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Abstract

The Consortium on the Genetics of Schizophrenia Family Study (COGS-1) has previously 

reported our efforts to characterize the genetic architecture of 12 primary endophenotypes for 

schizophrenia. We now report the characterization of 13 additional measures derived from the 

same endophenotype test paradigms in the COGS-1 families. Nine of the measures were found to 

discriminate between schizophrenia patients and controls, were significantly heritable (31 to 62%), 

and were sufficiently independent of previously assessed endophenotypes, demonstrating utility as 

additional endophenotypes. Genotyping via a custom array of 1536 SNPs from 94 candidate genes 

identified associations for CTNNA2, ERBB4, GRID1, GRID2, GRIK3, GRIK4, GRIN2B, NOS1AP, 

NRG1, and RELN across multiple endophenotypes. An experiment-wide p value of 0.003 

suggested that the associations across all SNPs and endophenotypes collectively exceeded chance. 

Linkage analyses performed using a genome-wide SNP array further identified significant or 

suggestive linkage for six of the candidate endophenotypes, with several genes of interest located 

beneath the linkage peaks (e.g., CSMD1, DISC1, DLGAP2, GRIK2, GRIN3A, and SLC6A3). While 

the partial convergence of the association and linkage likely reflects differences in density of gene 

coverage provided by the distinct genotyping platforms, it is also likely an indication of the 

differential contribution of rare and common variants for some genes and methodological 

differences in detection ability. Still, many of the genes implicated by COGS through 

endophenotypes have been identified by independent studies of common, rare, and de novo 

variation in schizophrenia, all converging on a functional genetic network related to glutamatergic 

neurotransmission that warrants further investigation.

Keywords

endophenotype; genetics; schizophrenia; association; linkage; heritability

1. Introduction

Schizophrenia is a severe psychotic disorder with a lifetime prevalence of approximately 1% 

and an estimated heritability of 60–80% (Karayiorgou and Gogos, 1997; Sullivan, 2005; 

Wray and Gottesman, 2012). The genetic heterogeneity and polygenicity associated with 
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schizophrenia are substantial and have hindered many attempts to confirm initial candidate 

gene associations and to replicate linkage regions across studies (Baron, 2001; Gogos and 

Gerber, 2006; Harrison and Weinberger, 2005; Lewis et al., 2003; Owen et al., 2004). 

Increasingly large genome-wide association studies (GWAS) have begun to provide insight 

into common genetic variants associated with schizophrenia risk, yet the neurobiological 

significance of these variants remains largely unexplored (O'Donovan et al., 2008; 

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Shi et al., 

2009). While most common and rare variants confer small increases in risk for 

schizophrenia, it is likely that risk variants will cluster within a limited number of pathways 

(Purcell et al., 2014; Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014).

Schizophrenia is a profoundly clinically heterogeneous disorder with patients exhibiting a 

broad range of neurobiological deficits and symptom severity, which has further 

complicated efforts to identify genetic risk variants. Recent studies have demonstrated that 

employing more specific phenotype definitions in genetic studies of complex diseases, 

including schizophrenia, is even more important than large sample sizes for detecting true 

genetic associations (Liang and Greenwood, 2015; Manchia et al., 2013). The use of 

endophenotypes as objective measurements related to specific neurobiological functions 

may be particularly useful in reducing the heterogeneity associated with the considerably 

more subjective diagnosis, facilitating the detection of risk variants and aberrant molecular 

pathways (Braff et al., 2007; Gottesman and Gould, 2003; Insel and Cuthbert, 2009). Many 

endophenotypes are also amenable to human neuroimaging and translational animal model 

studies, allowing for direct evaluations of neural circuit dysfunctions and neurobiological 

substrates (Swerdlow et al., 2008; Young et al., 2013).

