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ABSTRACT OF THE DISSERTATION

Understanding the role of statistics in the predictive processing of

language

by

James A. Michaelov

Doctor of Philosophy in Cognitive Science with a Specialization in Anthropogeny

University of California San Diego, 2024

Professor Benjamin K. Bergen, Chair

In recent years, converging evidence has suggested that prediction plays a role

in language comprehension, as it appears to do in information processing in a range of

cognitive domains. Much of the evidence for this comes from the N400, a neural index of

the processing of meaningful stimuli which has been argued to index the extent to which a

word was predicted before it was encountered. The main aim of this thesis is to investigate

the extent to which this prediction can be explained as arising from the statistics of the

linguistic inputs we receive over the course of our lives, in line with predictive processing

in other cognitive domains. To do this, I turn to language models—computational systems

xxiv



that can calculate the probability of a word given its context based on the statistics of

language—and investigate how well their predictions correlate with the N400. The results

show that probabilities calculated using language models are highly correlated with N400

amplitude, in many cases better than human-derived metrics such as cloze probability and

plausibility, previously the best predictors of the N400. I also show that language model

probabilities are able to qualitatively model a wide range of effects, showing significant dif-

ferences based on the same experimental manipulations that lead to significant differences

in N400 amplitude. In addition, the results show that language models that are better able

to predict the next word in a sequence are better able to model N400 amplitude in both of

these ways, showing both a closer fit to the data and more of the qualitative effects. Taken

together, these results show a high degree of correlation between the N400 and predictions

based on the statistics of language, consistent with the idea that the predictions indexed

by the N400 are at least partly based on language statistics.
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Chapter 1

Introduction

The idea that we proactively form expectations about upcoming stimuli has a

long history (see, e.g., von Helmholtz, 1867; Bruner, 1951; Postman, 1951; Sanders, 1966).

However, it is only in the last few decades that the evidence has mounted up in favor

of the idea that prediction plays a role in the processing of stimuli in a wide range of

cognitive domains, in particular vision (e.g., Rao and Ballard, 1999; Lee and Mumford,

2003; Summerfield et al., 2008; Alink et al., 2010; Egner et al., 2010; Girshick et al., 2011;

Wyart et al., 2012; Kok et al., 2013) and audition (e.g. Wacongne et al., 2011; Rubin

et al., 2016; Parras et al., 2017; Wacongne et al., 2011). A key element of many of these

contemporary accounts of predictive processing is their convergence upon the idea that

perception is the act of matching hierarchically-organized predictions about the world

with our sensory inputs, and that we are constantly updating our representations to align

better with these inputs, a theory known as predictive coding (for reviews, see, e.g., Rao

and Ballard, 1999; Friston, 2005; Huang and Rao, 2011; Clark, 2013; de Lange et al., 2018).

A core component of the predictive coding account, therefore, is that our predic-

tions are based on our previous experiences, and thus reflect statistical regularities—both
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those of the recent past and over our lifetimes. Predictions based on previous experience

over our lifetime are generally observed in the domain of vision through optical illusions

and biases. For example, it is often argued that because the reason why the majority of

gradient-filled circles in Figure 1.1 are generally perceived as a convex ‘bump’ and the

central circle as a concave ‘dimple’ is that light tends to fall from above rather than below,

and thus, if the gradient-filled circles were indeed three-dimensional, ‘bumps’ and ‘dimples’

would appear in this way (for review, see, e.g., Seriès and Seitz, 2013; de Lange et al., 2018).

Similarly, it has been shown that the degree to which we over-estimate the orientations of

shapes to be cardinal (i.e., horizontal or vertical) is correlated with the (high) proportion

of cardinal orientations in the real world compared to other orientations (Girshick et al.,

2011).

Prediction based on regularities in the recent past can also observed in experi-

mental contexts. In experiments where participants are trained on sequences of sounds,

images, or a combination of the two, researchers observe reduced neural activity in cases

where an expected stimulus occurs, and in cases where such an stimulus does not occur,

observe activity resembling that which would be elicited by the expected stimulus (Egner

et al., 2010; Todorovic and de Lange, 2012; Kok et al., 2012; Ekman et al., 2017; Wacongne

et al., 2011).

The aim of this thesis is to investigate the extent to which prediction based on

the statistics of past experience can explain processing in a different cognitive domain—

language. Stated directly, the thesis addresses the following question: to what extent

does the evidence support the idea that prediction based on the statistics of

language occurs as part of the process of language comprehension?

The general question of whether prediction occurs as part of language compre-

hension has been debated for decades (for reviews, see, e.g., Van Petten and Luka, 2012;
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Figure 1.1: An illustration of how light-to-dark and dark-to-light gradients can lead to
the illusion of a concave or convex surface. All figures in this chapter were created using
draw.io (JGraph, 2024).

DeLong et al., 2014b; Luke and Christianson, 2016). One traditional argument oppos-

ing the idea observes that there are infinite possible continuations of a given sentence,

which intuitively would make prediction (at least of a single candidate) needlessly costly

(Forster, 1981; Jackendoff, 2002). However, it has long been known that words that are

more congruous with their context or that have a higher contextual probability—generally

operationalized as cloze probability, the proportion of people to fill in a gap in a sentence

with a specific word (Taylor, 1953, 1957)—are read more quickly and recognized more easily

than words that are not (see, e.g., Tulving and Gold, 1963; Miller and Isard, 1963; Fischler
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and Bloom, 1979; Kutas and Hillyard, 1984). While strictly speaking, such results only

directly indicate that words that are more contextually predictable are easier to process,

the effect and its reliability have been argued to indicate that words and their meanings

are predicted by the language comprehension system (Tulving and Gold, 1963; Luke and

Christianson, 2016; Brothers and Kuperberg, 2021).

Stronger evidence for prediction occurring as part of the process of language

comprehension comes from research on the N400, a neural index of processing. The N400 is

a negative-going component of the event-related brain potential (ERP) that peaks roughly

400ms after the presentation of a meaningful stimulus such as a word. The N400 is described

by Kutas and Federmeier (2011) in the following way:

“The N400 window [...] provides a temporally delimited electrical snapshot
of the intersection of a feedforward flow of stimulus-driven activity with a state
of the distributed, dynamically active neural landscape that is semantic memory
[...] a broad, multimodal neural network, whose current states have been shaped
by recent and long-term experience of a wide range of types (e.g., based on
world experience, long-standing and recent linguistic and nonlinguistic inputs,
attentional states, and affect/mood).”

Mechanistically, then, the N400 can be thought of as reflecting the stimulus-driven acti-

vation of representations in long-term memory, which is reduced to the extent that these

representations are already activated at the time at which the stimulus was encountered

(Kutas and Federmeier, 2011; Van Petten and Luka, 2012; Federmeier, 2021). And gener-

ally, this preactivation of representations is considered to arise due the context preceding

the stimulus (Kutas and Federmeier, 2011; Van Petten and Luka, 2012; DeLong et al.,

2014b; Federmeier, 2021; DeLong and Kutas, 2020; Kuperberg et al., 2020). While this

has not always been the case (see, e.g., Brown and Hagoort, 1993; Holcomb, 1993; van

den Brink and Hagoort, 2004, for an example of an alternative theory), this mechanistic

description of the N400 is compatible with the majority of contemporary accounts of the
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N400, whether they specifically focus on the retrieval of access of semantic information in

long-term memory (e.g., Kutas and Federmeier, 2000; Brouwer et al., 2012; Federmeier,

2021) or on the divergence between predictions and the actual stimulus encountered (Ku-

perberg et al., 2020, i.e., prediction error; see, e.g.,). Crucially, then, whether or not the

N400 should be considered signal of prediction error (as in, e.g., Fitz and Chang, 2019;

Hodapp and Rabovsky, 2021; Kuperberg et al., 2020), the fact that it is sensitive to the

preactivation of a stimulus means that if preactivation at least partly arises due to predic-

tion, the effects of prediction should be detectable in the N400. In other words, the N400

is a reliable index of prediction, whether or not this what it primarily indexes.

Under this framing of the N400, predictability effects—the fact that words with a

higher cloze probability elicit smaller N400s than lower-cloze words—become more direct

evidence for prediction in language comprehension than they do in the case of reading

time. This is because, with the N400, such results suggest that words are preactivated in a

way that is highly correlated with their predictability, and thus, unless there are confounds

(for detailed discussion of this, see Chapter 8), this points to prediction. Indeed, there is

evidence both specifically for prediction of the semantic content of words as well as specific

words and their linguistic features. One such piece of evidence is the related anomaly

effect, where words that are semantically related to the highest-probability continuation

to a sentence elicit smaller N400s than unrelated words, even when they are not more

appropriate sentence continuations (Federmeier and Kutas, 1999; Amsel et al., 2015; Ito

et al., 2016; DeLong et al., 2019). For example, DeLong et al. (2019) find that following

a context such as the bartender chilled the champagne over some, where the highest-cloze

continuation is ice, words related to this continuation such as hockey elicit smaller N400s

than unrelated words like tricks.

There are also several examples of the prediction of linguistic features. Perhaps
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the best-known effect of this kind is the finding that articles elicit a smaller N400 response

if they are congruent with a more predictable noun than an unpredictable one. Specifically,

DeLong et al. (2005) find that for sentences such as the day was breezy so the boy went out-

side to fly where there is a very high-cloze continuation—in this case a kite—the indefinite

article a elicits a significantly smaller N400 than an, with the opposite pattern for sentences

where the most predictable noun begins with a vowel. Because in English the only factor

that determines which version of the indefinite article will be used is whether the noun be-

gins with a consonant or vowel, this finding suggests that the phonological form of the word

kite is predicted as well as its meaning. Related effects have also been reported suggesting

that the grammatical gender of words can be predicted in a similar way (Wicha et al.,

2003a; Foucart et al., 2014; Martin et al., 2018). While such results have in the past been

controversial (Martin et al., 2013; Ito et al., 2017a; DeLong et al., 2017; Ito et al., 2017b;

Nieuwland et al., 2018b) and in some cases mixed (Wicha et al., 2003b, 2004; Kochari and

Flecken, 2019), a recent meta-analysis by Nicenboim et al. (2020) suggests that such effects

of the prediction of linguistic features tend to be relatively small—which makes them hard

to detect given the level of noise in N400 data—but reliable, and more experiments testing

this effect have supported this conclusion (Urbach et al., 2020; Nicenboim et al., 2020;

Fleur et al., 2020).

Thus, overall, work on the N400 has provided a substantial amount of evidence

for prediction in language comprehension, and that both semantic and formal features of

words are predicted. It is perhaps then unsurprising that research on the N400, other later

ERP components that appear to reflect other types of prediction (Van Petten and Luka,

2012; DeLong and Kutas, 2020; Kuperberg et al., 2020), and the aforementioned work

on prediction based on behavioral metrics of language processing, a number of predictive

coding accounts of language comprehension have arisen (Lewis and Bastiaansen, 2015;
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Bornkessel-Schlesewsky and Schlesewsky, 2019; Kuperberg et al., 2020; Heilbron et al.,

2022).

Returning to the main research question, we have seen that the research does

indeed suggest that prediction occurs during the process of language comprehension, and

that the N400 specifically indexes such prediction at the level of words and their meanings.

But to what extent could these predictions be driven by the statistics of language? A

number of studies have demonstrated that the N400 is sensitive to language statistics in

that we see that more frequent words elicit smaller N400s (Van Petten and Kutas, 1990;

Van Petten, 1993; Dambacher et al., 2006; Rugg, 1990; Fischer-Baum et al., 2014; Shain,

2024). However, in terms of contextual probability, at the time when the first paper

(chronologically) of this thesis was being written (see Chapter 4), only four previously-

published papers existed on this topic (Parviz et al., 2011; Frank et al., 2013, 2015; Frank

and Willems, 2017), and one of these (Parviz et al., 2011) relates to the N400m, the

magnetoencephalographic equivalent of the N400, and another (Frank et al., 2015) is an

extended version of one of the others (Frank et al., 2013).

The aim of this thesis, therefore, is to evaluate in depth the extent to which

prediction based on language statistics can provide an adequate explanation for the the

effects we see on the N400. The approach taken to address this questions is outlined in the

remainder of this chapter.

1.1 A Theoretical Framework For The Computational Study

of the N400

This thesis investigates the extent to which contextual probabilities derived from

the statistics of language can be used to model the N400. In this section, I present a
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preliminary cognitive model of the N400, the neurocognitive processes that underlie it,

and the extent to which statistical probabilities can shed light on these. This section then

turns to how the model addresses several key questions in the field.

1.1.1 A cognitive model of the N400

In addition to the previously-discussed mechanistic account of the N400 provided

by Kutas and Federmeier (2011), the starting point for the cognitive model of the N400 to

be used in this thesis is the predictive coding account of language comprehension provided

by Kuperberg et al. (2020), a simplified illustration of which is presented in Figure 1.2.

Under this account, the language system engages in prediction in hierarchical

fashion. We make predictions about upcoming content at multiple levels of representation,

from the phonological or orthographic to the discourse-level. These predictions are based

on the preceding context at the same level and on predictions made at higher levels. When

we perceive a linguistic stimulus, differences between the prediction and the true stimulus

at each level lead to neural activity that passes ‘up’ to higher levels of representation—this

can be thought of as prediction error.

Under this account, lexical semantic representations (i.e., ‘semantic features’ in

Kuperberg et al., 2020) are activated based on currently-active lexical semantic represen-

tations and top-down predictions based on higher-level representations such as knowledge

of events—for example, a context such as at the homestead the farmer penalized the...

(Paczynski and Kuperberg, 2011) might lead to the activation of semantic features relating

to an animate entity (almost certainly human) that could be involved in some way with

farming. The N400 under this account reflects the amount of new lexical semantic repre-

sentations that are activated upon encountering a new word—returning to the preceding

example, we would expect a smaller N400 for something like laborer, which does indeed
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Figure 1.2: A high-level representation of Kuperberg et al.’s account of the N400 and
related ERP components.

have the semantic features of being human and possibly being involved in farming; and we

would expect a larger N400 for a word like meadow, which only shares a few of the features.

In fact, this is precisely what Paczynski and Kuperberg (2011) do find. In this way, under

the account presented by Kuperberg et al. (2020), the N400 reflects the difference between

the predicted semantic features at the word level (i.e., the lexical semantic representations
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in Figure 1.2) and those that are newly activated due to encountering the new stimulus.

Kuperberg et al.’s (2020) model also accounts for a range of other results showing

that the N400 is relatively insensitive to certain types of semantic violation. Specifically,

in cases where a verb that is semantically appropriate given the preceding context takes a

inanimate subject when it requires an animate one, no N400 effect is observed. Examples of

such sentences are provided in Equation (1) from Kuperberg et al. (2003) and Equation (2)

from Kim and Osterhout (2005), where the critical word at which the N400 is measured is

bolded.

(1) (a) Every morning at breakfast the boys would eat...

(b) Every morning at breakfast the eggs would eat...

(2) (a) The hearty meal was devoured...

(b) The hearty meal was devouring...

In these cases, under the Kuperberg et al. (2020) account, this incongruity only

becomes apparent at a higher level of representation, that of event structure, with pre-

diction error at this level being indexed by later positive components of the event-related

brain potential referred to as ‘post-N400’ (DeLong and Kutas, 2020) or ‘late’ (Kuperberg

et al., 2020) positivities (and previously collectively known as the P600; for discussion see

Van Petten and Luka, 2012; DeLong and Kutas, 2020; Kuperberg et al., 2020). Again, this

is illustrated in Figure 1.2—at the word level, the semantic features of words such as eat

and devour are predicted based on the breakfast and meal contexts (respectively) and thus

there is no clear difference in the N400. On the other hand, once these representations filter

‘up’ another level of representation to the level of event semantics, it becomes clear that

there is a semantic violation, and thus, we see larger (more positive) post-N400 positivities

in such cases.
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While this account forms the basis for the model of the N400 used in this thesis,

there are several aspects lacking that are important to the question at hand. The first

is that it is important to note that semantic knowledge can arise from multiple sources,

including both sensorimotor experience (Barsalou, 1999, see, e.g.,), and linguistic input

(Marmor, 1978; Saysani et al., 2018; see Section 1.1.2 for further discussion). The second

is that it lacks linguistic features. As previously discussed, there is evidence that linguistic

features of words are predicted, for example in the case of their phonological form or gender

(for review and meta-analysis, see Nicenboim et al., 2020). Words that are orthographically

or phonologically similar to highly likely sentence continuations also elicit smaller N400s

than words than are not, all else being equal (DeLong et al., 2019; Ryskin et al., 2021).

Additionally, in contexts where a rhyme is expected, words that rhyme elicit a smaller N400

response than words that do not (Mantegna et al., 2019). Taken together, such findings

suggest not only that linguistic features of words (such as form or grammatical features)

are predicted during language comprehension, but that the N400 is sensitive to them.

Thus, we need to update the model proposed by Kuperberg et al. (2020) to also

include semantic information derived solely from linguistic input, and to include word-level

linguistic features that can be predicted and that therefore impact the N400—specifically,

information about the form of the word (i.e., phonology or orthography) and its grammat-

ical features. This updated model is illustrated in Figure 1.3, and forms the basis of the

questions asked and addressed in this thesis.

1.1.2 Modeling the N400 computationally

As stated, for the purposes of this thesis, the N400 is taken to index the activation

of the word-level representations of a stimulus driven by encountering the stimulus, reduced

to the extent that these representations were already activated when the stimulus was
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Figure 1.3: A high-level representation of the proposed cognitive model of the flow of
information in the neurocognitive systems underlying the N400.

encountered. When considering the idea of this preactivation arising due to prediction, the

main way to operationalize this effect is to consider the extent to which a given word is

predictable, which is generally operationalized as cloze probability.

To address the main question of this thesis, however, we need to operationalize

predictability in a way that is based on the statistics of the language input that an indi-
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vidual receives over the course of their life. The most straightforward way to do this is to

use a language model. A language model is a computational system that can predict the

probability of a word given its context (Jurafsky and Martin, 2024a). Historically, these

have taken the form of n-gram models that calculate the probability of a given sequence

based on the number of times it occurs in a corpus, and thus, by calculating the probability

of the sequence excluding the last word can be used to calculate the contextual probabil-

ity of a word. More recently, language models have taken the form of neural networks

that are trained to predict the probability of a word given its preceding context, with the

most prominent architectures being recurrent neural networks (Jordan, 1986; Elman, 1990;

Hochreiter and Schmidhuber, 1997) and more recently, transformers (Vaswani et al., 2017;

Devlin et al., 2019; Radford et al., 2018).

Despite the fact that such models are trained on corpora—increasingly, vast

amounts of text found online—that do not necessarily align with the linguistic experiences

of humans, one might worry that this may lead to them being poor models of the language

statistics learned by humans, and thus be unsuitable for the tasks at hand. However, in

practice, this does not appear to be the case—the predictions of language models of all of

these architectures have been shown to have a significant correlation with cloze probability

(Smith and Levy, 2011), various metrics of reading time (McDonald and Shillcock, 2003a,b;

Levy, 2008; Smith and Levy, 2013; Goodkind and Bicknell, 2018; Wilcox et al., 2020; Hao

et al., 2020; Wilcox et al., 2023a; Shain et al., 2024), and the N400 (Frank et al., 2013,

2015; Frank and Willems, 2017; Aurnhammer and Frank, 2019a,b; Yan and Jaeger, 2020;

Merkx and Frank, 2021; Szewczyk and Federmeier, 2022; see also Parviz et al., 2011).

It is also worth noting that while the interpretation of the source of the predictions

of language models is straightforward—namely, we know for certain that the predictions

arise based on the statistics of text inputs—this is not to say that their predictions are
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always transparent. While n-grams explicitly reflect the frequency of specific sequences in

a corpus (with possible smoothing, see, e.g., Jurafsky and Martin, 2024a) and thus only

learn the very surface-level statistics of language, language models with more advanced

architectures—in particular, transformers—are able to learn a wide range of high-level and

complex semantic (Wang et al., 2019b,a; Zellers et al., 2019; Bisk et al., 2020; Sakaguchi

et al., 2019) and syntactic (Marvin and Linzen, 2018; Warstadt et al., 2019, 2020; Gauthier

et al., 2020; Sinclair et al., 2022) properties of words and sequences of words, which may

be drawn on in prediction. For example, in one striking study, Abdou et al. (2021) found

that language models’ representations of how similar colors are to other colors align well

with such judgements in humans. Nonetheless, it is still the case that we know the learning

of such representations and predictions derived from them are solely based on the statis-

tics of language, and thus clearly interpretable in this way. It is also worth noting that

humans can learn similar information from linguistic input alone—for example, a number

of researchers (Marmor, 1978; Saysani et al., 2018) have found that congenitally blind par-

ticipants’ judgements of color similarities align with those of sighted participants. Thus,

it is not as far-fetched as it may at first appear if predictability effects that hinge on such

relationships occur in humans due to prediction based on language statistics rather than,

for example, sensorimotor experience of the world (even if such experiences exist).

The overall approach taken in this thesis is to take these corpus-derived probabil-

ities as calculated using a range of language models (specifically, recurrent neural networks

and transformers) and to use these to model the N400. Across the thesis, two main ap-

proaches are taken—either using these probabilities to directly predict N400 amplitude

(following Frank et al., 2013, 2015; Frank and Willems, 2017; and as has become increas-

ingly popular, see, e.g., Aurnhammer and Frank, 2019a,b; Yan and Jaeger, 2020; Merkx

and Frank, 2021; Szewczyk and Federmeier, 2022), or investigating whether surprisal quali-
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tatively shows the same patterns as the N400—that is, investigating whether experimental

manipulations that lead to significant differences in N400 also lead to significant differences

in language model probabilities in the same direction (in a similar vein to Ettinger et al.,

2016.

Returning to the cognitive model of prediction in language comprehension, Fig-

ure 1.4 shows the specific elements targeted in this thesis. Specifically, the approach taken

in this thesis can be described as the modeling of the extent to which the activation of

representations that are derived from past linguistic inputs (highlighted in blue) can ex-

plain the N400. The question of whether or not language models learn event structure or

higher-order information from language statistics is currently a debated topic (see, e.g., Li

et al., 2021), but it is highlighted on the basis that it is at least in principle possible for

this to be the case.

It is also important to highlight that several key assumptions have been made

by using the approach taken in this thesis. The first and perhaps strongest assumption

made here is that the degree of preactivation of a word’s form and meaning scales with

the preactivation of the word, or at least can be modeled as such. This is far from a novel

assumption. In fact, some version of this is implicit in any work that compares the relative

degree to which words are preactivated (with a single value corresponding to the degree

of preactivation of each word) and allows for the fact that words can share semantic or

grammatical features—i.e., that does not explicitly interpret words as being represented

as individual and self-contained units in the brain. Thus, virtually any recent work which

operationalizes preactivation using a single value for contextual probability (e.g., Kutas

and Hillyard, 1984; Frank et al., 2013, 2015; Aurnhammer and Frank, 2019a,b; Merkx and

Frank, 2021; Szewczyk and Federmeier, 2021) or semantic association (e.g., Ettinger et al.,

2016; Uchida et al., 2021) makes this assumption. However, it is still important to note
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Figure 1.4: The high-level representation of the proposed cognitive model, with the ele-
ments under investigation highlighted.

that while such an approach provides a single value for a word based on both its form and

meaning, the two are separable experimentally. Research shows, for example, that many

of the high-level patterns in the N400 are relatively consistent no matter whether the last

word in a sentence is presented as a word or as a picture of its referent (Ganis et al., 1996;

Federmeier and Kutas, 2001; for reviews see Kutas and Federmeier, 2000; Federmeier et al.,
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2016; Federmeier, 2021)—crucially, in the latter case, stimuli do not contain any linguistic

representations.

The second assumption is that we can model the relative preactivation of words

as a probability distribution. Some views, such as the proportional preactivation account of

Brothers and Kuperberg (2021), make this explicit. Brothers and Kuperberg (2021) explain

preactivation as occurring when a limited supply of metabolic resources is distributed

across possible candidates in proportion to their probability. Under other accounts such

as that of Federmeier (2021), this is explicitly not the case: Federmeier (2021) argues

that the relative degree to which words are preactivated is independent. In practice, the

difference between these accounts is not usually important to the research question at

hand, as the focus is generally on the difference between experimental conditions for each

experimental item, and this can often be controlled for in statistical analyses by adding

a random slope or intercept for each item. However, if preactivation is not competitive,

it may be that differences between specific items are under-estimated both by modeling

relative preactivation as probability and by controlling for item. Investigating the limits of

modeling preactivation using a probability distribution is likely to be an important avenue

of research, but given that language models are trained to output probabilities, is beyond

the scope of this thesis. Additionally, stimulus item is controlled for in all studies, and so

this issue is not likely to be a confound.

These two key assumptions bring the high-level approach to computational mod-

eling in this thesis in line with the majority of current approaches to investigating how

preactivation (and by extension, prediction) impacts reading time and the N400, even if

these assumptions are not generally stated as such. Specifically, ever since it was estab-

lished that cloze probability is correlated with behavioral (Fischler and Bloom, 1979) and

neural (Kutas and Hillyard, 1984) indices of language processing, using probabilities to
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operationalize predictability or the extent to which words or their meanings are preacti-

vated has been widespread (for reviews of such work, see, e.g., Kutas and Van Petten,

1994; Van Petten and Luka, 2012; Luke and Christianson, 2016; Kutas and Federmeier,

2011; DeLong et al., 2014b; Kuperberg and Jaeger, 2016; Brothers and Kuperberg, 2021;

Kuperberg et al., 2020).

1.2 Thesis outline

This thesis is divided into three main parts. In the first, the focus is on inves-

tigating how closely the predictions of language models of different types correlate with

N400 amplitude. In Chapter 2, I present a study investigating how the extent to which the

predictions of language models of three different architectures—recurrent neural networks

with long short-term memory (Gulordava et al., 2018; Jozefowicz et al., 2016), autore-

gressive language models (Dai et al., 2019; Radford et al., 2019; Brown et al., 2020), and

masked language models (Devlin et al., 2019; Lan et al., 2020; Liu et al., 2019)—each

predict N400 amplitude, comparing both architecture and model size (in terms of number

of parameters and training tokens). Chapter 3 takes this latter question further, teasing

apart how number of parameters and training tokens affect the correlation between lan-

guage model predictions and N400 amplitude using the Pythia (Biderman et al., 2023b)

suite of language models, as well as trying to better understand the cause of this by also

comparing the performance of each model at next-word prediction (Jelinek et al., 1977;

Merity et al., 2017) and 5 natural language processing benchmarks (Warstadt et al., 2020;

Paperno et al., 2016; Zellers et al., 2019; Bisk et al., 2020; Sakaguchi et al., 2019).

While Part 1 of this thesis looks at the overall correlation between language

model predictions and the N400, Part 2 investigates whether the patterns in language

model predictions and the N400 are the same—that is, whether statistically significant
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patterns in the N400 response to stimuli correspond to statistically significant patterns in

language model surprisal to the same stimuli. A range of N400 effects are investigated

in this way in Chapters Chapter 4–Chapter 7. Chapter 8 then takes this a step further,

investigating whether the language model predictions can explain variance N400 amplitude

previously attributed to other factors such as plausibility or contextual similarity; thereby

evaluating the extent to which the statistics of language can provide an explanation for

previously-known N400 effects.

Parts 1 and 2 follow previous work (Frank et al., 2013, 2015; Frank and Willems,

2017) in transforming the statistical (i.e., language-model-based) probabilities into surprisal

(negative log-probability) before using them to predict N400 amplitude. Part 3 investigates

whether this is truly the best way to operationalize the relationship between the probabil-

ities calculated by language models and the N400. First, Chapter 9 asks the question of

whether predicted (statistical) probabilities of words other than the actual stimulus have

an impact on N400 amplitude, which is found not to be the case. Next, Chapter 10 in-

vestigates the specific mathematical relationship between statistical probability and N400

amplitude, comparing un-transformed probability, surprisal, and surprisal to the power of

a range of numbers between zero and two, following similar analyses in the reading time

literature (Meister et al., 2021; Shain et al., 2024).

Finally, Chapter 11 provides a brief discussion and conclusion of the results of

Chapter 2–Chapter 10, highlighting key takeaways and avenues for future research.
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Part I

How well can language models

model the N400?
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Chapter 2

So Cloze yet so Far: N400

Amplitude is Better Predicted by

Distributional Information than

Human Predictability Judgements

Abstract

More predictable words are easier to process—they are read faster and elicit

smaller neural signals associated with processing difficulty, most notably, the N400 com-

ponent of the event-related brain potential. Thus, it has been argued that prediction of

upcoming words is a key component of language comprehension, and that studying the

amplitude of the N400 is a valuable way to investigate the predictions we make. In this

study, we investigate whether the linguistic predictions of computational language models

or humans better reflect the way in which natural language stimuli modulate the ampli-
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tude of the N400. One important difference in the linguistic predictions of humans versus

computational language models is that while language models base their predictions exclu-

sively on the preceding linguistic context, humans may rely on other factors. We find that

the predictions of three top-of-the-line contemporary language models—GPT-3, RoBERTa,

and ALBERT—match the N400 more closely than human predictions. This suggests that

the predictive processes underlying the N400 may be more sensitive to the statistics of

language than previously thought.

2.1 Introduction

While it is widely accepted that predictable words are easier to process than

unpredictable ones, the role of predictive processes in language comprehension has long

been an issue of contentious debate (for reviews, see (Kutas et al., 2011; Van Petten and

Luka, 2012; Luke and Christianson, 2016; Kuperberg and Jaeger, 2016)). One prominent

position is that the language processor does not waste resources on predictive processing

(Forster, 1981). Under such an account, because there are an infinite number of possible

continuations for any given natural language string, linguistic predictions would be wrong

far more often than they would be right. Thus, given the limited value of linguistic predic-

tion, the language processor simply does not engage in it (Jackendoff, 2002). Advocates of

this position have attributed observed predictability effects on language processing to the

demands of integrating the meaning of a word into its preceding context (Schwanenflugel

and Shoben, 1985; Traxler and Foss, 2000), some form of automatic spreading activation

in the lexicon (West and Stanovich, 1982; Collins and Loftus, 1975), or both.

However, there is growing evidence in support of prediction as a component of

language comprehension. Much of this research comes from looking at neural signals of

processing difficulty, especially the N400, a negative-going component of the event-related
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brain potential (ERP) that peaks roughly 400ms after the presentation of a meaningful

stimulus (Kutas and Hillyard, 1980; Kutas and Federmeier, 2011). With linguistic stim-

uli, the size of the N400 is sensitive to semantic congruity—N400 amplitude is large by

default, and is reduced if the word is facilitated by the preceding context (Van Petten and

Luka, 2012; DeLong and Kutas, 2020; Kuperberg et al., 2020). In recent years, a range

of studies have found that N400 amplitude modulations appear to reflect lexical proper-

ties of specific nouns that are semantically predictable; thus, researchers have argued that

N400 predictability effects do not simply reflect ease of integration or spreading activa-

tion, and—at least some of the time—provide evidence for predictive processes in language

comprehension (DeLong et al., 2005; Van Berkum et al., 2005; Otten et al., 2007; Kwon

et al., 2017; Kuperberg et al., 2020; Nicenboim et al., 2020; Urbach et al., 2020; Fleur et al.,

2020).

What are these predictions based on? Since the early days of N400 research, cloze

probability (Taylor, 1953) has served as the chief metric of contextual word predictability

(Kutas and Hillyard, 1984; Van Petten and Luka, 2012; Brothers and Kuperberg, 2021).

The cloze probability of a given word is defined as the proportion of people who fill a

gap in a sentence with that specific word (Taylor, 1953), and thus, provides a measure

of how predictable a word is in a specific sentence context. It is well-established that

words with a higher cloze probability elicit a smaller N400 response compared to words

with lower cloze probabilities (Kutas and Hillyard, 1984; Kutas and Federmeier, 2011;

Kuperberg et al., 2020), as well as being read faster and recognized faster (Brothers and

Kuperberg, 2021)—in fact, some work has shown that cloze probability and N400 amplitude

are inversely correlated at a level of over 90% (Kutas and Van Petten, 1994). A more recent

operationalization of predictability is derived from language models (LMs), computational

systems designed to predict a word in context. Unlike humans, these LMs are only trained
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on text data as input, and consequently base their predictions solely on the statistics of

language (Jurafsky and Martin, 2021). Thus, while linguistic predictions in humans may

utilize a range of knowledge both linguistic and extra-linguistic, LMs learn the actual

distributional probability of a word in context in the corpus on which they are trained

(Smith and Levy, 2011; Brothers and Kuperberg, 2021).

Understanding the relationship between N400 amplitude and the statistics of lan-

guage is vital to understanding the N400 (Michaelov and Bergen, 2020). Given the evidence

that N400 amplitude is affected by linguistic input over the lifespan (Kutas and Federmeier,

2011), and the fact that they are models trained purely on linguistic input, LMs give us

a precise way to model the extent to which linguistic input alone can predict the N400

response. On the other hand, there is no way to tell which sources of information and

neurocognitive processes are involved when experimental participants complete the cloze

task. Thus, even if cloze probability were to correlate more closely with N400 amplitude

than LM predictions, it is less informative in terms of illuminating the basis of prediction

in language comprehension.

However, recent work suggests that this trade-off between accuracy and explain-

ability may be nearing an end. The statistics of language—as operationalized by LM

predictions—can not only successfully predict single-trial N400 amplitudes (Frank et al.,

2015; Aurnhammer and Frank, 2019b; Merkx and Frank, 2021; Michaelov et al., 2021) and

the significant differences in N400 amplitude elicited by a range of experimental manipula-

tions (Michaelov and Bergen, 2020), but at least for some stimuli may be better at this than

cloze probability (Michaelov and Bergen, 2020; Michaelov et al., 2021). However, the two

studies in which LM predictions outperform cloze have either looked at the effects without

direct comparison to the N400 data (Michaelov and Bergen, 2020) or targeted data from

an experiment intended to show the N400 responds to factors other than cloze (Michaelov
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et al., 2021).

The goal of the present study is to test whether the amplitude of the N400 to

words in sentence contexts can be better predicted by the statistics of language than by

cloze probability—even under conditions that are maximally favorable to cloze. Using

ERP data from a large-scale multiple-laboratory experiment (Nieuwland et al., 2018b),

we used linear mixed effects regression models to examine how well the amplitude of the

N400 elicited by experimental stimuli was predicted by the cloze probabilities gathered in

the original experiment (Nieuwland et al., 2018b), and compared its performance to that

of several pretrained neural network LMs (Gulordava et al., 2018; Jozefowicz et al., 2016;

Devlin et al., 2019; Liu et al., 2019; Radford et al., 2019; Dai et al., 2019; Lan et al., 2020;

Brown et al., 2020). Language models are the best way to capture prediction based on

language statistics at present. If any contemporary models predict N400 amplitude better

than cloze probability does, that would constitute compelling evidence that prediction, as

measured by the N400, can be driven by language statistics.

2.2 Background

2.2.1 Cloze probability

Cloze probability has long been used to assess a word’s predictability in context

(Van Petten and Luka, 2012; DeLong et al., 2014b; Luke and Christianson, 2016; Brothers

and Kuperberg, 2021). In addition to its use in understanding the N400 (Kutas and

Hillyard, 1984; Kutas and Federmeier, 2011), it has been shown to predict behavioural

correlates of processing difficulty, such as word reading time (Brothers and Kuperberg,

2021). In fact, when directly compared, cloze probability has previously been found to be

better at predicting such behavioural metrics than LMs (Brothers and Kuperberg, 2021).
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However, while cloze probability is a metric grounded in human judgements, it

may not be as helpful in understanding online human comprehension as might appear at

first glance. As discussed, predictability effects are thought to arise from individuals’ graded

predictions about upcoming words, whereas cloze probability is an aggregate measure over

a sample of individuals based exclusively on their top predictions. In addition to the

question of whether we should expect these two distributions to be equivalent, there is

also a practical issue of sample size—less likely continuations require a larger sample of

individuals in order for even a single experimental participant to produce. Indeed, as a

language production task, its relevance for comprehension is unclear in view of disagreement

regarding the extent of overlap between the production and comprehension systems (see

Meyer et al., 2016; Hendriks, 2014 for review and discussion), it is not necessarily the case

that the next-word probability of a word will be the same for both the production and

comprehension system.

Beyond these concerns, and even if cloze is a good predictor of processing difficulty

due to predictability overall (e.g. as measured by reading time), when investigating the

N400, the temporal dimension must also be considered. Cloze probability is based on

responses produced by experimental participants after reading a sentence with a gap that

must be filled in. Given the substantial evidence that there are neurocognitive processes

involved in human language comprehension that occur after the N400 (DeLong and Kutas,

2020; Kuperberg et al., 2020), even if it is the case that the N400 and cloze probability

both reflect individuals’ graded predictions, and that cloze responses are influenced by the

predictions that underlie the N400 response, it should not be taken as a given that these

predictions are the same. Thus, there is no a priori reason to assume that cloze probability

is the best possible operationalization of the predictions that underlie the N400.
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2.2.2 Language model predictions

LMs are trained to predict the probability of a word based only on the linguistic

context. Given that such models do not explicitly learn meanings of words, and that the

N400 response to a word is thought to be largely or wholly determined by meaning (Kutas

and Federmeier, 2011; Kuperberg et al., 2020), intuitively, we may expect them to perform

poorly at predicting the amplitudes of N400 responses to words. However, previous research

has shown that LMs can learn semantic relationships between words (Rogers et al., 2021).

Thus, the extent to which LMs can acquire semantic knowledge, and specifically, knowledge

about the semantic relations between words, may be greater than would be expected prima

facie. Whether or not humans can learn quite so much based on only linguistic input is an

open question, but there is evidence that we may learn semantic relations between referents

of words with which we have no direct experience (Marmor, 1978).

An additional benefit of using LM predictions to operationalize word predictability

is that researchers know exactly what sources of information are used by these models—

they are trained on specific data, and thus researchers can form hypotheses about how

the specific kinds of information in these data may be used to predict upcoming linguistic

input, and by which system. This is especially important given that, as discussed, we

might expect the predictions underlying the N400 to also impact cloze probability. If

factors beyond linguistic input such as world knowledge have an effect on N400 amplitude,

as has been proposed (Kutas and Federmeier, 2011), then they are also likely to have an

effect on cloze probability. For this reason, when using cloze probability to predict N400

amplitude, it may be impossible to disentangle the effect of each source of information, and

thus limiting the extent to which we can understand the basis upon which the predictions

underlying the N400 are made. Using metrics based on the statistics of language (for

example, LM predictions) may therefore be one of the only ways to successfully isolate the
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specific effect of linguistic input on N400 amplitude.

2.2.3 Language model surprisal

When LM predictions are used to investigate predictability effects on language

comprehension, predictability is usually not operationalized as the raw probability of words

as calculated by these models, but rather, their surprisal. The surprisal S of a word wi is

the negative logarithm of its probability given its preceding context w1...wi−1, as shown in

(2.1).

S(wi) = − log P (wi|w1...wi−1) (2.1)

In addition to theoretical claims behind surprisal theory as an explanation of predictability

effects in language comprehension (Hale, 2001; Levy, 2008; Smith and Levy, 2013), there

is also an array of evidence showing that LM surprisal correlates with behavioural metrics

of processing difficulty such as reading time (Boston et al., 2008; Demberg and Keller,

2008; Roark et al., 2009; Mitchell et al., 2010; Smith and Levy, 2011; Monsalve et al., 2012;

Willems et al., 2016). A further body of research has found that LM surprisal is a significant

predictor of N400 amplitude, with the surprisal of generally better-performing and more

advanced LMs showing a better fit to the N400 data (Frank et al., 2015; Aurnhammer

and Frank, 2019b; Merkx and Frank, 2021; Michaelov et al., 2021). Additionally, when

LMs are given the same experimental stimuli as humans in neurolinguistic experiments,

significant differences in surprisal often match significant differences in N400 as a function

of experimental condition—again, with generally better-performing and more advanced

models matching the human responses better (Michaelov and Bergen, 2020; Michaelov

et al., 2021).

In previous work, operationalizing predictability as cloze probability generally

appears to yield better results for human behavioural data than LM surprisal (Brothers
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and Kuperberg, 2021); however, this has not been well-explored for the N400. To the

best of our knowledge, only one published paper has directly compared how well cloze

probability and LM surprisal predict N400 amplitude, finding that LM surprisal performs

better (Michaelov et al., 2021). However, the comparison between cloze probability and

LM prediction was not an aim of that previous study, and thus there are several caveats

to be noted about this result. Firstly, the study investigated the N400 response to words

with the same cloze probability but which were either related or unrelated to the highest-

cloze completion—there is a well-established effect showing that the former elicit lower-

amplitude N400s than the latter (Kutas and Hillyard, 1984; Kutas, 1993; Federmeier and

Kutas, 1999; Thornhill and Van Petten, 2012; Ito et al., 2016). Thus, cloze is inherently

at a disadvantage in prediction, given that the two conditions are controlled for cloze. The

study also involved a condition where all stimuli had a cloze of zero; thus, none of the

variance in N400 amplitude within this condition could be explained by cloze. Finally, the

study compared raw cloze probability to LM surprisal—given that the surprisal calculated

from cloze probability has been found to correlate with behavioural predictability effects

(Smith and Levy, 2011; Lowder et al., 2018), a fair comparison would also involve cloze

surprisal. The finding that surprisal can differ between words that are matched for cloze

but either related or unrelated to the highest-cloze continuation of a sentence is also found

in another study (Michaelov and Bergen, 2020), but this study only compares significant

differences in surprisal to the significant differences reported in the original papers—there

is no direct comparison made between the surprisal and N400 data.

2.2.4 The present study

In the present study, we aim to provide just such a fair comparison using modern

LMs and openly available data from a large N400 study (n = 334) (Nieuwland et al.,
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2018b). First, we use data from a study that was specifically designed to investigate the

effect of cloze probability on N400 amplitude; thus, there are none of the aforementioned

cases where experimental conditions are matched by cloze and differ in another way (that

may be reflected in LM predictions, see (Michaelov and Bergen, 2020; Michaelov et al.,

2021)). Additionally, we remove the data from all stimuli with a cloze probability of zero.

Given that previous work has shown that there is variability in N400 amplitude between

experimental conditions where all items had a cloze probability of zero (Metusalem et al.,

2012; Ito et al., 2016), and some of these studies have been successfully modeled using LM

predictions (Michaelov and Bergen, 2020), there is a chance that including these would

give the LMs an unfair advantage. Finally, we compare both raw cloze probability and

cloze surprisal to ensure that the log-transformation of LM probability is not a confound,

as previous work has suggested that there may be a logarithmic linking function between

human-derived metrics of word probability and processing difficulty (Smith and Levy, 2011;

Lowder et al., 2018; Delaney-Busch et al., 2019).

2.3 Method

2.3.1 Original study and data

We use EEG data from a large-scale experiment by Nieuwland and colleagues

(Nieuwland et al., 2018b). In this experiment, participants read sentences one word at a

time, with ERPs time-locked to previously-determined target words. In the data provided,

the N400 is operationalized as the mean amplitude voltage recorded from the centro-parietal

region of interest (electrodes Cz, C3, C4, Pz, P3, and P4) 200–500ms after the presentation

of the target word. We use the data provided for target nouns, which replicate the well-

established finding that higher-cloze nouns elicit smaller (less negative) N400 responses
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than lower-cloze nouns (Nieuwland et al., 2018b; Kutas and Hillyard, 1984; Kutas and

Federmeier, 2011).

To calculate the cloze probability of items in the original study, each stimulus

sentence was truncated before the target word (Nieuwland et al., 2018b). Thus, participants

in the cloze task were presented with the preceding linguistic context for the target word

and asked to complete the sentence. The cloze probabilities were then calculated on the

basis of the responses from two sets of 30 participants, each of which completed the cloze

task for half of the total stimulus sentences. The authors provide both the cloze and ERP

data online (at https://osf.io/eyzaq/).

The electrophysiological experiment was carried out at 9 laboratories in the United

Kingdom and comprises data from 334 participants, reaching a total of 25,849 trials. We

removed all items with a cloze probability of zero for fair comparison with LM surprisal, as

previously discussed. Finally, we used the cloze data to calculate cloze surprisal for each

remaining item. Because all zero-cloze items were removed, this also removed the need

for smoothing zero-probabilities, as has been done in previous related work (Lowder et al.,

2018).

2.3.2 Language models

We operationalize corpus-based probability of a word in context as the probability

calculated by a neural network LM. There are many different architectures for neural

network LMs, some of which have been used to model behavioural and neural correlates of

human language processing. Here we focus on the two most prolific and successful types

of LM in recent years—RNNs and transformers.
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RNNs

Until the development of transformer LMs (Vaswani et al., 2017), recurrent neural

network (RNN) language models long dominated the field. With their memory bottleneck

and their incremental processing of words (Keller, 2010; Merkx and Frank, 2021), RNNs

have often been used as cognitive models of human language processing (Elman, 1990),

including prior efforts to model the N400 (Frank et al., 2015; Aurnhammer and Frank,

2019b; Michaelov and Bergen, 2020; Merkx and Frank, 2021; Michaelov et al., 2021). In

the present study, we use two RNN LMs referred to in the literature (see, e.g., (Futrell et al.,

2019)) as GRNN (Gulordava et al., 2018) and JRNN (Jozefowicz et al., 2016). Previous

research has found JRNN surprisal to more closely resemble N400 amplitude than does

GRNN surprisal (Michaelov and Bergen, 2020). GRNN and JRNN surprisal were calculated

using the code accompanying Michaelov and Bergen (Michaelov and Bergen, 2020).

Transformers

Transformer language models are a neural network LM architecture (Vaswani

et al., 2017) that has been found to outperform RNNs at the standard language modeling

task (predicting words from context, see (Dai et al., 2019) for review), as well as a range

of other tasks (Devlin et al., 2019; Radford et al., 2019). Transformer LMs have also been

shown to do better than RNNs at predicting N400 amplitude (Merkx and Frank, 2021;

Michaelov et al., 2021). The present study includes two varieties of transformer LMs—

autoregressive language models trained on the traditional task of predicting words based

on their preceding linguistic context, and masked language models, trained to fill a gap in

a sentence, and that thus can use words that appear both before and after in its prediction

of the target word. We include the probabilities from three autoregressive LMs in our

analysis—Transformer-XL (Dai et al., 2019), GPT-2 (Radford et al., 2019), and GPT-3
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(Brown et al., 2020). The three masked LMs that we use to calculate word probability

are BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), and ALBERT (Lan et al.,

2020). For all transformer LMs except for GPT-3, we use the implementation of each

model made available through the transformers (Wolf et al., 2020) package to calculate

surprisal. GPT-3 predictions were accessed via the OpenAI API (OpenAI, 2021).

Table 2.1: Summary of language models used
Model Parameters1 Corpus size2 Ref.
GRNN 71.8M 90M (Gulordava et al., 2018)
JRNN 1.04B 1B (Jozefowicz et al., 2016)
Transformer-XL3 285M 103M (Dai et al., 2019)
GPT-2 (XL) 1.56B ∼8B (Radford et al., 2019)
GPT-3 (Davinci) 175B ∼300B (Brown et al., 2020)
BERT (L, C, WWM4) 334M 3.3B (Devlin et al., 2019)
RoBERTa (large) 355M ∼33B (Liu et al., 2019)
ALBERT (XXL v2)5 206M 3.3B (Lan et al., 2020)

1 The number of free parameters for the transformers (Wolf et al., 2020) implementations of Transformer-
XL, GPT-2, BERT, RoBERTa, and ALBERT were calculated using pytorch (Paszke et al., 2019). For
JRNN and GPT-3, we utilized the models directly provided by the authors of the paper, and so use the
number of parameters reported in the cited paper or its supplementary materials (Jozefowicz et al., 2016;
Brown et al., 2020). While we use the author-provided GRNN, no estimate of model parameters is given
in the original paper (Gulordava et al., 2018), so we calculated this with pytorch (Paszke et al., 2019).
2 Number of words in training corpus is reported in the original papers (Gulordava et al., 2018; Jozefowicz
et al., 2016; Dai et al., 2019; Devlin et al., 2019), or estimated (denoted by ‘∼’). ALBERT is trained on
the same data as BERT (Lan et al., 2020). Training data for GPT-2 and RoBERTa are estimated based on
a comparison of file size with the dataset used for BERT. GPT-3 is trained on 300 billion tokens; however,
given that it uses byte-pair encoding for tokenization (Brown et al., 2020; Radford et al., 2019; Sennrich
et al., 2016), the actual number of words is lower.
3 We use the transformers (Wolf et al., 2020) implementation of Transformer-XL; some models reported in
the original paper (Dai et al., 2019) have a higher number of parameters.
4 Large, cased, whole-word masking, (see Devlin et al., 2019; Google Research, 2019).
5 Note that while ALBERT has fewer free parameters than either BERT or RoBERTa, it shares parameters
between layers, and so is actually a much larger model than either BERT or RoBERTa (Lan et al., 2020).
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2.3.3 Language model predictions

The aforementioned LMs were thus used to predict the probability of the target

nouns from the original study (Nieuwland et al., 2018b). Each stimulus sentence was

truncated before the target word and the predicted probabilities generated by the models

for each of the target words were recorded. Thus, all the models, including the masked

LMs, were required to base their predictions on the preceding context. This procedure

was intended to match the cloze task, where sentences were truncated in the same way, as

well as the ERP experiment, where experimental participants had read only the preceding

context when they reached the target word. These probabilities were then transformed

into surprisals using the formula in (2.1). We used a logarithm of base 2 so that surprisal

can be measured in bits (Futrell et al., 2019). For fair comparison, only words appearing

in all models’ vocabularies were included in the analysis.

2.3.4 Predicting the N400

The LM surprisal values, original cloze values, cloze surprisal values, and by-

trial N400 amplitudes were all z-transformed before running statistical analyses. These

z-transformed LM surprisals, cloze surprisals, and cloze probabilities were then used to

predict the z-transformed by-trial N400 amplitudes. After the removal of data for all target

words that either did not appear in all LMs’ vocabularies or that had a cloze probability

of zero, our final dataset consisted of N400 data from 15,551 trials, elicited by 94 different

sentences.

Statistical analysis and data manipulation were carried out in R (R Core Team,

2020) using Rstudio (RStudio Team, 2020) and the tidyverse (Wickham et al., 2019), lme4

(Bates et al., 2015), and ggh4x (van den Brand, 2021) packages, and the code provided by

Nicenboim et al. (Nicenboim et al., 2020) for preparing the data (Nieuwland et al., 2018b).
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To reduce the risk of Type I errors, all p-values in our analyses are corrected for multiple

comparisons based on false discovery rate (Benjamini and Yekutieli, 2001).

2.4 Results

2.4.1 Preliminary analysis with cloze probability

First, we test whether the original finding, that higher-cloze nouns elicit smaller

N400s than lower-cloze nouns, still holds for our subset of the data. We did this by following

the original statistical methods as closely as possible (Nieuwland et al., 2018b). For this

reason, we used linear mixed-effects regression models with the same covariates as in the

original analyses; and in order to test the significance of variables, we use likelihood ratio

tests on nested regressions.

After running all regressions (including those described in the following subsec-

tions), we found that including the original random effect structure of random slopes for

experimental participant and item resulted in singular fits in several cases; so these were re-

duced to random intercepts in all models. Following the original analysis, we also included

the laboratory in which the experiment was run as a fixed effect.

As in the original study, we found no interaction between cloze probability and

laboratory (χ2(8) = 7.357, p = 1). However, unlike the original study, we found a significant

effect of laboratory even when controlling for cloze probability (χ2(8) = 36.280, p < 0.001).

This may be due to the difference in sample or in random effects structure. Crucially, we

found a significant effect of cloze probability even when controlling for laboratory (χ2(1) =

27.937, p < 0.001). Thus, we replicated the noun predictability effect on our subset of the

data.
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2.4.2 Cloze surprisal and N400 amplitude

Running the same tests with cloze surprisal (i.e. negative log-transformed cloze

probability) replacing cloze probability leads to the same results (Cloze surprisal x lab:

χ2(8) = 3.596, p = 1; cloze surprisal: χ2(1) = 29.403, p < 0.001; lab: χ2(8) = 36.241, p <

0.001). Thus, we included laboratory as a covariate for our remaining analyses.

To compare cloze probability and cloze surprisal as predictors of N400, we com-

pared the two best regressions including each as a main effect—namely, those also including

laboratory as a main effect but not the interaction between the two. Since the two regres-

sions are not nested, we employed Akaike’s Information Criterion (AIC) (Akaike, 1973) to

compare them. We found that the regression with cloze surprisal as a fixed effect has a

slightly lower AIC (AIC = 113227.2) than the regression with cloze probability as a fixed

effect (AIC = 113228.7).

These AIC values can be used to calculate evidence ratios based on Akaike weights

(see (Wagenmakers and Farrell, 2004)). Based on this approach, we find that with an

evidence ratio of 2.08, the cloze surprisal regression is 2.08 times more likely than the cloze

probability regression to be the best model of the N400 data.

However, when comparing AIC values, a general rule of thumb is that when there

is an absolute difference in AIC of 2 or less between two statistical models, they have

similar levels of support, while a difference of 4 or more means that the model with a

lower AIC has ‘considerably’ more evidential support (Burnham and Anderson, 2004).

In this case, the cloze surprisal regression has an AIC which is 1.47 less than the cloze

probability regression. Thus, despite the evidence ratio of 2.08, the two regressions should

be considered to have similar levels of support, and so it is still not clear whether cloze

probability or cloze surprisal is a better predictor of N400 amplitude.

In order to investigate this further, we ran additional analyses, finding that that
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the two explain the same variance in N400 amplitude: adding cloze surprisal to the best

cloze probability regression does not improve model fit (χ2(1) = 1.638, p = 0.965); and

neither does adding probability to the best cloze surprisal regression (χ2(1) = 0.171, p = 1).

However, given the lower (i.e., better) AIC of the cloze surprisal regression, we take cloze

surprisal as the most explanatory representation of cloze for the remainder of our analyses.

2.4.3 Language model surprisal and N400 amplitude

We calculated the probability of each target word based on the predictions of

GRNN (mean = 0.087; standard deviation = 0.190), JRNN (0.211 ± 0.291), Transformer-

XL (0.092 ± 0.192), GPT-2 (0.382 ± 0.358), GPT-3 (0.526 ± 0.371), BERT (0.317 ± 0.355),

RoBERTa (0.495±0.374), and ALBERT (0.298±0.316) for comparison with cloze (0.631±

0.348). These probabilities were then transformed into surprisal.

We tested whether the surprisal calculated from each LM is a significant predictor

of N400 amplitude. To do this, we compared regressions with a main effect of laboratory

and random intercepts for subject and item to those also including a main effect of the

relevant LM’s surprisal. In this way, the analysis matches those investigating the main

effect of cloze probability and cloze surprisal. The results of these analyses are shown in

Table 2.2. As can be seen, main effects of surprisal calculated using JRNN, Transformer-

XL, GPT-2, GPT-3, BERT, RoBERTa, and ALBERT are all significant in their respective

regressions, but the main effect of GRNN surprisal is only marginally significant.
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Table 2.2: Significant predictors of N400 amplitude
Predictor χ2(df = 1) p
GRNN surprisal 6.356 0.072
JRNN surprisal 17.330 <0.001
Tranformer-XL surprisal 19.158 <0.001
GPT-2 surprisal 26.313 <0.001
GPT-3 surprisal 40.817 <0.001
BERT surprisal 30.760 <0.001
RoBERTa surprisal 37.848 <0.001
ALBERT surprisal 35.918 <0.001

2.4.4 Comparison of model fit

We next compared the AICs of each linear mixed-effects regression model in-

cluding LM surprisal with one that instead used cloze surprisal. These comparisons are

presented in Figure 2.1, which shows the AIC of each LM surprisal regression with the AIC

of the cloze surprisal regression subtracted. This allows for easier comparison of regression

AIC, and has a clear interpretation—any regression with a relative AIC of less than zero

has a better fit than the cloze surprisal regression.

As can be seen in Figure 2.1, the regressions based on the surprisals calculated

from four LMs have lower AICs than cloze surprisal (AIC = 113227.2): GPT-3 (AIC =

113215.8; evidence ratio with cloze surprisal = 300.89), BERT (AIC = 113225.9; evidence

ratio = 1.97), RoBERTa (AIC = 113218.8; evidence ratio = 68.18), and ALBERT (AIC =

3113220.7 ; evidence ratio = 25.98). The AIC of the remaining models is higher than that of

cloze surprisal. It should be noted that in all but one case, the difference in AIC between

the cloze surprisal and all other regressions is greater than 4, suggesting a meaningful

difference in this respect (Burnham and Anderson, 2004). The one exception is the BERT

regression (∆AIC = 1.36)—thus, while the BERT regression is 1.97 times more likely than
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the cloze surprisal regression to provide the best fit to the N400 data, we rely on the tests

in the rest of this section to determine whether BERT surprisal is in fact a better predictor

of N400 amplitude than cloze surprisal.

In sum, regressions based on the surprisals derived from GPT-3, RoBERTa, and

ALBERT more closely fit the N400 data than the regression based on cloze surprisal, and

this may also be the case for the BERT surprisal regression.
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Figure 2.1: AICs of all regressions including fixed effects of the denoted surprisal and
laboratory, as well as random intercepts for each item and experimental participants. For
easier comparison, AIC is scaled by subtracting the AIC of the regression including cloze
surprisal, laboratory, and the aforementioned random intercepts. Lower AICs indicate
better model fit (Akaike, 1973).

2.4.5 Does language model surprisal improve fit of regressions based on

human cloze data?

In addition to comparing the AICs of the models, following Brothers and Kuper-

berg (Brothers and Kuperberg, 2021), we compared how well cloze and LM surprisal predict

N400 amplitude by constructing additional regressions with both variables and comparing

them to regressions with only one. First, we compared the effect of adding the surprisal
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calculated from each LM to a regression already including cloze surprisal. Thus, we tested

whether each LM surprisal explains variance in N400 amplitude above and beyond that

which is already explained by cloze surprisal. The results are shown in Table 2.4.5.

Table 2.3: Results of LRTs testing whether adding LM surprisal as a main effect improves
the fit of regressions that already include cloze surprisal as main effect

Predictor χ2(df = 1) p
GRNN surprisal 0.056 1
JRNN surprisal 3.982 0.260
Tranformer-XL surprisal 3.031 0.424
GPT-2 surprisal 5.088 0.142
GPT-3 surprisal 12.168 0.004
BERT surprisal 9.639 0.015
RoBERTa surprisal 11.720 0.005
ALBERT surprisal 8.450 0.026

As can be seen in Table 2.4.5, adding GPT-3, BERT, RoBERTa, or ALBERT

surprisal to regressions already including cloze surprisal significantly improves their fit,

while adding the surprisal of other LMs does not.

2.4.6 Does human cloze data improve fit of regressions based on language

model surprisal?

