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ABSTRACT OF THE DISSERTATION
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Professor Daniel Gillen, Chair

In studying the progression of a disease and to better predict time to death (survival data),

investigators often collect repeated measures over time (longitudinal data) and are interested

in testing the association between risk factors, including collected repeated measures, and

time to death. One such example is testing the association between the biomarker serum

albumin that is measured repeatedly on end-stage renal disease (ESRD) patients. A modeling

framework that is capable of modeling longitudinal and survival outcomes simultaneously is

called a joint longitudinal-survival model.

Joint longitudinal-survival models have received a great deal of attention over the past

years where many different joint models have been proposed. Joint models commonly make

parametric assumptions on either the functional form of the repeated measures or on the

distribution of survival times. In this dissertation we are interested in joint models that are

robust to common parametric and semi-parameteric survival and longitudinal assumptions.

We propose a flexible Bayesian joint longitudinal-survival framework that avoids common

parametric and semi-parameteric assumptions. More specifically, our modeling framework

incorporates a flexible longitudinal component by utilizing Gaussian process (GP) technique.

This technique avoids any explicit functional assumption on the trajectory of the repeated

xxi



measures. Our modeling framework also uses Dirichlet process (DP) prior to avoid explicit

distributional assumptions on survival times.

We further extend our framework to modeling multiple longitudinal processes simultane-

ously. We propose a multivariate joint longitudinal-survival technique to jointly model the

association between multiple longitudinal processes with survival outcomes. Our proposed

technique is capable of taking correlation between longitudinal processes into account. This

is particularly useful when observed measures from different longitudinal processes are taken

at different frequencies. That means, some longitudinal processes are observed less frequently

compared to other longitudinal processes. By jointly modeling these processes, one can take

the correlation between the processes into account, and hence, better estimate the trajectory

of the processes including those less frequent ones.

Our proposed joint modeling frameworks use Dirichlet process techniques. Therefore, un-

derstanding parameter estimation in these models is vital. Using synthetic longitudinal and

survival data, we compare parameter estimation under DPM models as opposed to commonly

used parametric techniques. We are particularly interested in evaluation of the performance

of the model in parameter estimation when a population consists of sub-populations with

latent features that are different across subgroups. We propose a Dirichlet process mixture

survival model that is capable of detecting latent subpopulations characterized by differing

baseline risks for mortality. Our proposed technique is particularly useful when interest

lies in estimation of the conditional effect of covariates as opposed to estimates that are

marginalized across all subpopulations.

Throughout, our work is motivated by data on patients with end stage renal disease (ESRD),

a condition where the kidneys are no longer capable of cleaning blood sufficiently enough

to sustain life. In this context a modeling framework capable of finding mortality-related

biomarkers, which are measured longitudinally over time, can significantly help physicians

and practitioners to lower mortality among these patients.
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Chapter 1

Motivation

This thesis is focused on developing flexible joint longitudinal-survival models. Our work

has been motivated by data on end-stage renal disease (ESRD) patients that are obtained

from the United States Renal Data System (USRDS). In this chapter, we motivate our

work from both clinical (Section 1.1) and statistical (Section 1.2) point of view. We first

start with the clinical point of view, where we introduce end stage renal disease and the

common treatments for ESRD patients. In the same section, we also introduce our scientific

questions of interest. Next, we describe the statistical point of view, where we provide a brief

description on common statistical approaches to address our scientific questions of interest.

1.1 Clinical Motivation

According to the United States Renal Data System’s 2011 annual report, one in 10 Ameri-

can adults suffer from chronic kidney disease, a condition where kidneys gradually become

dysfunctional. End stage renal disease (ESRD) is the final stage of chronic kidney disease

where kidneys are completely incapable of their main task of filtering blood from toxins and
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removing the excess fluid from the body. In this situation, the built-up toxins in the body

can damage other organs and can cause death. According to the 2015 USRDS annual report,

currently, over 660,000 persons in the United States are being treated for end stage renal

disease (ESRD).

Kidney transplantation is an ideal treatment for most ESRD patients. According to the data

from United Network for Organ Sharing (UNOS), currently there are more than ninety-nine

thousand individuals waitlisted for a kidney transplantation in the US. When there is no

access to a viable kidney transplant, dialysis is the most common treatment for these patients.

Dialysis is a technique to remove toxic wastes and extra fluid from the body when kidneys

are not functioning. There are two main types of dialysis, hemodialysis and peritoneal

dialysis. Each patient’s characteristic defines which dialysis type will suit the patient better

(McDonald et al. (2009)).

Hemodialysis is a process where blood gets filtered out of toxic wastes outside of the patient’s

body and through a dialysis machine. A catheter is placed inside a patient’s vein and is used

to remove the blood from the patient’s body and return a cleaned blood back into the body.

Dialysis machine includes filters to clean the blood (Figure 1.1).

Peritoneal dialysis is a process where abdomen lining membrane (peritoneum) is used as a

filter to clean blood from toxic wastes and to remove excessive fluids out of the body. In this

method, a sterile solution (dialysate) is inserted into the abdominal area through a catheter.

This solution remains to absorb wastes and is drained out after few hours (Figure 1.2).

Despite improvements in dialysis techniques, dialysis patients experience high mortality rate.

According to the United States Renal Data System, these patients experience a 20%-25%

mortality rate after one year of treatment, and with a five-year mortality rate of 65%. These

patients also experience high hospitalization rate and low quality of life rate (Kalantar-

Zadeh et al. (2001), CARLSON et al. (1984), Habach et al. (1995)). In 2002, a multi-
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Figure 1.1: Hemodialysis process where blood gets filtered out of toxins outside of the body
(Circle (2016)).

center randomized clinical trial known as the HEMO study failed to find any significant

improvement in survival rate among high dose maintenance hemodialysis patients or among

patients with high-flux membranes (Eknoyan et al. (2002), Kalantar-Zadeh et al. (2003)).

In this situation, finding influential factors on poor dialysis outcome is of interest.

Many epidemiologic studies have consistently shown protein-energy malnutrition (PEM) as a

risk factor for clinical outcomes among dialysis patients (Kopple (1997), Kopple et al. (1999)).

Kalantar-Zadeh et al. (2003) defined PEM as ”the state of decreased body pools of protein

with or without fat depletion or a state of diminished functional capacity, caused at least

partly by inadequate nutrient intake relative to nutrient demand and/or which is improved

by nutritional repletion.” Prevalence of PEM among dialysis patients depends on multiple

factors, including the dialysis modality, and has been reported in multiple studies from low
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Figure 1.2: Peritoneal dialysis where abdomen peritoneum acts as a filter to clean blood
(Clinic (2016))

18% to high 75% (Kalantar-Zadeh and Kopple (2001), Kalantar-Zadeh et al. (2003)).

While it’s known that PEM is a risk factor for mortality among dialysis patients, however,

what causes PEM is not clearly known. Some of the factors that may cause PEM include

nutrient losses during the dialysis process, dietary restrictions for dialysis patients in order to

minimize toxic wastes in their bodies, inadequate nutrient intake, hypercatabolism caused by

inadequate protein intake during the dialysis process, hypercatabolism that can be caused by

comorbid illnesses including cardiovascular diseases and diabetic complications, and nutrient

loss with blood losses (Kalantar-Zadeh et al. (2003), Vendrely et al. (2003), Chung et al.

(2003)).

Kalantar-Zadeh et al. (2003) reports on frequently studied indicators of malnutrition that

are associated with mortality. Some of these indicators include: decreased in protein intake,

reduced body mass index (BMI), decreased total body nitrogen and potassium levels, and

decreased in serum albumin. In particular, Fung et al. (2002) showed that baseline serum
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albumin, as an index of PEM, and slope of albumin over time were independent risk factors

of mortality among ESRD patients.

Albumin is a water-soluble serum protein that is synthesized in liver. It primarily functions

as a protein carrier to organs and is essential in proper distribution of body fluids (Hawkins

and Dugaiczyk (1982)) as well as in maintenance of colloid osmotic pressure. Serum albumin

can be measured longitudinally over time as a biomarker that might be related to clinical

outcomes among hemodialysis patients. Motivated by testing the scientific question that

serum biomarkers are associated with mortality among ESRD patients, and by using the

data from the United States Renal Data System (USRDS), we are interested in addressing

the following scientific questions:

• 1) testing the association between a biomarker level and time to death:

Fung et al. (2002) found baseline serum albumin and slope of albumin are risk factors

of death among ERDS patients. It’s of interest to test whether serum albumin at

the time of death is also a risk factor of mortality. This finding can significantly help

practitioners and doctors to lower mortality among these patients by monitoring their

serum albumin values. Moreover, a methodology that can provide a general framework

to detect other biomarkers that are related to mortality among these patients is also

of interest.

• 2) testing the association between history of changes in the biomarker and

time to death: Between two patients both with the same albumin level but one with

an increasing slope and the other with a decreasing slope, risk of mortality might be

different. Hence, the rate of changes in the biomarker can be another important risk

factor. It’s of interest to propose a methodology capable of testing the association

between rate of changes in a biomarker and risk of death.

• 3) testing the association between summary measures of the trajectory of
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the biomarker and time to death: While Fung et al. (2002) focused on the linear

trend of albumin, higher within-subject volatility of albumin over time, as an indication

of instability of the albumin level, might also be a risk factor of mortality. A measure

of volatility is an example of a summary measure of the trajectory of a biomarker.

It’s of interest to propose a methodology capable of deriving new summary measures

from the trajectory of a biomarker and testing the association between the summary

measure and survival outcomes.

• 4) Simultaneously modeling the association between multiple biomarkers

and mortality: Often times, when multiple longitudinal biomarkers are measured over

time, some biomarkers are measured less frequently. A modeling framework capable

of modeling multiple biomarkers simultaneously can help model the trajectory of the

less-frequent biomarkers more accurately, and hence, can better test the association

between those biomarkers and survival outcomes. It’s of interest to propose a joint

modeling framework of longitudinal and survival data that is capable of modeling

multiple longitudinal biomarkers simultaneously.

1.2 Statistical Motivation

In order to address our scientific questions of interest in Section 1.1, we are interested in eval-

uating the effect of longitudinally measured biomarkers (e.x. serum albumin) on mortality.

Our primary goal is to develop a modeling framework that allows characterizing the trajec-

tory of longitudinal covariates, in order to test which covariates are predictive of mortality,

while adjusting for other related covariates in the model.

Testing the relationship between longitudinal covariates and survival outcomes has received

a great deal of attention over the past 30 years. The question was first motivated by AIDS

clinical trials where studies were attempting to find a proper surrogate biomarker for clinical
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progression of the disease, so that efficacious treatments could be found in a shorter time

(Wang and Taylor (2001a)).

One might consider incorporating longitudinal measures as time-varying covariates inside of a

separate survival model. While subjects fail on a continuous basis, longitudinal measures are

typically measured at discrete times (ex. monthly lab visits). When there is no measurement

at the event time, one may choose to use the last observation carried forward (LOCF)

method. This approach ignores biological variability of biomarkers overtime. Moreover, when

longitudinal biomarkers are measured with error, including them directly as a traditional

time-varying covariate in a survival model may lead to biased regression estimates (Prentice

(1982)).

Alternatively, one could apply a two-stage method, where the first stage consists of modeling

the longitudinal components via a mixed-effects model, and in the second stage, the modeled

values or their summaries (e.g., first-order trends) are included in a survival model (Dafni and

Tsiatis (1998), Tsiatis et al. (1995)). However, this approach fails to account for uncertainty

in the estimated longitudinal summary measures. Moreover, when longitudinal covariates

are missing at the event time, there is a potential for biased regression estimates in this

approach. Finally, by separating data into two pieces, longitudinal data and survival data,

we may lose statistical precision as opposed to a method that uses all the data at once.

To overcome these issues, several joint longitudinal-survival models have been proposed

both from the Bayesian standpoint (Faucett and Thomas (1996), Wang and Taylor (2001a),

Brown and Ibrahim (2003), citehanson2011predictive), as well as the frequentist standpoint

(Wulfsohn and Tsiatis (1997a), Law et al. (2002a), Song et al. (2002)). All these models

account for uncertainty in longitudinal measures by modeling them simultaneously with

the survival outcome. However, most existing joint models still rely on multiple restrictive

parametric and semi-parametric assumptions and they generally focus only on associating

the first moment of the distribution of the longitudinal covariates with survival outcomes.
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We propose a flexible joint longitudinal-survival modeling framework that avoids any explicit

functional assumptions on the trajectory of the longitudinal measures. Our model also

avoids explicit distributional assumption on the survival times where we allow for subject-

specific baseline hazard in modeling a survival outcome. Our models are motivated by data

on end-stage renal disease (ESRD) patients obtained from the United States Renal Data

System (USRDS). Specifically, our interest lies in quantifying the association between the

longitudinally measured serum albumin and time-to-death using a joint survival-longitudinal

modeling approach.

Flexibility in our joint models is achieved in the longitudinal component by using a Gaus-

sian process prior with a parameter that captures within-subject volatility in longitudinally

sampled albumin. The survival component of our proposed models quantifies the association

between longitudinally measured albumin and the risk of mortality using a Dirichlet process

mixture of Weibull distributions. Estimation for the longitudinal and survival parameters is

carried out simultaneously via a Bayesian parameter posterior sampling approach.

The remainder of the thesis is organized as follows. In Chapter 2, we provide a detailed

background on Bayesian non-parametrics including GP and DP models, background on

survival and longitudinal models. We conclude Chapter 2 by providing a detailed literature

review on existing joint longitudinal-survival models. In Chapter 3, we propose a semi-

parametric survival model that is capable of estimating conditional subgroup parameters

when the data include latent population subgroups. In Chapter 4, we present the details

of our proposed joint modeling framework. Simulation studies will present and we conclude

by applying our modeling framework to the motivating USRDS data. In Chapter 5, we

extend our modeling framework to a general case of modeling more than one biomarker

simultaneously. Finally, in Chapter 6, we conclude the thesis with a brief summary and

directions for future research.
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Chapter 2

Background

In this chapter, we start with a brief background on longitudinal (Section 2.1) and sur-

vival models (Section 2.2). We continue by introducing Gaussian Processes (Section 2.3)

and Dirichlet Processes (Section 2.4). Finally, we will conclude with a detailed literature

review on existing joint longitudinal-survival models and explaining how our joint modeling

framework can contribute to the literature (Section 2.5).

2.1 Longitudinal Analysis

Data that include repeated measures on the same individuals, with those measurements

usually ordered by time, are called longitudinal data. Studies that deal with longitudinal

data with the primary goal of characterizing within-subject changes in the outcome over

time are called longitudinal studies. In the study of changes in body fatness in girls after

menarche, a cross-sectional study comparing two groups of girls one pre-menarche with an

average age of 10 and the other post-menarche with an average age of 15, is not capable

of characterizing changes in body-fatness as girls age from 10 to 15, whereas a longitudinal
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study following each girl from 10 to 15 is capable of estimating within-subject aging effect

on body-fatness (Fitzmaurice et al. (2012)).

In longitudinal studies, repeated measures taken over time on each unit tend to be positively

correlated compared to the measures on other units. This within-unit correlation violates a

key assumption in many statistical models where the independence of measures is required.

Longitudinal models are typically very similar to common statistical models except that these

models directly account for this within-unit correlation in order to provide valid statistical

inference.

