the efficacy of these methods has primarily

been benchmarked using human genomes, which exhibit less genomic diversity compared

to the variation found between cattle breeds. Further research is necessary to evaluate

the performance of SV callers in the bovine context and to optimize their parameters.

Previous studies have developed SV catalogs for Bos taurus utilizing either SRS or

LRS methodologies. Catalogs based on SRS have generally yielded a smaller number

of SVs compared to those derived from LRS. For instance, Lee et al. [102] identified

approximately 13K SVs by sequencing 266 Hereford samples with SRS, while Chen et

al. [103] detected 17 SVs across 316 Bos taurus samples from Holstein and Jersey breeds.

Conversely, Leonard et al. [104] uncovered 90K variants by generating a pangenome from

three bovine trios using LRS. Beyond the realm of Bos taurus, comprehensive SV catalogs

for Bos indicus were created using both SRS and LRS data. Dai et al. [20] compiled a

significant catalog of 156,000 SVs. They used 20 partially phased genomes from 10 breeds,

obtained through LRS. These variants were then genotyped using paragraph [66] in 402

SRS genomes, representing 76 breeds. In conclusion, SV catalogs for Bos taurus often

lack either broad breed representation or the high quality SV discovery. A combination

of both SRS and LRS is essential to address these deficiencies.

In our study, we developed a catalog of common SV for Bos taurus breeds. Our study

began by assessing various SV calling methods, drawing on data from the Brahman and

Angus trio assembly project [105]. Through this evaluation, we discovered that although

SV calling from haplotype-resolved assemblies yields the highest precision and recall, SVs

identified using LRS and SRS also contribute true variants not detected by the assembly-

based approach.

Therefore, our strategy involved compiling an initial call set that integrated SV call

sets of both SRS and LRS samples. These samples represented 16 breeds. Also, we created

a Colored Counting De Bruijn Graph (CCDG) for 977 high-quality SRS samples covering

80 breeds. The Great Genotyper used the CCDG to genotype the massive initial callset

in the 977 samples, and allele frequency was calculated from the results. We focused on
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SVs with an allele frequency greater than 0.05 to create a catalog of common SVs. The

filtered variants are assumed to be either rare variants or false positives.

The resulting catalog encompasses 175K common SVs. Upon performing functional

annotation of these variants, we found that they have an impact on 15K genes and 26K

transcripts, offering significant insights into the genetic architecture of Bos taurus breeds.

4.2 Methods

4.2.1 Evaluating SV Calling Techniques for Cattle Genomes

with Different Technologies

We conducted an experiment to evaluate various techniques for calling SV on cattle

genomes, as illustrated in Figure 4.1. We utilized a comprehensive dataset from the trio

assembly of the F1 Cross of the Brahman and Angus project [105]. Within this project,

the calf was sequenced using both Illumina and PacBio CLR reads, while both parents

were sequenced using only Illumina. High-quality haplotype-resolved assemblies were gen-

erated for Brahman and Angus. We called the variants with respect to ARS-UCD1.2 [21]

as follows:

� Haplotype-resolved assemblies were mapped using Minimap2 [7] and called the

variants using SVIM-ASM [106].

� PacBio CLR were mapped using pbmm2 [107] and called the variants using both

PBSV and CuteSV [11]. Then, SURVIVOR [108] was used to merge the variants.

� Illumina SRS were mapped using BWA [8] and called the variants with Manta [9]

and Delly [10]. Variants were merged with SURVIVOR as well.

To evaluate the results of the callers, we employed two methods. Firstly, we deemed

variants discovered by two different methods (SRS, LRS, or Haplotype-resolved assem-

blies) as true. Secondly, we genotyped the results from all the callers into fifty animals

using Paragraph [66] and considered variants found in three or more animals as true.

Although the second method might miss rare true variants and cannot be used as the sole

70



benchmark method, it serves to corroborate the findings of the first evaluation method as

an independent source. The results of this experiment are detailed in Section 4.3.1.