The Consortium on the Genetics of Schizophrenia Family Study (COGS-1) previously 

reported significant heritability for 12 endophenotypes for schizophrenia, with candidate 

gene association and genome-wide linkage analyses that demonstrate their utility for 

resolving the genetic architecture of schizophrenia (Greenwood et al., 2007; Greenwood et 

al., 2011; Greenwood et al., 2013c). Other analyses of the COGS-1 sample suggested 

additional measures for several endophenotype domains that may provide complementary 

information (Horan et al., 2008; Olincy et al., 2010; Stone et al., 2011; Swerdlow et al., 

2007; Turetsky et al., 2008), yet these measures have remained uncharacterized for their 

genetic contributions in this sample. We now report the significant heritability of nine new 

candidate endophenotypes derived from the same original endophenotype test paradigms 

that provide complementary information. These measures include pulse-alone startle 

magnitude, P50 conditioning amplitude, N100 conditioning amplitude, Degraded-Stimulus 

Continuous Performance Test (DS-CPT) hit rate, CPT Identical Pairs (CPT-IP) 3-digit d’, 

Letter-Number Span (LNS) forward, California Verbal Learning Test, Second Edition, 

(CVLT-II) list B and delayed recall, and Logical Memory Stories total recall. For these 

measures, we also evaluated association using the COGS SNP Chip, a custom array that 

incorporates common variants in genes involved in pathways hypothesized to underlie 

schizophrenia risk, and linkage using a genome-wide SNP linkage panel to assess the joint 

impact of rare and common variation on the candidate endophenotypes.
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2. Methods

Ascertainment, genotyping, and analysis methods are provided in brief below with full 

methods available in the Supplement and elsewhere (Calkins et al., 2007; Greenwood et al., 

2011; Greenwood et al., 2013c).

2.1 Subjects

Families were ascertained at seven sites through probands who met DSM-IV-TR criteria for 

schizophrenia (American Psychiatric Association, 2000). Each family minimally consisted 

of a proband with schizophrenia, an unaffected sibling, and both parents. Unrelated 

community comparison subjects without personal or family history of psychosis were also 

recruited. Only those without history of any Axis I or Cluster A personality disorder were 

considered as controls here. All subjects underwent a standardized clinical assessment using 

the Diagnostic Interview for Genetic Studies (DIGS) (Nurnberger et al., 1994). Details of 

the ascertainment, diagnostic, and screening procedures are provided elsewhere (Calkins et 

al., 2007). Written informed consent was obtained for each subject per local IRB protocols. 

The final COGS-1 dataset of 296 families consisted of 1,364 subjects, 1,004 of whom were 

characterized for the endophenotype paradigms. While most families (62%) consisted of the 

minimum discordant sibling pair and both parents, the remaining 38% represented larger 

families. The majority of subjects (89%) were confirmed to be of European ancestry.

2.2 Neurophysiological and Neurocognitive Measures

Detailed descriptions of the rationale and assessment procedures for all COGS-1 test 

paradigms and the heritability assessments of the 12 primary endophenotypes have been 

published (Greenwood et al., 2007; Gur et al., 2007; Turetsky et al., 2007). The two 

neurophysiological and three neurocognitive test paradigms administered yielded various 

quantitative measures in addition to the primary endophenotypes, from which 13 measures 

were selected for further validation as candidate endophenotypes as described below. These 

measures had previously shown promise as endophenotypes in COGS-1, and most have also 

demonstrated good test-retest reliability in an independent sample (Light et al., 2012).

While prepulse inhibition of startle at 60 msec was our primary endophenotype, we assessed 

pulse-alone startle magnitude on non-prepulse trials and both the difference and percent 

startle habituation from the first to final block of testing as additional measures (Swerdlow 

et al., 2007). The primary endophenotype of P50 suppression was the difference in 

amplitudes of the event-related potentials generated in response to the conditioning (S1) and 

test stimuli, and the S1 amplitude was considered an additional measure (Olincy et al., 

2010). N100 amplitude was also derived from the P50 paradigm and measured as the 

minimum trough occurring 75–125 ms post-stimulus. Only the N100 conditioning (C1) 

amplitude was considered based on initial investigations in a subset of this sample (Turetsky 

et al., 2008).

