UC San Diego UC San Diego Previously Published Works

Title

Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study

Permalink https://escholarship.org/uc/item/45z6k5c2

Journal Schizophrenia Research, 170(1)

ISSN 0920-9964

Authors

Greenwood, Tiffany A Lazzeroni, Laura C Calkins, Monica E <u>et al.</u>

Publication Date

2016

DOI

10.1016/j.schres.2015.11.008

Peer reviewed

HHS Public Access

Author manuscript Schizophr Res. Author manuscript; available in PMC 2017 January 01.

Published in final edited form as:

Schizophr Res. 2016 January ; 170(1): 30-40. doi:10.1016/j.schres.2015.11.008.

Genetic Assessment of Additional Endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study

Tiffany A. Greenwood, Ph.D.^{1,*}, Laura C. Lazzeroni, Ph.D.², Monica E. Calkins, Ph.D.³, Robert Freedman, M.D.⁴, Michael F. Green, Ph.D.^{5,6}, Raquel E. Gur, M.D., Ph.D.³, Ruben C. Gur, Ph.D.³, Gregory A. Light, Ph.D.^{1,7}, Keith H. Nuechterlein, Ph.D.⁵, Ann Olincy, M.D.⁴, Allen D. Radant, M.D.^{8,9}, Larry J. Seidman, Ph.D.^{10,11}, Larry J. Siever, M.D.^{12,13}, Jeremy M. Silverman, Ph.D.^{12,13}, William S. Stone, Ph.D.^{10,11}, Catherine A. Sugar, Ph.D.¹⁴, Neal R. Swerdlow, M.D., Ph.D.¹, Debby W. Tsuang, M.D.^{8,9}, Ming T. Tsuang, M.D., Ph.D., D.Sc. ^{1,15,16}, Bruce I. Turetsky, M.D.³, and David L. Braff, M.D.^{1,7}

¹Department of Psychiatry, University of California San Diego, La Jolla, CA

²Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA

³Department of Psychiatry, University of Pennsylvania, Philadelphia, PA

⁴Department of Psychiatry, University of Colorado Health Sciences Center, Denver, CO

⁵Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA

⁶VA Greater Los Angeles Healthcare System, Los Angeles, CA

⁷VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System

⁸Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA

⁹VA Puget Sound Health Care System, Seattle, WA

Conflict of Interest

Contributors

Address correspondence to: Tiffany A. Greenwood, Ph.D.; University of California San Diego, Department of Psychiatry; 9500 Gilman Drive, MC 0689; La Jolla, CA 92093; tgreenwood@ucsd.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Drs. Braff, Calkins, Greenwood, RE Gur, RC Gur, Olincy, Radant, Seidman, Siever, Silverman, Stone, Sugar, DW Tsuang, MT Tsuang, and Turetsky report no financial relationships with commercial interests. Dr. Freedman has a patent through the Department of Veterans Affairs on DNA sequences in CHRNA7. Dr. Green has been a consultant to AbbVie, Biogen, DSP, EnVivo/Forum, and Roche; he is on the scientific advisory board of Mnemosyne; and he has received research funds from Amgen. Dr. Lazzeroni is an inventor on a patent application filed by Stanford University on genetic polymorphisms associated with depression. Dr. Light has served as a consultant for Astellas, Forum, and Neuroverse. Dr. Nuechterlein has received unrelated research support from Janssen Scientific Affairs, Genentech, and Brain Plasticity, Inc., and has consulted to Genentech, Otsuka, Janssen, and Brain Plasticity, Inc. Dr. Swerdlow has been a consultant for Genco Sciences, Ltd.

Dr. Greenwood performed the discriminability, heritability, association, and linkage analyses and drafted and critically revised the manuscript. Dr. Lazzeroni developed the bootstrap Total Significance Test and performed the analyses using this test. All authors participated in aspects of study design, data validation, and interpretation. All authors provided valuable edits to the text and approved the final manuscript.

¹⁰Department of Psychiatry, Harvard Medical School, Boston, MA

¹¹Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA

¹²Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY

¹³James J. Peters VA Medical Center, New York, NY

¹⁴Department of Biostatistics, University of California Los Angeles School of Public Health, Los Angeles, CA

¹⁵Center for Behavioral Genomics, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA

¹⁶Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA

Abstract

The Consortium on the Genetics of Schizophrenia Family Study (COGS-1) has previously reported our efforts to characterize the genetic architecture of 12 primary endophenotypes for schizophrenia. We now report the characterization of 13 additional measures derived from the same endophenotype test paradigms in the COGS-1 families. Nine of the measures were found to discriminate between schizophrenia patients and controls, were significantly heritable (31 to 62%), and were sufficiently independent of previously assessed endophenotypes, demonstrating utility as additional endophenotypes. Genotyping via a custom array of 1536 SNPs from 94 candidate genes identified associations for CTNNA2, ERBB4, GRID1, GRID2, GRIK3, GRIK4, GRIN2B, NOS1AP, NRG1, and RELN across multiple endophenotypes. An experiment-wide p value of 0.003 suggested that the associations across all SNPs and endophenotypes collectively exceeded chance. Linkage analyses performed using a genome-wide SNP array further identified significant or suggestive linkage for six of the candidate endophenotypes, with several genes of interest located beneath the linkage peaks (e.g., CSMD1, DISC1, DLGAP2, GRIK2, GRIN3A, and SLC6A3). While the partial convergence of the association and linkage likely reflects differences in density of gene coverage provided by the distinct genotyping platforms, it is also likely an indication of the differential contribution of rare and common variants for some genes and methodological differences in detection ability. Still, many of the genes implicated by COGS through endophenotypes have been identified by independent studies of common, rare, and de novo variation in schizophrenia, all converging on a functional genetic network related to glutamatergic neurotransmission that warrants further investigation.

Keywords

endophenotype; genetics; schizophrenia; association; linkage; heritability

1. Introduction

Schizophrenia is a severe psychotic disorder with a lifetime prevalence of approximately 1% and an estimated heritability of 60–80% (Karayiorgou and Gogos, 1997; Sullivan, 2005; Wray and Gottesman, 2012). The genetic heterogeneity and polygenicity associated with

schizophrenia are substantial and have hindered many attempts to confirm initial candidate gene associations and to replicate linkage regions across studies (Baron, 2001; Gogos and Gerber, 2006; Harrison and Weinberger, 2005; Lewis et al., 2003; Owen et al., 2004). Increasingly large genome-wide association studies (GWAS) have begun to provide insight into common genetic variants associated with schizophrenia risk, yet the neurobiological significance of these variants remains largely unexplored (O'Donovan et al., 2008; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Shi et al., 2009). While most common and rare variants confer small increases in risk for schizophrenia, it is likely that risk variants will cluster within a limited number of pathways (Purcell et al., 2014; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014).

Schizophrenia is a profoundly clinically heterogeneous disorder with patients exhibiting a broad range of neurobiological deficits and symptom severity, which has further complicated efforts to identify genetic risk variants. Recent studies have demonstrated that employing more specific phenotype definitions in genetic studies of complex diseases, including schizophrenia, is even more important than large sample sizes for detecting true genetic associations (Liang and Greenwood, 2015; Manchia et al., 2013). The use of endophenotypes as objective measurements related to specific neurobiological functions may be particularly useful in reducing the heterogeneity associated with the considerably more subjective diagnosis, facilitating the detection of risk variants and aberrant molecular pathways (Braff et al., 2007; Gottesman and Gould, 2003; Insel and Cuthbert, 2009). Many endophenotypes are also amenable to human neuroimaging and translational animal model studies, allowing for direct evaluations of neural circuit dysfunctions and neurobiological substrates (Swerdlow et al., 2008; Young et al., 2013).

The Consortium on the Genetics of Schizophrenia Family Study (COGS-1) previously reported significant heritability for 12 endophenotypes for schizophrenia, with candidate gene association and genome-wide linkage analyses that demonstrate their utility for resolving the genetic architecture of schizophrenia (Greenwood et al., 2007; Greenwood et al., 2011; Greenwood et al., 2013c). Other analyses of the COGS-1 sample suggested additional measures for several endophenotype domains that may provide complementary information (Horan et al., 2008; Olincy et al., 2010; Stone et al., 2011; Swerdlow et al., 2007; Turetsky et al., 2008), yet these measures have remained uncharacterized for their genetic contributions in this sample. We now report the significant heritability of nine new candidate endophenotypes derived from the same original endophenotype test paradigms that provide complementary information. These measures include pulse-alone startle magnitude, P50 conditioning amplitude, N100 conditioning amplitude, Degraded-Stimulus Continuous Performance Test (DS-CPT) hit rate, CPT Identical Pairs (CPT-IP) 3-digit d', Letter-Number Span (LNS) forward, California Verbal Learning Test, Second Edition, (CVLT-II) list B and delayed recall, and Logical Memory Stories total recall. For these measures, we also evaluated association using the COGS SNP Chip, a custom array that incorporates common variants in genes involved in pathways hypothesized to underlie schizophrenia risk, and linkage using a genome-wide SNP linkage panel to assess the joint impact of rare and common variation on the candidate endophenotypes.

2. Methods

Ascertainment, genotyping, and analysis methods are provided in brief below with full methods available in the Supplement and elsewhere (Calkins et al., 2007; Greenwood et al., 2011; Greenwood et al., 2013c).

2.1 Subjects

Families were ascertained at seven sites through probands who met DSM-IV-TR criteria for schizophrenia (American Psychiatric Association, 2000). Each family minimally consisted of a proband with schizophrenia, an unaffected sibling, and both parents. Unrelated community comparison subjects without personal or family history of psychosis were also recruited. Only those without history of any Axis I or Cluster A personality disorder were considered as controls here. All subjects underwent a standardized clinical assessment using the Diagnostic Interview for Genetic Studies (DIGS) (Nurnberger et al., 1994). Details of the ascertainment, diagnostic, and screening procedures are provided elsewhere (Calkins et al., 2007). Written informed consent was obtained for each subject per local IRB protocols. The final COGS-1 dataset of 296 families consisted of 1,364 subjects, 1,004 of whom were characterized for the endophenotype paradigms. While most families (62%) consisted of the minimum discordant sibling pair and both parents, the remaining 38% represented larger families. The majority of subjects (89%) were confirmed to be of European ancestry.