We also ran the reverse analysis, investigating the effect of adding cloze surprisal

to a regression that already includes one LM surprisal as a fixed effect. Thus, we test

whether cloze surprisal explains variance in N400 amplitude not explained by each LM

surprisal. The results are shown in Table 2.4.
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Table 2.4: Results of LRTs testing whether adding cloze surprisal as a main effect improves
the fit of regressions that already include LM surprisal as main effect

Predictor χ2(df = 1) p
GRNN surprisal 23.103 <0.001
JRNN surprisal 16.056 0.001
Tranformer-XL surprisal 13.277 0.002
GPT-2 surprisal 8.178 0.028
GPT-3 surprisal 0.754 1
BERT surprisal 8.282 0.027
RoBERTa surprisal 3.276 0.380
ALBERT surprisal 1.935 0.820

As can be seen in Table 2.4, adding cloze surprisal to a regression already including

GRNN, JRNN, Transformer-XL, GPT-2, or BERT surprisal improves their fit. By contrast,

human cloze surprisal does not improve regressions already including surprisals from GPT-

3, RoBERTa, or ALBERT.

In sum, surprisal calculated using GPT-3, RoBERTa, or ALBERT provides a

better fit to N400 data than human cloze surprisals based on analyses in both directions,

and BERT surprisal explains some variance in N400 amplitude not explained by human

cloze surprisals.

2.5 General Discussion

In this study, we investigated whether linguistic predictions from language models

or from human participants better predict the amplitude of the N400, a neural index of

processing difficulty. We find that, across the board, the surprisal of three transformer

LMs, GPT-3, RoBERTa, and ALBERT, are better predictors of N400 amplitude than

cloze. This is consistent with prior work showing the correlation between LM surprisal

and N400 amplitude (Frank et al., 2015; Aurnhammer and Frank, 2019b; Michaelov and
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Bergen, 2020; Michaelov et al., 2021; Merkx and Frank, 2021). However, to the best of

our knowledge, the present study provides the most convincing evidence to date that LM

surprisal can outperform cloze as a predictor of N400 amplitude.

In contrast to a recent large-scale experiment and meta-analysis by Brothers and

Kuperberg (Brothers and Kuperberg, 2021), our results do not show that raw cloze proba-

bility is a better predictor of language processing difficulty amplitude than cloze surprisal—

in fact, if anything, cloze surprisal is the better predictor. Whether this is because there

is a difference in how the N400 and the behavioral metrics analyzed by Brothers and Ku-

perberg (Brothers and Kuperberg, 2021) relate to word predictability or because of some

other difference between the studies is a question for further research.

The skeptical reader might question whether there was some feature of our stimuli

that offers an unfair advantage to the LMs over cloze measures. We find this unlikely, given

that we have endeavoured to provide a ‘level playing field’. First, unlike previous work that

showed LM surprisal values provide a good account of N400 elicited by different kinds of

semantic stimuli equated for cloze probability (Michaelov et al., 2021), the present study

involved the experimental manipulation of the predictability of the words. There were

no experimental conditions that were matched for cloze but that differed in some other

systematic way. Thus, N400 amplitude variance in this study is almost exclusively due

to differences in predictability. Second, all zero-cloze items were removed, meaning that

any variation between items in terms of predictability was captured by both cloze and

LM surprisal. Finally, we included both cloze probability and cloze surprisal as possible

predictors to account for the possibility that one might be a better predictor than the

other. In summary, the conditions of this study were maximally favorable towards cloze;

and yet we see that even so, distributional information can better predict N400 amplitude.
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2.5.1 Theoretical implications

Our main result is that overall, GPT-3 surprisal, RoBERTa surprisal, and AL-

BERT surprisal were each found to be better predictors of N400 amplitude than cloze

surprisal values gathered from human participants. While it is striking that cloze probabil-

ity and surprisal values from a mere 30 participants provide a better fit to N400 data than

do surprisal values from GRNN, JRNN, Transformer-XL, and GPT-2, we find that they do

not explain any variance in N400 amplitude above and beyond that explained by GPT-3,

RoBERTa, and ALBERT surprisal. Furthermore, the surprisal of these LMs, as well as

BERT, explain variance in N400 amplitude not captured by cloze. When comparing LMs

of the same type, our results also provide new evidence that supports the idea that LMs of

higher quality perform better at modeling the N400 and other measures of online human

sentence processing difficulty (Frank et al., 2015; Goodkind and Bicknell, 2018; Aurnham-

mer and Frank, 2019b; Merkx and Frank, 2021). When compared by perplexity, a common

evaluation metric for autoregressive transformer LMs, GPT-3 outperforms Transformer-

XL and GPT-2 (Dai et al., 2019; Radford et al., 2019; Brown et al., 2020). Similarly,

ALBERT and RoBERTa each out-perform BERT at the GLUE benchmark (Wang et al.,

2019b), which covers a wide range of natural language understanding tasks. Finally, all

transformer LMs included in this analysis outperform the RNNs (GRNN and JRNN), repli-

cating previous work that transformer LMs are better predictors of N400 amplitude than

RNNs (Merkx and Frank, 2021; Michaelov et al., 2021).

This finding may offer additional insight into why our results diverge from previous

behavioral studies showing that cloze probability (Brothers and Kuperberg, 2021) and

cloze surprisal (Smith and Levy, 2011) are better predictors of processing difficulty than

LM surprisal beyond the fact that the N400 and behavioral metrics of processing difficulty

are not necessarily always comparable. The most sophisticated LM used in these studies
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is the JRNN (in (Brothers and Kuperberg, 2021)), with n-grams also being used (Smith

and Levy, 2011; Brothers and Kuperberg, 2021). Thus, our results are actually in line

with such findings—in the present study, cloze probability and surprisal out-perform JRNN

surprisal at predicting N400 amplitude. Our key finding is that more sophisticated, higher-

quality LMs out-perform cloze—as LMs continue to advance and improve, their predictions

appear to more closely match those of humans. Thus, our current best operationalizations

of predictability based on the statistics of language are the best operationalizations of

the predictions underlying the N400 response, and based on the present study, they may

continue to get closer.

Until the present study, cloze has been the gold-standard method of operationaliz-

ing predictability, and, when tested, the best correlate of behavioural predictability effects

(Smith and Levy, 2011; Brothers and Kuperberg, 2021). Thus, because the N400 is sen-

sitive to manipulations that cannot be operationalized by cloze probability, it has been

argued that it may be more productive to think of the N400 as reflecting ‘preactivation’

(Kuperberg et al., 2020), or the ‘neural activation state at the time a physical stimulus

is encountered’ (DeLong and Kutas, 2020) rather than prediction per se. For example,

besides its high degree of sensitivity to cloze probability, the amplitude of the N400 is also

sensitive to factors ostensibly related to the organization of semantic memory. Consider

the following set of stimuli from Ito et al. (Ito et al., 2016):

Jack studied medicine in a university and works as a doctor/patient/tenant
now.

Here, doctor is the highest-cloze continuation of the sentence, while both patient

and tenant have a cloze probability of zero. However, despite the fact that patient and

tenant are equally unpredictable and equally implausible continuations of the sentence (as

judged by participants in their study), patient elicits a smaller (less negative) N400 than

tenant. This is one example of a range of studies where words that are semantically related
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to the preceding context (i.e. medicine) or to the most expected continuation of a sentence

(i.e. doctor) elicit smaller N400 responses than semantically unrelated words, even when

matched for cloze (Ito et al., 2016; Thornhill and Van Petten, 2012; Metusalem et al.,

2012). Based on such experiments, it has been proposed that implausible continuations

like patient are ‘collaterally facilitated’ by the preceding context (DeLong and Kutas, 2020),

or, alternatively, that their preactivation is caused by a separate associative system (Frank

and Willems, 2017).

However, recent work shows that the difference in N400 amplitude reported in

Ito et al.’s (Ito et al., 2016) study can be successfully predicted based on GRNN and

JRNN surprisal (Michaelov and Bergen, 2020). This suggests that manipulations thought

to be separate or dissociable from predictability—in this case, semantic relatedness to the

highest-cloze continuation—may be reducible to an appropriate measure of predictabil-

ity. That is, patient and tenant are not in fact equally predictable, and the belief that

they are is an artifact of cloze task. If even the GRNN and JRNN, which are among the

worst-performing models in the present study, are able to successfully differentiate the pre-

dictability of patient and tenant (Michaelov and Bergen, 2020) without semantics learned

explicitly or through experience of the world, this suggests that humans may not need to

rely on such information for prediction either, at least within the N400 window.

The results of the present study may help to illuminate the functional significance

of the N400 component by providing evidence for a unified explanation for its sensitivity

to what seem to be disparate sources of contextual information. In previous work, we see

that semantic relatedness, previously thought to be dissociable from predictability, can

successfully be operationalized with LM surprisal (Michaelov and Bergen, 2020; Michaelov

et al., 2021). In the present study, we see that predictability, previously thought to be best

operationalized with cloze probability, can be operationalized with LM surprisal, with the
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highest-quality LMs providing a better operationalization than cloze probability or cloze

surprisal. Together, these results suggest that there may be something about the surprisal

of high-quality LMs that makes them so well-suited to capturing the predictions of the

neurocognitive system underlying the N400 response. LMs are systems trained to predict

a word given its context based on the statistics of language. Their degree of success at

predicting N400 amplitude relative to other approaches suggests that we should seriously

consider that as part of language comprehension, humans may be doing the same.

2.5.2 Methodological implications

Our finding of the relationship between N400 amplitude and surprisal values from

GPT-3, RoBERTa, and ALBERT has clear methodological implications. In future work,

it may be advantageous for ERP language researchers who want to measure or control

the predictability of their stimuli to use surprisal values from these LMs in addition to,

or even instead of, cloze probability. As previously discussed, using cloze probability has

several theoretical issues, but there are also practical reasons for favoring LM surprisal. For

example, it is is easy to gather surprisal values for large stimulus sets (e.g. for every word

in a collection of multiple sentences), while this may not be feasible for cloze. Additionally,

the precision of cloze probability is limited by the number of participants used for the cloze

task—with a limited number of participants, small differences in predictability may not be

reflected in cloze, and further, this means that even with a large number of participants,

variation in the predictability of zero-cloze items may not be detected. LM surprisal,

by contrast, allows the researcher to differentiate between items even with a very low

probability, making it possible to control for predictability over a wider range than does

cloze probability.

However, in addition to these already-known reasons for preferring LM surprisal
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to cloze, the results of the present study provide another, stronger argument for using LM

surprisal over cloze. Even for stimuli that vary in measurable ways in terms of cloze, the

surprisals calculated from GPT-3, RoBERTa, and ALBERT’s predictions provide a better

fit to the N400 data, suggesting that they may better operationalize the predictability

underlying the variance in the N400 response to stimuli. Indeed, as discussed, given that

these are the highest-quality models tested, we might expect that LM surprisal’s ability

to capture predictability may continue to improve. ERP language researchers already use

other measures derived from linguistic corpora to control their language materials. For

example, since the report that corpus-derived metrics of word similarity are correlated

with N400 amplitude (Chwilla and Kolk, 2005; Parviz et al., 2011; Van Petten, 2014;

Ettinger et al., 2016), many researchers have constructed their stimuli such that they are

either matched in terms of these metrics, or include similarity metrics as covariates in their

statistical analyses (Chwilla et al., 2007; Kuperberg et al., 2020; Nieuwland et al., 2020).

The present study suggests that surprisals derived from high-quality LMs should be used

analogously in ERP investigations of language processing.

2.6 Conclusion

Previous work has shown that LM predictions correlate with N400 amplitude

when cloze does not (Michaelov and Bergen, 2020; Michaelov et al., 2021). The present

study has shown that even in conditions maximally preferable for cloze, LM predictions

correlate better with N400 amplitude. Thus, at least in terms of relative strength, the

kinds of predictions made by LMs resemble the kinds of predictions made by humans as

part of online language comprehension. Thus, the language comprehension system, or at

least, the neurocognitive system underlying the N400 response, appears to be more finely

attuned to the regularities in the statistics of language than previously thought.

47



2.7 Acknowledgements

The authors would like to thank Mante Nieuwland and collaborators for making

their stimuli and data available online. The authors would also like to thank the anonymous

reviewers for their helpful comments.

References

2022 IEEE. Reprinted, with permission, from Michaelov, J. A., Coulson, S., &

Bergen, B. K., “So Cloze yet so Far: N400 Amplitude is Better Predicted by Distributional

Information than Human Predictability Judgements”, IEEE Transactions on Cognitive

and Developmental Systems, May 2022. In reference to IEEE copyrighted material which

is used with permission in this thesis, the IEEE does not endorse any of The University

of California’s products or services. Internal or personal use of this material is permitted.

If interested in reprinting/republishing IEEE copyrighted material for advertising or pro-

motional purposes or for creating new collective works for resale or redistribution, please

go to http://www.ieee.org/publications_standards/publications/rights/rights_

link.html to learn how to obtain a License from RightsLink. If applicable, University

Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies

of the dissertation.

Chapter 2, in full, is a reprint of the material as it appears in Michaelov, J. A.,

Coulson, S., & Bergen, B. K., “So Cloze yet so Far: N400 Amplitude is Better Predicted by

Distributional Information than Human Predictability Judgements”, IEEE Transactions

on Cognitive and Developmental Systems, 2022. The dissertation author was the primary

investigator and author of this paper. Minor edits have been made to bring the formatting

in line with the dissertation template.

48

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html


Chapter 3

Better language models better

model the N400

Abstract

The probability of a word in context, as captured by Large Language Models,

is predictive of both behavioral and neural measures of human language processing. In-

tuitively, language models that are better at next word prediction might better model

the effect of predictability on human language comprehension. Yet recent work suggests

that language models can become too good at next-word prediction to model reading

time, suggesting that the aspects of human comprehension indexed by reading time do not

track perfectly with predictability from language statistics alone. However, it is unknown

whether this decoupling is true of reading time only, or is intrinsic to measures of com-

prehension more generally. To address this question, we turn to another robust and well

studied measure of online processing, the N400. We investigate how number of training

tokens and performance at natural language benchmarks correlate with a language model’s
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ability to predict N400 amplitude. We find that across the board, models that are trained

on more data and that perform better at next-word prediction and other more complex

natural language tasks are better able to predict N400 amplitude. We interpret this differ-

ence between the N400 and reading time measures as potentially revealing the comparative

importance of semantic prediction in the magnitude of the N400.

3.1 Introduction

The statistics of language have proven effective for modelling certain aspects of

online human language comprehension. In the last few decades, for example, language

models—computational models that predict the probability of a word in a given linguistic

context—have been found to generate predictions that correlate strongly with behavioral

(McDonald and Shillcock, 2003a,b) and neural (Parviz et al., 2011; Frank et al., 2015)

indices of language processing. For many years, a consistent and perhaps unsurprising

pattern has been reported whereby larger and more powerful n-gram (Goodkind and Bick-

nell, 2018; Wilcox et al., 2020), recurrent neural network (Aurnhammer and Frank, 2019a;

Aurnhammer et al., 2021; Wilcox et al., 2020; Merkx and Frank, 2021), and transformer

language models (Wilcox et al., 2020; Merkx and Frank, 2021) make predictions that better

correlate with metrics of online human language comprehension.

However, in more recent years, language models have continued to advance, not

only quantitatively in scale and next-word-prediction capabilities (see, e.g., Rae et al.,

2022), but also qualitatively in that they are able to accomplish a wide range of tasks

(Brown et al., 2020; Srivastava et al., 2022; Wei et al., 2022a; Hoffmann et al., 2022),

to the point where text generated by them has become difficult to tell apart from that

generated by humans (Brown et al., 2020; Köbis and Mossink, 2021; Clark et al., 2021;

Jannai et al., 2023; Jones and Bergen, 2024a,b). Beyond being able to simply represent
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n-gram relationships, they appear to be able to learn the semantic relationships between

words and make predictions on this basis (for discussion, see, e.g. Michaelov and Bergen,

2022a).

Intuitively, one might expect this to lead to even better modeling of human lan-

guage processing. Yet surprisingly, evidence from the reading time literature suggests the

opposite (Oh et al., 2022; Oh and Schuler, 2023a,b; Oh et al., 2024; Shain et al., 2024;

for related findings see Eisape et al., 2020; Kuribayashi et al., 2021). Oh et al. (2022),

for example, find that larger GPT-2 models with a greater number of parameters predict

reading time worse than GPT-2 models with fewer parameters (based on both self-paced

reading and eye tracking experiments) . Oh and Schuler (2023a) observe a similar pattern

when analyzing the effect of training data on the Pythia suite of transformer language

models (Biderman et al., 2023b), finding that for all the models tested (from 70 million

to 12 billion parameters), performance at predicting reading time data improves until the

models are trained on 2 billion tokens, at which point performance begins to degrade again.

To the best of our knowledge, no equivalent results have been reported in the

literature on neural indices of language processing, like the N400. The N400 is a neural

index of language processing that, like reading time, is known to be highly correlated

with the contextual probability of a word (Kutas and Federmeier, 2011; Van Petten and

Luka, 2012; DeLong et al., 2014b; Kuperberg et al., 2020). While there have been no

systematic attempts to quantify the exact relationship, previous studies using language

models to predict N400 amplitude display an imperfect but relatively consistent relationship

where, for a given set of models trained on the same dataset, models with more parameters

(i.e., larger models) generally tend to predict N400 amplitude better than smaller models

(Michaelov and Bergen, 2022b, 2023). Yet it is currently unknown how N400 prediction

capability correlates with language model training data or overall performance at natural
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language tasks, particularly at the scale where reading time prediction begins to falter.

Aurnhammer and Frank (2019b), for example, report that models trained on more data

perform better at predicting N400 amplitude; and Aurnhammer and Frank (2019a) and

Merkx and Frank (2021) report that models that are better at next-word prediction (which

they term ‘higher-quality’) also perform better at predicting the N400. However, crucially,

the models in these studies are trained on a maximum of 95 million tokens; and as previously

noted, decreased performance at predicting reading time has only been observed on models

trained on over a billion tokens. Thus, as yet, we do not know whether better, more

extensively trained language models predict N400 amplitude better or whether, as with

reading time, word probability eventually diverges from the N400.

Our analysis therefore has several parts. In a first experiment, we follow Oh and

Schuler (2023a) in using the Pythia suite of language models to tease apart how number of

parameters and number of training tokens each contribute to performance at modeling the

N400. We also follow previous work in looking at how well language modeling performance

correlates with this. Like several previous studies (Goodkind and Bicknell, 2018; Oh and

Schuler, 2023a,b; Oh et al., 2024), we operationalize basic language model quality using

perplexity (a measure of how good language models are at predicting the next word in a

sequence; Jelinek et al., 1977). But in a second experiment we further ask how performance

at other natural language tasks (Warstadt et al., 2020; Paperno et al., 2016; Zellers et al.,

2019; Bisk et al., 2020; Sakaguchi et al., 2020) correlates with N400 prediction capability.

This extension aims to determine several things: whether generally better language models

are better for modeling the N400, whether specific natural language model capabilities are

more correlated with N400 prediction performance, and whether it is possible to use natural

language modeling tasks to identify which models are best able to predict N400 amplitude

even in the absence of information about number of model parameters or training tokens.
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Finally, we run our analyses on two reading time datasets to compare with the N400

effects. We use the Provo Corpus (Luke and Christianson, 2018), on which Oh et al.

(2024) demonstrate the decrease in performance for larger and higher-quality language

models, as well as the data from a study by Smith and Levy (2013), which, to the best of

our knowledge, has not been tested in this way.

3.1.1 Computational modeling of human language processing

The fact that indices of human language processing such as reading time and

N400 amplitude are correlated with the contextual probabilities of words has been known

for around four decades (Fischler and Bloom, 1979; Kutas and Hillyard, 1984), but it

is only more recently that statistical models have been able to capture such patterns in

ways that are meaningful for human processing research, from n-grams (McDonald and

Shillcock, 2003a; Parviz et al., 2011) to transformers (Wilcox et al., 2020; Merkx and

Frank, 2021). While different transformations of contextual probability have been used

to predict both reading time and N400 amplitude, the current research suggests that a

logarithmic transformation provides the best linking function for language-model-derived

probabilities to both reading time (Smith and Levy, 2013; Shain et al., 2024) and the N400

(Yan and Jaeger, 2020; Szewczyk and Federmeier, 2022). Thus, the most common way

to operationalize the effect of contextual probability on human language processing is to

calculate the negative log-probability or surprisal of a word in context, the equation for

which is given in Equation (3.1).

S = − log P (wi|w1...wi−1) (3.1)
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3.1.2 Scaling in Language Models

A number of studies have attempted to investigate whether there are formal scal-

ing laws (or at least general patterns) governing the performance of language models based

on number of parameters and training tokens for a given computational budget (for exam-

ples and discussion, see, e.g., Kaplan et al., 2020; Henighan et al., 2020; Hoffmann et al.,

2022; Alabdulmohsin et al., 2022; Le Scao et al., 2022; Touvron et al., 2023; Tay et al., 2023;

Sardana and Frankle, 2023; Muennighoff et al., 2023; Biderman et al., 2023b; Ruan et al.,

2024). With the exception of certain conditions that induce so-called “inverse scaling”

(see, e.g. Lin et al., 2022; McKenzie et al., 2023), models with more trainable parameters

generally perform better at natural language processing tasks than those with fewer pa-

rameters, models trained on more tokens perform better than those trained on fewer, and

models with more parameters can improve their performance with more training data to

a greater extent than those with fewer parameters. Simply put: models larger in either

dimension perform better than smaller models, and the two interact in that the number of

parameters sets the ceiling of performance. Given this pattern, we follow Oh and Schuler

(2023a,b) in henceforth referring to the number of parameters of a model as its capacity.

While the majority of research on scaling focuses on natural language tasks, a

number of studies have either implicitly or explicitly investigated the extent to which

model scale impacts performance at modeling online human language comprehension. As

previously discussed, work on reading time has historically (with pre-transformer architec-

tures, training data sizes of less than 2 billion tokens, or both) found that models trained on

more data generally perform better at predicting reading time than models trained on less

data (Aurnhammer and Frank, 2019b; Wilcox et al., 2020; Merkx and Frank, 2021; Wilcox

et al., 2023a). As noted, however, more recent work with larger models has suggested that

there is a limit to this, and that past a certain point, this effect is reversed. Specifically, a
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recent set of studies (Oh et al., 2022; Oh and Schuler, 2023b,a; Oh et al., 2024) has shown

that on models trained on over 2 billion tokens, both language model capacity and training

tokens have a negative effect on language models’ capability to predict reading time. For

example, using two metrics of reading time from two separate datasets—self-paced reading

response time from the Natural Stories Corpus (Futrell et al., 2021) and go-past duration

from the Dundee Corpus (Kennedy et al., 2003)—Oh et al. (2022) and Oh and Schuler

(2023b) find that smaller-capacity variants of the GPT-2, GPT-Neo, and OPT language

models (all trained on the same datasets) predict the reading time metrics better than

larger models of the same family. Thus, the findings show systematic evidence that higher-

capacity models can actually perform worse than lower-capacity models. In addition, Oh

and Schuler (2023a) compare the Pythia (Biderman et al., 2023b) models over the course

of their training, finding that for all the models tested (of various capacities), performance

at predicting the two reading time metrics improves until the thousandth step of train-

ing (when the models have been trained on roughly 2 billion tokens), before beginning to

decrease again, with higher-capacity models showing a greater decrease in performance.

What could explain this pattern? As noted earlier in this section, the general

finding is that larger models are generally better-performing at natural language tasks;

and one possibility is that these larger models are too good at next-word prediction relative

to humans. Specifically, the results show that when using language models to predict

reading time, they systematically under-predict reading time for words with low contextual

probabilities (Oh and Schuler, 2023b) and low overall (i.e., unigram) probabilities (Oh et al.,

2024), suggesting that they are better able to predict such words than humans (Oh and

Schuler, 2023b; Oh et al., 2024). Such an explanation is further strengthened by Shlegeris

et al.’s (2022) finding that even the 350-million parameter GPT-3 model (which is trained

on 300 billion text tokens; see Brown et al., 2020) can predict the next word in a sequence
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better than any of the 60 humans they test, with larger models performing even better.

With the N400, on the other hand, all evidence thus far suggests that larger models

are better predictors. Aurnhammer and Frank (2019b), for example, find that recurrent

neural networks trained on more data are better able to predict N400 amplitude; while

Michaelov et al. (2022) find that for recurrent neural networks, autoregressive transformers,

and masked transformers, higher-capacity models and those trained on more data predict

N400 amplitude better. In fact, while not discussed in the paper, the results presented

in Michaelov and Bergen (2022b) show a clear pattern whereby the 7.5-billion-parameter

(7.5B) XGLM (Lin et al., 2021) performs better than the 4.5B model, which in turn

performs better than the 2.9B model, and so on with the 1.7B and 564-million parameter

(564M) models; as well as similar (though not all perfect) patterns with the OPT (Zhang

et al., 2022), GPT-Neo (Black et al., 2021), and GPT-2 (Radford et al., 2019) models. All

these models are trained on over 2 billion tokens, and thus, this result shows that even at

the scales at which negative scaling (as a function of capacity) has been found to emerge

in reading time, such effects have not been found when modeling the N400.

Given Oh and Schuler’s finding that the decrease in the extent to which they

can predict reading time is driven by training data and the possible downstream effect of

being too good at next-word prediction compared to humans, we explicitly target this in

the present study. Thus, while we include models of varying capacities, our main aim is to

investigate whether there is a point during training at which continuing to train a model

leads to a model that is too good at predicting the next word to make predictions that cor-

relate with N400 amplitude. For this reason, in addition to revealing how different metrics

of language model quality correlate with models’ ability to predict N400 amplitude, the

evaluations of language model quality below also differentiate whether decreased perfor-

mance with more training data is due to a model getting generally worse (which is possible
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for very small models if they are ‘overtrained’; see Hoffmann et al., 2022; Biderman et al.,

2023b), or whether it is because they are in fact getting better at next-word prediction in

a un-human-like manner.

3.1.3 Language Model Quality

If a language model has learned the statistical regularities of a language, it should

calculate natural language to have a higher probability, than, for example, nonsensical

strings. This is the logic behind the traditional way to measure language model perfor-

mance, namely, by calculating language model perplexity (Jelinek et al., 1977) on a given

corpus. The perplexity of a given sequence of words or tokens w1...wN is given by Equa-

tion (3.2), where P (wi|w1...wi−1) is the probability of a word wi given the preceding words

in the sequence w1...wi−1.

PPL(w1...wN ) = N

√√√√ N∏
i=1

1
P (wi|w1...wi−1) (3.2)

Thus, perplexity gives a measure of the average probability of a word in a text.

For many years, perplexity on a held-out dataset was the primary way to measure lan-

guage model performance, with a lower perplexity indicating a better model. Thus model

perplexity’s relationship to predicting metrics of human language comprehension has also

been investigated. From a theoretical perspective, this question has more explanatory

power than investigating scaling in that it is more directly interpretable. If we consider a

language model’s ability to predict the next word in a given context to be a measure of the

language model’s quality (Goodkind and Bicknell, 2018), then if lower-perplexity models

better predict reading time or N400 amplitude, this suggests that the extent to which a

model’s predictions correlate with the human metric is tied to the model’s quality. It is

worth noting that while perplexity is the canonical and most widely-used metric of model
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quality in studies of human language processing (Goodkind and Bicknell, 2018; Hao et al.,

2020; Wilcox et al., 2020; Kuribayashi et al., 2021; Oh and Schuler, 2023a,b; Oh et al.,

2024), other researchers have instead opted to use average log-probability (Aurnhammer

and Frank, 2019a; Merkx and Frank, 2021) or average cross-entropy (Wilcox et al., 2023a).

These are respectively equivalent to average negated surprisal (see Equation (3.1)) and

surprisal (see Aurnhammer and Frank, 2019b; Michaelov and Bergen, 2023), respectively,

and so are both monotonically related to perplexity, as can be seen from Equation (3.3).

PPL(w1...wN ) = exp
{

− 1
N

N∑
i=1

log P (wi|w1...wi−1)
}

(3.3)

The results of analyses looking at model quality, however operationalized, are the

same as those for model scale. N-grams, recurrent neural networks, and transformers with

a lower perplexity (Goodkind and Bicknell, 2018; Hao et al., 2020; Wilcox et al., 2020), a

higher average log-probability (Aurnhammer and Frank, 2019a; Merkx and Frank, 2021),

or a lower average cross-entropy (Wilcox et al., 2023a) tend to perform better at predicting

reading time than models of a lower quality up to a point, after which the correlation

appears to decrease (Oh and Schuler, 2023a,b; Oh et al., 2024). Meanwhile, for the N400,

we again only see evidence that higher-quality models perform better (Merkx and Frank,

2021). However, the most recent study to directly compare language model quality and

goodness of fit to the N400 data is that of Merkx and Frank (2021), and as was previously

noted, the fact that they do not find any negative scaling for reading time may suggest

that the models are too small (at least in terms of training data) to observe this. Thus, in

the present study, we run a similar analysis with contemporary models.

It is also important to note that perplexity as a metric of language model quality

was developed at a time when language models were far less advanced that they are in

the present. Today, language models have been developed that can generate not only
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fully grammatical sequences, but seemingly coherent text (Stiennon et al., 2020; Nakano

et al., 2022; Bai et al., 2022; though see, e.g., Bender et al., 2021; Raji et al., 2022, for a

discussion of the risks of this). Thus, it makes sense to evaluate more specific tendencies in

language model predictions—and indeed, contemporary benchmarks evaluate a wide range

of possible patterns of ‘capabilities’ and ‘behaviors’ in the predictions of language models

(see, e.g., Wang et al., 2019b,a; Srivastava et al., 2023; Bommasani et al., 2023b). We focus

on five such tasks, which we describe in more detail in Section 3.3.

3.2 Experiment 1: The effect of scale on the N400

3.2.1 Introduction

In this paper, our main research question is how language models’ performance at

predicting N400 amplitude is impacted by how many tokens of text it is trained on as well

as language model capacity. To do this, we draw on the approach used by Oh and Schuler

(2023a) to ask the same question for reading time. Specifically, we use the Pythia suite

(Biderman et al., 2023a), a collection of language models with different capacities, with

checkpoints provided over the course of training. This allows us to investigate the extent

to which the models’ next-word predictions can be used to model N400 amplitudes from 9

previous studies (Federmeier et al., 2007; Nieuwland et al., 2018b; Wlotko and Federmeier,

2012; Hubbard et al., 2019; Lago et al., 2019; Ryskin et al., 2021; Szewczyk et al., 2022;

Szewczyk and Federmeier, 2022; Michaelov et al., 2024).

3.2.2 Data Availability

All code, data, and statistical analysis scripts are provided at https://osf.io/

qbekt/?view_only=0f4ba6296eda442aaf8e49109eac145d.
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3.2.3 Method

General approach

Our general approach follows that of previous work using language models to

predict metrics of reading time and the N400 (Oh et al., 2022; Oh and Schuler, 2023a,b;

Szewczyk and Federmeier, 2022; Michaelov et al., 2022; Michaelov and Bergen, 2023).

Specifically, we use each language model to calculate the surprisal of each critical word

(i.e., each word for which the N400 was measured) given its preceding context. In cases

where critical words are not in a language model’s vocabulary, we take a sum of the

surprisal of each token given their context (including previous tokens of the same), which

is equivalent to taking the product of the probabilities and which leads to a well-defined

surprisal for each such word.

To evaluate how closely these surprisals correlate with the N400, we also follow

the aforementioned studies and use linear mixed-effects regression models to predict N400

amplitude, matching the structure of the regression (in terms of covariates and the random

effects structure) in the original paper as closely as possible. In order to compare the

quality of these regressions, we then calculate the Akaike Information Criterion (AIC;

Akaike, 1973) of each regression (following, e.g., Michaelov et al., 2022; Michaelov and

Bergen, 2023; Michaelov et al., 2024), and compare this for each checkpoint of each language

model.

N400 datasets

We investigate how well the surprisal calculated using different language models

predicts the amplitudes of N400 responses from 8 previously-published studies (Federmeier

et al., 2007; Nieuwland et al., 2018b; Wlotko and Federmeier, 2012; Hubbard et al., 2019;

Lago et al., 2019; Ryskin et al., 2021; Szewczyk et al., 2022; Michaelov et al., 2024) and
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Table 3.1: A description of each of the N400 datasets, including the total number of
experimental stimuli, experimental participants, and the number of trials.

Dataset Stimuli Participants Trials

Federmeier et al. (2007) 564 32 7,856
Hubbard et al. (2019) 192 32 5,705
Szewczyk and Federmeier (2022) 600 26 4,822
Szewczyk et al. (2022) 672 32 4,939
Wlotko and Federmeier (2012) 300 16 4,440
Nieuwland et al. (2018b) 160 334 25,978
Lago et al. (2019) 856 104 9,892
Ryskin et al. (2021) 640 24 3,241
Michaelov et al. (2024) 500 50 5,526

1 dataset released as part of Szewczyk and Federmeier’s (2022) study. We describe the

details of each dataset below, and provide information about the number of stimuli, trials,

and experiment participants in Table 3.1.

The first 5 datasets (Federmeier et al., 2007; Wlotko and Federmeier, 2012; Hub-

bard et al., 2019; Szewczyk et al., 2022; Szewczyk and Federmeier, 2022) are all variants of

the original study by Federmeier et al. (2007), who measured N400 responses to low-cloze

and high-cloze words in low-constraint and high-constraint contexts, where constraint refers

to the cloze probability of the highest cloze sentence continuation. The stimuli in the other

studies differ in specific ways—Hubbard et al. (2019) and Szewczyk and Federmeier (2022;

previously unpublished) use a subset of the stimuli from Federmeier et al. (2007), Wlotko

and Federmeier (2012) add additional stimuli to cover a wider range cloze probabilities,

and Szewczyk et al. (2022) add adjectives that make the critical nouns either more or less

likely.

We use the data from these studies as preprocessed by Szewczyk and Federmeier
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(2022), who operationalize N400 amplitude as the mean un-baselined amplitude over the

300-500ms time window at four centro-parietal electrodes (MiCe, MiPa, LMCe, RMCe).

Our statistical approach followed that in Szewczyk and Federmeier (2022) as much as

possible (except to avoid regressions that would not converge or had singular fits), using

a linear mixed-effects regression to predict N400 amplitude with fixed effects of surprisal,

baseline amplitude, log-transformed frequency, the position of the word in the sentence,

orthographic neighborhood distance, and concreteness, and including random slopes of

baseline amplitude for each subject and item, random slopes of baseline amplitude for each

subject, and random intercepts of subject and item.

The Nieuwland et al. (2018b) dataset is made up of the amplitudes of the N400

responses elicited by nouns in a large-scale study carried out by the authors. For each

item, there were two sentence continuations: the highest-cloze continuation, and a low-cloze

alternative. We use the data as preprocessed by Nieuwland et al. (2018b), where N400 is

operationalized as the mean baselined voltage at 6 centro-parietal electrodes (Cz, C3, C4,

Pz, P3, and P4) over the 200-500ms time window after stimulus presentation. Following

the original study and Michaelov et al. (2022), we use linear mixed-effects regressions to

predict N400 amplitude with laboratory as a fixed effect (the study was carried out over

multiple laboratories), as well as random intercepts for each subject and item.

The Lago et al. (2019) dataset is made up of 5 experiments carried out by Lago

et al. (2019) to investigate whether the semantics of an antecedent impact facilitation during

coreference, specifically whether words related to the referent are primed by a possessive

pronoun used to refer to it. The critical words in this study were nouns that were either

semantically related or unrelated to the antecedent, and the antecedent is either repeated

or referred to using a pronoun, giving four conditions; to which an additional control was

added. Lago et al. (2019) operationalized N400 amplitude as the mean N400 amplitude
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over the 300-500ms time period at each of 9 (P3, Pz, P4, CP3, CPz, CP4, C3, Cz, C4)

centro-parietal electrodes. Lago et al. (2019) use Bayesian hierarchical linear models; but

for consistency with our other analyses, we use frequentist linear mixed-effects regressions

following the same structure as much as possible, which included surprisal as a fixed effect

and random slopes of surprisal for each participant and item, as well as random intercepts

for participant, item, electrode, and experiment.

The Ryskin et al. (2021) dataset is made up of data from a study investigating a

noisy-channel account of human language comprehension. Items had four possible critical

word continuations: a plausible one, a semantically incongruous one, a morphosyntactically

incongruous one, and a semantically incongruous one similar enough in form to the plausible

continuation that it could be interpreted as a recoverable mistake. N400 amplitude was

operationalized as the mean baselined amplitude over the 300-500ms time window at 8

centro-parietal electrodes (C3, Cz, C4, CP1, CP2, P3, Pz, and P4). The original study

again used a Bayesian regression, the structure of which we replicated as closely as possible

with our frequentist linear mixed-effects models. Our regressions each included surprisal

as a fixed effect with random slopes for each subject and item, as well as random intercepts

for each of these as well as electrode.

The Michaelov et al. (2024) dataset has sentences with four possible endings:

the highest-cloze continuation, a low-cloze but plausible continuation that is semantically

related to this highest-cloze continuation, an equally low-cloze but unrelated continuation,

and an implausible continuation, with the two low-cloze (but not implausible) continuations

matched for cloze probability and plausibility. Stimuli varied in constraint but were not

matched for this. The N400 was operationalized as the baselined voltage at 9 centro-

parietal electrodes (C3, Cz, C4, CP3, CPz, CP4, P3, Pz, and P4) over the 300-500ms

time window. Fit to N400 amplitude was calculated in the same way as in Michaelov
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Table 3.2: Details of the Pythia models used in Experiment 1. The name provides the
number of paramaters in millions (M) or billions (B) of parameters. Columns provide the
number of layers, dimensions, and attention heads in each model, as well as the starting
learning rate used during training (the learning rate decayed over the course of training as
described in Biderman et al., 2023b).

Name Layers Dimensions Attn. Heads LR

Pythia 14M 6 128 4 1.0 × 10−3

Pythia 70M 6 512 8 1.0 × 10−3

Pythia 160M 12 768 12 6.0 × 10−4

Pythia 410M 24 1024 16 3.0 × 10−4

Pythia 1.4B 24 2048 16 2.0 × 10−4

Pythia 2.8B 32 2560 32 1.6 × 10−4

Pythia 6.9B 32 4096 32 1.2 × 10−4

et al. (2024), using linear mixed-effects regressions predicting N400 with fixed effects of

surprisal, log-transformed word frequency, and orthographic neighborhood distance, and

random intercepts of context sentence, critical word, subject, and electrode.

Language Models

Following the analysis carried out by Oh and Schuler (2023a), we use the Pythia

suite of language models to carry out our analyses. Pythia models are a set of autoregressive

language models that have different capacities and that are trained on exactly the same

text corpus, known as The Pile (Gao et al., 2020). In this paper, we analyze 7 of these

models, the details of which are presented in Table 3.2.

Another aspect of the Pythia suite of models is that checkpoints are provided at

a large number of stages over the course of training. This allows us to tease apart the

effects of model size in terms of capacity and number of training tokens. In line with Oh

and Schuler (2023a), we calculate the surprisal for all the stimuli using each Pythia model
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at various stages over the course of training. We provide details of the training checkpoints

and the corresponding number of total training tokens in Table 3.3.

Table 3.3: The training checkpoints analyzed in the present study and the corresponding
number of total tokens the model has been trained on at that checkpoint.

Training Step Total Training Tokens

Step 0 0
Step 1 2,097,152
Step 2 4,194,304
Step 4 8,388,608
Step 8 16,777,216
Step 16 33,554,432
Step 32 67,108,864
Step 64 134,217,728
Step 128 268,435,456
Step 256 536,870,912
Step 512 1,073,741,824
Step 1,000 2,097,152,000
Step 2,000 4,194,304,000
Step 4,000 8,388,608,000
Step 8,000 16,777,216,000
Step 16,000 33,554,432,000
Step 32,000 67,108,864,000
Step 64,000 134,217,728,000
Step 128,000 268,435,456,000
Step 143,000 299,892,736,000

Because of a known issue where the lowest-capacity Pythia models are sometimes

unstable at the default 16-bit precision (see Schoelkopf, 2024), we run all models at 32-bit

precision.

3.2.4 Results

Figure 3.1 shows two clear patterns: performance tends to improve over the course

of training, and in the later stages where performance is better, larger models tend to do

better than smaller models.
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Figure 3.1: How language model performance at predicting N400 amplitude varies by model
and over the course of training. A lower AIC indicates a better fit to the N400 data.

Specifically, on most datasets, all models begin to improve at around step 512,

when the models are trained on around 1 billion tokens. In general, the models then con-

tinue to improve until the end of training (step 143,000), at which point the models are

trained on roughly 300 billion tokens. During this period of training, the main differen-

tiation in model performance is a function of number of parameters—larger models begin

to predict N400 amplitude better earlier than smaller models, and the rate at which the

larger models improve is faster. Finally, there appears to be a slow-down in the increase of

performance, though the point at which this occurs appears to vary more widely—in fact,

on one dataset (Szewczyk et al., 2022), there appears to be a slight decrease for the last

part of training.

Because the performance patterns are highly nonlinear and idiosyncratic, we use
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the Mann-Kendall Test (Mann, 1945; Kendall, 1948) to quantify the extent to which there is

a significant negative trend in AIC (i.e., improved performance) over the course of training

for each language model on each dataset from step 1000 until the end of training. As can

be seen in Table 3.4, the results show a negative trend for nearly all models over nearly all

datasets, and while there are a few individual exceptions, these are generally significant,

even when correcting for multiple comparisons across all statistical tests carried out in this

study (using the false discovery rate approach of Benjamini and Yekutieli, 2001).

3.2.5 Discussion

While there are some specific idiosyncracies, the main result of the experiment

is clear: larger language models—both in terms of capacity and training data—perform

better at predicting N400 amplitude than smaller models.

Furthermore, we see that unlike reading time where modeling performance ap-

pears to decrease after step 1000 when models are trained on about 2 billion tokens (Oh

and Schuler, 2023a), the reverse is true for the N400: the majority of the improvement on

most datasets occurs after step 1000, i.e., when the models are trained beyond 2 billion

tokens.

3.3 Experiment 2: Language model quality

3.3.1 Introduction

What explains these scaling effects? The most straightforward explanation is that

language models trained on more data, and which have more capacity, tend to be better

at language modeling overall (Rae et al., 2022), and that better word predictions better

align with human processing metrics. Where the effects of scale and quality have been
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Table 3.4: The results of Mann-Kendall tests looking at the overall trend of AIC from step
1,000 to the end of training (step 143,000). FWOK07 refers to Federmeier et al. (2007),
HRJF19 to Hubbard et al. (2019), LNJL19 to Lago et al. (2019), MBVBC24 to Michaelov
et al. (2024), N18 to Nieuwland et al. (2018b), RSBEFG21 to Ryskin et al. (2021), SF22 to
Szewczyk and Federmeier (2022), SMF22 to Szewczyk et al. (2022), and WF12 to Wlotko
and Federmeier (2012). All p-values are corrected for multiple comparisons (Benjamini and
Yekutieli, 2001).

FWOK07 HRJF19 LNJL19

Parameters τ p τ p τ p

14M -0.317 0.0072 -0.317 0.0072 -0.529 < 0.0001
70M -0.317 0.0072 -0.529 < 0.0001 -0.529 < 0.0001
160M -0.846 < 0.0001 -0.423 0.0001 -0.582 < 0.0001
410M -0.846 < 0.0001 -0.687 < 0.0001 -0.687 < 0.0001
1.4B -0.899 < 0.0001 -0.899 < 0.0001 -0.582 < 0.0001
2.8B -0.793 < 0.0001 -0.687 < 0.0001 -0.159 0.5971
6.9B -0.952 < 0.0001 -0.899 < 0.0001 -0.529 < 0.0001

MBVBC24 N18 RSBEFG21

Parameters τ p τ p τ p

14M -0.740 < 0.0001 -0.582 < 0.0001 0.211 0.1783
70M -0.370 0.0010 -0.687 < 0.0001 -0.159 0.5971
160M -0.846 < 0.0001 -0.793 < 0.0001 -0.423 0.0001
410M -0.793 < 0.0001 -0.952 < 0.0001 -0.582 < 0.0001
1.4B -0.634 < 0.0001 -0.846 < 0.0001 -0.793 < 0.0001
2.8B -0.582 < 0.0001 -0.899 < 0.0001 -0.74 < 0.0001
6.9B -0.582 < 0.0001 -0.899 < 0.0001 -0.687 < 0.0001

SF22 SMF22 WF12

Parameters τ p τ p τ p

14M 0.211 0.1783 -0.37 0.001 -0.264 0.0410
70M -0.264 0.041 -0.793 < 0.0001 -0.74 0.1783
160M -0.634 < 0.0001 -0.37 0.001 -0.74 0.1783
410M -0.793 < 0.0001 -0.529 < 0.0001 -0.211 < 0.0001
1.4B -0.846 < 0.0001 -0.423 0.0001 -0.899 < 0.0001
2.8B -0.74 < 0.0001 -0.159 0.5971 -0.846 < 0.0001
6.9B -0.793 < 0.0001 -0.053 1 -0.846 < 0.0001
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investigated together, they’ve moved in lock-step. Oh and Schuler (2023a), for example,

find that performance at modeling reading time decreases after models surpass a certain

size, and when perplexity improves to below a value somewhere in the range of 27 −

210 (i.e., average log2-based surprisal falls between 7 and 10). Thus, in this experiment,

we investigate whether the scaling effects observed in Experiment 1 can be explained by

language model quality. Specifically, we ask whether better (i.e., higher-quality) language

models predict N400 amplitude better.

As noted in Section 3.1, improvements in natural language technologies have led

to the development of benchmarks aimed to test specific language model capabilities. In

this experiment, we try to tease apart dimensions of model quality by selecting 5 such

benchmarks—one designed to evaluate language models’ knowledge of linguistic structure

(BLiMP; Warstadt et al., 2020), and four more semantic benchmarks, designed to evaluate

whether language models can predict what comes next in a text in human-like way based on

contextual information and world knowledge (LAMBADA: Paperno et al., 2016; HellaSwag:

Zellers et al., 2019; PiQA: Bisk et al., 2020; WinoGrande: Sakaguchi et al., 2020). Thus,

we test how well the general ability to predict the next word in a sequence, grammmatical

knowledge, and the ability to use world knowledge (or at least, to make predictions in line

with world knowledge) correlate with a language model’s ability to predict N400 amplitude.

3.3.2 Data Availability

All code, data, and statistical analysis scripts are provided at https://osf.io/

qbekt/?view_only=0f4ba6296eda442aaf8e49109eac145d.

69

https://osf.io/qbekt/?view_only=0f4ba6296eda442aaf8e49109eac145d
https://osf.io/qbekt/?view_only=0f4ba6296eda442aaf8e49109eac145d


3.3.3 Method

General

We use the same language models and N400 datasets, and follow the same proce-

dure for evaluating language model performance as in Experiment 1. The main difference

is that rather than comparing models by scale (capacity and training tokens), we instead

look at different metrics of model quality.

Metrics of Language Model Quality

We select 6 benchmarks designed to test language model quality in different ways,

with each described below. We use the Language Model Evaluation Harness (Gao et al.,

2021) to calculate each metric.

WikiText Test Set Perplexity The WikiText (Merity et al., 2017) test set is a text

corpus that was explicitly designed to be used to evaluate language models. It is comprised

of 60 Wikipedia articles with a total of 245,569 tokens. We calculate each model’s word-

level perplexity on this dataset.

BLIMP Accuracy The The Benchmark of Linguistic Minimal Pairs (BLiMP; Warstadt

et al., 2020) is a benchmark designed to test language models’ grammatical knowledge.

BLiMP comprises 67 subsets of 1,000 sentence pairs. Each pair includes one grammatical

version of a sentence and one ungrammatical version that differs by one word—for example,

a grammatical sentence might be The cats annoy Tim and the equivalent ungrammatical

sentence The cats annoys Tim (Warstadt et al., 2020). Each of the 67 subsets is designed to

target a specific grammatical phenomenon, for example, the previous pair differ in whether

they show the correct form of verb agreement for the noun subject (the plural word cats
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agrees with annoy rather than annoys).

LAMBADA (OpenAI) Accuracy The LAnguage Modeling Broadened to Account

for Discourse Aspects (LAMBADA; Paperno et al., 2016) benchmark is explicitly designed

to test a language model’s capability to predict a word based on a long context. Items

were chosen such that human participants were generally able to guess the last word of

a passage if they had read the whole passage up until the word to be predicted but not

if they had only read the last sentence (Paperno et al., 2016). Thus, the task evaluates

both language models’ world knowledge and their ability to make predictions based on

not just the preceding sentence. A language model ‘answers’ correctly if it successfully

predicts the last word of the passage as the word with the highest contextual probability.

LAMBADA has a test set made up of 5,153 items. The original LAMBADA dataset

(Paperno et al., 2016) was preprocessed in a specific way to align with contemporary

models at the time, such as removing capitalization. Given advances in language models

since then, it has become increasingly common to use the un-preprocessed version of the

benchmark developed by OpenAI (Radford et al., 2019) instead (see, e.g., Biderman et al.,

2023b).

HellaSwag Accuracy HellaSwag (Zellers et al., 2019) is a task designed to test how well

a language model can make predictions about how a text should continue, a task referred

to by the authors as commonsense natural language inference. Specifically, the HellaSwag

dataset is made up of captions (Krishna et al., 2017) of ActivityNet videos (a dataset of

humans engaging in a wide range of activities; Heilbron et al., 2015) as well as articles from

WikiHow, a website which Zellers et al. (2019) refer to as ‘an online how-to manual’. The

task for the language model is to identify which of a set of four candidate continuations

is the most likely—the language model is considered to have ‘answered’ correctly if the
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true continuation has the highest probability. The test set of the benchmark is made up

of 10,000 such items (3,500 from ActivityNet captions and 6,500 from WikiHow).

PiQA Accuracy The ‘Physical Interaction: Question Answering’ (PiQA; Bisk et al.,

2020) benchmark is designed to evaluate language models’ world knowledge, or more specif-

ically, the extent to which they can make predictions that align with physical knowledge

about the world. It is made up of items that include a goal (stated as a question or state-

ment) that involves accomplishing some form of physical task, and the language model has

to predict which of two possible solutions is a more suitable answer or response. If the

language model predicts the correct one to have a higher probability, this is considered a

successful response. The PiQA dataset is made up of 3,084 such items.

WinoGrande Accuracy The WinoGrande (Sakaguchi et al., 2020) dataset is designed

to be a difficult task based around Winograd schemata (Winograd, 1972; see also Levesque

et al., 2012). The WinoGrande dataset is built around sentences such as The trophy doesn’t

fit into the brown suitcase because it’s too large, where the aim is to determine whether

it in this case refers to trophy or suitcase. A language model would be correct in this

case if it predicts the word trophy to be more likely than suitcase (for exact details of

how this is implemented in practice, see Sakaguchi et al., 2019). An additional feature of

WinoGrande that is designed to make it more difficult is that sentences were excluded where

one candidate is more associated with the context than another—for example Sakaguchi

et al. (2019) reject the possible item The lions ate the zebras because they are predators

because lions are associated with being predators (and the words are more likely to co-

occur). WinoGrande is made up of 43,972 items.
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3.3.4 Results

First, we investigate how performance at each task correlates with model scale,

which we present in Figure 3.2. We see the expected scaling pattern—language models

with a higher number of parameters and those trained on more data perform best, with

the best performance attained by the models that are largest on both of these axes. This

pattern is clear for all datasets except for WinoGrande, on which the pattern also holds,

but it is only the very largest models that appear to perform substantially better than

chance.

LAMBADA (OpenAI) Accuracy PiQA Accuracy WinoGrande Accuracy

WikiText Log−Perplexity BLiMP Accuracy HellaSwag Accuracy
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Figure 3.2: How performance at each benchmark examined varies by model and over the
course of training. For WikiText Log-Perplexity, a lower score is better. For all the other
benchmarks, a higher accuracy is better.

As with the scaling experiments, while there are some idiosyncracies, we see a

clear pattern where higher-quality language models perform better at predicting N400

amplitude. Specifically, we see that there is a better fit to the N400 for language models

with a lower perplexity (Figure 3.3), as well as those with a higher accuracy at BLiMP
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(Figure 3.4), LAMBADA (Figure 3.5), HellaSwag (Figure 3.7), and PiQA (Figure 3.6).

The one exception to this pattern is the WinoGrande benchmark (Figure 3.8)—while the

models that best predict N400 amplitude do tend to be the models that perform best on

WinoGrande, much of the variation in N400 prediction performance is not accounted for

by WinoGrande performance.
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Figure 3.3: How language model performance at predicting N400 amplitude varies by each
model’s Log-Perplexity on the WikiText test set. A lower AIC indicates a better fit to the
N400 data.
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Figure 3.4: How language model performance at predicting N400 amplitude varies by each
model’s BLiMP accuracy. A lower AIC indicates a better fit to the N400 data.
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Figure 3.5: How language model performance at predicting N400 amplitude varies by each
model’s accuracy at the OpenAI version of the LAMBADA task. A lower AIC indicates a
better fit to the N400 data.
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Figure 3.6: How language model performance at predicting N400 amplitude varies by each
model’s accuracy at the PiQA benchmark. A lower AIC indicates a better fit to the N400
data.
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Figure 3.7: How language model performance at predicting N400 amplitude varies by each
model’s accuracy at the HellaSwag benchmark. A lower AIC indicates a better fit to the
N400 data.
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Figure 3.8: How language model performance at predicting N400 amplitude varies by each
model’s accuracy at the WinoGrande benchmark. A lower AIC indicates a better fit to the
N400 data.

We again run Mann-Kendall tests on the same model steps (step 1000 to step

143,000—the end of training), but instead look at the trend in fit to the N400 data (AIC)

ordered by the models’ performance at each natural language benchark. We provide the

results in Table 3.5. As can be seen, the results are even more consistent than for model

scale—in all cases, better performance at the task correlates with better prediction of N400

amplitude. One possible reason for the difference in these statistical tests is that we use

the data from all models for each test, increasing its statistical power.

3.3.5 Discussion

Overall, the results are clear. Higher-quality language models—whether evaluated

based on the more traditional perplexity metric or on more recent benchmarks—generally

perform better than lower-quality models at predicting N400 amplitude. As with scaling,
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Table 3.5: The results of Mann-Kendall tests looking at the overall trend of AIC from step
1,000 to the end of training (step 143,000), ordered by performance at each benchmark. For
WikiText Log-Perplexity, a lower value indicates a better score, while for all other metrics,
a higher value indicates a better score. FWOK07 refers to Federmeier et al. (2007), HRJF19
to Hubbard et al. (2019), LNJL19 to Lago et al. (2019), MBVBC24 to Michaelov et al.
(2024), N18 to Nieuwland et al. (2018b), RSBEFG21 to Ryskin et al. (2021), SF22 to
Szewczyk and Federmeier (2022), SMF22 to Szewczyk et al. (2022), and WF12 to Wlotko
and Federmeier (2012). All p-values are corrected for multiple comparisons (Benjamini and
Yekutieli, 2001).

FWOK07 HRJF19 LNJL19

Task τ p τ p τ p

WikiText 0.906 < 0.0001 0.836 < 0.0001 0.687 < 0.0001
BLiMP -0.833 < 0.0001 -0.784 < 0.0001 -0.634 < 0.0001
HellaSwag -0.864 < 0.0001 -0.813 < 0.0001 -0.649 < 0.0001
LAM. (OAI) -0.869 < 0.0001 -0.85 < 0.0001 -0.67 < 0.0001
PiQA -0.887 < 0.0001 -0.836 < 0.0001 -0.642 < 0.0001
WinoGrande -0.428 0.0029 -0.423 < 0.0001 -0.348 0.0004

MBVBC24 N18 RSBEFG21

Task τ p τ p τ p

WikiText 0.599 < 0.0001 0.907 < 0.0001 0.764 < 0.0001
BLiMP -0.538 < 0.0001 -0.82 < 0.0001 -0.708 < 0.0001
HellaSwag -0.571 < 0.0001 -0.873 < 0.0001 -0.755 < 0.0001
LAM. (OAI) -0.605 < 0.0001 -0.913 < 0.0001 -0.76 < 0.0001
PiQA -0.607 < 0.0001 -0.874 < 0.0001 -0.773 < 0.0001
WinoGrande -0.303 0.0029 -0.478 < 0.0001 -0.376 0.0001

SF22 SMF22 WF12

Task τ p τ p τ p

WikiText 0.814 < 0.0001 0.599 < 0.0001 0.829 < 0.0001
BLiMP -0.763 < 0.0001 -0.587 < 0.0001 -0.793 < 0.0001
HellaSwag -0.808 < 0.0001 -0.559 < 0.0001 -0.82 < 0.0001
LAM. (OAI) -0.818 < 0.0001 -0.572 < 0.0001 -0.821 < 0.0001
PiQA -0.822 < 0.0001 -0.578 < 0.0001 -0.843 < 0.0001
WinoGrande -0.425 < 0.0001 -0.241 0.0316 -0.422 < 0.0001
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this is in contrast to recent work on reading time (Oh et al., 2022; Oh and Schuler, 2023a,b;

Oh et al., 2024; Shain et al., 2024), suggesting that higher-quality language models are

worse predictors of metrics of human language processing.

Specifically, we see that general ability to predict the next word in a sequence

(i.e., perplexity) is highly correlated with the extent to which language model predictions

are correlated with N400 amplitude, suggesting that, when modeling the N400, there may

not be an issue of language models being able to predict language too well (compare Oh

and Schuler, 2023a; Oh et al., 2024). This is especially highlighted by the fact that even at

the logarithmic scale shown in Figure 3.3, the extent to which N400 prediction improves

accelerates as perplexity lowers.

Next, we see that performance at BLiMP, LAMBADA, PiQA, and HellaSwag are

correlated with the extent to which language model predictions match N400 amplitude. It

is not possible to establish a causal relationship using this approach. But these results do

demonstrate that language models that can better accomplish such tasks—i.e., being able to

distinguish grammatical from ungrammatical sentences, and to predict text continuations

that align with world knowledge and commonsense reasoning over continuations that do

not—are better able to predict N400 amplitude. There’s an intriguing contrast here with

reading time. These results may suggest that peak prediction of N400 amplitude requires

learning more complex relationships between words than does predicting reading time.

Finally, with WinoGrande, we see that while the models that perform best at the

task (the largest models trained on the most data) also tend to be those that generate

predictions that most closely align with N400 amplitude, for the majority of models, the

two are not correlated. This suggests that being able to perform well at WinoGrande

is not a prerequisite for language models to be able to predict N400 amplitude well. In

other words, achieving a good WinoGrande score requires a higher-quality model than is
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needed to predict N400 amplitude well, at least in our sample of language models. It does

appear to be the case for several datasets, however—most clearly Nieuwland et al. (2018b)

and Wlotko and Federmeier (2012)—that for the high-quality models that do begin to

perform better at WinoGrande, this performance is correlated with how well the models

predict N400 amplitude. Thus, while this suggests that much of the improvement in N400

improvement can be achieved by models that perform poorly at WinoGrande, being able

to learn the regularities in language that lead to better WinoGrande performance may

nonetheless improve N400 modeling.

3.4 Experiment 3: Negative scaling with reading time

3.4.1 Introduction

In Experiments 1 and 2, we found that unlike previous work on reading time, lan-

guage models’ performance at predicting N400 amplitude increases as models are trained

on more text data, and that higher-quality language models predict N400 amplitude better

than lower-quality models. To enable a comparison across studies, we designed Experiment

1 to match the corresponding study for reading time (Oh and Schuler, 2023a) as closely

as possible, and likewise for our analysis of WikiText Perplexity in Experiment 2. How-

ever, these first two experiments also introduced several new elements, namely, the Mann-

Kendall tests (Mann, 1945; Kendall, 1948) and the use of natural language benchmarks

designed to probe specific language model capabilities.