We used two forms of the CPT to measure sustained, focused attention, one with a high 

perceptual load (DS-CPT) (Nuechterlein et al., 1983) and one with a working-memory load 

(CPT-IP) (Cornblatt et al., 1988). For the DS-CPT, the primary endophenotype was a signal/
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noise discrimination index (d’) derived from correct target detections (hit rate) and incorrect 

responses to nontargets, and hit rate was considered an additional measure. For the CPT-IP, 

3-digit d’ was considered an additional measure. The LNS was used to assess working 

memory with the primary endophenotype considered as the correct reordering of intermixed 

numbers and letters and a simple repetition in the order dictated (forward) considered as an 

additional measure (Horan et al., 2008). We used the CVLT-II to assess verbal learning and 

memory (Stone et al., 2011), and considered the immediate recall of items from list A 

summed over 5 trials (list A total score) as the primary endophenotype. Additional measures 

included list B immediate recall, the free recall of list A after a 20-minute delay, and recall 

of list A items via sematic and serial clustering. The Logical Memory Test from the 

Wechsler Memory Scale was added midway through the COGS-1 study as an verbal 

learning and memory task, and total story recall was considered an additional measure 

(Wechsler, 1997).

2.3 Genotyping

A subset of 534 subjects from 130 families was previously genotyped for the COGS SNP 

Chip, which contains 1,536 SNPs within 94 candidate genes for schizophrenia and is 

described in detail elsewhere (Greenwood et al., 2011). The final set of 1,380 SNPs had an 

average gene-centric physical spacing of 10kb with variance due to linkage disequilibrium. 

The complete sample of 296 COGS-1 families were genotyped in two phases for the 

Illumina Infinium HumanLinkage-12 and −24 panels and underwent an extensive quality 

control process. The final 6,023 SNPs had an average physical spacing of 512 kb and an 

average genetic spacing of 0.65 cM.

2.4 Statistical Analyses

Assessments of mean differences between schizophrenia probands and controls used 

covariate adjusted residuals for age at interview, sex, and site of ascertainment as required 

based on endophenotype correlations and verified by the heritability analyses. Effect sizes 

were calculated using Cohen's d (i.e., standard deviation units).

Association analyses were conducted using the variance components method in MERLIN v.

1.1.2 with adjustment for age, sex, and ancestry, consistent with previous methods (Abecasis 

et al., 2002; Greenwood et al., 2011). Data were available on average for 395±53 subjects 

across the measures. Stories recall could not be evaluated for association because it was 

added midway through the study, and data was only available for 98 genotyped subjects. 

The effective number of independent SNPs tested was determined to be 977, with a 

corresponding Bonferroni correction for multiple comparisons of p=5×10−5 for a given 

endophenotype (Nyholt, 2004). A similar Bonferroni correction for multiple phenotypes 

would be overly conservative, given the observed between-endophenotype correlations. We 

therefore implemented the bootstrap Total Significance Test to evaluate whether the 

observed associations for all SNPs and endophenotypes combined significantly exceeded 

what would be expected by chance, given the 11,040 total tests (1,380 SNPs and 8 candidate 

endophenotypes). The resultant p-value was designed to collectively evaluate the strongest 

results in the data and provide an a posteriori predictive value for each genotype-

endophenotype association. The Total Significance Test conditions simultaneously on all 
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observed correlations among endophenotypes; among SNPs; and among related individuals 

within each family to correct for multiple testing using a null-resampling form of the 

bootstrap, (Greenwood et al., 2011). This method has been demonstrated to appropriately 

control type I error, while reducing type II error (Hall and Wilson, 1991; Martin, 2007).

The heritability and linkage analyses were conducted according to previously established 

methods (Greenwood et al., 2013c). Briefly, heritability estimates, genetic correlations, and 

two-point log of the odds ratio (LOD) scores were calculated for each candidate 

endophenotype using the variance components method in SOLAR v.4.3.1 (Almasy and 

Blangero, 1998; Almasy et al., 1997). Multipoint LOD scores were computed using both 

variance components and pedigree-wide regression methods in SOLAR and MERLIN, as 

each has favorable properties (Almasy and Blangero, 1998; Schork and Greenwood, 2004; 

Sham et al., 2002). Empirical p values were estimated from 10,000 replicates (Blangero et 

al., 2000). All analyses used normalized trait values, an ascertainment correction (see 

Supplement), and covariate adjustment for age, sex, and/or site as appropriate. Only regions 

of convergent linkage between the two methods were considered, where at least one met 

standard criteria for significant or suggestive linkage (LOD >3.6 or 2.2, respectively) 

(Lander and Kruglyak, 1995) and the other either produced a LOD ≥1.0 within 5cM or a 

significantly overlapping 1-LOD interval.