Figure 4.1. Evaluation Workflow of SV Callers for Cattle Genomes The white
rectangle at the top of the figure describes the trio assembly project for the Angus and
Brahman F1 cross [105]. We utilized the short reads, long reads, and haploid-resolved
assemblies from this project to call structural variants. All discovered samples were
genotyped in 50 short-read samples. The performance of each SV caller was then
evaluated based on the identified SVs and the confirmation through genotyping.
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4.2.2 Workflow for Creating a Catalog of Common Structural

Variants in Bos taurus Breeds

The workflow for creating the common SV catalog involved calling variants from various

sources to ensure the comprehensive discovery of possible variants, as depicted in Fig-

ure 4.2 using data described in Table 4.2.2. We employed bwa(v0.7.8), pbmm2(v1.12),

and minimap2(v2.26) for mapping SRS, LRS, and assemblies respectively. For SV call-

ing from SRS, manta(v1.6.0) was utilized. A combination of three tools—pbsv(v2.6.0),

cuteSV(v2.0.3), and sniffles(v2.2)—was used for calling SV from LRS. Variant calling

from assemblies was accomplished using SVIM-ASM(v1.0.3) for haploid non-resolved as-

sembly genomes and Phased Assembly Variant Caller (PAV)(v1.0.3) for haploid resolved

assemblies, such as trio assemblies.

Source Source Type NCBI BioProject Accession Breeds

Trio Assemblies SRS, LRS, Trio Assemblies PRJEB42335 Nellore, Brown Swiss,

Gaur, Piedmontese, and

Original Braunvieh

Brahman & Angus trio assembly SRS, LRS, Trio Assemblies PRJNA603764 Brahman and Angus

GCA 947034695.1 Assembly PRJEB55064 CHAROLAIS

GCA 028973685.2 Assembly PRJNA927262 Hanwoo

GCA 021234555.1 Assembly PRJNA667556 Jersey

GCA 905123885.1 Assembly PRJEB41564 Ankole

GCA 905123515.1 Assembly PRJEB41519 N’Dama

GCA 021347905.1 Assembly PRJNA668863 Holstein-Friesian

GCA 024542955.1 Assembly PRJNA849594 Arequipa

GCA 000003205.6 Assembly PRJNA12555 Brown Swiss

GCF 000003205.7 Assembly PRJNA12555 Brown Swiss

GCF 000003055.6 Assembly PRJNA32899 Hereford

Ankole SRS, LRS PRJEB39282 Ankole

Indicus SV catalog SV catalog Bos indicus

Ensemble SNV catalog SNV catalog

Table 4.1. Catalog Construction Sample Sources: This table enumerates the ori-
gins of samples utilized to construct the catalog, detailing their NCBI BioProject Ac-
cessions and corresponding breeds. The Indicus SV catalog was sourced from Indicuis
Pangenome [20] , while the Ensemble SNV catalog was acquired from the Ensemble
website.

The workflow employed The Great Genotyper to determine the allele frequency of all

discovered variants in a population of 977 Bos taurus samples. False positives and rare

variants were excluded from the initial call set by filtering out variants with an allele

frequency (AF) less than 0.05. The filtered variants were then merged using Jasmine to

produce the catalog for SVs.
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Lastly, the workflow utilized Beagle to impute genotypes that were missed by The

Great Genotyper due to insufficient coverage and to phase the variants as well. To aid

Beagle in discovering haplotypes and improving imputation quality, the SVs were aug-

mented with SNVs from the Ensembl catalog (V110). Subsequently, the output from

Beagle was used to calculate the allele frequencies of the SVs in the catalog.

Figure 4.2. Workflow diagram for creating a catalog of common structural
variants for Bos taurus breeds

4.3 Results

4.3.1 Use all the data: Trio assemblies, long and short reads

We evaluated the performance of SV callers on cattle genomes, as detailed in Section

4.2.1. The results of this experiment are presented in an upset plot, shown in Figure

4.3. Bars representing the trio assembly consistently exhibit high AF support. This holds

true even for variants identified in the trio assembly but not recognized by any other

caller. On the other hand, while variants identified by short reads alone do demonstrate
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a higher false positive rate, a considerable fraction, especially those larger than 10K in

size, have high AF support. Importantly, variants identified by both short and long

reads consistently show strong population support which can be a strong indicator of

misassemblies. Understanding the performance of each technique proved invaluable in

designing our workflow for creating a comprehensive SV catalog for cattle breeds.