To validate these choices, and to ensure that differences between N400 ampli-

tude and reading time measures replicate with this approach, a third experiment runs

the same analyses from Experiments 1 and 2 on two reading time datasets. As noted in

Section 3.1, one of these (Luke and Christianson, 2018) has previously shown language
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model performance decreases as the models are trained on more data and improve their

next-word prediction performance (Oh et al., 2024). While the other (Smith and Levy,

2013) has been modeled computationally in previous work (Wilcox et al., 2020; Shain et al.,

2024), it has not thus far been shown to have this property—in fact, unlike most of the

other datasets, Shain et al. (2024) find that the larger (both in capacity and training data)

GPT-3 predictions display a closer fit to the reading time data than GPT-2 predictions.

3.4.2 Data Availability

All code, data, and statistical analysis scripts are provided at https://osf.io/

qbekt/?view_only=0f4ba6296eda442aaf8e49109eac145d.

3.4.3 Method

General Method

We follow the same general methods as in Experiments 1 and 2. We use the

same language models and natural language benchmarks, and follow the same procedure

for estimating fit to the data.

Reading Time Datasets

Luke and Christianson (2018) The Provo Corpus is an eye-tracking dataset collected

from 470 participants reading passages collected from a range of sources such as online

articles and public-domain fiction (Luke and Christianson, 2018). Following previous work

(e.g. Oh et al., 2024), we look at go-past duration, a metric of the time between the

first time a word is fixated and the first time gaze moves to the right of that word. We

calculated fit to the data by constructing a linear mixed-effects regression model predicting

log-transformed go-past duration using surprisal, word length, unigram surprisal, position
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Figure 3.9: How language model performance at predicting reading time varies by model
and over the course of training. A lower AIC indicates a better fit to the reading time
data.

in the sentence, whether the previous word was fixated, and saccade length. We also

included random slopes for each of these for each subject, as well as a random intercept

for each subject and sentence.

Smith and Levy (2013) This dataset, sometimes known as the Brown SPR corpus

(e.g., in Shain et al., 2024) is made up of self-paced reading times from 35 participants

reading extracts from the Brown corpus of American English. Self-paced reading time

was operationalized as the time between when a button was pressed to move onto the

word and the next button press. We calculated fit to the data by constructing a linear

mixed-effects regression model predicting log-transformed reading time with surprisal, word

length, unigram surprisal, and the word’s position in the sentence as fixed effects. We also

included a random slope of each of these variables for each subject, as well as random

intercepts for each subject and sentence.
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Table 3.6: The results of Mann-Kendall tests looking at the overall trend of AIC on the
reading time datasets from step 1,000 to the end of training (step 143,000), ordered by
training step. All p-values are corrected for multiple comparisons (Benjamini and Yekutieli,
2001).

Luke & Christianson (2018) Smith & Levy (2013)

Parameters τ p τ p

14M 0.053 1.0000 0.899 < 0.0001
70M 0.687 < 0.0001 0.634 < 0.0001
160M 0.74 < 0.0001 0.582 < 0.0001
410M 0.687 < 0.0001 0.899 < 0.0001
1.4B 0.952 < 0.0001 0.899 < 0.0001
2.8B 0.952 < 0.0001 0.952 < 0.0001
6.9B 0.899 < 0.0001 0.952 < 0.0001

3.4.4 Results

First, we look at how well the Pythia models predict reading time over the course

of training as we did for the N400 in Experiment 1. The fit to the data for the predictions

generated from each language model are shown in Figure 3.9. While different to each other,

the results show the opposite pattern to those in Experiments 1 and 2 and are consistent

with the findings of Oh and Schuler (2023a)—fit increases until step 1000, and then begins

to decrease, with higher-capacity models showing a greater decrease. In fact, on the Smith

and Levy (2013), we see that the predictions of the fully-trained language models lead to

a worse fit than the untrained models.

These results are echoed in the Mann-Kendall tests (Table 3.6), where fit to the

reading time data gets significantly worse over the course of training from step 1,000 to

the end of training.

We also run the same analyses looking at model quality (Figure 3.10). Perplexity

exhibits the same pattern as training steps—an improvement in the ability to predict

84



reading time, followed by a drop in performance. For the other benchmarks, how robust

this is varies, but once accuracy on the benchmark improves by about 5-10% relative to the

starting point, a clearer pattern emerges where better benchmark performance correlates

with worse fit to reading time.
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Figure 3.10: How language model performance at predicting reading time varies by each
model’s accuracy at the each benchmark. A lower AIC indicates a better fit to the reading
time data.

This also shows up in the Mann-Kendall tests, as shown in Table 3.7. Across the

board, better performance at a language model benchmark is significantly correlated with
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Table 3.7: The results of Mann-Kendall tests looking at the overall trend of AIC on reading
time from step 1,000 to the end of training (step 143,000), ordered by language model
performance at each task. All p-values are corrected for multiple comparisons (Benjamini
and Yekutieli, 2001).

Luke & Christianson (2018) Smith & Levy (2013)

Task τ p τ p

WikiText -0.765 < 0.0001 -0.887 < 0.0001
BLiMP 0.691 < 0.0001 0.799 < 0.0001
HellaSwag 0.76 < 0.0001 0.843 < 0.0001
LAM. (OAI) 0.774 < 0.0001 0.873 < 0.0001
PiQA 0.745 < 0.0001 0.852 < 0.0001
WinoGrande 0.535 < 0.0001 0.47 < 0.0001

a worse fit to the reading time data.

3.4.5 Discussion

The results of the experiment are clear: beyond 2 billion tokens, models trained

on more data are worse predictors of reading time, with higher-capacity models performing

worse than lower-capacity models. Similarly, higher-quality models predict reading time

less well than lower-quality models. These results provide further support to the hypothesis

that language models can become too good at next-word prediction to be able to model

human reading time (Oh and Schuler, 2023a,b; Oh et al., 2024). Because we arrived at

them in the same way as Experiments 1 and 2, these results also indirectly provide further

support for the conclusions based on those studies—the pattern observed for reading time

does not appear to apply to N400 amplitude.
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3.5 General Discussion

In this study, we carry out the first analysis systematically comparing how model

capacity, number of training tokens, and multiple metrics of quality of language models

correlate with how well a language model can predict N400 amplitude. In contrast to the

recent work on reading time (Oh et al., 2022; Oh and Schuler, 2023a,b; Oh et al., 2024;

Shain et al., 2024) as well as a reading time replication reported here in Experiment 3, we

find no evidence of a decrease in performance for any of these with more training, more

capacity, or better performance in the N400.

While similar indications exist for small recurrent neural networks (Aurnhammer

and Frank, 2019b), the present study for the first time establishes a relationship between

between training tokens and N400 prediction for transformers. We find that transformer

language models trained on more tokens predict N400 amplitude better. These results are

also consistent with previous findings that all else being equal, models with a larger capacity

predict N400 amplitude better than smaller models (Michaelov and Bergen, 2022b).

We also scale up the finding that higher-quality transformers predict N400 ampli-

tude better (Merkx and Frank, 2021) in two ways. First, we find that this result holds for

models with a much wider range of perplexities (not including step 0, roughly 11–650,000,

compared to roughly 90–5000 in Merkx and Frank, 2021). Current results also extend

this line of research by showing that performance at other natural language benchmarks

assessing both syntactic and semantic processing is correlated with the extent to which a

language model can be used to predict N400 amplitude.

Overall, the results are clear: better language models are better at predicting

N400 amplitude. The practical upshot of Experiment 2 on language quality is that per-

plexity and benchmark performance can be reliable indicators of how well a language model

will predict N400 amplitude, at least for models trained only on autoregressive language
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modeling (i.e., pretrained-only or ‘foundation’ models Bommasani et al., 2021). This is

especially important if larger and higher-quality language models continue to prove to

be better at predicting N400 amplitude, as training state-of-the-art models of this type

requires resources beyond those available to most researchers studying human language

comprehension. The results of this study suggest that even if relying on pretrained models

that are not fully open-source (see discussion in Bommasani et al., 2023a, 2024; Lambert

et al., 2023; White et al., 2024), it may still be possible to assess how suitable a language

model is for predicting N400 amplitude using purely empirical measures.

3.5.1 Theoretical Implications and Further Discussion

The main question raised by what precedes is how to explain the difference be-

tween the reading time and N400 results—specifically, why does performance at predicting

reading time begin to decrease after models are trained beyond 2B tokens, whereas perfor-

mance at predicting N400 amplitude continues to increase? Finding an answer may require

a deeper look at the nature of the N400 itself.

A relatively uncontroversial mechanistic account of the N400 consistent with the

majority of current evidence is that the N400 reflects the activation of semantic represen-

tations in long-term memory driven by a stimulus, and that this activation is attenuated

by the extent to which these representations were already activated at the time at which

the stimulus is encountered (Kutas and Federmeier, 2011; Van Petten and Luka, 2012;

Kuperberg et al., 2020; Federmeier, 2021). There are a variety of accounts of what drives

this ‘preactivation.’ The first is prediction—of particular words, semantic features, or even

of formal aspects of words such as phonology or grammatical features (for discussion, see,

e.g., DeLong et al., 2005; Nicenboim et al., 2020). Others include semantic association

between the stimulus and individual words or events in the context (Delogu et al., 2019;
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Aurnhammer et al., 2021; Van Petten, 2014), an overlap in the semantic features shared by

the word and previous words in the context (Federmeier, 2021), or a combination of these

(Federmeier, 2021). In any case, however, a fundamental feature of the N400 is that it is

highly sensitive to the semantics of an utterance and its context.

This is important in light of the fact that one of the key commonalities shared by

four of the six benchmarks analyzed is the extent to which semantic knowledge is crucial to

solving them. The clear, positive correlation between fit to the N400 data and performance

at HellaSwag, PiQA, and LAMBADA is suggestive that it may be precisely the ability to

make predictions based on the semantics of the context that leads to the improved perfor-

mance at predicting N400 amplitude. The relatively muddier relationship to WinoGrande

performance may also be further evidence of this. As mentioned earlier, WinoGrande was

intentionally designed to avoid semantic associations between the context and the critical

word. If both humans and language models use of this context in processing—respectively

generating the N400 effect and word surprisal—then tasks in which it’s impossible to use

semantic associations with context may be less useful at predicting the model-human fit.

Indeed, some accounts propose that associative mechanisms lead to preactivation in human

language comprehension; in some cases, overlap in semantic features between the critical

word and the words of the context (Federmeier, 2021) are sufficient to account for the

N400. Computational approaches that use the distance between word vectors to model

the degree of association between words (e.g., Van Petten, 2014; Frank and Willems, 2017)

work similarly, and the results of Michaelov and Bergen (2022a) and Michaelov et al. (2024)

show that a purely predictive language model can emergently predict more semantically

associated words to be more likely (and this may be the case to a greater extent for better

models, see, e.g., Michaelov et al., 2021). In any case, contextual association is a useful

cue in predicting, and thus it is possible that predictive systems like language models rely
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on this, and so they are better able to make predictions when the context is informative.

Overall, then, the benchmark results suggest that when it comes to predicting

the N400, a model that is better able to deal with the semantics of a text will better

fit electrophysiological measures, to the extent that this improvement may outweigh its

better-than-human next-word prediction capabilities that are such a problem for predicting

reading time. Reading time, by contrast, may not be as sensitive to semantic coherence

with context, which could explain why better, more semantically sensitive language models

trend downwards as they scale up.

3.5.2 Limitations and Future Research

There are other possible explanation for the difference between the N400 and

reaction time. Perhaps the most important one lies with the differences in the stimuli

themselves used in the various studies. While the N400 datasets we analyze use stimuli

explicitly constructed for their respective experiments, the reading time datasets on which

inverse scaling has been observed in previous work (e.g., by Oh et al., 2022; Oh and Schuler,

2023a,b; Oh et al., 2024; de Varda and Marelli, 2023; Shain et al., 2024) are naturalistic in

that they are either already-existing texts or based on them.

There are several different ways in which this could lead to differences in the extent

to which the predictions of language models match humans measures. One is that with

constructed stimuli, critical words are generally of the same part of speech (often content

words such as nouns or verbs), while with naturalistic reading corpora, a wide variety of

parts of speech are included. Language models have been found to show different levels

of performance at predicting reading time (Oh and Schuler, 2023a) and the N400 (Frank

et al., 2015) depending on part of speech, which could account for some of the difference.

Indeed, Oh and Schuler (2023a) note that a key issue with using higher-quality models to
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predict reading time is that because they are able to predict low-probability words better

than humans, when a regression is fit to the data, this regression is likely to systematically

over-predict other more probable words such as function words.

The sourcing of the reading time datasets that show negative scaling effects ei-

ther directly from or based on already-existing text may also present another problem in

itself—that of ‘data leakage’ (Wilcox et al., 2023a). Language models have been shown

to ‘memorize’ data, with larger models showing this to a greater extent (Tirumala et al.,

2022; Carlini et al., 2022; Biderman et al., 2023a). Thus, if a language model is trained on

data that appears one of the reading time studies, this may artificially increase how likely

a language model predicts a certain word to be—and it is precisely the over-prediction of

unlikely and low-frequency words that has been argued to be at least one of the driving

forces behind the negative scaling effects on reading time (Oh and Schuler, 2023b; Oh et al.,

2024). Thus far, the results of the one study investigating this possibility suggests that it

may not be as much of a problem as it may sound (Wilcox et al., 2023a), but further work

is needed before it can completely be discounted.

One way to tease apart data-based explanations like these from more theoretically

interesting ones would be to use reading time and N400 data drawn from the same data

sets. We leave that however for future research.

3.6 Conclusion

We investigated how the number of tokens on which a language model is trained

impacts how well it can predict N400 amplitude, finding a positive relationship—overall,

models trained on more data predict N400 amplitude better. We also find that higher-

quality models—those that perform better on natural language benchmarks—consistently

predict N400 amplitude better than lower-quality models. These results hold even for
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language models that show worse performance at predicting reading time as they increase

along each of these dimensions. This difference may allow for a better understanding of the

factors that go into and differentiate human measures like reading time and the N400—

including semantic associations with context—as well as into language model prediction.
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Part II

Can language models be used to

model N400 effects?
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Chapter 4

How well does surprisal explain

N400 amplitude under different

experimental conditions?

Abstract

We investigate the extent to which word surprisal can be used to predict a neural

measure of human language processing difficulty—the N400. To do this, we use recurrent

neural networks to calculate the surprisal of stimuli from previously published neurolin-

guistic studies of the N400. We find that surprisal can predict N400 amplitude in a wide

range of cases, and the cases where it cannot do so provide valuable insight into the neu-

rocognitive processes underlying the response.
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4.1 Introduction

The N400 component of the event-related brain potential is generally understood

to be a neural signal of processing difficulty (Kutas and Federmeier, 2011). After over

1,000 articles published on the topic, we know that all else being equal, an upcoming word

that is supported by the semantics of the context will elicit a lower-amplitude N400 than a

word that is not (Kutas and Federmeier, 2011; Kuperberg et al., 2020). However, despite

the great amount of experimental research on the topic, many aspects of the N400 are still

not well understood.

In addition to ‘long-standing and recent linguistic [...] inputs’ (Kutas and Feder-

meier, 2011, p. 641), the context that impacts N400 amplitude is thought to include factors

such as world experience, attentional state, and mood (Kutas and Federmeier, 2011). Over

the last decade, there have been a number of attempts to use computational modeling

to test hypotheses about the neurocognitive processes underlying the N400 and how the

aforementioned factors may impact its amplitude (Parviz et al., 2011; Laszlo and Plaut,

2012; Laszlo and Armstrong, 2014; Rabovsky and McRae, 2014; Frank et al., 2015; Ettinger

et al., 2016; Cheyette and Plaut, 2017; Brouwer et al., 2017; Delaney-Busch et al., 2017;

Rabovsky et al., 2018; Venhuizen et al., 2019; Fitz and Chang, 2019).

As the majority of experimental research on the N400 involves manipulating the

relationship between the stimulus and the preceding linguistic context (Kutas and Fed-

ermeier, 2011), a computational account of how linguistic inputs impact N400 amplitude

is a logical starting point. Language models are inherently models of linguistic prediction

based only on language input. Since N400 amplitude reflects how unexpected an upcoming

word is based on context, the predictions of a language model can be used to model how

expected a word is based on the linguistic input, and thereby investigate the extent to

which N400 amplitude is explainable by linguistic input alone.
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Recent research has shown that surprisal, a measure of how unlikely a language

model predicts the next word in sequence to be, correlates overall with N400 amplitude

(Frank et al., 2015; Aurnhammer and Frank, 2019b). Thus, to investigate the extent to

which N400 amplitude is explained by linguistic input alone, we ask to what extent surprisal

can explain the variance observed in N400 amplitude.

In order to investigate this, we run experimental stimuli from eleven experiments

from six papers (Urbach and Kutas, 2010; Kutas, 1993; Ito et al., 2016; Osterhout and

Mobley, 1995; Ainsworth-Darnell et al., 1998; Kim and Osterhout, 2005) through two

recurrent neural network language models (Jozefowicz et al., 2016; Gulordava et al., 2018),

systematically comparing the significant predictors of N400 amplitude and surprisal. We

find that in the majority of cases, significant differences in surprisal predict significant

differences in N400 amplitude, and discuss the implications of the cases where it does not.

4.2 Background

4.2.1 The N400

The N400 is a negative deflection in the event-related brain potential (ERP) that

peaks roughly 400ms after the presentation of a stimulus (Kutas and Hillyard, 1980; Kutas

and Federmeier, 2011). Most current accounts agree that N400 amplitude reflects process-

ing difficulty for a specific lexical item, where a lower amplitude reflects prior activation

of some of the semantic content associated with the word (Kutas and Federmeier, 2011;

Kuperberg, 2016; Kuperberg et al., 2020).

Recent research has found that N400 amplitude ‘decreases with supportive con-

text, but does not increase when predictions are violated’ (DeLong and Kutas, 2020, p. 2,

emphasis in original; see Kutas and Federmeier, 2011; Van Petten and Luka, 2012; Luke
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and Christianson, 2016; Kuperberg et al., 2020, for discussion). Crucially, therefore, we

should not think of N400 amplitude as a general measure of prediction error. It is not

the case that the N400 elicited by a word increases when the word is more semantically

anomalous or unexpected based on the preceding context; rather, it is the case that N400

amplitude is reduced when the word is semantically congruous or predictable because it is

facilitated by the preceding context.

This facilitation can occur in a large number of ways. All else being equal, words

that are more semantically congruous, typical, or plausible completions of a sentence elicit

lower N400 amplitudes than words that are more semantically incongruous, atypical, and

implausible completions, respectively (e.g. Kutas and Hillyard, 1980; Urbach and Kutas,

2010; Ito et al., 2016; Osterhout and Mobley, 1995; Ainsworth-Darnell et al., 1998; Kim

and Osterhout, 2005; Kutas and Federmeier, 2011).

One well-known correlate of N400 amplitude is the cloze probability (Taylor, 1953;

Bloom and Fischler, 1980) of a word—the probability that it will be offered to fill a specific

gap in a sentence by a given sample of individuals in a norming study. All else being equal,

higher-cloze completions elicit lower N400 amplitudes (Kutas and Hillyard, 1984; Kutas

and Federmeier, 2011). Additionally, even when matched for cloze, words semantically

related to the highest-cloze completion elicit lower-amplitude N400s than unrelated words

(Kutas, 1993; Federmeier and Kutas, 1999; Ito et al., 2016).

4.2.2 Cognitive Plausibility of RNN-LMs in N400 modeling

To disentangle the effect of linguistic input from other factors affecting N400

amplitude, a valid model of such linguistic input is needed. Recurrent Neural Network

Language Models (RNN-LMs) are, in many ways, perfect models of the ‘long-standing and

recent linguistic [...] inputs’ (Kutas and Federmeier, 2011, p. 641) thought to impact N400
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amplitude. Long-standing linguistic inputs in humans are made up of previous language

experience, which is analogous to a model’s training data; and recent linguistic input is

the linguistic context that impacts how humans understand the current utterance, which

is analogous to the word sequence preceding the word to be predicted in the model’s test

data.

Beyond being largely developed as models of human language comprehension (El-

man, 1990), recurrent neural network language models (RNN-LMs) have certain properties

that make them reasonable models of human cognition. Keller (2010) identifies five features

of the human language processing system that he argues are vital for a language model to

be cognitively plausible. Three of these are exemplified by unidirectional RNN-LMs—like

humans, they can make predictions about upcoming words, have a distance-based mem-

ory cost, and process language word-by-word in order in an incremental fashion (unlike

bidirectional RNN-LMs and most transformer networks). The two remaining features, ef-

ficiency and robustness and broad coverage are determined more by the model’s specific

architecture and training than general architecture.

4.2.3 Surprisal and N400 amplitude

As discussed in Section 4.2.1, the neurolinguistic evidence suggests that the N400

is a measure of lexical processing difficulty. Recent work, both theoretical and experimental

(e.g. Hale, 2001; Levy, 2008; Boston et al., 2008; Demberg and Keller, 2008; Smith and

Levy, 2008; Roark et al., 2009; Brouwer et al., 2010; Mitchell et al., 2010; Monsalve et al.,

2012; Fossum and Levy, 2012; Frank and Thompson, 2012; Smith and Levy, 2013; Frank,

2014; Willems et al., 2016; Delaney-Busch et al., 2017), has argued that surprisal, the

negative logarithm of the probability of a word wi given its preceding context w1...wi−1,

as shown in Equation (4.1), is a good predictor of lexical processing difficulty.
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S(wi) = − log P (wi|w1...wi−1) (4.1)

Several researchers (Frank et al., 2015; Delaney-Busch et al., 2017; Aurnhammer

and Frank, 2019b) have directly demonstrated that surprisal is correlated with N400 am-

plitude. In their study, Delaney-Busch et al. (2017) use a Bayesian approach to calculate

the surprisal associated with a target word given a related or unrelated prime (using word

association norms and word frequency), and find that this is correlated with N400 ampli-

tude. Frank et al. (2015) and Aurnhammer and Frank (2019b) used a number of language

models (including RNN-LMs) to calculate the surprisal of words in a natural language text,

and compared this to the N400 elicited by these words in human participants, finding a

statistically significant correlation.

Frank et al. (2015) and Aurnhammer and Frank (2019b) also find that surprisal is

a better predictor of N400 amplitude than a number of RNN-LM-derived metrics based on

the full probability distributions predicted by the model such as entropy. We suggest that

this may be explained by the aforementioned finding that while the N400 amplitude for a

word decreases when its semantic content has been pre-activated, it does not increase when

a specific prediction is violated. In other words, N400 amplitude is a kind of positive pre-

diction error—a measure of how not-predicted the target word was. This is what surprisal

is by definition—it only takes into account how much the actual target word was predicted

and is not affected by the rest of the probability distribution. The other metrics, on the

other hand, also take into account the rest of the predicted probability distribution, which

does not appear to be reflected in N400 amplitude. Thus, there is a theoretical reason for

using surprisal to predict N400 amplitude based on previous neurolinguistics research.
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4.2.4 Predicting N400 effects

An alternative approach, that taken by Ettinger et al. (2016), is to use a language-

model-derived metric as an analogue of the N400 and investigate whether experimental

manipulations in the stimuli that result in statistically significant differences in N400 am-

plitude also result in statistically significant differences in the chosen metric. This approach

allows researchers to investigate whether the reason for the correlation between the metric

and N400 amplitude is in fact the experimental manipulation or some other factor.

This is the general approach that we take in this study; however, rather than

focusing on the cosine similarity between the word embedding of target word and the com-

bined embeddings of the previous words in the sentence (Ettinger et al., 2016), we model

N400 amplitude as surprisal (following Frank et al., 2015; Delaney-Busch et al., 2017; Aurn-

hammer and Frank, 2019b). Additionally, whereas Ettinger et al.’s (2016) proof-of-concept

paper is based on 40 sample sentences from a single study investigating one phenomenon,

we use stimuli from eleven experiments (with over 100 sentences each) covering a wide

range of phenomena.

4.2.5 Other Models of N400 amplitude

While a number of other researchers have used neural networks to model specific

N400 findings this way (Laszlo and Plaut, 2012; Laszlo and Armstrong, 2014; Rabovsky

and McRae, 2014; Cheyette and Plaut, 2017; Brouwer et al., 2017; Rabovsky et al., 2018;

Venhuizen et al., 2019; Fitz and Chang, 2019), these studies differ in that these models all

have semantic representations as part of their input or are trained to learn to output some

form of semantic representation. Thus, these models are also limited to the experiments

for which they were trained.

For the same reason, these models can also not be used on their own to disentangle
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the effects of linguistic input from the semantic knowledge provided to them—this can only

be done by comparison to models without this. While two of the studies compare their

models to simple recurrent networks (SRNs) trained on the same data (Rabovsky et al.,

2018; Fitz and Chang, 2019), these SRNs are not representations of the extent of what

is possible with lingusitic input alone—these models are simple (for example, they do not

use long short-term memory), and much of the power of RNNs comes from large training

datasets (see, e.g., the discussion in Chelba et al., 2014).

Finally, it should be noted that while all of the studies discussed in this section aim

to model real N400 effects, only two (Laszlo and Armstrong, 2014; Rabovsky and McRae,

2014) use stimuli from real N400 experiments; in the remaining studies, stimuli are chosen

to represent manipulations that studies have found to influence N400 amplitude. Given

that the N400 is still not fully understood, it is important to verify that the experimental

manipulations investigated actually do elicit the expected N400 effect. For this reason, we

only use experimental stimuli provided for published N400 experiments, and compare the

effect on surprisal directly to the reported effects on N400 amplitude.

4.3 Approach, Motivations, and Hypotheses

The aim of this study is to investigate the boundary conditions of using surprisal

to model N400 amplitude. While there is evidence that surprisal and N400 amplitude are

correlated overall (Frank et al., 2015; Aurnhammer and Frank, 2019b), it is unclear what

variance in N400 amplitude is actually being explained by surprisal. While it is tempting

to assume that surprisal is correlated with the N400 because the same factors that lead

to reduced N400 amplitudes lead to reduced surprisal, this has thus far not been shown

empirically.

This is the question that we investigate in this paper: which experimental manip-
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ulations that elicit a difference in N400 amplitude elicit the same difference in surprisal,

and which do not?

We do this by running the (English language) stimuli from previously published

N400 studies through two neural networks that have been used extensively to model human

language processing (e.g., in Wilcox et al., 2018; Futrell et al., 2019; Wilcox et al., 2019;

An et al., 2019; Costa and Chaves, 2020). The two models used are the the best English

LSTM from Gulordava et al. (2018) and BIG LSTM+CNN inputs from Jozefowicz et al.

(2016), henceforth (following Futrell et al., 2019) GRNN and JRNN, respectively. These

models are both LSTM-RNN-LMs, but differ most notably in size and training data: The

JRNN has two hidden layers (8192 and 1024 units), a 793471-word vocabulary, and was

trained on 1 billion tokens (Chelba et al., 2014); while the GRNN has two hidden layers

(both 650 units), a 50000-word vocabulary, and was trained on 90 million tokens.

In addition to answering questions about the nature of the neurocognitive systems

underlying the N400, the results of this study also serve as a baseline for future research—

they represent the best that current cognitively plausible neural network language models

can do at predicting N400 amplitude using surprisal. Thus, future research that argues for

additional sources of information or neurocognitive processes being involved in the N400

on the basis of modeling success should demonstrate that the inclusion of such components

in the model improves upon the results presented here.

This aim of establishing a useful baseline is another reason for our choice of

models—both are provided pre-trained by the authors, allowing for our results to be repli-

cated and expanded upon. We also only use sets of stimuli that have been made available

in papers or their supplementary materials. The stimuli from these papers (Urbach and

Kutas, 2010; Kutas, 1993; Ito et al., 2016; Osterhout and Mobley, 1995; Ainsworth-Darnell

et al., 1998; Kim and Osterhout, 2005), which cover a range of experimental manipula-
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tions that are discussed in Section 4.4, are included in text format in our supplementary

materials1.

4.4 Experiments

Figure 4.1 is a visualization of the findings of the original N400 studies and the

results of the simulations. Given the differences in measurements, there is no scale—the

heights of the bars indicate which conditions elicited higher or lower N400 amplitudes or

surprisals relative to the others in the same experiment or simulation. All and only the sig-

nificant differences between conditions for significant predictors of the N400 or surprisal are

shown, not including significant interactions with recording locations on the scalp (which

are beyond the scope of the present study). Black bars represent successful modeling of

the differences in N400 amplitude, red bars represent unsuccessful or partially unsuccessful

modeling, and purple bars indicate that the results are more complex than can be repre-

sented in this way. Only stimuli sets with over 100 stimulus sentences were run through the

models (GRNN and JRNN); and while the models were not able to predict the surprisal of

all target words (due to limited vocabularies or being unable to process certain characters

in sentences), both models successfully calculated the surprisals of over 100 target words

in each study. Stimuli, target word surprisals, and the code used to run the models are all

included in our supplementary materials.

Where possible, the significant predictors of the surprisal of the GRNN and JRNN

models were selected via backwards model selection using likelihood ratio tests of linear-

mixed effects models (R Core Team, 2020; Bates et al., 2015) with and without the predictor

under investigation as a main effect. When this was not possible, the significance of predic-

tors were evaluated using a Type III ANOVA with Satterthwaite’s method for estimating
1https://github.com/jmichaelov/does-surprisal-explain-n400
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degrees of freedom (Kuznetsova et al., 2017). Significant differences between experimental

conditions (i.e. between the levels of a predictor) were calculated via t-test based on the

selected linear-mixed effects model, using Satterthwaite’s method to estimate degrees of

freedom (Kuznetsova et al., 2017). In this paper, significant predictors and significant dif-

ferences between conditions are considered those where p < 0.05 in the relevant statistical

test. All code for the statistical analyses is included in our supplementary materials.

The remainder of this section discusses the experiments (and the original N400

studies on which they are based) in more detail.
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Figure 4.1: The significant differences between all conditions of significant predictors of
N400 amplitude in the original studies and the surprisal of the GRNN and JRNN models.
Black bars indicate successful modeling of the differences in N400 amplitude, red bars
indicate unsuccessful or partially unsuccessful modeling, and purple bars indicate that
the results are more complex than shown.
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4.4.1 Urbach and Kutas (2010): Experiment 1

Experiment 1 of Urbach and Kutas (2010) investigates the N400’s sensitivity to

the typicality of a patient of a described event. There were two kinds of sentences in this

experiment exemplified by the following stimulus pair: prosecutors accuse defendants

(typical; T in Figure 4.1) / sheriffs (atypical; A) of committing a crime. As expected,

the N400 elicited by typical object nouns is significantly lower in amplitude than that

elicited by atypical object nouns.

Typicality was also a significant predictor of the surprisal of both the GRNN and

JRNN models (GRNN: p < 0.001; JRNN: p < 0.001), with typical object nouns eliciting

a lower surprisal than atypical ones (GRNN: p < 0.001; JRNN: p < 0.001).

4.4.2 Urbach and Kutas (2010): Experiment 2

Expanding on Experiment 1, Urbach and Kutas (2010) ask whether the results are

affected by whether the sentences begin with the word most or few (or synonymous expres-

sions), e.g. most prosecutors accuse defendants. The main effect of typicality remained. In

addition, while the main effect of quantifier type was not significant overall (nor was there

an interaction with typicality without an interacting electrode location variable), Urbach

and Kutas (2010) found that few-type quantifiers reduced the N400 amplitude of atyp-

ical patients and reduced the extent to which N400 amplitude was lowered for typical

patients, with this latter effect being found to be statistically significant via t-test.

Typicality predicted the surprisals of both RNNs in the same direction as in

Experiemnt 1 (p < 0.001 for all statistical tests). The surprisal of the GRNN was also

significantly predicted by quantifier type (p < 0.001), with few-type quantifiers eliciting

significantly higher surprisals (p < 0.001). As this pattern is limited only to the GRNN

(and the analogous main effect does not appear in Experiment 3 for either model), this
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finding is not considered further. The t-test comparing the N400 of typical objects under

the few and most quantifiers does not replicate with surprisal—there is no significant

difference (GRNN: p = 0.107; JRNN: p = 0.249).

4.4.3 Urbach and Kutas (2010): Experiment 3

Experiment 3 of Urbach and Kutas (2010) is a variant of Experiment 2. Instead

of most or few sentence beginnings, the words often or rarely appear after the subject

(agent) noun, e.g. prosecutors often accuse defendants of committing a crime. The aim of

this was to investigate whether proximity of the quantifier to the target noun had an effect.

Urbach and Kutas (2010) again found the same result—only typicality was a significant

predictor of N400 amplitude overall; and a t-test found that the N400 reduction for typical

nouns was attenuated by the word rarely.

GRNN and JRNN surprisals were only significantly predicted by typicality, with

typical nouns eliciting a lower surprisal than atypical nouns (p < 0.001 for all tests). The

t-test comparing the N400 of typical objects under the few and most quantifiers does

not replicate with surprisal—there is no significant difference (GRNN: p = 0.367; JRNN:

p = 0.283).

4.4.4 Kutas (1993)

Kutas (1993) examines the effect of relatedness to the best completion (the

highest-cloze completion). An example of a best completion (BC) and related com-

pletion can be demonstrated by the following stimulus pair: The pizza was too hot to chew

(related; R) / eat (BC). An example of a BC and unrelated pair is the following sen-

tence: The paint turned out to be the wrong consistency (unrelated; U)/ color (BC).

BC nouns were found to elicit the lowest N400 amplitude, followed by related nouns,
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followed by unrelated nouns. Experimental condition is a significant predictor of both

GRNN and JRNN surprisal. However, while the surprisals in the GRNN are different be-

tween the BC and other nouns (p < 0.001 for both related and unrelated), there is no

significant difference between related and unrelated (p = 0.820). On the other hand,

the surprisals of the JRNN are lowest for BC nouns, followed by related nouns, followed

by unrelated nouns (p < 0.001 for all pairwise comparisons).

4.4.5 Ito et al. (2016): Experiments 1 and 2

Ito et al. (2016) further investigate the relatedness effect by investigating whether

a word that is related in form to the most predictable word (i.e. the best completion)

has a similar effect on N400 amplitude as being semantically related. The conditions can

be illustrated with the following example sentence: The student is going to the library to

borrow a book (predictable; P)/ hook (form-related; FR)/ page (semantically

related; SR)/ sofa (unrelated; U) tomorrow. In both Experiments 1 and 2, where the

difference was in the amount of time that the stimuli were presented, Ito et al. (2016) found

that experimental condition was a significant predictor, and specifically that predictable

words elicited the lowest N400 amplitude, followed by semantically related words,

followed by the form-related and unrelated completions, which did not differ in N400

amplitude.

We found the same pattern in the surprisal of both models (p < 0.001 for condition

as a predictor; p < 0.001 for all significant pairwise comparisons; FR vs. U with GRNN

surprisal: p = 0.080; FR vs. U with JRNN surprisal: p = 0.399).
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4.4.6 Osterhout and Mobley: Experiment 2

Pronoun Matching

Osterhout and Mobley (1995) investigate the effect on the amplitude of the N400

elicited by words in sentences where pronouns either do or do not match a preceding

noun, as illustrated in the following example: The aunt heard that she (match; M) / he

(mismatch; MM) had won the lottery. The mismatch sentences can be interpreted as

grammatical sentences where the pronoun refers to a different person than that denoted

by the sentence subject; or ungrammatical sentences, where the pronoun refers back to the

sentence subject with the wrong gender. Osterhout and Mobley (1995) ask whether there

is a difference in N400 amplitude between the two conditions, and whether this is affected

by which interpretation is taken by participants.

Target Words First, Osterhout and Mobley (1995) look at the N400 measured at the

pronoun itself, finding no significant effect of condition.

For both RNN-LMs, however, experimental condition is a significant predictor of

surprisal, with matched pronouns eliciting a significantly lower surprisal (p < 0.001 for all

tests).

Sentence-Final Words The N400 was also measured at the last word in the sentence.

Under this condition, it was found that there was a reduced N400 for matching compared

to mismatching pronouns, but only for participants who interpreted mismatching sentences

to be ungrammatical.

In both models, condition was not found to be a significant predictor of surprisal

(GRNN:p = 0.775; JRNN: p = 0.112). However, whether this is a successful replication of

the responses of the participants who found the sentence to be grammatical (‘Gramm.’ in
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Figure 4.1) or a failure to replicate the results of those who found the sentence ungrammat-

ical (‘Ungramm.’ in Figure 4.1) is unclear without further research, and thus this result is

not discussed further in this paper.

Semantic Anomaly

In parallel to the pronoun stimuli, Osterhout and Mobley (1995) also compared

N400 responses to sentences under the following experimental conditions: The boat sailed

down the river and sank (control; C) / coughed (semantically anomalous; SA)

during the storm.

Target Words N400 amplitude was significantly lower in response to the experimentally

manipulated control words compared to semantically anomalous words. This effect

was replicated in the surprisals of both models (p < 0.001 for all tests).

Sentence-Final Words The N400 and surprisals to sentence-final words followed the

same pattern as target words (p < 0.001 for all tests).

4.4.7 Ainsworth-Darnell et al. (1998)

Ainsworth-Darnell et al. (1998) investigate the difference in N400 amplitude in

response to syntactic and semantic anomaly, operationalized in the following way: The

chef entrusted the recipe to relatives before he left Italy (control; C) / The chef en-

trusted the recipe to carrots before he left Italy (semantic anomaly; Sem) / The chef

entrusted the recipe relatives before he left Italy (syntactic anomaly; Syn) / The chef

entrusted the recipe carrots before he left Italy (double anomaly; DA). While previ-

ous research argued that the N400 does not respond to syntactic anomaly, they found

that the control nouns elicited lower N400 amplitudes than nouns in other conditions,
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but they did not find a significant difference between the syntactic anomaly and se-

mantic anomaly conditions or between the semantic anomaly and double anomaly

conditions. Ainsworth-Darnell et al. (1998) do not report a test comparing the syntac-

tic anomaly and double anomaly conditions, but it should be noted that syntactic

anomaly has a lower amplitude (based on the graphs) than semantic anomaly, so an

unreported significant difference between these should not be ruled out.

Experimental condition is a significant predictor of both GRNN and JRNN sur-

prisal (p < 0.001). For both models, the surprisal is lower for words in the control condi-

tion compared to other conditions (p < 0.001 for all pairwise comparisons), and there is no

significant difference between word in the syntactic anomaly and semantic anomaly

conditions (GRNN: p = 0.274; JRNN: p = 0.056). The surprisals of the two models differ

in that while double anomaly words differ from semantic anomaly words in both

models (GRNN: p < 0.001; JRNN: p < 0.001), they do not differ from the syntactic

anomaly in GRNN surprisal but they do in JRNN surprisal (GRNN: p = 0.059; JRNN:

p < 0.001). Based on these findings and inspection of the graphs in Ainsworth-Darnell

et al. (1998), it appears that syntactic anomaly of this kind has a larger relative effect on

surprisal than N400 amplitude.

4.4.8 Kim and Osterhout (2005): Experiment 1

Experiment 1 Kim and Osterhout (2005) investigate whether words that violate the

event-structure of the described event are still facilitated if they are related to the event

being described. The stimuli were of the following form: The murder had been wit-

nessed in the dark (passive control; PC) / The bystanders had been witnessing the

crime (active control; AC) / The murder had been witnessing by the three bystanders

(attraction violation; AV). General analysis found that condition only marginally pre-
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dicted N400 amplitude, but pairwise comparison found one significant difference bwetween

conditions: PC completions elicited lower-amplitude N400s than AC completions.

In both models, condition was a significant predictor of surprisal, and PCs elicited

the lowest surprisals, followed ACs, followed by AVs (p < 0.001 for all tests).

4.4.9 Kim and Osterhout (2005): Experiment 2

Experiment 2 added the no-attraction violation (NV) condition to the study,

which is exemplified by the following sentence: The unpleasant cough syrup was witnessing

in the dark. These were compared to results of the PC and AV conditions in Experiment

1. There was a significant main effect of condition, with PCs and AVs eliciting significantly

lower-amplitude N400s than NVs.

Condition was a significant predictor the surprisals of both RNNs, with PCs

eliciting a lower surprisal than AVs, followed by NVs with the highest surprisals (p < 0.001

for all tests).

4.5 General Discussion

We compared human N400 responses with surprisal in two RNN-LMs presented

with the same stimuli, in the interest of determining the extent to which exposure to

linguistic input alone can account for this particular component of human language pro-

cessing. The results confirmed previous findings that surprisal is generally a good predictor

of N400 amplitude, while also clearly demonstrating limitations of the models at capturing

the human behavior.
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4.5.1 Successful Predictions

The models effectively predicted certain kinds of contrast that the N400 is sensi-

tive to.

Cloze The surprisals of both models for the Kutas (1993) and Ito et al. (2016) studies

show that the surprisal of a language model is sensitive to cloze probability in the same

direction as N400 amplitude—higher-cloze words elicit lower N400 amplitudes than lower-

cloze words, and the same is true of surprisal.

Relatedness The results of the Kutas (1993) and Ito et al. (2016) experiments also show

that surprisal matches N400 amplitude in that words that are related to the highest-cloze

completion in terms of semantics, but not form, elicit a lower surprisal than semantically

unrelated words, even controlling for these words’ cloze.

Semantic typicality The surprisals of both models to the stimuli from Urbach and Ku-

tas’s (2010) three experiments demonstrate that the surprisal of a language model patterns

in the same way as N400 amplitude in that more typical words (in a given context) elicit

a lower surprisal than atypical words in the same context.

Semantic anomaly While the results are framed in the opposite direction in the original

studies, the results from the Anomaly stimuli from Osterhout and Mobley (1995) and

Experiment 1 of Ainsworth-Darnell et al. (1998) show that, all else being equal, completions

that are not semantically anomalous (labeled ‘controls’ in these experiments) elicit a lower

surprisal from language models than semantically anomalous completions, which is the

result reported for N400 amplitude in the original studies.
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Event structure violations The results for Experiment 2 of Kim and Osterhout (2005)

show that both surprisal and N400 amplitude are reduced when a word is in line with

event-structure norms, compared to a word that is not and is semantically unrelated to

the preceding context.

4.5.2 Limitations and further directions

At the same time, there are areas where the predictive capabilities of the models

are limited.

Quantifiers While the surprisal of the models matched the significant differences in

Experiments 2 and 3 of Urbach and Kutas (2010) based on typicality overall, it did not

replicate the finding that N400 amplitude was less reduced for typical nouns when they

appeared with few or rarely quantifiers. Thus, it may be the case that some more explicit

(or at least more specific) representation of quantification is involved in the neurocognitive

processes underlying the N400 than can be modeled by surprisal alone.

Event structure violations Overall, the surprisal of both models is more sensitive to

morphosyntactic or event structure violations than N400 amplitude is (for a discussion

on the extent to which these can be considered separate in the context of ERPs, see

Kuperberg, 2016). For the stimuli from both Kim and Osterhout (2005) experiments,

despite the attraction violation stimuli eliciting both a significantly reduced N400

amplitude and surprisal compared to the no-attraction violation stimuli, surprisal

remained significantly higher for attraction violation stimuli than either of the control

stimuli, which is not the case with N400 amplitude. Thus, by contrast with the case of

quantifiers discussed above (Urbach and Kutas, 2010), which seems to require a more

detailed semantic representation, shallower or broader semantic representation might be
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needed to capture responses to the kinds of stimuli presented in Kim and Osterhout (2005).

If the goal is to improve the extent to which models capture human behavior, then there

might be ways to accomplish this. Frank and Willems (2017), for example, use cosine

distance between the sum of the vectors of all the preceding words in the sentence and the

target word to predict the BOLD response (using fMRI) in N400 areas. Given the collateral

facilitation of words semantically related to the highest-cloze completions of sentences, it

is not unreasonable to assume that a similar process of spreading activation may occur

for the preceding as well as the predicted upcoming word in the sentence. One way to

implement this could be to weight the RNN model’s predictions of the next word by each

word’s similarity to a general sentence-vector such as that used by Frank and Willems

(2017) before the probabilities are transformed into surprisal2.

Morphosyntactic Anomaly While there has been some discussion about the extent to

which event structure violation and morphosyntactic anomalies can be considered separate

in the context of ERPs (see, e.g. Kuperberg, 2016), there are clear cases where the surprisal

of the language models appear to be more sensitive to morphosyntactic anomaly than N400

amplitude is. This can be seen in humans in the results of Experiment 1 of Ainsworth-

Darnell et al. (1998), where words that exhibit either semantic or syntactic anomalies elicit

equally reduced surprisal. By contrast, the models predict grammatical continuations

to a sentence over ungrammatical ones. This leads to lower surprisals for semantically

anomalous words that are syntactically acceptable than those that are both syntactically

and semantically anomalous. This difference between humans and the models supports the

idea that there needs to be some way to weight predictions by semantic relatedness to the

preceding context.
2See Kuperberg’s (2016) discussion on bag-of-word approaches to the N400.
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4.6 Conclusions

Previous work has found that surprisal is a good predictor of N400 amplitude

overall. Comparisons of surprisal in RNN-LMs to human N400 responses to the same

input sentences showed for the first time that suprisal manages to account for a wide range

of phenomena found in human N400 experiments. But at the same time, there are linguistic

phenomena where it overpredicts, and others where it underpredicts a significant difference

in the human N400 response. From the perspective of human language processing, this

suggests that the activation of semantic and lexical features indexed by the N400 cannot be

entirely captured by exposure to linguistic input alone. Specifically, quantification, aspects

of event structure, and morphosyntactic anomalies seem to require some other learning

architecture than the bottom-up statistical learning represented by standard recurrent

neural networks. From the perspective of model-building, in order to improve a language-

model based cognitive model of the N400, we need to allow for the addition of more shallow

semantic processing (independent of syntax and event structure) such as an implementation

of spreading activation.
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Chapter 5

Collateral facilitation in humans

and language models

Abstract

Are the predictions of humans and language models affected by similar things?

Research suggests that while comprehending language, humans make predictions about

upcoming words, with more predictable words being processed more easily. However, evi-

dence also shows that humans display a similar processing advantage for highly anomalous

words when these words are semantically related to the preceding context or to the most

probable continuation. Using stimuli from 3 psycholinguistic experiments, we find that

this is also almost always also the case for 8 contemporary transformer language models

(BERT, ALBERT, RoBERTa, XLM-R, GPT-2, GPT-Neo, GPT-J, and XGLM). We then

discuss the implications of this phenomenon for our understanding of both human language

comprehension and the predictions made by language models.
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5.1 Introduction

Humans process words more easily when they are more contextually predictable,

whether predictability is determined by humans (Fischler and Bloom, 1979; Brothers and

Kuperberg, 2021) or language models (McDonald and Shillcock, 2003a; Levy, 2008; Smith

and Levy, 2013). Work on the N400, a neural signal of processing difficulty, has pro-

vided evidence that the neurocognitive system underlying human language comprehension

preactivates words based on the extent to which they are predictable from the preceding

context—thus, predictable words are easier to process because they or their features have

already been activated before they are encountered (Kutas and Hillyard, 1984; Van Pet-

ten and Luka, 2012). This has led many to argue that we should consider the human

language comprehension system to be engaging in prediction (DeLong et al., 2005; Kutas

et al., 2011; Van Petten and Luka, 2012; Bornkessel-Schlesewsky and Schlesewsky, 2019;

Kuperberg et al., 2020; DeLong and Kutas, 2020; Brothers and Kuperberg, 2021).

However, words that are either semantically related to the elements of the pre-

ceding context or to the most likely next word are also processed more easily, even if they

are semantically implausible and ostensibly unpredictable. These are known as related

anomaly effects. For an example of the former, consider the sentences in (1) that were

used as experimental stimuli by Metusalem et al. (2012).

(1) My friend Mike went mountain biking recently. He lost control for a moment and

ran right into a tree. It’s a good thing he was wearing his ______.

(a) helmet

(b) dirt

(c) table

Helmet is the most predictable continuation of the sentence, as determined based
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on cloze probability (Taylor, 1953, 1957)—the proportion of people to fill in a gap in a

sentence with a specific word. Thus, unsurprisingly, helmet elicited the smallest N400

response, indicating that it is most easily processed. Dirt and table are both implausi-

ble continuations, and equally improbable based on human responses (both have a cloze

probability of zero). Yet Metusalem et al. (2012) found that dirt, which is semantically

related to the preceding context of mountain biking, elicits a smaller N400 response than

table, which is not. This suggests that something about dirt’s relation to the mountain

biking event causes it to be preactivated more than table, despite their seemingly equal

implausibility and unpredictability.

The sentences in (2), used as experimental stimuli by Ito et al. (2016), provide an

example of the other previously-discussed form of related anomaly—where a word seman-

tically related to the most probable continuation (in this case, that with the highest cloze)

is easier to process than one that is not. Even though tail and tyre are both implausible

continuations with a cloze probability of zero, Ito et al. (2016) find that tail, which is

semantically-related to the highest-cloze continuation dog, elicits a smaller N400 response

than tyre, which is not.

(2) Meg will go to the park to walk her ______ tomorrow.

(a) dog

(b) tail

(c) tyre

In sum, words related to elements of the preceding context or to the most probable

continuation of a sequence appear to be more preactivated in the brain than words that

are not, even when both are highly anomalous. This effect has been replicated many times

(Kutas and Hillyard, 1984; Kutas et al., 1984; Kutas, 1993; Federmeier and Kutas, 1999;
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Metusalem et al., 2012; Rommers et al., 2013; Ito et al., 2016; DeLong et al., 2019; for

review see DeLong et al., 2019).

The key question, therefore, is whether the same neurocognitive system under-

lying the predictability effects on the N400 also underlie related anomaly effects. Under

one account (DeLong et al., 2019; DeLong and Kutas, 2020), the predictive system that

underlies predictability effects also leads to these related anomalous words being ‘collater-

ally facilitated’ (DeLong and Kutas, 2020, p. 1045) due to their shared semantic features.

Under this account, therefore, related anomaly effects can all be explained as by-products

of our predictive system and the semantic organization of information in the brain. How-

ever, there is no direct evidence that this is the case—in fact, given the metabolic costs

of preactivation (Brothers and Kuperberg, 2021), it may intuitively seem unlikely that an

efficient predictive system would lead to implausible and otherwise anomalous words being

preactivated. In fact, many researchers have argued that one or more associative mecha-

nisms are required to explain related anomaly and other similar effects (Lau et al., 2013;

Ito et al., 2016; Frank and Willems, 2017; Federmeier, 2021).

As systems designed specifically to predict the probability of a word given its

context, language models offer a means to test the viability of the former hypothesis. If

language models calculate that related but anomalous words are more predictable than

unrelated anomalous words, this would demonstrate that related anomaly effects can be

produced by a system engaged in prediction alone. This would show that it is possible that

related anomalies can be ‘collaterally facilitated’ (DeLong and Kutas, 2020, p. 1045) by a

predictive mechanism in human language comprehension. Thus, it would remove the need

to posit additional associative mechanisms on the basis of related anomaly effects, which

could greatly simplify our understanding of human language comprehension.

This is what we test in the present study. We run the stimuli from 3 psycholin-
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guistic experiments carried out in English (Ito et al., 2016; DeLong et al., 2019; Metusalem

et al., 2012) through 8 contemporary transformer language models (Devlin et al., 2019;

Radford et al., 2019; Liu et al., 2019; Lan et al., 2020; Conneau et al., 2020; Black et al.,

2021; Wang and Komatsuzaki, 2021; Lin et al., 2021), calculating the surprisal (nega-

tive log-probability) of each word for which the N400 was measured. We then compare

whether, in line with the N400 response, anomalous words that are semantically related to

the context have significantly lower surprisals than unrelated words.

5.2 Related work

There have been a wide range of attempts to computationally model the N400

(Parviz et al., 2011; Laszlo and Plaut, 2012; Laszlo and Armstrong, 2014; Rabovsky and

McRae, 2014; Frank et al., 2015; Ettinger et al., 2016; Cheyette and Plaut, 2017; Brouwer

et al., 2017; Rabovsky et al., 2018; Venhuizen et al., 2019; Fitz and Chang, 2019; Aurnham-

mer and Frank, 2019b; Michaelov and Bergen, 2020; Merkx and Frank, 2021; Uchida et al.,

2021; Szewczyk and Federmeier, 2022; Michaelov et al., 2022). One of the most successful

and influential approaches has been to model the N400 using the surprisal calculated from

neural language models—surprisal has been found to be a significant predictor of single-

trial N400 data (Frank et al., 2015; Aurnhammer and Frank, 2019b; Merkx and Frank,

2021; Michaelov et al., 2021; Szewczyk and Federmeier, 2022; Michaelov et al., 2022), and

has been found to be similar to the N400 response in how it is affected by a range of

experimental manipulations (Michaelov and Bergen, 2020; Michaelov et al., 2021). A key

finding is that better-performing and more sophisticated language models perform better

at predicting the N400 (Frank et al., 2015; Aurnhammer and Frank, 2019b; Michaelov and

Bergen, 2020; Merkx and Frank, 2021; Michaelov et al., 2021, 2022). For this reason, we

use contemporary transformer language models in the present study.
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We use experimental stimuli from 3 experiments. Stimuli from one of these exper-

iments (Ito et al., 2016) have been previously used in computational analyses of the N400.

This is one of several sets that Michaelov and Bergen (2020) attempt to model using recur-

rent neural network (RNN) language models, finding that they can indeed calculate that

words related to the highest-cloze continuation are more predictable than unrelated words.

In the present study, we test whether this result can be replicated on a larger number of

language models, and specifically, transformer language models.

There has also been work looking at how language models deal with semantic re-

latedness to the highest-cloze continuation based on stimuli from other N400 experiments.

Michaelov and Bergen (2020), for example, find that in cases where the related and unre-

lated words are both plausible, the related continuations are more strongly predicted by

RNNs (Gulordava et al., 2018; Jozefowicz et al., 2016), in line with the original N400 results

(Kutas, 1993). Michaelov et al. (2021) conceptually replicate this finding on a different

dataset (Bardolph et al., 2018) using one of the same RNNs (Jozefowicz et al., 2016) and

GPT-2 (Radford et al., 2019). However, these prior efforts differ from the present study in

that they investigate N400s and surprisal to words that are all plausible continuations of

the sentence, and where they both have a low but generally non-zero cloze probability. In

the stimuli analyzed in the present study, by contrast, both the related and unrelated words

are anomalous—they have a cloze probability of zero, and are implausible continuations.

Thus, their preactivation does, at least intuitively, appear to be more clearly ‘collateral’.

We are only aware of one previous study that directly compares the predictions

of transformers and the human N400 response on related anomaly stimuli. Ettinger (2020)

evaluates BERT in terms of its similarity to cloze—because the predictions of a language

model, being incremental, may show similar effects to those found in the N400 (see also

Michaelov and Bergen, 2020 for discussion). For this reason, Ettinger (2020) tests how good
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BERT is at predicting the highest-cloze (most probable) continuations in the stimuli over

anomalous but semantically related continuations, but does not directly look at the related

anomaly effect—whether the related anomalous continuations are more strongly predicted

than the unrelated anomalous continuations. Thus, to the best of our knowledge, the

present study is the first to investigate whether the predictions of transformer language

models display related anomaly effects like humans do.

Finally, there has been some work investigating whether language models display

priming effects (e.g. Prasad et al., 2019; Misra et al., 2020; Kassner and Schütze, 2020;

Lin et al., 2021; Lindborg and Rabovsky, 2021). The effect found by Metusalem et al.

(2012)—that words related to the events described in the context are preactivated more

strongly than words that are not—is a form of semantic priming, as it results in the

increased preactivation of a word based on the semantic content stimulus that has been

recently encountered (i.e. the event described in the preceding linguistic context). Thus,

our investigation of the patterns in the prediction of the the stimuli from Metusalem et al.

(2012) is intended to further our knowledge of priming in language models—specifically,

whether there are systematic ways in which context shapes the extent to which anomalous

words are predicted.

5.3 General Method

In this study, we took the stimuli from a range of experiments (Ito et al., 2016;

DeLong et al., 2019; Metusalem et al., 2012) and ran them through a number of transformer

language models. We used the transformers (Wolf et al., 2020) implementations of the

(largest and most up-to-date versions of each of the) following models: BERT (Devlin

et al., 2019), RoBERTa (Liu et al., 2019), ALBERT (Lan et al., 2020), XLM-R Conneau

et al. (2020), GPT-2 (Radford et al., 2019), GPT-Neo (Black et al., 2021), GPT-J (Wang
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and Komatsuzaki, 2021), and XGLM (Lin et al., 2021). We chose these models to cover a

number of both autoregressive (GPT-2, GPT-Neo, GPT-J, XGLM) and masked (BERT,

RoBERTa, ALBERT, XLM-RoBERTa) language model architectures. Given the recent

increase in popularity of multilingual language models, we also made sure to include one

autoregressive (XGLM) and one masked (XLM-RoBERTa) multilingual language model,

in case there is a difference based on the number of languages that a model is trained on.

All experimental stimuli used in the present study have been made available by

the original authors of their respective papers as appendices or supplementary materials.

In our analysis, we truncated all stimuli to be the preceding context of the critical word (the

word for which the N400 was measured). We then used the language models to calculate

the probability of the next word, and negative log-transformed (using a logarithm of base

2, following Futrell et al., 2019) these probabilities to calculate the surprisal of each word.

For words not present in the vocabulary of each model, we tokenized the word, and then

progressively calculated the surprisal of each sub-word token given the preceding context;

with the sum of all the surprisals (equivalent to the the negative log-probability of the

product of all the probabilities) being used as the total surprisal for the word. In this way,

we calculated the surprisal of each critical word given its preceding context only.

All graphs and statistical analyses were created and run in R (R Core Team,

2020) using Rstudio (RStudio Team, 2020) and the tidyverse (Wickham et al., 2019), lme4

(Bates et al., 2015), and lmerTest (Kuznetsova et al., 2017) packages. All reported p-values

are corrected for multiple comparisons based on false discovery rate across all statistical

tests carried out (Benjamini and Hochberg, 1995). Because of this correction procedure,

if any models display related anomaly effects, this is evidence that prediction alone can

account for them.

All of the code for running the experiments and carrying out the statistical anal-
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Figure 5.1: Mean surprisal elicited by each language model for the Ito et al. (2016) stimuli
related and unrelated to the most probable (highest-cloze) continuation of each sentence.
Error bars indicate standard error.

yses is provided at https://github.com/jmichaelov/collateral-facilitation.

5.4 Experiment 1: Ito et al. (2016)

5.4.1 Introduction

We begin with Ito et al. (2016), who investigated whether relatedness to the

highest-cloze continuation of a given sentence impacts the amplitude of the N400 response.

They presented human participants with experimental stimuli that included a word that

was either the highest-cloze continuation of a sentence, semantically related to that highest-

cloze continuation, similar to the highest-cloze continuation in terms of their form (e.g.

hook and book), or unrelated. For the purposes of the present study, we are interested in
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semantic relatedness and thus do not consider the formal relatedness condition. Thus, we

look at the stimuli from the three experimental conditions exemplified in (3)—an example

of Predictable, Related, and Unrelated continuations for one sentence frame.