Longitudinal data can be considered as a special case of clustered data where each unit is a

cluster and measurements on that unit are members of that cluster. Unlike longitudinal data

where measurements are taken over time, measurements in clustered data need not have a

temporal order. For example, in a study designed to test the effect of a math intervention on

students’ standardized test scores, students are clustered by classrooms where all students

from the same classroom share the same teacher. Because of this, within-cluster members

tend to be positively correlated. Similar to longitudinal data, this within-cluster correlation

should be taken into account for valid inference and the general methodology for doing so is

similar to the methods used for analyzing longitudinal data. Hence, all these methods are

considered as methods on modeling clustered data with longitudinal data as a special case.

2.1.1 Linear Models for Correlated Data

Consider n randomly selected and independent units each with mi number of within unit

outcomes and covariate measurements. Outcome measurement for the ith subject is then

an mi × 1 vector Y i, with elements {Yi1, Yi2, . . . , Yimi
}. Corresponding to each Yij, where

j ∈ {1, . . . ,mi}, there is an associated covariate vector X ij = (X1
ij, . . . , X

P
ij ), where X ij is a
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P × 1 covariate vector. We then define a linear model of the the form,

E[Y ij|X ij] = β0 + β1X
1
ij + β2X

2
ij + · · ·+ βPX

P
ij ,

V ar[Y i] = Σi,

where Σi is an mi × mi covariance matrix. Ordinary least square estimate of β, where β

is a P × 1 vector of the coefficients β1, . . . , βP , is in-efficient. If Σi is known, one can use a

weighted least square to estimate β, where the estimated β̂W has the form

β̂W =
(
ΣN
i=1X

T
i W iXi

)−1(
XT

i W iY i

)
,

whereW i is a weight matrix and is equal to Σ−1
i andXi is the design matrix for subject i. In

general, Σi is not known. When V ar[Y i] = Σi is equal for all units, iteratively re-weighted

least square can be used. The algorithm works as follows:

Linear Model for Correlated Data Using Iteratively Weighted Least Square

Start with an initial OLS estimate: βtemp ← β̂
OLS

Repeat the steps below until convergence:

1. Obtain Σ̂ = 1
n

∑n
i=1(Y i − βTtempX i)(Y i − βTtempX i)

T

2. W i ← Σ̂
−1

3. βtemp ←
(
ΣN
i=1X

T
i W iX i

)−1(
XT

i W iY i

)
When the number of within unit measurements is large, however, IRWLS requires estimating

a large number of parameters for Σi and this requires a large sample size in terms of number

of units. In this case, one common approach is to assume a structure on Σi which leads

to an estimation of fewer number of parameters. Common covariance structures include

compound symmetric and autoregressive correlation.

11



2.1.2 Linear Mixed Models

Laird and Ware (1982) introduced linear mixed model as a model that includes both shared

covariate effect across all clusters as well as cluster-specific covariate effects. They introduced

a model of this form,

Y i = βTX i + bi
TZi + εi, (2.1)

where Y i is a response vector of size mi × 1, with mi as the number of measurements on

the ith cluster. X i is a design matrix of size mi × p, where p is the number of covariates

in the model. β is a coefficient vector of size p × 1 and indicates a shared covariate effect

across all clusters. Among the covariates, q of them may have a cluster-specific effect. Zi is

a design matrix of size mi× q that includes covariates with a cluster specific effect. bi is the

cluster effect coefficient vector for the ith cluster that is of size q×1. In the context of mixed

effects models, β coefficient vector is called fixed effect as the effect is fixed across clusters,

whereas bi coefficient vector is called random effect. Random effects are typically assumed

to be Normally distributed. Finally, εi is a vector of measurement errors of size mi × 1 that

is assumed to be independent from the random effects bi and is Normally distributed. This

can be summarized as

bi ∼ N(0,Σb),

εi ∼ N(0,Σεi).

With this model specification, Y i is distributed according to a multivariate Normal distri-

bution with mean,

E[Y i] = βTX i,
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and variance,

V ar[Y i] = ΣYi(α)

= ZiΣbZi
T + Σεi ,

where parameters inside Σb and Σεi are represented by α. α and β can be estimated via the

maximum likelihood method.

2.1.3 Generalized Linear Models for Correlated Data

In Section 2.1.1, a semi-parameteric approach to fit a linear model for correlated data in-

troduced. In Section 2.1.2, with parametric assumptions on random effect, a similar model

was fit using the maximum likelihood method. Similar techniques can be used to model

correlated data under a more general case where outcome is distributed according to a dis-

tribution from exponential family distribution, that is a distribution that can be written

as

P (Yij|θ) = h(Yij)exp
(
η(θ)T (Yij)− A(θ)

)
, (2.2)

where θ is a vector of parameters, η(.) and A(.) are functions that they only depend on

parameters θ, h(.) and T (.) is a function that only depends on the data Yij. These models

are known as generalized linear models with count and binary outcome data as some examples

of these models.

Analogous to linear models for correlated data (Section 2.1.1), we introduce two approaches

to model correlated data using the generalized linear models, one an approach to fit the

model using IRWLS (GEE) and another a parameteric approach that use the maximum

likelihood technique to fit the model (GLMM).
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Generalized Estimating Equation Models (GEE)

One can extend the linear model introduced in Section 2.1.1 to a generalized linear model

where the outcome is distributed according to a distribution from an exponential family of

distributions with mean,

E[Y i|X i] = µi,

and variance,

V ar[Y i|X i] = Σ(α, β),

where Y i andX i are the outcome vector and the design matrix for theith cluster, respectively.

V ar[Y i|X i] may depend on some parameter α and some coefficient vector β. coefficient

vector β, design matrix X i, and mean vector µi are linked via the function g(·), where

g(µij) = βTX ij.

Parameter estimation is done using IRWLS. In order to estimate fewer parameters, one can

specify a covariance structure, where

V ar[Y i] = Σ(α, β)

= Si(µi)
1/2Ri(α)Si(µi)

1/2.

with Si(µi) = diag(V i), where diag(.) is a function that returns a diagonal matrix with

diagonal elements Vij = V ar[Yij|X i]. In exponential family, variance is often a function of
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mean, so is Si in our notation. Ri(α) is a correlation matrix, where

Rij = Corr[Yij, Yik|X i].

Ri(α) is commonly specified according to a compound symmetry or autoregressive correla-

tion structure. One can show that the estimate of β, when α is known, is an estimator of

the estimating equation

U(β) =
n∑
i=1

DT
i (β)V −1

i (α,β)[Y i − µi(β)],

where Di is a matrix of the partial derivatives of µi with respect to the β coefficients with

Di(j, k) =
∂µij
∂βk

.

Estimation of α is done using moment estimators (Liang and Zeger (1986)) that depend on

residuals rij defined as

rij =
Yij − µ̂ij√

V̂ij

.

Depending on the assumed covariance structure, one can estimate the parameter α using the

standardized residuals rij. In particular, for a compound symmetric covariance structure,

that is an R matrix structured as

R(α) =



1 α · · · α

α 1 · · · α

...
...

. . .
...

α α · · · 1


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, α is estimated as

α =

∑n
i=1∑

j 6=k rijrik

n∑
i=1

mi(mi − 1)− p,

where p is the number of β coefficients. In summary, α and β in a GEE model are estimated

iteratively as follows:

Parameter Estimation in Generalized Linear Models for Correlated Data

Start with an initial β that is estimated using an independent working correlation structure
and set: βtemp ← β0

2. Given βtemp, calculate the moment estimator of α

3. Given an estimated α, estimate a new β as follows:

βtemp → βtemp +
(
Σn
i=1D

T
i V iDi

)−1
Σn
i=1D

T
i V

−1
i [Y i − µi]

4. Repeat Step2 and Step3 until convergence.

Generalized Linear Mixed Models (GLMM)

One can extend the model introduced in Section 2.1.2 to a generalized linear model where

outcomes are distributed according to a distribution that belongs to the exponential family

of distributions (equation (2.2)) and with

E[Yij|X ij, bi] = µij,

where Yij and X ij are outcome and vector of covariates for the jth measurement on the ith

cluster, respectively. bi is a vector of random effects associated with the ith cluster and of

size q × 1. The mean µbij, vector of fixed covariates X ij, fixed effect coefficients β, vector of

random covariates Zij, and random effect coefficients bi are linked via a link function g(·),

16



where

g(µij) = βTX ij + bTi Zij. (2.3)

Typically, bi ’s, where i ∈ {1, . . . , n}, are assumed to be distributed according to a multi-

variate Normal distribution

bi ∼ Nq(0,Σb).

Further, within each cluster i, and conditional on the cluster random effects bi, Yij’s are

assumed to be conditionally independent, where j ∈ {1, . . . ,mi}. β and Σb parameter

estimation can be done using the maximum likelihood method, where the likelihood of the

data is

L(β,Σb) =
n∏
i=1

f(Y i|X i),

with n as the number of clusters, Y i a vector of outcomes in cluster i, and X i the fixed

effect design matrix in cluster i. In order to get the marginal likelihood f(Y i|X i), one can

integrate out random effects bi from the full likelihood f(Y i|X i, bi) as

f(Y i|X i) =

∫
b

f(Y i|X i, bi)f(bi|X i)dbi

=

∫
b

n∏
j=1

f(Yij|X i, bi)f(bi|X i)dbi. (2.4)

When the Yij’s are not normally distributed, evaluation of the integral in equation (2.4) is

rather difficult. By approximating the data, Zeger et al. (1988) and Breslow and Clayton

(1993) proposed parameter estimation methods that approximate the maximum likelihood

method. Other possible estimation methods include a numerical maximization of the log

likelihood using Gauss-Hermite Quadrature technique (Liu and Pierce (1994)), parameter

17



estimation using the EM algorithm, or parameter estimation by approximating the integral

in equation (2.4) using Monte-Carlo techniques.

In particular, Breslow and Clayton (1993) proposed a penalized quasi-likelihood (PQL)

method where they used a first-order Taylor expansion to approximate data with pseudo

data. They, then, estimated GLMM parameters by using the pseudo data and through an

iterative approach. They considered a GLMM of the form

Yij = µij + εij

= g−1(βTX ij + bTi Zij) + εij,

where g(.) is the canonical link function, X ij and Zij are fixed effect and random effect

vectors for the jth measurement on the ith cluster, respectively, and εij is some measurement

error with a variance of V ar[Yij|bi] = V (µij). Breslow and Clayton (1993) considered a first

order Taylor expansion around a current β∗ and b∗i estimates as

Yij ≈ g−1(β∗TX ij + b∗i
TZij) + ġ−1(β∗TX ij + b∗i

TZij)(β − β∗)TX ij

+ ġ−1(β∗TX ij + b∗i
TZij)(bi − b∗i )

TZij + εij.

One can equivalently write

Yij ≈ µ∗ij + V (µ∗ij)(β − β∗)TX ij (2.5)

+ V (µ∗ij)(b− b∗i )TZij + εij. (2.6)

By re-arranging equation (2.5) and separating unknown parameters β and b from the current

estimates β∗ and b∗i ,

βTX ij + bi
TZij + V (µij

∗)−1εij ≈ V (µij
∗)−1(Yij − µ∗ij) + β∗TX ij + b∗i

TZi. (2.7)
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Breslow and Clayton (1993) called the right hand-side of the equation (2.7) as a pseudo

response, that is represented by Y ∗ij , and showed that GLMM parameters could be estimated

by iteratively fitting the linear mixed model

Y ∗ij = βTX ij + bi
TZij + V (µij

∗)−1εij.

Alternatively, one can estimate parameters in a GLMM model by approximating the inte-

gral in equation (2.4) using numerical approximations. Gaussian quadrature method is an

example of such approximation. Consider the likelihood for subject i in equation (2.4). In

this equation, f(bi|X i) is the density of a multivariate Normal distribution. Using Gaussian

quadrature approximation, one can approximate this integral as

f(Y i|X i) =

∫
b

f(Y i|X i, bi)f(bi|X i)dbi

≈
Q∑
q=1

Wqf(Y i|X i, b
(q)
i ), (2.8)

where Q is the order of approximation, Wq and b
(q)
i are weights and nodes that are solutions

to the Qth order Hermite polynomial.

2.1.4 Bayesian Longitudinal Models

In this section, we introduce Bayesian linear mixed effect and generalized linear mixed effect

models to analyze correlated data.
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Bayesian Linear Mixed Effect Models

Consider the linear mixed effect model introduced in equation (2.1). To fit this model under

the Bayesian framework, where fixed effect coefficient vector β, random effect coefficient

vector bi where i ∈ {1, . . . , n} with n as the number of clusters, and measurement error σ2

are the parameters, one can consider a hierarchical model with the likelihood

L =
n∏
i=1

f(Y i|X i,Zi,β, bi, σ
2), (2.9)

where Y i is a vector of outcome measures on cluster i, X i and Zi are fixed effect and random

effect design matrices, respectively. Typically, a multivariate Normal distribution is assumed

on random effect coefficients as

bi ∼ N(0,Σb), (2.10)

where i ∈ {1, . . . , }, and with independent priors on the fixed effect coefficients β and the

measurement error σ2 as

f(β, σ2) = f(β)f(σ2). (2.11)

In the model setting above, while typically Σb is fixed, some may treat it as a hyper-parameter

with a proper prior f(Σb), commonly an inverse-Wishart distribution. Common prior for β

is the multivariate Normal distribution. σ2 is commonly assumed to be independent of β

with a prior inverse-gamma distribution. With the specified likelihood and the priors, the
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posterior distribution of the parameters is of the form

f(β, b1, . . . , bn, σ
2,Σb|X1, . . . ,Xn,Z1, . . . ,Zn,Y 1, . . . ,Y n) ∝

n∏
i=1

f(Y i|X i,Zi,β, bi, σ
2)

× f(bi|Σb) (2.12)

× f(β)f(σ2)

× f(Σb)

Bayesian Generalized Linear Mixed Effect Models

Consider the generalized linear mixed effect model (GLMM) introduced in equation (2.3).

Bayesian GLMM includes a likelihood of the form

L =
n∏
i=1

f(Y i|X i,Zi,β, bi),

where the likelihood terms f(Y i|X i,Zi,β, bi) are distributed according to an exponential

family distribution (equation (2.2)). Y i is a vector of outcome measures on cluster i, X i and

Zi are fixed effect and random effect design matrices, β is a vector of fixed effect coefficients,

and bi is a vector of random effect coefficients for cluster i. Typically, assumed random effect

coefficients bi are distributed according to a multivariate Normal distribution

bi ∼ N(0,Σb), (2.13)

where i ∈ {1, . . . , n}, and with a Σb with a typical inverse-Wishart prior. Fixed effect

coefficients β and measurement error σ2 are assumed to have independent priors

f(β, σ2) = f(β)f(σ2). (2.14)
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With the specified likelihood and priors, the joint posterior distribution for parameters will

be the same as in equation (2.12).

2.2 Survival Analysis

2.2.1 Introduction to Survival Analysis

Time-to-event analyses are generally referred to as survival analysis, where interest is in

estimating the length of time to some event of interest and to identify factors that may

affect this length of time. Using survival terminology, we refer to the event of interest as

”death”, even though death is not the event of interest in all time-to-event analyses. Also, for

simplicity, we refer to the time till the event of interest as ”survival” time. One example of

survival analysis is modeling time-to-death among end-stage renal disease (ESRD) patients

as a function of patient’s age, BMI, and serum albumin.

One complication of survival data is that not all subjects experience ”death” during the

study follow-up. Also, some may leave the study or may die to an unrelated cause. While

these subjects’ event times are un-observed, their event times are beyond the last time point

when those subjects were observed in the study. In survival terminology, these subjects are

known as ”right censored” subjects. Right censoring is considered as a type of missingness

and should be accounted for in the analysis when they occur. While conventional statistical

methods, including regression models, can be used to analyze time-to-event data in the

absence of censoring, however, when censoring occurs, these models typically fail to account

for censored data. Survival analysis, on the other hand, takes censoring into account.