Figure 4.3. Upset Plot Comparing different SV callers The upset plot shows the
intersection between the output of different callers. The orange part of the bars shows
the percentage of those variants can be genotyped in at least three samples.

4.3.2 Building a CCDG Representing Different Cattle Breeds

A CCDG of 1,103 samples was constructed to represent various cattle breeds. This en-

ables The Great Genotyper to utilize it, facilitating the genotyping of variants within

the cattle population and ensuring accurate allele frequency calculations. The pipeline

started by downloading 1,752 Samples from the SRA, with their associated metadata.

Using KMC [77], we counted the kmers for all samples and subsequently determined the

average genome coverage from the kmer counts histogram. After that, unitigs of each

sample were constructed by metagraph [75]. Lastly, we used sourmash [109] to calculate
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kmer signatures at the scale of 10k.

Some samples from the SRA might be contaminated or exhibit excessive sequencing

errors. To filter out potentially erroneous samples, we relied on the average coverage and

the size of the sourmash signature. Samples with a coverage of less than 3 were excluded,

as The Great Genotyper would struggle to differentiate between genuine heterozygous

kmers and sequencing errors. Additionally, the scatter plot in Figure 4.4 reveals that

the majority of samples possess a sourmash signature size ranging from 150K to 210K

scaled hashes. Using both these criteria, we filtered out 649 samples. Both the chosen

and filtered samples are illustrated in Figure 4.4.

Figure 4.4. Comparison of Sourmash Signature Size and Average Genome
Coverage The scatter plot displays the coverage and signature sizes for 1,752 samples
downloaded from the SRA. We selected samples with a coverage greater than 2 and a
signature size ranging between 150K and 210K.

The filtered 1,103 samples are classified under three species: 977 samples are Bos

taurus, 52 samples are Bos indicus, and 75 samples belong to other species(bosoutgroup).
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Out of the Bos taurus samples, 768 represent 80 different breeds, while 209 samples lack

a breed annotation in their metadata and are named ’taurus’. Figure 4.5 displays the 15

breeds that are each represented by 9 or more samples.

Figure 4.5. Histogram of Breeds Represented in the CCDG The histogram
presents the count of samples for each breed within the CCDG. We have restricted the
histogram to display only the 14 breeds that comprise 9 or more animals. All remaining
samples are grouped under the ’Other’ category, which collectively represents 66 breeds.

We used kSpider to cluster the filtered samples using their sourmash signatures, and

the resultant dendrogram visualized by iTOL [82] is displayed in Figure 4.6. Both the

outgroup and Bos indicus form distinct clusters and are separated from the rest of the Bos

taurus samples. However, a few Bos taurus samples are clustered with the Bos indicus

samples. Moreover, we can use the clustering data to determine the missing breed in the

metadata. Most samples with missing breeds fall in the same cluster as the Brown Swiss

and Holstein breeds.

Samples with missing breeds are distributed over all clusters but mostly clustered with

Brown Swiss and Holstein Breeds. Determining the breed of those samples is possible from

the dendrogram.

We established seven clusters from the filtered samples: five for Bos taurus samples

and two for Indicus and Bosoutgroup. Detailed information about these clusters can
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Figure 4.6. Samples dendrogram The dendrogram displays 1,103 samples. We
colored the samples of 14 breeds. We labeled 162 samples as “Other”, which represent
66 different breeds. Additionally, 209 samples lack a breed name in their metadata
and were placed under the ’taurus’ category.

be found in Table 4.2. An independent CCDG was constructed for each cluster using

metagraph. The combined size of all CCDGs is 293.8 GB, encompassing 1,103 samples.

On average, each cluster contains approximately 7 billion kmers.