(3) Lydia cannot eat anymore as she is so ______ now.

• full (Predictable)

• half (Related)

• mild (Unrelated)

Ito et al. (2016) find that related continuations elicit a smaller N400 response

than unrelated continuations. As stated, this finding was successfully modeled using the

surprisal of two RNN language models by Michaelov and Bergen (2020).

In the present study, we aim to investigate whether this can be replicated with

contemporary transformer language models. Thus far, only one study (Merkx and Frank,

2021) has directly compared the N400 prediction capabilities of RNNs and transformers

while matching number of parameters, training data, and language modeling performance,

finding that transformers are better predictors of N400 amplitude overall. We might there-

fore expect that the transformers used in the present study should model the related

anomaly effect found by Ito et al. (2016) at least as well as the RNNs used by Michaelov

and Bergen (2020). However, a key feature of Merkx and Frank’s (2021) study is that it

uses naturalistic stimuli. This makes the experiment more ecologically valid, but as has

been pointed out (Michaelov and Bergen, 2020; Brothers and Kuperberg, 2021), this means

that we cannot tell whether the higher correlation between surprisal and N400 amplitude

is due to any factors that we are interested in investigating—Merkx and Frank (2021)

do not consider how relatedness to a previously-mentioned event or to most predictable

continuation impacts surprisal and the N400. For this reason, it is in fact far from clear
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Table 5.1: The results of a Type III ANOVA (using Satterthwaite’s method for estimating
degrees of freedom; Kuznetsova et al., 2017) on the Ito et al. (2016) stimuli, testing for which
language models experimental condition (related or unrelated) is a significant predictor of
their surprisal. This is the case for all language models.

Model Test Statistic Corrected p
BERT F (1, 120) = 7.15 0.0093
ALBERT F (1, 92) = 20.6 < 0.0001
RoBERTa F (1, 159) = 60.8 < 0.0001
XLM-R F (1, 126) = 21.2 < 0.0001
GPT-2 F (1, 157) = 64.0 < 0.0001
GPT-Neo F (1, 152) = 64.1 < 0.0001
GPT-J F (1, 149) = 62.5 < 0.0001
XGLM F (1, 146) = 72.6 < 0.0001

that we should expect this specific related anomaly effect to be modeled as well by trans-

formers as by RNNs. However, if it is, this would demonstrate the effect in two different

language model architectures, further strengthening the idea that a predictive system alone

can explain related anomaly effects.

Thus, in the present study, we investigate whether the results of Michaelov and

Bergen (2020) replicate beyond the two RNNs tested, and crucially, whether the results

replicate with transformer language models. Specifically, we test whether the surprisal

elicited by implausible stimuli related to the highest-cloze continuation is lower than the

surprisal elicited by implausible stimuli unrelated to the highest-cloze continuation.

5.4.2 Results

The results of the experiment are shown in Figure 5.1. As can be seen, numerically,

related words elicit lower surprisals than unrelated words, indicating that they were more

highly predicted by the language models. This in turn suggests that these models do in
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fact collaterally predict the related continuations.

In order to test this more directly, we ran statistical analyses of the surprisals

elicited by the language models. This was done by constructing linear mixed-effects regres-

sions for each language model surprisal with experimental condition as a main effect, and

the maximal random effects structure that would successfully converge for all models (see

Barr et al., 2013). For all regressions except for that predicting RoBERTa surprisal, this

random effects structure was a random intercept of sentence frame and of critical word.

For the RoBERTa surprisal regression, the latter random intercept was removed due to

it causing a singular fit. As creating null models with only the random effects structure

resulted in singular fits for multiple regressions, we were unable to run likelihood ratio tests

to test whether experimental condition—that is, whether the word was semantically related

or unrelated to the highest-cloze continuation—was a significant predictor of surprisal. For

this reason, we instead tested whether experimental condition was a significant predictor

of surprisal by running a Type III ANOVA using Satterthwaite’s method for estimating

degrees of freedom (Kuznetsova et al., 2017) on the aforementioned linear mixed-effects

models that included experimental condition as a fixed effect.

The results of the tests are shown in Table 5.1. As can be seen, condition is a

significant predictor of the surprisal from every language model, confirming that language

models predict related stimuli to be more likely than unrelated stimuli.

The results of this experiment demonstrate that all the language models tested—

BERT, ALBERT, RoBERTa, XLM-R, GPT-2, GPT-Neo, GPT-J, and XGLM—display

the related anomaly effect in response to the Ito et al. (2016) stimuli. All eight models

predict implausible continuations that are related to the most probable continuations to

be more likely those that are unrelated.
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Figure 5.2: Mean surprisal elicited by each language model for the DeLong et al. (2019)
stimuli related and unrelated to the most probable (highest-cloze) continuation of each
sentence. Error bars indicate standard error.

5.5 Experiment 2: DeLong et al. (2019)

5.5.1 Introduction

DeLong et al. (2019) also investigated the difference between the N400 amplitude

elicited by implausible words that are related or unrelated to the most predictable (highest-

cloze) continuation. As in Ito et al. (2016), these stimuli were chosen such that both

related and unrelated words were highly implausbile—in this case, ‘unpredictable words

were strategically chosen not to make sense in their given contexts’ (DeLong et al., 2019,

p. 4). These stimuli are exemplified by the set shown in (4).

(4) The commuter drove to work in her ______ after breakfast.
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Table 5.2: The results of a Type III ANOVA (using Satterthwaite’s method for estimating
degrees of freedom; Kuznetsova et al., 2017) on the DeLong et al. (2019) stimuli, testing
for which language models experimental condition (related or unrelated) is a significant
predictor of their surprisal. This is the case for all language models except BERT.

Model Test Statistic Corrected p
BERT F (1, 159) =< 0.1 0.9322
ALBERT F (1, 112) = 6.3 0.0138
RoBERTa F (1, 159) = 50.7 < 0.0001
XLM-R F (1, 132) = 18.2 0.0001
GPT-2 XL F (1, 134) = 120.7 < 0.0001
GPT-Neo F (1, 142) = 111.7 < 0.0001
GPT-J F (1, 141) = 132.6 < 0.0001
XGLM F (1, 159) = 122.4 < 0.0001

• car (Predictable)

• brakes (Related)

• poetry (Unrelated)

Like Ito et al. (2016), DeLong et al. (2019) find that overall, related continuations

elicit a smaller N400 response than unrelated continuations.

5.5.2 Results

As in Experiment 1, we ran the stimuli from the original experiment through

the 8 language models and calculated the surprisal of each critical word. The results of

the experiment are shown in Figure 5.2. In all models except BERT, related stimuli all

elicit numerically lower surprisals than unrelated stimuli, indicating that they were more

highly-predicted by the language models.

We again ran the same statistical test as in Experiment 1, testing whether exper-
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imental condition (related or unrelated to the highest-cloze continuation) is a significant

predictor of the surprisal elicited by the stimuli in each language model. The ALBERT,

XLM-R, GPT-2, GPT-Neo, and GPT-J regressions had random intercepts of sentence

frame and critical word, while the BERT, RoBERTa, and XGLM regressions had only

random intercepts for sentence frame. The results of the Type III ANOVA are shown

in Table 5.2. Condition is a significant predictor of the surprisal of every model except

BERT—in these models, related stimuli are predicted to be more likely continuations of

the sentence than unrelated stimuli. Thus, with the exception of BERT, we replicate the

findings of Experiment 1.

5.6 Experiment 3: Metusalem et al. (2012)

5.6.1 Introduction

Metusalem et al. (2012) investigated the extent to which relatedness to the event

described in the preceding context impacts the amplitude of the N400 response. Metusalem

et al. (2012) presented human participants with experimental stimuli that included either

the most probable (highest-cloze) continuation of a sentence, an implausible continuation

that was related to the event described, or an implausible continuation that was unrelated

to the event described. All of the implausible stimuli also had a cloze probability of zero.

The stimuli are exemplified by the set for a single sentence frame shown in (5).

(5) We’re lucky to live in a town with such a great art museum. Last week I went to

see a special exhibit. I finally got in after waiting in a long ______.

• line (Predictable)

• painting (Related)

• toothbrush (Unrelated)
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Metusalem et al. (2012) found that despite their implausibility and improbability

(based on cloze), critical words related to the event described in the context preceding

them elicited smaller N400 responses than words that were unrelated to the event, a clear

example of a related anomaly effect.

5.6.2 Results

As in Experiments 1 and 2, we ran the stimuli from the original experiment

through the 8 language models and calculated the surprisal of each critical word. The

results of the experiment are shown in Figure 5.3. As in Experiment 1, numerically, in all

models related stimuli elicit lower surprisals than unrelated surprisals, indicating that they

were more highly predicted by the language models.

We again ran the same statistical analyses as in Experiments 1 and 2, constructing

linear mixed-effects regression models, all of which had random intercepts of sentence frame

and critical word. Using a Type III ANOVA, we tested whether experimental condition

(related or unrelated to the event described in the preceding context) is a significant predic-

tor of N400 amplitude. The results are shown in Table 5.3. As can be seen, experimental

condition was a significant predictor of the surprisal of all models.

5.7 General Discussion

5.7.1 Summary of Results

In all but one specific case—BERT in Experiment 2—experimental condition

significantly predicted language model surprisal in the same direction as human N400

responses. The results of Experiments 1 and 2, therefore demonstrate convincingly that,

like humans, language models do tend to predict that anomalous words related to the
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Figure 5.3: Mean surprisal elicited by each language model for the Metusalem et al. (2012)
stimuli related and unrelated to the most probable (highest-cloze) continuation of each
sentence. Error bars indicate standard error.

Table 5.3: The results of a Type III ANOVA (using Satterthwaite’s method for estimating
degrees of freedom; Kuznetsova et al., 2017) on the Metusalem et al. (2012) stimuli, testing
for which language models experimental condition (related or unrelated) is a significant
predictor of their surprisal. This is the case for all language models.

Model Test Statistic Corrected p
BERT F (1, 29) = 77.1 < 0.0001
ALBERT F (1, 29) = 78.7 < 0.0001
RoBERTa F (1, 28) = 188.1 < 0.0001
XLM-R F (1, 34) = 83.4 < 0.0001
GPT-2 XL F (1, 35) = 211.5 < 0.0001
GPT-Neo F (1, 42) = 200.1 < 0.0001
GPT-J F (1, 35) = 265.5 < 0.0001
XGLM F (1, 33) = 222.5 < 0.0001
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most probable continuation are more probable than anomalous words that are not. The

results of Experiments 3, analogously, demonstrate that like humans, language models tend

to predict that anomalous words related to a relevant event described in the preceding

context are more probable than anomalous words that are not. Thus, like the human

language comprehension system, language models exhibit related anomaly effects.

5.7.2 Psycholinguistic implications

These results have clear implications for psycholinguistic research on the effects

of related anomalies on human language processing. First, a predictive system can display

the effects—in fact, there is only one set of stimuli for which not all models do. This

demonstrates the sufficiency of a predictive system for preactivating related anomalous

stimuli to a greater degree than unrelated anomalous stimuli. In other words, based on

a parsimony criterion, there is no need to posit that related anomaly effects on human

language processing require something beyond a predictive system such as an associative

system, either instead of or in addition to a predictive one.

Second, both kinds of related anomaly effect explored—the reduction in N400

amplitude correlated with relatedness to the most probable continuation and that corre-

lated with relatedness to the event in the preceding context—are explainable by a single

mechanism. This may seem counterintuitive, given how intuitively different the effects may

seem. Yet this finding is consistent with the idea in the literature that the two effects can

be considered different variants of the same phenomenon (DeLong et al., 2019; DeLong and

Kutas, 2020).

Given that this study is based on computational modeling, we should note that the

results do not constitute direct proof of a neurocognitive predictive system or of the lack of

the involvement of an additional associative mechanism. However, they are consistent with
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such accounts, and open the door for future research, both computational and experimental.

For example, it may be the case that other phenomena that have been argued to constitute

evidence for a separate associative mechanism (see Federmeier, 2021, for review) may also

be explainable on the basis of prediction. On the other hand, the approach we use here

can also be used to design stimuli that do not differ in probability in order to further test

whether prediction can explain all related anomaly effects.

5.7.3 Implications for NLP

The results of the present study demonstrate that related anomaly effects occur

in contemporary transformer language models. Based on the present study, this does not

appear to be impacted by whether the model is an autoregressive or masked language

model; or by whether the model is monolingual or multilingual. In fact, the only model

that does not show the effect every time is BERT, the least powerful model tested (all

other models are either larger, trained on more data, or both). Thus, in line with previous

research showing that higher-quality language models better predict human processing

metrics (Merkx and Frank, 2021), the present results suggest that better language models

are also more likely to display human-like patterns of prediction.

The results of this study also have several implications for understanding how

the predictions of humans and language models relate. As has been previously discussed,

some researchers have argued that we should evaluate the predictions of language models

based on cloze probability (Ettinger, 2020). In fact, some have suggested training models

on cloze probabilities (Eisape et al., 2020). However, the results of this study, along

with others (Frank et al., 2015; Aurnhammer and Frank, 2019b; Michaelov and Bergen,

2020; Aurnhammer and Frank, 2019b; Merkx and Frank, 2021; Szewczyk and Federmeier,

2022; Michaelov et al., 2022), suggest that the predictions of language models are highly
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correlated with N400 amplitude; and recent work has argued that that the activation

states of transformers are highly correlated with activation in the brain during language

comprehension more generally (Schrimpf et al., 2020). Thus, while it may be useful for

certain tasks to have cloze-like predictions, it may be the case that we are generally more

likely to get N400-like predictions from language models.

If so, this is a cause for both optimism and pessimism. Given that humans are the

gold-standard in natural language tasks generally, if a language model can make predictions

that closely match those that humans make as part of language comprehension, this may

also suggest that the representations learned are at least in some ways functionally similar

to those that humans use to generate the same predictions. On the other hand, by the

same token, it may suggest a limit to the possibilities of language modeling alone—there is

much more to language comprehension than the kinds of prediction that underlie the N400

response (see, e.g., Ferreira and Yang, 2019; DeLong and Kutas, 2020; Kuperberg et al.,

2020).

5.8 Conclusion

In order to better understand related anomaly effects in humans, we investigated

whether contemporary transformer language models display them. We found that in all

but one case, they do, suggesting that related anomaly effects in both humans and language

models may be driven by prediction alone.
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5.9 Appendices

5.9.1 Limitations

As mentioned the discussion section, one limitation of the present study is that

while it demonstrates that it is possible for related anomaly effects to emerge from a system

engaged in prediction alone, it does not directly demonstrate that this is what is occurring

in humans.

A further limitation is that we model the results of three related anomaly exper-

iments out of the larger total number that have been carried out (for review, see DeLong

et al., 2019). However, given how consistent related anomaly effects appear to be (DeLong

et al., 2019), and how consistent our results are (after statistical correction for multiple

comparisons, all three related anomaly effects are modeled by all but one transformer,

which only fails to model one effect), we do not believe this presents a problem for our

analysis.

Finally, the three experiments modeled were all carried out in English. Related

anomaly effects have been reported in other languages (DeLong et al., 2019) such as Dutch

(Rommers et al., 2013); and these are not modeled in our study. Thus, it is an open question

whether our results generalize to related anomaly effects in languages other than English.

However, we also note the evidence that higher-quality models are better at predicting

N400 amplitude (Merkx and Frank, 2021). For this reason, given the overwhelming focus

on English in computational linguistics (Bender, 2009, 2011; Tsarfaty et al., 2013; Munro,

2015; Mielke, 2016; Kim et al., 2016; Amram et al., 2018; Bender, 2019; Clark et al., 2022),

current language model architectures are likely to be best suited to predicting English—

indeed, current state-of-the-art models such as GPT-3 (Brown et al., 2020), OPT (Zhang

et al., 2022), PaLM (Chowdhery et al., 2022), and LaMDA (Thoppilan et al., 2022) are
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trained mostly or only on English data. Thus, while the focus on modeling English may

be an issue for the field as a whole, in this case, focusing on experiments carried out in

English may in fact give us the best possible chance to evaluate what the human predictive

system could predict.

5.9.2 Models used

The details of the models used in this study are provided in Table 5.4.

Table 5.4: Transformer language models used in the present study. All were accessed using
the transformers (Wolf et al., 2020) package. Full name refers to the model’s full name on
the Hugging Face Model Hub (Wolf et al., 2020).

Model Name Full Name Reference
BERT bert-large-cased- Devlin et al. (2019)

whole-word-masking
ALBERT albert-xxlarge-v2 Lan et al. (2020)
RoBERTa roberta-large Liu et al. (2019)
XLM-R xlm-roberta-large Conneau et al. (2020)
GPT-2 XL gpt2-xl Radford et al. (2019)
GPT-Neo EleutherAI/gpt-neo-2.7B Black et al. (2021)
GPT-J EleutherAI/gpt-j-6B Wang and Komatsuzaki (2021)
XGLM facebook/xglm-7.5B Lin et al. (2021)
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Chapter 6

Rarely a problem? Language

models exhibit inverse scaling in

their predictions following

few-type quantifiers

Abstract

How well do language models deal with quantification? In this study, we focus on

few-type quantifiers, as in few children like toys, which might pose a particular challenge

for language models because the sentence components without the quantifier are likely

to co-occur, and few-type quantifiers are rare. We present 960 English sentence stimuli

from two human neurolinguistic experiments to 22 autoregressive transformer models of

differing sizes. Not only do all the models perform poorly on few-type quantifiers, but

overall the larger the model, the worse its performance. This inverse scaling is consistent
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with previous work suggesting that larger models increasingly reflect online rather than

offline human processing, and we argue that the decreasing performance of larger models

may challenge uses of language models as the basis for natural language systems.

6.1 Introduction

Quantifiers can dramatically alter the meaning of an utterance. Consider the

sentences in (1).

(1) (a) Most sharks are harmless.

(b) Most sharks are dangerous.

(c) Few sharks are harmless.

(d) Few sharks are dangerous.

Despite the fact that (a) and (c) have the same content words in the same syntactic

arrangement, the statements have starkly different meanings. The same is true of (b) and

(d). Being able to successfully comprehend these differences is useful, and in an example

such as this one, vitally important1.

Yet current work suggests that language models deal poorly with quantifiers—

they struggle to predict which quantifier is used in a given context (Pezzelle et al., 2018;

Talmor et al., 2020), and also perform poorly at generating appropriate continuations

following logical quantifiers (Kalouli et al., 2022). This is especially concerning given

the recent trend of using large language models (sometimes referred to as ‘foundation

models’; Bommasani et al., 2021) as general systems that can perform multiple tasks,

including question answering, without specific training (Brown et al., 2020; Raffel et al.,
1Note that most sharks are in fact harmless to humans; see, e.g., https://www.floridamuseum.ufl.

edu/discover-fish/sharks/shark-attack-faq/.
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2020; Lin et al., 2021; Srivastava et al., 2022; Hoffmann et al., 2022; Rae et al., 2022;

Zhang et al., 2022; Chowdhery et al., 2022). It is thus crucial that such systems be able to

distinguish among sentences like those in (1) in human-like ways both during training and

when generating responses.

The aim of the present study is to evaluate how well language models take into

account the meaning of a quantifier when generating the text that follows it, and to inves-

tigate whether this scales with model size. We are particularly interested in the question of

whether language models exhibit inverse scaling—that is, whether as model size increases,

performance decreases rather than increases (Perez et al., 2022; McKenzie et al., 2022a).

Inverse scaling is an issue of serious concern for developing and training new language

models, since inverse scaling could indicate ‘outer misalignment’ (Perez et al., 2022)—that

the training approach is leading to models that produce undesirable outputs, which may

get worse as performance at training objectives increases. Inverse scaling is also a concern

for models’ ultimate use. As models increase in size and perform better at a wider range of

benchmarks (for recent examples, see, e.g., Srivastava et al., 2022; Chowdhery et al., 2022),

they may be increasingly assumed to be trustworthy and general-purpose, and thus able

to perform well tasks on which they have not been tested (Raji et al., 2021). This could

lead to a range of possible harms, from misidentifying whether something is dangerous or

not (as in the opening example), to amplifying biases (Bender et al., 2021).

To test how well language models deal with quantifiers, we follow the approach

of Ettinger (2020) in using sentences from a study on human language comprehension to

inform our evaluation. Ettinger (2020) found that following a negation, the predictions of

BERTbase and BERTlarge in simple sentences expressing a proposition with or without

negation (from Fischler et al., 1984) do not appear sensitive to negation—for example,

BERTlarge predicts the final word of a robin is a bird to be more likely than a robin
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is a tree, but also predicts that a robin is not a bird is more likely than a robin is not

a tree. In this way, the models’ predictions more closely match those made by humans

‘online’—that is, incrementally during the process of language comprehension—than our

fully-formed ‘offline’ judgements: in their original study, Fischler et al. (1984) found that

the word bird elicited an N400 response of smaller amplitude than tree in both contexts,

indicating that it was more strongly predicted.

Similar effects have been reported (Kassner and Schütze, 2020; Kalouli et al.,

2022) for other transformers such as Transformer-XL (Dai et al., 2019), RoBERTa (Liu

et al., 2019), and ALBERT (Lan et al., 2020), as well as ELMo (Peters et al., 2018). Worse,

recent work suggests that as language models increase in size, their ability to deal with

negation may degrade: an inverse scaling relationship has been reported for performance

at a wide range of tasks when prompts include negation (McKenzie et al., 2022b; Jang

et al., 2023), though it is possible that this may reverse at extremely large scales (Wei

et al., 2022b).

Negation may be particularly challenging for statistical language models because

its presence radically alters the meaning of a sentence, but negation occurs in only about

10% of sentences (Jiménez-Zafra et al., 2020). Quantifiers similarly impose radical mod-

ulations to meaning while also being relatively infrequent (see subsection 6.5.4). In the

present study, we focus on quantifiers indicating typicality such as most and few. To the

best of our knowledge, only one study has evaluated model predictions following any quan-

tifiers (Kalouli et al., 2022), and it focused on words corresponding to logical quantifiers

such as all, every, and some. The few studies involving the quantifiers we address either

focus on predicting the quantifier itself (Pezzelle et al., 2018; Talmor et al., 2020), or use

RNNs to investigate modeling significant effects on the N400 without any form of evalua-

tion (Michaelov and Bergen, 2020). This study, therefore, represents the first attempt to
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explicitly evaluate the predictions of language models following most and few-type quan-

tifiers.

In the present study, we carry out two experiments. In the first, following Ettinger

(2020), we use the stimuli from a previously published N400 study (Urbach and Kutas,

2010). In it, Urbach and Kutas (2010) found that while most and few-type quantifiers do

impact N400 amplitude, it is not enough to reverse predictions—few farmers grow crops

elicits a smaller N400 response than few farmers grow worms, indicating that crops was

more strongly predicted than worms, even though experimental participants judged it to

be less plausible off-line. We test whether language models show the same pattern of

insensitivity towards the quantifiers that humans do in online measures. In this way, we

test how closely the predictions of language models correlate with those underlying the

human N400 response.

In our second experiment, we extend our study further. Experiment 1 aims to

replicate the original N400 results of Urbach and Kutas (2010); however, one thing that

it does not account for is that while a given complete sentence (e.g., few farmers grow

crops.) can be highly unlikely and implausible, sentences beginning with the same words

may not be (for example, in the plausible sentence few farmers grow crops in the winter).

Experiment 1 does not distinguish between these possibilities, and while it is important

to test the sensitivity of language models to few-type quantifiers, if they fail to show a

difference for complete sentences including the final period (e.g., few farmers grow crops.),

this is more concerning. Thus, in Experiment 2, we run the same stimuli as Experiment 1,

but including a period following the final word (e.g., crops./worms.).
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6.2 Experiment 1: Replication of Urbach and Kutas (2010)

6.2.1 Materials

In this experiment, we use all the stimuli from two experiments carried out by

Urbach and Kutas (2010). These are made up of 120 sentence frames with 8 different

sentence types falling into 4 experimental conditions, for a total of 960 sentences. The 4

conditions had a 2x2 design—each stimulus was either typical (T) or atypical (A), and had

either a most-type or few-type quantifier. An example of the 8 sentence types comprising

one sentence frame is shown in (2).

(2) (a) Most squirrels gather nuts... (T, most)

(b) Most squirrels gather nails... (A, most)

(c) Few squirrels gather nuts... (T, few)

(d) Few squirrels gather nails... (A, few)

(e) Squirrels often gather nuts... (T, most)

(f) Squirrels often gather nails... (A, most)

(g) Squirrels rarely gather nuts... (T, few)

(h) Squirrels rarely gather nails... (A, few)

The quantifiers used in sentences (a)-(d) differed by sentence frame; see subsec-

tion 6.5.4 for a full list.

6.2.2 Language Models

To cover a range of language models with different training data and numbers of

parameters, we run our analyses on the GPT-2 (Radford et al., 2019), GPT-3 (Brown et al.,

2020), GPT-Neo (Black et al., 2021; including GPT-J, Wang and Komatsuzaki, 2021), and
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Figure 6.1: Accuracy and sensitivity of all models.

OPT (Zhang et al., 2022) language models. We also include an analysis of the first series

of InstructGPT models (text-davinci-001 etc.), which were finetuned on human-written

and highly-rated model-generated responses (OpenAI, 2023).

6.2.3 Evaluation

For each stimulus sentence, we calculate the surprisal of the critical word, that

is, the word for which the N400 response was measured in the original study. Because

humans only encounter the context preceding the critical word when processing the word,

and because the language models we analyze are all autoregressive, we only consider the

surprisal of the critical word given its preceding context. To do this we truncated the

sentence before the critical word, and then used the relevant language model to calculate

the probability p of the target word given the preceding context, which was then converted

to surprisal S following Equation 6.1.

S = − log p(wi|w1...wi−1) (6.1)

In previous work of this type (e.g., Ettinger, 2020), only words that were single
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tokens in the models’ vocabularies were used. In this study, all models are autoregressive,

so for multi-token words, consecutive sub-word tokens can be predicted, the product of

which is a well-defined probability for the whole word. The surprisal of such words, then,

is the sum of the surprisals of the sub-word tokens. Calculating surprisal this way allows us

to compare the predictions of all the models for all the stimuli in the original experiment.

In order to evaluate how well each model takes into account the quantifier in

its predictions, we compared which of the two possible critical words (typical or atypical)

had a lower surprisal, i.e., was more strongly predicted by the model. To align with

human plausibility judgements, following a most-type quantifier, the typical continuation

was judged to be correct, and following a few-type quantifier, the atypical continuation

was judged to be correct. Accuracy was calculated as the fraction of the stimulus pairs

for which the model predicted the appropriate critical word—that is, predicted the correct

continuation more strongly than the incorrect one. For example, the set of stimuli presented

in (2) is made up of 4 pairs of stimuli, and for a model to achieve 100% accuracy (4/4), it

would need to predict (a) over (b), (d) over (c), (e) over (f), and (h) over (g). This design

intrinsically controls for any differences in unconditioned probability among the final words

themselves.

Following Ettinger (2020), we also analyzed model sensitivity to the quantifiers.

In the present study, this corresponds to the question of whether, for a given sentence

frame, the model makes a different prediction following a few-type quantifier than it does

following a most-type quantifier. We defined sensitivity as the proportion of stimuli for

which the model correctly predicts the critical word following both the most-type and

the few-type quantifier. Thus, the stimuli in each sentence frame provide 2 data points

for sensitivity: in (2), sensitivity is calculated for (a)-(d) and for (e)-(h). For the (a)-(d)

stimuli, a model would be considered sensitive to the quantifier if it correctly predicted (a)
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over (b) and (d) over (c). Code and data are available at https://osf.io/vjyw9.

6.2.4 Results

Each model’s accuracy at predicting the critical words following most- and few-

type quantifiers is shown in Figure 6.1. All model series show the same general tendencies

in accuracy: (1) they perform quite poorly for few-type quantifiers but relatively well for

most-type quantifiers; and (2) as model size increases, word prediction following most-type

quantifiers improves, but it degrades following few-type quantifiers. Figure 6.1 does show

small exceptions to this pattern. From GPT-2 762M to 1542M and from InstructGPT 13B

to 175B, while most-performance increases, few-performance does not decrease. Further-

more, from OPT 125M to 350M, and from OPT 2.7B to 6.7B, there is actually a slight

improvement. Nonetheless, these differences are small compared to the overall decreases in

performance, and the general trends are still clear—for example, no model performs better

on few-type quantifiers than a model two or more sizes smaller.

With sensitivity, as shown in Figure 6.1, some models improve as they increase

in size, and some get worse; however, even the greatest distance between the sensitivity of

two models in the same series (InstructGPT 2.7B and 13B) is only 3.4%. Thus, other than

the general fact that sensitivity is low across all models, there does not appear to be any

clear pattern, suggesting that sensitivity does not drive the effects seen in accuracy. All

accuracy and sensitivity scores can be found in subsection 6.5.3.

6.2.5 Discussion

These results show that contemporary autoregressive transformer models perform

poorly on few-type quantifiers, and that as these models increase in size, they tend to

improve at predicting words following most-type quantifiers but get worse at predicting
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words following few-type quantifiers. In fact, we see that models that better predicted

the more typical word after a most-type quantifier were also worse at predicting the less

typical word following a least-type quantifier. The fact that models were evaluated on

which of the two options they predicted to be more likely, combined with generally poor

and largely invariant sensitivity (peaking at 5%), suggests that the larger models generally

made predictions increasingly in accordance with typicality, overwhelming any sensitivity

to quantifier type. This aligns with previous work on negation and logical quantifiers in

language models (Ettinger, 2020; Kassner and Schütze, 2020; Kalouli et al., 2022), as well

as the N400 results of the original study by Urbach and Kutas (2010).

6.3 Experiment 2: Sentence-final nouns

6.3.1 Method

The models and evaluation approach were identical to Experiment 1. The materi-

als were identical to Experiment 1 with the single difference that all nouns were followed by

a period, and the surprisal of this period was included when calculating the total surprisal

of the critical word (e.g., nuts. or nails. for the example presented in (2)). Thus, surprisal

reflected both the surprisal of the critical word in context and the surprisal of the word

being followed by a period, i.e., being the last word in the sentence. For a discussion of

modeling the probability of sentence-final words in this way, see Szewczyk and Federmeier

(2022).

6.3.2 Results

Results are shown in Figure 6.2. As in Experiment 1, larger models perform worse

overall. However, there is a small improvement in the very largest GPT-3 and InstructGPT
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models relative to the second-largest models of the same type, both in few-type accuracy

and sensitivity. Performance also increases on these metrics between OPT 2.7B and OPT

6.7B; however, this decreases with OPT 13B. All accuracy and sensitivity scores can be

found in subsection 6.5.3.
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Figure 6.2: Accuracy and sensitivity of all models on stimuli with added periods (e.g., Few
squirrels gather nuts.).

6.3.3 Discusion

Overall, the results are similar to those of Experiment 1: Larger models of the

same type perform worse than smaller models. Whether the small improvement of the

largest GPT-3 and InstructGPT models relative to the second-largest models is a fluctua-

tion like that seen for OPT or the beginnings of a U-shaped curve (see Wei et al., 2022b)

is a question for further research.

6.4 General Discussion

In this study, we investigated whether language models show the same insensi-

tivity towards few-type and most-type quantifiers observed in the predictions made by

humans during language comprehension, as indexed by the N400 response. We find that
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when tested on the same stimuli, they do, predicting the ostensibly implausible few squir-

rels gather nuts to be more likely than few squirrels gather nails. Moreover, we find that

as language models increase in size, they tend to show this effect to a greater extent, an

example of inverse scaling. Based on our analysis of sensitivity and accuracy with most-

type quantifiers, we hypothesize that these results are due to a low degree of sensitivity

to quantifiers and an increase in sensitivity to typicality. In other words, language models

appear to be increasingly sensitive to the fact that squirrels gather nuts is more plausible

than squirrels gather nails, but not to the effect on meaning that is caused by a preceding

most or few.

It is often assumed that as models increase in size and are trained on more data,

their performance on natural language tasks generally improves—indeed, evidence supports

this (Brown et al., 2020; Raffel et al., 2020; Lin et al., 2021; Srivastava et al., 2022; Hoffmann

et al., 2022; Rae et al., 2022; Zhang et al., 2022; Chowdhery et al., 2022). However, the

predictions of larger models and those trained on more data also increasingly correlate

with human incremental online predictions, in particular those indexed by N400 amplitude

(Frank et al., 2015; Aurnhammer and Frank, 2019a,b; Michaelov and Bergen, 2020; Merkx

and Frank, 2021; Michaelov et al., 2021, 2022). The two are often aligned—it is easier for

humans to process well-formed sentences with plausible semantics (Frisch and Schlesewsky,

2005; Nieuwland et al., 2020). But in cases such as the present study, the two are not

aligned, and we see instead that the predictions of larger models correlate better with

human online predictions, even when these are contrary to offline judgements. Thus, the

increased performance we see at tasks corresponding to offline human judgements—and

note that virtually all manually-annotated tasks are based on offline human judgements—

may in fact be a by-product of the models’ predictions resembling the online predictions.

Fortunately, the literature boasts a wealth of psycholinguistic studies where met-
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rics of online prediction such as the N400 appear to conflict with offline judgements. Future

work could use these to identify phenomena where language models may struggle to make

predictions in line with human judgements. Such cases are important to detect as use of

LMs becomes more widespread. But by the same token, the present study shows that

as language models increase in size, even when augmented by finetuning on desirable re-

sponses, they can make predictions that align less and less with explicit human judgements.

This may be a clear indication of an inherent ‘outer misalignment’ present in

language models: while humans might like language models to generate plausible sentences,

by their nature they can only generate the most statistically probable ones. Just as there

is no guarantee of accuracy or coherence (Bender et al., 2021), there is no guarantee of

plausibility. While it may be possible to tailor training to avoid specific known issues, this

misalignment between probability and plausibility may pose a fundamental challenge with

current approaches that aim to use language models as general-purpose natural language

systems.
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6.5 Appendices

6.5.1 Limitations

There are two main limitations to our study. The first is that the stimuli used

were limited to those provided by Urbach and Kutas’s (2010) study. This is because, as

stated, we wanted to be able to compare the patterns in the language models’ predictions

to the patterns in the human N400 response. Thus, we do not look at logical quantifiers

like Kalouli et al. (2022), or any others that have previously been studied (in, e.g., Pezzelle

et al., 2018; Talmor et al., 2020).

The other (and perhaps more important) limitation is in the models we were able

to use. Crucially, we were not able to access models larger than GPT-3 175B such as

PaLM 540B (Chowdhery et al., 2022). This is important because recent work has shown

that some inverse scaling patterns become U-shaped (i.e., as language model size increases,

performance degrades and then improves again) with such larger models (Wei et al., 2022b).

6.5.2 Ethics Statement

Our work complies with the ACL Ethics Policy. Beyond this, we are not aware of

any way in which the results of this study may be harmful—in fact, if anything, identifying

the limitations of large language models is something that is likely to reduce possible harms

by demonstrating cases where their use is not suitable.

From an environmental perspective, we did not train any models; we only used

pretrained models for analysis, limiting energy consumption. With the exception of the

GPT-3 and InstructGPT models and OPT 13B, all analyses were run on an NVIDIA RTX

A6000 GPU, taking a total of 43 minutes. OPT 13B was too large to run on this GPU, and

thus was run on an Intel Dual Xeon E7-4870 CPU for a total of 22 hours and 39 minutes.
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Finally, the GPT-3 and the InstructGPT models were run using the OpenAI API, and

thus we do not have access to information about the GPUs used.

6.5.3 Scores

The performance of each model on the original stimuli is presented in Table 6.1

and the performance for the stimuli with the added period at the end of the critical word

inb Table 6.2.
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Table 6.1: Accuracy and sensitivity scores for all models for original stimuli.
Critical word

Accuracy Sens.

Model most few
GPT-2 117M (gpt2) 0.850 0.142 0.013
GPT-2 345M (gpt2-medium) 0.908 0.108 0.025
GPT-2 762M (gpt2-large) 0.921 0.088 0.021
GPT-2 1542M (gpt2-xl) 0.942 0.088 0.038
GPT-3 2.7B (ada) 0.917 0.092 0.017
GPT-3 6.7B (babbage) 0.942 0.083 0.029
GPT-3 13B (curie) 0.954 0.042 0.008
GPT-3 175B (davinci) 0.975 0.038 0.025
InstructGPT 2.7B (text-ada-001) 0.829 0.179 0.050
InstructGPT 6.7B (text-babbage-001) 0.950 0.088 0.042
InstructGPT 13B (text-curie-001) 0.967 0.042 0.017
InstructGPT 175B (text-davinci-001) 0.975 0.042 0.021
GPT-Neo 125M (EleutherAI/gpt-neo-125m) 0.829 0.179 0.029
GPT-Neo 1.3B (EleutherAI/gpt-neo-1.3B) 0.933 0.079 0.033
GPT-Neo 2.7B (EleutherAI/gpt-neo-2.7B) 0.950 0.067 0.025
GPT-J 6B (EleutherAI/gpt-j-6b) 0.963 0.062 0.029
OPT 125M (facebook/opt-125m) 0.867 0.129 0.021
OPT 350M (facebook/opt-350m) 0.883 0.133 0.025
OPT 1.3B (facebook/opt-1.3b) 0.925 0.075 0.021
OPT 2.7B (facebook/opt-2.7b) 0.950 0.046 0.004
OPT 6.7B (facebook/opt-6.7b) 0.963 0.050 0.017
OPT 13B (facebook/opt-13b) 0.967 0.033 0
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Table 6.2: Accuracy and sensitivity scores for all models for stimuli with added period.
Critical word + period

Accuracy Sens.

Model most few
GPT-2 117M (gpt2) 0.846 0.158 0.021
GPT-2 345M (gpt2-medium) 0.887 0.121 0.025
GPT-2 762M (gpt2-large) 0.917 0.108 0.029
GPT-2 1542M (gpt2-xl) 0.917 0.092 0.033
GPT-3 2.7B (ada) 0.917 0.1 0.021
GPT-3 6.7B (babbage) 0.917 0.104 0.038
GPT-3 13B (curie) 0.954 0.058 0.021
GPT-3 175B (davinci) 0.958 0.067 0.038
InstructGPT 2.7B (text-ada-001) 0.775 0.242 0.075
InstructGPT 6.7B (text-babbage-001) 0.908 0.121 0.042
InstructGPT 13B (text-curie-001) 0.958 0.083 0.054
InstructGPT 175B (text-davinci-001) 0.963 0.112 0.075
GPT-Neo 125M (EleutherAI/gpt-neo-125m) 0.821 0.183 0.033
GPT-Neo 1.3B (EleutherAI/gpt-neo-1.3B) 0.921 0.088 0.029
GPT-Neo 2.7B (EleutherAI/gpt-neo-2.7B) 0.942 0.088 0.042
GPT-J 6B (EleutherAI/gpt-j-6b) 0.954 0.079 0.038
OPT 125M (facebook/opt-125m) 0.854 0.133 0.013
OPT 350M (facebook/opt-350m) 0.875 0.142 0.033
OPT 1.3B (facebook/opt-1.3b) 0.921 0.092 0.025
OPT 2.7B (facebook/opt-2.7b) 0.933 0.058 0.013
OPT 6.7B (facebook/opt-6.7b) 0.946 0.075 0.029
OPT 13B (facebook/opt-13b) 0.954 0.058 0.017
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6.5.4 Quantifiers

Table 6.3 lists all quantifiers used and the proportion of sentences in WikiText-103

that contain them.

Most-type Few-type
Quantifier Frequency Quantifier Frequency
most 0.025177 few 0.005870
almost all 0.000305 almost no 0.000098
practically all 0.000009 practically no 0.000008
a large number of 0.000300 a small number of 0.000131
nearly all 0.000170 rather few 0.000001
lots of 0.000153 hardly any 0.000017
a lot of 0.000745 a very few 0.000010
many 0.015874 few 0.005870
often 0.005766 rarely 0.000610

Total 0.046809 0.006717

Table 6.3: All quantifiers used by Urbach and Kutas (2010). In each sentence frame, most
and few-type quantifiers were matched based on their meanings as length in number of
words (Urbach and Kutas, 2010). Matched quantifiers are shown beside each other. As
can be seen, few is matched to both most and many. The frequency of each quantifier is
given in terms of the proportion of sentences in WikiText-103 (Merity et al., 2017) that
contain it. The total frequencies are the number of sentences in WikiText-103 that contain
at least one of either the few-type or most-type quantifiers; not the sum of the individual
quantifier frequencies.
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Chapter 7

Can Peanuts Fall in Love with

Distributional Semantics?

Abstract

Context changes expectations about upcoming words—following a story involv-

ing an anthropomorphic peanut, comprehenders expect the sentence the peanut was in

love more than the peanut was salted, as indexed by N400 amplitude (Nieuwland and

van Berkum, 2006). This updating of expectations has been explained using Situation

Models—mental representations of a described event. However, recent work showing that

N400 amplitude is predictable from distributional information alone raises the question

whether situation models are necessary for these contextual effects. We model the results

of Nieuwland and van Berkum (2006) using six computational language models and three

sets of word vectors, none of which have explicit situation models or semantic ground-

ing. We find that a subset of these can fully model the effect found by Nieuwland and

van Berkum (2006). Thus, at least some processing effects normally explained through
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situation models may not in fact require explicit situation models.

7.1 Introduction

It is widely believed that prediction plays a key role in language processing, with

more predictable words being processed more easily (Fischler and Bloom, 1979; Kutas and

Hillyard, 1984; Levy, 2008; Kutas et al., 2011; Van Petten and Luka, 2012; DeLong et al.,

2014b; Luke and Christianson, 2016; Kuperberg et al., 2020). Perhaps the strongest evi-

dence for this comes from the N400, a neural signal of processing difficulty that is highly

correlated with lexical probability—contextually probable words elicit an N400 response of

smaller (less negative) amplitude than contextually improbable words, whether predictabil-

ity is determined based on human judgements (Kutas and Hillyard, 1984; for review see

Van Petten and Luka, 2012) or a corpus (Parviz et al., 2011; Frank et al., 2015; Aurnham-

mer and Frank, 2019b; Merkx and Frank, 2021; Szewczyk and Federmeier, 2022; Michaelov

et al., 2022, 2023).

A striking feature of the predictions indexed by the N400 is how flexible they can

be. Under normal circumstances, a sentence such as the peanut was in love would be highly

improbable, much more so than the peanut was salted. Following the short story in (1),

however, this changes (Nieuwland and van Berkum, 2006).

(1) A woman saw a dancing peanut who had a big smile on his face. The peanut was

singing about a girl he had just met. And judging from the song, the peanut was

totally crazy about her. The woman thought it was really cute to see the peanut

singing and dancing like that.

In fact, Nieuwland and van Berkum (2006), who tested this in Dutch, found that

in the context of (1), the last word of de pinda was verliefd (‘the peanut was in love’)
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elicited a smaller N400 than de pinda was gezouten (‘the peanut was salted’). How does

such a dramatic reversal occur?

One possibility put forward by Nieuwland and van Berkum (2006) is that while

reading the context, the reader’s mental representation of the peanut is altered such that it

is treated as an animate entity. This, as Nieuwland and van Berkum (2006) note, is in line

with theories of situation models, which argue that we track the entities under discussion,

as well as their properties and relations. Such accounts generally involve explicit structures

or schemata, grounding in world knowledge or experience, extraction of propositional infor-

mation, or a combination of these (see, e.g., Bransford et al., 1972; Kintsch and van Dijk,

1978; Johnson-Laird, 1980; Garnham, 1981; Johnson-Laird, 1983; van Dijk and Kintsch,

1983; Kintsch, 1988; Zwaan et al., 1995a,b; Radvansky et al., 1998; Kintsch, 1998; Zwaan

and Radvansky, 1998; Zwaan and Madden, 2004; Kintsch, 2005; Van Berkum et al., 2007;

Kintsch and Mangalath, 2011; Butcher and Kintsch, 2012; Zwaan, 2014, 2016; Zacks and

Ferstl, 2016; Kintsch, 2018; Hoeben Mannaert and Dijkstra, 2021). On a situation model

account, the reader alters their semantic representation of the peanut to give it animate

features in accordance with the information that it can sing, dance, and show emotions,

thereby facilitating the processing of in love.

The hypothesis that structured or grounded situation models explain N400 effects

such as those found by Nieuwland and van Berkum (2006) is generally accepted (e.g., Ha-

goort and van Berkum, 2007; Filik and Leuthold, 2008; Warren et al., 2008; Rosenbach,

2008; Ferguson and Sanford, 2008; Ferguson et al., 2008; Menenti et al., 2009; Bicknell

et al., 2010; de Groot, 2011; Metusalem et al., 2012; Aravena et al., 2014; Zwaan, 2014;

Xiang and Kuperberg, 2015; Kuperberg et al., 2020) and has been shown to be viable using

computational models (Venhuizen et al., 2019). However, there are alternative explana-

tions.
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The present study asks whether the effect can instead be explained by lexical

preactivation based on distributional linguistic knowledge, following the findings that the

statistics of language can be used to model N400 effects (Ettinger et al., 2016; Michaelov

and Bergen, 2020; Michaelov et al., 2021; Michaelov and Bergen, 2022a; Uchida et al., 2021;

Michaelov et al., 2023) and predict single-trial N400 amplitude (Chwilla and Kolk, 2005;

Parviz et al., 2011; Van Petten, 2014; Frank et al., 2015; Aurnhammer and Frank, 2019a,b;

Merkx and Frank, 2021; Michaelov et al., 2021; Szewczyk and Federmeier, 2022; Michaelov

et al., 2023).

Specifically, we look at two possible ways in which this might arise. One, which we

refer to as event-level priming, refers to the idea that a word associated with a previously-

discussed event may be more likely to be predicted by virtue of this. This is something

that has been previously reported in the N400—Metusalem et al. (2012), for example,

found that that merely being related to the event under discussion leads to a smaller N400

response to a word even when that word is inappropriate. Michaelov and Bergen (2022a)

model this with transformer language models—systems trained to calculate the probability

of a word given its context based on the statistics of language alone—showing that this

effect is explainable with distributional information. Thus, it may be the case that the

fact that in love is related to, for example, being crazy about someone that leads to it

being predicted to be more likely than salted. Following Michaelov and Bergen (2022a),

we investigate this using 6 Dutch transformer language models (Havinga, 2021, 2022c,a,b;

de Vries et al., 2019; Delobelle et al., 2020), testing whether they show the same effect as

humans—that is, whether they predict the canonical sentence the peanut was salted to be

less likely than the noncanonical sentence the peanut was in love.

An alternative possibility is lexical priming. More simply than in the case of

event-level priming, it may be the case that the preceding context involving words such as

163



dancing, smile, singing, crazy, and cute exerts a stronger pressure on prediction of in love

than peanut does on salted. Intuitively, one might expect that a system (neurocognitive or

computational) displaying event-level priming is likely to display lexical priming—indeed,

lexical priming is a possible mechanism by which at least some part of event-level priming

could be achieved. The fact that lexical priming is likely to occur in a system displaying

event-level priming is also supported by the fact that language models show both (Kassner

and Schütze, 2020; Misra et al., 2020; Michaelov and Bergen, 2022a). Thus, in the present

study, we distinguish between two possible explanations of the effect found by Nieuwland

and van Berkum (2006): lexical priming alone, and event-level priming that may include

lexical priming.

As discussed, language models can be used to model the latter. To model the

former, we turn to word vectors—representations of words derived from their co-occurrence

statistics, either directly or based on word embeddings learned by neural networks (see,

e.g., Dumais et al., 1988; Landauer et al., 1998; Mikolov et al., 2013b; Pennington et al.,

2014; Mikolov et al., 2018; Tulkens et al., 2016; Grave et al., 2018). The cosine distance

between the vector of each critical word (e.g. in love or salted) and the mean of the vectors

of the words in the preceding context can therefore be used to test how similar the critical

word is to the words preceding it (Ettinger et al., 2016; Uchida et al., 2021), and thereby

model the effects of lexical priming alone. To do this this we used three sets of Dutch word

vectors (from Tulkens et al., 2016; and Grave et al., 2018).

7.2 Background

A number of researchers have attempted to model the N400 computationally,

including using language models (Parviz et al., 2011; Frank et al., 2015; Aurnhammer and

Frank, 2019b; Michaelov and Bergen, 2020; Merkx and Frank, 2021; Michaelov et al., 2021,
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2022; Szewczyk and Federmeier, 2022; Michaelov et al., 2023) and the distances between

vector representations of words (Parviz et al., 2011; Van Petten, 2014; Ettinger et al.,

2016; Uchida et al., 2021; Michaelov et al., 2023). There have also been several attempts

to computationally model whether the amplitude of the N400 response is impacted by

situation models (Uchida et al., 2021; Venhuizen et al., 2019) and thematic roles (Brouwer

et al., 2017; Fitz and Chang, 2019; Rabovsky et al., 2018).

To our knowledge, only one previous study (Uchida et al., 2021) has directly at-

tempted to model the discourse effect found by Nieuwland and van Berkum (2006), and

it does not rely on purely distributional linguistic information. Uchida et al. (2021) base

their model on Wikipedia2Vec (Yamada et al., 2020) vectors—while these include distri-

butional information derived from the surface-level statistics of language, they also include

information about hyperlinks between Wikipedia pages, and thus structured semantic re-

lations based on human judgements of relevance and importance (Yamada et al., 2020).

Additionally, Uchida et al. (2021) only look at the English-translated version of the single

stimulus item presented in (1), and thus, it is unclear whether the results generalize to all

the stimuli in the original study. The current study overcomes these inferential limitations

by using the original Dutch stimuli and by using neural language models and word vectors

trained only on natural language input.

7.3 The present study

We investigate the adequacy of distributional knowledge to explain the human

N400 effect found by Nieuwland and van Berkum (2006) using predictions of neural network

language models and the distance between the word vectors of the critical words and their

context. Specifically, we ask this question for two possible variants of the effect found by

Nieuwland and van Berkum (2006).
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Nieuwland and van Berkum (2006) presented experimental participants with short

stories such as those in (1) including “canonical” sentences like the peanut was salted or

“noncanonical” ones like the peanut was in love. One approach to whether language

models and humans show the same prediction patterns (taken by Uchida et al., 2021) is to

compare the statistical metrics the critical words elicit in the context of the full story versus

in isolation. Without preceding context, these sentences should produce values that match

the canonicality of the sentence, but the difference should attenuate or reverse following

the story context.

Thus, we ran a statistical analysis testing for an interaction between stimulus

length (full story or only the last sentence) and canonicality (canonical or noncanonical).

Such an interaction would reveal a context-dependent difference in the effect of canonicality

on our statistical metrics; and thus would replicate in neural language models the effect

found by Nieuwland and van Berkum (2006).

However, an interaction between stimulus length and canonicality in this direction

could result from either a reversal or a decrease in the magnitude of the canonicality effect.

Canonical stimuli might elicit lower surprisals or smaller cosine distances in both context

conditions, but of different magnitudes. For this reason, we label the effect measured by

an interaction (in the expected direction) a reduction effect.

Nieuwland and van Berkum (2006) did not employ the 2 x 2 design that would

allow them to detect an interaction—they compared the N400 in context only, finding

that canonical stimuli actually elicited larger N400 responses than noncanonical stimuli.

To replicate this finding, we test whether the canonical full-length stimuli elicit higher

surprisals or greater cosine distances than the noncanonical full-length stimuli, a reversal

effect.

If either language models or word vectors can successfully model the reversal ef-
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fect, this would suggest that distributional information is sufficient to explain the data

reported by Nieuwland and van Berkum (2006). Thus, while situation models and ex-

tralinguistic information may be involved in the neurocognitive system underlying the

N400, additional evidence is required to prove this. If neither can model either effect, this

would undermine the claim that distributional information is sufficient to explain the effect

found by Nieuwland and van Berkum (2006). Finally, if either language models or word

vectors can successfully model the reduction effect but not the full reversal effect, this may

support the idea that distributional information could be used as part of the neurocogni-

tive system underlying the N400 response, but that it is not sufficient to yield the dynamic

contextual sensitivity humans display. Situation models and other sources of information

might explain the remainder.

7.4 Method

7.4.1 Materials

Stimuli were used from the original experiment, and are provided online1 by the

authors (Nieuwland and van Berkum, 2006). We compared the effect of experimental

condition on the N400 and on neural network surprisal (as in Michaelov and Bergen, 2020)

and the cosine similarity between the word vector of the critical word and the mean of the

word vectors in its context (as in Ettinger et al., 2016).

The stimuli use 60 full-length story frames, each of which has either a canonical

or noncanonical predicate, for 120 unique stories. As the aim is to model human online

comprehension processes, the models only used the text before the critical words (e.g., in

love or salted) to predict the critical words, so stories were truncated after the critical word.

For the critical sentence stimuli, we isolated the last sentence of these truncated stories,
1https://www.researchgate.net/publication/268208198
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including and up to the critical word in each story (e.g., The peanut was in love). This

produced 240 stimuli, as shown in Table 7.1.

Table 7.1: Experimental stimuli derived from Nieuwland and van Berkum (2006).
Predicate Type Stimulus Length Count
Canonical Full-length 60
Canonical critical sentence 60
Noncanonical Full-length 60
Noncanonical critical sentence 60

7.4.2 Statistical Analysis

Statistical analysis and data manipulation were carried out in R (R Core Team,

2020) using Rstudio (RStudio Team, 2020) and the tidyverse (Wickham et al., 2019) and

lme4 (Bates et al., 2015) packages. Code, data, and statistical analyses are provided at

https://osf.io/wnj76.

7.5 Experiment 1: Language Models

7.5.1 Language models

We used six pretrained models available through the transformers package (Wolf

et al., 2020). These were all of the available monolingual Dutch language models us-

ing standard architectures and training procedures at the time of analysis. Four of these

models—Dutch versions of the medium (Havinga, 2021) and large (Havinga, 2022c) GPT-2

models (Radford et al., 2019) and Dutch versions of the 125 million parameter (Havinga,

2022a) and 1.3 billion parameter (Havinga, 2022b) GPT-Neo models (Black et al., 2021)—

were autoregressive, meaning that they are trained to predict a word based only on its

preceding context. The remaining two models—BERTje (de Vries et al., 2019) and Rob-
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BERT v2 (Delobelle et al., 2020), based on BERT (Devlin et al., 2019) and RoBERTa (Liu

et al., 2019), respectively—are masked language models, meaning that they are also trained

to predict a word based on the text following the critical word. However, as stated, in the

present study, all models were only provided with the context preceding the critical words.

We ran the stimuli through each language model, calculating the surprisal of each critical

word that was in the model’s vocabulary (we restricted our analyses to these items). To

do this, we calculated the negative of the logarithm of the probabilities provided for each

critical word by each of the language models. We then tested for the reduction and reversal

effects with these surprisal values. The language models were run in Python (Van Rossum

and Drake, 2009), using the PyTorch (Paszke et al., 2019) implementation of each model,

as provided by the transformers package (Wolf et al., 2020).

GPT−2 Large GPT−Neo 1.3B RobBERT

GPT−2 Medium GPT−Neo 125M BERTje

Target Sentence Full Story Target Sentence Full Story Target Sentence Full Story
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Figure 7.1: Surprisal elicited by critical words for each predicate type and stimulus length.
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7.5.2 Reduction effect

In order to test the reduction effect, we constructed linear mixed-effects regression

models, with the surprisal calculated from each language model as the dependent variable.

In each model, predicate type (canonical or noncanonical) and stimulus length (full-length

or critical sentence) were fixed effects and story frame (each of the 60) was a random

intercept. For the regressions with the autoregressive models and BERTje surprisal as their

dependent variables, we then constructed regressions also including an interaction between

predicate type and stimulus length. Using likelihood ratio tests, we found that these

regressions including the interaction fit the data significantly better than those without the

interaction (GPT-2 Medium: χ2(1) = 112.0, p < 0.001; GPT-2 Large: χ2(1) = 115.9, p <

0.001; GPT-Neo 125M: χ2(1) = 67.3, p < 0.001; GPT-Neo 1.3B: χ2(1) = 56.3, p < 0.001;

BERTje: χ2(1) = 44.4, p < 0.001), indicating a significant interaction between predicate

type and stimulus length. The regression with RobBERT surprisal as its dependent variable

and no interaction had a singular fit, but the regression with the interaction did not. Thus,

instead of running a likelihood ratio test to investigate whether there was a significant

interaction, we used a a Type III ANOVA with Satterthwaite’s method for estimating

degrees of freedom (Kuznetsova et al., 2017) on the regression with the interaction, finding

it to be a significant predictor of RobBERT surprisal (F (1, 71.2) = 81.1, p < 0.001). Note

that all reported p-values are corrected for multiple comparisons based on false discovery

rate (Benjamini and Yekutieli, 2001).

For all language models, there was a significant interaction between predicate

type and stimulus length. Further inspection of the regressions showed that in all cases,

the interaction was in the expected direction. Thus, all models displayed the reduction

effect. This can be seen visually in Figure 7.1—in all models, when only the critical

sentence was presented, the mean surprisal for critical words in canonical sentences is
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lower than for critical words in noncanonical sentences. Conversely, when the full-length

story is presented to the language models, the critical words in the noncanonical sentences

elicit a lower or roughly-equal surprisal than the critical words in the canonical sentences.

7.5.3 Reversal effect

To test for which models this latter finding was statistically significant, we initially

attempted to fit linear mixed-effects regression models for each the full-length and critical

sentence stimulus results for each language model; however, this led to several models with

singular fits. Instead, we carried out pairwise two-tailed t-tests, comparing the surprisal

of canonical and noncanonical stimuli for full-length and critical sentence stimuli for each

language model.

First, we test whether the decontextualized canonical critical sentence stimuli

elicit significantly lower surprisals than noncanonical critical sentence stimuli. After cor-

rection for multiple comparisons, they do so in all language models (GPT-2 Medium:

t(88.7) = −9.91, p < 0.001; GPT-2 Large: t(88.1) = −10.1, p < 0.001; GPT-Neo 125M:

t(88.6) = −10.3, p < 0.001 ; GPT-Neo 1.3B: t(85.5) = −9.62, p < 0.001; BERTje:

t(48.4) = −5.99, p < 0.001; RobBERT: t(55.1) = −7.67, p < 0.001).

Next, in order to investigate the reversal effect, we test whether canonical full-

length stimuli elicit lower surprisals than noncanonical full-length stimuli. After correction

for multiple comparisons, only the Dutch GPT-2 models successfully model the reversal

effect—they are the only models for which canonical full-length stimuli elicit significantly

higher surprisals than noncanonical full-length stimuli (GPT-2 Medium: t(86.3) = 6.11,

p < 0.001; GPT-2 Large: t(88.4) = 5.65, p < 0.001).

The difference in other models was not significant after correction for multiple

comparisons (GPT-Neo 125M: t(88.9) = −0.77, p = 1.000 ; GPT-Neo 1.3B: t(88.9) = 0.47,
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p = 1.000; BERTje: t(51.5) = 0.79, p = 1.000; RobBERT: t(46.6) = 2.32, p = 0.120).

However, it is worth noting that the contrast between the two sets of results

(critical sentence only vs. full stimulus) means that significant canonicality effects for the

critical sentence stimuli disappear in the full-length stimuli, underscoring the presence of

a reduction effect in the Dutch GPT-Neo models, BERTje, and RobBERT.