To formally introduce survival analysis, let T and C be continuous non-negative time-to-

event outcome, also known as survival time, and censoring time, respectively. Observed

22



time Y , is either the event time T , if the event of interest observed, or is the censoring time

C, if the subject gets censored. When an event-time is observed, we set the event-indicator

δ = 1, otherwise δ = 0. It’s typically assumed survival time, T , and censoring time, C, are

independent. Observed time Y can be mathematically written as:

Y =


T, if δ = 1

C, if δ = 0

For a non-negative random variable T , four functions below characterize the distribution of

this random variable:

1. Probability Density Function (pdf):

f(t) is the probability density function that the event occurs at time t and can be written as

f(t) = lim
∆t→0+

1

∆t
Pr[t ≤ T ≤ t+ ∆t]. (2.15)

2. Survival Function:

Survival Function S(t) is the probability that a subject survives up to time t. As the defini-

tion implies, survival function is also equal to the complement of a cumulative distribution

F (t) up until time t. Survival function can be written as

S(t) = Pr[T > t] = 1− Pr[T ≤ t] = 1− F (t) = 1−
∫ t

0

f(z)dz. (2.16)

23



3. Hazard Rate:

Hazard rate λ(t) is the chance that a subject who has survived up to time t, experiences the

event of interest at the next instant in time. Hazard rate can be formally written as

λ(t) = lim
dt→0+

Pr[t ≤ T ≤ t+ dt|T ≥ t]

dt
. (2.17)

4. Cumulative Hazard Function:

Cumulative hazard function Λ(t) is simply an integration over hazard rate up until time t as

λ(t) =

∫ t

0

λ(z)dz. (2.18)

The four functions introduced in equation (2.15), equation (2.16), equation (2.17), and equa-

tion (2.18) are related as when one function is known, the other three can be derived. In

specific, using the definition of the hazard rate (equation 2.17) and by extending the condi-

tional probability in the numerator, one can write

λ(t) = lim
dt→0+

1

dt

Pr[t ≤ T ≤ t+ dt]

Pr[T ≥ t]
= lim

dt→0+

1

dt

f(t)dt

S(t)
=
f(t)

S(t)
. (2.19)

Given that the derivative of the survival function S(t) is equal to −f(t) one can write

λ(t) = f(t)
S(t)

= − d
dt
log(S(t)). Consequently, we can re-write the survival function as

S(t) = exp{−
∫ t

0

λ(z)dz} = exp{−Λ(t)}. (2.20)

equation (2.19) and equation (2.20) show that similar to the survival function, the hazard

function also provides equivalent information on the distribution of the survival time, T .
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Further, accounting for right-censoring is easier with the hazard function as this function at

each time t, is a conditional function that only needs a risk set at that time, where a risk

at time t includes censored subjects at time t as well. Formally, risk set at time t is defined

as a set of all subject who have not failed until time t. As an example, one may consider

a simple survival distribution where the risk of death over time is constant. This means, a

constant hazard of the form λ(t) = λ where λ is a parameter that is constant for all values of

t. Using E.2.20, the corresponding survival function is of the form S(t) = exp{−
∫ t

0
λdz} =

exp(−λt). Hence, the probability density function of survival times under this setting is

f(t) = − d
dt
S(t) = λexp{−λt}, that is an exponential distribution with the mean survival

time of 1/λ.

With survival and a hazard rate of λ(t), one can form a likelihood function. Consider survival

data on n subjects, some of whom may have been censored. If subject i dies at time ti (i.e.

survival time ti with event indicator δi = 1), her/his contribution to the likelihood is f(ti)

which instead, can be written as S(ti)λ(ti). On the other hand, If subject i gets censored

(i.e. survival time ti with event indicator δi = 0), she/he is still alive at ti and hence, her/his

contribution to the likelihood is S(ti). The corresponding likelihood is then

L =
n∏
i=1

Li

=
n∏
i=1

λ(ti)
δiS(ti). (2.21)

Using equation (2.20), one can write the log likelihood as

log(L) =
n∑
i=1

log(Li)

=
n∑
i=1

δilog(λ(ti)) + log(S(ti))

=
n∑
i=1

{δilog
(
λ(ti)

)
− Λ(ti)}. (2.22)
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2.2.2 Cox Proportional Hazards Model

In survival analysis, often researchers are interested in testing the association between a set

of covariates and survival times. Focused on the hazard function, Cox (1972) introduced

a family of models to model survival data. In particular, he introduced the proportional

hazards model where he used the multiplicative hazard function

λ(t|Z) = λ0(t)exp{βTZ}, (2.23)

where exp(.) is the exponential function with expx = ex. Based on equation (2.23), the

hazard function at any particular time point can be decomposed into a time-dependent

baseline hazard λ0(t) and a time-independent covariate effect exp{βTZ}, where Z is a vector

of covariates, λ0(t) is baseline hazard at time t, β is a vector of coefficients, and exp{βTZ}

serves as the relative risk which can increase or decrease the risk proportionately depending

on the covariate values. The hazard is a proportional hazard in the sense that the increase

or decrease in the hazard rate, λ(t), compared to the baseline hazard, λ0(t), is the same at

all values of t.

Baseline hazard, λ0(t), is usually unknown and difficult to specify without a strong param-

eteric assumption. Without a baseline hazard specification, survival probability density is

unknown, and hence, forming a full likelihood in order to estimate β coefficients is not pos-

sible. Cox (1972) proposed a semi-parameteric model where β coefficients are estimated

without any baseline hazard specification. He proposed using a partial likelihood where at

each event time, covariate values for the failed subject are compared with the covariate val-

ues of all subjects in the risk set, who have not failed yet. The contribution of the ith subject
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to the partial likelihood, LPi , can be written as

LPi = Pr{Subject with covariate vector Zi failed at ti|

Some subject from the risk set R(ti) failed at ti},

where R(ti) is the risk set at time ti that includes all subjects who have not died by this

time yet. Using the definition of conditional probability, one can write LPi as

LPi =
λ0(ti)exp(β

TZi)∑
k∈R(ti)

λ0(ti)exp(β
TZk)

=
exp(βTZi)∑

k∈R(ti)
exp(βTZk)

.

The partial likelihood for all subjects, LP , is the multiplication of the individual likelihood

contribution as

LP =
∏

failure times i

exp(βTZi)∑
k∈R(ti)

exp(βTZk)
. (2.24)

Maximization of the partial likelihood can be done by solving the partial likelihood score

equation and by using the Newton-Raphson technique. Plausibility of coefficient estimation

using the partial likelihood has been justified by authors including Cox (1975) and Andersen

and Gill (1982).

Proportional hazard models are not limited to only fixed-at-baseline covariates. One can in-

clude time-varying covariates, Z(t), into the model, where now Z(t) is a vector of covariates,

some of which may change over time. Consider a multiplicative hazard model of the form

λ(t|Z(.)) = λ0(t)exp{βTZ(t)}. (2.25)
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The corresponding partial likelihood for this model is of the form

LP =
∏

failure times i

exp(βTZi(ti))∑
k∈R(ti)

exp(βTZk(ti))
, (2.26)

where Zk(ti) indicates the value of the covariate vector for subject k at time ti. Definition of

the risk set R(ti) is the same as before. While fixed-at-baseline covariate values remain the

same for each subject throughout the study, however, time-varying covariates change over

time. This means in order to evaluate the likelihood, one needs to compute time-varying

covariates for all subjects in the risk set at each failure time point, ti, where i ∈ {1, . . . , k}

with k as the number of failure time points.

2.2.3 Weibull Model - A Parametric Proportional Hazards Model

One may consider survival times t to be distributed according to a Weibull distribution with

a shape parameter, τ , and a scale parameter, γ = exp(λ). According to Ibrahim et al. (2005),

we consider a Weibull distribution with the parameterization

t|τ, λ ∼ Weibull(τ, λ)

f(t|τ, λ) = τtτ−1exp(λ− exp(λ)tτ ). (2.27)

Using the Weibull density in equation (2.27), one can derive the survival function

S(t|τ, λ) = exp{−exp(λ)tτ},
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and the hazard function

λ(t) =
f(t)

S(t)

= τtτ−1exp(λ). (2.28)

equation (2.28) is similar to the proportional hazard equation (equation 2.23), where it

can be decomposed into a time-dependent baseline hazard of the form τtτ−1 and a time-

independent multiplier of the form exp(λ). In that sense, Weibull model is also a proportional

hazards model. One can introduce covariates into the model using the scale parameter, where

λ = βTZ.

Considering the equation (2.28), for a shape parameter τ = 1, the model reduces to an

exponential survival distribution with a constant baseline hazard. A shape parameter greater

than 1 leads to a model with an increasing baseline risk over time. Conversely, a shape

parameter less than 1, leads to a model with a decreasing baseline risk over times.

By taking log of the equation (2.28), one can observe that the log of the risk over time

changes linearly with time. This indicates that a log-linear changes in the baseline hazard

over time in the Weibull models.

2.2.4 Bayesian Survival Analysis

While it’s possible to approach survival analysis from the frequentist perspective, there are

quite some advantages considering survival analysis from the Bayesian perspective, some of

which are reviewed in this section.

Fitting a Bayesian survival model is generally easier than a frequentist model, specially

when there exists a complex censoring mechanism. In this case, instead of maximizing a
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complex likelihood, one can use posterior sampling computation with MCMC methods to fit

the model. Further, while frequentist methods rely on asymptotics and require a minimum

sample size, an exact inference is possible with Bayesian models through posterior sampling

computation. This matter becomes more obvious in estimating variance in frequentist models

as opposed to variance estimation under the Bayesian paradigm. Additionally, in clinical

trials it is often of interest to incorporate information from prior studies. While the Bayesian

perspective provides a natural way to incorporate prior information, this is not possible with

the frequentist approach. Finally, while model selection under the frequentist approach

is mainly limited to nested models and is often complex, the Bayesian paradigm provides

easier model selection techniques both for nested as well as non-nested models (Ibrahim et al.

(2005)).

Bayesian Weibull Model

Consider {t1, t2, . . . , tn} as n independent survival times that are distributed identically ac-

cording to a Weibull distribution with a parameterization introduced in the equation (2.27).

Using the equation (2.21), one can write the full likelihood for a censored sample and under

standard censoring assumptions

L(α, λ) =
n∏
i=1

(τti
τ−1exp{λ})δi(exp{−exp(λ)tτ})

= τ
∑n

i=1 δiexp
{
λ

n∑
i=1

δi +
n∑
i=1

(
δi(τ − 1)log(ti)− exp(λ)ti

τ
)}
.

In terms of the prior specification on the parameters, when both α and λ are unknown,

there is no conjugate prior. A typical prior for α is a Gamma prior, and a typical prior for

λ is a Normal prior. With these priors, the posterior is not in a closed form, however, by

using MCMC methods, one can easily sample from the joint posterior distribution of the

parameters.

30



Using the parameterization introduced in equation (2.27), one can introduce covariates,

where λ = βTZ. The Normal distribution is a typical prior on β coefficients. Under this

setting, one can write the likelihood as

L(α,β) = τ
∑n

i=1 δiexp
{

(βTZ)
n∑
i=1

δi +
n∑
i=1

(
δi(τ − 1)log(ti)− exp(βTZ)ti

τ
)}

Semi-Parametric Bayesian Survival Models Using a Dirichlet Process Prior

With today’s efficient computational algorithms, including MCMC methods, non-parameteric

and semi-parameteric Bayesian models, with fewer parameteric assumptions compared to the

parameteric models, are becoming popular. Focusing on the introduced Bayesian Weibull

model as a proportional hazards model, one may be interested in a model with fewer pa-

rameteric distributional assumptions to model real data better. One popular solution is

to use the non-parameteric Dirichlet process prior technique to limit explicit distributional

assumptions (Section 2.4). In this section, we briefly introduce semi-parameteric survival

models by using the Dirichlet process technique. A detailed introduction to the Dirichlet

process models will be provided in Section 2.4.

Survival models with Dirichlet process prior were first studied by Susarla and Van Ryzin

(1976) and Ferguson and Phadia (1979), where by using the Dirichlet process prior, they

proposed a fully non-parameteric method of estimation for survival curves with right censored

data. Under the squared error loss, Susarla and Van Ryzin (1976) derived an estimator for

survival function of the form

Ŝ(t) =
α(1−G0(t)) +N+(t)

α + n
×

l∏
j=k+1

( α(1−G0(t(j))) +N(t(j))

α(1−G0(t(j))) +N(y(j))− λj
)
,

where {t1, t2, . . . , tn} are survival times with {t1, t2, . . . , tk} as the observed event times and

the remaining {tk+1, tk+2, . . . , tn} as the censoring times. Among the censoring times, suppose
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there are m − k unique time points of the form {t(k+1), t(k+2), . . . , t(m)}. and suppose λj

counts the number of censored observations at each unique censoring time t(j) where j ∈

{k + 1, k + 2, . . . ,m}. N(t) is the number of observations in the risk set with an observed

time (censoring or event time) greater than or equal to t. Similarly, N(t+) is the number

of observations in the risk set with an observed time greater than t. Finally, α is the

concentration parameter and G0 is the base measure in the Dirichlet process prior.

A survival model with a Dirichlet process mixture (DPM) prior can be considered as a com-

promise between a completely parametric survival model and a completely non-parameteric

model. Some authors, including Doss (1994), Doss and Narasimhan (1998), and Doss and

Huffer (2000), proposed using the Dirichlet process mixture prior on modeling the cumu-

lative probability of survival times. Their proposed methods are rather difficult when one

needs to introduce covariates into the model. Alternatively, one can assume a parameteric

distribution for the survival times with an unknown parameter vector θ. In order to add

more flexibility to the model, one can assume that θ is distributed according to an unknown

distribution G, where G itself has a Dirichlet process prior. This model can be written as

t|θ ∼ F (.|θ)

θ ∼ G

G ∼ DP (α,G0).

This model specification induces a marginal distribution on survival times t that is an infinite-

mixture of the parameteric distribution F that is mixed over the θ parameter vector (Sethu-

raman (1994)). Dirichlet process (DP) and Dirichlet process mixture models are introduced

in detail in Section 2.4.
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Frailty Models

In survival studies, survival times may depend on covariates. Not all covariates are measur-

able, as some may be unknown or if known, not possible to measure. Vaupel et al. (1979)

used the word frailty (also known as individual’s heterogeneity) to refer to these unobservable

risk factors.

Among latent risk factors, some may cluster a population into some sub-populations where

members of a sub-population share the same level of a latent risk factor that is different from

other sub-populations. Hence, frailty models are useful tools in modeling the within-cluster

association that exists between subjects’ survival times within each cluster.

Frailty models have been approached both from a parameteric as well as a semi-parameteric

point of view. With the advances in computational algorithms, the Bayesian paradigm in

frailty models has got a lot of attention in the literature. In particular, Sahu et al. (1997) ap-

proached frailty models using a fully parameteric approach with a baseline hazard specified

according to a Weibull distribution. Clayton (1991), Sinha and Dey (1997), and Aslanidou

et al. (1998) approached frailty models from a Bayesian semi-parameteric standpoint. Clay-

ton (1991) proposed a frailty model with a Gamma process prior. Sinha and Dey (1997)

and Aslanidou et al. (1998) proposed a frailty model with piece-wise exponential baseline

hazards. Gustafson (1997) and Sargent (1998) considered a proportional hazards model with

frailty using the Cox’s partial likelihood.