2.2 Neurophysiological and Neurocognitive Measures

Detailed descriptions of the rationale and assessment procedures for all COGS-1 test paradigms and the heritability assessments of the 12 primary endophenotypes have been published (Greenwood et al., 2007; Gur et al., 2007; Turetsky et al., 2007). The two neurophysiological and three neurocognitive test paradigms administered yielded various quantitative measures in addition to the primary endophenotypes, from which 13 measures were selected for further validation as candidate endophenotypes as described below. These measures had previously shown promise as endophenotypes in COGS-1, and most have also demonstrated good test-retest reliability in an independent sample (Light et al., 2012).

While prepulse inhibition of startle at 60 msec was our primary endophenotype, we assessed pulse-alone startle magnitude on non-prepulse trials and both the difference and percent startle habituation from the first to final block of testing as additional measures (Swerdlow et al., 2007). The primary endophenotype of P50 suppression was the difference in amplitudes of the event-related potentials generated in response to the conditioning (S1) and test stimuli, and the S1 amplitude was considered an additional measure (Olincy et al., 2010). N100 amplitude was also derived from the P50 paradigm and measured as the minimum trough occurring 75–125 ms post-stimulus. Only the N100 conditioning (C1) amplitude was considered based on initial investigations in a subset of this sample (Turetsky et al., 2008).

We used two forms of the CPT to measure sustained, focused attention, one with a high perceptual load (DS-CPT) (Nuechterlein et al., 1983) and one with a working-memory load (CPT-IP) (Cornblatt et al., 1988). For the DS-CPT, the primary endophenotype was a signal/

noise discrimination index (d') derived from correct target detections (hit rate) and incorrect responses to nontargets, and hit rate was considered an additional measure. For the CPT-IP, 3-digit d' was considered an additional measure. The LNS was used to assess working memory with the primary endophenotype considered as the correct reordering of intermixed numbers and letters and a simple repetition in the order dictated (forward) considered as an additional measure (Horan et al., 2008). We used the CVLT-II to assess verbal learning and memory (Stone et al., 2011), and considered the immediate recall of items from list A summed over 5 trials (list A total score) as the primary endophenotype. Additional measures included list B immediate recall, the free recall of list A after a 20-minute delay, and recall of list A items via sematic and serial clustering. The Logical Memory Test from the Wechsler Memory Scale was added midway through the COGS-1 study as an verbal learning and memory task, and total story recall was considered an additional measure (Wechsler, 1997).

2.3 Genotyping

A subset of 534 subjects from 130 families was previously genotyped for the COGS SNP Chip, which contains 1,536 SNPs within 94 candidate genes for schizophrenia and is described in detail elsewhere (Greenwood et al., 2011). The final set of 1,380 SNPs had an average gene-centric physical spacing of 10kb with variance due to linkage disequilibrium. The complete sample of 296 COGS-1 families were genotyped in two phases for the Illumina Infinium HumanLinkage-12 and -24 panels and underwent an extensive quality control process. The final 6,023 SNPs had an average physical spacing of 512 kb and an average genetic spacing of 0.65 cM.

2.4 Statistical Analyses

Assessments of mean differences between schizophrenia probands and controls used covariate adjusted residuals for age at interview, sex, and site of ascertainment as required based on endophenotype correlations and verified by the heritability analyses. Effect sizes were calculated using Cohen's d (i.e., standard deviation units).

Association analyses were conducted using the variance components method in MERLIN v. 1.1.2 with adjustment for age, sex, and ancestry, consistent with previous methods (Abecasis et al., 2002; Greenwood et al., 2011). Data were available on average for 395±53 subjects across the measures. Stories recall could not be evaluated for association because it was added midway through the study, and data was only available for 98 genotyped subjects. The effective number of independent SNPs tested was determined to be 977, with a corresponding Bonferroni correction for multiple comparisons of $p=5\times10^{-5}$ for a given endophenotype (Nyholt, 2004). A similar Bonferroni correction for multiple phenotypes would be overly conservative, given the observed between-endophenotype correlations. We therefore implemented the bootstrap Total Significance Test to evaluate whether the observed associations for all SNPs and endophenotypes combined significantly exceeded what would be expected by chance, given the 11,040 total tests (1,380 SNPs and 8 candidate endophenotypes). The resultant p-value was designed to collectively evaluate the strongest results in the data and provide an *a posteriori* predictive value for each genotype-endophenotype association. The Total Significance Test conditions simultaneously on all

The heritability and linkage analyses were conducted according to previously established methods (Greenwood et al., 2013c). Briefly, heritability estimates, genetic correlations, and two-point log of the odds ratio (LOD) scores were calculated for each candidate endophenotype using the variance components method in SOLAR v.4.3.1 (Almasy and Blangero, 1998; Almasy et al., 1997). Multipoint LOD scores were computed using both variance components and pedigree-wide regression methods in SOLAR and MERLIN, as each has favorable properties (Almasy and Blangero, 1998; Schork and Greenwood, 2004; Sham et al., 2002). Empirical p values were estimated from 10,000 replicates (Blangero et al., 2000). All analyses used normalized trait values, an ascertainment correction (see Supplement), and covariate adjustment for age, sex, and/or site as appropriate. Only regions of convergent linkage between the two methods were considered, where at least one met standard criteria for significant or suggestive linkage (LOD >3.6 or 2.2, respectively) (Lander and Kruglyak, 1995) and the other either produced a LOD 1.0 within 5cM or a significantly overlapping 1-LOD interval.

3. Results

3.1 Discriminability, Heritability, and Genetic Relationships of the Additional Measures

Table 1 displays the means and standard deviations for each additional measure in the schizophrenia probands and control subjects. Large effect sizes (>0.8) were observed for CPT-IP-3d and all verbal learning measures, with LNS-fwd displaying a medium effect size. Significant heritability estimates were observed for all 13 additional measures, with most in the moderate to substantial range (25–62%). Since many measures are derived from the same test paradigm, we used a combination of strength of the heritability estimate and effect size to reduce the number of candidate endophenotypes for further study. Four measures were thus eliminated for poor discriminability (Hab-diff and CVLT-serial) and/or low heritability (Hab-pct and CVLT-semantic). Startle displayed a minimal effect size (0.16) but had highest heritability (62%) of all additional measures and was thus retained for further evaluation.

Table 2 shows the observed genetic correlations between the selected nine candidate endophenotypes and their primary counterparts. Startle was not significantly correlated with PPI, nor was N100-C1 correlated with the P50 difference score, so these candidate endophenotypes represent independent measures. P50-S1 and DS-CPT-hr were highly correlated with P50 difference and DS-CPT d', respectively, which is expected as these candidate endophenotypes are used to calculate their primary endophenotype counterparts and therefore not independent measures, although they may capture novel information. However, CPT-IP-3d was not significantly correlated with either measure from the DS-CPT, validating that the CPT-IP is an independent measure of attention. The two LNS endophenotypes were highly correlated, and the CVLT total score was correlated with all three candidate verbal learning endophenotypes, which were also significantly correlated.

3.2 Candidate Gene Association Analyses

The COGS SNP Chip provides excellent coverage of most pre-GWAS schizophrenia candidate genes and many genes from putatively important pathways (Greenwood et al., 2011). Analysis of the candidate endophenotypes collectively revealed associations to 40 of the 94 genes with a cluster in the glutamate pathway, one of seven biological pathways specifically targeted by the custom array (see Figure S1). Figure 1 provides a gene-wise association summary and highlights associations across multiple domains (see Table S1 for individual SNP p values). Ten genes displayed extensive evidence for pleiotropy with associations to three or more candidate endophenotypes, including *ERBB4*, *NRG1*, *RELN*, and several genes related to glutamate signaling.

The most significant finding was for rs4646316 in COMT with CPT-IP-3d, which gave a p value of 4.6×10^{-5} and explained 4.7% of the variation. An additional 20 SNPs had p values <0.001, and 124 SNPs had p values <0.01. Association was observed to three nonsynonymous SNPs: GRM1 Gly884Glu with CVLT-delay (p=0.003, 2.6% of the variation), NRG1 Arg38Gln with CVLT-delay and CVLT-B (p=9.1×10⁻⁴ and 0.004, respectively; 3.2% and 2.4% of the variation, respectively), and TAAR6 Val265Ile with DS-CPT-hr ($p=3.6\times10^{-4}$, 3.7% of the variation). Given the prior associations of the *GRM1* and NRG1 variants with CVLT total score and the TAAR6 variant with DS-CPT d', these associations likely reflect a portion of the shared genetic component between the primary and candidate endophenotypes (Greenwood et al., 2011). Of the 40 genes on the COGS SNP Chip with prior evidence of association with schizophrenia, 17 were associated with at least one of the candidate endophenotypes: COMT, DAOA, DGCR2, DISC1, DRD3, DTNBP1, ERBB4, GRID1, GRIK3, GRIK4, GRIN2B, GRM4, NRG1, PRODH, SLC1A2, SP4, TAAR6, and ZDHHC8, including five SNPs with prior association to schizophrenia (Fallin et al., 2005; Funke et al., 2004; Liu et al., 2006; Mukai et al., 2004; Shifman et al., 2006; Stefanis et al., 2007).

The collective results across all SNPs and candidate endophenotypes were highly significant according to the bootstrap Total Significance Test analysis. After controlling for linkage disequilibrium patterns, phenotypic correlations, family structure, gene size, and multiple testing of both SNPs and endophenotypes, an experiment-wide omnibus p value of 0.003 was obtained. Furthermore, 247 SNP-endophenotype associations involving 59 genes and eight candidate endophenotypes were strong enough to satisfy the omnibus 0.05 significance level (see Table S2). These results demonstrate that the findings in Figure 1 exceed what would be expected by chance alone.

3.3 Genome-wide SNP Linkage Analyses

As shown in Figure 2 and summarized in Table 3, the linkage analyses collectively identified 12 regions of convergent linkage between the two methods (see complete results in Table S3). Note that all linkage peaks identified for the candidate endophenotypes represent novel findings within COGS-1 that were not identified by the primary endophenotypes, with the exception of 5p15 observed for PPI and Stories-recall (see Table S4).