3. Results

3.1 Discriminability, Heritability, and Genetic Relationships of the Additional Measures

Table 1 displays the means and standard deviations for each additional measure in the 

schizophrenia probands and control subjects. Large effect sizes (>0.8) were observed for 

CPT-IP-3d and all verbal learning measures, with LNS-fwd displaying a medium effect size. 

Significant heritability estimates were observed for all 13 additional measures, with most in 

the moderate to substantial range (25–62%). Since many measures are derived from the 

same test paradigm, we used a combination of strength of the heritability estimate and effect 

size to reduce the number of candidate endophenotypes for further study. Four measures 

were thus eliminated for poor discriminability (Hab-diff and CVLT-serial) and/or low 

heritability (Hab-pct and CVLT-semantic). Startle displayed a minimal effect size (0.16) but 

had highest heritability (62%) of all additional measures and was thus retained for further 

evaluation.

Table 2 shows the observed genetic correlations between the selected nine candidate 

endophenotypes and their primary counterparts. Startle was not significantly correlated with 

PPI, nor was N100-C1 correlated with the P50 difference score, so these candidate 

endophenotypes represent independent measures. P50-S1 and DS-CPT-hr were highly 

correlated with P50 difference and DS-CPT d’, respectively, which is expected as these 

candidate endophenotypes are used to calculate their primary endophenotype counterparts 

and therefore not independent measures, although they may capture novel information. 

However, CPT-IP-3d was not significantly correlated with either measure from the DS-CPT, 

validating that the CPT-IP is an independent measure of attention. The two LNS 

endophenotypes were highly correlated, and the CVLT total score was correlated with all 

three candidate verbal learning endophenotypes, which were also significantly correlated.
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3.2 Candidate Gene Association Analyses

The COGS SNP Chip provides excellent coverage of most pre-GWAS schizophrenia 

candidate genes and many genes from putatively important pathways (Greenwood et al., 

2011). Analysis of the candidate endophenotypes collectively revealed associations to 40 of 

the 94 genes with a cluster in the glutamate pathway, one of seven biological pathways 

specifically targeted by the custom array (see Figure S1). Figure 1 provides a gene-wise 

association summary and highlights associations across multiple domains (see Table S1 for 

individual SNP p values). Ten genes displayed extensive evidence for pleiotropy with 

associations to three or more candidate endophenotypes, including ERBB4, NRG1, RELN, 

and several genes related to glutamate signaling.

The most significant finding was for rs4646316 in COMT with CPT-IP-3d, which gave a p 

value of 4.6×10−5 and explained 4.7% of the variation. An additional 20 SNPs had p values 

<0.001, and 124 SNPs had p values <0.01. Association was observed to three 

nonsynonymous SNPs: GRM1 Gly884Glu with CVLT-delay (p=0.003, 2.6% of the 

variation), NRG1 Arg38Gln with CVLT-delay and CVLT-B (p=9.1×10−4 and 0.004, 

respectively; 3.2% and 2.4% of the variation, respectively), and TAAR6 Val265Ile with DS-

CPT-hr (p=3.6×10−4, 3.7% of the variation). Given the prior associations of the GRM1 and 

NRG1 variants with CVLT total score and the TAAR6 variant with DS-CPT d’, these 

associations likely reflect a portion of the shared genetic component between the primary 

and candidate endophenotypes (Greenwood et al., 2011). Of the 40 genes on the COGS SNP 

Chip with prior evidence of association with schizophrenia, 17 were associated with at least 

one of the candidate endophenotypes: COMT, DAOA, DGCR2, DISC1, DRD3, DTNBP1, 

ERBB4, GRID1, GRIK3, GRIK4, GRIN2B, GRM4, NRG1, PRODH, SLC1A2, SP4, TAAR6, 

and ZDHHC8, including five SNPs with prior association to schizophrenia (Fallin et al., 

2005; Funke et al., 2004; Liu et al., 2006; Mukai et al., 2004; Shifman et al., 2006; Stefanis 

et al., 2007).