The most common frailty model is an extension of the Cox proportional hazards model and

is commonly known as the shared frailty model. This model considers n clusters each with

mi within cluster subjects. Survival time and covariate vectors for the jth subject in the ith

cluster are denoted by tij and X ij, respectively. wi is considered as the subject i’s frailty

term that is latent. Mirroring the notation from Ibrahim et al. (2005), a frailty model is of
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the form

λ(t|wi,X ij) = λ0(t)wiexp(β
TX ij), (2.29)

where λ0(t) is an unknown baseline hazard that is shared across all subjects. X ij is the

covariate for the jth subject from the ith cluster, that is of size p×1. β is a vector of coefficients

that is also of the size p×1. This model can be approached from the parameteric perspective,

where a parameteric distribution is assumed on the frailty terms wi. Alternatively, by using

semi-parameteric techniques, one can relax explicit distributional assumptions on wi (Vaupel

et al. (1979)).

2.3 Gaussian Processes

Gaussian process (GP) can be thought as a Bayesian non-parameteric technique that is

widely used to define a prior distribution over functions and has been used in statistics

literature for a long time (O’Hagan and Kingman (1978) ,Wahba (1990), Rasmussen (2006),

Neal (2012)). This technique is particularly useful in non-parametric Bayesian regression

models where instead of an explicit functional assumption, one may use a Gaussian process

prior to relax any functional assumption. Like functions, a prior distribution on functions is

also infinite-dimensional. Such a prior can be defined using Gaussian process (O’Hagan and

Kingman (1978)). Gaussian process has been known in spatial statistics for a long time where

GP regression is known as ”Kriging”. In general, Gaussian processes can be considered as

a general-purpose regression with no explicit functional assumption and hence, with a great

flexibility.

Rasmussen (2006) defines Gaussian process as a collection of random variables, any finite

number of which are distributed according to a multivariate Gaussian distribution. Let
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F = (f(t1), f(t2), . . . , f(tN)) be an N-dimensional random vector of function values evaluated

at N input points ti ∈ T , where i ∈ {1, . . . , N}. A random function f is distributed according

to a Gaussian process if for any finite subset {t1, t2, . . . , tN} ⊂ T , F is distributed according

to a multivariate Gaussian distribution.

Gaussian processes are fully specified by a mean function, µ(t), and a covariance function,

C(t, t′), where t and t′ are two values from the input space. This can be formally written as

f(t) ∼ GP (µ(t), C(t, t′)),

where realizations of GP are random functions f(t).

A GP, as a collection of random variables, on a finite subset is a multivariate Gaussian

distribution that satisfies all properties of a multivariate Gaussian distribution (Rasmussen

(2006)). In particular, consider t1 and t2 as two finite input vectors and assume f(t) is

distributed according to a Gaussian process

f(t) ∼ GP (µ(t), C(t, t′)).

Since t1 and t2 are finite vectors, (t1, t2), as the combination of two finite vectors, is still

finite. Hence, by the definition of the Gaussian process that is evaluated on a finite subset,

one can writet1
t2

 ∼ N(

µ1

µ2

 ,

Σ1,1 Σ1,2

Σ2,1 Σ2,2

).

Based on the consistency requirement, t1 ∼ N(µ1,Σ1,1) and t2 ∼ N(µ2,Σ2,2).

Gaussian process models are particularly useful in the regression context where the interest

lies in avoiding explicit functional assumptions between covariates and the outcome in a
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regression model. In a prediction problem in the regression context, one may be interested

in predicting an output y∗ for a new input t∗, given the observed data D = {(ti, yi), i =

1, 2, . . . , N}, where yi = f(ti) + εi, with an unknown function f . By using a Gaussian

process prior, one can consider a pool of plausible functions as opposed to any explicit

functional assumption on the function f . This means, assuming f(t) ∼ GP (µ(t), C(t, t′)).

In this situation, in order to predict Y ∗, one can write

P (Y ∗|t∗,D) =

∫
P (Y ∗|t∗,D, f)dP (f |D)

In application, Gaussian processes are often used as a mean zero stochastic process that is

added to a parameteric mean trend in order to add additional flexibility in modeling data. A

mean-zero Gaussian process leaves the covariance function specification as the main modeling

choice. Smoothness and differentiability in Gaussian process models are controlled by the

covariance function. A variety of different covariance functions have been proposed in the

literature, with squared exponential and Matérn covariance functions as two such examples.

The squared exponential covariance function is of the form

Cov(Yi, Yj) = κ2exp{−ρ2(ti − tj)2}, (2.30)

where the covariance between outcome Yi and Yj is a function of the input space T . The

parameter κ2 controls the height of oscillation and the parameter ρ2 controls the correlation

length. The squared exponential covariance function specified above is infinitely differen-

tiable. One can extend the squared exponential covariance function from a single input

space to a multivariate input space as

Cov(Yi, Yj) = κ2exp{
p∑

u=1

ρ2(xiu − xju)2}, (2.31)
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Another common Gaussian process covariance function is Matérn covariance function that

is given by

Cov(Yi, Yj) =
21−ν

Γ(ν)

(√2νd

l
Kν

(√2νd

l

))
, (2.32)

where ν and l are positive parameters, d is the distance between ti and tj, and Kν is a

modified Bessel function (Abramowitz et al. (1966)). As pointed out by Rasmussen and

Williams (2006), by specifying ν = p + 1/2, where p is a positive integer, the Matérn

covariance function is simplified to the form

Cov(Yi, Yj) = exp
(
−
√

2νr

l

) Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!
(√8νr

l

)p−i
. (2.33)

Covariance function specification, even with scientific knowledge and rich data, is by no

means a trivial problem (Flaxman et al. (2015)). While in some applications, maximum

likelihood estimations of the parameters of the covariance function is used, we emphasize

treating these parameters as hyper-parameters that are sampled as part of an MCMC process.

As an example of a Gaussian process prior, we randomly sampled 15 functions from a

Gaussian process with a squared exponential covariance function, where κ2 = 1, ρ2 = 0.5,

and with an input space T = (−5, 5) (Figure 2.1). Using observed data, out of all plausible

functional forms under the specified GP prior, only those functions that are consistent with

the observed data are selected. In case of no measurement error, consistent functions are

functions that pass through all observed points (Figure 2.1).

2.4 Dirichlet Processes

In statistical models, typically parameteric distributions with finite number of parameters

are used to model data. When the parameteric distribution has too many parameters,
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Figure 2.1: The picture to the left includes 15 randomly sampled functions from a Gaussian
process with κ2 = 1 and ρ2 = 0.5. The picture to the right, includes samples from the
posterior of the Gaussian process after observing data. With a noise-free measurements,
posterior samples are functions that perfectly pass through all the data points.

compared to the amount of data observed, a model may suffer from over-fitting. Conversely,

the model may suffer from under-fitting when there are not enough parameters to model

the data. Therefore, a proper model selection technique, which is often not an easy task, is

critical in parameteric models. Alternatively, Bayesian non-parameteric techniques with an

unbounded number of parameters, where the posterior samples of the parameters used to

model data, can avoid both under-fitting and over-fitting. The Dirichlet process (DP) is a

Bayesian non-parametric technique that is often used to create flexible models that allow for

a broad class of distributions. The DP is also often used in density estimation without any

explicit parameteric distributional assumptions. As an example, one may consider modeling

the distribution of a random variable X with observed values x1, x2, . . . , xn, where observed

values belong to an unknown distribution F . While a typical modeling choice is to consider

a parameteric family of distributions for F , however, by using the Dirichlet process priors,

one can use a prior on all possible probability distributions for F (Teh (2011)).
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Formally, a DP is a probability measure. In particular, a DP prior is defined as a distribution

over probability measures such that marginals on a finite partition are distributed according

to a Dirichlet distribution (Ferguson (1973)). G is distributed according to a DP (G ∼

DP (α,G0)) with a base distribution G0 and a concentration parameter α, if and only if for

every finite partition of a sample space X that is of the form (A1, A2, . . . , Ak), we can write

(
G(A1), G(A2), . . . , G(An)

)
∼ Dirichlet

(
αG0(A1), αG0(A2), . . . , αG0(Ak)

)
.

Further, for any measurable subset A from the sample space X , A and it’s complement, Ac,

form a finite partition of the sample space, and hence, one can write

(
G(A), G(Ac)

)
∼ Dirichlet

(
αG(A), αG(Ac)

)
,

where a Dirichlet distribution of this form is usually known as the Beta distribution. Using

properties of the Dirichlet distribution, one can write the mean and the variance as

E[G(A)] = G0(A), (2.34)

V ar[G(A)] =
G0(A)(1−G0(A))

α + 1
. (2.35)

As the variance formula in equation (2.35) implies, a larger concentration parameter, α,

indicates samples from the DP that are more concentrated around the mean, which is the

base distribution G0.

The Dirichlet process was first introduced by Ferguson (1973) as a generalization of the

Dirichlet distribution to infinite-dimensional space, where he proposed a Dirichlet process

construction using a normalized Gamma process. Using the Kolmogrov consistency theorem,
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Ferguson (1973) proved that the Dirichlet process exists as a probability distribution on the

space of all probability distributions where it follows all the probability axioms. Blackwell

and MacQueen (1973) proved the existence of the Dirichlet process using de Finitti’s the-

orem. Later, Sethuraman (1994) proved the existence of the Dirichlet process by a direct

construction using his stick-breaking construction.

A Dirichlet process prior is a conjugate prior. This means, posterior of the Dirichlet process is

also distributed DP (Sethuraman (1994)). Consider a random variable X and n iid sampled

values of the form x1, x2, . . . , xn from the sample space X . Random variable X is distributed

according to an unknown distribution G (X|G ∼ G), where G has a Dirichlet process prior

(G ∼ DP (α,G0)). The posterior distribution of G, given the observed data, can be written

as

G|x1, x2, . . . , xn ∼ DP (α + n,
α

α + n
G0 +

1

α + n

n∑
i=1

δxi). (2.36)

As equation (2.36) shows, the posterior distribution of the Dirichlet process is distributed

DP with an updated concentration parameter and an updated base distribution. The new

base distribution is a mixture of the prior base distribution, G0, and a discrete distribution

of sampling one of the existing observed xi values, where δxi is a selection indicator that is

equal to 1 if xi is selected.

Using the equation (2.36), one can derive the predictive distribution for a future sampled
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Xn+1, given the observed x1, x2, . . . , xn values as

P (Xn+1|x1, x2, . . . , xn) =

∫
P (Xn+1|G, x1, x2, . . . , xn)dG

= E(G|x1, x2, . . . , xn)

=
α

α + n
G0 +

1

α + n

n∑
i=1

δxi . (2.37)

The formula in equation (2.37) represents the Blackwell-MacQueen urn scheme (Blackwell

and MacQueen (1973)), where a new value, Xn+1, is either a new sample from the base

distribution, G0, or is one of the existing samples (x1, or x2, . . . , or xn). Using the Blackwell-

MacQueen urn scheme, one can consider realizations of the Dirichlet process as a probability

distribution with a sequence of sampled values that are drawn according to equation (2.37).

The sequence is as follows. The first sample is drawn directly from G0. The second sample, is

either a new draw from the base distribution G0 with the probability α
α+1

, or is the previously

sampled X1 with the probability 1
α+1

. Following the same pattern in the sequence, the ith

sample is either a sample drawn from G0 with the probability α
α+i−1

, or is one of the existing

samples each sampled with the probability nk

α+i−1
, where nk is the number of times that Xk

has been sampled so far.

Alternatively, the marginalized DP can be also represented as the Chinese restaurant process

which works as follows. The first customer can choose any dish she/he likes. The next

customer, either with the probability 1
1+α

can choose the same dish as the first customer

and can sit on the same table, or with the probability α
1+α

she/he can choose a new dish

on a different table. The sequence continues with the same pattern where when there are n

customers currently in the restaurant eating their dishes, a new customer can either choose

one of the existing tables with the probability ni

n+α
, or can choose a new table with the

probability α
n+α

, where ni is the number of customers sitting at table i and n is the number

of customers in the restaurant except the new cluster who just came in.
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Using a direct construction, Sethuraman (1994) proposed the stick-breaking construction to

prove the existence of the Dirichlet process. In order to construct the Dirichlet process G

with the concentration parameter α and the base distribution G0 of the form

G ∼ DP (α,G0),

he started with a stick of the length 1. He then cut the stick to pieces of the length πk,

where k ∈ {1, 2, . . . }. The length πk is calculated according to

πk = βk

i=k−1∏
i=1

(1− βi), (2.38)

where βk ’s are iid samples from a Beta distribution of the form

βk
iid∼ Beta(1, α). (2.39)

Also, he assumed Xi’s are iid samples from the base distribution G0. He then proved that

G, which is distributed according to the Dirichlet process, can be constructed as

G =
∞∑
k=1

πkδXk
. (2.40)

As equation (2.40) shows, G that is distributed according to the Dirichlet process, can be

constructed as an infinite mixture of point masses, and hence, G is discrete almost surely.

This indicates that the realizations of the Dirichlet process, even with a continuous base

distribution G0, are discrete almost surely.

Considering the Chinese restaurant process representation of the marginalized Dirichlet pro-

cess, one can easily understand the clustering aspect of the Dirichlet process by considering

tables as clusters. A new customer can either choose a new dish on a new table and form a

new cluster, or can join one of the existing clusters. The clustering aspect of the Dirichlet
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process is also obvious from the Blackwell-MacQueen urn scheme as well as the stick-breaking

construction. Using equation (2.37), the ith sample, independently from other samples, can

form a new cluster with the probability Pi = α
α+i−1

. Let C be the number of clusters in a

sample of size n, where C =
∑n

i=1Ci, with Ci an indicator variable that is 1 if the ith sample

forms a new cluster. Antoniak (1974) show that the expected number of cluster in a sample

of size n is

E(C| n samples) =
n∑
i=1

E(Ci)

=
n∑
i=1

Pi

≈ αlog(1 +
n

α
), for n, α� 0, (2.41)

and the variance of the number of clusters is of the form

V ar(C| n samples) =
n∑
i=1

V ar(Ci)

=
n∑
i=1

(Pi)(1− Pi)

≈ αlog(1 +
n

α
), for n > α� 0. (2.42)

Density estimation is a common application of the DP (Lo et al. (1984), Neal (1992), Escobar

(1994), Escobar and West (1995a)). However, sampled distributions from the DP are discrete

almost surely Sethuraman (1994). In order to estimate continuous distributions, one can

convolve the Dirichlet process with a smooth distribution. This means, instead of putting

a Dirichlet process prior directly on the unknown distribution of the sampled data, one can

assume that the observed data are distributed according to a smooth parameteric distribution

F where a parameter of that distribution is distributed according to an unknown distribution

G, where G is distributed according to the DP. This new model is known as Dirichlet process
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mixture (DPM) model and is of the form

Xi|θi
ind∼ F (.|θi),

θi|G
iid∼ G, (2.43)

G ∼ DP (α,G0).