Significant evidence for linkage was observed for CVLT-B on 9q34, with several neuronally expressed genes located in this gene-dense region. DBH and GRIN1 are excellent functional candidates that have shown association with neurophysiological or neurocognitive endophenotypes in our prior studies of two independent samples (Greenwood et al., 2011; Greenwood et al., 2012). Although DBH was only nominally associated (p<0.05) with CVLT-B in this study, this association did involve four SNPs (see Table S2). NTNG2 promotes neurite outgrowth and provides an interesting alternative, as does CACNA1B, given the implication of calcium channels in psychosis (Psychiatric GWAS Consortium Bipolar Disorder Working Group, 2011; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). Highly suggestive linkage to 9q22–31 was observed for CPT-IP-3d. Several interesting genes are located beneath this peak, including NTRK2 and CTNNAL1, a paralog of CTNNA2, which revealed associations with CPT-IP-3d and several endophenotypes in our prior studies of two independent samples. Finally, GRIN3A is located beneath this peak and provides an excellent candidate gene, given the associations with several endophenotypes for schizophrenia across studies (Greenwood et al., 2011; Ohi et al., 2015), although it was only nominally associated with CPT-IP-3d in this study.

Suggestive evidence for linkage under both models was observed for four regions. CNIH3 and DISC1 are located beneath the peak on 1q41-42 for N100-C1. DISC1 is of obvious relevance, given its history as a candidate gene for schizophrenia, and SNPs in this gene were associated with several endophenotypes in our prior studies of two independent samples. While DISC1 was only nominally associated with N100-C1 in this study, the association signal derived from five SNPs. CNIH3 is an auxiliary receptor subunit that regulates the trafficking and gating of AMPA-selective glutamate receptors, with upregulated expression in schizophrenia patients (Drummond et al., 2012). Interestingly, CNIH3 is found in a complex with CACNG2, which is associated with several neurocognitive endophenotypes (Greenwood et al., 2012). Although the region on 5p15 with linkage to Stories-recall is very gene-dense, the dopamine transporter (SLC6A3) lies closest to the peak and has shown evidence of association and linkage with PPI and startle habituation (Greenwood et al., 2012; Greenwood et al., 2013c), schizophrenia (Stober et al., 2006), bipolar disorder (Greenwood et al., 2001; Greenwood et al., 2006), and several neurocognitive endophenotypes (Greenwood et al., 2011). Unfortunately, we were unable to evaluate Stories-recall for association with the custom array. ADORA2A and ADRBK2 lie closest to the peak on 22q11-12, but neither was associated with any endophenotype in this study, nor in our previous assessments, suggesting that either rare variants in these genes or other genes in the region are contributing to the linkage signal. PREP and GRIK2 are located beneath the peak on 6q21-22 observed for both CVLT-B and DS-CPT-hr. PREP encodes prolyl endopeptidase, a serine proteinase with lower activity in patients with major depression and increased activity in patients with mania and schizophrenia (Maes et al., 1995). Interestingly, CPT-IP-3d produced suggestive linkage under the regression model to 6q16-21 with GRIK2 as the nearest gene of interest. While GRIK2 was not evaluated for association, functionally related genes GRIK3 and GRIK4 were associated with DS-CPT-hr, CPT-IP-3d, and CVLT-B. Furthermore, GRIK2 interacts with both DLG4 (Garcia et al., 1998; Mehta et al., 2001), which was associated with DS-CPT-hr, and GRID2 (Kohda et al., 2003), which was associated with CVLT-B and CPT-IP-3d.

Four other regions yielded suggestive linkage under one model with modest support from the other. *DLGAP2* and *CSMD1* are located beneath the 8p23 peak for LNS-fwd. *DLGAP2* may play a role in synapse organization and signaling in neuronal cells and interacts with *DLG4*, which was associated with LNS-fwd. *DGKH* and *HTR2A* are located beneath the 13q13 peak for DS-CPT-hr. *HTR2A* was associated with several neurocognitive endophenotypes (Greenwood et al., 2011).

4. Discussion

Investigations of endophenotypes that quantitatively measure crucial neurobiological processes that are deficient in schizophrenia may facilitate the identification of genes contributing to risk for the disorder. We have further validated nine of the 13 additional measures that were assessed, demonstrating behavioral deficits in schizophrenia patients versus controls and significant heritability. The heritability estimates for these additional schizophrenia endophenotypes range from moderate to substantial (25–62%), consistent with our previous reports of heritability for the primary endophenotypes for COGS-1 and with the heritability of schizophrenia itself in this cohort (Light et al., 2014). The additional endophenotypes also produced independent genetic signals in both the association and linkage analyses (see Figure S2 and Table S4), confirming their utility to further explore the genomic influences on the aberrant neurobiology of schizophrenia by providing complementary information.

We expected that some genes would contribute to the variance in multiple endophenotypes, particularly those that are genetically correlated. Additionally, some genes, like *NRG1*, are involved in neurodevelopment and may impact more than one domain. Eight genes displayed pleiotropic associations in both the primary and additional endophenotype analyses and were also pleiotropic in our independent case-control study of many of the same endophenotypes: *CTNNA2, ERBB4, GRID2, GRIK3, GRIK4, NOS1AP, NRG1, and RELN* (Greenwood et al., 2011; Greenwood et al., 2012). The consistent observation of pleiotropic associations across multiple endophenotypes in two independent samples suggests a role for these genes in schizophrenia risk.

The linkage analyses identified 12 regions of genome-wide significant or suggestive linkage, with candidate genes *DBH*, *DISC1*, *GRIN1*, *GRIN3A*, *HTR2A*, and *SLC6A3* located beneath the linkage peaks, all of which displayed also pleiotropic associations across the COGS-1 primary endophenotypes (Greenwood et al., 2011). Other genes beneath the peaks, including *CNIH3*, *CSMD1*, *DGKH*, *DLGAP2*, *GRIK2*, *NTNG2*, and *NTRK2*, have been implicated in schizophrenia or bipolar disorder (Aoki-Suzuki et al., 2005; Baum et al., 2008; Drummond et al., 2012; Greenwood et al., 2013a; Greenwood et al., 2013b; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Smith et al., 2009). Several of these linkage regions have repeatedly been implicated in schizophrenia, including 1q42, 6q21-22, and 22q11-12 (Blackwood et al., 2001; Cao et al., 1997; Coon et al., 1994; DeLisi et al., 2000; Gill et al., 1996; Hamshere et al., 2005; Levinson et al., 2000; Lewis et al., 2003; Martinez et al., 1999; Millar et al., 2000).

Most of the genes displaying pleiotropic associations across endophenotype domains are involved either directly or indirectly in glutamate signaling, and several of the genes identified through linkage also relate to glutamate signaling. Figure 3 details the molecular interactions of a subset of the genes present on the custom array, as well as those implicated by linkage, revealing a functional network of genes related to glutamate and neuregulin signaling. The association results from the primary COGS-1 endophenotypes (Greenwood et al., 2011) and those of our independent case-control sample (Greenwood et al., 2012) provide additional support for this gene network. Recent studies of both common and rare variants in schizophrenia have also implicated genes involved in glutamatergic neurotransmission and synaptic plasticity (Kirov et al., 2012; Ohi et al., 2015; Purcell et al., 2014; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Walsh et al., 2008), most of which converge on the functional gene network in Figure 3. For example, common variants in genes involved in glutamatergic signaling were implicated both by a recent large GWAS of schizophrenia conducted by the Psychiatric Genomics Consortium and a GWAS of cognitive endophenotypes for schizophrenia, with specific associations to ATXN7, CSMD1, CHRNA4, CHRNA3, GRIN2A, GRIN3A, and GRM3 (Ohi et al., 2015; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). Other studies have shown a significant burden of rare variants in DGKH, GRIN1, GRIN3A, and SLC1A2 in schizophrenia patients (Fiorentino et al., 2014; Purcell et al., 2014), a disproportionate disruption of genes in the neuregulin and glutamate pathways in schizophrenia (Walsh et al., 2008), and de novo variants in CSMD1, CTNNA2, DBH, DISC1, DLGAP2, GRID2, GRIN2B, HTR2A, RELN, and SLC6A3 in schizophrenia and related disorders (de Ligt et al., 2012; Fromer et al., 2014; Guilmatre et al., 2009; Iossifov et al., 2012; Li et al., 2014; Neale et al., 2012; O'Roak et al., 2012; Rauch et al., 2012; Sanders et al., 2012). These studies of rare and *de novo* variation thus provide independent evidence in support of many of the same genes identified by COGS-1 using common variants and endophenotypes. Collectively, these results support a strong role for genes involved in glutamate signaling in mediating schizophrenia susceptibility, consistent with the glutamate hypothesis (Coyle, 2006; Sodhi et al., 2008). Combined with a growing body of literature, the repeated associations of NRG1 and ERBB4 with multiple endophenotypes suggest the importance of neuregulin-mediated ErbB4 signaling in the pathophysiology of schizophrenia (Corvin et al., 2004; Hall et al., 2006; Silberberg et al., 2006; Stefansson et al., 2002; Williams et al., 2003).

The partial convergence between genes implicated by association and linkage likely reflects a number of factors. First, the gene coverage provided by the two platforms differed notably, with an average gene-centric density of 10kb for the custom array versus an average of 500kb for the linkage array. Thus, the linkage array generally did not provide adequate coverage of the candidate genes. Additionally, the regions implicated by linkage are very large, and the true signal may derive from another gene in the region, despite our efforts to prioritize genes of interest based on two-point linkage results and prior evidence for involvement in schizophrenia. This is a common problem in the interpretation of linkage data and can be resolved through the use of a higher density genome-wide array. Alternatively, the divergence for some genes may be an indication of the differential contributions of rare and common variants in different families or differences in the ability

of association and linkage methodologies to detect such variants. One would expect to find both rare and common variants in genes and pathways impacting SZ risk, and we indeed find evidence for this here with linkage and association results converging on the same functional network, a finding that is supported by independent studies of common, rare, and de novo variation in schizophrenia.