4.3.3 Creating a Catalog of Common Structural Variants in Bos

taurus Breeds

We called SVs from 26 breeds using a workflow described in Figure 4.2 and results are sum-

marized in table 4.3. We also merged the SV catalog from the Bos indicus pangenome [20]

to broaden the scope of our common catalog. We identified 1.5 million SVs, of which 1
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Cluster Name Size(Gb) Number of samples Number of kmers

cluster.taurus.1 57.8 199 8,482,368,671

cluster.taurus.2 46 198 7,129,180,530

cluster.taurus.3 54.3 200 7,568,824,104

cluster.taurus.4 47 200 7,076,545,430

cluster.taurus.5 55 180 8,900,797,784

indicus 14.1 52 5,614,933,835

bosoutgroup 19.6 74 6,396,304,073

Table 4.2. CCDG clusters data The samples are organized into seven clusters, with
a CCDG created independently for each cluster. The table details the characteristics
of each CCDG.

million had an allele frequency greater than 0.05. Using Jasmine, we merged the 1 million

variants and discovered 175,540 unique SVs. Trio assemblies produced the most unique

variants, which confirms our expectations from Figure 4.3. Additionally, 67% of the vari-

ants in the indicus SV catalog had an allele frequency of less than 0.05. In conclusion,

the catalog of common SVs contains 175K variants, which are filtered and compiled from

an original call set of 1.5M SVs.

Source Number of Number of Number of Variants Number of Unique

Breeds Variants AF > 0.05 Variants AF > 0.05

Trio Assemblies 7 234,577 95,618 55,291

LRS Callers 8 957,079 337,609 20,507

Assemblies 10 164,487 97,394 14,993

Indicus SV Catalog 10 107,639 35,895 6,536

SRS Callers 8 74,443 53,742 2,720

Total 26 1,538,225 620,303 175,540

Table 4.3. Quantitative Breakdown of Structural Variants at Each Stage
of Catalog Compilation We called SVs from 5 sources, and the table reports the
number of variants each source called and how many of them are common (AF > 0.05).
The last column represents the unique contribution of each source to the final catalog.

The catalog encompasses a diverse array of SVs, including 54K deletions, 59K inser-

78



tions, and 61K complex variants, as evidenced by the size distribution histogram in Figure

4.7. Most SVs are under 10K in size, while a subset of 30 SVs are notably larger than

100K, having been detected through assembly-based calling and long-read sequencing

techniques. This demonstrates the catalog’s comprehensive coverage of variations across

different sizes and types, providing a robust resource for genomic studies in Bos taurus

breeds.

Figure 4.7. Structural Variants Sizes Histogram The histogram in the figure
displays the distribution of SV sizes, categorized by type. The y-axis is on a logarithmic
scale to facilitate the visualization of low-occurrence SVs larger than 100K

We improved the population genotyping recall by imputing genotypes of common SVs

using Beagle. We created a reference panel using the 175K SVs and 84M SNVs from

the Ensembl catalog (v110). All variants are genotyped in all the 977 Taurus samples.

Beagle imputed missing genotypes in the reference panel and phased the variants to form

a comprehensive reference panel for all variations. We calculated the allele frequency

using the improved reference panel. Figure 4.8 shows the distribution of allele frequencies
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for SVs stratified by the main breeds. All main breeds are represented evenly by the SVs

in the catalog.

Figure 4.8. Allele Frequency Per Breed Histogram Figure shows the histogram
of allele frequencies stratified by main breeds.

We employed the Variant Effect Predictor (VEP) [110] to assess the functional effects

of the discovered common SV variants. Our analysis revealed that these SVs intersect with

15K genes and 26K transcripts. The potential consequences of the SVs as predicted by

VEP are compiled in Table 4.4. Approximately 4.6K variants are deemed to likely exert a

high impact on gene function due to various consequences, such as frameshifts or transcript

ablation. Another 2.8K SVs are anticipated to have moderate or low impacts on gene

function. The functional implications for the remaining variants cannot be determined

by VEP. These are located within intronic sequences or represent intergenic variants.