7.5.4 Discussion

Nieuwland and van Berkum (2006) found that in a suitably supportive context,

noncanonical stimuli like de pinda was verliefd (‘the peanut was in love’) elicit smaller

N400 responses than canonical stimuli such as de pinda was gezouten (‘the peanut was

salted’)—context not only mitigated but reversed the effect of animacy violation.

We find that two language models also display this reversal effect: Dutch GPT-2

Medium (Havinga, 2021) and Dutch GPT-2 Large (Havinga, 2022c). When these models

are presented with the same contexts, the surprisal of critical words in the noncanonical

condition is lower than that elicited by those in the canonical condition.

This is not the case for the remaining four language models: Dutch GPT-Neo

125M (Havinga, 2022a), Dutch GPT-Neo 1.3B (Havinga, 2022b), BERTje (de Vries et al.,

2019), and RobBERT (Delobelle et al., 2020). However, these models do display the weaker

reduction effect, and further, the absence of a significant difference between conditions

for these models when presented with the full stories shows that the difference between

canonical and noncanonical critical sentence stimuli is not just reduced, but disappears

entirely.

It may be tempting to infer that the architecture of autoregressive transformers,

and in particular, those based on the GPT-2 architecture, leads to success capturing the

effect. However, it should be noted that before correction for multiple comparisons, Rob-
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BERT also successfully displays the reversal effect. In addition, not all language models

had the same vocabulary, and thus, a different number of items were analyzed across mod-

els2. For these reasons, and because these models are all of various sizes and trained on

several different datasets, we believe it would be premature to draw conclusions about how

language model architecture impacts whether a model displays the reversal effect.

FastText Combined COW

Target Sentence Full Story Target Sentence Full Story Target Sentence Full Story
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Figure 7.2: Cosine distance elicited by critical words for each predicate type and stimulus
length.

7.6 Experiment 2: Word Vectors

7.6.1 Cosine Distance

In this study, we used 3 sets of pretrained word vectors: the 300-dimensional

Dutch fastText vectors (Grave et al., 2018) trained on Dutch text from Wikipedia3 and

Common Crawl4 and two 320-dimensional Dutch word vectors released by Tulkens et al.

(2016)—one trained on COW (COrpora from the Web; Schäfer and Bildhauer, 2012) and

one trained on a Combined corpus made up of the SoNaR corpus (Oostdijk et al., 2013)
2Though it should be noted that an alternate analysis including all critical words by operationalizing

the suprisal of multi-token words as the sum of their tokens’ surprisals (see Michaelov and Bergen, 2022b)
shows the same qualitative results for all models except for BERTje—which performs worse.

3https://nl.wikipedia.org/
4https://commoncrawl.org/
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and text from Wikipedia and Roularta5. Cosine distance was calculated (using SciPy;

Virtanen et al., 2020) between the mean of the word vectors for all words in the preceding

context and the word embedding for the critical word. All critical words were present in

the vectors, so all experimental items were included in the analysis; it should be noted

though that words in the context that were not present in the vectors were ignored when

calculating cosine distance. The cosine distances for critical words in each condition are

shown in Figure 7.2.

7.6.2 Reduction effect

As with language model surprisal, we constructed linear mixed-effects regressions

with predicate type and stimulus length as fixed effects and story from as a random in-

tercept. With these models, the cosine distance calculated using each set of word vectors

was the dependent variable. The interaction between predicate type and stimulus length

was significant for all vectors after correcting for multiple comparisons (fastText: χ2(1) =

12.0, p = 0.003; Combined: χ2(1) = 40.8, p < 0.001; COW: χ2(1) = 66.4, p < 0.001).

7.6.3 Reversal effect

When comparing the cosine distances calculated between the embedding of the

critical words and the preceding words of the critical sentence using two-tailed t-tests

as with surprisal, there was a significant difference between canonical and noncanonical

critical words for Combined and COW vectors (Combined: t(116.9) = −3.48, p = 0.004;

COW: t(116.5) = −4.45, p < 0.001), but not fastText vectors (fastText: t(118.0) = −1.96,

p = 0.237).

Similarly, when comparing the cosine distances between the critical word and
5https://www.roularta.be
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the preceding words of the full story, there was a significant difference between canonical

and noncanonical critical words for Combined and COW vectors (Combined: t(117.0) =

4.82, p < 0.001; COW: t(117.0) = 6.78, p < 0.001), but not fastText vectors (fastText:

t(117.4) = 1.68, p = 0.418).

7.6.4 Discussion

The cosine distances calculated from all three sets of word vectors displayed the

reduction effect, and two out of three displayed the reversal effect. Thus, the results suggest

that the N400 effect reported by Nieuwland and van Berkum (2006) can be explained by

lexical priming based on distributional linguistic knowledge alone.

The present study corroborates the finding of Uchida et al. (2021), and expands

upon it in several ways. First, we explicitly tested for the reversal effect—not just whether

canonical and noncanonical stimuli differ depending on whether there is a preceding story

or not, but also whether the noncanonical sentence is more expected than the canonical

when the story is present. Second, we found that word vector cosine distance can model

the effect for multiple stimuli, not just the peanut was in love example. Third, we found

that the effect can be modeled in Dutch, the language in which the human study was

carried out. And finally, we found that vectors derived from text data only (i.e., without

additional information) are able to model the effect.

7.7 General Discussion

Human comprehenders use context to update expectations about upcoming words,

making a sentence that would be highly unlikely on its own more predictable than a sen-

tence that would be relatively likely on its own. More strikingly, humans do this even when

the event described is implausible, violating the constraint, for instance, that only animate,
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conscious entities can fall in love. The human comprehension system is quite flexible if it

can update expectations about what peanuts, for example, can do, based only a story that

indirectly implies the animacy of a fictional peanut.

It has often been assumed that this flexibility requires situation models that are

explicitly structured (Venhuizen et al., 2019) or involve non-linguistic world knowledge

(Uchida et al., 2021). However, the present findings show that it is possible for purely

linguistic language models model with no direct experiential grounding to update their

expectations based on the linguistic context and knowledge of the statistics of language.

Thus, the dynamics of event-level priming based on the distributional statistics of language

may in some implicit, unspecified way approximate the effects on language comprehension

previously ascribed to situation models.

In fact, the results of the present study provide evidence for an even simpler

explanation. Within final sentences alone, canonical critical words were more similar to

their contexts than noncanonical words, but when we include the full story context, it

is the noncanonical critical words that are more similar to their contexts. It is already

well-established that the amplitude of the N400 to a given word is reduced when it is

semantically related to a previously-seen word (Bentin et al., 1985; Rugg, 1985; Van Petten

and Kutas, 1988; Kutas and Hillyard, 1989; Holcomb, 1988; Kutas, 1993; Lau et al., 2013).

Overall, then, our results show that in principle, it is possible that the pattern in the N400

responses reported by Nieuwland and van Berkum (2006) may not rely on situation models

or even event-level priming, but rather reflect some form of lexical priming.

It may still be the case that humans use structured or semantically-rich situation

models in online language comprehension (see, e.g., Kuperberg et al., 2020). However, the

results of the study carried out by Nieuwland and van Berkum (2006) appear to provide

weaker evidence for this than previously believed. Language model predictions or even
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lexical priming based on language statistics appear to be sufficient to explain the effect, at

least qualitatively—a valuable line of future research would be to test whether these can

fully account for the effect in single-trial N400 data.
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Chapter 8

Strong Prediction: Language

model surprisal explains multiple

N400 effects

Abstract

Theoretical accounts of the N400 are divided as to whether the amplitude of the

N400 response to a stimulus reflects the extent to which the stimulus was predicted, the

extent to which the stimulus is semantically similar to its preceding context, or both. We

use state-of-the-art machine learning tools to investigate which of these three accounts is

best supported by the evidence. GPT-3, a neural language model (LM) trained to compute

the conditional probability of any word based on the words that precede it, was used to

operationalize contextual predictability. In particular, we used an information theoretical

construct known as surprisal (the negative logarithm of the conditional probability). Con-

textual semantic similarity was operationalized by using two high-quality co-occurrence-
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derived vector-based meaning representations for words: GloVe and fastText. The cosine

between the vector representation of the sentence frame and final word was used to derive

Contextual Cosine Similarity (CCS) estimates. A series of regression models were con-

structed, where these variables, along with cloze probability and plausibility ratings, were

used to predict single trial N400 amplitudes recorded from healthy adults as they read

sentences whose final word varied in its predictability, plausibility, and semantic relation-

ship to the likeliest sentence completion. Statistical model comparison indicated GPT-3

surprisal provided the best account of N400 amplitude and suggested that apparently dis-

parate N400 effects of expectancy, plausibility and contextual semantic similarity can be

reduced to variations in the predictability of words. The results are argued to support

predictive coding in the human language network.

8.1 Introduction

(Fedorenko and Thompson-Schill, 2014) note that the brain systems that support

language processing are better described at the level of interactive networks than indi-

vidual brain regions, arguing that investigations into the functional significance of neural

activity are best directed at large-scale distributed neural networks, that is, a set of in-

terconnected brain regions acting in concert. This may explain why language researchers

have found event-related brain potentials (ERPs) to be such a useful method for probing

the neurobiology of language, despite known limitations in the spatial resolution of the

technique (see Federmeier et al., 2016 for a review). EEG reflects post-synaptic potentials

generated mainly in cortical pyramidal cells (Luck, 2014). Moreover, brain activity cannot

be detected at the scalp unless large numbers (on the order of 10 million) of neurons are

simultaneously active (Woodman, 2010). The identification of any scalp recorded poten-

tials whose amplitude is systematically modulated by language processing demands is thus
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likely to reflect activity in the very sort of interactive neural networks (Fedorenko and

Thompson-Schill, 2014) propose.

One ERP component of particular interest to language researchers is the N400, a

monophasic negativity peaking approximately 400ms after the onset of a visually presented

word. The N400 was first reported in a study that compared ERPs elicited by the last word

of sentences that made sense (He takes his coffee with cream and sugar) versus those that

did not (He takes his coffee with cream and dog; Kutas and Hillyard, 1980). However, it

soon became clear that the N400 is not only observed at the end of sentences; it is elicited

by all words, written, spoken, or signed, and that its amplitude is modulated by factors

such as contextual congruity, frequency of usage, and category membership, all thought

to affect the difficulty of retrieving information in semantic memory (for review see Kutas

and Federmeier, 2011).

Here we consider the adequacy of two proposals regarding the functional sig-

nificance of the N400 that differ in their implications for the underlying neurocognitive

mechanisms. The first is that N400 amplitude is sensitive to the conditional probability of

words in their linguistic contexts as driven by a predictive coding mechanism. This account

is referred to below as predictive preactivation. The second is that N400 amplitude is driven

by a context-sensitive retrieval mechanism and as such indexes the semantic similarity of

incoming words to the semantic features of prior words in the context. This is referred to

below as contextual semantic similarity. We briefly review empirical support for each of

these proposals as well as that for a combined account.

One reason for the continued dispute on this issue is that advocates of each ac-

count have mostly focused on a subset of N400 effects, discounting the relevance of less

amenable phenomena and arguing that they are potentially explicable given a suitable

operationalization of either expectancy or semantic similarity. Whereas advocates of pre-
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dictive processing focus on expectancy effects (DeLong et al., 2014b; Kuperberg and Jaeger,

2016; Bornkessel-Schlesewsky and Schlesewsky, 2019; Kuperberg et al., 2020), advocates

of contextual similarity and combined accounts focus on the way that N400 amplitude is

modulated by the presence of semantically related words in the immediate context (Lau

et al., 2013; Ettinger et al., 2016; Uchida et al., 2021; Federmeier, 2021). By contrast, the

present study examines manipulations of the expectancy, plausibility, and the relatedness

of sentence final words to the words that precede them.

Noting how researchers in the neurobiology of language have struggled to oper-

ationalize the theoretical constructs proposed to drive the N400, we turn instead to tools

from computational linguistics. The 21st century has seen immense progress in the utility

of language models, statistical tools to characterize the probability of words in texts (Juraf-

sky and Martin, 2021; Berger and Packard, 2022). Trained on large corpora to compute the

probability distribution over a vocabulary of words, language models are used in applica-

tions such as information retrieval, speech recognition, machine translation, and chatbots.

Although language models are not proposed as cognitive models per se, we suggest that the

data-driven estimates they provide serve as excellent metrics for the theoretical constructs

proposed to drive the N400. We utilize three state-of-the-art language models to provide

metrics for the predictability and the contextual semantic similarity of our sentence-final

words and compare their adequacy in accounting for N400 effects of expectancy, plausibil-

ity, and relatedness in human participants.

8.1.1 Predictive Preactivation Account

One prominent account of the N400 is that it reflects the activation of semantic

features associated with the eliciting word (Kutas and Federmeier, 2011). According to

this account, contextual congruity effects occur because elements of the prior context have
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already activated some of these associated features. If relevant features associated with a

word have been activated by the preceding context—whether these be semantic features

(Kuperberg et al., 2020; Federmeier, 2021) or a combination of semantic, grammatical, and

phonological features (as supported by the work of DeLong et al., 2005; Van Berkum et al.,

2005; Otten et al., 2007; Nicenboim et al., 2020; Urbach et al., 2020; Fleur et al., 2020)—

they need not be newly activated when the word is encountered, and thus the amplitude

of the N400 is less than when words are encountered alone or in less supportive contexts.

The most obvious source of support for predictive preactivation lies in the close

relationship between N400 amplitude and the expectancy metric known as cloze probability

(the proportion of people to fill in the relevant gap in a sentence with a given word;

Taylor, 1953, 1957). A higher-cloze continuation of a sentence elicits a smaller (i.e., more

positive) N400 response, while a lower-cloze continuation elicits a larger (more negative)

N400 (Kutas and Hillyard, 1984; Kutas and Federmeier, 2011). In fact, in previous work

the two variables have been reported to have a Pearson correlation coefficient r of -0.9

or more (Kutas and Van Petten, 1994; Kutas and Federmeier, 2011). As the cloze task

requires participants to predict an upcoming word, cloze probability has often been argued

to reflect how predictable a word is in context (Tannenbaum et al., 1965; Fischler and

Bloom, 1979; Kutas and Hillyard, 1984; Kutas et al., 2011; Van Petten and Luka, 2012;

Luke and Christianson, 2016; Kuperberg et al., 2020; Brothers and Kuperberg, 2021).

Moreover, the negative correlation between N400 amplitude and cloze probability tells

us that N400 amplitude is not simply a categorical indicator of surprise, but reflects the

predictability of the eliciting word in a more fine-grained way.

Beyond the graded predictability effect, the predicted preactivation account is

supported by the way that N400 amplitude is modulated by sentence context. Research

has shown that words elicit a large N400 when presented alone, a large N400 when presented
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in sentence frames that render them unexpected, and a progressively smaller N400 in more

supportive sentence contexts, suggesting that what reduces the amplitude of the response

is the activation of neural representations associated with the stimulus before the stimulus

is encountered (Van Petten and Kutas, 1990, 1991; Van Petten, 1993; Dambacher et al.,

2006; Payne et al., 2015; for discussion, see Van Petten and Luka, 2012; Federmeier, 2021).

Second, unlikely sentence continuations elicit similar sized N400 in constraining contexts

in which there is a highly salient alternative (e.g., month in The bill was due at the end of

the hour) and in open-ended contexts in which there is not (e.g., He kicked himself when

he realized that he forgot the key; see Van Petten and Luka, 2012; DeLong and Kutas,

2020; Kuperberg et al., 2020; Federmeier, 2021).

This sensitivity to the contextual fit of the actual word encountered rather than

the predictability of potential alternatives has been interpreted as suggesting that rather

than the registration of surprise, the N400 reflects the activation of semantic (and possibly

other) features associated with the word presented. In this account, cloze probability effects

occur because the greater the extent of preactivation for a word’s features, the smaller the

N400 elicited by the word (Van Petten and Luka, 2012; Kutas et al., 2011; Kutas and

Federmeier, 2011; DeLong et al., 2014a; Kuperberg et al., 2020; DeLong and Kutas, 2020;

Federmeier, 2021).

In addition to cloze, the amplitude of the N400 is also correlated with other metrics

of predictability. Research has found that predictions of language models, computational

systems designed to predict the probability of a word in context based on the surface-

level statistics of language, are correlated with the N400 response to these words (Frank

et al., 2015; Aurnhammer and Frank, 2019b; Merkx and Frank, 2021). Specifically, such

studies find that the surprisal, the negative logarithm of the conditional probability of a

word, is a significant predictor of N400 amplitude (Parviz et al., 2011; Frank et al., 2015;
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Aurnhammer and Frank, 2019b; Michaelov and Bergen, 2020; Ettinger, 2020; Merkx and

Frank, 2021; Michaelov et al., 2022; Szewczyk and Federmeier, 2022).

Research also shows that language model surprisal can be used to model N400

effects—in many cases, where we find a significant difference in N400 amplitude between

stimuli from two experimental conditions, we also find a significant difference in surprisal

in the same direction (Michaelov and Bergen, 2020). Further, this computational approach

fits into a larger body of work showing that N400 amplitude is sensitive to the statistics

of language—for example, more frequent words elicit smaller N400 responses (Kutas and

Federmeier, 2011; Van Petten and Kutas, 1990; Van Petten, 1993; Dambacher et al., 2006;

Rugg, 1990; Fischer-Baum et al., 2014). These results together suggest that the N400

component reflects a neural process that veridically tracks the conditional probability of

upcoming words. Note that the definition of conditional probability here is not restricted

to that calculated by a traditional n-gram model, only based on actual co-occurrences

of lexical items; language models are designed to generalize based on their training data

when making predictions, and humans are also thought to do so (DeLong et al., 2014b;

Kuperberg et al., 2020; DeLong and Kutas, 2020).

8.1.2 Contextual Semantic Similarity

An alternative explanation of the neural activity underlying the N400 is contex-

tual semantic similarity. Under this account, as we comprehend a sentence, the semantic

features of each word are activated and briefly maintained, thereby reducing the neural

activity required in response to words with overlapping features (Federmeier, 2021). While

this feature-based account is compatible and indeed central to some prediction-based ac-

counts of the N400 (e.g. Kuperberg et al., 2020), the key difference is that the activations are

limited to semantic features of previously encountered words. That is, there is no additional
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spreading activation to related words or semantic features, and, crucially, no prediction.

Some investigators have suggested that contextual semantic similarity accounts for all vari-

ation in N400 amplitude (Ettinger et al., 2016; Uchida et al., 2021), while others suggest

semantic similarity acts in concert with a prediction mechanism (see, e.g. Federmeier, 2021;

Lau et al., 2013; Frank and Willems, 2017).

Several previous ERP studies have examined the impact of semantically related

words within sentences or sentence-like word strings, with results that suggest the N400

component is sensitive to semantic similarity among the individual words that comprise

sentences along with factors that are difficult to accommodate within a pure similarity

account. For instance, an early experiment found that the relationship between the two

terms of a statement about category membership influenced the N400, whereas the truth

or falsity of the statement had no impact, so that a robin is a bird and a robin is not a bird

were equivalent and both led to smaller N400s than a robin is/is not a vehicle (Fischler

et al., 1984). Similarly, (Kounios and Holcomb, 1992) found no impact of quantifiers all,

some, and no on statements about category membership. However, a more recent study on

this topic reports N400 effects both for relationships between words (viz., farmers primes

crops more than farmers primes worms) as well as a small N400 effect of quantifiers, that

is, the final word of the more plausible sentence farmers often grow crops elicited a smaller

N400 than farmers rarely grow crops (Urbach and Kutas, 2010).

Outside the realm of negation and quantification, initial studies showed that the

presence of a strongly related word within either a meaningful sentence (e.g., When the

moon is full, it is hard to see many stars or the Milky Way) or a grammatically legal

but meaningless word string (e.g., When the moon is rusted, it is available to buy many

stars or the Santa Ana) leads to a smaller N400 to stars than if the prior context does not

include a related word (Van Petten, 1993; Van Petten et al., 1997). However, other studies
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indicate that N400 is not driven solely by an automatic semantic comparison process during

sentence comprehension. Coulson and colleagues found much smaller N400s to the second

words of related (tin/aluminum) than unrelated (tin/disposal) word pairs when the pairs

were presented by themselves (Coulson et al., 2005). The word pairs were then embedded

in sentences that were compatible or incompatible with the word-pair relationship, like the

quartet below.

(1) (a) Coke cans used to be made out of tin but now they use aluminum.

(b) Paul heard a loud grinding noise when someone put a tin can right down the

garbage aluminum.

(c) Paul heard a loud grinding noise when someone put a tin can right down the

garbage disposal.

(d) Coke cans used to be made out of tin but now they use disposal.

In the incongruous sentences, the presence of a semantically related word continued to re-

duce the amplitude of the N400 elicited by the final words—condition (b) smaller than (d)—

but this difference was dramatically smaller and shorter in duration than when the word

pairs were presented in isolation. In contrast, the impact of overall sentence congruity—

conditions (a) and (c) versus (b) and (d)—dwarfed the impact of a single related word

earlier in the sentence.

(Camblin et al., 2007) similarly pitted overall plausibility against lexical relation-

ships by embedding strongly related word pairs (arms / legs) in discourse contexts that

were more or less compatible with the word-pair relation (skin irritation from a sunburn

would be likely to affect both arms and legs, but irritation from a wool sweater would not).

Much like (Coulson et al., 2005), they found smaller N400s for the second words of seman-

tically similar pairs than their unrelated controls, but that this effect was substantially

smaller when opposed by the global discourse context.
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As for the prediction account, the contextual semantic similarity account is sup-

ported by work with computational models. N400 amplitude, for example, has been found

to correlate with the degree of semantic similarity between prime and target word (Chwilla

and Kolk, 2005; Van Petten, 2014), as operationalized by Latent Semantic Analysis (LSA),

a measure of semantic distance derived from word co-occurrence frequencies in written

corpora (Dumais et al., 1988; Landauer et al., 1998; Dumais, 2004). This is also true for

words in sentence contexts—N400 amplitude is correlated with the LSA distance between

a target word and the words that precede it (Chwilla et al., 2007; Parviz et al., 2011), and

with other statistically derived metrics of word similarity (Parviz et al., 2011; Van Petten,

2014; Ettinger et al., 2016; Frank and Willems, 2017; Uchida et al., 2021; Broderick et al.,

2018).

8.1.3 Multiple Systems Accounts

A number of investigators have suggested the brain activity underlying the N400

reflects both predictive preactivation and contextual semantic similarity. Some of these

suggest that the contextual semantic similarity system operates by default, and the pre-

dictive system is engaged under conditions of increased attention (Federmeier, 2021), or

when predictions are more likely to be successful, as when a high proportion of word pairs

are semantically related (Holcomb, 1988; Lau et al., 2013). Some studies have shown that

conditions that foster prediction result in N400 effects with an earlier onset latency than

conditions that do not, such as those with little time between words (Anderson and Hol-

comb, 1995; Luka and Van Petten, 2014), or a small proportion of related word pairs (Lau

et al., 2013).

According to other accounts, both systems are constantly active but implemented

in different brain circuits. In one fMRI experiment, (Frank and Willems, 2017) found
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that contextual semantic similarity was correlated with activations in the anterior middle

temporal sulcus, the precuneus, and bilateral angular gyri, whereas predictability was

correlated with activations in the left inferior temporal sulcus, left posterior fusiform gyri,

bilateral superior temporal gyri, and bilateral amygdalae. In view of the limited temporal

resolution of fMRI, however, it is also possible that these findings reflect a disparate impact

of contextual similarity and predictability at distinct stages of language processing.

Finally, one well-replicated result appears challenging to accommodate in single-

system accounts, whether predictive or similarity-based. (Kutas and Hillyard, 1984) first

reported that generally poor (unexpected) sentence completions elicited smaller N400s if

they were semantically related to the most expected completion than if not, so that He

liked lemon and sugar in his coffee led to a less negative ERP than an equally unexpected

word (dog) that is semantically dissimilar to the expected completion (tea). The finding

that words related to the best completion elicit significantly less negative N400 responses

than their unrelated counterparts has been replicated many times, and occurs regardless

of whether the related words comprise congruous or anomalous continuations of a sentence

(Kutas and Hillyard, 1984; Kutas et al., 1984; Kutas, 1993; Federmeier and Kutas, 1999;

Thornhill and Van Petten, 2012; Amsel et al., 2015; Ito et al., 2016; DeLong et al., 2019).

One might imagine that this effect (relationship-to-best-completion, or RBC) arises from

predicting a sentence completion, followed by an assessment of the similarity between that

prediction and the actually delivered word, but no study has suggested that the RBC

effect is temporally delayed relative to simple sentence congruity effects. Because an RBC

condition is included in the present study, we return to theoretical accounts and attempts

to computationally model it in the Discussion.
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8.1.4 The Present Study

In the present study we explore whether the brain activity underlying the scalp-

recorded N400 component is driven by predictability, contextual semantic similarity, or a

combination of the two. To do so, we recorded EEG as participants read sentences whose

final words were designed to elicit three kinds of N400 effects: predictability, plausibility,

and relatedness to the best completion (RBC). Based on the stimuli used by (Thornhill

and Van Petten, 2012), our materials were sentence frames with four different kinds of

sentence-final words. As in the original study, the predictability manipulation was guided

by results from a cloze task. The Best Completion condition was thus the word with the

highest cloze probability. The Related completions were low-cloze completions semanti-

cally related to the best completions, as determined by (Thornhill and Van Petten, 2012).

Likewise the Unrelated completions were low cloze completions unrelated to the best com-

pletions. Finally, to investigate the plausibility effect, we included Implausible completions,

completions with a cloze probability of zero that were also implausible.

(2) (a) Best Completion: On his vacation, he got some much needed rest.

(b) Related: On his vacation, he got some much needed relaxation.

(c) Unrelated: On his vacation, he got some much needed sun.

(d) Implausible: On his vacation, he got some much needed airlines.

We then use state-of-the-art language models to calculate the predictability and

contextual similarity of our stimuli and investigate how well these metrics predict the single-

trial N400 amplitudes elicited by the stimuli. To operationalize predictability, we used the

transformer neural network language model, GPT-3. Research has shown that in general,

larger language models trained on more data provide the best fits to human data, and

that transformer neural networks are the architecture best suited to predicting N400 data
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(Merkx and Frank, 2021). However, rather than using the conditional probabilities assigned

by GPT-3 to our stimuli, we instead utilize surprisal scores, the negative logarithm of the

probability assigned by the language model to a given word in context. Previous work has

shown that when directly compared, language model surprisal is a better predictor of N400

amplitude than raw probability (Szewczyk and Federmeier, 2022; Yan and Jaeger, 2020).

Contextual semantic similarity is generally calculated as the cosine distance be-

tween a vector representation of the stimulus word (often referred to as an embedding)

and the mean vector across each word in the context, where the vector representations

are based on the statistics of language. To operationalize contextual semantic similarity,

we took advantage of two different tools for obtaining vectors for word meanings, GloVe

(Pennington et al., 2014) and fastText (Bojanowski et al., 2017; Mikolov et al., 2018).

GloVe (Pennington et al., 2014) is an unsupervised learning algorithm trained on global,

aggregated word-word co-occurrence statistics that yields vector representations for words.

The fastText library (Bojanowski et al., 2017) is an updated version of word2vec (Mikolov

et al., 2013b,a), which has been used in previous work investigating the effect of contextual

semantic similarity (Ettinger et al., 2016; see also Frank and Willems, 2017; Nieuwland

et al., 2020 for related approaches). Both models are driven by language statistics, but

GloVe embeddings are derived from co-occurrence statistics from a whole corpus (Penning-

ton et al., 2014), while fastText embeddings are retrieved from a neural network (known

as a continuous bag-of-words model) trained to predict a word based on the other words

occurring in a given sentence (Bojanowski et al., 2017; Mikolov et al., 2018).

We expect that our experimental manipulation of predictability, plausibility, and

relatedness to the best completion will replicate each of these well-documented effects on

the N400, as would be evidenced by an effect of experimental condition. In particular,

we expect the Best completions to elicit the least negative (most positive) N400, the Im-
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plausible completions to elicit the most negative N400, and the Related and Unrelated

completions to fall in between the two. Despite the fact that the Related and Unrelated

completions are matched for cloze probability and plausibility, the Related completions are

expected to elicit smaller N400 than Unrelated completions.

Next we use our metrics of predictability and contextual semantic similarity to

model single-trial N400 data using linear mixed effects regressions. If the brain activity

underlying the N400 reflects predictive preactivation, we expect regressions incorporating

surprisal to provide the best account of the data. Alternatively, if the brain activity under-

lying the N400 reflects contextual semantic similarity, we expect regressions incorporating

one of our cosine similarity measures to provide the best account of the data. Finally, if

the N400 reflects the operation of both a predictive preactivation mechanism and one for

contextual similarity, the best account of the data will lie in regressions that incorporate

measures both for surprisal and cosine similarity.

8.2 Materials and Methods

8.2.1 Participants

50 UCSD volunteers participated for course credit or payment. Participants were

right-handed, fluent English speakers with normal or corrected-to-normal vision with no

history of neurological or psychiatric disorders. Participants ranged in age from 18 to 31

years old.

8.2.2 Materials

Our stimuli were based on the original stimuli of the experiment carried out by

(Thornhill and Van Petten, 2012). These stimuli were of the form given in Table 8.1. For
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each sentence frame, stimuli fall under four conditions—Best Completions, the completions

with the highest cloze probability; Related Completions, low-cloze completions that are

semantically related to the best completions (as determined by Thornhill and Van Petten,

2012); and Unrelated Completions, low-cloze completions that are unrelated to the best

completions. (Thornhill and Van Petten, 2012) found that these stimuli elicit both a

predictability and RBC effect in human comprehenders. In order to also investigate the

plausibility effect, we added a fourth experimental condition of Implausible Completions.

Sentences were normed via online surveys using the same participant pool we

used to recruit participants for the EEG study. First, cloze probability measures were

collected from UCSD students such that each sentence frame was completed by at least 35

participants. In this survey, participants were provided with sentence frames and instructed

to produce the last word of the sentence. Average cloze probability and standard deviation

for each condition are shown in Table 8.1.

All sentences were also rated for plausibility by a separate group of at least 30

students. In this survey, participants read one sentence at a time and were asked to rate

each on a scale from 1 (very plausible) to 5 (very implausible). Multiple stimulus lists were

employed so that each participant viewed only one of the four versions of each sentence

frame. Average plausibility ratings for each experimental condition are shown in Table 8.1.

All sentences in the Implausible condition had ratings above 3.5, with an average rating

of 4.3. By contrast, the other conditions all had ratings below 2, suggesting participants

found them plausible.

These stimuli were initially constructed as part of a larger study. In order to

use the computational tools required to test our hypotheses, we opted to analyze a subset

of the data such that critical words of all sentence stimuli appeared as whole tokens in

GPT-3, GloVe, and fastText—that is, critical words were present as whole words in the
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vocabularies of these models. We then further selected stimuli such that, as in (Thornhill

and Van Petten, 2012), there was no overall difference in cloze probability between the

related and unrelated completions. We also additionally ensured that there was no overall

difference in plausibility. Thus, the two conditions differed only in how related they were to

the Best Completion for that sentence. This resulted in a final stimulus set of 125 sentence

frames in 4 conditions, for a total of 500 items. The stimuli were presented along with

165 other sentences that were part of the larger study and thus similar in character to the

experimental sentences. As for the experimental sentences, these additional stimuli were

equally likely to end with the Best, Related, Unrelated, or Implausible completion for the

sentence frame as each participant saw approximately 41 non-experimental stimuli in each

condition—in addition to the approximately 31 experimental sentences in each condition.

Table 8.1: Descriptive Statistics for Sentences: Mean and standard deviation of cloze
probabilities and plausibility ratings (1 = very plausible; 5 = very implausible) for each
experimental condition.

Cloze Plausibility
Condition Example Stimulus Mean SD Mean SD
Best It’s hard to admit when one is wrong. 49.8% 27.3% 1.4 0.3
Related It’s hard to admit when one is incorrect. 2.3% 3.3% 1.5 0.4
Unrelated It’s hard to admit when one is lonely. 2.3% 3.9% 1.5 0.3
Implausible It’s hard to admit when one is screened. 0% 0% 4.3 0.4

8.2.3 Procedure

Testing consisted of a single experiment session, with words presented centrally

using RSVP presentation. For each sentence, participants first saw a break screen, then

pressed a key to display the sentence. A fixation character remained on the screen while

words were presented for 300ms, followed by a 200ms blank screen. The final word was

displayed for 1200ms. After some sentences, participants saw a question about the content

of the previous sentence (e.g., “Was the previous sentence about banking?”) and responded
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Yes or No with a button press.

8.2.4 EEG Recording and Analysis

The electroencephalogram was recorded from 29 electrodes in an Electro-cap or-

ganized in the International 10–20 configuration. Additional electrodes were placed below

the eye and near the external canthi to detect eye movements and blinks. Scalp electrodes

were referenced on-line to an electrode on the left mastoid, and later re-referenced to an

average of the left and right mastoid electrodes. The EEG was amplified using an SA

Instrumentation bioelectric amplifier, digitized online at 250 Hz.

EEG was time locked to the onset of each sentence final word. Mean voltage

during the 100ms interval preceding each word’s appearance was used to baseline epochs

spanning 100ms before until 900ms after word onset. Trials containing artifacts due to

blinks, eye movements, or amplifier saturation were removed prior to analysis. As dis-

cussed in Materials, the data used in the present study were collected as part of a larger

experiment involving additional stimuli constructed to cover the same four conditions. We

analyze all the data for stimuli that fulfilled the requirements stated in Materials, namely,

stimuli where all critical words existed as whole words in all language models’ and word

embeddings models’ vocabularies and Related and Unrelated words were matched for Cloze

and Plausibility.

N400 amplitude was operationalized as the mean voltage 300-500ms post-onset

recorded from nine centro-parietal electrodes: C3, Cz, C4, CP3, CPz, CP4, P3, Pz, and

P4. All graphs and statistical analyses were run in R (R Core Team, 2022) using Rstudio

(RStudio Team, 2020) and the tidyverse (Wickham et al., 2019), lme4 (Bates et al., 2015),

lmerTest (Kuznetsova et al., 2017), corrr (Kuhn et al., 2022), colorspace (Zeileis et al.,

2020, 2009), gridExtra (Auguie, 2017), and cowplot (Wilke, 2020) packages. All figures use
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colorblind-friendly palettes (Jackson, 2016; Zeileis et al., 2020; Chang, 2022). All reported

p-values are corrected for multiple comparisons based on false discovery rate (Benjamini

and Yekutieli, 2001).

8.2.5 Computational Metrics

In this paper, we derive three computational metrics based on the statistics of

language—GPT-3 surprisal, GloVe cosine similarity, and fastText cosine similarity. While

the pretrained models we used differ in a number of ways, we did attempt to match some

of their properties as much as possible. For example, GPT-3, GloVe, and fastText are

all trained on Common Crawl data (https://commoncrawl.org/), albeit using subsets of

different sizes. GPT-3 is trained on 300 billion tokens, GloVe on 840 billion, and fastText

on 600 billion tokens. In spite of these differences, at a minimum the corpus is the same

and the training set is the same order of magnitude for all three models. Further, to

ensure that all the models are equally able to capture the relationships between the stimuli

and their contexts, stimuli were chosen such that critical words existed as whole words

in all models’ vocabularies. For this reason, we use the version of fastText that does not

include sub-word information in its representations, as the other models do not have access

to sub-word information. More details on how each metric was calculated are provided

below.

GPT-3 Surprisal

The OpenAI API (OpenAI, 2021) was used to access the predictions of the largest

original GPT-3 model (Davinci), which has 175 billion parameters (Brown et al., 2020).

Each sentence stimulus was input into the API and GPT-3 was used to calculate the

probability of the final word given its preceding context. This figure was then used to
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calculate the log-probability of each critical word. Since these log-probabilities used the

natural exponent as a base, they were converted to the logarithm of base two and multiplied

by negative one. The resultant surprisal values are thus measured in bits (see, e.g.,Futrell

et al., 2019, for discussion).

GloVe Cosine Similarity

To obtain the measure of contextual similarity we refer to as GloVe Contextual Co-

sine Similarity, we used the GloVe (Pennington et al., 2014) vectors made available through

the GloVe website (https://nlp.stanford.edu/projects/glove/)—specifically, the ver-

sion with a 2.2 million word vocabulary and 300-dimensional vectors trained on 840 billion

tokens from the Common Crawl corpus. We took the mean vector of all the words preced-

ing the stimulus word and then used SciPy (Virtanen et al., 2020) to calculate the cosine

similarity between this vector and the vector corresponding to the stimulus word. Because

cosine similarity is based on the angle between two vectors and is not affected by the over-

all magnitude, this approach is equivalent to taking the sum of the context vectors as in

(Frank and Willems, 2017).

We also calculate the similarity between the best completion (i.e., highest-cloze

sentence completions) and each critical word in each sentence frame, which we refer to as

GloVe Best Completion Cosine Similarity or GloVe BCCS.

fastText Cosine Similarity

To calculate fastText Contextual Cosine Similarity, we utilized the fastText (Bo-

janowski et al., 2017) vectors made available through the fastText website (https://

fasttext.cc/)—specifically, the version with a 2 million word vocabulary, 300-dimensional

vectors, and no sub-word information trained on 600 billion tokens from the Common Crawl
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corpus. As with the GloVe vectors, we calculated the cosine similarity between the vector

corresponding to the stimulus word and the mean vector of the preceding context. In ad-

dition to calculating fastText Contextual Cosine Similarity, we also calculate fastText Best

Completion Cosine Similarity or fastText BCCS.

8.3 Results

Figure 8.1 shows grand average ERP waveforms for words in each of the four

conditions (Best Completion, Related, Unrelated, and Implausible) along with topographic

maps. By convention, negative voltage is plotted upwards making it apparent that, as

predicted, the Implausible condition elicited the largest (most negative) N400, and the

Best Completions elicited the smallest (most positive) N400. The Unrelated condition fell

in between these two extremes, and, as predicted, elicited more negative ERPs than did the

Related condition (which was virtually overlapping the Best Completion condition, despite

the large difference in their average cloze probability). The topographic maps were formed

by first calculating point-by-point difference waves obtained by subtracting the amplitude of

ERPs recorded at each electrode in the Best Completion condition from their counterparts

in the Related, Unrelated, and Implausible conditions, respectively. The mean amplitude

300-500ms was then measured on each difference wave and plotted on the scalp to visualize

the relative pattern of positive and negative voltage. The posterior negativity apparent in

all three plots is characteristic of N400 ERP effects reported in sentence reading paradigms

like the one used here.

Figure 8.2 presents normalized (z-scored; and in the case of surprisal and plau-

sibility, multiplied by -1) values in each experimental condition for the outcome variable

(N400) and for each of our predictors. Note that the human derived metrics of cloze proba-

bility and plausibility reflect our experimental design. The Best Completions were intended
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to be predictable, while the Related, Unrelated, and Implausible conditions were designed

to be unexpected, with Related and Unrelated conditions equated for cloze probability.

Similarly, Best Completions, Related, and Unrelated conditions were all intended to be

plausible, whereas the Implausible condition was intended to be implausible. Figure 1 in-

dicates that all of the computational metrics were associated with differences between Best

Completions and Implausible endings. Related and Unrelated conditions were quite similar

on some metrics—such as GloVe Contextual Cosine Similarity (CCS) and fastText CCS—

and differed on others, such as GPT-3 surprisal and both measures of Best Completion

Cosine Similarity (BCCS).

Figure 8.3 presents a heatmap of correlations between the various predictors used

in the regression analyses below. Recall that Contextual Cosine Similartity (CCS) is the

cosine of the angle between the vector for each word and the mean of the vectors for

each of the words in the preceding sentence context and serves as an operationalization of

contextual semantic similarity. Best Completion Cosine Similarity (BCCS) is the cosine

of the angle between the vector for each word and the vector for the word that is the

best completion for the sentence frame and is relevant for some multiple systems accounts.

Although the two kinds of embeddings (GloVe and fastText) yielded virtually identical es-

timations of similarity between pairs of words—as reflected in the 0.98 correlation between

GloVe BCCS and fastText BCCS—they differed somewhat in their estimates of contextual

semantic similarity (CCS) as GloVe CCS and fastText CCS had a correlation coefficient

of 0.66. Relative to GloVe CCS, fastText CCS was more associated with cloze probabil-

ity (0.39 versus 0.32), GPT-3 surprisal (-0.61 versus -0.46), and plausibility (-0.56 versus

-0.37). Relative to GloVe CCS, the fastText CCS measure also showed more sensitivity

to the semantic relationship between each unexpected ending and the best completion, as

evidenced by a greater correlation with fastText BCCS (0.52 versus 0.33) and even with
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GloVe BCCS (0.54 versus the 0.4 correlation between GloVe CCS and Glove BCCS).

GPT-3 exhibited similar correlations with cloze probability (-0.33) as did the CSS

measures described above. Moreover, GPT-3 surprisals were highly correlated with human

measures of plausibility (0.85), a level far greater than any of the other measures. As noted

above, GPT-3 surprisal exhibited moderate negative correlations with both measures of

CCS (-0.61 for fastText and -0.46 for GloVe). GPT-3 exhibited even higher correlations

with the measures of BCCS (-0.71 for fastText and -0.73 for GloVe), presumably due to

the way BCCS implicitly incorporates the predictions of the best completion.

A B

Voltage (µV)

Time (ms)

Implausible

Unrelated

Related

Best Completion

Implausible minus Best Completion

Unrelated minus Best Completion

RBC minus Best Completion

Voltage (µV)

Figure 8.1: ERP scalp maps and waveforms. Panel A shows the topography of the mean
amplitude 300-500ms of the difference wave for the RBC and Best Completion conditions
(top), Unrelated and Best Completion (middle), and Implausible and Best Completion
(bottom) using a spherical spline interpolation. Panel B shows the ERP waveforms for
each condition (Best Completion, Related, Unrelated, Implausible) as measured at the
Centroparietal Electrode Cluster used in the regression models.
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Figure 8.2: Average values of all predictors under each experimental condition. For easier
comparison across predictors, we plot negative surprisal and plausibility, and the values
of all predictors were z-scored. For easier comparison to the N400 waveform, the y-axis is
reversed, with negative values plotted upwards. Error bars show the standard error.
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Figure 8.3: Heatmap of correlations between predictors

8.3.1 Single Factor Accounts

To begin our investigation, we evaluate how well each metric predicts N400 am-

plitude, allowing us to both validate our statistically-derived metrics (surprisal and cosine

similarity) against the more traditional human-derived metrics (cloze probability and plau-

sibility judgements), and to directly compare the former in their ability to predict N400

amplitude.

In order to compare these predictors, we constructed linear mixed-effects regres-
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sion models with with each variable of interest as a fixed effect and used Akaike’s Infor-

mation Criterion (AIC; Akaike, 1973) to compare the regressions’ fits of the neural data.

Each regression had a fixed effect of either cloze probability, plausibility judgement, GloVe

Contextual Cosine Similarity, fastText Contextual Cosine Similarity, GPT-3 surprisal, and

experimental condition. Note that we use cloze probability rather than cloze surprisal (i.e.,

log-transformed cloze probability) because previous work has not shown any clear evidence

that the latter is a better predictor of N400 amplitude (see Michaelov et al., 2022; Szewczyk

and Federmeier, 2022). In addition, one experimental condition (Implausible) was entirely

made up of stimuli where critical words had a cloze probability of zero, which cannot be

log-transformed; and ‘smoothing’ such zero values to allow log-transformation by assigning

them a very low probability also introduces problems for analysis (Nieuwland et al., 2018a).

Because the inclusion of random slopes often leads to problems with convergence

and singular fits, we chose to utilize a parsimonious random effects structure (Bates et al.,

2018) in our regressions. Consequently, model comparison always involves regression mod-

els with the same random effects structures, which allows for comparison across models

with different predictors. All regressions had random intercepts of sentence frame, subject,

and electrode, as well as fixed effects of word frequency (calculated using the wordfreq

Python package; Speer et al., 2018) and orthographic neighborhood size as operationalized

by Coltheart’s N (Coltheart et al., 1977; calculated using MCWord; Medler and Binder,

2005). We also included a random intercept for each critical word because critical words

often occurred in more than one condition.
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Figure 8.4: The AICs of the regressions resulting from the single factor analyses. CCS
refers to Contextual Cosine Similarity.

The AIC of each regression, normalized by the AIC of the null regression (which

includes the same random effects structure as the other regressions, and only word fre-

quency and orthographic neighborhood size as fixed effects) is presented in Figure 8.4.

Of the continuous predictors, Figure 8.4 indicates that the best-fitting regression

is that including GPT-3 surprisal as a main effect, suggesting GPT-3 surprisal is the best

predictor of N400 amplitude. GPT-3 surprisal is followed by human plausibility judge-

ments, which are followed by fastText CCS, which in turn is followed by cloze probability

and GloVe CCS. It is generally accepted that a difference in AIC of 4 indicates a substantial
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difference (Burnham and Anderson, 2004), and the difference between cloze probability and

GloVe CCS is only 0.9; thus it is not clear from our analysis which is the better predictor.

Figure 8.4 also indicates that the regression including experimental condition (a

categorical variable with four levels: Best Completion, Related, Unrelated, and Implausi-

ble) has a lower AIC than the GPT-3 surprisal regression. However, experimental condition

should not be considered to reflect a single variable in the way that the other individual pre-

dictors do because it includes information about predictability, plausibility, and relatedness

to the best completion. Additionally, the experimental condition regression has an AIC

of only 3 less than the GPT-3 surprisal regression; thus it is not clear that experimental

condition is in fact a better predictor than GPT-3 surprisal.

We also ran likelihood ratio tests on each of the predictors listed in Figure 8.4,

comparing each regression to a null regression, i.e., one without the predictor of interest

but all other fixed and random effects. All variables were significant predictors of N400

amplitude (GloVe CCS: χ2(1) = 30.6, p < 0.001; Cloze: χ2(1) = 31.6, p < 0.001; fastText

CCS: χ2(1) = 49.1, p < 0.001; Plausibility: χ2(1) = 114.5, p < 0.001; GPT-3 Surprisal:

χ2(1) = 126.6, p < 0.001; Condition: χ2(3) = 133.6, p < 0.001).

8.3.2 Combined Accounts

The GPT-3 surprisal metric was chosen to model a prediction-based account of the

N400, and GloVe and fastText contextual cosine similarity (CCS) were chosen to model the

contextual semantic similarity accounts. As noted above, some authors have suggested the

N400 indexes neurocognitive systems sensitive both to the predictability of a word and to its

similarity to the semantic context. To investigate the viability of such combined accounts,

we compare the AICs of regressions including a single variable corresponding to either

prediction or contextual semantic similarity, with the AICs of regressions also including one
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of the other. Thus, we look at all combinations of prediction (viz., Cloze Probability and

GPT-3 Surprisal) with CCS metrics. The results are presented in Figure 8.5. A comparison

of the AICs suggests that cloze probability and the two CCS metrics explain variance in

N400 amplitude not explained by the other. This is borne out by the likelihood ratio tests:

after correcting for multiple comparisons the cloze probability regression is improved by

adding either GloVe (χ2(1) = 21.0, p < 0.001) or fastText CCS (χ2(1) = 31.6, p < 0.001)

as a predictor; and conversely, the GloVe (χ2(1) = 22.0, p < 0.001) and fastText (χ2(1) =

14.0, p < 0.001) regressions are each improved by adding cloze probability as a predictor.

This suggests cloze probability and the CCS metrics explain non-overlapping portions of

the variance in N400 amplitude. However, the same is not true of GPT-3 surprisal—while

adding GPT-3 surprisal improves both the GloVe (χ2(1) = 96.3, p < 0.001) and fastText

(χ2(1) = 77.8, p < 0.001) CCS regressions, the GPT-3 surprisal regression is not improved

by adding either GloVe (χ2(1) = 0.4, p = 1.000) or fastText CCS (χ2(1) = 0.4, p = 1.000).

Thus GPT-3 explains variance left unexplained by the CCS measures, while the information

provided by CCS was largely redundant with that provided by GPT-3.
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Figure 8.5: The AICs of the regressions resulting from the two-variable analyses corre-
sponding to combined accounts. CCS refers to Contextual Cosine Similarity.

8.3.3 The plausibility effect

To test how well our metrics explain the variance in N400 amplitude traditionally

explained by plausibility judgements, here we investigate whether the addition of plau-

sibility as a predictor improves the GPT-3 surprisal regression, the cloze + GloVe CCS

regression, and the cloze + fastText CCS regression. These regressions were selected be-

cause they were the models including each of our original three statistically-derived metrics

(that is, for predictability and for contextual semantic similarity) that performed the best

in accounting for observed variance in N400 amplitude. Of these, we can consider the

GPT-3 surprisal regressions as relevant to the predictive preactivation account of the N400
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and the cloze + CCS regressions as relevant to multiple systems accounts.

Shown in Figure 8.6, the results indicate that even when combined with cloze

probability (and thus, when part of a combined model that takes into account predictability

as well as contextual similarity), the AICs of the regressions including GloVe (χ2(1) =

70.3, p < 0.001) and fastText (χ2(1) = 60.0, p < 0.001) CCS are improved by the addition

of plausibility as a predictor. By contrast, the GPT-3 surprisal regression is not improved

by adding plausibility as a predictor (χ2(1) = 1.9, p = 0.715). Whereas neither CCS

metric can model the N400 plausibility effect—even when combined with cloze—variance

attributable to plausibility was captured by GPT-3 surprisal. Thus, predictability alone

(operationalized by GPT-3 surprisal) can explain the apparent effect of plausibility on

N400 amplitude.
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Figure 8.6: The AICs of the regressions resulting from the analyses investigating whether
the single-factor and combined models account for the effect of plausiblity. CCS refers to
Contextual Cosine Similarity.

8.3.4 The relatedness to the best completion effect

Finally, we explore the extent to which relatedness to the best completion is cap-

tured by our three metrics. As with plausibility, we look at whether adding a metric of

relatedness to the best completion improves regression fit, where we operationalize relat-

edness to the best completion as the cosine distance between the word embeddings of the

best completion for each sentence frame and the critical word in each of the other condi-

tions, a metric we name best completion cosine similarity (BCCS). We used both GloVe

and fastText to derive measures of BCCS.
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As with plausibility, we investigate whether our previous best regressions for each

of our three statistical metrics—that is, GPT-3 surprisal, cloze + GloVe CCS, and cloze

+ fastText CCS—are improved by the addition of BCCS to the model. The results are

shown in Figure 8.7. The addition of GloVe BCCS to either cloze + CCS regressions led to

improvements in model performance (Cloze + GloVe CCS: χ2(1) = 32.4, p < 0.001; Cloze

+ fastText CCS: χ2(1) = 24.8, p < 0.001); likewise the addition of fastText BCCS to either

cloze + CCS regression led to significant improvements (Cloze + GloVe CCS: χ2(1) =

31.0, p < 0.001; Cloze + fastText CCS: χ2(1) = 23.6, p < 0.001). These results show that

even when combined with cloze, contextual similarity cannot explain the relatedness to

best completion effect.

On the other hand, adding GloVe BCCS to the GPT-3 surprisal regression only

reduces the AIC by 2, and adding fastText BCCS only reduces the AIC by 2.3; far from

a clear improvement. When we run likelihood ratio tests, neither is found significantly

improve regression fit after controlling for multiple comparisons (GloVe BCCS: χ2(1) =

4.0, p = 0.192; fastText BCCS: χ2(1) = 4.3, p = 0.175). However, unlike all our other tests,

this result is dependent on controlling for multiple comparisons—before this step, both

BCCS metrics do appear to have a significant effect (GloVe BCCS: p = 0.044; fastText

BCCS: p = 0.039). Thus, both when comparing AICs and testing using likelihood ratio

tests, while BCCS metrics may appear to improve model fit, they do not do so reliably.

One possible concern is that the extent to which the BCCS metrics predict N400

amplitude above and beyond surprisal may be undermined by the fact that for one con-

dition (Best Completion), all BCCS values are, by definition, 1, as the critical word is

the best completion. For this reason we also ran the same analysis excluding all data for

Best Completions. The results were qualitatively the same: after correction for multiple

comparisons, neither GloVe BCCS (χ2(1) = 5.0, p = 0.118; uncorrected p = 0.025) nor
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fastText BCCS (χ2(1) = 5.7, p = 0.087; uncorrected p = 0.017) significantly improved the

regression already including GPT-3 surprisal.
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Figure 8.7: The AICs of the regressions resulting from the analyses investigating whether
the single-factor and combined models account for the effect of the relatedness to the
best completion. CCS refers to Contextual Cosine Similarity and BCCS refers to Best
Completion Cosine Similarity.

8.4 Discussion

The aim of this paper was to use current state-of-the-art language models to

compare the predictions of two accounts of the neural activation underlying the N400

response—predictive preactivation versus contextual semantic similarity. To do this, we

investigated how well GPT-3 surprisal—our best approximation of the kinds of predictions
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neurocognitive systems may make based on the statistics of language—predicts N400 am-

plitude. We compared this with the performance of GloVe and fastText contextual cosine

similarity, our two best approximations of contextual semantic similarity based on the

statistics of language. Finally, we compared this with the performance of combined models

including both kinds of metrics. Based on this approach, we found that the predictive

preactivation account explains more variance in N400 amplitude than the two models of

contextual semantic similarity.

Below we consider the adequacy of predictive preactivation, contextual semantic

similarity, and combined systems to account for the three kinds of N400 effects examined

in the present study: expectancy effects, plausibility effects, and relatedness to best com-

pletion (RBC). In each case, predictive preactivation provides a better account of N400

amplitude variation than does either a pure contextual similarity account or a multiple

systems account. We end with a consideration of how the features of the deep learning

language systems we used here relate to those of the language network in the brain.

8.4.1 Expectancy Effects

While the close association between measures of contextual predictability and

N400 amplitude is most naturally accounted for by the predictive preactivation account,

advocates of contextual semantic similarity have argued that expectancy effects on the

N400 arise because highly expected words share more semantic features with their context

than do less expected words. This is demonstrated in computational modeling work by

(Ettinger et al., 2016), who uses the similarity between word2vec (Mikolov et al., 2013b,a)

representations of stimulus words and their contexts to account for the N400 amplitude

differences between the best completions and their lower cloze counterparts in a widely

cited study by (Federmeier and Kutas, 1999). Similarly, using wikipedia2vec embeddings
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(Yamada et al., 2020), (Uchida et al., 2021) show that high cloze sentence continuations

from a number of ERP language studies are more similar to their contexts than their less

predictable counterparts.

In the present study, we likewise find that contextual similarity as measured

both by GloVe CCS and fastText CCS is greater for best completions than for the other

less expected endings. However, in a direct comparison of how well various measures of

predictability versus contextual similarity account for variance in N400 amplitude, pre-

dictability as indexed by GPT-3 surprisal was the clear winner, providing a better account

of the data than either GloVe CCS or fastText CCS. Moreover, the finding that regressions

using both CCS measures improved when combined with cloze probability suggests these

measures of contextual semantic similarity were unable to fully capture expectancy effects

on the N400.

Of course, this same finding—that regressions with CCS measures are improved

by the cloze probability factor—replicates work that supports the multiple systems account

of the N400 (Lau et al., 2013; Federmeier, 2021). However, GPT-3 surprisal out-performed

even these regressions (see Figure 8.5), suggesting that the predictive preactivation account

of N400 is superior to both a pure contextual semantic similarity account and to a combined

systems account.

8.4.2 Plausibility Effects

GPT-3 surprisal also accounts for more variance in N400 amplitude than our

human-derived measure of cloze probability (in line with Michaelov et al., 2022), pre-

sumably due to its ability to capture subtle differences between highly unexpected items.

Indeed, as (Nieuwland et al., 2020) note, plausibility effects on the N400 might result be-

cause less plausible stimuli are also less predictable. Because cloze probability measures
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are limited in the extent to which they can adequately capture the predictability of highly

improbable words, plausibility ratings may serve as a proxy for their predictability, allowing

us to differentiate very low-probability completions from extremely low-probability ones.

Of course, plausibility effects can also be accounted for in principle via contextual semantic

similarity, since we would expect less plausible stimuli to be less related to their context.

Results of the present study, however, argue against the latter possibility as we

find that even when combined with cloze probability, regressions including measures of con-

textual semantic similarity could not fully account for the plausibility effect. This finding

serves as a conceptual replication of (Nieuwland et al., 2020) who found that plausibility

explains amplitude variance in the N400 not explained by either cloze probability or a con-

textual similarity metric derived from word2vec. However, unlike (Nieuwland et al., 2020),

we find that one metric of predictability—namely, GPT-3 surprisal—can successfully model

the plausibility effect. In fact, it explains all the variance that plausibility judgements do.

Thus, in contrast to the findings of (Nieuwland et al., 2020), the results of the present

study suggest that a single neurocognitive process—predictive preactivation—may be able

to account for both predictability and plausibility effects on the N400. Whether this also

applies to analyses across individual time-steps within the N400 time window (of the kind

carried out by Nieuwland et al., 2020) is a question for further research.

8.4.3 Relatedness to Best Completion

As described in the Introduction, the RBC effect is not trivially explained by either

predictability or contextual similarity; however, in principle it can be accommodated by

either account, and there is some evidence for each. Under a predictability perspective, if

semantic prediction is taking place, then we should expect words with a similar meaning

to the best completion to be preactivated along with the best completion (DeLong et al.,
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2019). Consistent with this account, the predictions of computational language models have

been used to successfully model the RBC effect (Michaelov and Bergen, 2020). Specifically,

(Michaelov and Bergen, 2020) report that two language models (Gulordava et al., 2018;

Jozefowicz et al., 2016) find related words to be more predictable than unrelated overall

when modeling the stimuli from an experiment by (Ito et al., 2016), and that one of these

language models also shows the same pattern for stimuli from (Kutas, 1993).

According to the contextual semantic similarity account, the RBC effect results

because words related to the best completion share semantic features with it. Thus, related

words elicit reduced N400 for much the same reason the best completions do — their fea-

tures have been preactivated because they are semantically related to the sentence context.

This has also been successfully modeled computationally: (Ettinger et al., 2016) finds that

the similarity between the word2vec (Mikolov et al., 2013b,a) representation of a stimulus

word and its preceding context demonstrates the RBC effect found by (Federmeier and

Kutas, 1999)—words related to best completions were more semantically similar to the

preceding context than were unrelated words.

The present study provides a conceptual replication of results reported both by

(Michaelov and Bergen, 2020) and by (Ettinger et al., 2016). Using GPT-3 surprisal we find

that our Related completions were more predictable than the Unrelated ones (in line with

Michaelov and Bergen, 2020); using fastText CCS we find that Related completions were

more similar to the preceding context than were the Unrelated ones (in line with Ettinger

et al., 2016). However, results in Figure 8.2—like those in both (Michaelov and Bergen,

2020) and (Ettinger et al., 2016)—only demonstrate that overall, there is a significant

difference in the predictability and in the contextual semantic similarity of Related and

Unrelated completions as estimated by these computational language models; there is no

direct comparison with human data.
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The strength of the present study lies in our efforts to do just this. Direct com-

parison with the human N400 data suggests that the predictability metric from GPT-3

explains more variance in N400 amplitude than does either metric of semantic similarity to

the context. Moreover, in our attempts to probe how well each metric captures the RBC

effect, we utilized two computational measures of the semantic similarity between each

best completion and the other three completions for the sentence frame: GloVe BCCS and

fastText BCCS. As both the graphs in Figure 8.2 and the high correlation coefficient in

Figure 8.3 suggest, the two BCCS measures were virtually identical with each other and

both captured the human intuition that Related words were closer in meaning to the Best

Completions than Unrelated words.