There are a number of applicable caveats. First, the two COGS-1 ascertainment requirements of siblings discordant for schizophrenia, which was intended to increase variation in the endophenotypes, and intact families of willing participants may have produced a sample with less genetic loading for pathological endophenotype values, resulting in an underestimation of heritability. Second, while we used the Total Significance Test to provide a robust correction for multiple comparisons in the association analyses, similar corrections for linkage are less straightforward and are complicated by the phenotypic correlations. Third, these studies suggest additional endophenotypes for schizophrenia that will require validation in other samples. Finally, our sample of nuclear families lacks sufficient power to reliably detect loci with smaller effects, independent of heritability. Still, we identified several genes and genomic regions related to these new endophenotypes, many of which have been previously implicated in studies of common and rare variation in schizophrenia and thus warrant further investigation.

Our data thus provide significant evidence of discriminability and heritability for nine novel neurophysiological and neurocognitive endophenotypes for schizophrenia. Using these additional endophenotypes, we demonstrated association and linkage with many functionally relevant genes. The degree of genetic heterogeneity associated with schizophrenia is substantial, with contributions of common, rare, and *de novo* variants, as well as epigenetic and environmental factors. However, results across many studies are beginning to converge on genetic pathways and associated neural circuits leading to the dysfunction associated with illness. This endophenotype strategy can thus lead to a better understanding of the underlying causes of schizophrenia and ultimately to optimal treatment strategies by placing genomic variation in a neurobiologically relevant context (Braff, 2015; Glahn et al., 2014; Insel and Cuthbert, 2009).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors wish to thank all of the participants and support staff that made this study possible. This study was supported by grants R01-MH065571, R01-MH065588, R01-MH065562, R01-MH065707, R01-MH065554, R01-MH065578, R01-MH065558, R01 MH86135, and K01-MH087889 (TAG) from the National Institute of Mental Health. Genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, Contract Number HHSN268200782096C. COGS website: http://www.npistat.com/cogs/.

Role of Funding Source: Other than proving support, the NIH had no further role in this manuscript.

References

- Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin--rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet. 2002; 30(1):97–101. [PubMed: 11731797]
- Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998; 62(5):1198–1211. [PubMed: 9545414]
- Almasy L, Dyer TD, Blangero J. Bivariate quantitative trait linkage analysis: pleiotropy versus coincident linkages. Genet Epidemiol. 1997; 14(6):953–958. [PubMed: 9433606]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4-Text Revision edition. Washington DC: 2000.
- Aoki-Suzuki M, Yamada K, Meerabux J, Iwayama-Shigeno Y, Ohba H, Iwamoto K, Takao H, Toyota T, Suto Y, Nakatani N, Dean B, Nishimura S, Seki K, Kato T, Itohara S, Nishikawa T, Yoshikawa T. A family-based association study and gene expression analyses of netrin-G1 and -G2 genes in schizophrenia. Biol Psychiatry. 2005; 57(4):382–393. [PubMed: 15705354]
- Baron M. Genetics of schizophrenia and the new millennium: progress and pitfalls. Am J Hum Genet. 2001; 68(2):299–312. [PubMed: 11170887]
- Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B, Schulze TG, Cichon S, Rietschel M, Nothen MM, Georgi A, Schumacher J, Schwarz M, Abou Jamra R, Hofels S, Propping P, Satagopan J, Detera-Wadleigh SD, Hardy J, McMahon FJ. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry. 2008; 13(2):197–207. [PubMed: 17486107]
- Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ. Schizophrenia and affective disorders--cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet. 2001; 69(2):428– 433. [PubMed: 11443544]
- Blangero J, Williams JT, Almasy L. Robust LOD scores for variance component-based linkage analysis. Genet Epidemiol. 2000; 19(Suppl 1):S8–S14. [PubMed: 11055364]
- Braff D, Schork NJ, Gottesman II. Endophenotyping schizophrenia. Am J Psychiatry. 2007; 164(5): 705–707. [PubMed: 17475726]
- Braff DL. The importance of endophenotypes in schizophrenia research. Schizophr Res. 2015; 163(1–3):1–8. [PubMed: 25795083]
- Calkins ME, Dobie DJ, Cadenhead KS, Olincy A, Freedman R, Green MF, Greenwood TA, Gur RE, Gur RC, Light GA, Mintz J, Nuechterlein KH, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL. The consortium on the genetics of endophenotypes in schizophrenia: model recruitment, assessment, and endophenotyping methods for a multisite collaboration. Schizophr Bull. 2007; 33(1):33–48. [PubMed: 17035358]
- Cao Q, Martinez M, Zhang J, Sanders AR, Badner JA, Cravchik A, Markey CJ, Beshah E, Guroff JJ, Maxwell ME, Kazuba DM, Whiten R, Goldin LR, Gershon ES, Gejman PV. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics. 1997; 43(1):1–8. [PubMed: 9226366]
- Coon H, Jensen S, Holik J, Hoff M, Myles-Worsley M, Reimherr F, Wender P, Waldo M, Freedman R, Leppert M, et al. Genomic scan for genes predisposing to schizophrenia. Am J Med Genet. 1994; 54(1):59–71. [PubMed: 7909992]
- Cornblatt BA, Risch NJ, Faris G, Friedman D, Erlenmeyer-Kimling L. The Continuous Performance Test, identical pairs version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Res. 1988; 26(2):223–238. [PubMed: 3237915]
- Corvin AP, Morris DW, McGhee K, Schwaiger S, Scully P, Quinn J, Meagher D, Clair DS, Waddington JL, Gill M. Confirmation and refinement of an 'at-risk' haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the Neuregulin-1 locus. Mol Psychiatry. 2004; 9(2):208–213. [PubMed: 14966480]
- Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol. 2006; 26(4–6):365–384. [PubMed: 16773445]

- de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, Vulto-van Silfhout AT, Koolen DA, de Vries P, Gilissen C, del Rosario M, Hoischen A, Scheffer H, de Vries BB, Brunner HG, Veltman JA, Vissers LE. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012; 367(20):1921–1929. [PubMed: 23033978]
- DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW, Wellman N, Loftus J, Nanthakumar B, Razi K, Stewart J, Comazzi M, Vita A, Heffner T, Sherrington R. A genomewide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry. 2002; 159(5):803–812. [PubMed: 11986135]
- Drummond JB, Simmons M, Haroutunian V, Meador-Woodruff JH. Upregulation of cornichon transcripts in the dorsolateral prefrontal cortex in schizophrenia. Neuroreport. 2012; 23(17):1031– 1034. [PubMed: 23103966]
- Ekelund J, Lichtermann D, Hovatta I, Ellonen P, Suvisaari J, Terwilliger JD, Juvonen H, Varilo T, Arajarvi R, Kokko-Sahin ML, Lonnqvist J, Peltonen L. Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22. Hum Mol Genet. 2000; 9(7): 1049–1057. [PubMed: 10767329]
- Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, Steel G, Nestadt G, Liang KY, Huganir RL, Valle D, Pulver AE. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish caseparent trios. Am J Hum Genet. 2005; 77(6):918–936. [PubMed: 16380905]
- Fiorentino A, Sharp SI, McQuillin A. Association of rare variation in the glutamate receptor gene SLC1A2 with susceptibility to bipolar disorder and schizophrenia. Eur J Hum Genet. 2014
- Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, Georgieva L, Rees E, Palta P, Ruderfer DM, Carrera N, Humphreys I, Johnson JS, Roussos P, Barker DD, Banks E, Milanova V, Grant SG, Hannon E, Rose SA, Chambert K, Mahajan M, Scolnick EM, Moran JL, Kirov G, Palotie A, McCarroll SA, Holmans P, Sklar P, Owen MJ, Purcell SM, O'Donovan MC. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014; 506(7487):179– 184. [PubMed: 24463507]
- Funke B, Finn CT, Plocik AM, Lake S, DeRosse P, Kane JM, Kucherlapati R, Malhotra AK. Association of the DTNBP1 locus with schizophrenia in a U.S. population. Am J Hum Genet. 2004; 75(5):891–898. [PubMed: 15362017]
- Garcia EP, Mehta S, Blair LA, Wells DG, Shang J, Fukushima T, Fallon JR, Garner CC, Marshall J. SAP90 binds and clusters kainate receptors causing incomplete desensitization. Neuron. 1998; 21(4):727–739. [PubMed: 9808460]
- Gill M, Vallada H, Collier D, Sham P, Holmans P, Murray R, McGuffin P, Nanko S, Owen M, Antonarakis S, Housman D, Kazazian H, Nestadt G, Pulver AE, Straub RE, MacLean CJ, Walsh D, Kendler KS, DeLisi L, Polymeropoulos M, Coon H, Byerley W, Lofthouse R, Gershon E, Golden L, Crow T, Byerley W, Freedman R, Laurent C, Bodeau-Pean S, d'Amato T, Jay M, Campion D, Mallet J, Wildenauer DB, Lerer B, Albus M, Ackenheil M, Ebstein RP, Hallmayer J, Maier W, Gurling H, Curtis D, Kalsi G, Brynjolfsson J, Sigmundson T, Petursson H, Blackwood D, Muir W, St. Clair D, He L, Maguire S, Moises HW, Hwu H, Yang L, Wiese C, Tao L, Liu X, Kristbjarnason H, Levinson DF, Mowry BJ, Donis-Keller H, Hayward NK, Crowe RR, Silverman JM, Nancarrow DJ, Read CM. A combined analysis of D22S278 marker alleles in affected sibpairs: support for a susceptibility locus for schizophrenia at chromosome 22q12. Schizophrenia Collaborative Linkage Group (Chromosome 22). Am J Med Genet. 1996; 67(1):404–405.
- Glahn DC, Knowles EE, McKay DR, Sprooten E, Raventos H, Blangero J, Gottesman II, Almasy L. Arguments for the sake of endophenotypes: examining common misconceptions about the use of endophenotypes in psychiatric genetics. Am J Med Genet B Neuropsychiatr Genet. 2014; 165B(2): 122–130. [PubMed: 24464604]
- Gogos JA, Gerber DJ. Schizophrenia susceptibility genes: emergence of positional candidates and future directions. Trends Pharmacol Sci. 2006; 27(4):226–233. [PubMed: 16530856]
- Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003; 160(4):636–645. [PubMed: 12668349]
- Greenwood TA, Alexander M, Keck PE, McElroy S, Sadovnick AD, Remick RA, Kelsoe JR. Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder. Am J Med Genet. 2001; 105(2):145–151. [PubMed: 11304827]