Ultimately, functional annotations have been integrated into the catalog to enhance its

utility.
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Consequence Number of Variants Description Impact

transcript ablation 968 A feature ablation whereby the deleted region includes a

transcript feature

HIGH

splice acceptor variant 1,572 A splice variant that changes the 2 base region at the 3’

end of an intron

HIGH

splice donor variant 1,829 A splice variant that changes the 2 base region at the 5’

end of an intron

HIGH

stop gained 223 A sequence variant whereby at least one base of a codon

is changed, resulting in a premature stop codon, leading

to a shortened transcript

HIGH

frameshift variant 372 A sequence variant which causes a disruption of the trans-

lational reading frame, because the number of nucleotides

inserted or deleted is not a multiple of three

HIGH

inframe insertion 210 An inframe non synonymous variant that inserts bases

into in the coding sequence

MODERATE

inframe deletion 313 An inframe non synonymous variant that deletes bases

from the coding sequence

MODERATE

missense variant 40 A sequence variant, that changes one or more bases, re-

sulting in a different amino acid sequence but where the

length is preserved

MODERATE

splice donor 5th base variant 1,796 A sequence variant that causes a change at the 5th base

pair after the start of the intron in the orientation of the

transcript

LOW

splice region variant 121 A sequence variant in which a change has occurred within

the region of the splice site, either within 1-3 bases of the

exon or 3-8 bases of the intron

LOW

splice donor region variant 87 A sequence variant that falls in the region between the

3rd and 6th base after splice junction (5’ end of intron)

LOW

splice polypyrimidine tract variant 271 A sequence variant that falls in the polypyrimidine tract

at 3’ end of intron between 17 and 3 bases from the end

(acceptor -3 to acceptor -17)

LOW

coding sequence variant 2,350 A sequence variant that changes the coding sequence MODIFIER

5 prime UTR variant 1,345 A UTR variant of the 5’ UTR MODIFIER

3 prime UTR variant 1,222 A UTR variant of the 3’ UTR MODIFIER

non coding transcript exon variant 323 A sequence variant that changes non-coding exon se-

quence in a non-coding transcript

MODIFIER

intron variant 124,253 A transcript variant occurring within an intron MODIFIER

non coding transcript variant 2,836 A transcript variant of a non coding RNA gene MODIFIER

coding transcript variant 230 A transcript variant of a protein coding gene MODIFIER

upstream gene variant 13,176 A sequence variant located 5’ of a gene MODIFIER

downstream gene variant 12,930 A sequence variant located 3’ of a gene MODIFIER

intergenic variant 106,656 A sequence variant located in the intergenic region, be-

tween genes

MODIFIER

Table 4.4. Summary of variant consequences and their impact. The table
summarizes the output from the Variant Effect Predictor (VEP) detailing the predicted
consequences of structural variants. Descriptions of each consequence are sourced from
the VEP online guide [111]

4.4 Discussion

Uncovering high-quality, common SVs in Bos taurus breeds is a challenge that has not

yet been fully solved. Our method tackles this by taking advantage of all SV sources. We

genotyped variants in a large set of 977 samples. This helped us to weed out errors and

rare variants and to work out important statistics.
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We began by evaluating the efficacy of SV calling methods in cattle, utilizing data from

the Brahman and Angus trio assembly project [105]. SVs were identified from SRS, LRS,

and haploid-resolved assemblies employing various SV callers. This experiment revealed

that each technique offers a unique perspective. Combining the results of the different

methods is important to achieve the best recall. Nevertheless, such integration of results

leads to a decline in precision, necessitating the implementation of filtering strategies

to purge false positives. The outcomes of our experiments guided the development of a

workflow for establishing an extensive catalog of common SVs for Bos taurus breeds with

high precision.

We compiled a list of candidate SVs in various Bos taurus breeds. This list initially

consisted of 1.4 million SVs, called from 10 refseq assemblies, 4 trio assemblies, SRS, and

LRS samples. These samples represented 16 breeds. Additionally, we incorporated 100K

SVs from the Indicus catalog into the list to form an initial call set of 1.5 millions SVs.