Regression models of N400 data indicate that the addition of either GloVe or

fastText BCCS metrics to models already including cloze probability and GloVe or fastText

CCS improves model fit (see Figure 8.7). This suggests that neither of our contextual

semantic similarity metrics could fully account for the RBC effect—even when combined

with cloze probability. On the other hand, the GPT-3 surprisal regression of N400 data

was not substantially improved by the addition of either BCCS metric (see Figure 8.7),

suggesting the variance associated with our measure of similarity to the best completion

was largely redundant with that captured by GPT-3 surprisal. Moreover, the regression

model including only GPT-3 surprisal out-performed all of the regression models with

additive combinations of CCS, cloze probability, and BCCS. GPT-3 surprisal provides a

better account of the RBC effect than does either a pure contextual semantic similarity

account or a combination of prediction and contextual similarity.

While the superiority of GPT-3 over the contextual similarity measures is unam-

biguous, there is a bit of uncertainty regarding whether GPT-3 is improved by the addition

of the BCCS metrics. In our statistical model comparisons, we do not consider regressions
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with a difference in AIC of less than 4 to differ meaningfully in their fit (following Burnham

and Anderson, 2004). However, it is the case that numerically, the regressions including

both GPT-3 surprisal and either GloVe or fastText BCCS have a lower AIC than that only

including surprisal. Unfortunately, the outcome of the relevant likelihood ratio tests was

also somewhat equivocal on this matter. After correcting for multiple comparisons, neither

GloVe nor fastText BCCS explain a significant amount of the variance in N400 amplitude

above and beyond what is explained by GPT-3 surprisal. Before correction, however, those

comparisons were both significant at the 0.05 level. It is thus important to consider what

might explain this (marginally) better fit to the data.

One straightforward explanation can be arrived at by further inspection of Fig-

ure 8.2. As can be seen, GPT-3 surprisal provides a good account of the difference in the

expectancy between Best Completions and the Unrelated condition, and a good account

of the difference between the Unrelated and the Implausible condition—impressions borne

out by the analyses comparing surprisal to human-derived metrics of cloze probability and

plausibility. The disconnect between GPT-3 surprisal and N400 data lies mainly in failing

to fully capture the similarity in N400 amplitude between the Best Completions and the

Related condition, as the latter elicit more positive N400 in humans than the GPT-3 regres-

sion model fits suggest. Thus, the addition of another variable that captures the difference

between Related and Unrelated completions—variance not present in cloze probability or

plausibility, and unreliable in the CCS metrics—may explain the improved fit with the

addition of BCCS metrics. This may also explain the slightly lower AIC of the regression

including the categorical variable of experimental condition in Figure 8.4.

Crucially, however, even if GPT-3 does not fully account for the RBC effect, the

RBC effect observed here supports predictive preactivation as at least a partial account

of the brain activity underlying the N400. If words semantically related to the best com-
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pletion are facilitated in virtue of being related to the best completion, this presupposes

the preactivation of information related to the best completion (DeLong and Kutas, 2020

see also Kuperberg et al., 2020). For example, it may be the case that the reason for the

greater facilitation for related than unrelated words is that predictive processing involves

the preactivation of conceptual semantic features rather than lexical items (Thornhill and

Van Petten, 2012). Alternatively, it may be that there is a separate associative mechanism

that activates words related to the best completion. In the first case, the preactivation

of the related word occurs as part of a single predictive process; in the second, as a con-

sequence. Both possibilities require the preactivation of the best completion—either the

lexical item itself or its semantic features. Regardless, the present study clearly shows that,

as operationalized here, predictive preactivation provides a better account of the RBC N400

effect than does contextual semantic similarity (see Figure 8.7).

Overall, in addition to being the best metric of predictability tested (in line with

the results of Michaelov et al., 2022), GPT-3 surprisal also appears to successfully account

for additional reported N400 effects, namely, that more plausible completions elicit smaller

N400 responses than less plausible completions, and that words that are semantically re-

lated to the best (highest-cloze) completion elicit smaller N400 responses than unrelated

words. In sum, with a good enough operationalization of contextual predictability, we can

reduce all effects observed during the temporal interval associated with the N400 to this

single factor. The most parsimonious interpretation is that apparent effects of expectancy,

plausibility, and RBC all index sensitivity to contextual predictability—and predictabil-

ity derived from the statistics of language at that—suggesting N400 effects are due to a

predictive preactivation process.
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8.4.4 Implications for Neural Mechanisms

Although we do not here treat any of the computational models used in this study

as cognitive models, it is important to consider what the differences in the way that they

work imply about that language network in the human brain. GPT-3 is a neural language

model trained to optimize its estimates of the probability of upcoming words and how these

values change with different amounts of linguistic context. Moreover, GPT-3 surprisal was

the single best numerical predictor of N400 amplitude. On the other hand, GloVe and

fastText, which model the relations between words, performed worse overall at predicting

N400 amplitude. In this way, our results are highly compatible with predictive coding

theories that suggest neural systems are constantly generating and updating an internal

model of the environment (Rao and Ballard, 1999; Friston, 2010; Huang and Rao, 2011;

Bendixen et al., 2012; Shipp et al., 2013; Clark, 2013; Allen and Tsakiris, 2018; McRae

et al., 2019).

Applied to language, such approaches typically take the form of neural systems

that generate predictions regarding upcoming words, using the word encountered at the

next time step to generate a learning signal known as a prediction error (e.g., Elman, 1990).

Indeed, something that we believe has been under-appreciated in this regard is that the

loss function used to train language models such as GPT-3, cross-entropy, is equivalent to

surprisal (see Jurafsky and Martin, 2021, pp. 149-150). The close relationship we observed

here between GPT-3 surprisal and N400 amplitude is perfectly in line with the suggestion

that the N400 reflects a prediction-error based update of an internal language model (Lewis

and Bastiaansen, 2015; Bornkessel-Schlesewsky and Schlesewsky, 2019; Fitz and Chang,

2019; Kuperberg et al., 2020; Rabovsky, 2020; Kuperberg, 2021; Hodapp and Rabovsky,

2021).

As (Kuperberg et al., 2020) note, this account does not fit neatly into either re-
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trieval (e.g. Lau et al., 2008; Brouwer and Hoeks, 2013; Brouwer et al., 2017; Van Berkum,

2009, 2010; Kutas et al., 2006; Kutas and Federmeier, 2000) or integration (e.g. van den

Brink and Hagoort, 2004; Hagoort et al., 2009) accounts of the N400. Under our predictive

coding account of the N400, the N400 is a measure of the neural activation elicited by

a stimulus that was not already activated by prediction based on the preceding context.

In this way, it indexes retrieval difficulty—the effort required to fully activate the neural

representations needed to process the stimulus, which is reduced if some of these repre-

sentations are already activated. By contrast, N400 amplitude could also be considered

to index integration in that words that are easier to integrate with the preceding context

are likely to be more strongly predicted (see, e.g., Kuperberg and Jaeger, 2016; Kuperberg

et al., 2020). However, this only encompasses a limited subset of what could be considered

integration difficulty—words that are highly anomalous, violate thematic roles, or lead to

a substantial shift in the meaning of the preceding context instead appear to elicit later

positivities (Coulson and Lovett, 2004; DeLong and Kutas, 2020; Kuperberg et al., 2020).

Our results are compatible in principle with a two-system account involving both

contextual semantic similarity and predictive preactivation (as in Lau et al., 2013; Frank

and Willems, 2017; Federmeier, 2021). However, given that the former does not explain

any additional variance in the neural data, a predictive-preactivation-only account is more

parsimonious. Further, in view of the correlation between GPT-3 surprisal and the CCS

metrics (GloVe: r = −0.46; fastText: r = −0.61), it is possible that N400 effects previ-

ously explained as resulting from contextual semantic similarity may be an artifact of its

correlation with the contextual predictability of words. Indeed, direct evidence of a neu-

rocognitive process implementing contextual semantic similarity-based activation would

require demonstrating an effect of contextual semantic similarity that cannot be linked to

its contextual predictability.
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One possible candidate for an effect that would help to test this is the finding that

in some contexts, highly anomalous words that violate thematic roles (Kuperberg et al.,

2003; Kim and Osterhout, 2005; Nieuwland and Van Berkum, 2005) or temporal event

structure (Delogu et al., 2019) do not elicit a larger N400 response than non-violating

stimuli. For example, (Kuperberg et al., 2003) find no significant difference in N400 ampli-

tude between For breakfast the eggs would only eat and For breakfast the boys would only

eat, and (Delogu et al., 2019) do not find a significant difference between John entered the

restaurant. Before long, he opened the menu and John left the restaurant. Before long,

he opened the menu. In both cases, the critical word’s relation to the preceding context

appears to nullify the increase in N400 amplitude one might expect from the degree of

semantic anomaly. To the best of our knowledge, only one study (Michaelov and Bergen,

2020) has attempted to model this effect using the stimuli from (Kim and Osterhout,

2005), finding that the surprisal elicited by stimuli such as The hearty meal was devouring

is significantly higher than that elicited by either The hearty meal was devoured or The

hungry boy was devouring, which differs from N400 amplitude where the three were not

significantly different. This would indeed suggest that predictability, and thus prediction,

cannot fully account for the N400 effect. However, it is important to note that this study

used recurrent neural networks, whose predictions have been found to correlate far less

with N400 amplitude than contemporary transformer language models (Merkx and Frank,

2021; Michaelov et al., 2022). Thus, whether this effect can be accounted for by contextual

predictability alone is still an open question, and we believe a fruitful avenue for future

research.

The results of using a language model to model the study carried out by (Kim and

Osterhout, 2005) may also be valuable in better understanding the content of the preacti-

vation underlying the N400 response. For example, a number of accounts argue that the
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preactivation underlying the N400 response is at the level of the semantic features of words

(Federmeier, 2021; Kuperberg et al., 2020). While there is evidence that N400 amplitude

is sensitive to phonological and grammatical features (DeLong et al., 2005; Van Berkum

et al., 2005; Otten et al., 2007; Nicenboim et al., 2020; Urbach et al., 2020; Fleur et al.,

2020), it may be that the shared semantic features between, for example, devouring and

devoured, are sufficient to preactivate both words equally. Thus a semantically-augmented

language model may be able to better model the effect.

Alternatively, or in addition, it may be that the preactivation underlying the N400

operates at the morphemic level either in general (as proposed by Smith and Levy, 2013),

or in cases where the redundant derived forms of words are not stored (for discussion, see

Hanna and Pulvermüller, 2014). It may be that it is devour that is activated, and any

additional activation conferred by -ing or -er suffixes is is so subtle as to be undetectable

in the scalp-recorded N400. This suggestion is in line with the finding that N400 amplitude

is most sensitive to the predictability of content words (Frank et al., 2015). This could be

investigated by testing language models with different tokenization schemes, for example,

those where tokenization schemes are implemented that make tokens correspond more

closely to morphemes (for discusion and attempts, see Klein and Tsarfaty, 2020; Bostrom

and Durrett, 2020; Hofmann et al., 2021; Mohebbi et al., 2021; Yehezkel and Pinter, 2023).

Finally, it may be the case that surprisal measures derived from language models

relate to aspects of the brain response to words in sentences beyond the N400. For example,

predictions of the recurrent neural networks tested by (Michaelov and Bergen, 2020) were

better correlated with post-N400 positivities than the N400. The adequacy of different

neural language models in fitting various aspects of the ERP waveform (such as those

discussed in Kuperberg et al., 2020; DeLong and Kutas, 2020) is thus a promising area of

further research, and may help to shed light on language processing in the human brain.
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A further intriguing question is the role played by the statistics of language.GPT-

3 is trained using only linguistic data, meaning its predictions are solely based on the

statistical patterns available in their language input. By contrast, under the majority

of contemporary accounts of the N400, world experience plays a key role in shaping the

semantic representations that are activated during language comprehension (e.g., Hagoort

et al., 2004; Chwilla and Kolk, 2005; Kutas and Federmeier, 2011; Metusalem et al., 2012;

Paczynski and Kuperberg, 2012; Amsel et al., 2015; Federmeier, 2021). For this reason, it

may be surprising that a model deriving its semantics solely from language is able to predict

words in a way that so closely appears to match the activation of words in humans. One

possible conclusion to draw from this is that humans, too, base their linguistic predictions

on the statistics of language.

While there is evidence that both humans (Marmor, 1978; Saysani et al., 2018;

Bedny et al., 2019; Kim et al., 2021) and language models (Abdou et al., 2021; Li et al.,

2021; Piantadosi and Hill, 2022) can learn a wide range of semantic information based on

language input alone, language models have also been found to have limitations. Specifi-

cally, language models trained only on language data struggle to learn perceptual properties

of entities (Forbes et al., 2019) and are limited in the kinds of novel affordances they can

infer for objects (Jones et al., 2022). By contrast, N400 amplitude is sensitive to people’s

understanding of the sensorimotor properties of the referents of words (Wu and Coulson,

2011; Amsel et al., 2013, 2014, 2015). Perhaps most importantly, language alone drives the

probability estimates of GPT-3, whereas the N400 is sensitive to the contextual congruity

of faces, gestures, images, environmental sounds, and action sequences (see (Kutas and Fe-

dermeier, 2011) for review). Further work is needed to determine how other, non-linguistic

sources of information influence the N400 response.
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8.5 Data and Code Availability Statements

The data, code, and analysis scripts used for the present study are available at

https://osf.io/pysbc.
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Chapter 9

Ignoring the alternatives: The

N400 is sensitive to stimulus

preactivation alone

Abstract

The N400 component of the event-related brain potential is a neural signal of

processing difficulty. In the language domain, it is widely believed to be sensitive to

the degree to which a given word or its semantic features have been preactivated in the

brain based on the preceding context. However, it has also been shown that the brain

often preactivates many words in parallel. It is currently unknown whether the N400 is

also affected by the preactivations of alternative words, other than the stimulus that is

actually presented. This leaves a weak link in the derivation chain—how can we use the

N400 to understand the mechanisms of preactivation if we do not know what it indexes?

This study directly addresses this gap. We estimate the extent to which all words in
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a lexicon are preactivated in a given context using the predictions of contemporary large

language models. This approach for the first time allows for the computation of metrics that

mathematically model a variety of alternate theories of the preactivation of the stimulus

word itself as well as all other words. We then directly compare two competing possibilities:

that the amplitude of the N400 is sensitive only to the extent to which the stimulus is

preactivated, and that it is also sensitive to the preactivation states of the alternatives.

We find evidence of the former. This result allows for better grounded inferences about

the mechanisms underlying the N400, lexical preactivation in the brain, and language

processing more generally.

9.1 Introduction

Perhaps the best studied neural signal of language comprehension, the N400 is

a negative component of the event-related brain potential peaking roughly 400ms after

the presentation of a stimulus (Kutas and Hillyard, 1980, 1984; Kutas and Federmeier,

2011). Studying the amplitude of the N400 has provided key evidence about language

processing—most notably that words and their meanings are preactivated in the brain

before they are encountered during online language comprehension, and that this preacti-

vation is correlated with the extent to which the words are contextually predictable (Kutas

and Hillyard, 1984; Kutas et al., 2011; Kutas and Federmeier, 2011; Van Petten and Luka,

2012; Federmeier, 2021; Kuperberg et al., 2020). Specifically, the amplitude of the N400

response is large (more negative) by default, and is reduced in proportion to the extent that

the word is predictable (Van Petten and Kutas, 1990, 1991; Van Petten, 1993; Dambacher

et al., 2006; Van Petten and Luka, 2012; Payne et al., 2015; Federmeier, 2021). The pre-

dictability effect has been replicated numerous times when predictability is operationalized

as cloze probability (Kutas and Hillyard, 1984; Kutas and Federmeier, 2011), the propor-
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tion of participants in a norming study to fill in a gap in a sentence with a specific word

(Taylor, 1953, 1957). More recently, this has also been found to be the case when pre-

dictability is operationalized using the predictions of language models (Frank et al., 2015;

Aurnhammer and Frank, 2019b; Yan and Jaeger, 2020; Merkx and Frank, 2021; Szewczyk

and Federmeier, 2022; Michaelov et al., 2022, 2023), computational systems designed to

predict the probability of a word in context based on the statistics of language (Jurafsky

and Martin, 2021).

However, while it is by now widely accepted that the amplitude of the N400

response to a word reflects its preactivation, there is a weak link in the derivation chain—

exactly how the N400 indexes this preactivation is not clear. The current general consensus

is that the amplitude of the N400 response to a word only reflects the extent to which the

word or its semantic content were preactivated before the word was encountered (Feder-

meier et al., 2007; Kutas et al., 2011; Van Petten and Luka, 2012; Thornhill and Van Petten,

2012; DeLong et al., 2014b; DeLong and Kutas, 2020; Kuperberg et al., 2020; Federmeier,

2021). We refer to this as the stimulus-dependent account.

The main kind of evidence supporting this idea comes from the N400’s resilience

to variability. A key line of research in this area involves looking at the effect of sentence

constraint on the N400. The term sentence constraint in this context refers to the cloze

probability of the highest-cloze continuation of a sentence—if the highest-cloze continua-

tion has a high cloze probability, the sentence has a high constraint, while if it has a low

probability, the sentence has a low constraint. The key finding is that with cloze proba-

bility as a metric of contextual predictability, sentence constraint does not impact N400

amplitude at all; only the cloze probability of the stimulus word itself does (Federmeier

et al., 2007, 2002; Otten and Berkum, 2008; Van Petten et al., 1999; Wlotko and Feder-

meier, 2007; Vissers et al., 2006; Federmeier, 2007; for review see Van Petten and Luka,
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2012; Kuperberg et al., 2020; Federmeier, 2021). For example, Federmeier et al. (2007)

find that if a word such as look has a low cloze probability, it elicits a large N400 response

no matter whether the preceding context is strongly constraining, such as in the children

went outside to look (highest-cloze completion: play), or only weakly constraining, such as

in Joy was too frightened to look (highest-cloze completion: move). The reliability of the

effect across contexts with different degrees of constraint suggests that only the contextual

predictability of the target word, and not the predictability of the most likely alternate

word, impacts N400 amplitude.

However, this kind of finding still does not rule out the possibility that preacti-

vation of other words can impact N400 amplitude. The aforementioned experiments only

consider the extent to which two words (the highest-cloze continuation and the stimulus

word) are preactivated. But many candidate words are typically possible in any position.

Lexical prediction has been theorized to involve the graded preactivation of more than two

words, ranging from a few candidates, as proposed by Brothers and Kuperberg (2021) to

‘large portions of [the] lexicon’, as proposed by Smith and Levy (2013). If the N400 truly

does index processing difficulty, this might include not only the effort required to activate

neural representations associated with the actual stimulus, but also inhibition of the neu-

ral representations associated with other possible stimuli, as some researchers have argued

(Hale, 2001; Hoeks et al., 2004; Debruille, 2007; Fitz and Chang, 2019). We refer to this

as the distribution-dependent account in line with the idea that the N400 reflects the full

distribution of stimulus preactivation across possible next words.

One approach to evaluating whether a larger cohort of predicted words affects the

N400 is to create an aggregate metric derived from the cloze probabilities of all completions

generated in the cloze task such as entropy (as in Stone et al., 2022). However, cloze has its

limitations. For example, it is well-established that words with cloze probabilities of zero
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can vary in their degree of preactivation (see, e.g. Metusalem et al., 2012; Ito et al., 2016;

DeLong et al., 2019). An alternative approach is to include information about potential

preactivation across the entire lexicon (and thus provide a more complete assessment of

alternate word predictability) by modeling preactivation with language models, which,

given any context, can provide a probability distribution over all words in their vocabulary

(Jurafsky and Martin, 2021).

While language models have been successfully used to predict N400 amplitudes

recorded from experimental participants, thus far this has only involved stimulus-dependent

metrics—namely, surprisal and probability (Frank et al., 2015; Aurnhammer and Frank,

2019b; Yan and Jaeger, 2020; Merkx and Frank, 2021; Szewczyk and Federmeier, 2022;

Michaelov et al., 2022, 2023). To the best of our knowledge, no study has thus far at-

tempted to directly test whether N400 amplitude can be predicted by probability assigned

to any word other than the stimulus itself by a language model, let alone the whole prob-

ability distribution. Because language models are currently the only way to calculate the

contextual probability of all words in the lexicon, it is thus the case that the question of

whether the amplitude of the N400 is affected by the extent to which all words other than

the stimulus itself were predicted has not been directly investigated. This severely limits

the inferences we can draw from the N400 effect. Namely, we do not know whether the

N400 indexes the preactivation of the stimulus alone, or also its alternatives.

This presents a problem for theoretical advancement. Making progress on neural

mechanisms of language comprehension relies on reliable and sensitive signals such as the

N400. Researchers hope to draw inferences from effects like the N400 about, for instance,

what is preactivated during comprehension. But to do this requires a precise account of

what affects those signals. In addition to presenting an obstacle to our understanding of

language comprehension more generally—for example, whether language processing fits
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into our general understanding of predictive processing in the brain—the weak derivation

link presents a challenge for investigating how certain linguistic features impact preacti-

vation. The majority of contemporary work on the N400 investigates how the context

preceding a stimulus impacts the extent to which the stimulus is preactivated in the brain

(for review, see, e.g. Kuperberg et al., 2020; Federmeier, 2021), but uncertainty about

whether the N400 reflects only the preactivation of the stimulus drastically reduces the

scope of what we can hope to understand. This issue is especially important in a field

where noise and small effect sizes can often lead to inconsistent findings across studies (for

a recent discussion, see Nicenboim et al., 2020).

The aim of this study, therefore, is to test whether, to the extent that this can

be evaluated using current methods, the amplitude of the N400 response solely reflects

the preactivation of the stimulus presented, or whether it in some way also reflects the

inhibition of alternatives. To do this, we use state-of-the-art large language models. This is

because, as previously stated, the conventional cloze approach fails to capture preactivation

that varies systematically between different words with a cloze probability of zero (e.g.

Metusalem et al., 2012; Ito et al., 2016; DeLong et al., 2019). This may not just be a

methodological issue; as discussed in subsection 9.2.1, it is likely that the task itself (which

asks for the best completion of a sentence) may preclude more anomalous words being filled

in. But even if the issue is purely methodological, human vocabularies are very large, on

the order of tens of thousands of words (Brysbaert et al., 2016), making it impractical to

collect judgments from enough participants for every possible word. There is also reason to

believe that the probabilities derived from language models are actually more informative

than cloze. In addition to being more clearly interpretable from an information-processing

perspective—they reflect the contextual probabilities of words based on the statistics of

language alone—recent work has shown that the predictions of contemporary language
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models can out-perform cloze probability as predictors of N400 amplitude (Michaelov et al.,

2022). Thus, even if it were possible to collect and calculate cloze values for all words in

the vocabulary, it might still be preferable to use language models.

9.2 Past Approaches

9.2.1 Constraint

Since early work on the N400 (Kutas and Hillyard, 1984), cloze probability has

been used to operationalize the extent to which words are preactivated such that their pre-

activation impacts N400 amplitude. Most subsequent work explicitly or implicitly assumes

that the amplitude of the N400 is only (or at least, most importantly) correlated with the

extent to which the stimulus itself is preactivated.

However, more recently, there have been attempts to consider the how the broader,

distributed ‘landscape of activation’ (Federmeier, 2021, p. 1) impacts N400 amplitude. An

exemplary case is the study carried out by Federmeier et al. (2007), who test whether

sentence constraint—the cloze probability of the most probable word in context—impacts

N400 amplitude. The idea is that if inhibition does impact N400 amplitude, one should

expect to see it most clearly with low-probability stimuli in high-constraint sentences. Un-

der an inhibition-inclusive account, the high-probability completion is preactivated to a

large extent, and thus, when this prediction is violated, we should expect a strong inhi-

bition response. However, as discussed, Federmeier et al. (2007) did not find any effect

of constraint, leading them, and many other researchers (Federmeier et al., 2002; Otten

and Berkum, 2008; Van Petten et al., 1999; Wlotko and Federmeier, 2007; Vissers et al.,

2006; Federmeier, 2007; Kutas et al., 2011; Van Petten and Luka, 2012; Thornhill and

Van Petten, 2012; Kuperberg et al., 2020; DeLong and Kutas, 2020; Federmeier, 2021) to
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argue that N400 amplitude does not reflect inhibition. Under these accounts, N400 ampli-

tude only reflects new activation elicited by the stimulus—that is, the activation of neural

representations that were not already preactivated by the context.

However, as argued earlier, this approach does not speak to failed predictions for

words other than the best completion, since it only takes into account the activation of

the highest-probability item. Moreover, word prediction might not linearly impact N400

amplitude—it might or might not be ten times harder to inhibit a word with a probability

of 50% than a word with a probability of 5%. And finally, this approach assumes that cloze

probability actually reflects the proportion of activation given to a specific candidate word

(as argued by Staub et al., 2015; Brothers and Kuperberg, 2021). While it may intuitively

seem a given that cloze probability should be directly proportional to the relative activation

level of each word, this is not necessarily the case, especially given that the cloze task may

have specific deforming effects on the probability distribution. One possible example of

this can be illustrated by looking at the related anomaly effect, where an anomalous word

that is semantically related to the best (highest-cloze) completion of a sentence elicits a

smaller N400 response than an anomalous word that is not (for review, see Kutas and

Hillyard, 1984; Federmeier and Kutas, 1999; Metusalem et al., 2012; Amsel et al., 2015;

Ito et al., 2016; DeLong et al., 2019). In such cases, while both semantically related and

unrelated anomalous words have a cloze probability of zero (or almost zero) but elicit N400

responses of different amplitudes, when we look at language model predictions, we see that

the semantically related words have a higher probability (Michaelov and Bergen, 2022a).

This suggests that such semantically related anomalous words are in fact more likely than

their unrelated counterparts, but this is not detectable by looking at cloze probability. In

this case, it is likely that the cloze task discourages participants from filling in anomalous

words, even if they are more likely in the context, and thus more strongly preactivated (for
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related discussion, see Smith and Levy, 2011; Michaelov et al., 2022).

9.2.2 Surprisal

One attempt to consider the full distribution of prediction is that of Levy (2008).

Levy (2008) frames lexical processing difficulty as involving the effort required to reallocate

neurocognitive resources upon encountering a stimulus, based on altering the entire pre-

dicted probability distribution. To do this Levy (2008) proposes that the relevant metric

should be the Kullback–Leibler divergence (Kullback and Leibler, 1951) between the prob-

ability distribution of predictions and the ‘true’ probability distribution—a distribution

where the actual next word (i.e., the stimulus word) has a probability of 1, and all other

words have a probability of 0. It should be noted that while Levy’s (2008) account is based

on considering reading times as an index of lexical processing difficulty, it may in fact be

even more applicable to the N400. As discussed, the N400 is frequently thought to reflect

the extent to which encountering a stimulus shapes the activation of neurocognitive repre-

sentations, or more specifically, indexes the processing difficulty associated with updating

the activation states of the brain to bring the total landscape of activation in the brain in

line with the new stimulus.

The Kullback–Leibler divergence thus appears to reflect both the extent to which

the true stimulus was predicted and the extent to which other words were predicted. The

problem, however, is that Levy (2008) finds that the Kullback–Leibler divergence between

the probability distribution that is the output of language models and the true probability

distribution is mathematically equivalent to the surprisal S of the stimulus itself, that is,

the negative logarithm of the probability p of a word wi given its preceding context, as

shown in Equation 9.1.
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S = − log(p(wi) (9.1)

Thus, while under an information-theoretic account, surprisal may be a good char-

acterization of processing difficulty envisioned as the updating of activation states in the

brain—and indeed, Hale (2001) proposes surprisal as a metric of lexical processing difficulty

that reflects the difficulty of disconfirming alternatives—it is critically determined solely

by the predicted probability of the stimulus word. From a theoretical perspective, this is

not a problem. The fact that the Kullback–Leibler divergence between the true and pre-

dicted probability distributions is equivalent may actually help to explain the finding that

the N400 does not appear to be sensitive to constraint—if the brain reflects information-

theoretic principles, the effort required to update our probability distribution might indeed

only be determined by the probability of the stimulus (with a logarithmic linking function).

Empirically, surprisal has also been incredibly successful in the prediction and modeling of

the N400 (Parviz et al., 2011; Frank et al., 2015; Aurnhammer and Frank, 2019b; Michaelov

and Bergen, 2020; Merkx and Frank, 2021; Szewczyk and Federmeier, 2022), with one re-

cent study even finding the surprisal of the GPT-3 language model (Brown et al., 2020) to

be the best predictor of the N400 measured thus far, beating other language models and

even cloze probability, the canonical metric of word probability (Michaelov et al., 2022).

Nonetheless, because surprisal is not affected at all by the extent to which other words are

preactivated, it cannot be used to investigate whether the preactivation of non-stimulus

words impacts N400 amplitude.

9.2.3 L1 distance

Another metric that ostensibly includes information about the preactivation states

of non-stimuli is developed by Fitz and Chang (2019). Fitz and Chang (2019) propose that
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rather than simply indexing prediction error of some kind, the N400 has a functional sig-

nificance in itself as a learning signal used to update our neurocognitive representations

of the statistics of language for use in production (for related accounts, see, e.g., Mac-

Donald, 2013; Pickering and Garrod, 2013; Kuperberg et al., 2020; Fitz and Chang, 2019;

Federmeier, 2021). For this reason, Fitz and Chang (2019) take the true and predicted

probabilities for each word in their model’s vocabulary, and then model N400 amplitude as

the sum of absolute error for each word—that is, the sum of the difference between the true

and predicted probability of each word. This is equivalent to the Manhattan distance or

L1 norm between the predicted and true probability distributions. However, like surprisal,

this metric is in fact only dependent on the probability of the stimulus, as we show in 9.9.1.

Specifically, L1 distance is has relationship to p(wi) shown in Equation 9.2.

L1 = 2 − 2p(wi) (9.2)

Like surprisal, L1 distance is a metric based on the distance between the true and

predicted probability distributions, and like surprisal, it is in fact only dependent on the

predicted probability of the stimulus. Again, this is a theoretically meaningful result. If we

take the idea of proportional preactivation—that is, the idea that words are preactivated

in proportion to probability—seriously, and expect the processing difficulty indexed by the

N400 to reflect the sum of the absolute error between the true and predicted probabilities of

words, then this mathematical result suggests that we only need to calculate the probability

of the stimulus itself in order to understand the N400 response. Indeed, Fitz and Chang

(2019) are successful in using L1 distance to model N400 amplitude, though it should be

noted that Fitz and Chang’s (2019) main model is not a language model in the strict sense

because it is trained using structured semantic information (though its output is still a

probability distribution over words).
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However, as is the case with Kullback-Leibler divergence, this means that L1

distance cannot be used to investigate the question of whether the possible inhibition

of preactivated stimuli impacts the processing difficulty indexed by the N400. But by

the same token, what it does tell us is that if the distribution-dependent account of the

N400 is true, the mathematical relationship between the true and predicted probability

distributions cannot be L1 distance. The same is true for Kullback–Leibler divergence.

However, this does not rule out the possibility that other difference metrics between the true

and predicted probability distribution could capture the effect—even including other Lk

distance metrics. For example, it could be that the L1 distance metric under-estimates the

difficulty of inhibiting high-probability items relative to low-probability items, something

which might be detectable using the L2 (Euclidean) distance as the relevant metric. On the

other hand, it might be that using L1 distance under-estimates the difficulty in inhibiting

low-probability items relative to high-probability items, something that could be addressed

by using the L0.5 distance as a metric.

9.2.4 Entropy

A final metric that has been used to predict N400 amplitude (Stone et al., 2022),

but which does in fact take into account the full probability distribution of preactivation is

entropy (Shannon, 1948). The equation for entropy is given in Equation 9.3, where p̂(wi)

is the predicted probability of wi in context.

−
∑

i

p̂(wi) log p̂(wi) (9.3)

Entropy reflects uncertainty—given a probability distribution over words, the

distribution with the highest possible entropy would be a uniform distribution, and the

lowest-entropy distribution is one where one word has a probability of 1 and the remaining
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words have a probability of 0. A theoretical account of how entropy should influence N400

amplitude is not necessarily intuitive. In line with work on constraint, one might expect

that in cases with low-probability stimuli, a low-entropy distribution might lead to the

most processing difficulty, as this would result from a probability distribution where one

very high-probability word is greatly preactivated. On the other hand, Stone et al. (2022)

hypothesize that we might be less likely to make predictions in situations with higher

entropy—where there are a larger number of possible continuations of a sentence—and

thus, higher entropy should be associated with larger N400 responses. In this way, either

a positive or negative relationship between entropy and N400 amplitude is plausible based

on previous work.

Of course, the fact that previous work on the N400 and language comprehension

more generally can lead to multiple predictions is not in itself an issue—this is something

that could be resolved empirically, if indeed it is the case that entropy impacts N400

amplitude. But there does remain a fundamental problem with entropy as a metric of

processing difficulty: it does not take into account the actual stimulus. Specifically, it only

reflects the activation state before the word is encountered. Thus, if stimulus preactivation

itself impacts processing difficulty, entropy alone cannot be used to model it. In the one

study that directly tests the effect of entropy on N400 amplitude, Stone et al. (2022) do

not find it to be a significant predictor, either as a main effect or in interaction with word

probability. However, it is worth noting that Stone et al. (2022) calculate their entropy

based on cloze probabilities, and thus only a limited number of possible preactivations are

considered—the maximum number of different responses to filling in the blank in the cloze

task in their study is 8 (Stone et al., 2021). If there are differences in levels of preactivation

based on contextual probability beyond that reflected by cloze, as previously discussed,

then this approach does not take into account the full distribution of preactivation. Thus,
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despite the aforementioned theoretical problems with entropy, it is still valuable to directly

test how well entropy calculated from the full distribution of predictions—for example, by

using probabilities derived from a language model—can predict N400 amplitude, which we

do in the present work. This is especially so given the recent findings that entropy appears

to correlate with some of the neural activity that occurs during language comprehension

when measured using magnetoencephalography (Huizeling et al., 2022; Brodbeck et al.,

2022).

One metric that at least at first glance would appear to be better suited to testing

whether N400 amplitude is sensitive to the probability of words other than the stimulus is

cross-entropy. Cross-entropy is a measure of the difference between two distributions that

is often used as a loss function (Goodfellow et al., 2016), and thus is in line with some

theories of the N400 (e.g., Fitz and Chang, 2019). However, cross-entropy is the sum of

the Kullback–Leibler divergence between the true and predicted probability distributions

and the entropy of the true probability distribution (Goodfellow et al., 2016, p. 73). Given

that the entropy of the true probability distribution is zero, this means that, at least for

language models, the cross-entropy is equivalent to Kullback–Leibler divergence, and thus,

surprisal. And so this metric is also only dependent of the probability of the stimulus.

There are also several other related metrics that bear mentioning. Aurnhammer

and Frank (2019b) test how well next-word entropy and two forms of what they refer to

as Lookahead Information Gain predict N400 amplitude as well as reading time. However,

next-word entropy in this case refers to the entropy of the probability distribution of

the predictions for the word after the stimulus, and thus does not take into account the

preactivation at the time that the stimulus is encountered. The two Lookahead Information

Gain metrics are also both based on this probability distribution for the following word,

and thus are also not relevant to the present study. It should also be noted that based
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on the results, Aurnhammer and Frank (2019b) argue that none of these three are good

metrics for modeling word reading effort.

9.3 Language models and the N400

Using the predictions of language models rather than a human-derived metric

such as cloze probability can evoke skepticism. As articulated above, language models

allow us to test hypotheses about how the full distribution of preactivation may impact

N400 amplitude, but this is naturally only a viable strategy if language model predictions

bear a clear relationship to this preactivation. Intuitively it may seem problematic to

use the predictions derived from systems trained only on text data with no grounding

in sensorimotor experience of the world or explicit propositional knowledge to model the

kinds of predictions that humans may make during language comprehension. However,

as discussed, recent work has shown that the predictions of language models can model

N400 amplitude incredibly successfully (Frank et al., 2015; Aurnhammer and Frank, 2019b;

Michaelov and Bergen, 2020; Merkx and Frank, 2021; Michaelov et al., 2021; Szewczyk and

Federmeier, 2022; Michaelov and Bergen, 2022a; Michaelov et al., 2023).

Thus, at worst, language models appear to make predictions in line with the

preactivation that underlies the N400 response. This in itself would not necessarily be

surprising. The language we use encodes information about the world and our under-

standing of it to such an extent that its statistics can be used to calculate the semantic

similarity of words (Landauer et al., 1998), identify structured semantic relations between

words (Mikolov et al., 2013b), and even identify cultural biases (Bolukbasi et al., 2016).

Thus, it may be that the statistics of language are able to approximate the statistics of

the world—we are more likely to talk about more likely things. Therefore, even if the

preactivation that occurs during online language comprehension is in fact largely based on
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our knowledge of the world (direct or indirect), this may be approximated well enough by

the statistics of language that those statistics may be informative about neurocognitive

systems underlying language comprehension.

However, there is a stronger alternative possibility: humans may actually be

using the statistics of language in preactivation as part of language comprehension. Given

the amount of information contained in the statistics of language (contemporary language

models continue to improve performance at increasingly impressive tasks, see, e.g., Wang

et al., 2019b,a; Nie et al., 2020; Srivastava et al., 2022), it would not in principle be

surprising if the human language comprehension system took advantage of this. In fact,

this would bring language processing in line with evidence for predictive coding in other

domains, in which statistical learning is thought to play a key role. For example, in visual

processing, there is evidence that environmental statistics are relevant from the level of

neurons in the primary visual cortex to the overall encoding of scenes (Rao and Ballard,

1999; de Lange et al., 2018; Sherman and Turk-Browne, 2020).

In the domain of language specifically, learning from statistical information has

been argued to be vital in acquisition, production, and comprehension (e.g. Saffran et al.,

1996; de Marneffe et al., 2012; Sherman et al., 2020; Pickering and Garrod, 2007, 2013;

MacDonald, 2013; Ambridge et al., 2014; Elman, 2009; Newport and Aslin, 2004; Romberg

and Saffran, 2010; Seidenberg, 1997; Gómez and Gerken, 2000; Gerken, 2006, 2007). In-

deed, there is already substantial evidence that the N400 is sensitive to factors that clearly

relate to the statistics of language rather than just the organization of our semantic rep-

resentations. Most notably, the N400 is sensitive to word frequency—words that are more

frequent tend to elicit smaller N400 responses (Kutas and Federmeier, 2011; Van Petten

and Kutas, 1990; Van Petten, 1993; Dambacher et al., 2006; Rugg, 1990; Fischer-Baum

et al., 2014) and their magnetoencephalographic equivalent (Halgren et al., 2002). Thus,
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rather than simply operationalizing predictability, language models may actually function

as (computational-level) cognitive models of the neurocognitive system underlying lexical

preactivation in the brain—a system engaging in lexical prediction at least in part based

on the statistics of language.

9.4 The Present Study

The aim of the present study is to explore whether the amplitude of the N400 re-

sponse is impacted not only by the extent to which a given stimulus was preactivated by its

preceding context, but also by the extent to which other possible stimuli were preactivated.

Most contemporary theoretical accounts of the N400, and by extension, the neurocogni-

tive processes underlying language comprehension, assume that solely the stimulus word

matters. But this has not yet been convincingly demonstrated.

To investigate this, we use language models to calculate several distribution-

dependent metrics—that is, metrics that operationalize the difference between the true

and predicted probability distribution—specifically, L0.5 distance, L2 distance, Hellinger

distance, χ2 distance, and cosine distance, as well as the previously-investigated constraint

and entropy metrics (the equations for all metrics are presented in Table 9.2). We then test

whether any of these can account for variance in N400 amplitude above and beyond that

explained by predictability alone. We test this on the large N400 dataset made available

by Szewczyk and Federmeier (2022), comprised of data from four published studies (Fed-

ermeier et al., 2007; Wlotko and Federmeier, 2012; Hubbard et al., 2019; Szewczyk et al.,

2022) and one previously-unpublished ERP study.

We divide our study into two experiments. In the first, we test how well the

predictability metrics calculated using seven contemporary language models predict N400

amplitude. Because our study tests whether metrics operationalizing the whole landscape
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of word preactivation predict N400 amplitude above and beyond the predictability of the

stimulus itself, our first task is to find the best operationalization of predictability to

compare these to. Previous work shows that surprisal is overall a better predictor of

N400 amplitude than probability is (Yan and Jaeger, 2020; Szewczyk and Federmeier,

2022), especially for the best-performing models (Michaelov and Bergen, 2022b). However,

Szewczyk and Federmeier (2022), analyzing the same dataset that we analyze, found that

un-transformed probability can also explain additional variance in N400 amplitude, espe-

cially for higher-probability items. As a result, we use both metrics as predictors in our

linear mixed-effects regressions assessing how well different language models predict N400

amplitude.

In Experiment 2, we run our tests on the predictions of the best-performing

language model: GPT-J (Wang and Komatsuzaki, 2021). First, we test whether any of

the the distribution-dependent metrics, entropy, or constraint out-perform predictability

as predictors of N400 amplitude on their own, using the overall fit of linear mixed-effects

regressions. We then test whether adding any of these to regressions already including the

stimulus-only predictability variables improves model fit. If so, this would suggest that

they explain variance not explained by predictability, and thus would provide evidence

that the amplitude of the N400 response is impacted by the effort required to inhibit the

activation of words other than the eliciting stimulus itself. If not, this would add to the

evidence from research on sentence constraint suggesting that only the probability of the

stimulus itself impacts N400 amplitude. The collection of metrics of each type that we use

has, to the best of our knowledge, not been used previously to model N400 amplitude.
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9.5 Experiment 1

9.5.1 Introduction

The overall purpose of the current study is to model the full landscape of neural

preactivation using the probability of language models, and to use these probability distri-

butions to investigate whether the amplitude of the N400 response to a stimulus is sensitive

not only the extent to which it is preactivated, but also the extent to which alternatives

are preactivated. To do this, in Experiment 1, we first select a language model that makes

predictions that are highly correlated with word preactivation.

Previous work shows that surprisal from transformers—the current state-of-the-

art language model architecture—correlate most closely with N400 amplitude compared

with other models architectures (Merkx and Frank, 2021; Michaelov et al., 2022). In

fact, the surprisals calculated using some of the most powerful models tested—ALBERT,

RoBERTa, and GPT-3—have been found to out-perform cloze probability as predictors

of N400 amplitude on one dataset (Michaelov et al., 2022). Given that the full proba-

bility distribution of GPT-3 is not directly accessible, it is not suitable for the present

study. However, in recent work by Michaelov and Bergen (2022b), a much larger selection

of contemporary transformer language models—including ALBERT and RoBERTa and a

number of models released after Michaelov et al. (2022)—are evaluated in terms of how

well their probability and surprisal predicts N400 amplitude. Because surprisal appears to

be a better predictor than probability overall, for the present study, we also include the

two monolingual (i.e., trained only on English) transformer language models that generate

surprisals which Michaelov and Bergen (2022b) find to be better correlated with N400

amplitude than ALBERT and RoBERTa—namely, GPT-J and OPT 6.7B. Since the pub-

lication of Michaelov and Bergen (2022b), a number of new language models have been
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released, and thus, we include 3 additional language models with a similar number of pa-

rameters as GPT-J and OPT 6.7B that have also been trained on data on the same order of

magnitude: Pythia 6.9B (Biderman et al., 2023b), Cerebras-GPT 6.7B (Dey et al., 2023),

and StableLM-Base-Alpha 7B (Stability AI, 2023).

One thing that should be noted is that the set of models used comprises both

autoregressive language models, those trained to predict a word based on only the preceding

context; and masked language models, those trained to also predict based on the following

context. In the present study, all models are only presented with the preceding context

as humans were in the original N400 experiments, but it is unclear whether the fact that

masked language models are also trained to ‘postdict’ (Huettig, 2015) makes them more

or less human-like. While it would be impossible for us to use such postdictions during

online comprehension, it is possible that we might still learn these reverse probabilities.

Thus, in addition to the more practical question of which language model is best able

to make predictions that correlate with the preactivation of neural representations during

online language comprehension, the results of the present study may also shed light on

what kinds of language statistics may be learned by humans.

9.5.2 Method

Dataset

The experimental stimuli and N400 data used in the present study come from a

large dataset recently made available online by Szewczyk and Federmeier (2022) at https:

//osf.io/urvax/. This dataset is comprised of data from five experimental studies, which

are described in more detail in this section. Four of the five experiments are from previously

published papers (Federmeier et al., 2007; Wlotko and Federmeier, 2012; Hubbard et al.,

2019; Szewczyk et al., 2022). We selected this dataset due to the fact that it covers a large
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number of stimuli, contains data from a large number of experimental participants, and

is preprocessed in a consistent way across studies, so analyses can be run on all the data

together. Furthermore, this dataset is well-suited to answer our main research question

(addressed in Experiment 2) because, as will be discussed, all stimuli are based on those

from the Federmeier et al. (2007) study—that is, the previously-discussed study that tested

the effect of sentence constraint. For this reason, the stimuli were designed such that they

included sentences with both high and low constraints, and thus vary in the shape of the

probability distributions of possible continuations. While the stimuli were selected based on

constraint calculated using cloze probability, and thus, we expect some variation between

this and constraint as calculated using our language models (as well as between models),

this allows our analyses to account for a wide range of possible differences between true

and predicted probability distributions.

In order to calculate probability and surprisal based on the original stimuli pre-

sented to the experimental participants, we truncated the stimuli such that they included

the entire preceding context, using this as input to the language models. We then used the

language models to calculate the probability of the critical words in the original stimuli,

which we also negative log-transformed into surprisal. In our analysis, we only include

words that are represented as a single token in all language models (i.e., are words in all

language models’ vocabularies). We only look at single-token critical words for each model

because the other metrics that we calculate in Experiment 2 are only well-defined for such

stimuli, and we only look at words that are single tokens for all language models so that

we can compare performance across models. This exclusion criterion was decided before

the analyses were carried out.

The dataset provided by Szewczyk and Federmeier (2022) provides single-trial

N400 data. In it, the amplitude of the N400 response on a given trial is operationalized as
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the voltage amplitude at four centro-parietal electrodes (MiCe, MiPa, LMCe, RMCe) over

the 300-500ms time window. These N400 amplitudes are not baseline-corrected; instead,

a baseline—the mean amplitude in the 100ms before the presentation of the stimulus—is

included as a variable, and in the original analysis is included as a covariate (Szewczyk and

Federmeier, 2022).

As discussed, the data from five experiments are included in the dataset. Feder-

meier et al.’s (2007) is perhaps the best known of the studies, testing the effect of constraint

on N400 amplitude. This study was built around a 2x2 design: sentences either had a high

or low constraint, and for each sentence both the best (highest-cloze) completion and a

low-cloze completion were used as critical words. This data subset included 7856 trials,

collected for 564 stimuli from 32 experimental participants.

The second experimental study included in the dataset was conducted by Wlotko

and Federmeier (2012). Stimuli in this experiment, which were selected from two previ-

ous studies (Federmeier et al., 2007; Wlotko and Federmeier, 2007) were selected to be

plausible and vary ‘continuously through the full range of cloze probability’ (Wlotko and

Federmeier, 2012, p. 359). This experiment contributed data from 4440 trials (300 stimuli;

16 experimental participants) to the dataset.

Third is a dataset from a study carried out by Hubbard et al. (2019). The stimuli

in this study were 192 sentences selected from the Federmeier et al. (2007) experiment

with the same 2x2 design: half of the sentences were high-constraint and half were low

constraint; and each sentence had either the best completion or a low-cloze completion as

the critical word. The data from this experiment included 5705 trials (32 experimental

participants).

The final previously-published study included in the dataset is that of Szewczyk

et al. (2022). The stimuli in this study were based on 168 sentence frames from previously-
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published studies including Federmeier et al. (2007), with high and low-cloze completions

for each sentence frame. Stimuli were then expanded by adding an adjective before the

completion that either increased the cloze probability of the low-cloze completion or fur-

ther increased the cloze probability of the high-cloze completion. Thus there were four

experimental conditions for each item, totaling 672 stimuli. Data from 4939 trials (32

experimental participants) were included from this study.

As previously discussed, the dataset also includes data from an unpublished study.

The stimulus selection procedure is not mentioned in the paper (Szewczyk and Federmeier,

2022); however, looking at the data, we can see that all stimuli are present in one of the

other four previously-published studies, and that the stimuli are comprised of a higher-cloze

(mean = 57%) and lower-cloze (mean = 1%) critical word for each sentence frame. This

study contributed 4822 trials (600 stimuli; 26 experimental participants) to the dataset.

Thus, the total dataset provided by Szewczyk and Federmeier (2022) was made up

of 27,762 trials (138 experimental participants). Because of the overlap in stimuli between

the different experiments, the total number of unique experimental stimuli was 1330. After

removing data for stimuli where critical words are not tokens in all models’ vocabulary,

our analysis includes data from 25,506 trials (1238 stimuli; 138 experimental participants).

Models

The details of the seven models tested are provided in Table 9.1. All models

are pretrained transformer language models, four of which are autoregressive—trained to

predict the next word given the preceding context—and two of which are masked lan-

guage models—trained to predict a word given the previous and following context. Note

that in this study, we present all language models with only the preceding context. We

used the PyTorch (Paszke et al., 2019) versions of all models made available through the
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Table 9.1: Details of all the models used in the present study. Note that the ALBERT model
uses shared parameters, and so the model is larger than the parameter counts suggest. The
number of tokens for RoBERTa is estimated based on the fact that the dataset is 10 times
larger than that on which ALBERT was trained.

Model Name Parameters Training data (tokens)

ALBERT XXL 0.24B 3.3B

Cerebras-GPT 6.7B 6.7B 133B

GPT-J 6.1B 300B

OPT 6.7B 6.7B 180B

Pythia 6.9B 6.9B 300B

RoBERTa Large 0.36B 33B

StableLM-Base-Alpha 7B 7.9B 800B

transformers (Wolf et al., 2020) Python (Van Rossum and Drake, 2009) package.

Statistical Analysis

All data manipulation, statistical analyses, and graphs were carried out and pro-

duced in R (R Core Team, 2020) using Rstudio (RStudio Team, 2020) and the tidyverse

(Wickham et al., 2019) and lme4 (Bates et al., 2015) packages. In this paper, we re-

port how we determined all data exclusions, all inclusion/exclusion criteria, whether in-

clusion/exclusion criteria were established prior to data analysis, and all measures in the

study. The sample size and all experimental manipulations were decided by the researchers

who ran the original studies comprising the dataset (Federmeier et al., 2007; Wlotko and

Federmeier, 2012; Hubbard et al., 2019; Szewczyk et al., 2022; Szewczyk and Federmeier,

2022). No part of the study procedures and no part of the analyses were pre-registered

prior to the research being conducted. All data, code, and statistical analyses are available
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at https://osf.io/jrsgh.

9.5.3 Results

We ran each of the preprocessed stimulus contexts through the seven language

models, calculating the probability and surprisal for each critical word. We then combined

this data with the single trial ERP data provided by the original authors, using linear

mixed-effects regressions to predict N400 amplitude, with each regression including the

probability and surprisal calculated using each language model as predictors. Following

Szewczyk and Federmeier (2022), regressions also included baseline voltage, word frequency

(log-transformed), concreteness, and orthographic neighborhood distance (OLD20), all of

which were provided by Szewczyk and Federmeier (2022) as covariates. We also included

random intercepts for each subject and sentence frame (each sentence frame in each exper-

iment was treated as a separate sentence frame), as well as random slopes of the covariates

(baseline voltage, word frequency, and orthographic neighborhood distance) for each of

these. Following Michaelov et al. (2022), all variables were z-scored. In order to evaluate

the performance of each metric, we compared each regression’s Akaike Information Crite-

rion (AIC) (Akaike, 1973), a metric of regression fit, where a lower AIC indicates a better

fit.

Results are presented in Figure 9.1, where AICs are are shown relative to the

AIC of a baseline null model with the same predictors as the other regressions except with-

out surprisal or probability. As can be seen, the best-performing model is GPT-J (AIC

= 58549.22), followed by Pythia 6.9B (AIC = 58567.19), OPT 6.7B (AIC = 58568.82),

Cerebras-GPT 6.7B (AIC = 58590.77), RoBERTa Large (AIC = 58627.10), StableLM-

Base-Alpha 7B (AIC = 58708.78), and finally, ALBERT XXL (AIC = 58761.13). A differ-

ence in AIC of 4 or more is generally considered to indicate that the lower-AIC regression
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has ‘considerably’ more evidential support (Burnham and Anderson, 2004). Thus, the

regression including GPT-J surprisal and probability is clearly the best-performing regres-

sion.

9.5.4 Discussion

The language model that best predicts N400 amplitude for this dataset is GPT-J,

suggesting that its probability distributions most closely correlate with the preactivation

state underlying the N400 response. We thus use metrics calculated from GPT-J for the

remainder of our analyses.

The results of this experiment differ from the single-token results of Michaelov

and Bergen (2022b) in that all but one of the autoregressive models tested here (StableLM-

Base-Alpha 7B) performed better than the masked language models. It should be noted,

however, that this result is in line with Michaelov and Bergen’s (2022b) findings when

analyzing the performance of language models at predicting N400 amplitude for stimuli

including those made up of more than one token. Given this and the far larger number

of experimental stimuli in the present study (1238 stimuli with single-token critical words

compared to 37 single-token critical words and even 160 total critical words in Michaelov

and Bergen, 2022b), it is likely that the results of the present study are more representative

of the performance of the models at predicting N400 amplitude. Whether this is because

the autoregressive architecture is more human-like or because the autoregressive models

were trained on far more data than the masked language models is a question for future

research.
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9.6 Experiment 2

Equipped with a best-performing language model, we can now address the main

research question, namely, whether the preactivation of possible stimuli other than the

stimulus that elicits the N400 response can impact the amplitude of the response. To

do this, we select a number of metrics that reflect the difference between the true and

predicted probability distributions—that is, distribution-dependent metrics—as calculated

using GPT-J. Many metrics relating the predicted and observed probability distributions

across words were unsuitable for our analysis. Some, as discussed earlier, are linearly

related to a metric of stimulus-dependent predictability. For example, total variation dis-

tance (as given in Gibbs and Su, 2002) is equivalent to half of the L1 distance between the

two distributions and thus is linearly related to probability. Similarly, because they involve

element-wise multiplication between the distributions, Rényi divergence (as given in van

Erven and Harremos, 2014) and Bhattacharyya distance (as given in Jain, 1976) simplify

such that they become the logarithm of the stimulus probability multiplied by a constant,

and thus, are directly proportional to surprisal. Other metrics are incalculable because in

the true probability distribution, all words have a probability of zero with the exception of

the true stimulus, which has a probability of 1. Because the zeros in the true distribution

are meaningful, we do not use smoothing, and thus, we do not use any metrics that would

involve dividing by or taking the logarithm of zero, e.g., Kullback–Leibler divergence in

the opposite direction or information radius (as given in Manning and Schutze, 1999). We

therefore selected two metrics that were both calculable and not linearly related to pre-

dictability: χ2 distance and Hellinger distance. Beyond the aforementioned restrictions on

suitable metrics, these specific metrics were not in themselves chosen for any theoretical

reason beyond reflecting a difference between the true and predicted probability distri-

butions. As discussed, the aim of the study is to test whether there is an effect of the
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full probability distribution on N400 amplitude at all rather than necessarily to precisely

characterize such an effect. If either χ2 and Hellinger distance successfully operationalize

the difficulty inhibiting false predictions, then we should expect a negative correlation be-

tween the metric and N400 amplitude, indicating a stronger N400 response when there is

a greater difference between the true and predicted probability distributions.

Other metrics were selected based on the theoretical perspective presented by Fitz

and Chang (2019), which considers the probability distributions generated by predictive

models to reflect the relative differences in preactivation between candidate stimuli, but

also considers that these need not be meaningful as probabilities in themselves. Fitz and

Chang (2019) operationalize the difference in the activation across all words before and

after encountering a stimulus as L1 distance; but as discussed, this is only dependent

on the probability of the true stimulus itself. However, this is not the case for other

Lk distances metrics. It may be the case, for example, that L1 distance underestimates

the extent to which lower-probability false predictions impact N400 amplitude, something

which could be tested using a fractional Lk distance (in fact, fractional Lk norms are

generally argued to be preferable for high-dimensional data; see Aggarwal et al., 2001).

Conversely, if it is relatively more difficult to inhibit higher-probability false predictions

than is operationalized by L1 distance, it may be that a Lk distance with k > 1 is a

more suitable way to operationalize this. In the present study, we test one of each of

these: L0.5 and L2 distance. In addition to Lk distance, we also choose another distance

metric that has had a large degree of success as a metric of the distance between two

vectors in computational linguistics and psycholinguistics (Dumais et al., 1988; Deerwester

et al., 1990; Landauer et al., 1998; Chwilla and Kolk, 2005; Parviz et al., 2011; Mikolov

et al., 2013b,a; Van Petten, 2014; Ettinger et al., 2016): cosine distance. As with other

distribution-dependent metrics, if Lk or cosine distance successfully models the effect of
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inhibition on N400 amplitude, we should expect a negative correlation between the two;

with a greater distance between the true and predicted probability distribution resulting a

stronger N400 response.

We also compare these metrics (that to the best of our knowledge have not pre-

viously been used to predict N400 amplitude), with both constraint and entropy, also cal-

culated from GPT-J. For constraint, we record the probability of the highest-probability

continuation in a given context, analogous to the Best Completion calculated with cloze

probabilities. To account for the possibility of a logarithmic linking function between con-

straint and the N400 (as there appears to be for predictability), we also convert these

probabilities into surprisal, and test both metrics.

9.6.1 Method

Data

For this experiment, we used experimental data from all stimuli in the dataset

that have critical words that are in the vocabulary of the GPT-J language model (i.e.,

the data from all single-token critical words). Because we include constraint as a metric

in our analysis, we also restrict our analysis to stimuli that are not the best completions

in their context, following Federmeier et al. (2007)—that is, we exclude cases where the

surprisal variant of the constraint metric is identical to stimulus surprisal. Our analysis

thus includes data from 17,892 trials (873 stimuli; 138 experimental participants). Note

that these exclusion criteria were decided before the analyses were carried out.

Metrics

All metrics used in this analysis are defined in Table 9.2. The correlations between

all metrics is shown in Figure 9.2.
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Table 9.2: The names of the metrics used in the present study and the equations used to
calculate them. All equations are based on the version given in the citation, but have been
adapted for consistency. p̂ refers to the predicted probability, p to the true probability (i.e.,
0 or 1), wi to the critical word, and wBC to the best completion (i.e., the word with the
highest probability in a given context).