- Greenwood TA, Badner JA, Byerley W, Keck PE, McElroy SL, Remick RA, Sadovnick AD, Akiskal HS, Kelsoe JR. Heritability and genome-wide SNP linkage analysis of temperament in bipolar disorder. J Affect Disord. 2013a; 150:1031–1040. [PubMed: 23759419]
- Greenwood TA, Badner JA, Byerley W, Keck PE, McElroy SL, Remick RA, Sadovnick AD, Kelsoe JR. Heritability and genome-wide SNP linkage analysis of personality in bipolar disorder. J Affect Disord. 2013b; 151:748–755. [PubMed: 23972719]
- Greenwood TA, Braff DL, Light GA, Cadenhead KS, Calkins ME, Dobie DJ, Freedman R, Green MF, Gur RE, Gur RC, Mintz J, Nuechterlein KH, Olincy A, Radant AD, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Schork NJ. Initial heritability analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia. Arch Gen Psychiatry. 2007; 64(11):1242–1250. [PubMed: 17984393]
- Greenwood TA, Lazzeroni LC, Murray SS, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Gur RE, Gur RC, Hardiman G, Kelsoe JR, Leonard S, Light GA, Nuechterlein KH, Olincy A, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Freedman R, Braff DL. Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry. 2011; 168(9):930–946. [PubMed: 21498463]
- Greenwood TA, Light GA, Swerdlow NR, Radant AD, Braff DL. Association analysis of 94 candidate genes and schizophrenia-related endophenotypes. PLoS One. 2012; 7(1):e29630. [PubMed: 22253750]
- Greenwood TA, Schork NJ, Eskin E, Kelsoe JR. Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Mol Psychiatry. 2006; 11(2):125–133. [PubMed: 16261167]
- Greenwood TA, Swerdlow NR, Gur RE, Cadenhead KS, Calkins ME, Dobie DJ, Freedman R, Green MF, Gur RC, Lazzeroni LC, Nuechterlein KH, Olincy A, Radant AD, Ray A, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Light GA, Braff DL. Genome-wide linkage analyses of 12 endophenotypes for schizophrenia from the consortium on the genetics of schizophrenia. Am J Psychiatry. 2013c; 170(5):521–532. [PubMed: 23511790]
- Guilmatre A, Dubourg C, Mosca AL, Legallic S, Goldenberg A, Drouin-Garraud V, Layet V, Rosier A, Briault S, Bonnet-Brilhault F, Laumonnier F, Odent S, Le Vacon G, Joly-Helas G, David V, Bendavid C, Pinoit JM, Henry C, Impallomeni C, Germano E, Tortorella G, Di Rosa G, Barthelemy C, Andres C, Faivre L, Frebourg T, Saugier Veber P, Campion D. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry. 2009; 66(9):947–956. [PubMed: 19736351]
- Gur RE, Calkins ME, Gur RC, Horan WP, Nuechterlein KH, Seidman LJ, Stone WS. The consortium on the genetics of schizophrenia: neurocognitive endophenotypes. Schizophr Bull. 2007; 33(1):49– 68. [PubMed: 17101692]
- Hall J, Whalley HC, Job DE, Baig BJ, McIntosh AM, Evans KL, Thomson PA, Porteous DJ, Cunningham-Owens DG, Johnstone EC, Lawrie SM. A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat Neurosci. 2006; 9(12):1477–1478. [PubMed: 17072305]
- Hall P, Wilson SR. Two Guidelines for Bootstrap Hypothesis Testing. Biometrics. 1991; 47(2):757–762.
- Hamshere ML, Bennett P, Williams N, Segurado R, Cardno A, Norton N, Lambert D, Williams H, Kirov G, Corvin A, Holmans P, Jones L, Jones I, Gill M, O'Donovan MC, Owen MJ, Craddock N. Genomewide linkage scan in schizoaffective disorder: significant evidence for linkage at 1q42 close to DISC1, and suggestive evidence at 22q11 and 19p13. Arch Gen Psychiatry. 2005; 62(10): 1081–1088. [PubMed: 16203953]
- Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry. 2005; 10(1):40–68. image 45. [PubMed: 15263907]
- Horan WP, Braff DL, Nuechterlein KH, Sugar CA, Cadenhead KS, Calkins ME, Dobie DJ, Freedman R, Greenwood TA, Gur RE, Gur RC, Light GA, Mintz J, Olincy A, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT,

Turetsky BI, Green MF. Verbal working memory impairments in individuals with schizophrenia and their first-degree relatives: findings from the Consortium on the Genetics of Schizophrenia. Schizophr Res. 2008; 103(1–3):218–228. [PubMed: 18406578]

- Insel TR, Cuthbert BN. Endophenotypes: bridging genomic complexity and disorder heterogeneity. Biol Psychiatry. 2009; 66(11):988–989. [PubMed: 19900610]
- Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, Yamrom B, Lee YH, Narzisi G, Leotta A, Kendall J, Grabowska E, Ma B, Marks S, Rodgers L, Stepansky A, Troge J, Andrews P, Bekritsky M, Pradhan K, Ghiban E, Kramer M, Parla J, Demeter R, Fulton LL, Fulton RS, Magrini VJ, Ye K, Darnell JC, Darnell RB, Mardis ER, Wilson RK, Schatz MC, McCombie WR, Wigler M. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012; 74(2): 285–299. [PubMed: 22542183]
- Karayiorgou M, Gogos JA. A turning point in schizophrenia genetics. Neuron. 1997; 19(5):967–979. [PubMed: 9390512]
- Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, Moran J, Chambert K, Toncheva D, Georgieva L, Grozeva D, Fjodorova M, Wollerton R, Rees E, Nikolov I, van de Lagemaat LN, Bayes A, Fernandez E, Olason PI, Bottcher Y, Komiyama NH, Collins MO, Choudhary J, Stefansson K, Stefansson H, Grant SG, Purcell S, Sklar P, O'Donovan MC, Owen MJ. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry. 2012; 17(2):142–153. [PubMed: 22083728]
- Kohda K, Kamiya Y, Matsuda S, Kato K, Umemori H, Yuzaki M. Heteromer formation of delta2 glutamate receptors with AMPA or kainate receptors. Brain Res Mol Brain Res. 2003; 110(1):27– 37. [PubMed: 12573530]
- Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995; 11(3):241–247. [PubMed: 7581446]
- Levinson DF, Holmans P, Straub RE, Owen MJ, Wildenauer DB, Gejman PV, Pulver AE, Laurent C, Kendler KS, Walsh D, Norton N, Williams NM, Schwab SG, Lerer B, Mowry BJ, Sanders AR, Antonarakis SE, Blouin JL, DeLeuze JF, Mallet J. Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. Am J Hum Genet. 2000; 67(3):652–663. [PubMed: 10924404]
- Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, Williams NM, Schwab SG, Pulver AE, Faraone SV, Brzustowicz LM, Kaufmann CA, Garver DL, Gurling HM, Lindholm E, Coon H, Moises HW, Byerley W, Shaw SH, Mesen A, Sherrington R, O'Neill FA, Walsh D, Kendler KS, Ekelund J, Paunio T, Lonnqvist J, Peltonen L, O'Donovan MC, Owen MJ, Wildenauer DB, Maier W, Nestadt G, Blouin JL, Antonarakis SE, Mowry BJ, Silverman JM, Crowe RR, Cloninger CR, Tsuang MT, Malaspina D, Harkavy-Friedman JM, Svrakic DM, Bassett AS, Holcomb J, Kalsi G, McQuillin A, Brynjolfson J, Sigmundsson T, Petursson H, Jazin E, Zoega T, Helgason T. Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part II: Schizophrenia. Am J Hum Genet. 2003; 73(1):34–48. [PubMed: 12802786]
- Li JM, Lu CL, Cheng MC, Luu SU, Hsu SH, Hu TM, Tsai HY, Chen CH. Role of the DLGAP2 gene encoding the SAP90/PSD-95-associated protein 2 in schizophrenia. PLoS One. 2014; 9(1):e85373. [PubMed: 24416398]
- Liang SG, Greenwood TA. The impact of clinical heterogeneity in schizophrenia on genomic analyses. Schizophr Res. 2015; 161(2–3):490–495. [PubMed: 25496659]
- Light G, Greenwood TA, Swerdlow NR, Calkins ME, Freedman R, Green MF, Gur RE, Gur RC, Lazzeroni LC, Nuechterlein KH, Olincy A, Radant AD, Seidman LJ, Siever LJ, Silverman JM, Sprock J, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL. Comparison of the heritability of schizophrenia and endophenotypes in the COGS-1 family study. Schizophr Bull. 2014; 40(6):1404–1411. [PubMed: 24903414]
- Light GA, Swerdlow NR, Rissling AJ, Radant A, Sugar CA, Sprock J, Pela M, Geyer MA, Braff DL. Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia. PLoS One. 2012; 7(7):e39434. [PubMed: 22802938]
- Liu YL, Fann CS, Liu CM, Chen WJ, Wu JY, Hung SI, Chen CH, Jou YS, Liu SK, Hwang TJ, Hsieh MH, Ouyang WC, Chan HY, Chen JJ, Yang WC, Lin CY, Lee SF, Hwu HG. A single nucleotide polymorphism fine mapping study of chromosome 1q42.1 reveals the vulnerability genes for

schizophrenia, GNPAT and DISC1: Association with impairment of sustained attention. Biol Psychiatry. 2006; 60(6):554–562. [PubMed: 16997000]