Genotyping the variants in a larger number of Bos taurus samples is a critical step in

our workflow. For this task, we employed The Great Genotyper to perform population-

scale genotyping. The workflow of The Great Genotyper begins by creating a Counting

Colored De Bruijn Graph (CCDG) for the population, which is then used to genotype a

list of variants within this population.

To create the CCDG, we initially collected 1700 samples from the Sequence Read

Archive (SRA). We then applied sourmash to screen for and exclude contaminated sam-

ples, resulting in 1100 samples, of which 977 were Bos taurus samples. From these, we

generated a CCDG that is 293.8 GB in size. This CCDG played a pivotal role in the cre-

ation of our catalog and offers a resource that can be reused in future studies for efficient

population genotyping.

Subsequently, we genotyped the collective 1.5 million variants in 977 Bos taurus sam-

ples utilizing a tool we refer to as The Great Genotyper. We utilized Beagle to impute

missing genotypes due to lack of coverage. To ensure that Beagle could accurately identify

the haplotypes and enhance its imputation capabilities, we augmented the SVs with single

nucleotide variants (SNVs) from the Ensembl catalog, after genotyping these in the 977
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samples. This process enabled us to calculate the allele frequency for the newly discovered

SVs. We then applied a filtering criterion, eliminating SVs with an allele frequency below

0.05, as they are likely to be either rare variants or false positives.

The refinement process continued with the merging of the filtered list using the Jasmine

[112] resulting in a pool of 175K unique variants, each characterized by their respective

allele frequency within the 977 samples. VEP [110] predicted that those SVs affect 15K

genes and 26K transcripts, with an estimated 4.6K variants presumed to exert a high

impact on gene function.

Our SV catalog outperforms previous attempts by containing a higher number of high-

quality common SVs, and the variants have been genotyped in significantly more samples.

This improvement is primarily due to The Great Genotyper’s efficiency in population

genotyping. Our ability to calculate allele frequency swiftly and accurately enabled us

to filter out rare variants and errors. This allowed us to be very inclusive when initially

calling SVs for the catalog and to merge all SV sources. Consequently, we identified

175K SVs that can be genotyped in at least 48 animals. Notably, 2.7K of these variants

were detected using SRS alone, which is generally associated with lower calling quality.

Additionally, by genotyping these variants along with SNVs from the Ensembl catalog, we

have set the stage for imputation, which can further improve the population genotyping

outcomes. In summary, the integration of population genotyping with SV calling has led

to the creation of a more extensive and higher-quality common SV catalog.

The current SV catalog does not cover copy number variants (CNVs), although studies

have shown their association with phenotypes traits such as coat color [113]. We did not

include CNVs because the current model in The Great Genotyper is unable to genotype

CNVs. This limitation can be addressed by developing a dedicated CNV genotyping tool

that makes use of the already constructed CCDG.

Our catalog is designed for straightforward expansion, as The Great Genotyper can

calculate allele frequencies for any new set of SVs in the 977 samples represented in the

CCDG in hours. With the decreasing cost of LRS, more laboratories are likely to sequence

additional breeds, leading to more assemblies or mapping-based variant studies. Common
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SVs can be identified from those samples to enhance breed coverage. Additionally, incor-

porating SVs from new SRS samples will be valuable, as they will broaden the coverage

across more breeds while mitigating the concern of introducing more errors. In summary,

our method for creating the SV catalog is scalable and well-suited to keep up with the

pace of cattle sequencing projects.

The catalog provides a crucial resource for understanding the genomic diversity among

different breeds, which may shed light on the genetic basis of complex traits. This under-

standing can inform breeding strategies to enhance cattle adaptation to specific environ-

ments and increase their economic value. Additionally, the catalog can assist in developing

breed-specific pangenomes. It can offer breed-stratified allele frequencies for pangenome

variants, which can be used to streamline the pangenome structure and enhance variant

analysis based on these pangenomes.