Using the stick-breaking construction of the Dirichlet process, and by integrating out G, in

the Dirichlet process mixture model in equation (2.43), one can write

Fx(.) =

∫
F (.|θ,G)dG(θ)

=
∞∑
k=1

πkF (.|θ∗k), (2.44)

where θ∗k, with k ∈ {1, 2, . . . }, are independent and identically distributed random variables

according to the base distribution G0 and πk’s are constructed according to the stick-breaking

construction setup introduced earlier in equation (2.38) and equation (2.39). Based on

the formulation in equation (2.44), one can see that the Dirichlet process mixture model

is essentially an infinite mixture model. In application, however, since πi’s exponentially

decrease, the practical number of mixing components will become finite. Unlike the finite

mixture models where the number of mixing groups are fixed a priori, the number of mixing

components in the Dirichlet process mixture models is inferred from the data. This is

particularly useful as determining the number of mixing components in the finite mixture

models is a technically difficult task (Neal (2000)). The Dirichlet process mixture models

initially introduced by Ferguson (1973) and Antoniak (1974) and later become more practical

by Escobar (1994), Escobar and West (1995b), MacEachern and Müller (1998), and Neal

(2000).

Using the Dirichlet process mixture model introduced in equation (2.43), one can form a

predictive density for a new random variable Xn+1, given the observed X1, X2, . . . , Xn data
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as

f(Xn+1|X1, X2, . . . , Xn) =

∫
f(Xn+1|θn+1) (2.45)

× f(θn+1|θ1, . . . , θn, X1, . . . , Xn) (2.46)

× f(θ1, . . . , θn|X1, X2, . . . , Xn) (2.47)

× dθ1dθ2 . . . dθn. (2.48)

In order to sample from the predictive density f(Xn+1|X1, X2, . . . , Xn), one should be able to

first sample from the density f(θ1, . . . , θn|X1, X2, . . . , Xn) in equation (2.47), which is rather

a difficult task. Next, given sampled θ1, θ2, . . . , θn, one should sample from the density

f(θn+1|θ1, . . . , θn, X1, . . . , Xn) in equation (2.46). The density f(θn+1|θ1, . . . , θn, X1, . . . , Xn)

is equivalent to the density f(θn+1|θ1, . . . , θn), where sampling using the density f(θn+1|θ1, . . . , θn)

is easy using the Blackwell-MacQueen urn scheme. Next, given the sampled θn+1, one should

sample from the density f(Xn+1|θn+1), which is easy as this density is a parameteric density.

Sampling from the density f(θ1, . . . , θn|X1, . . . , Xn) (equation (2.47)), when G0 is not a

conjugate prior for the likelihood F (.|θ), is rather difficult. When G0 is a conjugate prior for

F , Escobar and West (1995a) proposed an MCMC algorithm with the state of the Markov

chain as (θ1, θ2, . . . , θn), where at each iteration of the MCMC, they proposed a sequential

draw for i ∈ {1, 2, . . . , n} from θi|θ(−i), Xi, where θ(−i) represents all θ values except the ith

one. Escobar and West (1995a) showed that θi|θ(−i), Xi is distributed as

θi|θ(−i), Xi ∼ riHi +
∑
j 6=i

qi,jδ(θj), (2.49)

where, Hi is the posterior distribution for θi with G0 as the prior distribution and a likelihood

that is based on the single observation Xi using the distribution function F . Other elements
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in the equation 2.49 are defined as

qi,j = bF (xi, θi),

ri = bα

∫
F (Xi, θ)dG0(θ),

where b is such that
∑

j 6=i qi,j + ri = 1.

Escobar (1994) and Escobar and West (1995a) made Dirichlet process mixture models ap-

plicable by providing a posterior sampling algorithm. Their algorithm, however, only works

when the base distribution, G0, is a conjugate prior. Further, their algorithm is rather inef-

ficient in sampling from the posterior when posterior samples suffer from the sticky-cluster

problem, where a parameter value gets stuck in a cluster. Neal (2000) proposed a new

sampling algorithm using the Metropolis-Hasting algorithm combined with partial Gibbs

sampling that is capable of sampling from the posterior of the Dirichlet process mixture

model, even when G0 is not a conjugate prior. For more efficient sampling, Neal (2000)

proposed indexing sample values so when a new value is sampled for a parameter, all obser-

vations with an index to that recently-updated parameter value are simultaneously updated.

Neal (2000) presented 8 algorithms to sample from the posterior of the Dirichlet process mix-

ture model. His algorithm 8 is his most efficient algorithm to handle non-conjugate priors.

We shall explain this algorithm in more detail as follows.

Neal (2000) proposed an efficient algorithm to sample from the posterior of the Dirichlet

process mixture model (equation (2.43)) with a non-conjugate base distribution, G0. In

particular, Neal (2000) defined the state of the Markov chain to include θ∗ and C, where

θ∗ is a set of unique parameter values from (θ1, θ2, . . . , θn), and C is a set of indices of the

form C = {ci, i ∈ {1, 2, . . . , n}}, where θi = θ∗ci . In every iteration of the MCMC, a new

set of auxiliary θ∗ parameters of the form θ∗j , j ∈ {1, . . . ,M}, are introduced, where M is a

pre-specified number of auxiliary parameters. When ci’s are updated, along with the unique
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θ∗ values, the introduced auxiliary parameters are also likely to be chosen. Neal (2000)

outlines the details of his algorithm 8 as follows,

Neal’s Algorithm 8 - Sampling from Posterior of DPM

State of the Markov-Chain: C = (c1, c2, . . . , cn), and θ∗ = (θ∗1, θ
∗
2, . . . , θ

∗
k)

for i ∈ {1, . . . , n} do
k− ← number of distinct cj, j 6= i
h← k− +m, where m is the number of auxiliary parameters
if ci = cj, j 6= i then

Draw m independent samples from G0 as auxiliary parameters
else

Draw m− 1 independent samples from G0 and use θ∗ci as the last auxiliary parameter
end if
Sample a value for ci from {1, 2, . . . , h} with a probability as follows where n−i,c is the
number of cj = c, j 6= i, and b is a normalizing constant:
if 1 ≥ c ≤ k− then
P (ci = c|c(−i), Xi, θ

∗
1, θ
∗
2, . . . , θ

∗
n) = b

n−i,c

n−1+α
F (Xi, θ

∗
c )

else
P (ci = c|c(−i), Xi, θ

∗
1, θ
∗
2, . . . , θ

∗
n) = b α/m

n−1+α
F (Xi, θ

∗
c )

end if
Throw away any θ∗ that is not associated with any ck, k ∈ {1, 2, . . . , n}

end for
Perform remixing: An additional one-step posterior sampling of each θ∗i with G0 prior and
a likelihood with all subjects who share the same θ∗i value.

The concentration parameter α inside a Dirichlet process can be treated as a hyper-parameter

that also gets sampled during the MCMC process. One can choose a prior on α and learn

this parameter from data. This is particularly useful as α is directly related to the expected

number of clusters, and is better learned from the data to avoid any over-fitting or under-

fitting. Any prior on α, induces a prior on number of clusters, k. Consider a Dirichlet process

setting of the form

θ|G ∼ G,

G ∼ DP (α,G0),

α ∼ P (α).
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Escobar and West (1995b) proposed an algorithm to sample from the posterior of α, when

α has a Gamma prior of the form Gamma(a, b), where a is the shape parameter and b is

the scale parameter . For any α value and at each iteration of the MCMC, the number of

unique θ values represents the number of clusters and is denoted by k. Given a value for α

and a value for k, a new value for α can be drawn as follows

Posterior Sampling of α - Escobar and West Algorithm

Sample a random value for η where η ∼ Beta(α + 1, n)

πη ← α+k−1
(α+k−1)+(n×(b−log(η)))

sample a new alpha from a mixture of two gamma distributions:

α|η, k ∼ πηΓ(a+ k, b− log(η)) + (1− πη)Γ(a+ k − 1, b− log(η)).

2.5 Joint Longitudinal-Survival Models

Jointly modeling longitudinal and survival data has received a great deal of attention in the

literature. These models were first motivated by clinical studies in AIDS where researchers

were interested in testing the association between longitudinally measured biomarkers, in-

cluding CD4 counts, and survival outcomes.

By jointly modeling longitudinal and survival data, one can account for the relationship

between the survival event times and the implicit censoring in the longitudinal measurements

(Hanson et al. (2011a)). Joint models are also capable of accounting for measurement error

in the longitudinal covariates. Moreover, these models correctly treat longitudinal covariates

as random variables. Finally, by using both longitudinal and survival data at once, joint

models lead to a higher statistical efficiency (Hogan and Laird (1997), Tsiatis and Davidian

(2004), Ibrahim et al. (2005), Hanson et al. (2011a)) as opposed to separate longitudinal and

survival models in which data are split into survival and longitudinal data.
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There are two main approaches to jointly modeling longitudinal and survival data. One

approach is to jointly model survival and longitudinal data with a focus on the survival data

as the primary outcome and longitudinal measures as covariates inside the survival model.

In this approach, the joint longitudinal-survival likelihood LY,X is of the form

LY,X = LXLY |X ,

where X denotes the longitudinal measurements, Y denotes the survival outcome, LX is

the marginal longitudinal likelihood, and LY |X is the conditional likelihood of the survival

data conditioned upon the longitudinal data. In the second approach, one can jointly model

the longitudinal-survival data by focusing on the longitudinal data as the primary outcome

and the survival data as some information on time to loss of followup in the longitudinal

measures (Ibrahim et al. (2005)). The joint likelihood in the second approach is of the form

LY,X = LYLX|Y ,

where LY is the marginal survival likelihood, and LX|Y is the conditional longitudinal likeli-

hood that is conditioned on the survival data. Several authors including Schluchter (1992),

De Gruttola and Tu (1994), and Schluchter et al. (2001) used the second approach to gener-

alize random effects models in the presence of informative censoring. Our primary interest

in this thesis, however, is in the first approach where survival data are the primary outcome.

Authors have tackled joint longitudinal-survival models from both the frequentist standpoint

as well as the Bayesian standpoint. Some examples of frequentist joint models are found in

De Gruttola and Tu (1994), Wulfsohn and Tsiatis (1997b), Tsiatis and Davidian (2001) and

Law et al. (2002b). Other authors including Faucett and Thomas (1996), Wang and Taylor

(2001b), R Brown and G Ibrahim (2003), and Hanson et al. (2011a) approached modeling

joint longitudinal-survival data from the Bayesian standpoint. Hogan and Laird (1997),
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Tsiatis and Davidian (2004), and Ibrahim et al. (2005) have provided a complete review on

the existing joint longitudinal-survival models.

2.5.1 Frequentist Joint Longitudinal-Survival Models

De Gruttola and Tu (1994) proposed a frequentist joint longitudinal-survival model where

they assume ad Normally distributed random effects. Their likelihood specification is based

on the assumption that given the random effects, the longitudinal and survival outcomes

are independent. Maximum likelihood estimation is obtained by using the EM algorithm.

In their model, they assumed that the monotonic transformations of the survival times are

Normally distributed, which begs the question that whether the model is still robust under

the non-Normal data.

Wulfsohn and Tsiatis (1997b) proposed a joint longitudinal-survival model where they as-

sumed a proportional hazards model for the survival data conditional on the longitudinal

measures. They used a random effects model for the trajectory of the longitudinal measures.

Maximum likelihood estimation was then done by using the EM algorithm. In general, their

parameteric assumptions of the random effects in their longitudinal model may not hold in

real data setting.

Tsiatis and Davidian (2001) proposed a joint longitudinal-survival model where they used

a proportional hazards model for the survival data conditional on the longitudinal mea-

sures. For longitudinal covariates, they assumed a subject-specific linear model. They then

proposed an estimator to estimate the effect of the longitudinal covariates on the survival

outcome, where the estimator does not depend on the Normality assumption of the random

effects in the longitudinal model. While their proposed model is not limited to Normally

distributed random effects, however, large sample property of their estimator is still an open

problem.
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Law et al. (2002b) proposed a joint longitudinal-survival cure model where they assumed

a fraction of patients are immune to the disease throughout the followup. They used a

time-dependent Cox proportional hazards model with longitudinal measures as covariates.

They modeled longitudinal covariates using a hierarchical non-linear mixed effects model.

Parameter estimations was done using a Monte Carlo EM algorithm. One limitation of their

proposed method is that the common distributional assumptions of the mixed effects model

need not be true in all settings.

2.5.2 Bayesian Joint Longitudinal-Survival Models

Compared to the frequentist approach, the Bayesian approach in modeling joint longitudinal-

survival data may be more advantageous as parameter estimation is typically easier using

Bayesian computation as opposed to the EM algorithm. In addition, estimates need no

asymptotic approximations and prior knowledge of the domain of interest can be easily

incorporated into the analysis using a Bayesian framework Ibrahim et al. (2005). On the

other hand, under the Bayesian approach, the hazard function, as the key component of the

likelihood, needs to be fully specified. A typical approach is to discretize time and provide

piece-wise approximations.

Faucett and Thomas (1996) approached modeling longitudinal-survival data using the same

model as the one Wulfsohn and Tsiatis (1997b) had proposed, except from the Bayesian

perspective, where they proposed a joint model with a proportional hazards survival and

a random effects longitudinal model. They used rejection sampling to sample from the

posterior density. In order to achieve the same results as the frequentist approach proposed

by Wulfsohn and Tsiatis (1997b), Faucett and Thomas (1996) used flat priors.

Wang and Taylor (2001b) took a different approach where they used the same propor-

tional hazards model as Faucett and Thomas (1996), however, they made the longitudinal
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component of the model more flexible by adding an integrated Ornstein-Uhlenbeck (IOU)

stochastic process to the trajectory function. This stochastic process adds more flexibility

to the longitudinal component of the model. Brownian motion and random effects models

are two special cases of their proposed longitudinal model. While IOU process adds flexi-

bility to the model, it however, introduces a great number of parameters making the model

computationally complex.

Brown and Ibrahim (2003) proposed a Bayesian joint longitudinal-survival model where

they relaxed any distributional assumption on the longitudinal component by using the

Dirichlet Process prior on parameters of the longitudinal model. They used a proportional

hazards model for the survival component conditional on the longitudinal measurements.

Their model is particularly useful where patient’s response is diverse and can not be easily

modeled with known parameteric distributions. Cancer vaccine trials is one such example.

In proposing joint longitudinal-survival models, while most authors had focused on proposing

a more flexible longitudinal component, Hanson et al. (2011a) focused more on proposing a

more flexible survival component. By using mixture of finite Polya trees, they proposed a

flexible proportional hazards survival model and a flexible accelerated failure time model.

In order to add flexibility to the longitudinal component of the joint models, while most

authors have focused on relaxing distributional assumptions on the longitudinal parameters,

it’s also desirable to relax functional assumptions on the modeled longitudinal trajectories.

Further, while most authors have focused on modeling the the first moment of the longitudi-

nal trajectories, a flexible longitudinal component capable of modeling the second moment

of the longitudinal trajectories could be of scientific interest.

On the survival component of the joint models, while other authors have proposed semi-

parameteric and non-parametric survival components with no explicit distributional assump-

tion on survival times, however, we are seeking a method that is also capable of clustering
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subjects who share the same baseline hazard trend in order to gain more efficiency in mod-

eling subject-specific baseline hazards.

Finally, we are interested in a joint modeling framework that is capable of modeling multiple

longitudinal biomarkers simultaneously and relating these biomarkers to survival outcomes

jointly. When there exist multiple longitudinal biomarkers, simultaneously modeling these

biomarkers by taking the correlation between these longitudinal measures into account can

lead to a more statistical efficiency in estimating trajectories of these biomarkers as opposed

to modeling each longitudinal biomarker separately and independently from other biomark-

ers. In particular, when there exists biomarkers that are measured less frequently compared

to other biomarkers, simultaneously modeling longitudinal biomarkers can help estimate the

trajectory of those less-frequent biomarkers with higher precision.