Metric Name Equation Citation

Surprisal − log(p̂(wi)) Levy (2008)

Lk Distance ∑
i(|p̂(wi) − p(wi)|k) 1

k Aggarwal et al. (2001)

χ2 Distance ∑
i(

(p(wi)−p̂(wi))2

p̂(wi) ) Gibbs and Su (2002)

Hellinger Distance
[∑

i

(√
p(wi) −

√
p̂(wi)

)2
] 1

2
Gibbs and Su (2002)

Cosine Distance 1 −
∑

i
p̂(wi)p(wi)√∑

i
p̂(wi)2

√∑
i

p(wi)2
Jurafsky and Martin (2021)

Entropy −
∑

i p̂(wi) log p̂(wi) Jurafsky and Martin (2021)

Constraint (p) p̂(wBC) -

Constraint (S) − log(p̂(wBC)) -

9.6.2 Results

First, we compared how well each of the metrics performs compared to surprisal,

probability, and an overall predictability regression that includes both variables. We com-

pared the AIC of linear mixed-effects models with each metric as a predictor and with

the same covariates and random effects structure as those in Experiment 1, where, as in

Experiment 1, all variables were z-scored. The results can be seen in Figure 9.3, which

shows that the aggregate predictability regression best fits the N400 data, followed by (in

order of increasing AIC, and thus, decreasing fit) surprisal, Hellinger distance, probability,

cosine distance, L2 distance, constraint operationalized as probability, and χ2 distance.

On their own, constraint operationalized as surprisal, entropy, and L0.5 distance appear

to reduce model fit, compared to a model including just the covariates and random effects
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structure.

This result demonstrates that no distribution-dependent metric is a better pre-

dictor of N400 amplitude than a combination of surprisal and probability, or even surprisal

alone. However, the question we seek to address is whether these variables can explain

any variance in N400 amplitude not explained by predictability alone. Thus, in the final,

critical step, we test whether adding any of the distribution-dependent metrics to the pre-

dictability regression improves fit. The results are shown in Figure 9.4. As can be seen,

the only metric that improves model fit numerically if added to the regression is cosine

distance; the rest decrease model fit. However, as discussed in Experiment 1, generally

only a difference in AIC of 4 or more is considered to reflect a substantial difference in

model fit (Burnham and Anderson, 2004), suggesting that the improvement due to cosine

distance is not meaningful.

In order to test directly and to verify whether there is indeed a lack of improvement

from adding the other metrics, we run likelihood ratio tests comparing the predictability re-

gression with regressions also including each distribution-dependent variable. We find that

cosine distance does not improve model fit (χ2(1) = 3.0969, p = 0.0784), and neither does

χ2 distance (χ2(1) = 1.8036, p = 0.1793), entropy (χ2(1) = 0.5557, p = 0.4560), L0.5 dis-

tance (χ2(1) = 0.4025, p = 0.5258), Hellinger distance (χ2(1) = 0.1774, p = 0.6737), either

constraint metric (probability: χ2(1) = 0.0113, p = 0.9153; surprisal: χ2(1) = 0.0145, p =

0.9042), or L2 distance (χ2(1) = 0.0072, p = 0.9324). Thus, no distribution-dependent

metric explains any variance in N400 amplitude above and beyond that explained by pre-

dictability.
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9.6.3 Discussion

Our results replicate and extend several findings. First, as in previous work (Frank

et al., 2015; Aurnhammer and Frank, 2019b; Szewczyk and Federmeier, 2022; Michaelov

and Bergen, 2022b), surprisal is the best single predictor of N400 amplitude overall. Second,

like Szewczyk and Federmeier (2022), we find that including un-transformed probability as

a predictor in addition to surprisal improves fit to the N400 data in this dataset. However,

we extend this finding to also include GPT-J, a model that appears calculate probabilities

that more closely correlate with N400 amplitude both when used directly and transformed

into surprisal (Michaelov and Bergen, 2022b) compared to GPT-2 (Radford et al., 2019),

the model used by Szewczyk and Federmeier (2022). Finally, as in previous work, neither

constraint (Federmeier et al., 2007, 2002; Otten and Berkum, 2008; Van Petten et al., 1999;

Wlotko and Federmeier, 2007; Vissers et al., 2006; Federmeier, 2007) nor entropy (Stone

et al., 2021) predict N400 amplitude above and beyond predictability. Crucially, our study

extends these findings to probabilities derived from language models in addition to cloze

probability.

In this experiment we set out to investigate whether the preactivation of stimuli

other than the actually-occurring stimuli impact the amplitude of the N400 response using

metrics operationalizing the difference between the true distribution for each critical word

and the distribution predicted by GPT-J. We found that neither the variables that treat

this difference as a difference between probability distributions (χ2 distance and Hellinger

distance) nor the metrics that treat it as the distance between two vectors (cosine distance,

L0.5 distance, and L2 distance) explain any variance in N400 amplitude not explained by

predictability alone, as operationalized by probability and surprisal.
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9.7 General Discussion

It has long been widely believed (with a few exceptions, e.g., Hoeks et al., 2004;

Debruille, 2007; Fitz and Chang, 2019) that the N400 is only sensitive to the preactivation

of the stimulus that it is elicited by, and not the rest of the landscape of activation elicited

by its context. This premise forms the basis of the majority of contemporary accounts of

the effect (e.g. Kutas et al., 2011; Van Petten and Luka, 2012; Brouwer et al., 2012; Brouwer

and Hoeks, 2013; DeLong et al., 2014b; Kuperberg and Jaeger, 2016; Delogu et al., 2019;

Kuperberg et al., 2020; Federmeier, 2021). But, as discussed in section 9.1, this never been

fully tested—previous work has looked at constraint (Federmeier et al., 2007, 2002; Otten

and Berkum, 2008; Van Petten et al., 1999; Wlotko and Federmeier, 2007; Vissers et al.,

2006; Federmeier, 2007), or in one more recent study, entropy based on the words generated

by the cloze task (Stone et al., 2022). In both cases, the approaches only consider a small

subset of the full landscape of preactivation at the time when the stimulus is encountered—

in the case of constraint, only the extent to which the most predictable word is expected,

and in the case of the cloze-derived entropy study (Stone et al., 2022), the degree to which

at most 8 predictable words are expected.

Thus, prior to the current study, a key link in the derivation chain was weak. Do

metrics that consider the full probability distribution predict variance in the amplitude

of the N400 not captured by metrics that consider only the probability of the stimulus

itself? Our results suggest that they do not—no distribution-dependent metric on its own

predicts N400 amplitude better than surprisal, and like constraint and entropy, none of

the distribution-dependent metrics explain a significant amount of the variance in N400

amplitude above and beyond that explained by predictability alone.
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9.7.1 What impacts N400 amplitude?

In our experiments, no distribution-dependent metric significantly predicts N400

amplitude once predictability has been accounted for. In addition, no individual distribution-

dependent metric is a better predictor of N400 amplitude than surprisal. These results are

consistent with the account that the amplitude of the N400 response is dependent only on

the extent to which the stimulus itself was preactivated.

The present study is the first to directly test whether the full distribution of pre-

activation can impact N400 amplitude. The finding that no distribution-dependent metric

better correlates with N400 amplitude than surprisal (which only reflects the preactiva-

tion of the stimulus itself) suggests that the extent to which a word is preactivated is

still the best predictor of N400 amplitude; and this is further strengthened by the fact

that no distribution-dependent metric explains variance not explained by either surprisal

or probability. Thus, the derivation chain is strengthened, and we can more confidently

make inferences directly from N400 effects about the degree to which the neural repre-

sentations associated with given stimuli are activated before they are encountered. It is

therefore possible to investigate exactly which factors impact and modulate this—as one

example, the line of research investigating whether the amplitude of the N400 response,

and hence, preactivation, is sensitive to the animacy features of entities under discussion

(Kuperberg et al., 2003; Kim and Osterhout, 2005; Nieuwland and Van Berkum, 2005;

Kuperberg, 2007; Paczynski and Kuperberg, 2011, 2012; Szewczyk and Schriefers, 2011,

2013; Nieuwland et al., 2013; Wang et al., 2020; Vega-Mendoza et al., 2021).

9.7.2 Surprisal and predictive coding

The research carried out in the present study is compatible with most contempo-

rary accounts of the N400. However, as noted in section 9.3, a strong interpretation of the
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study and results uses the predictive coding framework, under which the neurocognitive

system responsible for the preactivation underlying the N400 response is a predictive system

(Lewis and Bastiaansen, 2015; Bornkessel-Schlesewsky and Schlesewsky, 2019; Kuperberg

et al., 2020). As shown in the current work, language models can serve as computational-

level cognitive models of at least part of this proposed system. The results of the present

study also provide evidence to support the predictive coding account of the N400.

Under a predictive coding account, the functional significance of neural metrics

of processing difficulty is twofold: the new activation is information that allows the current

stimulus to be correctly processed by the system; and the new activation is a learning signal

(Rao and Ballard, 1999; Huang and Rao, 2011; Clark, 2013). In the language domain, this

learning signal is thought to allow the neurocognitive system underlying language com-

prehension (and under some accounts also production, see, e.g., Fitz and Chang, 2019;

Kuperberg et al., 2020) to learn and adapt, either long-term as part of continual lan-

guage learning, or to a specific situation (Bornkessel-Schlesewsky and Schlesewsky, 2019;

Kuperberg et al., 2020; Hodapp and Rabovsky, 2021).

While all metrics tested in the present study could conceivably fulfill both of

these roles, it is striking that surprisal, the best-performing metric, also seems best suited

to fulfilling the role of learning signal. As discussed, when comparing the true and predicted

probabilities generated by language models, surprisal is equivalent to cross-entropy. This

is interesting because cross-entropy is precisely the loss function used to train virtually all

language models (Jurafsky and Martin, 2019). In other words, if we were to determine what

would be the best loss function for a neurocognitive system engaging in lexical prediction

to use, based on current research, it would be cross-entropy—and thus, surprisal. For

this reason, the fact that surprisal is the metric most correlated with N400 amplitude is

striking. In this way, our results provide indirect evidence to support the predictive coding
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account of the N400.

9.7.3 Mechanistic Implications

Predictability alone explaining variance in N400 amplitude is consistent with two

specific mechanistic accounts of how the preactivation that occurs as part of online language

comprehension is indexed by the N400 response.

The first is that the processing difficulty indexed by the N400 is only due to the

activation of the neural representations associated with the stimulus that were not already

activated due to the preceding context. That is, the amplitude of the N400 response is not

just stimulus-dependent, but also only reflects this stimulus-driven activation. This is in

line with most contemporary accounts of the N400 (Kutas and Federmeier, 2011; Kutas

et al., 2011; Van Petten and Luka, 2012; DeLong et al., 2014b; Kuperberg and Jaeger, 2016;

Kuperberg et al., 2020; DeLong and Kutas, 2020; Federmeier, 2021). So what happens to

words that are preactivated but not encountered? One possibility is that the metabolic

resources required for preactivation (see, e.g. Levy, 2008; Brothers and Kuperberg, 2021)

are constantly required to be expended to maintain preactivation, and thus, simply stopping

doing so is enough to suppress them. Alternatively, there may not be any active suppression

or inhibition at all—the evidence suggests that highly probable words that are not presented

as stimuli can remain activated over the course of an experiment (Rommers and Federmeier,

2018).

The other mechanistic account is that inhibition does indeed contribute to the

processing difficulty indexed by the N400 response, but that the effort required to do this is

dependent on the extent to which the stimulus was preactivated. Under such an account, it

is simply the case that surprisal, or another metric that is only dependent on the preactiva-

tion state of the stimulus, mathematically expresses the combined processing difficulty of
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activating the representations associated with the stimulus and inhibiting others. Indeed,

given the number of metrics of the difference between the true and predicted probability

distributions that simplify to a stimulus-dependent metric—Kullback-Leibler divergence,

Rényi divergence (a generalization of Kullback-Leibler divergence), Bhattacharyya dis-

tance, total variation distance, and L1 distance—perhaps it would not be surprising if this

were the case. This idea is in line with the account of Hale (2001), who envisions surprisal

as reflecting the difficulty of disconfirming predictions, and perhaps implicitly in line with

the account of Fitz and Chang (2019), who argue that N400 amplitude reflects the activa-

tion and inhibition effort and present L1 distance as the metric to express this—which, as

we show, is a stimulus-dependent metric. If this is the case, however, it does not diminish

the importance of determining whether the amplitude of the N400 response is sensitive to

the preactivation of the stimulus only or the to the whole distribution (i.e., the whole land-

scape of activation in long-term memory). The weak link in the derivation chain has still

been strengthened—we can be more comfortable in using the N400 to understand exactly

how much a given stimulus was preactivated under one experimental condition relative to

another—but further work would need to be carried out to investigate exactly to what

extent the activation and inhibition contribute to the final amplitude measured.

9.8 Conclusions

In this study, we used computational methods to investigate the question of

whether the amplitude of the N400 response to a word is impacted only by the degree

to which the word was preactivated or to the entire landscape of activation elicited by

the preceding context. We found that across the data from the five experiments mod-

eled, surprisal was the best single predictor of N400 amplitude. Furthermore, no metrics

reflecting the extent to which words other than the stimulus were preactivated explained
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any variance in N400 amplitude beyond that explained by surprisal and probability. This

result supports the idea that N400 amplitude is only sensitive to the degree to which the

stimulus itself was preactivated at the point at which it was encountered. Based on this

and another property of surprisal—its equivalence with cross-entropy for language model

predictions—we argue that the results of the present study support a predictive coding

account of the N400.

9.9 Appendix

9.9.1 The stimulus-dependence of L1 distance

In this appendix, we show that the L1 distance between the true and predicted

probability distributions for a given word wi is only dependent on the probability of the

word p(wi) and not the probabilities of other words.

First, we note that the sum of the absolute error for each word is the sum of the

absolute error E for the true next word wi and the absolute error for all the words that

are not the true next word (i.e. every w¬i):

L1 = E(wi) +
∑

E(w¬i) (9.4)

For the true next word, the absolute error is a positive prediction error, the difference

between 1 and the predicted probability of the word ptrue:

E(wi) = 1 − p(wi) (9.5)

For all other words, the absolute error is a negative prediction error, the predicted proba-
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bility of the false word p(w¬i) minus the true probability, 0:

E(w¬i) = p(w¬i) − 0 (9.6)

This simplifies to:

E(w¬i) = p(w¬i) (9.7)

Since the distribution is a probability distribution, all probabilities add up to 1, and thus:

p(wi) +
∑

p(w¬i) = 1 (9.8)

This means that the following is also the case:

∑
p(w¬i) = 1 − p(wi) (9.9)

We can substitute Equation 9.5 and Equation 9.9 into the equation for total Manhattan

distance Equation 9.4, getting:

L1 = (1 − p(wi)) + (1 − p(wi)) (9.10)

Which can be simplified to:

L1 = 2 − 2p(wi) (9.11)
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Chapter 10

On the mathematical relationship

between contextual probability

and N400 amplitude

Abstract

Accounts of human language comprehension propose different mathematical re-

lationships between the contextual probability of a word and how difficult it is to process,

including linear, logarithmic, and super-logarithmic ones. However, the empirical evidence

favoring one of these over another is mixed, appearing to vary depending on the index of

processing difficulty used and the approach taken to calculate contextual probability. To

help disentangle these results, we focus on the mathematical relationship between corpus-

derived contextual probability and the N400, a neural index of processing difficulty. Specif-

ically, we use 37 contemporary transformer language models to calculate the contextual

probability of stimuli from 6 experimental studies of the N400, and test whether N400
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amplitude is best predicted by a linear, logarithmic, super-logarithmic, or sub-logarithmic

transformation of the probabilities calculated using these language models, as well as com-

binations of these transformed metrics. We replicate the finding that on some datasets,

a combination of linearly and logarithmically-transformed probability can predict N400

amplitude better than either metric alone. In addition, we find that overall, the best sin-

gle predictor of N400 amplitude is sub-logarithmically-transformed probability, which for

almost all language models and datasets explains all the variance in N400 amplitude other-

wise explained by the linear and logarithmic transformations. This is a novel finding that

is not predicted by any current theoretical accounts, and thus one that we argue is likely

to play an important role in increasing our understanding of how the statistical regularities

of language impact language comprehension.

10.1 Introduction

The N400 (Kutas and Hillyard, 1980, 1984) is a negative component of the event-

related brain potential that peaks around 400ms after the presentation of stimulus and

is associated with lexical and semantic processing difficulty (Kutas et al., 2006; Thornhill

and Van Petten, 2012; Aurnhammer and Frank, 2019b; Brouwer et al., 2021; Federmeier,

2021). Specifically, the amplitude of the N400 response to a stimulus has been found to

be large by default, and is reduced (becomes less negative) when neural representations

of the stimulus are preactivated—that is, activated by the preceding context (Van Petten

and Luka, 2012; DeLong et al., 2014b; DeLong and Kutas, 2020; Kuperberg et al., 2020;

Federmeier, 2021). In the language domain, it is by now well-established that the amplitude

of the N400 response to a word is highly correlated with the word’s contextual probability,

whether this is operationalized based on human judgements (Kutas and Hillyard, 1984;

for reviews see Kutas et al., 2011; Kutas and Federmeier, 2011; Van Petten and Luka,
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2012; DeLong et al., 2014b; Kuperberg et al., 2020; Federmeier, 2021) or the statistics of

language (Parviz et al., 2011; Frank et al., 2015; Aurnhammer and Frank, 2019b; Merkx

and Frank, 2021; Szewczyk and Federmeier, 2022; Michaelov et al., 2022, 2024).

The canonical way to operationalize contextual probability is using the cloze task,

where the cloze probability of a word in a given context is the proportion of participants

in a norming study who fill in the gap in a sentence with that word (Taylor, 1953, 1957).

Since the relationship between cloze probability and the N400 was first discovered (Kutas

and Hillyard, 1984), the finding has been replicated numerous times (see, e.g., Kutas and

Van Petten, 1994; Kutas and Federmeier, 2011; Van Petten and Luka, 2012; DeLong et al.,

2014b; Kuperberg et al., 2020; Federmeier, 2021), with some studies finding as high a

correlation between the two as r = 0.9 (Kutas and Van Petten, 1994; Kutas and Federmeier,

2011).

A more recent approach uses the contextual probabilities calculated by computa-

tional language models. Language models are systems designed to calculate the probability

of a word given a context based on the statistics of language (Jurafsky and Martin, 2024b),

and like cloze, these probabilities have also been found to be highly correlated with N400

amplitude (Parviz et al., 2011; Frank et al., 2015; Aurnhammer and Frank, 2019a,b; Yan

and Jaeger, 2020; Michaelov et al., 2021; Merkx and Frank, 2021; Szewczyk and Federmeier,

2022; Michaelov et al., 2022, 2024). In addition to sometimes displaying a closer fit to the

N400 data than cloze (Michaelov et al., 2022, 2024), these language model probabilities

have a higher degree of explanatory power from an information-processing perspective—

they allow researchers to specifically test to what extent the statistics of language may

influence the preactivation underlying the N400 response.

The precise mathematical relationship between these language-model-derived word

probabilities and the amplitude of the N400 responses elicited by the same words in humans
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is of prime theoretical importance because it can in principle adjudicate among mechanis-

tic accounts of language processing and of the N400 specifically. But the nature of that

relationship is currently unknown, and we focus on this key question in the present study.

In the related literature on reading time, another type of measure which is also

thought to reflect processing difficulty and to be impacted by contextual probability, the

question has been studied extensively, and a range of possibilities have been proposed and

tested. Most notably, the relationship between word probability and processing difficulty

has been argued to be be linear (Brothers and Kuperberg, 2021), logarithmic (Smith and

Levy, 2013; Shain et al., 2024; Wilcox et al., 2023b), or an exponential transformation

of the logarithmically-transformed values (Levy and Jaeger, 2006; Meister et al., 2021;

Hoover et al., 2023). The results from large-scale meta-analyses of reading time suggest a

linear relationship between cloze and processing difficulty (Brothers and Kuperberg, 2021),

but for corpus-derived probabilities (i.e., calculated using language models), there appears

to be evidence for both a logarithmic (Smith and Levy, 2013; Shain et al., 2024) and a

‘super-logarithmic’ relationship (Meister et al., 2021; Hoover et al., 2023), the latter being

a term used to describe a super-linear relationship between log-probability and processing

difficulty (see Levy and Jaeger, 2006; Smith and Levy, 2013; Shain et al., 2024).

In contrast to reading time, there has been comparatively little work investigating

the mathematical nature of the relationship between lexical probability and N400 ampli-

tude, and the results are far from conclusive. Of the three studies that we are aware of

that have looked at the relationship between cloze probability and the N400, two (Aurn-

hammer et al., 2021; Michaelov et al., 2022) found log-transformed cloze probability to

correspond slightly more closely to N400 amplitude, while the other (Szewczyk and Feder-

meier, 2022) found the reverse. Thus far, only two studies have investigated the relationship

between statistical (i.e., corpus-derived) lexical probability and N400 amplitude. Yan and
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Jaeger (2020), using the probabilities derived from a hybrid model based on a mixture of a

5-gram model and ‘skip bi-gram’ (see Frank and Willems (2017)), find that surprisal (nega-

tive log-probability) better predicts N400 amplitude than un-transformed probability does.

This finding is also replicated by Szewczyk and Federmeier (2022), who find that overall,

surprisal derived from the GPT-2 language model (Radford et al., 2019) out-performs un-

transformed GPT-2 probability as a predictor of N400 amplitude. However, Szewczyk and

Federmeier (2022) also find that GPT-2 probability explains variance in N400 amplitude

above and beyond that explained by GPT-2 surprisal, and may be a better predictor for

more expected words (cloze > 0.05). Thus, the question of the mathematical relationship

between the language-model-derived probability of a word and the amplitude of the N400

response to the word is still far from resolved.

In order to address this, we expand upon previous work in several ways. First,

the question of the mathematical relationship between language-model-derived probability

and N400 amplitude has only been tested for two language models; we analyze data from

37 contemporary transformer language models. Additionally, previous work has only com-

pared the extent to which probability and surprisal predict N400 amplitude. In the current

study, we also investigate a range of sub-logarithmic (surprisal to a power < 1) and super-

logarithmic (surprisal to a power > 1) relationships in the same vein as some previous

work on reading time (Meister et al., 2021; Shain et al., 2024). We use these approaches to

re-analyze the five datasets used in the Szewczyk and Federmeier (2022) study (Federmeier

et al., 2007; Wlotko and Federmeier, 2012; Hubbard et al., 2019; Szewczyk et al., 2022;

Szewczyk and Federmeier, 2022), along with data from a large-scale study carried out by

Nieuwland et al. (2018b).
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10.2 Theoretical accounts and their mathematical formula-

tions

Theoretical accounts of the N400 and processing difficulty in general differ in the

mathematical relationships that they propose may hold between contextual probability

and processing difficulty. In this section, we describe a range of such theoretical accounts

and the mathematical relationships they propose.

10.2.1 Contextual Probability

There is a long history of studies using cloze probability as a predictor of N400

amplitude (since Kutas and Hillyard, 1984) or of behavioral measures such as reading

time (since Fischler and Bloom, 1979). As Brothers and Kuperberg (2021) note, using

cloze probability as a predictor of N400 amplitude implicitly assumes a linear relationship

between contextual probability and processing difficulty. Brothers and Kuperberg (2021)

use this previous work as a basis upon which to build a theoretical framework supporting

such a linear relationship, which they term the proportional preactivation account.

Mechanistically, processing difficulty as described by the proportional preactiva-

tion account aligns with the majority of the contemporary accounts of the N400. As a basic

principle, processing difficulty reflects the effort required to activate neural representations

driven by the stimulus encountered. Difficulty is reduced by the extent to which these

representations were preactivated—that is, already activated at the time that the stimulus

was encountered (Kutas and Federmeier, 2011; Federmeier, 2021). Under the proportional

preactivation account (as in DeLong et al., 2005; Kutas et al., 2011; Van Petten and Luka,

2012; DeLong et al., 2014b; DeLong and Kutas, 2020; Kuperberg et al., 2020), preactiva-

tion is largely driven by prediction based on the preceding context. And crucially, under
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the account, words are preactivated in direct proportion to their contextual probabilities.

And so, given that processing difficulty reflects the difference between the extent to which

a word is preactivated and its full activation state, we should expect probability to be

linearly related to processing difficulty (Brothers and Kuperberg, 2021).

10.2.2 Distribution update

Under the proportional preactivation and other contextual probability accounts,

processing difficulty arises from the extent to which the stimulus itself is predictable based

on its context. An alternative idea is that processing difficulty also reflects the probability of

alternatives and the difficulty in disconfirming them. This idea forms the basis of accounts

(e.g., Hale, 2001; Levy, 2008; Frank et al., 2013; Smith and Levy, 2013) which we term

distribution update accounts, and which are often grouped under the category of surprisal

theory because they posit a linear relationship between processing difficulty and surprisal,

the negative log-probability of a word given its preceding context.

Such accounts vary in their specific details and formalizations, but at their core

they share the idea that as humans comprehend linguistic input, we allocate our neurocog-

nitive resources among different possible parses or interpretations of the current input

(Hale, 2001; Levy, 2008), or among different possible next words in the utterance (Frank

et al., 2013; Aurnhammer and Frank, 2019b). Specifically, resources are divided such that

more likely candidates are allocated a larger amount than less likely candidates, in pro-

portion to their probability. Processing difficulty, then, is the effort required to update the

distribution over possible candidates after encountering a given stimulus. Notably, whether

this is directly formalized as surprisal (Hale, 2001; Frank et al., 2013) or as the Kullback-

Leibler divergence (Kullback and Leibler, 1951) between the probability distribution before

and after a word is encountered (Levy, 2008; Aurnhammer and Frank, 2019b), it can be
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shown formally that this effort can mathematically be described as surprisal.

In this study, we specifically focus on the formulation of the distribution update

account presented (among others accounts) by Aurnhammer and Frank (2019b). Under

this account, the state of the language comprehension system before encountering a lexical

stimulus can be modeled as a probability distribution over possible next words given the

preceding context, and the state after can be modeled as the true probability distribution—

a distribution where the actual stimulus has a probability of 1 and all other words have a

probability of 0. Processing difficulty under this account is precisely the effort required to

‘collapse’ the predicted probability distribution to the true probability distribution after

encountering a word. This effort can be modeled as the Kullback-Leibler divergence be-

tween the two probability distributions, which, as Aurnhammer and Frank (2019b) note,

is mathematically equivalent to surprisal.

10.2.3 Composite processing difficulty of sub-word features

The second, related family of logarithmic accounts posits that the relationship

between contextual probability and processing difficulty arises not from a direct relationship

between the contextual probability of a word and processing difficulty, but rather between

sub-components of the word and processing difficulty (Smith and Levy, 2008, 2013). A key

account of this kind is the ‘highly incremental’ account presented by Smith and Levy (2013).

The account proposes that rather than occurring at the word level, the effect of probability

on lexical processing difficulty might instead arise at the sub-word level, that is, in the

processing of each consecutive sub-word fragment of a word. Crucially, the probability of

each consecutive fragment of a word impacts word probability multiplicatively (i.e., the

probability of a word wi made up of chunks c1...ck is given by p(wi) = p(c1) × ... × p(ck))

but if each chunk is processed sequentially, its impact on reading time t is additive (i.e.,
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t(wi) = t(c1)+...+t(cn)). As Smith and Levy (2013) prove and demonstrate with examples,

as k increases, any function f that relates p(wi) to t(wi) tends toward a linear function

of log(p(wi)). Thus, the account argues for a logarithmic relationship between contextual

probability and processing difficulty.

While the account makes sense in the context of reading time, it is less clear

whether it can account for the N400. Specifically, the highly incremental account relies on

additional time taken for each sub-word chunk processed. When measuring processing diffi-

culty using the N400, on the other hand, the focus is on amplitude over a given time period

(generally 300-500ms after stimulus presentation), and it is not straightforward to imagine

a mechanism whereby the difficulty in processing of incremental sub-word fragments would

increase the amplitude in the same fixed-time period. Szewczyk and Federmeier (2022),

however, propose an alternative account along the same lines that focuses on semantic

features rather than sub-word chunks. Under this account, the probability of a word in

a given context is the product of the probability of each of its semantic features, but the

effect of the probability of each feature on N400 amplitude is linear. Following Smith and

Levy (2013), therefore, if there are a sufficient number of semantic features associated with

a given word—and it is difficult to imagine cases where words are not associated with

many semantic features—we should expect N400 amplitude to be logarithmically related

to contextual probability (Szewczyk and Federmeier, 2022).

While it is in principle possible to view the reading-time variants of this account

(Smith and Levy, 2008, 2013) as identifying possible mechanisms by which distribution

update accounts such as those provided by Hale (2001) or Levy (2008) could occur, this is

not the case with N400-focused accounts. Crucially, under the formulation of the distribu-

tion update account provided by Aurnhammer and Frank (2019b), surprisal indexes lexical

predictions, while Szewczyk and Federmeier (2022) argue instead that lexical predictions
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lead to differences in N400 amplitude that are linearly related to contextual probability.

10.2.4 Uniform Information Density

In addition to linear and logarithmic relationships, it is also possible that process-

ing difficulty is non-linearly related to log-probability. The main argument for this comes

from considering how information is distributed throughout a sentence. Intuitively, one

would expect that sentences where all the information is concentrated into a small number

of words would be harder to comprehend than those where information is more evenly

spread out (Levy, 2005), and it is possible that this may result in a pressure towards more

uniform information density in sentence production (Levy and Jaeger, 2006; Smith and

Levy, 2013; Meister et al., 2021; Shain et al., 2024). Specifically, Levy and Jaeger (2006)1

demonstrate mathematically that if there is a super-logarithmic relationship between lexi-

cal probability and processing difficulty (i.e., difficulty= log(p)k where k > 1), then uniform

information density minimizes the effort required to process a whole utterance.

While there is a substantial body of both theoretical and empirical work arguing

in favor of uniform information density in general (see, e.g., Fenk and Fenk-Oczlon, 1980;

Genzel and Charniak, 2002; Aylett and Turk, 2004; Maurits et al., 2010; Coupé et al., 2019;

Clark et al., 2023), the question of whether it arises from comprehender-oriented principles

(i.e., a form of audience design) is still an open question. Thus, a super-logarithmic rela-

tionship between contextual probability and processing difficulty could help explain why

language users produce the utterances that they do.
1In the supplementary Appendix to the paper, available at https://www.researchgate.net/

publication/221618546
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10.2.5 Multiple sub-components

In addition to accounts proposing one specific mathematical relationship between

contextual probability and processing difficulty, some have proposed that a combination of

relationships holds between the two. Szewczyk and Federmeier (2022) propose, for example,

that the N400 is related to contextual probability both logarithmically and linearly. The

account provided by Szewczyk and Federmeier (2022) follows from accounts of the N400

under which the response is posited to generally reflect the overlap between the semantic

features of the stimulus and its context, and to only under some conditions (for exam-

ple, when more attention is paid to stimuli) reflect explicit lexical prediction (see, e.g.,

Lau et al., 2013; Federmeier, 2021). Szewczyk and Federmeier (2022) specifically argue

that the logarithmic relationship reflects the effect of semantic feature overlap (proposing

the aforementioned account of logarithmic composite processing difficulty based on sub-

word semantic features), and that the linear relationship reflects the the effect of lexical

prediction (following contextual probability accounts like the proportional preactivation

account). While they do not provide direct evidence for the correspondence between these

components and the proposed mechanisms indexed, Szewczyk and Federmeier (2022) do

provide direct evidence of potentially separable linear and logarithmic effects. Specifically,

Szewczyk and Federmeier (2022) find that the linear effect is only significant above and

beyond the logarithmic for expected items (cloze > 5%) when analyzing the whole N400

time window (300-500ms); and is only significant when predicting the N400 response to all

tokens when analyzing the first half of the time window (300-400ms).
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10.3 Analysis 1: Powers of Surprisal

10.3.1 Introduction

The aim of the present study is to investigate whether the relationship between

contextual probability and N400 amplitude is linear, logarithmic, super-logarithmic, or

sub-logarithmic. In Analyses 2 and 3 below we will compare how well each of these trans-

formations of probability predict N400 amplitude. This first analysis sets the stage by

identifying the super- or sub-logarithmic transformation of probability that best corre-

lates with N400 amplitude (in order to subsequently compare this with probability and

surprisal).

As previously discussed, the current evidence from reading time suggests either

a logarithmic (Smith and Levy, 2013; Shain et al., 2024; Wilcox et al., 2023b) or super-

logarithmic relationship (Meister et al., 2021) between contextual probability and pro-

cessing difficulty. However, it is also in principle possible that there is a sub-logarithmic

relationship, and as this type of analysis has never been carried out for the N400, we ac-

count for both possibilities. Specifically, we calculate all surprisalk, where k covers all 0.1

increments between 0.1 and 2 (inclusive), as well as -1,-0.5, and -0.1, for comparison. We

then test how well each of these predicts N400 amplitude.

10.3.2 Method

Language models

Recent research shows that among contemporary language model architectures,

N400 amplitude is best predicted by transformers (Merkx and Frank, 2021; Michaelov

et al., 2022). We therefore restricted our analysis to contemporary transformer language

models made available through the transformers (Wolf et al., 2020) Python (Van Rossum
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and Drake, 2009) package. We further restrict our analyses to only include autoregressive

(unidirectional) transformer language models, as the best-performing model in Michaelov

et al. (2022) was of this type, and because they produce well-defined probabilities for critical

words made up of multiple tokens, allowing us to calculate surprisal for any word. These

included 37 models of the GPT-2 (Radford et al., 2019), GPT-Neo (Black et al., 2021),

GPT-J (Wang and Komatsuzaki, 2021), Pythia (Biderman et al., 2023b), OPT (Zhang

et al., 2022), XGLM (Lin et al., 2021), and BLOOM (BigScience, 2022) architectures, as

well as DistilGPT2, a ‘distilled’ form of GPT-2 (see Sanh et al., 2020).

Stimuli and N400 data

We use the stimuli and experimental data from 5 previously-published N400 stud-

ies (Federmeier et al., 2007; Wlotko and Federmeier, 2012; Nieuwland et al., 2018b; Hub-

bard et al., 2019; Szewczyk et al., 2022), and one unpublished dataset released as part of

a recent meta-analysis (Szewczyk and Federmeier, 2022).

In the 5 datasets (Federmeier et al., 2007; Wlotko and Federmeier, 2012; Hubbard

et al., 2019; Szewczyk et al., 2022; Szewczyk and Federmeier, 2022) preprocessed and

released by Szewczyk and Federmeier (2022), N400 amplitude was operationalized as the

mean voltage from four centro-parietal electrodes (MiCe, MiPa, LMCe, RMCe), and the

mean was taken over the 300-500ms time window. In contrast to much of the work on

the N400, in this dataset, N400 amplitudes are not corrected using a baseline amplitude;

instead, the -100-0ms mean amplitude baseline is included as a covariate in analysis (see

discussion in Szewczyk and Federmeier, 2022). The details of these datasets are presented

in Table 10.1. The stimuli from the study by Federmeier et al. (2007) follow a 2 × 2 design,

with sentences either having a high or low constraint, and the N400 being recorded from

either an expected (highest-cloze) or unexpected (low-cloze) continuation. The stimuli
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Table 10.1: Details of all datasets analyzed
Dataset Stimuli Participants Total trials
Federmeier et al. (2007) 564 32 7856
Wlotko and Federmeier (2012) 300 16 4440
Hubbard et al. (2019) 192 32 5705
Szewczyk et al. (2022) 672 32 4939
Szewczyk and Federmeier (2022) 600 26 4822
Nieuwland et al. (2018b) 160 334 25978

from the other studies were generally selected from Federmeier et al. (2007), with Wlotko

and Federmeier (2012) including additional sentences with critical words that varied more

continuously in terms of their cloze probability, and Szewczyk et al. (2022) adding adjectives

that either reduced or increased the cloze probability of critical items.

The remaining dataset is a large-scale study carried out by Nieuwland et al.

(2018b). We take the subset of the data corresponding to N400 amplitudes elicited by

nouns. We use the preprocessed data provided by Nieuwland et al. (2018b), who opera-

tionalize N400 amplitude as mean voltage between 200-500ms after stimulus presentation

at 6 centro-parietal electrodes (Cz, C3, C4, Pz, P3, and P4), baseline-corrected by sub-

tracting the mean amplitude in the -100-0ms time window. The details of this dataset

are described in Table 10.1. In this study, stimuli had either expected (highest-cloze) or

unexpected (low-cloze) critical words.

Calculating the metrics

To investigate how well the language models’ predictions correlate with N400 am-

plitude, we ran each of the stimulus sentences from the six studies (Federmeier et al., 2007;

Wlotko and Federmeier, 2012; Nieuwland et al., 2018b; Hubbard et al., 2019; Szewczyk

et al., 2022; Szewczyk and Federmeier, 2022) up until the critical noun through each of the
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37 language models, calculating surprisal for each of the critical words. As is commonly the

case with transformer language models, not all critical nouns were in each model’s vocab-

ulary as individual tokens. Because all models are autoregressive, calculating the surprisal

of multi-token words is straightforward—we calculate the surprisal of each sub-word token

of the critical word given the preceding context (including preceding sub-word tokens) and

take their sum, which is equivalent to taking the product of the probabilities. We then

exponentiate these surprisal values, using these values in our analyses.

Procedure for Statistical Analysis

In order to test how well each exponentiated form of surprisal calculated using

each language model predicts N400 amplitude, we construct linear mixed-effects regression

models using these variables as predictors and N400 amplitude as the dependent variable,

comparing the Akaike’s Information Criterion (AIC; Akaike, 1973) of these regressions.

AIC provides a measure of a regression’s fit to the data, with a lower AIC indicating a

better fit. We run further analyses on these AIC values to compare how well each metric

performs across models.

When analyzing the data from the Nieuwland et al. (2018b) study, our statistical

analysis approach aimed to match the original as much as possible. In these models,

N400 amplitude was the dependent variable. The variable of interest for each language

model (i.e., surprisalk) was included as a fixed effect. The original study was carried out at

multiple laboratories, with previous work showing that depending on the subset of the data

used, laboratory can be a significant predictor of N400 (Nieuwland et al., 2018b; Michaelov

et al., 2022), so we also included this as a fixed effect. In order to be able to compare

regression fit across language models and metrics, the random effects structure needs to

be consistent across regressions, and the maximal random effects structure that fulfils this
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requirement in addition to converging and not resulting in any singular fits includes a

random intercept for each subject. All numerical variables were z-scored.

The 5 other datasets analyzed (Federmeier et al., 2007; Wlotko and Federmeier,

2012; Nieuwland et al., 2018b; Hubbard et al., 2019; Szewczyk et al., 2022; Szewczyk and

Federmeier, 2022) were all preprocessed in the same way by Szewczyk and Federmeier

(2022). We kept our statistical analysis as close to those in Szewczyk and Federmeier

(2022) as possible. As in Szewczyk and Federmeier (2022), un-baselined N400 amplitude

was the dependent variable, with the baseline amplitude included as a fixed effect. The

other covariates included in the original analyses and provided by Szewczyk and Federmeier

(2022) were concreteness (Brysbaert et al., 2014), frequency (logarithmically transformed;

Brysbaert and New, 2009), orthographic neighborhood (OLD20; Yarkoni et al., 2008),

and sentence position, which we also included as fixed effects. We included the maximal

random effects structure that would allow model convergence, result in no singular fits, and

be consistent across regressions. The resulting random effects structure included random

slopes for the baseline voltage for each subject and item, as well as a random intercept for

each item. All numerical values were z-scored.

All graphs were created and statistical analyses carried out in R (R Core Team,

2023) using Rstudio (RStudio Team, 2020) and the tidyverse (Wickham et al., 2019),

lme4 (Bates et al., 2015), lmerTest (Kuznetsova et al., 2017), mgcv (Wood, 2017), ggh4x

(van den Brand, 2021), tidytext (Silge and Robinson, 2016), ggtext (Wilke and Wiernik,

2022), RColorBrewer (Neuwirth, 2022), and osfr (Wolen et al., 2020) packages. All figures

except Figure 10.1 use colorblind-friendly palettes (Chang, 2022). All reported p-values are

corrected for multiple comparisons based on false discovery rate (Benjamini and Yekutieli,

2001) across all statistical tests carried out. We provide all data, code, and statistical

analysis scripts at https://osf.io/w5hez.
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10.3.3 Results

The fit of all regressions including surprisalk are shown in Figure 10.1. For four

of the six datasets (Federmeier et al., 2007; Hubbard et al., 2019; Szewczyk et al., 2022;

Szewczyk and Federmeier, 2022), the lowest AICs are achieved by regressions with sub-

linear transformations of surprisal as the predictor of N400 amplitude, indicating that these

best fit the human data. For the remaining two datasets (Nieuwland et al., 2018b; Wlotko

and Federmeier, 2012), the results are less clear—for the majority of language models, the

best transformation of surprisal appears to be at k = 1 (i.e., no transformation) or slightly

above.
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Figure 10.1: AIC of regressions predicting N400 amplitude with the exponentiated values
of the surprisal calculated using 37 autoregressive transformer language models.

To investigate these results further, we fit a general additive model to these AIC

values for each dataset, predicting them using the default thin plate regression splines

provided by the mgcv (Wood, 2017) package to fit k as a predictor and including random

effects terms for each language model. All fitted GAMs had adjusted R2 values of greater

than 0.9 (Federmeier et al., 2007: adjusted R2 = 0.94; Wlotko and Federmeier, 2012:

adjusted R2 = 0.92; Szewczyk and Federmeier, 2022: adjusted R2 = 0.93; Hubbard et al.,
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2019: adjusted R2 = 0.90; Szewczyk et al., 2022: adjusted R2 = 0.96; Nieuwland et al.,

2018b: adjusted R2 = 0.92).

These general additive models were used to estimate the power of surprisal that

produces the lowest AIC across language models, after accounting for differences between

models. To do this, we generate a dummy dataset with values of k between 0 and 2 at 0.1

increments and an arbitrary (non-existent) language model. The general additive models

were then used to estimate the regression AICs for an arbitrary language model based on k

alone. The results replicate the numerical descriptions above—the general additive models

estimate the lowest AIC for four of the datasets to occur when 0 < k < 1 (Federmeier

et al., 2007: k = 0.5; Hubbard et al., 2019: k = 0.5; Szewczyk et al., 2022: k = 0.6;

Szewczyk and Federmeier, 2022: k = 0.4). Also matching the graphs, the lowest AIC for

the Nieuwland et al. (2018b) and (Wlotko and Federmeier, 2012) datasets is estimated to

occur when k = 1.

We also see a similar pattern if we look at the actual best-fitting predictability

metric for each dataset overall: for the Federmeier et al. (2007) dataset this is surprisal0.6 as

calculated by XGLM-7.5B, for Hubbard et al. (2019) this is BLOOM 7.1B surprisal0.5, for

Szewczyk et al. (2022) this is GPT-2 345M surprisal0.5, for Szewczyk and Federmeier (2022)

this is GPT-J 6B surprisal0.4, for Nieuwland et al. (2018b) this is GPT-J 6B surprisal1 (i.e.,

surprisal), and for Wlotko and Federmeier (2012) this is OPT 6.7B surprisal1.1.

10.3.4 Discussion

The results of the analysis are clear: for four of the six datasets (Federmeier et al.,

2007; Hubbard et al., 2019; Szewczyk et al., 2022; Szewczyk and Federmeier, 2022), the

value of k that leads to the surprisalk that best fits N400 amplitude is well below 1—in

fact, they are closer to 0.5. Thus, for these datasets, the results suggest that there is a
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sub-linear relationship between surprisal and N400 amplitude; that is, a sub-logarithmic

relationship between probability and the N400. For the remaining 2 datasets, (Nieuwland

et al., 2018b; Wlotko and Federmeier, 2012), the best values of k are close to 1, suggesting

a linear relationship between surprisal and the N400, and so a logarithmic relationship

between probability and the N400.

These results depart from previous work on reading time, where, depending on

the dataset and method of analysis, the best values of k tend to fall on both sides of

1 (Shain et al., 2024), or even tend to be greater than 1 (Meister et al., 2021; Hoover

et al., 2023), supporting the logarithmic or super-logarithmic accounts respectively. By

contrast, in the present study, the evidence leans in the opposite direction—while two

datasets appear to support a logarithmic relationship, the remaining four support a sub-

logarithmic relationship. As far as we are aware, this is the first study with evidence

most strongly supporting a sub-logarithmic relationship between contextual probability

and processing difficulty.

10.4 Analysis 2: A comparison of metrics and language mod-

els

10.4.1 Introduction

In Analysis 1, we sought to quantify which exponential transformation of sur-

prisal best predicts the N400, testing whether a logarithmic, sub-logarithmic, or super-

logarithmic relationship between probability and the N400 best explains the data. We

found that for four of the six datasets (Federmeier et al., 2007; Hubbard et al., 2019;

Szewczyk et al., 2022; Szewczyk and Federmeier, 2022), a sub-logarithmic transformation

best predicts N400 amplitude, while the results for the other two datasets suggest a log-
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arithmic relationship (Nieuwland et al., 2018b; Wlotko and Federmeier, 2012). However,

the approach in Analysis 1 raises two questions, which we address in this section.

First, how meaningful are the patterns observed in Analysis 1? Because the

approach only estimates the overall best exponent from all language models, it is not clear

how much better the best exponential transformation is compared to the alternatives, or

how consistent any patterns are across language models. In this second analysis, we address

both concerns, comparing surprisal with the best sub-logarithmic metric overall, which we

find to be surprisal0.6.

The second question is whether the previous finding that language model surprisal

is a better predictor of N400 amplitude than language model probability (Yan and Jaeger,

2020; Szewczyk and Federmeier, 2022) holds for the larger number of language models

and datasets that we test. As previously discussed, two studies thus far have directly

compared how probability and surprisal predict N400 amplitude, finding surprisal to be

a better predictor (Yan and Jaeger, 2020; Szewczyk and Federmeier, 2022). However, as

noted, these studies only use one language model each. In this analysis, in addition to

comparing the fit of surprisal and surprisal0.6 to N400 amplitude, we also compare the

fit of probability to both of these. Thus, we expand upon previous work by comparing

how well probability and surprisal predict N400 amplitude by analyzing the predictions of

37 contemporary transformer language models, as well as carrying out the first analysis

comparing the performance of either of these metrics to sub-logarithmically transformed

probability (i.e., surprisal0.6).

10.4.2 Method

Our analyses used the same datasets and language models as in Analysis 1. To

calculate the best sub-logarithmic metric overall, we return to general additive models as in
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Analysis 1, but instead fitting a single model to predict regression AIC across all datasets

(and including dataset as a random effect). When we construct a dummy dataset as in

Analysis 1, we find that the additive model predicts the best AIC overall for surprisal0.6,

so we use this as our best sub-logarithmic metric. We then calculate probability, surprisal,

and surprisal0.6 for each stimulus in each dataset using each language model.

10.4.3 Results

The AICs of the regressions including probability, surprisal, or surprisal0.6 are

presented in Figure 10.2. As can be seen visually, on the whole, the regressions including

surprisal as a predictor perform better than those including probability. In addition, we

see that regressions including surprisal0.6 perform better than those including probability.

As in Analysis 1, we see that for four out of six datasets (Federmeier et al., 2007; Hubbard

et al., 2019; Szewczyk et al., 2022; Szewczyk and Federmeier, 2022), surprisal0.6 is a better

predictor of N400 amplitude than surprisal, while the reverse is true for the remaining two

datasets (Nieuwland et al., 2018b; Wlotko and Federmeier, 2012).
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Figure 10.2: AIC of regressions predicting N400 amplitude using the probability, surprisal,
or surprisal0.6 calculated by 37 autoregressive transformer language models.

We next quantify the exact degree to which the AICs of regressions including

probability, surprisal, and surprisal0.6 differ. To do this, we constructed linear mixed

effects models comparing the performance of each pair of metrics (probability and sur-

prisal, probability and surprisal0.6, and surprisal and surprisal0.6) as predictors. These

linear mixed-effects models all had regression AIC as the dependent variable, metric as

the predictor, and language model as a random intercept. We show the linear mixed ef-
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fects models’ estimates of the difference in AIC between regressions with each metric as a

predictor in Table 10.2. A difference in AIC of 4 or more is generally taken to indicate a

‘substantial’ difference in support of the regression with the lower AIC over that with the

higher AIC (Burnham and Anderson, 2004). Thus, we see that for all datasets, regressions

using surprisal or surprisal0.6 as a predictor tend to fit the N400 data substantially better

than those using probability as a predictor. When comparing surprisal and surprisal0.6,

however, the results are less clear—for three of the datasets (Federmeier et al., 2007; Hub-

bard et al., 2019; Szewczyk and Federmeier, 2022), surprisal0.6 as a predictor tends to lead

to regressions that better fit the N400 data than surprisal, while for the Nieuwland et al.

(2018b) dataset, the reverse is true. The estimated differences in AICs between regres-

sions including surprisal and surprisal0.6 as predictors on the remaining two N400 datasets

(Wlotko and Federmeier, 2012; Szewczyk et al., 2022) are less than 4, and thus it is not

clear that there is a meaningful difference between the two metrics on these datasets.

Table 10.2: Estimated differences between the AICs of regressions using probability, sur-
prisal, and surprisal0.6 as predictors. P-S reflects the difference between the AICs of
regressions with probability (P) and surprisal (S) as predictors where the value reflects the
extent to which regressions with surprisal as a predictor have a lower AIC than regressions
with probability as a predictor. In the same way, P-S0.6 reflects the difference in AIC
between probability (P) and surprisal0.6 (S0.6) and S-S0.6 the difference in AIC between
surprisal (S) and surprisal0.6 (S0.6),

Exp. P-S P-S0.6 S-S0.6

Nieuwland et al. (2018b) 41.91 37.53 -4.38
Federmeier et al. (2007) 51.85 66.15 14.30
Wlotko and Federmeier (2012) 22.44 20.05 -2.39
Szewczyk and Federmeier (2022) 5.72 10.86 5.14
Hubbard et al. (2019) 18.23 24.43 6.19
Szewczyk et al. (2022) 11.89 13.41 1.52

In order to test how robust these estimates are, we carried out pairwise supple-

mentary analyses evaluating whether metric (i.e., probability vs. surprisal, probability vs.

surprisal0.6, or surprisal vs. surprisal0.6) was a significant predictor of regression AIC by
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running likelihood ratio tests comparing the aforementioned linear mixed-effects models to

equivalent models not including metric as a predictor. The results are reported in sub-

section 10.10.1. In all cases, metric was a significant predictor, and thus the findings that

using surprisal0.6 to predict N400 amplitude leads to the regression with the best fit on 3

of the datasets (Federmeier et al., 2007; Hubbard et al., 2019; Szewczyk and Federmeier,

2022) and that using surprisal leads to the regressions with the best fit on the Nieuwland

et al. (2018b) dataset are statistically significant.

10.4.4 Discussion

This analysis has three findings. First, we find that the results of Yan and Jaeger

(2020) and Szewczyk and Federmeier (2022) generalize across a larger number of models—

overall, surprisal is a better predictor of N400 amplitude than probability is. Second, we

find that, across language models, surprisal0.6 is also a better predictor of N400 amplitude

than probability is. Finally, when we compare the performance of regressions predicting

N400 amplitude using surprisal or surprisal0.6, we provide additional support for the results

of Analysis 1: for the majority of datasets (Federmeier et al., 2007; Hubbard et al., 2019;

Szewczyk et al., 2022; Szewczyk and Federmeier, 2022), using surprisal0.6 to predict N400

amplitude leads to a numerically lower AIC than using surprisal; while for the remaining

datasets (Nieuwland et al., 2018b; Wlotko and Federmeier, 2012), the reverse is true.

Analyzing the differences in more detail and running statistical tests adds further

nuance to these results. Specifically, on three of the datasets (Federmeier et al., 2007; Hub-

bard et al., 2019; Szewczyk et al., 2022; Szewczyk and Federmeier, 2022), using surprisal0.6

to predict N400 amplitude tends to lead to to a substantially better fit, and this difference

is statistically significant across language models. In addition, for one dataset (Nieuwland

et al., 2018b), the substantially better fit to the data of surprisal (compared to surprisal0.6)
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is statistically significant. Finally, for the remaining two datasets, while there are signifi-

cant differences, the effect size of under 4 AIC suggests that there is no clear difference in

whether using surprisal or surprisal0.6 to predict N400 amplitude leads to a better fit to

the data.

10.5 Analysis 3: Variance Explained

10.5.1 Introduction

A striking result of the present study so far has been that in contrast to work on

reading time, the evidence best supports a sub-logarithmic relationship between probability

and N400 amplitude. However, thus far, we have only analyzed differences in overall fit

between models; the key quantitative question is to what extent the variables discussed

can explain variance in N400 amplitude. That is the question we address in this section.

To do this, we turn to our best-performing language models. If we hope to un-

derstand the mathematical relationship between contextual probability and the N400, we

should use the models whose metrics (i.e., transformed probability values) most closely

correlate with N400 amplitude to avoid confounds. For example, because surprisal magni-

fies differences at the low end of the scale (i.e., when probability is close to zero), surprisal

may magnify small differences in predictions across language models such that probabilities

from poorly performing language models might actually spuriously outperform surprisal in

some cases.

We therefore select the best overall language model for each dataset, and test how

well probability, surprisal, and surprisal0.6 each explain the variance in N400 amplitude in

that dataset.
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10.5.2 Method

Based on the results of Analyses 1 and 2, we use surprisal0.6 as our sub-logarithmic

metric. We select the best language models by looking at those that produced the regres-

sion with the lowest AIC for each dataset in Analysis 1: these were XGLM 7.5B on the

Federmeier et al., 2007) dataset, BLOOM 7.1B on Hubbard et al. (2019), GPT-2 345M on

Szewczyk et al. (2022), OPT 6.7B on Wlotko and Federmeier (2012), and GPT-J 6B on

Nieuwland et al. (2018b) and Szewczyk and Federmeier (2022).

10.5.3 Results

First, we visualize the relationship between each metric and the N400. Figure 10.3

shows the relationship between baselined N400 amplitude and GPT-J 6B probability, sur-

prisal, and surprisal0.6 for all datasets. In line with the results of Analysis 2, we see that

for the majority of datasets (Federmeier et al., 2007; Hubbard et al., 2019; Szewczyk and

Federmeier, 2022; Szewczyk et al., 2022), surprisal0.6 does indeed appear to have the most

(approximately) linear relationship to N400 amplitude. By contrast, surprisal appears to

have the most linear relationship with N400 amplitude in the Wlotko and Federmeier (2012)

dataset. Finally, the results for the Nieuwland et al. (2018b) are less clear—visually, it is

hard to tell which metric has the most linear relationship to N400 amplitude. We provide

the equivalent graphs for the other language models in subsection 10.10.2.
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Figure 10.3: N400 amplitude as a function of GPT-J 6B probability, surprisal, and
surprisal0.6. The x-axis for probability is reversed for easier comparison with surprisal
and surprisal0.6.

We next investigate the extent to which each metric explains variance in N400

amplitude, and whether any variables explain additional variance once others are accounted

for. Thus, in addition to looking at probability, surprisal, and surprisal0.6 as in Analysis

2, we also look at the combination of surprisal and probability, following Szewczyk and

Federmeier (2022). We show how the fit of regressions including these predictors compare

in Figure 10.4. Given the drastically worse performance of the probability-only regressions

on some of the datasets (in particular Federmeier et al., 2007 and Nieuwland et al., 2018b),

we exclude these from the Figure 10.4; however, for completeness, we provide these in

subsection 10.10.3.
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and surprisal, probability and surprisal0.6, and surprisal and surprisal0.6 as predictors of
N400 amplitude. We look at the results for the 5 language models that best predict each
of the 6 datasets.

We then test how well each of these predictors or sets of predictors calculated

using each language model explains variance in N400 amplitude using likelihood ratio tests

between linear mixed-effects models, testing the effect of adding probability, surprisal,

surprisal0.6, and both probability and surprisal to a regression already including one of

these, thereby testing whether the added variable explains additional variance. Specifically,

we test the effect of adding surprisal0.6 to a linear mixed-effects model already including

surprisal (S+S0.6), adding probability to a model already including surprisal (S+p), adding

surprisal to a model already including surprisal0.6 (S0.6 +S), adding probability to a model

already including surprisal0.6 (S0.6 + p), adding surprisal to a model already including

probability (p + S), adding surprisal0.6 to a model already including probability (p + S0.6),

adding surprisal0.6 to a model already including surprisal and probability ((S + p) + S0.6),

and adding both surprisal and probability to a model already including surprisal0.6 (S0.6 +

(S + p)).
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Table 10.3: Results of the likelihood ratio tests testing the effect of adding GPT-J 6B
probability (p), surprisal (S), surprisal0.6 (S0.6), or a combination of these to a linear
mixed-effects model already including one or more other of these variables, thereby testing
whether they explain any additional variance. As an example, S + p refers to a likelihood
ratio test of whether probability explains additional variance in N400 amplitude above and
beyond that explained by surprisal. F07 refers to Federmeier et al. (2007), W12 to Wlotko
and Federmeier (2012), SF22 to Szewczyk and Federmeier (2022), H19 to Hubbard et al.
(2019), S22 to Szewczyk et al. (2022), and N18 to Nieuwland et al. (2018b).

S0.6 + S S0.6 + p S + S0.6 S + p
Exp. χ2 p χ2 p χ2 p χ2 p
F07 0.08 1.0000 0.03 1.0000 11.87 0.0116 11.85 0.0116
W12 5.25 0.2676 6.05 0.1827 0.49 1.0000 0.59 1.0000
SF22 1.50 1.0000 0.82 1.0000 7.69 0.0813 7.06 0.1104
H19 2.91 0.9155 0.59 1.0000 13.1 0.0064 9.95 0.0254
S22 0.05 1.0000 0.27 1.0000 2.55 1.0000 3.03 0.867
N18 6.26 0.1652 9.31 0.0349 0.01 1.0000 0.08 1.0000

p + S p + S0.6 (S + p) + S0.6 S0.6 + (S + p)
Exp. χ2 p χ2 p χ2 p χ2 p
F07 67.88 <0.0001 67.85 <0.0001 0.13 1.0000 0.20 1.0000
W12 28.46 <0.0001 29.16 <0.0001 0.14 1.0000 5.49 0.6927
SF22 10.73 0.0182 10.67 0.0184 0.71 1.0000 1.58 1.0000
H19 19.11 0.0003 19.94 0.0002 6.19 0.1697 5.95 0.5716
S22 10.96 0.0164 10.71 0.0182 0.47 1.0000 1.00 1.0000
N18 51.87 <0.0001 54.85 <0.0001 1.76 1.0000 8.09 0.2217

The results for the predictors calculated using GPT-J 6B are presented in Ta-

ble 10.3. As previously noted, all p-values were corrected for multiple comparisons using

the stringent false discovery rate method proposed by Benjamini and Yekutieli (2001), en-

suring that we report only the most robust effects. The tables for the other 5 models are

provided in subsection 10.10.4.

First, and perhaps least surprising, is the finding that in all the datasets both

surprisal and surprisal0.6 explain a significant amount of variance in N400 amplitude above

and beyond that explained by probability. This is in line both with previous work and
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the results presented in Figure 10.4, where we see that probability is a substantially worse

predictor on its own than the other two metrics. As can be seen in Figure 10.4, this is

also the case with the other 4 language models. However, there is one exception to this

pattern—the difference for XGLM 7.5B on the Szewczyk and Federmeier (2022) dataset is

not significant.