Our workflow for discovering high-quality, common SVs in cattle breeds stands on

two pillars: First, we call SVs from every available source to maximize recall, accepting

the risk of false positives. Second, we leverage the efficiency of The Great Genotyper to

calculate allele frequencies by genotyping the variants in a population of 977 samples.

We then use the allele frequency data to filter out the false positives and rare variants.

This workflow has produced a catalog of 175,000 high-quality, common SVs spanning 80

breeds. The SVs in the catalog are enhanced with precise allele frequencies and functional

annotations to improve their utility.

4.5 List of abbreviations

� SV: Structural Variant

� SNP: Single Nucleotide Polymorphism

� SNV: Single Nucleotide Variant

� CNV: Copy Number Variant

� SRS: Short Read Sequencing

� LRS: Long Read Sequencing
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� CCDG: Counting Colored Debruijn Graph

� PAV: Phased Assembly Variant Caller

� AF: Allele Frequency

� VEP: Variant Effect Predictor

� SRA: Sequence Read Archive
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Chapter 5

Conclusion and Future Work

Population-scale SV studies mine hundreds of terabytes of genomic sequences to charac-

terize genomic diversity among populations. The sheer amount of data poses challenges

in storing, analyzing, and aggregating. However, it also opens the door for more accurate

joint analysis and a deeper understanding of genomic variation.

Here, I proposed a kmer based solution to the big data challenges of population scale

SV studies. I condensed hundreds of terabytes of human and cattle populations into

counting colored DeBruijn graphs(CCDG) of a size 100-fold smaller than CRAM files.

Also, I provided a population genotyping workflow, The Great Genotyper, that performs

joint genotyping of SV and small variants in the samples of a CCDG. The Great Genotyper

solves the N+l problem, which is crucial in population SV studies. It can analyze newly

discovered SVs in the population without the need to handle the hundreds of terabytes

of CRAM files. The population genotyping requires only the CCDG and has the same

computational requirements as variant calling, making it feasible for all genomics labs.

We demonstrated that removing these limitations unleashes the potential of population’s

SV studies. Using the human CCDG, we showed how easy to calculate accurate allele

frequencies of SVs to aid gene discovery studies. Moreover, we presented a new imputation

panel using the SVs from the Human Pangenome and found strong associations between

GWAS SNPs and these SVs.

Furthermore, I designed a hybrid approach of mapping-based SV discovery tools and

kmer based population genotyping to create a catalog for common SV for Bos taurus
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breeds. The workflow calls variants from multiple sources, genotypes the discovered vari-

ants in the Bos taurus population using The Great Genotyper, and then filters out rare

variants and errors using the allele frequency calculated from the population genotyping

results. The created catalog covers more breeds than its competitors and contains more

high-quality SVs. Additionally, the SVs are genotyped in 977 samples along with small

variants, paving the way for more population-scale applications. Lastly, I developed a

data structure specialized in the association of kmers to its counts and other metadata to

enhance the development of DeBruijn graphs and their derivatives.

In recent decades, sequencing technologies have experienced significant advancements

in two distinct areas. Firstly, Illumina has reduced the cost of short-read sequencing,

enabling the scientific community to sequence a vast number of genomes. Secondly, PacBio

and Oxford Nanopore have developed long-read sequencers that produce high-quality, long

reads capable of generating high-quality, phased SVs and haplotype-resolved assemblies.

Previous population studies utilized both technologies, but the computational methods

employed were not scalable enough to keep up with the pace of sequencing. In this thesis,

we address the scalability challenge to streamline the integration of knowledge from an

immense number of SRS samples into newly discovered variations. We also demonstrate

the newfound potential of population-scale SV studies after overcoming these challenges.

Although the population CCDG encapsulates the vast genomic diversity of thousands

of samples, it has its limitations. Representing sequences solely by their kmer content

results in a loss of contextual information for each kmer. Kmers originating from repeated

regions tend to be collapsed into a single node within the graph, making it challenging

to trace their genomic origins. This complexity hampers the processing of variants in the

genome’s repeated and low-complexity regions.