In the next chapter, using Dirichlet process mixture models, we propose logistic and survival

models that are capable of detecting sub-population latent effects. While marginalizing over

the unknown sub-population latent effects can cause estimates to shrink, we will show that

our proposed models, by detecting sub-population latent effects, are capable of estimating

true conditional estimands.
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Chapter 3

Non-Collapsibility in Dirichlet

Process Mixture Models

In this chapter, we consider coefficient estimation under the Dirichlet process mixture models.

We introduce marginal and conditional covariate effects in a typical regression model. We

introduce the non-collapsibility concept and propose a Dirichlet process mixture model to

estimate conditional covariate effects in non-collapsible models. Section 3.1 provides an

introduction to collapsible and non-collapsible models. Section 3.2 introduces our proposed

Dirichlet process mixture models. In Section 3.3, using synthetic data, we evaluate the

performance of our proposed Dirichlet process mixture models in estimating conditional

coefficients in non-collapsible models. In Section 3.4, we provide sensitivity analysis on

parameters that may change the performance of our proposed Dirichlet process mixture

models. In Section 3.5, we apply our proposed models to real data on access failure in

hemodialysis patients. Finally, we conclude with a discussion in Section 3.6.
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3.1 Introduction

Statistically, non-collapsibility represents the setting where the marginal measure of asso-

ciation between two random variables X and Y , differs from the conditional measure of

association between these two random variables, after conditioning upon the levels of a third

random variable Z, where Z is not a confounder, that is, Z is associated with one random

variable but not the other (Greenland et al. (1999)). In this situation, a careful attention

is required to properly interpret a conditional association as opposed to a marginal asso-

ciation. Further, one should note that in the absence of confounding, both the marginal

association and the conditional association, despite being different, are unbiased. Hence, a

clear distinction between confounding and non-collapsibility is required.

Similarly, non-collapsibility exists in a regression setting when the marginal association be-

tween a predictor variable, X, and a response variable, Y , differs from the conditional as-

sociation in a separate regression model where a third variable Z is adjusted in the model,

where Z is not a confounder, that is, Z is only associated with the response variable.

In general, one needs to consider the relative importance of estimating the marginal associ-

ation between the two random variables X and Y , as opposed to the conditional association

that conditioned upon a third random variable Z. When Z is observed, it is possible to

heuristically compare the difference between the marginal and the conditional associations

by simply comparing the adjusted and unadjusted estimated associations. However, when

Z is latent, analysts generally default to estimating a marginal association without thought

to the relative merits of the two estimands.

In longitudinal studies, non-collapsibility has garnered some attention when comparing the

estimates from the generalized linear mixed model with the estimates from the generalized

estimating equation model, where the former provides conditional estimates that are con-

ditioned upon the subject-specific random effects, and the latter provides estimates that
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are marginalized over all subjects. Longitudinal data can be considered as a special case

of the repeated measure data with measurements indexed by time. We shall use the words

”longitudinal data” and ”repeated measure data” interchangeably.

As a simple case, one may consider n subjects, each with li within subject measurements

with Yij and tij as the outcome and the covariate for the jth measurement on the ith subject,

respectively. One can write a generalized linear mixed effect model with random intercepts

of the form

E[Yij|tij, β0i] = µij,

where the mean µij and the covariate tij and the subject-specific random intercept β0i are

linked using a link function g(.), where

g(µij) = β0i + β0 + β1tij. (3.1)

In this model, β0 and β1 are intercept and slope that are shared across all subjects. In

a typical mixed effects model, β0i, where i ∈ {1, . . . , n}, are assumed to be independent

and Normally distributed. Under this model setting, conditioned upon the subject-specific

random intercepts, β0i, β1 represents the conditional association between the random variable

t and the outcome, Y .

Alternatively, one may consider a model of the form

E[Yij|tij] = ηij,

where the mean ηij is related to the covariate tij through a link function g(.), where

g(ηij) = γ0 + γ1tij. (3.2)
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In this model, γ0 is the intercept and γ1 is the slope where both are shared across all subjects.

Under this model setting, γ1 represents the marginal association between the covariate t and

the outcome, Y .

Generally, even with random intercepts with no confounding effect, the conditional covariate

effect β1 (equation (3.1)) and the marginal covariate effect γ1 (equation (3.2)) need not

be equal. Several authors including Gail et al. (1984), Gail (1986) showed that with non-

confounding subject-specific random intercept, β0i, β1 is guaranteed to be collapsible, if g(.)

is either the identity link or the log link. That means with the identity or the log link

and in the absence of confounding, equality of the conditional covariate effect β1 and the

marginal covariate effect γ1 is guaranteed. Hence, we are primarily interested in studying

non-collapsibility in logistic and proportional hazards models.

To show the non-collapsibility effect in the logistic regression model, we generated synthetic

data, where we considered three different groups with different intercepts of β01 = −2,

β02 = 0, β03 = 2. Independently of the intercepts, we generated covariate X, where X is

simulated from the standard Normal N(µ = 0, σ = 1). Using the a logistic link and with a

true coefficient values of β1 = 2, we generated binary outcomes. We then fit a conditional

model of the form

logit[E(Yij|Xij, β0i)] = β0i + β0 + β1Xij,

where Yij is a binary outcome for the jth measurement on the ith cluster, Xij is the covariate

value corresponding to the outcome Yij, and β0i is the true value of the cluster-specific

intercept that is directly adjusted in the model. We also fit a marginal model of the form

logit[E(Yij|Xij)] = γ0 + γ1Xij.

After fitting the conditional and the marginal models above, we plot the results, where the

57



x-axis is the covariate values and the y-axis is the predicted probability of Y = 1. In this

plot, the red curve shows the predicted values from the marginal model and the three black

curves show the predicted values from the conditional each corresponding to a sub-group.

As Figure 3.1 shows, the marginal slope that is averaged across sub-groups (γ1) is smaller

than the stratum-specific slope (β1). This plots clearly shows non-collapsibility in logit link.

Figure 3.1: Graphical representation of non-collapsibility in logistic regression using synthetic
data. Synthetic binary data were generated with three sub-groups with different intercept
of β01 = −2, β02 = 0, β03 = 2. Independently of the intercepts, covariate X was simulated
from the standard Normal N(µ = 0, σ = 1). This figure shows that the marginal slope (in
red) is smaller than the stratum-specific slope (in black).

As Figure 3.1 shows, the marginal coefficient estimand γ1 is shrunk towards the null hy-

pothesis of no covariate effect compared to the conditional coefficient estimand β1. When

random intercepts are latent, even under the conditional generalized linear mixed effects

model (equation (3.1)), the coefficient estimate β̂1 may shrink towards 0 compared to the

true conditional estimand and that is when the distribution of the random intercepts are

mis-specified. One such example is a random intercept model with true random intercepts

distributed according to a bi-modal distribution. In this situation, coefficient estimates un-

der a model that assumes random intercepts are distributed Gaussian, may still attenuate
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towards 0 compared to the true conditional coefficients.

Similar to the logistic regression models, proportional hazards models are also non-collapsible.

Let Tij denote the jth survival time for the ith cluster. One example of such repeated measure

survival data is the survival data on access failure among hemodialysis patients where each

patient may have multiple access failures. Let Xij be the covariate corresponding to the Tij

survival outcome. One can write a multiplicative hazard function of the form

h(Tij|Xij, β0i) = h0(Tij)exp{β0i + β1Xij},

where h(Tij|Xij, β0i) is the hazard at time Tij, h0(Tij) is the baseline hazard at time Tij,

exp{β0i} is the frailty term including latent cluster-specific baseline hazard multipliers, and

β1 is the log relative risk of the effect of the covariate Xij on the risk of ”death”. Under this

model setting, β1 is the conditional relative risk of the covariate Xij that is conditioned on

the frailty them exp{β0i}.

Alternatively, a marginal proportional hazards model is of the form

h(Tij|Xij) = h0(Tij)exp{γ1Xij},

where h(Tij|Xij) and h0(Tij) are hazard and baseline hazard at time Tij, respectively. γ1

represents the marginal log relative risk of the effect of every one unit changes in the covariate

Xij on the risk of ”death”. As we shall show with synthetic data, proportional hazards

models are non-collapsible where the marginal parameter γ1 shrinks toward 0 compared to

the conditional parameter β1.

A method that can uncover the underlying latent subgroups, can provide the merits of

estimating the conditional associations that is conditioned upon population subgroups. The

Dirichlet process and the Dirichlet process mixture models are becoming popular as these
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non-parametric models impose minimal distributional assumptions. As evidenced by the

stick-breaking representation of the Dirichlet process (Sethuraman (1994)), these models

cluster units of analysis into sub-clusters based on the distributional similarities of those

units. In this situation, a critical question is when population subgroups are latent, are DP

and DPM models capable to uncover the conditional associations?

In this chapter, we explore non-collapsibility in longitudinal data when there exists latent

subject-specific random intercepts. For non-collapsible logistic regression and proportional

hazards models, we propose Dirichlet process mixture models that are capable of detecting

latent random intercepts. Using simulation studies, we compare our proposed models with

the common statistical models to analyze longitudinal data. Finally, we use our proposed

models to analyze data on hemodialysis patients in order to find risk factors associated with

access failure among these patients.

3.2 Methodology

With the focus on logistic regression and the proportional hazards models, and in the con-

text of modeling correlated longitudinal data where repeated measures on sampling units are

collected over time, we propose Dirichlet process mixture models capable of estimating con-

ditional covariate effects when there exists latent sub-population effects. In Section 3.2.1,

we introduce our proposed Bayesian logistic model and in Section 3.2.2 we introduce our

proposed Bayesian proportional hazards model.
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3.2.1 A Bayesian Hierarchical Logistic Regression with Dirichlet

Process Mixture Priors

The logistic link is non-collapsible. This means, when there exists latent population subgroup

effects in the form of random intercepts, failure to adjust for these subgroup effects leads to

coefficient estimates that are shrunk toward 0 compared to the true conditional estimands

from a separate model with those latent random intercepts taken into account. Generalized

linear mixed effects models are capable of modeling random intercepts where they typically

assume random intercepts to be distributed according to a Gaussian distribution, however,

distributional mis-specification of the random intercepts may still cause coefficient estimates

to shrink. A model capable of detecting subgroup random intercepts, that is also robust to

distributional mis-specification of random intercepts, can provide the merits of estimating

the conditional coefficient estimates.

We propose a hierarchical Bayesian model that is capable of detecting latent subgroup effects

that are in the form of latent random intercepts. The models is capable of estimating

conditional parameters. Using a Dirichlet process mixture prior, our proposed model is

robust to distributional mis-specification of the random intercepts. In our proposed model,

we consider the binary data Yij to be distributed according to

Yij|β0i, β0, β1, Xij ∼ Bernoulli(pi = β0i + β0 + β1Xij),

where i ∈ {1, . . . , n} and j ∈ {1, . . . , li} with n as the number of subjects and li as the number

of measurements on the ith subject, Xij is the corresponding covariate to the outcome Yij,

β0i is the subject-specific intercept for subject i, and β0 and β1 are the intercept and the

slope that are shared across all subjects, respectively. We consider Gaussian priors on the
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shared intercept β0 and the shared slope β1 of the form

β0 ∼ N(0, σβ0),

β1 ∼ N(0, σβ1).

We propose using the Dirichlet process mixture prior on the random intercepts β0i, where

i ∈ {1, . . . , n} with n as the number of subjects in the data. Using the Dirichlet process

mixture prior, as opposed to an explicit distributional assumption, will make the model

robust to distributional mis-specification. Further, DPM prior will allow subjects to cluster

based on the distributional similarities of their latent random intercepts, hence, provides

higher precision in estimating those latent subject effects. We specify a Dirichlet process

mixture prior on β0i as

β0i ∼ N(µi, σβ0i),

µi|G ∼ G, (3.3)

G ∼ DP (α,G0 = N(0, σ0)).

The Dirichlet process mixture prior above induces a prior on β0i that is essentially an infinite

mixture of Normal distributions that are mixed over the mean parameter. We shall refer

to this model as a Mean-DPM model. Alternatively, one may set a Dirichlet process prior

that induces an infinite Gaussian mixture prior that are mixed over the standard deviation

parameter. Such a prior can be specified as

β0i ∼ N(0, σ
(i)

β
(i)
0

),

σ
(i)

β
(i)
0

|G ∼ G, (3.4)

G ∼ DP (α,G0 = log −Normal(µG0 , σG0)).
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We shall refer to this model as Sigma-DPM model.

3.2.2 A Bayesian Hierarchical Proportional Hazards Model with

Dirichlet Process Mixture Priors

Similar to the logistic regression models, proportional hazards models are also non-collapsible.

When there exists differential subject-specific baseline hazard risk, even in the absence of

confounding in the baseline hazard risks, failure to adjust for these subject-specific baseline

risks in a proportional hazards model leads to coefficient estimates that are shrunk toward 0

compared to the true conditional estimands from a separate model with those latent baseline

risks taken into account. In this situation, a proportional hazards model that is capable of

detecting subject-specific baseline hazards, can provide the merits of estimating the condi-

tional coefficient estimates.

We propose a hierarchical Bayesian proportional hazards model that is capable of detecting

the differential subject-specific baseline hazard risk across subjects. Our proposed model

uses a Dirichlet process mixture prior on the latent subject-specific baseline hazards. The

Dirichlet process mixture prior allows clustering subjects based on the distributional similar-

ities of their baseline hazards. Further, by using the Dirichlet process mixture prior, we avoid

any explicit distributional assumption on the latent subject-specific baseline hazards. In our

proposed model, we consider survival times Tij, where i ∈ {1, . . . , n} and j ∈ {1, . . . , li} with

n as the number of subjects and li as the number of measurements on the ith subject, to be

distributed according to a Weibull distribution of the form

Tij|τ, β0i, β0, β1, Xij ∼ Weibull(τ, θi),

log(θi) = β0i + β0 + β1Xij,
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where Xij is the covariate value corresponding to the Tij survival time, exp{β0i} is a subject-

specific baseline hazard, β0 is a shared intercept across all subjects, β1 is a shared slope across

all subjects that represents the log relative risk of every one unit increase in the covariate

Xij, τ is the shape parameter, and θi is a subject-specific scale parameter. In the model

specification above, we introduced covariates into the model through the scale parameter

and using the equation log(θi) = β0i + β0 + β1Xij. For our proposed model, we consider

Gaussian priors on β0 and β1 parameters as

β0 ∼ N(0, σβ0),

β1 ∼ N(0, σβ1),

where σβ0 and σβ1 are fixed numbers. We also assume a log-Normal prior on the shape

parameter, τ , as

τ ∼ log −Normal(µτ , στ ),

with µτ and στ as fixed numbers.

We use a Dirichlet process mixture prior for the subject-specific β0i parameters as

β0i ∼ N(µi, σβ0i)

µi|G ∼ G, (3.5)

G ∼ DP (α,G0 = N(0, σ0)).

The Dirichlet process mixture prior above is essentially an infinite mixture of Normal dis-

tributions that are mixed over the mean parameter. We shall refer to this model with the

Mean-DPM proportional hazards model. Alternatively, we propose a Dirichlet process mix-

ture model that induces an infinite Normal distributions mixed overt the standard deviation
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parameter. This Dirichlet process prior can be written as

β0i ∼ N(0, σ
(i)
β0i

),

σ
(i)
β0i
|G ∼ G, (3.6)

G ∼ DP (α,G0 = log −Normal(µG0 , σG0)).

We shall refer to this new model with the Dirichlet process mixture prior above with Sigma-

DPM proportional hazards model.