The collective results across all SNPs and candidate endophenotypes were highly significant 

according to the bootstrap Total Significance Test analysis. After controlling for linkage 

disequilibrium patterns, phenotypic correlations, family structure, gene size, and multiple 

testing of both SNPs and endophenotypes, an experiment-wide omnibus p value of 0.003 

was obtained. Furthermore, 247 SNP-endophenotype associations involving 59 genes and 

eight candidate endophenotypes were strong enough to satisfy the omnibus 0.05 significance 

level (see Table S2). These results demonstrate that the findings in Figure 1 exceed what 

would be expected by chance alone.

3.3 Genome-wide SNP Linkage Analyses

As shown in Figure 2 and summarized in Table 3, the linkage analyses collectively 

identified 12 regions of convergent linkage between the two methods (see complete results 

in Table S3). Note that all linkage peaks identified for the candidate endophenotypes 

represent novel findings within COGS-1 that were not identified by the primary 

endophenotypes, with the exception of 5p15 observed for PPI and Stories-recall (see Table 

S4).
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Significant evidence for linkage was observed for CVLT-B on 9q34, with several neuronally 

expressed genes located in this gene-dense region. DBH and GRIN1 are excellent functional 

candidates that have shown association with neurophysiological or neurocognitive 

endophenotypes in our prior studies of two independent samples (Greenwood et al., 2011; 

Greenwood et al., 2012). Although DBH was only nominally associated (p<0.05) with 

CVLT-B in this study, this association did involve four SNPs (see Table S2). NTNG2 

promotes neurite outgrowth and provides an interesting alternative, as does CACNA1B, 

given the implication of calcium channels in psychosis (Psychiatric GWAS Consortium 

Bipolar Disorder Working Group, 2011; Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014). Highly suggestive linkage to 9q22–31 was observed for CPT-

IP-3d. Several interesting genes are located beneath this peak, including NTRK2 and 

CTNNAL1, a paralog of CTNNA2, which revealed associations with CPT-IP-3d and several 

endophenotypes in our prior studies of two independent samples. Finally, GRIN3A is located 

beneath this peak and provides an excellent candidate gene, given the associations with 

several endophenotypes for schizophrenia across studies (Greenwood et al., 2011; Ohi et al., 

2015), although it was only nominally associated with CPT-IP-3d in this study.

Suggestive evidence for linkage under both models was observed for four regions. CNIH3 

and DISC1 are located beneath the peak on 1q41-42 for N100-C1. DISC1 is of obvious 

relevance, given its history as a candidate gene for schizophrenia, and SNPs in this gene 

were associated with several endophenotypes in our prior studies of two independent 

samples. While DISC1 was only nominally associated with N100-C1 in this study, the 

association signal derived from five SNPs. CNIH3 is an auxiliary receptor subunit that 

regulates the trafficking and gating of AMPA-selective glutamate receptors, with 

upregulated expression in schizophrenia patients (Drummond et al., 2012). Interestingly, 

CNIH3 is found in a complex with CACNG2, which is associated with several 

neurocognitive endophenotypes (Greenwood et al., 2012). Although the region on 5p15 with 

linkage to Stories-recall is very gene-dense, the dopamine transporter (SLC6A3) lies closest 

to the peak and has shown evidence of association and linkage with PPI and startle 

habituation (Greenwood et al., 2012; Greenwood et al., 2013c), schizophrenia (Stober et al., 

2006), bipolar disorder (Greenwood et al., 2001; Greenwood et al., 2006), and several 

neurocognitive endophenotypes (Greenwood et al., 2011). Unfortunately, we were unable to 

evaluate Stories-recall for association with the custom array. ADORA2A and ADRBK2 lie 

closest to the peak on 22q11-12, but neither was associated with any endophenotype in this 

study, nor in our previous assessments, suggesting that either rare variants in these genes or 

other genes in the region are contributing to the linkage signal. PREP and GRIK2 are located 

beneath the peak on 6q21-22 observed for both CVLT-B and DS-CPT-hr. PREP encodes 

prolyl endopeptidase, a serine proteinase with lower activity in patients with major 

depression and increased activity in patients with mania and schizophrenia (Maes et al., 