The issue is somewhat mitigated through the use of an imputation model based on

the pangenome, where the genotypes of variants in these problematic regions can be

imputed using the genotypes of nearby variants on the same haplotype. Despite this,

mapping-based methods retain an edge in these regions. For instance, GATK’s accuracy

in genotyping small variants exceeds that of both Pangenie and The Great Genotyper,
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highlighting the conditions where mapping-based methods are superior to kmer based

methods.

In this thesis, we demonstrate the significance of using CCDGs in population studies.

Although The Great Genotyper’s performance is unparalleled, it can be further improved.

Firstly, a specialized CCDG can be created specifically for The Great Genotyper, with

its size reduced by omitting unused information. The Great Genotyper predicts the copy

number of a kmer by comparing kmer counts to the average genome coverage. This

specialized CCDG needs only to contain the results of the copy number predictions, not

all kmer counts, as The Great Genotyper does not use kmers with a copy number greater

than two. Therefore, the counts in the specialized CCDGs will be limited to either 1

or 2. These new CCDGs can be compressed more effectively since the kmer counts will

predominantly consist of 1s or 2s. Additionally, new data structures can be developed

to meet this requirement. For instance, we can create two distinct CCDGs for the same

samples, each containing kmers of the same copy number. These new CCDGs can further

reduce size and decrease the memory requirements for The Great Genotyper, enabling

the creation of CCDGs for hundreds of thousands or even millions of samples.

Moreover, the genotyping model for The Great Genotyper can be expanded to encom-

pass more types of structural variants. While copy number variants can be genotyped

using kmer counts, this process is complex as it now requires consideration of kmers with

copy numbers greater than two, which may originate from different genome regions unre-

lated to the variants being genotyped. However, we can leverage population information

using approaches similar to those in muCNV [67]. Samples can be clustered based on the

counts of kmers representing the copy number variations, and the copy number can be

jointly determined for each sample cluster. I hypothesize that utilizing information from

multiple samples will aid in accurately determining the correct copy number.

CCDGs hold a wealth of information about genome diversity, and their functionality

extends beyond population genotyping. Numerous applications can be developed to mine

these indexed genomes. For instance, an SV calling algorithm can leverage the CCDG

to identify regions in the graph that diverge from the reference, and then assemble all
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alternate sequences present in the samples. Additionally, CCDGs can aid in creating

pangenomes. Pangenome graphs can become highly complex due to variations among in-

put genomes, leading to intricate graphs with many nodes. Removing nodes correspond-

ing to rare variants can simplify the pangenome without diminishing its effectiveness.

The CCDG can be consulted during pangenome construction to simplify the graph while

maintaining its representativeness. Furthermore, population-specific pangenomes can be

developed by filtering out parts of the pangenome that are not present in a particular

population’s CCDG. These population-specific pangenomes can be simpler, potentially

improving the mappability of reads to the pangenome.

Tools can be developed to utilize the created SV catalog for cattle breeds. Genotyping

and imputing these variants is essential, particularly with the increasing use of low-pass

sequencing. I propose creating a genotyping and imputation algorithm similar to Pange-

nie. Pangenie genotypes variants from the pangenome by extracting kmers specific to the

variants for genotyping, and it utilizes the pangenome’s phasing information to impute

variants without kmer support. My proposal involves developing a similar algorithm for

the SV catalog, where the genotyping process will be identical to that of Pangenie. How-

ever, the phasing information will be substituted with co-occurrence statistics between

kmers , calculated from the CCDGs. This new algorithm will assist in identifying common

variants in the catalog in new samples, even those sequenced with low coverage.

In conclusion, thousands of SRS samples can be succinctly represented in CCDGs,

enabling efficient kmer searching. CCDGs facilitate population genotyping for SV, ele-

vating genomic studies to new heights. We have developed algorithms and data structures

for utilizing CCDGs in population studies, with prime examples in human and cattle ge-

nomics. Further exploration of CCDGs could address additional scalability challenges in

this field.
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