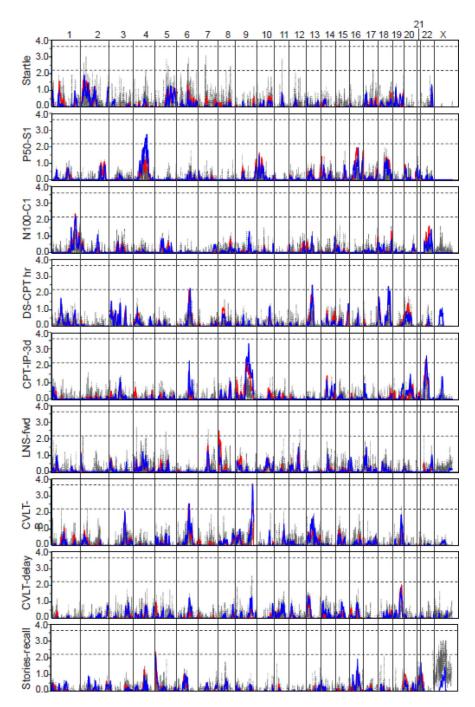
- Maes M, Goossens F, Scharpe S, Calabrese J, Desnyder R, Meltzer HY. Alterations in plasma prolyl endopeptidase activity in depression, mania, and schizophrenia: effects of antidepressants, mood stabilizers, and antipsychotic drugs. Psychiatry Res. 1995; 58(3):217–225. [PubMed: 8570777]
- Manchia M, Cullis J, Turecki G, Rouleau GA, Uher R, Alda M. The impact of phenotypic and genetic heterogeneity on results of genome wide association studies of complex diseases. PLoS One. 2013; 8(10):e76295. [PubMed: 24146854]
- Martin MA. Bootstrap hypothesis testing for some common statistical problems: A critical evaluation of size and power properties. Comp Stat Data An. 2007; 51(12):6321–6342.
- Martinez M, Goldin LR, Cao Q, Zhang J, Sanders AR, Nancarrow DJ, Taylor JM, Levinson DF, Kirby A, Crowe RR, Andreasen NC, Black DW, Silverman JM, Lennon DP, Nertney DA, Brown DM, Mowry BJ, Gershon ES, Gejman PV. Follow-up study on a susceptibility locus for schizophrenia on chromosome 6q. American journal of medical genetics. 1999; 88(4):337–343. [PubMed: 10402499]
- Mehta S, Wu H, Garner CC, Marshall J. Molecular mechanisms regulating the differential association of kainate receptor subunits with SAP90/PSD-95 and SAP97. J Biol Chem. 2001; 276(19):16092– 16099. [PubMed: 11279111]
- Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, Devon RS, St Clair DM, Muir WJ, Blackwood DH, Porteous DJ. Disruption of two novel genes by a translocation cosegregating with schizophrenia. Hum Mol Genet. 2000; 9(9):1415–1423. [PubMed: 10814723]
- Mukai J, Liu H, Burt RA, Swor DE, Lai WS, Karayiorgou M, Gogos JA. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet. 2004; 36(7):725–731. [PubMed: 15184899]
- Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A, Lin CF, Stevens C, Wang LS, Makarov V, Polak P, Yoon S, Maguire J, Crawford EL, Campbell NG, Geller ET, Valladares O, Schafer C, Liu H, Zhao T, Cai G, Lihm J, Dannenfelser R, Jabado O, Peralta Z, Nagaswamy U, Muzny D, Reid JG, Newsham I, Wu Y, Lewis L, Han Y, Voight BF, Lim E, Rossin E, Kirby A, Flannick J, Fromer M, Shakir K, Fennell T, Garimella K, Banks E, Poplin R, Gabriel S, DePristo M, Wimbish JR, Boone BE, Levy SE, Betancur C, Sunyaev S, Boerwinkle E, Buxbaum JD, Cook EH Jr, Devlin B, Gibbs RA, Roeder K, Schellenberg GD, Sutcliffe JS, Daly MJ. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012; 485(7397):242–245. [PubMed: 22495311]
- Nuechterlein KH, Parasuraman R, Jiang Q. Visual sustained attention: image degradation produces rapid sensitivity decrement over time. Science. 1983; 220(4594):327–329. [PubMed: 6836276]
- Nurnberger JI Jr, Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J, Severe JB, Malaspina D, Reich T. Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry. 1994; 51(11):849–859. discussion 863-844. [PubMed: 7944874]
- Nyholt DR. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet. 2004; 74(4):765–769. [PubMed: 14997420]
- O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, Nikolov I, Hamshere M, Carroll L, Georgieva L, Dwyer S, Holmans P, Marchini JL, Spencer CC, Howie B, Leung HT, Hartmann AM, Moller HJ, Morris DW, Shi Y, Feng G, Hoffmann P, Propping P, Vasilescu C, Maier W, Rietschel M, Zammit S, Schumacher J, Quinn EM, Schulze TG, Williams NM, Giegling I, Iwata N, Ikeda M, Darvasi A, Shifman S, He L, Duan J, Sanders AR, Levinson DF, Gejman PV, Cichon S, Nothen MM, Gill M, Corvin A, Rujescu D, Kirov G, Owen MJ, Buccola NG, Mowry BJ, Freedman R, Amin F, Black DW, Silverman JM, Byerley WF, Cloninger CR. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet. 2008; 40(9):1053–1055. [PubMed: 18677311]
- O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A, Lee C, Smith JD, Turner EH, Stanaway IB, Vernot B, Malig M, Baker C, Reilly B, Akey JM, Borenstein E, Rieder MJ, Nickerson DA, Bernier R, Shendure J, Eichler EE. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012; 485(7397):246–250. [PubMed: 22495309]

- Ohi K, Hashimoto R, Ikeda M, Yamamori H, Yasuda Y, Fujimoto M, Umeda-Yano S, Fukunaga M, Fujino H, Watanabe Y, Iwase M, Kazui H, Iwata N, Weinberger DR, Takeda M. Glutamate Networks Implicate Cognitive Impairments in Schizophrenia: Genome-Wide Association Studies of 52 Cognitive Phenotypes. Schizophr Bull. 2015; 41(4):909–918. [PubMed: 25537281]
- Olincy A, Braff DL, Adler LE, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Greenwood TA, Gur RE, Gur RC, Light GA, Mintz J, Nuechterlein KH, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Wagner BD, Freedman R. Inhibition of the P50 cerebral evoked response to repeated auditory stimuli: Results from the Consortium on Genetics of Schizophrenia. Schizophr Res. 2010; 119(1– 3):175–182. [PubMed: 20382002]
- Owen MJ, Williams NM, O'Donovan MC. The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry. 2004; 9(1):14–27. [PubMed: 14581932]
- Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet. 2011; 43(10):977–983. [PubMed: 21926972]
- Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, O'Dushlaine C, Chambert K, Bergen SE, Kahler A, Duncan L, Stahl E, Genovese G, Fernandez E, Collins MO, Komiyama NH, Choudhary JS, Magnusson PK, Banks E, Shakir K, Garimella K, Fennell T, DePristo M, Grant SG, Haggarty SJ, Gabriel S, Scolnick EM, Lander ES, Hultman CM, Sullivan PF, McCarroll SA, Sklar P. A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 2014; 506(7487):185–190. [PubMed: 24463508]
- Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, Albrecht B, Bartholdi D, Beygo J, Di Donato N, Dufke A, Cremer K, Hempel M, Horn D, Hoyer J, Joset P, Ropke A, Moog U, Riess A, Thiel CT, Tzschach A, Wiesener A, Wohlleber E, Zweier C, Ekici AB, Zink AM, Rump A, Meisinger C, Grallert H, Sticht H, Schenck A, Engels H, Rappold G, Schrock E, Wieacker P, Riess O, Meitinger T, Reis A, Strom TM. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012; 380(9854):1674–1682. [PubMed: 23020937]
- Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, Ercan-Sencicek AG, DiLullo NM, Parikshak NN, Stein JL, Walker MF, Ober GT, Teran NA, Song Y, El-Fishawy P, Murtha RC, Choi M, Overton JD, Bjornson RD, Carriero NJ, Meyer KA, Bilguvar K, Mane SM, Sestan N, Lifton RP, Gunel M, Roeder K, Geschwind DH, Devlin B, State MW. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012; 485(7397):237–241. [PubMed: 22495306]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014; 511:421–427. [PubMed: 25056061]
- Schork NJ, Greenwood TA. Inherent bias toward the null hypothesis in conventional multipoint nonparametric linkage analysis. Am J Hum Genet. 2004; 74(2):306–316. [PubMed: 14732904]
- Sham PC, Purcell S, Cherny SS, Abecasis GR. Powerful regression-based quantitative-trait linkage analysis of general pedigrees. Am J Hum Genet. 2002; 71(2):238–253. [PubMed: 12111667]
- Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I, Dudbridge F, Holmans PA, Whittemore AS, Mowry BJ, Olincy A, Amin F, Cloninger CR, Silverman JM, Buccola NG, Byerley WF, Black DW, Crowe RR, Oksenberg JR, Mirel DB, Kendler KS, Freedman R, Gejman PV. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009; 460(7256):753– 757. [PubMed: 19571809]
- Shifman S, Levit A, Chen ML, Chen CH, Bronstein M, Weizman A, Yakir B, Navon R, Darvasi A. A complete genetic association scan of the 22q11 deletion region and functional evidence reveal an association between DGCR2 and schizophrenia. Hum Genet. 2006; 120(2):160–170. [PubMed: 16783572]
- Silberberg G, Darvasi A, Pinkas-Kramarski R, Navon R. The involvement of ErbB4 with schizophrenia: association and expression studies. Am J Med Genet B Neuropsychiatr Genet. 2006; 141(2):142–148. [PubMed: 16402353]
- Smith EN, Bloss CS, Badner JA, Barrett T, Belmonte PL, Berrettini W, Byerley W, Coryell W, Craig D, Edenberg HJ, Eskin E, Foroud T, Gershon E, Greenwood TA, Hipolito M, Koller DL, Lawson WB, Liu C, Lohoff F, McInnis MG, McMahon FJ, Mirel DB, Murray SS, Nievergelt C,

Nurnberger J, Nwulia EA, Paschall J, Potash JB, Rice J, Schulze TG, Scheftner W, Panganiban C, Zaitlen N, Zandi PP, Zollner S, Schork NJ, Kelsoe JR. Genome-wide association study of bipolar disorder in European American and African American individuals. Mol Psychiatry. 2009; 14(8): 755–763. [PubMed: 19488044]