1995). Interestingly, CPT-IP-3d produced suggestive linkage under the regression model to 

6q16-21 with GRIK2 as the nearest gene of interest. While GRIK2 was not evaluated for 

association, functionally related genes GRIK3 and GRIK4 were associated with DS-CPT-hr, 

CPT-IP-3d, and CVLT-B. Furthermore, GRIK2 interacts with both DLG4 (Garcia et al., 

1998; Mehta et al., 2001), which was associated with DS-CPT-hr, and GRID2 (Kohda et al., 

2003), which was associated with CVLT-B and CPT-IP-3d.
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Four other regions yielded suggestive linkage under one model with modest support from 

the other. DLGAP2 and CSMD1 are located beneath the 8p23 peak for LNS-fwd. DLGAP2 

may play a role in synapse organization and signaling in neuronal cells and interacts with 

DLG4, which was associated with LNS-fwd. DGKH and HTR2A are located beneath the 

13q13 peak for DS-CPT-hr. HTR2A was associated with several neurocognitive 

endophenotypes (Greenwood et al., 2011).

4. Discussion

Investigations of endophenotypes that quantitatively measure crucial neurobiological 

processes that are deficient in schizophrenia may facilitate the identification of genes 

contributing to risk for the disorder. We have further validated nine of the 13 additional 

measures that were assessed, demonstrating behavioral deficits in schizophrenia patients 

versus controls and significant heritability. The heritability estimates for these additional 

schizophrenia endophenotypes range from moderate to substantial (25–62%), consistent 

with our previous reports of heritability for the primary endophenotypes for COGS-1 and 

with the heritability of schizophrenia itself in this cohort (Light et al., 2014). The additional 

endophenotypes also produced independent genetic signals in both the association and 

linkage analyses (see Figure S2 and Table S4), confirming their utility to further explore the 

genomic influences on the aberrant neurobiology of schizophrenia by providing 

complementary information.

We expected that some genes would contribute to the variance in multiple endophenotypes, 

particularly those that are genetically correlated. Additionally, some genes, like NRG1, are 

involved in neurodevelopment and may impact more than one domain. Eight genes 

displayed pleiotropic associations in both the primary and additional endophenotype 

analyses and were also pleiotropic in our independent case-control study of many of the 

same endophenotypes: CTNNA2, ERBB4, GRID2, GRIK3, GRIK4, NOS1AP, NRG1, and 

RELN (Greenwood et al., 2011; Greenwood et al., 2012). The consistent observation of 

pleiotropic associations across multiple endophenotypes in two independent samples 

suggests a role for these genes in schizophrenia risk.

The linkage analyses identified 12 regions of genome-wide significant or suggestive linkage, 

with candidate genes DBH, DISC1, GRIN1, GRIN3A, HTR2A, and SLC6A3 located beneath 

the linkage peaks, all of which displayed also pleiotropic associations across the COGS-1 

primary endophenotypes (Greenwood et al., 2011). Other genes beneath the peaks, including 

CNIH3, CSMD1, DGKH, DLGAP2, GRIK2, NTNG2, and NTRK2, have been implicated in 

schizophrenia or bipolar disorder (Aoki-Suzuki et al., 2005; Baum et al., 2008; Drummond 

et al., 2012; Greenwood et al., 2013a; Greenwood et al., 2013b; Schizophrenia Working 

Group of the Psychiatric Genomics Consortium, 2014; Smith et al., 2009). Several of these 

linkage regions have repeatedly been implicated in schizophrenia, including 1q42, 6q21-22, 

and 22q11-12 (Blackwood et al., 2001; Cao et al., 1997; Coon et al., 1994; DeLisi et al., 

2002; Ekelund et al., 2000; Gill et al., 1996; Hamshere et al., 2005; Levinson et al., 2000; 