3.3 Simulation Studies

Using simulation studies, we investigate non-collapsibility in logistic regression and propor-

tional hazards models. We consider three simulation scenarios: one when subject-specific

intercepts are sampled independently from the standard Normal N(µ = 0, σ = 1), another

when subject-specific intercepts are sampled from a mixture distribution of the form

β0i
iid∼ θiN(µ = −1.5, σ = 1) + (1− θi)N(µ = 1.5, σ = 1),

where θi ∼ Bernoulli(p = 0.5) with i ∈ {1, . . . , n} where n is the number of subjects. Finally,

in the third scenario subject-specific intercepts are sampled from a mixture distribution of

the form

β0i
iid∼ θiN(µ = 0, σ = 1) + (1− θi)N(µ = 0, σ =

√
5),

where θi ∼ Bernoulli(p = 0.5) for i ∈ {1, . . . , n}.

We compare parameter estimation between our proposed models and some common statis-

tical models used to analyze repeated measure binary data and survival data. For every
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simulation scenario, we run 1,000 simulations each with 300 subjects and 12 within-subject

measurements per subject.

3.3.1 Logistic Regression Models

Unlike linear and log links, logistic link is not collapsible. In this section, using synthetic

data we compare parameter estimation under our proposed Mean-DPM and Sigma-DPM

Bayesian hierarchical logistic regressions we the following common statistical models to an-

alyze repeated measure binary data:

• Generalized linear model with a logit link (GLM): We fit a frequentist GLM model

with the logit link. This technique ignores the correlation between within-subject

measurements. Further, this model does not account for any subject-specific effect.

Due to the ignorance of within subject correlations in this model, standard error for

the estimated coefficients tend to underestimate the true standard error once the within

subject correlation is taken into account.

• Generalized estimating equation (GEE): Instead of a simple generalized linear model

with the logit link where all within-subject measurements are treated as independent

measures, one can use the generalized estimating equation framework to account for

the correlation between within-subject measurements. Despite accounting for the cor-

relation between measurements taken on the same subject, GEE does not consider any

subject-specific random effect.

• Generalized linear mixed effects model (GLMM): We also fit the frequentist general-

ized linear mixed effects model with subject-specific random intercepts to model binary

data. GLMM is capable of taking the correlation in with-subject measurements into

account. Further, GLMM is also capable of estimating subject-specific random inter-

cepts with the assumption that the random intercepts are Normally distributed.
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• Bayesian logistic regression: We also consider a Bayesian logistic regression model with

a likelihood of the form

Yij|β0, β1, Xij ∼ Bernoulli(pi = β0 + β1Xij),

where Yij is the outcome of the jth measurement on the ith subject, Xij is the measured

covariate corresponding to Yij outcome, and β0 and β1 are intercept and slope. We

assume priors of the form

β0 ∼ N(0, σβ0),

β1 ∼ N(0, σβ1),

where σβ0 and σβ1 are fixed numbers. Detailed programming code for this model is in

Section A.1.1.

• Hierarchical Bayesian logistic regression model: Analogous to the the GLMM model

to analyze binary data, one can setup a Bayesian hierarchical model with a likelihood

of the form

Yij|β0i, β0, β1, Xij ∼ Bernoulli(pi = β0 + β1Xij),

where Yij is the outcome of the jth measurement on the ith subject, Xij is the measured

covariate corresponding to Yij outcome, β0i is the subject-specific random intercepts

where i ∈ {1, . . . , n} with n as the number of subjects in the data, and β0 and β1 are

intercept and slope. We assume Gaussian priors on subject-specific random intercepts

β0i of the form

β0i ∼ N(0, σβ0i),
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where i ∈ {1, . . . , n}. Also, Gaussian priors are assumed on coefficients β0, and β1 of

the form

β0 ∼ N(0, σβ0),

β1 ∼ N(0, σβ1),

where σβ0 and σβ1 are fixed numbers. Detailed programming code for this model is in

Section A.1.1.

Figure 3.2 shows the histogram of the posterior median of µi, where i ∈ {1, . . . , n} from the

proposed Mean-DPM hierarchical Bayesian logistic model, where µi is the subject-specific

prior mean on the random intercept of subject i (equation (3.3)). Under each simulation

scenario, we simulated a single dataset with 300 subjects each with 12 within-subject mea-

surements and applied our proposed Mean-DPM model. The plot to the left shows a his-

togram of the posterior median of µi when data are simulated with random intercept β0i

sampled from the standard Normal N(µ = 0, σ = 1). As the histogram shows, most the

posterior medians are close to zero. The histogram in the model shows the distribution of the

posterior median µi when data are simulated with random intercepts sampled from mixture

of two Normal distributions of the form θiN(µ1 = −1.5, σ = 1) + (1− θi)N(µ1 = 1.5, σ = 1),

where θ is distributed Bernoulli with parameter p = 0.5. As the histogram in the middle

shows, posterior medians are bi-modal where modes are around the true values of -1.5 and

1.5. Finally, the histogram to the right shows the posterior median of µi when data are

simulated with random intercepts sampled from mixture of two Normal distributions of the

form θiN(µ = 0, σ1 = 1) + (1− θi)N(µ = 0, σ2 =
√

5). Due to the differences in the standard

deviations, one may expect the histogram to be spread more widely compare to the first

scenario, nonetheless, posterior medians are still centered around the true mean of 0.

Figure 3.3 shows the histogram of the posterior median of σi, where i ∈ {1, . . . , n} from the
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Figure 3.2: Histogram of the posterior median of µi’s from the proposed Mean-DPM hier-
archical Bayesian logistic model, where µi is the subject-specific prior mean on the random
intercept of subject ”i”. The plot to the left is the histogram of the posterior median of the
sampled µi from the model when it runs under the first simulation scenario where all random
intercepts are sampled from the standard Normal distribution. The plot in the middle shows
the histogram of the posterior medians of µi’s under the second scenario where random in-
tercepts are sampled from a mixture of two Normal distributions of N(µ1 = −1.5, σ = 1)
and N(µ1 = 1.5, σ = 1) that are equally weighted. The plot to the right is the histogram
of the posterior medians under the third simulation scenario where the random intercepts
are simulated from the mixture of two Normal distributions of N(µ = 0, σ1 = 1) and
N(µ = 0, σ2 =

√
5). Results, under each simulation, are from one single simulated data

with N = 300 subjects and li = 12 within subject measurements.

proposed Sigma-DPM hierarchical Bayesian logistic model, where σi is the subject-specific

prior standard deviation on the random intercept of subject i (equation (3.4)). Under each

simulation scenario, we simulated a single dataset with 300 subjects each with 12 within-

subject measurements and applied our proposed Sigma-DPM model. The plot to the left

shows a histogram of the posterior median of σi when data are simulated with random

intercept β0i sampled from the standard Normal N(µ = 0, σ = 1). As the histogram shows,

most the posterior medians are close to 1. The histogram in the model shows the distribution

of the posterior median σi when data are simulated with random intercepts sampled from

mixture of two Normal distributions of the form θiN(µ1 = −1.5, σ = 1) + (1 − θi)N(µ1 =

1.5, σ = 1), where θ is distributed Bernoulli with parameter p = 0.5. As the histogram
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in the middle shows, posterior medians are uniformly distributed from 3.18 to 3.28. This

results make sense as now the data is widely spread with two distinct mean with a distance

of 3. Our Sigma-DPM model with prior mean 0 on random intercepts has to have a larger

standard deviation to provide a prior to cover all plausible subject-specific random intercepts

β0i. Finally, the histogram to the right shows the posterior median of σi when data are

simulated with random intercepts sampled from mixture of two Normal distributions of the

form θiN(µ = 0, σ1 = 1) + (1− θi)N(µ = 0, σ2 =
√

5). It seems that in this case, the model

converged to a standard deviation that is close σ2 =
√

5. This makes sense since a when a

random intercept β0i is plausible under the prior N(0, σ1), it’s also plausible under a prior

with larger standard deviation. Hence, posterior medians converged to a large standard

deviation that is plausible according to the random intercepts sampled from N(0, σ2 =
√

5).

While Figure 3.2 and Figure 3.3 show the performance of our proposed models in estimating

prior mean and prior standard deviation of the random intercepts, β0i, however, the main

interest is on evaluating the performance of the model on estimating the actual random

intercepts. Figure 3.4 provides a grid of scatter plots each shows the relation between the

true random intercept value and the posterior median or the estimate of random intercepts.

As one can see in the plot, when random intercepts are Normally distributed according to

the standard Normal N(µ = 0, σ = 1) distribution, in terms of estimating the latent ran-

dom intercepts, our proposed Mean-DPM and Sigma-DPM models work equally well as the

GLMM model and the hierarchical Bayesian logistic model with explicit Normal assumption

on the random intercepts. When the reference distribution of the sampled random inter-

cepts is not Normal, our proposed Mean-DPM and Sigma-DPM models that are robust to

distributional mis-specification of the random intercepts, outperform the GLMM and the

hierarchical Bayesian logistic regression in terms of estimating the latent random intercepts.

As tables (3.1), (3.2), and (3.3) show, coefficient estimates under marginal Bayesian model

and marginal frequentist GLM and GEE shrank toward the 0 compared to the true condi-
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Figure 3.3: Histogram of the posterior median of σi’s from the proposed Sigma-DPM hi-
erarchical Bayesian logistic model, where σi is the subject-specific prior standard deviation
on the random intercept of subject ”i”. The plot to the left is the histogram of the pos-
terior median of the sampled σi from the model when it runs under the first simulation
scenario where all random intercepts are sampled from the standard Normal distribution.
The plot in the middle shows the histogram of the posterior medians of σi’s under the second
scenario where random intercepts are sampled from a mixture of two Normal distributions
of N(µ1 = −1.5, σ = 1) and N(µ1 = 1.5, σ = 1) that are equally weighted. The plot
to the right is the histogram of the posterior medians under the third simulation scenario
where the random intercepts are simulated from the mixture of two Normal distributions of
N(µ = 0, σ1 = 1) and N(µ = 0, σ2 =

√
5). Results, under each simulation, are from one

single simulated data with N = 300 subjects and li = 12 within subject measurements.

tional value. The fact that in table (3.1) coefficient estimates under both GLM and GEE are

the same is not surprising as we are using balanced data with the canonical link. By taking

sub-group intercepts into account, coefficient estimates from the generalized linear mixed ef-

fect model and the hierarchical Bayesian model with Normal prior on the random intercepts

are closer to the true conditional estimand compared to the marginal models. However, the

coefficient estimate under these models still shrink toward no 0. The amount of shrinkage is

larger under the second and the third scenarios when the distribution of random intercepts

is mis-specified. Our proposed Dirichlet process mixture models, however, are capable of

detecting sub-group intercepts and are robust to distributional mis-specification of the ran-

dom intercepts. Coefficient estimates from our proposed models lead to the minimum mean
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Figure 3.4: A grid of scatter plots that shows the relation between the true values of the
subject-specific random intercepts, β0i, and the posterior median (or estimated) random
intercepts from the GLMM model, the hierarchical Bayesian logistic model, our proposed
Mean-DPM hierarchical Bayesian logistic model, and the proposed Sigma-DPM hierarchical
Bayesian logistic model. The red dashed line in every plot represents the 45 degree line
and the results are from a single simulated data under each simulation scenario. The first
row represents the scatter plots from data simulated under the first scenario where subject-
specific random intercepts are sampled from the standard Normal N(µ = 0, σ = 1). The
second row represents scatter plots resulted from data simulated under the second simulation
scenario where random intercepts are sampled from an equally weighted mixture of two
Normal distributions of the form N(µ1 = −1.5, σ = 1) and N(µ1 = 1.5, σ = 1). Finally, the
last row of plots represents results from data simulated under the third simulation scenario
where random intercepts are sampled from an equally weighted mixture of two Normals
of the form N(µ = 0, σ1 = 1) and N(µ1 = 0, σ2 =

√
5).The first column of scatter plots

from left represents results from fitting the generalized linear mixed effect model, the second
column represents the results from a hierarchical Bayesian logistic regression, third column
represents the results from fitting our proposed Mean-DPM hierarchical Bayesian logistic
model, and finally the last column to the right represents results from our proposed Sigma-
DPM hierarchical Bayesian logistic model.
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squared error (MSE) in estimating the true conditional coefficient value 1.

βx = 1.000 SD MSE
GLM 0.845 0.031 0.025
GEE 0.845 0.031 0.025
Bayesian Logistic Reg. 0.847 0.031 0.025
GLMM 0.951 0.032 0.004
Hierarchical Bayes Logistic Reg. 0.947 0.035 0.005
Mean-DPM Hierarchical Logistic Reg. 1.001 0.036 0.001
Sigma-DPM Hierarchical Logistic Reg. 1.003 0.037 0.001

Table 3.1: Binary data generated with random intercepts that are distributed according
to the standard Normal distribution N(µ = 0, σ = 1). Results are from 1, 000 different
simulated data each with N = 300 subjects and li = 12 within subject measurements.

βx = 1.000 SD MSE
GLM 0.626 0.027 0.141
GEE 0.627 0.275 0.140
Bayesian Logistic Reg. 0.626 0.027 0.141
GLMM 0.938 0.034 0.005
Hierarchical Bayes Logistic Reg. 0.931 0.033 0.006
Mean-DPM Hierarchical Logistic Reg. 1.006 0.042 0.002
Sigma-DPM Hierarchical Logistic Reg. 0.978 0.042 0.002

Table 3.2: Binary data generated with random intercepts that are distributed according
to a mixture distribution of the form θiN(µ = −1.5, σ = 1) + (1 − θi)N(µ = 1.5, σ = 1),
where θi are distributed Bernoulli with parameter p = 0.5. Results are from 1, 000 different
simulated data each with N = 300 subjects and li = 12 within subject measurements.

3.3.2 Proportional Hazards Survival Models

To explore non-collapsibility in proportional hazards models and to compare coefficient esti-

mation under our proposed Mean-DPM and Sigma-DPM models with common proportional

hazards models, we consider the following proportional hazards models:

• The frequentist Cox model: We fit the frequentist Cox proportional hazards model.

This model assumes an overall baseline hazards for all subjects. Using the partial

1posterior samples traceplots for the Bayesian logistic models are provided in the Appendix B.1.1
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βx = 1.000 SD MSE
GLM 0.702 0.028 0.090
GEE 0.701 0.030 0.090
Bayesian Logistic Reg. 0.700 0.028 0.091
GLMM 0.946 0.033 0.004
Hierarchical Bayes Logistic Reg. 0.935 0.034 0.005
Mean-DPM Hierarchical Logistic Reg. 0.998 0.041 0.001
Sigma-DPM Hierarchical Logistic Reg. 0.994 0.040 0.001

Table 3.3: Binary data generated with random intercepts that are distributed according to a
mixture distribution of the form θiN(µ = 0, σ = 1) + (1− θi)N(µ = 0, σ =

√
5), where θi are

distributed Bernoulli with parameter p = 0.5. Results are from 1, 000 different simulated
data each with N = 300 subjects and li = 12 within subject measurements.

likelihood techniques, Cox model does not need any baseline hazard specification as

that measure gets canceled out during the estimation process. The Cox frequentist

model does not take the differential baseline hazards across subjects into account. In

fitting the Cox model, we take the within subject correlation between multiple within-

subject measurements into account using the approach proposed by Lee et al. (1992)

where we first estimate model coefficients using the independent covariance matrix

and then we use a robust sandwich covariance matrix to account for within subject

correlation between measurements.