- Sodhi M, Wood KH, Meador-Woodruff J. Role of glutamate in schizophrenia: integrating excitatory avenues of research. Expert Rev Neurother. 2008; 8(9):1389–1406. [PubMed: 18759551]
- Stefanis NC, Trikalinos TA, Avramopoulos D, Smyrnis N, Evdokimidis I, Ntzani EE, Ioannidis JP, Stefanis CN. Impact of schizophrenia candidate genes on schizotypy and cognitive endophenotypes at the population level. Biol Psychiatry. 2007; 62(7):784–792. [PubMed: 17336946]
- Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet. 2002; 71(4):877–892. [PubMed: 12145742]
- Stober G, Sprandel J, Jabs B, Pfuhlmann B, Moller-Ehrlich K, Knapp M. Family-based study of markers at the 5'-flanking region of the human dopamine transporter gene reveals potential association with schizophrenic psychoses. Eur Arch Psychiatry Clin Neurosci. 2006; 256(7):422– 427. [PubMed: 16783497]
- Stone WS, Giuliano AJ, Tsuang MT, Braff DL, Cadenhead KS, Calkins ME, Dobie DJ, Faraone SV, Freedman R, Green MF, Greenwood TA, Gur RE, Gur RC, Light GA, Mintz J, Nuechterlein KH, Olincy A, Radant AD, Roe AH, Schork NJ, Siever LJ, Silverman JM, Swerdlow NR, Thomas AR, Tsuang DW, Turetsky BI, Seidman LJ. Group and site differences on the California Verbal Learning Test in persons with schizophrenia and their first-degree relatives: findings from the Consortium on the Genetics of Schizophrenia (COGS). Schizophr Res. 2011; 128(1–3):102–110. [PubMed: 21288694]

Sullivan PF. The genetics of schizophrenia. PLoS Med. 2005; 2(7):e212. [PubMed: 16033310]


- Swerdlow NR, Sprock J, Light GA, Cadenhead K, Calkins ME, Dobie DJ, Freedman R, Green MF, Greenwood TA, Gur RE, Mintz J, Olincy A, Nuechterlein KH, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL. Multisite studies of acoustic startle and prepulse inhibition in humans: Initial experience and methodological considerations based on studies by the Consortium on the Genetics of Schizophrenia. Schizophr Res. 2007; 92(1–3):237–251. [PubMed: 17346930]
- Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl). 2008; 199(3):331– 388. [PubMed: 18568339]
- Turetsky BI, Calkins ME, Light GA, Olincy A, Radant AD, Swerdlow NR. Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophr Bull. 2007; 33(1):69–94. [PubMed: 17135482]
- Turetsky BI, Greenwood TA, Olincy A, Radant AD, Braff DL, Cadenhead KS, Dobie DJ, Freedman R, Green MF, Gur RE, Gur RC, Light GA, Mintz J, Nuechterlein KH, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Calkins ME. Abnormal auditory N100 amplitude: a heritable endophenotype in first-degree relatives of schizophrenia probands. Biol Psychiatry. 2008; 64(12):1051–1059. [PubMed: 18701089]
- Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra D, Bhandari A, Stray SM, Rippey CF, Roccanova P, Makarov V, Lakshmi B, Findling RL, Sikich L, Stromberg T, Merriman B, Gogtay N, Butler P, Eckstrand K, Noory L, Gochman P, Long R, Chen Z, Davis S, Baker C, Eichler EE, Meltzer PS, Nelson SF, Singleton AB, Lee MK, Rapoport JL, King MC, Sebat J. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science. 2008; 320(5875):539–543. [PubMed: 18369103]
- Wechsler, D. Wechsler Memory Scale. 3rd ed.. San Antonio, TX: The Psychological Corporation; 1997.

- Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S, O'Donovan MC, Owen MJ. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry. 2003; 8(5):485–487. [PubMed: 12808428]
- Wray NR, Gottesman II. Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front Genet. 2012; 3:118. [PubMed: 22783273]
- Young JW, Geyer MA, Rissling AJ, Sharp RF, Eyler LT, Asgaard GL, Light GA. Reverse translation of the rodent 5C–CPT reveals that the impaired attention of people with schizophrenia is similar to scopolamine-induced deficits in mice. Transl Psychiatry. 2013; 3:e324. [PubMed: 24217494]

Location	Gene	Startle	P50-S1	N100-C1	DS-CPT-hr	CPT-IP-3d	LNS-fwd	CVLT-B	CVLT-delay	Location	Gene	Startle	P50-S1	N100-C1	DS-CPT-hr	CPT-IP-3d	LNS-fwd	CVLT-B	CVLT-delay
1p36.13	HTR6									8p12	NRG1								
1p34.3	GRIK3									9q31.1	GRIN3A								
1q23.3	NOS1AP									10q23.2	GRID1			*					
1q31.3	ASPM									10q23.31	HTR7								
1q42.2	DISC1	*								11p13	SLC1A2								
2p12	CTNNA2									11q12.3	CHRM1								
2q34	ERBB4									11q23.1	NCAM1								
3p25.3	SLC6A1									11q23.3	GRIK4								
3q13.3	DRD3									12p13.1	GRIN2B								
4p12	GABRB1									12q22	EEA1								
4q22.3	GRID2									13q33.2	DAOA								
5q32	HTR4									16p13.2	GRIN2A								
5q32	CAMK2A									17p13.1	DLG4								
6p22.3	DTNBP1	*		*						17q21.3	CRHR1								
6p21.31	GRM4									22q11.21	PRODH								
6q23.2	TAAR6									22q11.21	DGCR2							*	*
6q24.3	GRM1									22q11.21	COMT								
6q25.1	ESR1									22q11.21	ZDHHC8		*						
7p15.3	SP4									Xq28	GABRA3								
7q22.1	RELN																		

Figure 1.

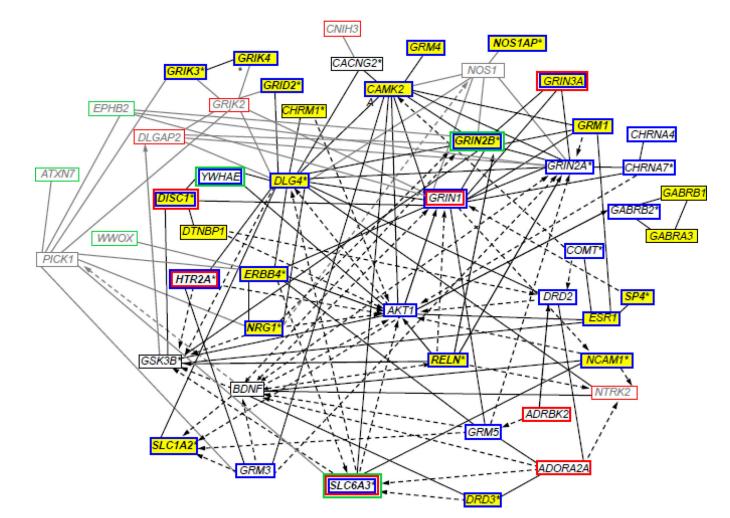

Summary of the candidate gene association results in the 130 families. The most significant p-value observed for each of the 39 genes with each of the eight candidate endophenotypes is shown using a minimum p-value of <0.01 as a threshold. Note that not all associations to the same gene across endophenotypes reflect associations to the same SNP, although many do. Genes associated with three or more endophenotypes are indicated in bold. An asterisk (*) indicates that at least one SNP in the gene associated with the specified phenotype has been previously associated with schizophrenia as follows: rs807759 in *DGCR2* (Shifman et al., 2006), rs2793092 in *DISC1* (Liu et al., 2006), rs1018381 in *DTNBP1* (Funke et al., 2004; Stefanis et al., 2007), rs2814351 in *GRID1* (Fallin et al., 2005), and rs175174 in *ZDHHC8* (Mukai et al., 2004). The two SNPs in *DTNBP1* are >100kb apart and represent two independent associations with startle but not N100-C1 where only rs1040410 is associated. Note that Stories-recall could not be evaluated for association with the custom array because data for this endophenotype was only present in 98 subjects from 29 of the 130 genotyped families.

Figure 2.

Results of the genome-wide SNP linkage scan in the 296 families for each of the 9 candidate endophenotypes. The variance components multipoint results are shown in red, the pedigree-wide regression multipoint results are shown in blue, and the variance components two-point results are shown in grey. LOD scores are indicated on the *y*-axis, along with the name of the corresponding endophenotype. Chromosomes are aligned along the *x*-axis end to end with the *p*-terminus on the left and locations indicated at the top of the figure. Dashed

horizontal lines indicate genome-wide significant and suggestive LOD scores of 3.6 and 2.2, respectively.

Figure 3.

Pathway analysis of the genes identified through association and linkage. Genes are represented as nodes, and the molecular interactions between nodes are represented by lines and arrows, with solid lines representing direct protein-protein or protein-DNA interactions, solid arrows representing phosphorylation, and dashed arrows representing indirect effects on expression, activation, or inhibition. Gene functions and relationships were determined by Ingenuity Pathway Analysis. Genes and interactions shown in black represent those included on the custom array and directly evaluated for association, while those in gray represent those derived from the linkage studies or other interacting genes. Candidate genes from the custom array associated (p<0.01) with at least one additional endophenotype are highlighted in yellow, and genes identified through linkage analysis are indicated with a red box. Genes from the custom array associated (p<0.01) in with a primary endophenotype in our previous study are indicated with a blue box (Greenwood et al., 2011), and genes identified through linkage analysis of a primary endophenotype are indicated in a green box (Greenwood et al., 2013c). Genes from the custom array associated with a sociated with a green box (Greenwood et al., 2013c).

associated (p<0.01) in our independent case-control sample are identified with an asterisk (*) (Greenwood et al., 2012).

Table 1

Discriminability of the additional measures in the schizophrenia probands and controls and heritability in the 296 families.