Lewis et al., 2003; Martinez et al., 1999; Millar et al., 2000).
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Most of the genes displaying pleiotropic associations across endophenotype domains are 

involved either directly or indirectly in glutamate signaling, and several of the genes 

identified through linkage also relate to glutamate signaling. Figure 3 details the molecular 

interactions of a subset of the genes present on the custom array, as well as those implicated 

by linkage, revealing a functional network of genes related to glutamate and neuregulin 

signaling. The association results from the primary COGS-1 endophenotypes (Greenwood et 

al., 2011) and those of our independent case-control sample (Greenwood et al., 2012) 

provide additional support for this gene network. Recent studies of both common and rare 

variants in schizophrenia have also implicated genes involved in glutamatergic 

neurotransmission and synaptic plasticity (Kirov et al., 2012; Ohi et al., 2015; Purcell et al., 

2014; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Walsh 

et al., 2008), most of which converge on the functional gene network in Figure 3. For 

example, common variants in genes involved in glutamatergic signaling were implicated 

both by a recent large GWAS of schizophrenia conducted by the Psychiatric Genomics 

Consortium and a GWAS of cognitive endophenotypes for schizophrenia, with specific 

associations to ATXN7, CSMD1, CHRNA4, CHRNA3, GRIN2A, GRIN3A, and GRM3 (Ohi et 

al., 2015; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). 

Other studies have shown a significant burden of rare variants in DGKH, GRIN1, GRIN3A, 

and SLC1A2 in schizophrenia patients (Fiorentino et al., 2014; Purcell et al., 2014), a 

disproportionate disruption of genes in the neuregulin and glutamate pathways in 

schizophrenia (Walsh et al., 2008), and de novo variants in CSMD1, CTNNA2, DBH, DISC1, 

DLGAP2, GRID2, GRIN2B, HTR2A, RELN, and SLC6A3 in schizophrenia and related 

disorders (de Ligt et al., 2012; Fromer et al., 2014; Guilmatre et al., 2009; Iossifov et al., 

2012; Li et al., 2014; Neale et al., 2012; O'Roak et al., 2012; Rauch et al., 2012; Sanders et 

al., 2012). These studies of rare and de novo variation thus provide independent evidence in 

support of many of the same genes identified by COGS-1 using common variants and 

endophenotypes. Collectively, these results support a strong role for genes involved in 

glutamate signaling in mediating schizophrenia susceptibility, consistent with the glutamate 

hypothesis (Coyle, 2006; Sodhi et al., 2008). Combined with a growing body of literature, 

the repeated associations of NRG1 and ERBB4 with multiple endophenotypes suggest the 

importance of neuregulin-mediated ErbB4 signaling in the pathophysiology of schizophrenia 

(Corvin et al., 2004; Hall et al., 2006; Silberberg et al., 2006; Stefansson et al., 2002; 

Williams et al., 2003).

The partial convergence between genes implicated by association and linkage likely reflects 

a number of factors. First, the gene coverage provided by the two platforms differed notably, 

with an average gene-centric density of 10kb for the custom array versus an average of 

500kb for the linkage array. Thus, the linkage array generally did not provide adequate 

coverage of the candidate genes. Additionally, the regions implicated by linkage are very 

large, and the true signal may derive from another gene in the region, despite our efforts to 

prioritize genes of interest based on two-point linkage results and prior evidence for 

involvement in schizophrenia. This is a common problem in the interpretation of linkage 

data and can be resolved through the use of a higher density genome-wide array. 

Alternatively, the divergence for some genes may be an indication of the differential 

contributions of rare and common variants in different families or differences in the ability 
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of association and linkage methodologies to detect such variants. One would expect to find 

both rare and common variants in genes and pathways impacting SZ risk, and we indeed 

find evidence for this here with linkage and association results converging on the same 

functional network, a finding that is supported by independent studies of common, rare, and 

de novo variation in schizophrenia.

There are a number of applicable caveats. First, the two COGS-1 ascertainment 

requirements of siblings discordant for schizophrenia, which was intended to increase 

variation in the endophenotypes, and intact families of willing participants may have 

produced a sample with less genetic loading for pathological endophenotype values, 

resulting in an underestimation of heritability. Second, while we used the Total Significance 

Test to provide a robust correction for multiple comparisons in the association analyses, 

similar corrections for linkage are less straightforward and are complicated by the 

phenotypic correlations. Third, these studies suggest additional endophenotypes for 

schizophrenia that will require validation in other samples. Finally, our sample of nuclear 

families lacks sufficient power to reliably detect loci with smaller effects, independent of 

heritability. Still, we identified several genes and genomic regions related to these new 

endophenotypes, many of which have been previously implicated in studies of common and 

rare variation in schizophrenia and thus warrant further investigation.