Next, we see that probability explains variance in N400 amplitude above and be-

yond that explained by surprisal0.6 on the Nieuwland et al. (2018b) dataset. This is also the

case with probabilities calculated using BLOOM 7.1B and XGLM 7.5B, but not OPT 6.7B

or GPT-2 345M. It is also worth noting that on the same dataset, BLOOM 7.1B surprisal

explains variance in N400 amplitude above and beyond that explained by surprisal0.6. As

can be seen in Figure 10.4, in each of these cases, the the combined surprisal0.6 and prob-

ability regression has a lower AIC than the equivalent combined surprisal and probability

regression, with the difference in AIC exceeding 4 in the case of OPT 6.7B.

We also see that both probability and surprisal0.6 explain variance above and

beyond that explained by surprisal on the Federmeier et al. (2007) and Hubbard et al.

(2019) datasets. This is also true for other models with the exception of BLOOM 7.1B

probabilities, with which only the Federmeier et al. (2007) dataset shows the effect. In

addition, the effect is also found on the Szewczyk and Federmeier (2022) dataset for XGLM

7.5B probabilities.

Finally, while we see differences between how well they predict N400 ampli-

tude numerically in Figure 10.4, after correction for multiple comparisons, we do not find

surprisal0.6 to explain any variance not already explained by both surprisal and probability,

and neither do we find the reverse. This suggests that surprisal0.6 and the combination of

surprisal and probability explain very similar variance in N400 amplitude.
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10.5.4 Discussion

Several clear results arise from these analyses. First, surprisal predicts N400

amplitude better than probability does. For five language models—each of which is the

model that best predicts N400 amplitude on at least one dataset—surprisal explains a

significant amount of the variance in N400 amplitude not explained by probability in every

dataset, even after correction for multiple comparisons. Thus, these results replicate and

expand on those of Szewczyk and Federmeier (2022). Specifically, Szewczyk and Federmeier

(2022) find that GPT-2 1.5B surprisal explains variance in N400 amplitude not explained

by probability on a combined dataset made up of four datasets (Wlotko and Federmeier,

2012; Szewczyk and Federmeier, 2022; Hubbard et al., 2019; Szewczyk et al., 2022), as well

as for the unexpected (cloze ≤ 5%) completions in the Federmeier et al. (2007) dataset.

We find the same pattern to hold when all the data from each of these datasets (as well

as Federmeier et al., 2007 and Nieuwland et al., 2018b) are analyzed separately using the

probabilities calculated from five additional language models (GPT-J 6B, BLOOM 7.1B,

OPT 6.7B, XGLM 7.5B, and GPT-2 345M). Thus, our results suggest that this result is

generalizable across language models and on at least one entirely new dataset (Nieuwland

et al., 2018b).

We also find that for two of the datasets (Federmeier et al., 2007; Hubbard et al.,

2019), probability conversely explains variance in N400 amplitude not explained by sur-

prisal. Szewczyk and Federmeier (2022) report this for their aforementioned combined

dataset, as well as the expected completions from Federmeier et al. (2007). Our results

expand upon the latter finding. This effect is present with the probabilities calculated

using five additional language models, even when considering all data from Federmeier

et al. (2007)—i.e., not just expected completions—and even when correcting for multiple

comparisons. Our results also pinpoint the Hubbard et al. (2019) dataset as a likely source
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of the effect on the combined dataset—we see that the effect of probability significantly

predicts N400 amplitude even when surprisal is accounted for with four of the five models.

These results raise the question of why we only see this pattern for two of the six

datasets. One possibility is the experimental stimuli themselves—of the five datasets for

which the stimulus selection process is reported, only Hubbard et al. (2019) directly use

stimuli from Federmeier et al. (2007) without adding additional stimili; and thus there may

be something about these stimuli that leads to the effect being detected. Whether this is

because the effect is present but undetectable in the other stimuli or is caused by some

as yet unidentified feature of the Federmeier et al. (2007) stimuli is a question for further

research. However, it is worth noting that one piece of evidence in favor of the former is

that one of the datasets that does not show this effect is the Nieuwland et al. (2018b),

which has the smallest number of items and is predominantly made up of high-constraint

sentences only, and the other is Wlotko and Federmeier (2012), which has the smallest

number of experimental participants.

We also find two novel results based around surprisal0.6. First, we find that like

surprisal, surprisal0.6 explains a significant amount of the variance in N400 amplitude not

explained by probability across virtually all language models and datasets. In addition,

we find that for the datasets where probability explains the variance in N400 amplitude

above and beyond that explained by surprisal, surprisal0.6 also explains variance not ex-

plained by surprisal; and in addition, probability does not explain variance not explained by

surprisal0.6. In fact, with the exception of the Nieuwland et al. (2018b) dataset, surprisal0.6

explains all the statistically significant variance explained by both surprisal and probability

across models and datasets. It is still important to note, however, that with the Nieuw-

land et al. (2018b) dataset, GPT-J 6B, BLOOM 7.1B, and XGLM 7.5B (but not OPT

6.7B or GPT-2 345M) probability explains variance in N400 amplitude not explained by
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surprisal0.6, as does BLOOM 7.1B surprisal. Given the aforementioned limitations of the

Nieuwland et al. (2018b) dataset and the fact that this is only the case for three of the

five language models on one of the six datasets tested, it is possible that this is simply

an anomalous result, but this is something that would need to be tested by running sim-

ilar analyses on a larger number of additional datasets. Taken together, our results for

surprisal0.6 may be taken to suggest that the individual effects of probability and surprisal

reported by Szewczyk and Federmeier (2022) and replicated in our work could instead be

empirically accounted for by a single sub-logarithmic relationship (i.e., (−log(p))0.6 be-

tween language model probability and N400 amplitude. However, we are not aware of any

previous theoretical work predicting such a relationship.

Overall, the results of this analysis showed three things. First, we replicate and

expand Szewczyk and Federmeier’s (2022) finding that language model surprisal explains

variance in N400 amplitude above and beyond that explained by probability. We also repli-

cate and extend the finding that probability explains variance not explained by probability

on the Federmeier et al. (2007) and Hubbard et al. (2019) datasets. Finally, we found both

of these effects are captured by a single variable—surprisal0.6. In all cases, all the variance

explained by surprisal that is not explained by probability is explained by surprisal0.6, and

all variance in Federmeier et al. (2007) and Hubbard et al. (2019) explained by probability

that is not explained by surprisal is explained by surprisal0.6. In fact, we see that on 27 of

the 30 combinations of language models and datasets, surprisal0.6 explains all the variance

in N400 amplitude explained by either surprisal, probability, or their combination. Finally,

in the 3 remaining cases, the combination of surprisal0.6 and probability predicts N400

amplitude at least as well as the combination of surprisal and probability.
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10.6 Interim General Discussion

The results of Analyses 1-3 show that the best single predictor of N400 amplitude

is sub-logarithmically transformed probability, and that the same variance is explained by

a combination of probability and surprisal. Thus, the empirical results can be considered

to equally support a sub-logarithmic relationship or the combined relationship (in line with

the multiple sub-component account of Szewczyk and Federmeier, 2022). Given the lack

of any previously-proposed theory accounting for the sublogarithmic relationship, in this

paper we focus on this new result and how it compares to Szewczyk and Federmeier’s (2022)

multiple sub-component account. Thus, we do not consider the additional possibilities of

multiple sub-component accounts involving a sub-logarithmic relationship as well as either

surprisal, probability, or both.

The present study shows the difficulty in distinguishing empirically between the

sublogarithmic and multiple sub-component relationships—both predict N400 amplitude

well. Both also explain seemingly disparate findings in previous work. For example, one

well-established phenomenon is that N400 amplitude can differ greatly between words

with matched cloze probabilities, especially between low (or zero) cloze items (Federmeier

and Kutas, 1999; Metusalem et al., 2012; DeLong et al., 2019). More recent work, how-

ever, suggests that at least some of this variance in N400 amplitude can be captured by

language model surprisal (Michaelov and Bergen, 2020, 2022a). Surprisal’s success with

low-probability words likely derives from the fact that it emphasizes differences in proba-

bility at the low end of the scale. But by the same token, it also reduces the differences

at the high end of the probability scale. Empirical results suggests that this could be a

problem for modeling the N400—indeed, part of the empirical motivation for Szewczyk and

Federmeier’s (2022) multiple sub-component account is that language model probability

better predicts the amplitude of the N400 response elicited by high-probability items than
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language model surprisal does. The question, then, is how to determine whether the the-

oretically unexplained but parsimonious sublogarithmic relationship or the theoretically-

motivated but more complex multiple sub-component account is more strongly supported

by the evidence. This is the aim of the remainder of this paper.

10.6.1 Towards a multiple sub-component account

First, we consider the evidence that exists or would be need to exist to support

the multiple sub-component account as proposed by Szewczyk and Federmeier (2022).

This account has three aspects: the idea that the N400 is sensitive to both contextual

predictability and similarity (or more specifically, overlap of semantic features in long-term

memory); the empirical result that the N400 can be predicted by contextual probability and

surprisal; and the linking hypothesis that the effect of contextual predictability on N400

amplitude can be operationalized by a linear relationship between contextual probability

and N400 amplitude and that the effect of contextual similarity on N400 amplitude can

be operationalized by a logarithmic relationship between contextual probability and N400

amplitude (i.e., a linear relationship between surprisal and N400 amplitude).

There is some evidence for the first of these. Lau et al. (2013), for example,

investigate this question through experimental manipulation. Their study used the well-

established word-pair priming paradigm under which words preceded by related words elicit

smaller N400 responses than words preceded by unrelated words (see, e.g., Bentin et al.,

1985; Rugg, 1985; Holcomb, 1988; Kutas and Hillyard, 1989; Kutas, 1993). Lau et al. (2013)

found that participants who had been presented with a larger proportion of trials where

the words were related showed increased reductions in the N400 for associated targets,

as well as a difference in onset latency and topographic distribution of the priming effect

compared to participants who were presented with fewer related word pairs. Lau et al.
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(2013) follow previous work (Neely, 1977; Becker, 1980) in arguing that the greater degree

of predictive validity in the high relatedness proportion stimuli is indicative of increased

predictive processing, and thus, that the differences in the N400 effects between relatedness

proportions are due to an effect of a predictive processes. As noted, the differences based on

this manipulation are dissociable in latency and topographic distribution from the baseline

N400 effects in word-pair priming that are generally thought to arise from associative

processes, and thus, the effects of prediction and association are argued to be distinct and

hypothesized to possibly arise from ‘qualitatively different’ neurocognitive processes (Lau

et al., 2013).

An alternative approach is to test how much variance is explained either by con-

textual predictability or semantic feature overlap. In studies of this type (Parviz et al.,

2011; Frank and Willems, 2017), in addition to using the predictions of language models

(or augmented language models) to operationalize predictability, researchers use the con-

textual similarity of word vectors to model semantic feature overlap to model the N400

(Frank and Willems, 2017). Specifically, Parviz et al. (2011) used latent semantic analysis

(LSA; Dumais et al., 1988; Landauer et al., 1998) to calculate word vectors represent-

ing the semantics of all the words in the experimental stimuli, operationalizing semantic

feature overlap as the cosine distance between the word vector representing the critical

word and a context vector made up of the elementwise product of all word vectors in the

context. Frank and Willems (2017), on the other hand, use their own implementation of

word2vec (Mikolov et al., 2013a,b) to calculate word vectors, basing their metric of ‘se-

mantic distance’ on the cosine similarity of the critical word and the sum of the vectors

of the words in its context. In both cases, semantic feature overlap was found to predict

variance in N400 amplitude above and beyond predictability, supporting the idea that the

two may arise from distinct sub-processes. It is also worth noting that there are a number
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of other studies that have been argued to directly or indirectly support this perspective

(see Federmeier, 2021 for review).

The second aspect of the multiple sub-component account presented by Szewczyk

and Federmeier (2022) is an empirical one—the finding that probability and surprisal can

explain separate variance in N400 amplitude. Szewczyk and Federmeier (2022) provide

evidence of this for GPT-2 1.5B (XL) probability, and we provide evidence for this for

BLOOM 7.1B, GPT-2 345M (Medium), GPT-J 6B, OPT 6.7B, and XGLM 7.5B.

The third and final aspect of the account—the linking hypothesis—is less well-

evidenced, however. Intuitively, given the fact that both language model predictions and

aggregated cloze responses can be formulated as probabilities, it seems natural to stipulate

that they could be linearly related. And while there does not appear to be a large difference

in the extent to which un-transformed or log-transformed cloze probabilities predict N400

amplitude (Aurnhammer et al., 2021; Michaelov et al., 2022; Szewczyk and Federmeier,

2022), the evidence appears to support a linear relationship between cloze probability and

reading time (Brothers and Kuperberg, 2021), leading Brothers and Kuperberg (2021) to

argue that cloze probabilities closely reflect the extent to which words are predicted in the

brain (see also Smith and Levy, 2011) and that processing difficulty is linearly related to this

degree of proportional (predictive) preactivation. The account presented by Szewczyk and

Federmeier (2022) follows this intuition in that it argues that the extent to which words are

predicted is linearly related to N400 amplitude. However, while Szewczyk and Federmeier

(2022) quantify the correlation between cloze probability and GPT-2 1.5B probability for

expected (cloze probability > 0.05) words (r = 0.72), this is not compared to the degree of

correlation between GPT-2 1.5B surprisal and cloze probability in the same range. Thus,

in principle, even if we fully accept the proportional preactivation account of Brothers

and Kuperberg (2021), it is not a given that language model probability is more related
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to these ‘subjective probabilities’ (Smith and Levy, 2011) that have been argued to be

linearly related to processing difficulty (Brothers and Kuperberg, 2021) than is language

model surprisal, for example. This is an empirical question that can be directly tested,

and we do, in Analysis 4.

There is also limited evidence for the second part of the linking hypothesis, namely,

that language model surprisal can operationalize the degree of semantic featural overlap

between a critical word and its context. The main issue is that the composite processing

difficulty account provided by Szewczyk and Federmeier (2022) could in principle apply to

any featural overlap between a word and its context. Indeed, the explanation is the same

as that given in the original version of the account presented by Smith and Levy (2013)

but with word fragments replaced by semantic features. Thus, while it is in principle a

plausible account, there is no direct evidence that contextual similarity is well-correlated

with language model surprisal, even if the latter does in fact in part reflect the former. One

possible indirect piece of evidence for this component is found in Michaelov et al. (2024),

where the semantic featural overlap between a word and its context was operationalized

as the cosine similarity between the GloVe (Pennington et al., 2014) or fastText (Mikolov

et al., 2018) word embedding for the critical word and the mean of the embeddings of

the words in the context. Crucially, GPT-3 surprisal was found to fully account for the

variance in N400 amplitude explained by either metric of semantic featural overlap, which

is consistent with the idea that the two are strongly related, as proposed by Szewczyk and

Federmeier (2022). However, it is worth noting that it is also the case that GPT-3 surprisal

explains all the variance explained by cloze probability (Michaelov et al., 2024); and thus,

the evidence for the linking hypthosis is far from conclusive. We thus also investigate this

relationship in Analysis 4.
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10.6.2 Towards a sublogarithmic account

As previously noted, no current theoretical account predicts a sublogarithmic re-

lationship between contextual probability and any metric of processing difficulty, including

the N400. Despite this, not all the accounts are inconsistent with such a relationship be-

tween statistical probability (as operationalized by language model probability) and the

N400. This becomes clear if we consider the two accounts that explicitly posit that words

are preactivated in the brain to an extent that correlates with contextual probability,

namely, the contextual probability (Brothers and Kuperberg, 2021) and distribution up-

date (Aurnhammer and Frank, 2019b) accounts. The linear (in the case of the contextual

probability account) and logarithmic (in the case of the distribution update account) re-

lationships described by these accounts are posited to be a result of these relative degrees

of preactivation, which can be mathematically described as a probability distribution over

candidate stimuli—the distribution of ‘subjective probabilities’ (Smith and Levy, 2011).

Crucially, then, while the aforementioned three accounts make claims about the relation-

ship between subjective probabilities and processing difficulty, they do not make any claim

about the relationship between statistical probabilities and subjective probabilities.

Statistical probability does not directly correspond to cloze probability (for dis-

cussion, see Smith and Levy, 2011; Brothers and Kuperberg, 2021; Michaelov et al., 2022),

and so it is possible that the subjective probability of a word in context is represented in

the brain such that there is a nonlinear relationship between it and the word’s statistical

probability. In fact, such a relationship may be indirectly supported by previous work.

Several researchers have argued that the same linguistic representations that underlie the

predictions that occur during language comprehension are likely to be those drawn on when

responding to the cloze task (Smith and Levy, 2011; Brothers and Kuperberg, 2021). It

is therefore perhaps unsurprising that Brothers and Kuperberg (2021) find that the re-

307



lationship between cloze and processing difficulty is best described as linear. Meanwhile,

however, recent empirical work has established the relationship between language proba-

bility and behavioral metrics of processing difficulty such as reading time to be decidedly

non-linear (Smith and Levy, 2013; Shain et al., 2024; Wilcox et al., 2023b; Meister et al.,

2021; Hoover et al., 2023).

Thus, it is perfectly possible that cloze probability and language model probability

may have different relationships with N400 amplitude, and that the relationship between

statistical probability (as approximated by language mode probability) and subjective word

probability (as approximated by cloze probability) may be nonlinear. We test the viability

of this possibility by investigating the relationship between language model probability and

cloze probability.

The first thing to consider is that, as noted above, while behavioral evidence

suggests a linear relationship between subjective probability and reading time (see Brothers

and Kuperberg, 2021), the precise relationship between subjective probability and N400

amplitude is less clear. In Michaelov et al. (2022), cloze surprisal (i.e., log-transformed

cloze probability) is found to predict N400 amplitude slightly better than un-transformed

cloze probability in sentences where cloze > 0. Szewczyk and Federmeier (2022), on the

other hand, report a slightly better performance from cloze probability for stimuli where

cloze > 0.05.

For this reason, in the present study, we consider both possibilities—that the

relationship between subjective probability and N400 amplitude is linear (as under the

contextual probability account), and that the relationship is logarithmic (as under the dis-

tribution update account). Taken together, therefore, there are two possible ways in which

the relationship between statistical probability and N400 amplitude is sublogarithmic.

The first of these is that the relationship between statistical probability and sub-
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jective probability is sublogarithmic, and the relationship between subjective probability

and N400 amplitude is linear, as under the contextual probability account. This would

explain the evidence we find for a sublogarithmic relationship between language model

probability and N400 amplitude. Given that this possibility involves a linear relationship

between subjective probability and N400 amplitude and our finding that the best single

characterization of the relationship between language model probability and N400 ampli-

tude is linearly related to (− log p)0.6 (i.e., surprisal0.6), we test how closely language model

surprisal0.6 correlates with cloze probability compared to un-transformed probability and

surprisal.

Next we turn to the other possibility, namely, that in addition to a sublogarithmic

relationship between statistical probability and N400 amplitude, there is also a logarithmic

relationship between subjective probability and N400 amplitude, in line with the distribu-

tion update account. In this case, then, the relationship between language model prob-

ability and cloze probability would be linearly related to e(− log p)0.6 (i.e., language model

esurprisal0.6). We again compare how closely this correlates with cloze probability.

In summary, while our empirical results suggest that there may be a sublogarith-

mic relationship between statistical probability and N400 amplitude, this is not something

that has been suggested in any previous work. However, most accounts theorize based on

a relationship between subjective probability and N400 amplitude, which, as we note, is

not the same as statistical probability. If cloze probability shows a linear relationship to

language model surprisal0.6 (in line with the contextual probability account) or language

model esurprisal0.6 (in line with the distribution update account), this would provide indepen-

dent empirical support for the sublogarithmic relationship between statistical probability

and N400 amplitude. Future work would be needed to investigate why such a nonlinearity

might characterize (or at least approximate) the relationship between statistical probability
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and subjective probability; but to the best of our knowledge, only one study (Smith and

Levy, 2011) has thus far studied the relationship between the two, and consequently, sub-

stantial work is needed in this area regardless. We hope that the investigations in Analysis

4 can help to further this much-needed line of research.

10.7 Analysis 4: Correlations of predictors

10.7.1 Introduction

In this analysis, we ask whether it is possible to determine whether the multiple

sub-component account of Szewczyk and Federmeier (2022) or the sublogarithmic account

proposed in the Interim Discussion is better supported by the evidence. As noted in the In-

terim Discussion, under the multiple sub-component account of Szewczyk and Federmeier

(2022), we should expect that un-transformed statistical probability (operationalized by

language model probability) is linearly related to subjective probability (operationalized

as cloze probability) and language model surprisal is logarithmically related to semantic

featural overlap with the context (as operationalized based on similarity between word

vectors). Meanwhile, if the sublogarithmic account is true and the sublogarithmic rela-

tionship approximates a component of the relationship between statistical probability and

subjective probability, then the relationship between language model probability and sub-

jective probability should be either sublogarithmic ((− log p)0.6; i.e., surprisal0.6) under the

contextual probability account or an exponentation of this (e(− log p)0.6 ; i.e., esurprisal0.6 )

under the distribution update account. This is what we test in this section.
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10.7.2 Method

The N400 data and language models are the same as in Analysis 3. We also

utilize the cloze probabilities provided by the authors (Nieuwland et al., 2018b; Szewczyk

and Federmeier, 2022) for each item.

In addition, we calculate the featural overlap between critical words and their pre-

ceding context. To do this, we follow Ettinger et al. (2016) and Michaelov et al. (2024), cal-

culating the cosine similarity between the mean of the word embeddings of the context and

the word embedding of the critical word. Based on their performance at predicting N400

amplitude in previous work (Michaelov et al., 2024), we use fastText (Joulin et al., 2017)

word embeddings. Departing from Michaelov et al. (2024), we use the 300-dimensional

embeddings trained on a combination of English Common Crawl and Wikipedia data in

Grave et al. (2018) because the authors provide the original model, allowing the word

embedding of any critical or context word to be calculated.

10.7.3 Results

Correlation with cloze

First, we test how closely cloze probability correlates with the probability, sur-

prisal, surprisal0.6, and esurprisal0.6 calculated from each language model. To do this we

calculate the absolute value of the correlation coefficient (Pearson’s r) of cloze probability

and each of the aforementioned variables. Following Szewczyk and Federmeier (2022), we

only look at words with a cloze probability of greater than 0.05. The results are shown in

Figure 10.5.
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Figure 10.5: The absolute correlation coefficient between the probability, surprisal,
surprisal0.6, and esurprisal0.6 calculated from each language model and cloze probability.
This analysis only includes data from stimuli with a cloze probability greater than 0.05.

These results align reasonably well with our formulation of Szewczyk and Fed-

ermeier’s (2022) multiple sub-component account. Under this account, we would expect

probability to correlate more closely with cloze probability than surprisal does. This is

indeed the case for a narrow majority of the comparisons—19 of the total 30. Intriguingly,

the exceptions seem to align with those found in the previous analyses of this paper—8

of the 11 cases where surprisal is more closely correlated with cloze probability are the

Nieuwland et al. (2018b) and Wlotko and Federmeier (2012) datasets. Given that this

analysis was carried out on the properties of the stimuli alone, this suggests that the fact

that these datasets show different patterns in the N400 to the other datasets is likely due

to the stimuli themselves.

We also tested how closely surprisal0.6 and esurprisal0.6 correlate with cloze proba-

bility. The results of this comparison are clearer—with the exception of GPT-J 6B surprisal

on the Nieuwland et al. (2018b) dataset, esurprisal0.6 is least closely correlated with cloze

probability; and in all cases, surprisal0.6 is mostly closely correlated with cloze probability.
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Overall, then, the results of this analysis most strongly support the sub-logarithmic variant

of the proportional preactivation account.

Correlation with contextual similarity
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Figure 10.6: The absolute correlation coefficient between the probability, surprisal,
surprisal0.6, and esurprisal0.6 calculated from each language model and contextual similarity.

Second, we test how closely contextual similarity correlates with each of the same

model-derived metrics. Again, we begin by considering how well these results align with

our formulation of Szewczyk and Federmeier’s (2022) multiple sub-component account.

Under this account, we would expect surprisal to correlate more closely with contextual

similarity than probability does. This is the case for 28 of the total 30 comparisons. Taken

together with the previous results, this supports the idea that language model probability

better captures lexical prediction (operationalized by cloze probability) than surprisal, and

surprisal (to a greater extent) better captures contextual similarity.

However, it is also worth noting that surprisal0.6 is always more closely correlated

with contextual similarity than probability, and is more closely correlated than surprisal
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in 20 of the 30 comparisons.

10.7.4 Discussion

The results of this analysis are mixed. The fact that in almost all (28 out of

30) comparisons, language model surprisal is more strongly correlated with contextual

similarity than probability supports Szewczyk and Federmeier’s (2022) claim that surprisal

may operationalize the semantic featural overlap between a critical word and its context.

The fact that language model probability is more strongly correlated with cloze probability

in 19 out of 30 comparisons also supports the account, though less strongly.

We also see that surprisal0.6 is generally the variable most strongly correlated

with cloze probability, while esurprisal0.6 shows the weakest correlation. Thus, our results

suggest if there is a sublogarithmic relationship between statistical probability and the

N400, the sublogarithmic relationship lies between statistical and subjective probability.

For this reason, they also provide indirect evidence for the contextual probability account

in general, as the same mathematical relationship best characterizes both the relationship

between language model probability and cloze probability and between language model

probability and N400 amplitude.

Finally, we consider the extent to which these results shed light on the question of

whether the multiple sub-component account or the sublogarithmic account better explains

the data. On most of the models and datasets, we see the same patterns. First, we see

that language model surprisal tends to be more correlated with contextual similarity than

language model probability is. In addition, we see that language model probability tends to

be more correlated with cloze probability than language model surprisal is. These findings

are both in line with what we would expect to see under the multiple sub-component

account. However, the evidential support for the account is somewhat undercut by the
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fact that surprisal0.6 is a better predictor of both. Thus, the results provide some evidence

in favor of each possible account, without providing clear support for one over the other.

The fact that surprisal0.6 is the best predictor of both our metric of semantic

feature overlap (contetxual similarity) and lexical prediction (cloze probability) suggests

that cloze probability may not clearly reflect lexical prediction as distinct from semantic

feature overlap. This is further supported by previous work showing a correlation between

contextual similarity and cloze probability (Michaelov et al., 2024) as well as between

word association and cloze probability (Smith and Levy, 2011). Indeed, in the datasets

we analyze, cloze probability and contextual similarity are generally weakly to moderately

correlated (Federmeier et al. (2007): r = 0.344; Hubbard et al. (2019): r = 0.294 Nieuwland

et al. (2018b): r = 0.244 Szewczyk and Federmeier (2022): r = 0.343 Szewczyk et al. (2022):

r = 0.179 Wlotko and Federmeier (2012): r = 0.301). Whether this has implications for the

extent to which semantic feature overlap and lexical prediction are dissociable in general

is a question for future work.

10.8 General Discussion

The work described in this paper is novel in several ways. To the best of our knowl-

edge, it is the first to compare linear, logarithmic, super-logarithmic, and sub-logarithmic

relationships between probability and N400 amplitude in explaining experimental data.

The key and surprising finding is that on the whole, sub-linearly-transformed surprisal is

a better predictor of N400 amplitude than surprisal is—this is the case for four out of six

datasets when comparing fit to the data across models. Moreover, we observed that when

calculating the metrics using the model that best predicts N400 amplitude for each dataset,

sub-linearly-transformed surprisal almost always explains all the variance explained by sur-

prisal and probability. This is in contrast to previous work on reading time, where to date
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there is no clear consensus on whether a linear, sub-linear, or super-linear relationship with

surprisal best explains the data (Smith and Levy, 2013; Meister et al., 2021; Shain et al.,

2024; Wilcox et al., 2023b).

Beyond this new finding, the current results also replicate and expand upon pre-

vious work. First, in line with Yan and Jaeger (2020) and Szewczyk and Federmeier

(2022), surprisal out-performed un-transformed probability as a single predictor of N400

amplitude—across language models, using surprisal as a predictor results in significantly

better-fitting linear mixed-effects models than probability. We show that this is not just

the case for the Frank and Willems (2017) model used by Yan and Jaeger (2020) and for

the GPT-2 (Radford et al., 2019) model used by Szewczyk and Federmeier (2022), but

that it occurs generally across contemporary autoregressive transformer language models.

While there are individual exceptions, overall across datasets, language model surprisal

out-performs un-transformed probability.

The results reported here also further support the finding, reported by Szewczyk

and Federmeier (2022), that language model probability can explain variance in N400

amplitude above and beyond that explained by surprisal. Szewczyk and Federmeier (2022)

found this using GPT-2 1.5B; our results similarly show that for the Federmeier et al.

(2007) and Hubbard et al. (2019) datasets, GPT-J 6B, GPT-2 345M, OPT 6.7B, and

XGLM 7.5B probability explain variance in N400 not explained by the surprisal of the

same language model; and the same is true for BLOOM 7.1B on the Federmeier et al.

(2007) dataset. This suggests that the significant effect of probability (above and beyond

surprisal) on N400 amplitude is not due to possible idiosyncrasies of GPT-2 1.5B, but may

instead reflect a more general trend. As previously noted, however, the additional variance

explained by probability can generally also be accounted for by a sub-linear transformation

of surprisal.
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It is worth briefly noting that previous work has generally shown that language

models that are trained on more data and that are better at natural language processing

tasks overall also tend to perform best at predicting N400 amplitude (Frank et al., 2015;

Aurnhammer and Frank, 2019a,b; Michaelov and Bergen, 2020; Merkx and Frank, 2021;

Michaelov et al., 2021, 2022). On the other hand, several recent studies have suggested

that increasing model scale past a certain point leads to decreased performance in modeling

reading time (Oh et al., 2022; Shain et al., 2024; de Varda and Marelli, 2023; Oh and

Schuler, 2023b). The results of the present study are more in line with the former set of

findings—the models that best predict N400 amplitude on five out of six datasets (GPT-J

6B, OPT 6.7B, BLOOM 7.1B, XGLM 7.5B) are among the largest we tested, both in

terms of parameter count (6-7.5 billion parameters) and training data size (180 billion to

500 billion tokens).

10.8.1 Theoretical Implications

The results show that the single best predictor of N400 amplitude across all

datasets is surprisal0.6, that surprisal is generally a better predictor than un-transformed

probability, and that, in line with the results of Szewczyk and Federmeier (2022), prob-

ability can explain variance in N400 amplitude not explained by surprisal. Overall, the

empirical results are most consistent with either the multiple sub-component account of

Szewczyk and Federmeier (2022) where there is both a linear and logarithmic relationship

between statistical probability and N400 amplitude, or with a sub-logarithmic variant of

the proportional preactivation account, where there is a sub-logarithmic relationship be-

tween statistical probability and the extent to which words are preactivated, with a linear

relationship holding between this preactivation and the N400.

However, there is no clear single relationship suggested by the study. As noted, no
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set of metrics derived from language model probability consistently predict N400 amplitude

better than others in all cases. While surprisal0.6 is the best single predictor of N400

amplitude, the probability and surprisal calculated by some language models can explain

additional variance on one of the datasets (Nieuwland et al., 2018b).

We also see a similar lack of clarity when we compare how well different trans-

formations of language model probability correlate with metrics thought to correlate with

the factors that Szewczyk and Federmeier (2022) argue play important, dissociable roles in

the neurocognitive processes underlying the N400—contextual similarity, which has been

argued to model semantic feature overlap (Michaelov et al., 2024), and cloze probability,

which can be used to model lexical prediction (Brothers and Kuperberg, 2021). Language

model surprisal correlates more closely with the cosine similarity between the embeddings

of critical words and their contexts than language model probability does, suggesting that

it better reflects semantic feature overlap, in line with the account of Szewczyk and Fed-

ermeier (2022). However, we also find that in the majority of cases, surprisal0.6 is more

correlated with this metric of semantic feature overlap than is surprisal, which presents

a problem for the account. Similarly, language model probability is more closely corre-

lated than language model suprisal with cloze probability, a metric of lexical prediction, in

the majority of cases, which is also in line with the account of Szewczyk and Federmeier

(2022). Again, however, surprisal0.6 is more closely correlated with cloze probability—in

fact, this is so for all comparisons of language models and datasets carried out. The fact

that surprisal0.6 is more closely correlated with cloze probability and contextual similarity

than the other metrics may be taken to suggest that the latter two metrics are correlated,

and indeed we find that they are, but to less of an extent than surprisal0.6 is to either.

Taken together, the results defy a single straightforward conclusion as to the math-

ematical relationship between language model probability and N400 amplitude. However,
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we believe that the present study has brought us closer to characterizing this relation-

ship by identifying several of its features. First, the relationship between language model

probability and N400 amplitude does not appear to be a simple linear or logarithmic one.

Second, the results suggest that the N400 is more sensitive to differences at the lower end of

the scale than can captured by probability (and thus closer to those reflected in surprisal or

surprisal0.6), but also more sensitive to the differences at the higher end of the probability

scale than can be captured by surprisal (and thus closer to those reflected in probability or

surprisal0.6). Finally, in our sample at least, we see that the metric that best predicts N400

amplitude alone is one that reflects both contextual predictability (as operationalized by

cloze) and semantic feature overlap (as operationalized by contextual similarity; see also

Michaelov et al., 2021).

This last finding is additionally worth highlighting because in virtually all pre-

vious work suggesting a nonlinear relationship between language model probability and

processing difficulty, the nonlinearity is proposed to arise based on how subjective proba-

bilities lead to differences in processing difficulty. Our results, however, suggest that the

nonlinearity—which we find to sub-logarithmic—instead lies between statistical probabili-

ties (as operationalized by language model probabilities) and these subjective probabilities.

10.9 Conclusions

In this study, we set out to compare how well linear, logarithmic, and exponenti-

ated (i.e., super- and sub-) logarithmic transformations of contextual probability correlate

with the N400, a neural index of processing difficulty. In line with previous work (Yan and

Jaeger, 2020; Szewczyk and Federmeier, 2022), we find that that surprisal, a logarithmic

transformation of probability, out-performs probability as a predictor of N400 amplitude.

However, as has previously been reported (Szewczyk and Federmeier, 2022), we find that
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probability can explain variance in N400 amplitude not explained by surprisal.

Our novel finding, and one that lies in contrast to previous work on reading time

as an index of processing difficulty (Smith and Levy, 2013; Meister et al., 2021; Shain et al.,

2024; Wilcox et al., 2023b), is that sub-logarithmically transformed probability is a better

predictor of N400 amplitude than surprisal. Specifically, we find for almost all language

models and datasets, surprisal0.6 explains at least as much variance in N400 amplitude as

both surprisal and probability; suggesting that the relationship between probability and

N400 amplitude may in fact be sub-logarithmic.

The fact that this result is not accounted for by any previous work highlights

the importance of not viewing language processing as a monolith—different metrics of

contextual probability (cloze vs. corpus-derived) and different metrics of processing diffi-

culty (reading time vs. the N400) show distinct patterns; and those different patterns may

ultimately be key to understanding the processes of language comprehension.

10.10 Appendix

10.10.1 Statistical analysis of regression fit (Analysis 2)

In this appendix, we include the supplementary statistical analyses investigating

whether linear mixed-effects regression models with probability, surprisal, or surprisal0.6 as

predictors are best able to predict N400 amplitude. We compare the AIC of regressions with

probability or surprisal as predictors (Table 10.4), probability or surprisal0.6 as predictors

(Table 10.5), and surprisal or surprisal0.6 as predictors (Table 10.6).
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Table 10.4: Results of likelihood ratio tests and coefficients of linear mixed-effects models
testing the difference in the AIC of regressions using probability or surprisal as a predictor
of N400 amplitude on each dataset.

Likelihood ratio test Coefficient
Exp. χ2(1) pcorrected Estimate SE t
Nieuwland et al. (2018b) 70.64 <0.0001 -41.91 2.87 -14.58
Federmeier et al. (2007) 109.23 <0.0001 -51.85 2.00 -25.91
Wlotko and Federmeier (2012) 95.82 <0.0001 -22.44 1.05 -21.35
Szewczyk and Federmeier (2022) 27.79 <0.0001 -5.72 0.89 -6.43
Hubbard et al. (2019) 62.70 <0.0001 -18.23 1.42 -12.82
Szewczyk et al. (2022) 76.75 <0.0001 -11.89 0.74 -16.05

Table 10.5: Results of likelihood ratio tests and coefficients of linear mixed-effects regression
models testing the difference in the AIC of regressions using probability or surprisal0.6 as
a predictor of N400 amplitude on each dataset.

Likelihood ratio test Coefficient
Exp. χ2(1) pcorrected Estimate SE t
Nieuwland et al. (2018b) 92.46 <0.0001 -37.53 1.85 -20.33
Federmeier et al. (2007) 137.87 <0.0001 -66.15 1.71 -38.69
Wlotko and Federmeier (2012) 110.11 <0.0001 -20.05 0.76 -26.24
Szewczyk and Federmeier (2022) 78.73 <0.0001 -10.86 0.66 -16.54
Hubbard et al. (2019) 106.17 <0.0001 -24.43 0.98 -25.47
Szewczyk et al. (2022) 108.02 <0.0001 -13.41 0.53 -25.47

Table 10.6: Results of likelihood ratio tests and coefficients of linear mixed-effects models
testing the difference in the AIC of regressions using surprisal or surprisal0.6 as a predictor
of N400 amplitude on each dataset.

Likelihood ratio test Coefficient
Exp. χ2(1) pcorrected Estimate SE t
Nieuwland et al. (2018b) 13.61 0.0049 4.38 1.08 4.06
Federmeier et al. (2007) 124.42 <0.0001 -14.30 0.45 -32.11
Wlotko and Federmeier (2012) 33.04 <0.0001 2.39 0.33 7.30
Szewczyk and Federmeier (2022) 85.82 <0.0001 -5.14 0.28 -18.42
Hubbard et al. (2019) 53.33 <0.0001 -6.19 0.57 -10.93
Szewczyk et al. (2022) 28.03 <0.0001 -1.52 0.23 -6.48
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10.10.2 Language model probability and N400 amplitude plots (Analysis

3)

In this appendix, we plot the relationship between probability, surprisal, or surprisal0.6

and N400 amplitude, with probabilities calculated using BLOOM 7.1B (Figure 10.7), OPT

6.7B (Figure 10.8), XGLM 7.5B (Figure 10.9), and GPT-2 345M (Figure 10.10). The plot

for GPT-J 6B is included in the main body of the paper (Figure 10.3).
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Figure 10.7: N400 amplitude as a function of BLOOM 7.1B probability, surprisal, and
surprisal0.6. The x-axis for probability is reversed for easier comparison with surprisal and
surprisal0.6.
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Figure 10.8: N400 amplitude as a function of OPT 6.7B probability, surprisal, and
surprisal0.6. The x-axis for probability is reversed for easier comparison with surprisal
and surprisal0.6.
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Figure 10.9: N400 amplitude as a function of XGLM 7.5B probability, surprisal, and
surprisal0.6. The x-axis for probability is reversed for easier comparison with surprisal and
surprisal0.6.
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Figure 10.10: N400 amplitude as a function of GPT-2 345M probability, surprisal, and
surprisal0.6. The x-axis for probability is reversed for easier comparison with surprisal and
surprisal0.6.

10.10.3 Comparison of regression AICs including probability (Analysis

3)

In Analysis 3, we compare the fit of regressions of including probability, surprisal,

surprisal0.6, and combinations of these metrics as predictors of N400 amplitude. Because

regressions with probability as a predictor (and not also either surprisal or surprisal0.6)

often perform far worse than the others, we do not include them in Figure 10.4 in the

main body of the paper to increase the ease of comparing the performance of the other

regressions. For completeness, we provide the full comparison in Figure 10.11.
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Figure 10.11: The fit of regressions including probability, surprisal, surprisal0.6, and combi-
nations of these as predictors of N400 amplitude. We look at the results for the 5 language
models that best predict each of the 6 datasets.

10.10.4 Individual Language Model Statistical Analyses (Analysis 3)

In this appendix, we include the statistical analyses investigating the whether

adding probability (p), surprisal (S), surprisal0.6 (S0.6), or a combination of these to a

linear mixed-effects model already including one or more other of these variables as pre-

dictors significantly improves model fit. In this way, we test which of these metrics explain

variance in N400 amplitude not explained by the others. We provide the results for the

metrics calculated using BLOOM 7.1B (Table 10.7), OPT 6.7B (Table 10.8), XGLM 7.5B

(Table 10.9), and GPT-2 345M (Table 10.10). The table for GPT-J 6B is included in the

main body of the paper (Table 10.3).
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Table 10.7: Results of the likelihood ratio tests testing the effect of adding BLOOM 7.1B
probability (p), surprisal (S), surprisal0.6 (S0.6), or a combination of these to a linear
mixed-effects model already including one or more other of these variables, thereby testing
whether they explain any additional variance. As an example, S + p refers to a likelihood
ratio test of whether probability explains additional variance in N400 amplitude above and
beyond that explained by surprisal. F07 refers to Federmeier et al. (2007), W12 to Wlotko
and Federmeier (2012), SF22 to Szewczyk and Federmeier (2022), H19 to Hubbard et al.
(2019), S22 to Szewczyk et al. (2022), and N18 to Nieuwland et al. (2018b).

S0.6 + S S0.6 + p S + S0.6 S + p
Exp. χ2 p χ2 p χ2 p χ2 p
F07 0.00 1.0000 0.01 1.0000 10.46 0.0203 10.15 0.0232
W12 6.96 0.1159 6.90 0.1186 0.94 1.0000 0.80 1.0000
SF22 0.91 1.0000 0.31 1.0000 6.25 0.1652 5.48 0.2419
H19 0.41 1.0000 0.00 1.0000 7.21 0.1024 5.69 0.2187
S22 0.26 1.0000 0.00 1.0000 0.84 1.0000 1.49 1.0000
N18 10.4 0.0205 10.74 0.0182 1.47 1.0000 1.20 1.0000

p + S p + S0.6 (S + p) + S0.6 S0.6 + (S + p)
Exp. χ2 p χ2 p χ2 p χ2 p
F07 76.01 <0.0001 76.32 <0.0001 0.32 1.0000 0.02 1.0000
W12 32.69 <0.0001 32.77 <0.0001 0.31 1.0000 7.13 0.3327
SF22 12.09 0.0104 12.25 0.0097 0.97 1.0000 1.11 1.0000
H19 28.11 <0.0001 29.23 <0.0001 2.77 0.9825 1.65 1.0000
S22 15.51 0.0021 14.6 0.0031 2.92 0.9155 3.83 1.0000
N18 47.67 <0.0001 48.28 <0.0001 0.68 1.0000 10.81 0.0672
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Table 10.8: Results of the likelihood ratio tests testing the effect of adding OPT 6.7B
probability (p), surprisal (S), surprisal0.6 (S0.6), or a combination of these to a linear
mixed-effects model already including one or more other of these variables, thereby testing
whether they explain any additional variance. As an example, S + p refers to a likelihood
ratio test of whether probability explains additional variance in N400 amplitude above and
beyond that explained by surprisal. F07 refers to Federmeier et al. (2007), W12 to Wlotko
and Federmeier (2012), SF22 to Szewczyk and Federmeier (2022), H19 to Hubbard et al.
(2019), S22 to Szewczyk et al. (2022), and N18 to Nieuwland et al. (2018b).

S0.6 + S S0.6 + p S + S0.6 S + p
Exp. χ2 p χ2 p χ2 p χ2 p
F07 0.51 1.0000 0.6 1.0000 14.45 0.0033 14.93 0.0027
W12 5.46 0.2435 7.61 0.0837 0.41 1.0000 0.76 1.0000
SF22 0.82 1.0000 0.33 1.0000 5.69 0.2187 5.14 0.2817
H19 4.04 0.5019 0.92 1.0000 15.46 0.0021 11.4 0.0137
S22 0.75 1.0000 0.52 1.0000 0.23 1.0000 0.19 1.0000
N18 2.80 0.9702 8.30 0.0602 0.49 1.0000 0.10 1.0000

p + S p + S0.6 (S + p) + S0.6 S0.6 + (S + p)
Exp. χ2 p χ2 p χ2 p χ2 p
F07 59.01 <0.0001 58.62 <0.0001 0.02 1.0000 1.00 1.0000
W12 33.05 <0.0001 34.85 <0.0001 1.95 1.0000 7.76 0.2542
SF22 11.07 0.0157 11.13 0.0155 0.64 1.0000 0.91 1.0000
H19 16.11 0.0015 17.05 0.0010 7.81 0.0768 7.79 0.2522
S22 18.15 0.0006 17.95 0.0006 0.07 1.0000 0.78 1.0000
N18 39.10 <0.0001 44.99 <0.0001 4.88 0.3223 7.29 0.3126
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Table 10.9: Results of the likelihood ratio tests testing the effect of adding XGLM 7.5B
probability (p), surprisal (S), surprisal0.6 (S0.6), or a combination of these to a linear
mixed-effects model already including one or more other of these variables, thereby testing
whether they explain any additional variance. As an example, S + p refers to a likelihood
ratio test of whether probability explains additional variance in N400 amplitude above and
beyond that explained by surprisal. F07 refers to Federmeier et al. (2007), W12 to Wlotko
and Federmeier (2012), SF22 to Szewczyk and Federmeier (2022), H19 to Hubbard et al.
(2019), S22 to Szewczyk et al. (2022), and N18 to Nieuwland et al. (2018b).

S0.6 + S S0.6 + p S + S0.6 S + p
Exp. χ2 p χ2 p χ2 p χ2 p
F07 0.01 1.0000 0.01 1.0000 11.44 0.0136 11.55 0.0131
W12 0.61 1.0000 1.18 1.0000 0.91 1.0000 0.6 1.0000
SF22 3.47 0.6804 1.18 1.0000 11.09 0.0156 9.42 0.0332
H19 2.94 0.912 0.99 1.0000 13.33 0.0057 10.56 0.0194
S22 0.01 1.0000 0.15 1.0000 1.82 1.0000 2.81 0.9699
N18 8.23 0.062 9.9 0.0258 0.61 1.0000 0.97 1.0000

p + S p + S0.6 (S + p) + S0.6 S0.6 + (S + p)
Exp. χ2 p χ2 p χ2 p χ2 p
F07 79.34 <0.0001 79.23 <0.0001 0.08 1.0000 0.20 1.0000
W12 20.69 0.0002 21.56 0.0001 1.53 1.0000 1.83 1.0000
SF22 7.38 0.0941 6.76 0.1270 2.36 1.0000 4.16 1.0000
H19 18.39 0.0005 19.21 0.0003 4.33 0.4323 4.50 1.0000
S22 12.5 0.0087 11.66 0.0125 3.19 0.7922 4.19 1.0000
N18 50.8 <0.0001 52.11 <0.0001 1.70 1.0000 10.29 0.0837
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Table 10.10: Results of the likelihood ratio tests testing the effect of adding GPT-2 345M
probability (p), surprisal (S), surprisal0.6 (S0.6), or a combination of these to a linear
mixed-effects model already including one or more other of these variables, thereby testing
whether they explain any additional variance. As an example, S + p refers to a likelihood
ratio test of whether probability explains additional variance in N400 amplitude above and
beyond that explained by surprisal. F07 refers to Federmeier et al. (2007), W12 to Wlotko
and Federmeier (2012), SF22 to Szewczyk and Federmeier (2022), H19 to Hubbard et al.
(2019), S22 to Szewczyk et al. (2022), and N18 to Nieuwland et al. (2018b).

S0.6 + S S0.6 + p S + S0.6 S + p
Exp. χ2 p χ2 p χ2 p χ2 p
F07 3.63 0.6258 3.46 0.6804 21.26 0.0001 20.24 0.0002
W12 0.21 1.0000 0.27 1.0000 0.82 1.0000 0.91 1.0000
SF22 1.47 1.0000 0.49 1.0000 6.61 0.1375 6.0 0.1858
H19 5.20 0.2741 2.30 1.0000 14.67 0.003 11.21 0.015
S22 0.14 1.0000 0.60 1.0000 3.50 0.6757 4.10 0.4891
N18 3.74 0.5907 4.58 0.3779 0.01 1.000 0.00 1.0000

p + S p + S0.6 (S + p) + S0.6 S0.6 + (S + p)
Exp. χ2 p χ2 p χ2 p χ2 p
F07 45.84 <0.0001 46.69 <0.0001 1.03 1.0000 3.64 1.0000
W12 14.37 0.0034 14.34 0.0034 0.04 1.0000 0.34 1.0000
SF22 10.44 0.0203 10.06 0.0241 0.64 1.0000 1.50 1.0000
H19 15.33 0.0022 15.9 0.0017 4.55 0.3812 6.29 0.4891
S22 11.67 0.0125 11.52 0.0131 0.58 1.0000 1.33 1.0000
N18 43.3 <0.0001 44.14 <0.0001 0.26 1.0000 4.00 1.0000
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Chapter 11

Conclusions

11.1 To what extent can the N400 be explained by the statis-

tics of language?

In this dissertation, I have used language models to investigate the extent to which

the statistics of language offer an explanation for a diverse array of N400 effects that have

been reported in previous work.

The results of Chapter 2 show that language model predictions are highly cor-

related with N400 amplitude. Specifically, the surprisal calculated from four of the eight

language models tested predicts N400 amplitude better than cloze does. While this high

degree of correlation does not necessarily entail that the predictions indexed by the N400

in humans are primarily driven by language statistics, this result, combined with the

previously-discussed evidence that language processing is sensitive to statistics, does lend

support to the idea that language statistics may play a role in prediction. At the very

least, the results suggest that the statistics of language reliably track the extent to which

a word is contextually predictable. This idea is further strengthened by the finding that
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larger models of each architecture (which generally perform better on natural language

tasks) generate predictions with a higher degree of correlation to the N400 than smaller

models—models that are better able to capture the statistics of language are better models

of the prediction indexed by the N400.

The results of Chapter 3 push this result further. For models of all sizes, training

a model on more data both makes it better at predicting the next word in a sequence and

better at predicting N400 amplitude. Specifically, the results can be taken to show that

models that are better at next-word prediction are better at modeling the N400. Thus,

again, the results are consistent with the idea that the prediction that occurs during lan-

guage processing could at the very least be partly based on input (i.e., language in this

case) statistics, in line with predictive processing in other domains (Rao and Ballard, 1999;

Huang and Rao, 2011; Clark, 2013; de Lange et al., 2018). The chapter additionally finds

that performance at a range of natural language processing benchmarks requiring predic-

tions that align with world knowledge (rather than simply the surface-level statistics of

language) is also correlated with the extent to which language model predictions match

those of the human predictive system in language. While this may be taken to be simply

a consequence of the fact that models that are better at next-word prediction are better

at such tasks, an alternative possibility is that it is precisely the acquisition of semantic

knowledge by these language models that makes them so well-suited to modeling the N400.

This is in line with the majority of accounts of the N400 that frame it as being primar-

ily sensitive to word-level semantics (DeLong and Kutas, 2020; Kuperberg et al., 2020;

Federmeier, 2021).

Chapter 4 investigates a range of N400 phenomena, finding that like the N400,

surprisal is sensitive to semantic typicality (Urbach and Kutas, 2010), the extent to which

a word is predictable based on the context (Kutas, 1993; Ito et al., 2016), whether a word is
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semantically related to the most likely sentence continuation (Kutas, 1993; Ito et al., 2016),

and whether a word is semantically anomalous (Osterhout and Mobley, 1995; Ainsworth-

Darnell et al., 1998; Kim and Osterhout, 2005). And like the N400, surprisal is not sensitive

to words such as few or rarely (Urbach and Kutas, 2010). There are several studies with

less clear results, but two where language model surprisal clearly does not align with N400

amplitude. The first of these is pronoun mismatch—while humans do not show a difference

between in N400 amplitude between the aunt heard that she and the aunt heard that he,

language models find the latter to be less likely. The other is that language models are more

sensitive to the event structure violation in the murder had been witnessing (compared

to the murder had been witnessed)) than humans are.

Chapter 5 further expands upon these results. It finds that a range of contem-

porary transformers also show the related anomaly effect reported for recurrent neural

networks in Chapter 4 (Ito et al., 2016), in that they show an increased prediction for

words that are semantically related to the most likely continuation of a sentence than

unrelated words, all else being equal (Ito et al., 2016; DeLong et al., 2019). Similarly,

the results also show that language models replicate the variant of the related anomaly

effect where words more related to the preceding context are more strongly predicted than

unrelated words, all else being equal.

Chapter 6 also expands upon the results of Chapter 4. Specifically, the aim of

the study was to test whether the lack of sensitivity to quantifiers such as few or rarely is

generalizeable to contemporary models. This study finds that it is, more so for larger (and

generally higher-quality) models than smaller models.

Chapter 7 expands upon the previous chapters by investigating a different effect—

whether the context in which a word appears is able to override general world knowledge.

We find that this is indeed the case—under the right conditions, a peanut can fall in love,
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whether in the brain or in an LLM.

Next, Chapter 8 goes beyond Chapters 4–7 in testing whether surprisal can cap-

ture specific N400 effects, but specifically by testing whether it can account for all of

the variance explained by the relevant experimental manipulation. In this study, we found

that lexical surprisal calculated using GPT-3 can predict N400 amplitude better than cloze

probability, plausibility, and the degree of association between a critical word and its con-

text. However, GPT-3 surprisal does not appear to fully account for the effect explored in

Chapter 5, namely, the fact that words semantically related to the most likely continuation

are more strongly predicted than unrelated words.

Unlike the studies in Part 1 and 2 which mostly focus on the question of whether

language statistics can explain N400 phenomena that we already know about, Chapter 9

focuses instead on whether we can use language models to gain new insights into the na-

ture of the ERP component. Specifically, the study uses a new approach to investigate the

question of whether the statistical probabilities of words other than the actual stimulus

(and thus, the extent to which other words could be predicted based on the statistics of lan-

guage) have an impact on the N400. Previous work on this question, which operationalizes

contextual probability as cloze probability, suggests that the probabilities of non-stimulus

words do not impact N400 amplitude (Van Petten et al., 1999; Federmeier et al., 2002;

Vissers et al., 2006; Federmeier et al., 2007; Federmeier, 2007; Wlotko and Federmeier,

2007; Otten and Berkum, 2008). However, given that statistical probabilities are not the

same as cloze probabilities (see, e.g., Smith and Levy, 2011 for discussion), the finding in

earlier chapters that language model probability can show a closer fit to the N400 than

cloze, and the fact that language models allow the probability of every alternative word

to be calculated (i.e., not just those provided as responses to the cloze task), language

models provide an opportunity to investigate this question in a new way. Evaluating the
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fit of multiple metrics derived from the whole output probability distribution of language

models (i.e., that takes into account the probabilities of all words), we found that no such

metric individually displays a better fit to the N400 data, and that no such metric explains

a significant amount of variance in N400 amplitude above and beyond a combination of

surprisal and probability. Thus, the results of the study align with previous work showing

that only the contextual probability that appears to impact N400 amplitude is that of the

actual stimulus encountered.

The aim of Chapter 10 is to further investigate the mathematical relationship

between statistical probability and the N400. The results of Chapter 9 show that surprisal

is a better predictor of N400 amplitude than probability is, but also replicate Szewczyk

and Federmeier’s (2021) finding that on some datasets, a combination of the two predict

N400 amplitude better than either alone. This chapter systematically investigates the

relationship between contextual probability as calculated using language models and the

N400, first by comparing probability, surprisal, and surprisal to the power of a set of

numbers between zero and two (following Meister et al., 2021; Shain et al., 2024); and

second, by comparing combinations of these to see how much variance is explained by

each. The results show that the N400 is best predicted by a combination of surprisal and

probability (as in Szewczyk and Federmeier, 2022), but also similarly well by surprisal0.6,

something that is not expected based on previous work. Overall, the results of the study

suggest a single mathematical relationship that provides the best theoretical and empirical

account of the N400 at the same time has yet to be discovered. What the results do show,

however, is that the N400 is more sensitive to differences at the low end of the probability

scale than would be predicted based on un-transformed probability, but also more sensitive

to differences at the upper end of the scale than would be predicted based on surprisal.

All in all, the results show that with a few exceptions, the predictions of language
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models are highly correlated with N400 amplitude, and they are both able show good

quantitative fit to the N400 data—in the cases tested, better than either cloze probability

or plausibility—and model specific qualitative effects. Furthermore, in virtually all cases,

larger and higher-quality language models model the N400 better than smaller and lower-

quality models. Taken together, these results suggest that at least in principle, a statistical

account of the prediction indexed by the N400 is viable, and they provide support to

the idea that human predictive processing of language is at least partly sensitive to the

statistics of language.

11.2 What is missing in the statistics of language?

In the experiments reported in this dissertation, the predictions of language mod-

els show a remarkable degree of correlation with the N400. However, as previously noted,

there are points of divergence. On the whole these appear to relate to word-level seman-

tics. As noted in the previous section, one interpretation of the fact that better-trained

and higher-quality language models are better predictors of N400 amplitude is that they

are better able to capture the word-level semantics of critical words. Thus, the issue may

be that the models are still limited in this respect.

For example, where the N400 does not show sensitivity to the event-structure

violation in the murder had been witnessing but language models do, it is worth noting

that other than the inflection of the verb (a linguistic feature), witnessing and witnessed

are identical. Thus, in terms of word-level semantic representations, the two are virtually

the same, and thus if it is indeed the case that N400 is primarily sensitive to word-level

semantics, this would explain the lack of a significant difference in response between the

two. The results of Chapter 8 could be explained similarly if the prediction of word-level

semantic representations are the main driver of the N400 effects. Specifically, the word-
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level semantics of the highest-probability continuation are typically shared with semantic

associates, which would explain the results seen in Chapter 8 where related words elicit an

N400 of virtually the same amplitude as the most likely continuations.

The question, then, is what is the cause of this divergence? There appear to be two

main possibilities. The first is that the the word-level semantic representations of language

models are limited compared to those of humans due to only deriving from the statistics

of language. In this case, the differences in prediction would be due either to there being

fewer (or less rich) semantic representations in the language models, or simply different

representations due to the different sources of information on which these are based. On

the other hand, it may be that the word-level semantic representations of humans and

language models are similar enough, but simply that language models over-rely on the

linguistic similarities since they are trained on text data only. Thus, one possible avenue

would be to use multimodal training. Some research shows that visual grounding better

enables models to learn the meanings of words (Zhuang et al., 2024), and given the role of

sensorimotor information in human word learning (Barsalou, 1999), this may be precisely

the kind of information that is missing in pure language models.

11.3 Conclusion

The aim of this dissertation was to investigate how well the predictions indexed

by the N400 can be explained as deriving from the statistics of language. The specific

approach taken was to explore the extent to which the predictions of language models

correlate with N400 amplitude. The results are promising. First, language model surprisal

is highly correlated with N400 amplitude—for some models better even than traditional

metrics such as cloze and plausibility. In addition, larger and better language models are

better for modeling the N400. Thus, we can expect that as language models continue to
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advance, their predictions will likely even more closely correlate with N400 amplitude and

thus give us an even better idea of the extent to which language statistics can account

for the phenomena. Finally, this dissertation has highlighted one limitation in modeling

the N400 using language model surprisal, namely, that the N400 seems more sensitive to

the word-level semantic representations and less sensitive to linguistic representations than

language model predictions.
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