		Disc	Discriminability	<u>bility</u>			<u>Heritability</u>	X
	4	Probands	-	Controls				
	Z	$Mean \pm SD$	Z	$Mean \pm SD$	р	Z	$\mathbf{h^2_r} \pm \mathbf{SE}$	P value
Baseline Startle Magnitude (Startle) ^d	241	105.0 ± 70.4	355	95.8 ± 66.6	0.16	821	0.62 ± 0.07	<0.0001
Startle Habituation Difference (Hab-diff)	241	55.9 ± 42.3	354	58.6 ± 45.5	0.03	814	0.37 ± 0.07	<0.0001
Startle Habituation Percent Change (Hab-pct) ^{a}	236	0.6 ± 0.2	352	0.6 ± 0.3	0.21	806	0.16 ± 0.08	0.016
P50 Conditioning Amplitude (P50-S1) a	168	2.7 ± 1.5	252	3.2 ± 1.8	0.21	564	0.39 ± 0.10	<0.0001
N100 Conditioning Amplitude (N100-C1) a	187	-8.0 ± 3.8	156	-8.1 ± 4.0	0.33	702	0.31 ± 0.08	<0.001
CPT, Degraded Stimulus hit rate (DS-CPT-hr) ^d	259	0.7 ± 0.2	376	0.7 ± 0.2	0.22	881	0.25 ± 0.06	<0.001
CPT, Identical Pairs 3-digit d' (CPT-IP-3d) b	245	$\textbf{2.1} \pm \textbf{0.8}$	369	3.0 ± 0.8	1.00	866	0.25 ± 0.06	<0.0001
LNS Immediate Recall (LNS-fwd) b	292	13.0 ± 2.8	385	14.3 ± 2.9	0.51	955	0.50 ± 0.07	<0.0001
CVLT-2 List B Recall (CVLT-B) ^b	288	4.6 ± 2.0	385	6.5 ± 2.2	0.81	949	0.29 ± 0.07	<0.0001
CVLT-2 Long Delay Free Recall (CVLT-delay) b	288	$\textbf{8.8} \pm \textbf{3.8}$	385	12.6 ± 3.0	0.97	949	0.32 ± 0.06	<0.0001
CVLT-2 Semantic Clustering (CVLT-semantic) ^b	288	0.4 ± 1.5	384	2.0 ± 2.5	0.68	947	0.17 ± 0.08	0.005
CVLT-2 Serial Clustering (CVLT-serial)	285	0.7 ± 0.8	383	0.5 ± 1.0	0.09	939	0.18 ± 0.07	0.005
Logical Memory Stories Recall (Stories-recall) b	157	31.4 ± 13.0	240	46.6 ± 11.6	1.06	432	0.51 ± 0.09	<0.001
Age (in years)	296	34.3 ± 10.9	393	35.3 ± 12.5				
Education (in years) b	295	13.6 ± 2.1	391	15.4 ± 2.3				
Wide Range Achievement Test (WRAT)-3 Reading Standard Score b	289	102.4 ± 11.3	383	107.5 ± 10.7				

Schizophr Res. Author manuscript; available in PMC 2017 January 01.

Stories-recall is due to its inclusion midway through the study. While raw data values are presented for the discriminability analyses, all comparisons between schizophrenia probands and controls are based Note that the sample size of each endophenotype varied due to differences in endophenotype-specific exclusion criteria, interpretable data, and availability of data for each measure, and the smaller N for on covariate-adjusted residuals for age, sex, and site as appropriate, except for the comparisons of age, education, and WRAT.

Significant group differences between probands and controls of p<0.005 (^a) and p<0.001 (^b) are indicated. The nine endophenotypes selected for further analysis are indicated in bold. Key: N = number; SD

= standard deviation; d = effect size as Cohen's d; $h^2_{T} = residual heritability after variance due to covariates is removed; SE = standard error.$

Author I
uthor Manuscript
-
Autho
Author Manuscript

Author Manuscript

Author Manuscript

Table 2

Genetic correlations observed between the primary and additional endophenotypes derived from five test paradigms.

	pIdd	Startle	P50- diff ^a	P50- S1	N100- C1	DS- CPT-d ^a	DS- CPT-hr	CPT- IP-3d	LNS- reord ^a	-SNJ	total ^a	CVLT- B	CVLT- delay
Startle	0.11 (0.17)												
P50-diff ^a	-0.03 (0.30)	-0.12 (0.19)											
P50-S1	-0.05 (0.24)	-0.03 (0.15)	0.82^{b} (0.11)										
N100-C1	-0.60^{b} (0.19)	-0.12 (0.14)	-0.22 (0.28)	-0.28 (0.22)									
DS-CPT-d ^a	0.03 (0.18)	0.18 (0.13)	0.30 (0.22)	-0.40 (0.17)	-0.14 (0.17)								
DS-CPT-hr	0.02 (0.21)	0.10 (0.14)	-0.17 (0.27)	-0.33 (0.20)	-0.11 (0.20)	0.96^{b} (0.03)							
CPT-IP-3d	-0.18 (0.23)	0.35 (0.13)	-0.18 (0.25)	0.04 (0.20)	-0.39 (0.20)	0.22 (0.16)	0.10 (0.18)						
LNS-reord ^a	-0.10 (0.19)	0.11 (0.12)	-0.46 (0.26)	-0.28 (0.17)	$\begin{array}{c} 0.01 \\ (0.16) \end{array}$	0.22 (0.14)	0.18 (0.16)	0.32 (0.14)					
LNS-fwd	0.00 (0.17)	0.03 (0.11)	-0.36 (0.20)	-0.15 (0.15)	0.20 (0.15)	0.32 (0.12)	0.28 (0.14)	0.25 (0.14)	0.90^{b}				
CVLT-total ^a	-0.10 (0.21)	0.33 (0.13)	0.18 (0.25)	-0.05 (0.19)	0.03 (0.18)	0.30 (0.15)	0.10 (0.18)	0.24 (0.17)	0.31 (0.06)	0.06 (0.14)			
CVLT-B	-0.30 (0.20)	0.13 (0.13)	-0.25 (0.26)	-0.22 (0.19)	0.28 (0.18)	0.38 (0.15)	0.24 (0.18)	0.09 (0.18)	0.29 (0.16)	0.15 (0.14)	0.84^{b} (0.11)		
CVLT-delay	-0.12 (0.20)	0.17 (0.13)	0.29 (0.24)	$\begin{array}{c} 0.01 \\ (0.18) \end{array}$	$\begin{array}{c} 0.11 \\ (0.18) \end{array}$	0.29 (0.15)	0.26 (0.17)	0.22 (0.17)	0.18 (0.16)	0.01 (0.4)	0.87 ^b (0.07)	0.65 ^b (0.14)	
Stories-recall	-0.05 (0.21)	0.38 ^b (0.12)	-0.11 (0.14)	$\begin{array}{c} 0.15 \\ (0.8) \end{array}$	0.06 (0.19)	0.30 (0.16)	0.26 (0.18)	0.36 (0.18)	0.48^{b} (0.16)	0.12 (0.15)	0.75 ^b (0.14)	0.79^{b} (0.16)	0.55 ^b (0.14)

Schizophr Res. Author manuscript; available in PMC 2017 January 01.

 $b_{\rm Indicates}$ correlations meeting a Bonferroni correction of p=0.004.

 a Indicates the primary endophenotypes.

Table 3

Summary of all chromosomal regions with multipoint LOD scores reaching at least suggestive evidence for linkage.

			S	SOLAR			MERLIN		
Chr	Phenotype	Location (cM)	Peak LOD	\mathbf{P}_{emp}	1-LOD Interval (cM / Mb)	Location (cM)	Peak LOD	1-LOD Interval (CM / Mb)	Genes of Interest
1q41-42	N100-C1	226	2.3	0.0003	216–233 / 211.0–227.8	229	2.2	214–238 / 208.7–231.1	CNIH3, DISCI
4q26	P50-S1	117	1.4	0.0062		120	2.7	118–120 / 114.4–120.1	
5p15	Stories-recall	0.6	2.4	0.0001	0–12 / 0.6–4.9	0.6	2.2	0-9 / 0.6-3.3	SLC6A3/DAT
6q16-21	CPT-IP-3d	102	1.0	0.016		108	2.3	102–111 / 97.2–107.6	GRIK2
6q21-22	CVLT-B	111	2.5	0.0004	106–118 / 102.8–115.9	113	2.5	109–119 / 106.2–117.2	GRIK2, PREP
6q21-22	DS-CPT-hr	108	2.1	0.0007		114	2.3	107–119 / 104.5–117.2	GRIK2, PREP
8p23	TNS-fwd	0	2.5	0.0007	0–18 / 0.4–7.4	7	1.6		DLGAP2, CSMDI
9q22-31	CPT-IP-3d	89	2.4	0.0003	83–119 / 86.3–115.7	111	3.3	105–115 / 104.2–112.8	NTRK2, NXNL2, GRIN3A GABBR2, CTNNALI
9q34	CVLT-B	155	2.2	0.0007	139–160 / 131.4–140.1	150	3.7	148–155 / 135.7–137.2	NTNG2, DBH, GRINI CACNAIB
13q13	DS-CPT-hr	37	1.9	0.0014		43	2.5	35–52 / 37.1–48.3	DGKH, HTR2A
18q21-22	DS-CPT-hr	90	2.0	0.0010		89	2.4	85–94 / 56.8–63.6	
22q11-12	CPT-IP-3d	19	2.4	0.0003	9–29 / 17.8–25.5	24	2.6	13–28 / 20.2–25.5	ADORA2A, ADRBK2

Author Manuscript

receptor A2a; ADRBKZ = beta-adrenergic receptor kinase 2. Note that the region on 4q26 included CAMKZD (calcium/calmodulin-dependent protein kinase II) and 18q21-22 included many genes of the receptor ionotropic, NMDA 1; CACNAIB = calcium channel, voltage-dependent, N type, alpha 1B subunit; DGKH = diacylglycerol kinase eta; HTR2A = serotonin receptor 2A; ADORA2A = adenosine *GRIN3A* = glutamate receptor ionotropic, NMDA 3A; *GABBR2* = GABA receptor B2; *CTNNAL1* = catenin, alpha-like 1; *NTNG2* = netrin G2; *DBH* = dopamine beta-hydroxylase; *GRIN1* = glutamate illness; CNIH3 = cornichon homolog 3; DISC1 = disrupted in schizophrenia 1; SLC6A3/DAT = dopamine transporter; GRIK2 = glutamate receptor ionotropic, kainate 2; PREP = prolyl endopeptidase; DLGAP2 = discs large (Drosophila) homolog-associated protein 2; CSMD1 = CUB and Sushi multiple domains 1; NTRK2 = neurotrophic tyrosine receptor kinase 2; NXNL2 = nucleoredoxin-like 2; serine proteinase inhibitor (SERPIN) and cadherin (CDH) families that are not of obvious functional significance.