Our data thus provide significant evidence of discriminability and heritability for nine novel 

neurophysiological and neurocognitive endophenotypes for schizophrenia. Using these 

additional endophenotypes, we demonstrated association and linkage with many 

functionally relevant genes. The degree of genetic heterogeneity associated with 

schizophrenia is substantial, with contributions of common, rare, and de novo variants, as 

well as epigenetic and environmental factors. However, results across many studies are 

beginning to converge on genetic pathways and associated neural circuits leading to the 

dysfunction associated with illness. This endophenotype strategy can thus lead to a better 

understanding of the underlying causes of schizophrenia and ultimately to optimal treatment 

strategies by placing genomic variation in a neurobiologically relevant context (Braff, 2015; 

Glahn et al., 2014; Insel and Cuthbert, 2009).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary of the candidate gene association results in the 130 families. The most significant 

p-value observed for each of the 39 genes with each of the eight candidate endophenotypes 

is shown using a minimum p-value of <0.01 as a threshold. Note that not all associations to 

the same gene across endophenotypes reflect associations to the same SNP, although many 

do. Genes associated with three or more endophenotypes are indicated in bold. An asterisk 

(*) indicates that at least one SNP in the gene associated with the specified phenotype has 

been previously associated with schizophrenia as follows: rs807759 in DGCR2 (Shifman et 

al., 2006), rs2793092 in DISC1 (Liu et al., 2006), rs1018381 in DTNBP1 (Funke et al., 

2004; Stefanis et al., 2007), rs2814351 in GRID1 (Fallin et al., 2005), and rs175174 in 

ZDHHC8 (Mukai et al., 2004). The two SNPs in DTNBP1 are >100kb apart and represent 

two independent associations with startle but not N100-C1 where only rs1040410 is 

associated. Note that Stories-recall could not be evaluated for association with the custom 

array because data for this endophenotype was only present in 98 subjects from 29 of the 

130 genotyped families.
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Figure 2. 
Results of the genome-wide SNP linkage scan in the 296 families for each of the 9 candidate 

endophenotypes. The variance components multipoint results are shown in red, the pedigree-

wide regression multipoint results are shown in blue, and the variance components two-point 

results are shown in grey. LOD scores are indicated on the y-axis, along with the name of 

the corresponding endophenotype. Chromosomes are aligned along the x-axis end to end 

with the p-terminus on the left and locations indicated at the top of the figure. Dashed 
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horizontal lines indicate genome-wide significant and suggestive LOD scores of 3.6 and 2.2, 

respectively.
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Figure 3. 
Pathway analysis of the genes identified through association and linkage. Genes are 

represented as nodes, and the molecular interactions between nodes are represented by lines 

and arrows, with solid lines representing direct protein-protein or protein-DNA interactions, 

solid arrows representing phosphorylation, and dashed arrows representing indirect effects 

on expression, activation, or inhibition. Gene functions and relationships were determined 

by Ingenuity Pathway Analysis. Genes and interactions shown in black represent those 

included on the custom array and directly evaluated for association, while those in gray 

represent those derived from the linkage studies or other interacting genes. Candidate genes 

from the custom array associated (p<0.01) with at least one additional endophenotype are 

highlighted in yellow, and genes identified through linkage analysis are indicated with a red 

box. Genes from the custom array associated (p<0.01) in with a primary endophenotype in 

our previous study are indicated with a blue box (Greenwood et al., 2011), and genes 

identified through linkage analysis of a primary endophenotype are indicated in a green box 

(Greenwood et al., 2013c). Genes from the custom array associated with ≥3 additional 

endophenotypes or ≥3 primary endophenotypes are shown in bold, and those further 
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associated (p<0.01) in our independent case-control sample are identified with an asterisk 

(*) (Greenwood et al., 2012).
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