• Weibull accelerated failure time model (AFT): AFT models describe survival times as

a function of predictor variables. Generally, Weibull AFT models are of the form

log(Tij) = β0 + β1Xij + ε,

where Tij is the survival time for the jth measurement on the ith subject, Xij is the

corresponding covariate to the outcome Tij, and a random error ε such that Tijis dis-

tributed according to a Weibull distribution with shape parameter τ and scale param-

eter exp(λ). When there exists multiple measurements per subject, failure to account

for the correlation between within subject measurements leads to incorrect estimated

standard error of coefficients. In order to account for this intra class correlations, we
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take the the approach proposed by Lee et al. (1992) where first coefficients in the model

are estimated using an independent covariance structure between within subject mea-

surements and then a robust sandwich covariance matrix is used to account for the

within cluster correlations.

• Bayesian marginal proportional hazards model: We consider a Bayesian proportional

hazard model with a likelihood of the form

Tij|τ, β0, β1, Xij ∼ Weibull(τ, λi = β0 + β1Xij),

where Tij and Xij are the survival times and the measured covariate on the jth mea-

surement on the ith subject, τ is the shape parameter, β0 and β1 are the intercepts and

the slope with β1 as the log relative risk of death per every one unit change in Xij.

Similar to the previously introduced Weibull distribution for survival times, λi is the

log of the subject-specific scale parameter. We specify a log-Normal prior on the shape

parameter τ that is of the form

τ ∼ log −Normal(µτ , στ ),

where µτ and στ are fixed numbers. Also, β0 and β1 are assumed to have Gaussian

priors of the form

β0 ∼ N(0, σβ0),

β1 ∼ N(0, σβ1).

Detailed programming code for this model is in Section A.1.2.

• Hierarchical Bayesian proportional hazards model: In order to account for the differ-

75



ential baseline hazard across subjects, one can consider a likelihood of the form

Tij|τ, β0i, β0, β1, Xij ∼ Weibull(τ, λi = β0i + β0 + β1Xij),

where β0i can be considered as the subject-specific log baseline hazard. For this model,

we assume similar to priors as the one specified for the ”Bayesian marginal proportional

hazards model”. Additionally, we assume β0i, where i ∈ {1, . . . , n}, to have a Gaussian

prior of the form:

β0i ∼ N(0, σβ0i),

where σβ0i is a fixed number. To see the programming code for this model, you may

refer to the appendix in Section A.1.2.

Figure 3.5 shows the histogram of the posterior median of µi, where i ∈ {1, . . . , n} from

the proposed Mean-DPM hierarchical Bayesian proportional hazard model, where µi is the

subject-specific prior mean on the subject-specific log baseline hazard of subject i, which

we represent it with β0i and for the sake consistency, we shall refer to it as the subject-

specific random intercept (equation (3.5)). Under each simulation scenario, we simulated a

single dataset with 300 subjects each with 12 within-subject measurements and applied our

proposed Mean-DPM model. The plot to the left shows a histogram of the posterior median

of µi when data are simulated with random intercept β0i sampled from the standard Normal

N(µ = 0, σ = 1). As the histogram shows, most the posterior medians are close to zero.

The histogram in the model shows the distribution of the posterior median µi when data are

simulated with random intercepts sampled from mixture of two Normal distributions of the

form θiN(µ1 = −1.5, σ = 1) + (1 − θi)N(µ1 = 1.5, σ = 1), where θ is distributed Bernoulli

with parameter p = 0.5. As the histogram in the middle shows, posterior medians are bi-

modal where modes are around the true values of -1.5 and 1.5. Finally, the histogram to

76



the right shows the posterior median of µi when data are simulated with random intercepts

sampled from mixture of two Normal distributions of the form θiN(µ = 0, σ1 = 1) + (1 −

θi)N(µ = 0, σ2 =
√

5). Due the the differences in the standard deviations, one may expect

the histogram to be spread more widely compare to the first scenario, nonetheless, posterior

medians are still centered around the true mean of 0.
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Figure 3.5: Histogram of the posterior median of µi’s from the proposed Mean-DPM hier-
archical Bayesian proportional hazard model, where µi is the subject-specific prior mean on
the random intercept of subject i. The plot to the left is the histogram of the posterior
median of the sampled µi from the model when it runs under the first simulation scenario
where all random intercepts are sampled from the standard Normal distribution. The plot
in the middle shows the histogram of the posterior medians of µi’s under the second sce-
nario where random intercepts are sampled from a mixture of two Normal distributions
of N(µ1 = −1.5, σ = 1) and N(µ1 = 1.5, σ = 1) that are equally weighted. The plot
to the right is the histogram of the posterior medians under the third simulation scenario
where the random intercepts are simulated from the mixture of two Normal distributions of
N(µ = 0, σ1 = 1) and N(µ = 0, σ2 =

√
5). Results, under each simulation, are from one

single simulated data with N = 300 subjects and li = 12 within subject measurements.

Figure 3.6 shows the histogram of the posterior median of σi, where i ∈ {1, . . . , n} from

the proposed Sigma-DPM hierarchical Bayesian proportional hazard model, where σi is the

subject-specific prior standard deviation on the random intercept of subject i (equation

(3.6)). Under each simulation scenario, we simulated a single dataset with 300 subjects each

with 12 within-subject measurements and applied our proposed Sigma-DPM model. The
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plot to the left shows a histogram of the posterior median of σi when data are simulated

with random intercept β0i sampled from the standard Normal N(µ = 0, σ = 1). As the

histogram shows, most the posterior medians are close to 1. The histogram in the model

shows the distribution of the posterior median σi when data are simulated with random

intercepts sampled from mixture of two Normal distributions of the form θiN(µ1 = −1.5, σ =

1) + (1− θi)N(µ1 = 1.5, σ = 1), where θ is distributed Bernoulli with parameter p = 0.5. As

the histogram in the middle shows, posterior medians are uniformly distributed from 3.18

to 3.28. This results make sense as now the data is widely spread with two distinct mean

with a distance of 3. Our Sigma-DPM model with prior mean 0 on random intercepts has

to have a larger standard deviation to provide a prior to cover all plausible subject-specific

random intercepts β0i. Finally, the histogram to the right shows the posterior median of

σi when data are simulated with random intercepts sampled from mixture of two Normal

distributions of the form θiN(µ = 0, σ1 = 1) + (1− θi)N(µ = 0, σ2 =
√

5). It seems that in

this case, the model converged to a standard deviation that is close σ2 =
√

5. This makes

sense since a when a random intercept β0i is plausible under the prior N(0, σ1), it’s also

plausible under a prior with larger standard deviation. Hence, posterior medians converged

to a large standard deviation that is plausible according to the random intercepts sampled

from N(0, σ2 =
√

5).

Based on Figure 3.5 and Figure 3.6, our proposed models show good performance when esti-

mating the prior mean and prior standard deviation of the random intercepts, β0i, however,

the main interest is on evaluating the performance of the proposed model on estimating the

actual random intercepts. In Figure 3.7, we provide a grid of scatter plots each shows the

relation between the true random intercept value and the posterior median estimates of those

random intercepts. As Figure 3.7 shows, when random intercepts are distributed according

to the standard Normal N(µ = 0, σ = 1) distribution, in terms of estimating the latent

random intercepts, our proposed Mean-DPM and Sigma-DPM models work equally well as

the the hierarchical Bayesian proportional hazard model with explicit Normal assumption on
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Figure 3.6: Histogram of the posterior median of σi’s from the proposed Sigma-DPM hier-
archical Bayesian proportional hazard model, where σi is the subject-specific prior standard
deviation on the random intercept of subject i. The plot to the left is the histogram of the
posterior median of the sampled σi from the model when it runs under the first simulation
scenario where all random intercepts are sampled from the standard Normal distribution.
The plot in the middle shows the histogram of the posterior medians of σi’s under the second
scenario where random intercepts are sampled from a mixture of two Normal distributions
of N(µ1 = −1.5, σ = 1) and N(µ1 = 1.5, σ = 1) that are equally weighted. The plot
to the right is the histogram of the posterior medians under the third simulation scenario
where the random intercepts are simulated from the mixture of two Normal distributions of
N(µ = 0, σ1 = 1) and N(µ = 0, σ2 =

√
5). Results, under each simulation, are from one

single simulated data with N = 300 subjects and li = 12 within subject measurements.

the random intercepts. When the reference distribution of the sampled random intercepts

is not Normal, our proposed Mean-DPM and Sigma-DPM models that are robust to dis-

tributional mis-specification of the random intercepts, outperform the hierarchical Bayesian

proportional hazard model in terms of estimating the latent random intercepts β0i.

Tables 3.4, 3.5, and 3.6 show the results for the proportional hazards models. Coefficient

estimates under the Cox model, the Bayesian marginal model, and the Weibull AFT model,

all examples of marginal models, are smaller compared to the true conditional estimand and

the marginal coefficient estimate under these models shrink toward 0.

By taking the differential subject-specific baseline hazard into account, the hierarchical Bayes
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Figure 3.7: A grid of scatter plots that shows the relation between the true values of the
subject-specific random intercepts, β0i, and the posterior median of random intercepts from
the hierarchical Bayesian proportional hazard model, our proposed Mean-DPM hierarchical
Bayesian proportional hazard model, and the proposed Sigma-DPM hierarchical Bayesian
proportional hazard model. The red dashed line in every plot represents the 45 degree line
and the results are from a single simulated data under each simulation scenario. The first
row represents the scatter plots from data simulated under the first scenario where subject-
specific random intercepts are sampled from the standard Normal N(µ = 0, σ = 1). The
second row represents scatter plots resulted from data simulated under the second simulation
scenario where random intercepts are sampled from an equally weighted mixture of two
Normal distributions of the form N(µ1 = −1.5, σ = 1) and N(µ1 = 1.5, σ = 1). Finally, the
last row of plots represents results from data simulated under the third simulation scenario
where random intercepts are sampled from an equally weighted mixture of two Normals of
the form N(µ = 0, σ1 = 1) and N(µ1 = 0, σ2 =

√
5).The first column of scatter plots from

left represents results from fitting the hierarchical Bayesian proportional hazard regression,
the second column represents the results from fitting our proposed Mean-DPM hierarchical
Bayesian logistic model, and finally the last column to the right represents results from our
proposed Sigma-DPM hierarchical Bayesian proportional hazard model.
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model with the Normal prior on random intercepts β0i is capable of estimating the true

conditional estimand when the random intercepts are truly Normally distributed (Table 3.4).

However, the model is not robust to distributional mis-specification as under the second and

the third scenarios, the coefficient estimate of β1 shrank toward 0 (Table 3.5 and Table 3.6).

Finally, our proposed Mean-DPM and Sigma-DPM proportional hazards models assume no

explicit distributional assumption on the random intercepts, are capable of detecting subject-

specific random intercepts, and are robust to distributional mis-specification of the random

intercepts. Hence, our proposed DPM proportional hazard models can estimate the true

conditional estimand2.

βx = 1.000 SD MSE
Frequentist Cox Model 0.661 0.089 0.123
Weibull AFT 0.709 0.096 0.095
Bayesian Marginal Proportional Hazard Model 0.700 0.038 0.100
Hierarchical Bayesian Proportional Hazard Model 1.015 0.122 0.014
Mean-DPM Proportional Hazard Model 0.995 0.124 0.015
Sigma-DPM Proportional Hazard Model 0.999 0.122 0.016

Table 3.4: Time-to-event data generated with differential subject-specific log baseline hazards
induced by subject-specific random intercepts that are distributed according to a standard
Normal distribution N(µ = 0, σ = 1). Results are from 1, 000 different simulated data each
with N = 300 subjects and li = 12 within subject measurements.

3.4 Sensitivity Analysis

Using synthetic data, we showed that our proposed Mean-DPM and Sigma-DPM are ca-

pable of estimating latent cluster-specific intercepts and are robust to distributional mis-

specification. Based on the simulation results presented in Section 3.3, in terms of MSE of

2posterior samples traceplots for Bayesian survival models are presented in Appendix B.1.2
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βx = 1.000 SD MSE
Frequentist Cox Model 0.471 0.101 0.290
Weibull AFT 0.507 0.107 0.255
Bayesian Marginal Proportional Hazard Model 0.506 0.038 0.257
Hierarchical Bayesian Proportional Hazard Model 0.898 0.122 0.047
Mean-DPM Proportional Hazard Model 1.002 0.170 0.029
Sigma-DPM Proportional Hazard Model 1.000 0.209 0.033

Table 3.5: Time-to-event data generated with differential subject-specific log baseline hazards
induced by subject-specific random intercepts that are distributed according to a mixture
distribution of the form θiN(µ = −1.5, σ = 1) + (1 − θi)N(µ = 1.5, σ = 1), where θi are
distributed Bernoulli with parameter p = 0.5. Results are from 1, 000 different simulated
data each with N = 300 subjects and li = 12 within subject measurements.

βx = 1.000 SD MSE
Frequentist Cox Model 0.460 0.107 0.303
Weibull AFT 0.481 0.109 0.292
Bayesian Marginal Proportional Hazard Model 0.483 0.038 0.290
Hierarchical Bayesian Proportional Hazard Model 0.924 0.121 0.037
Mean-DPM Proportional Hazard Model 1.014 0.184 0.029
Sigma-DPM Proportional Hazard Model 0.997 0.206 0.046

Table 3.6: Time-to-event data generated with differential subject-specific log baseline hazards
induced by subject-specific random intercepts that are distributed according to a mixture
distribution of the form θiN(µ = 0, σ = 1) + (1 − θi)N(µ = 0, σ =

√
5), where θi are

distributed Bernoulli with parameter p = 0.5. Results are from 1, 000 different simulated
data each with N = 300 subjects and li = 12 within subject measurements.

estimating conditional coefficients, our proposed models outperform common frequentist and

Bayesian models to analyze repeated measure binary data and survival data. In this section,

we are interested in testing the sensitivity of our proposed Mean-DPM and Sigma-DPM pro-

portional hazards models with respect to the three main parameters of the number of within

unit measurements (li), the difference in mean parameter µ1 and µ2 when random inter-

cepts are simulated from the mixture of two Normal distributions of the form N(µ1, σ) and

N(µ2, σ), and the ratio between the two parameters σ1 and σ2 when random intercepts are

simulated from the mixture of two Normal distributions of the form N(0, σ1) and N(0, σ2).
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3.4.1 Sensitivity to li

In this section, we test the sensitivity of our proposed Mean-DPM proportional hazards

and Sigma-DPM proportional hazards models with respect to the number of within subject

measurements li and under the case where the distribution of the random random intercepts

is mis-specified. We generate synthetic repeated measure binary and survival data under two

scenarios - one when subject-specific intercepts are sampled from a mixture distribution of

the form β0i
iid∼ θiN(µ = −1.5, σ = 1)+(1−θi)N(µ = 1.5, σ = 1), and another when subject-

specific intercepts are sampled from a mixture distribution of the form β0i
iid∼ θiN(µ = 0, σ =

1) + (1− θi)N(µ = 0, σ =
√

5), where θi ∼ Bernoulli(p = 0.5) with i ∈ {1, . . . , n} and n as

the number of subjects. By changing the number of within subject measurements li, we test

the sensitivity of our proposed models.

Figure 3.8 provides a histogram of posterior medians of the prior mean µi on the random

intercepts β0i. The results are from our proposed Mean-DPM hierarchical Bayesian propor-

tional hazard model that is run on a single dataset that is generated under the simulation

scenario where random intercepts β0i’s are sampled from an equally weighted mixture of two

Normal distributions with means µ1 = 1.5 or µ2 = 1.5 and with the standard deviation of

1. As one can see, as the number of within subject measurements li increases, our proposed

Mean-DPM can better estimate the prior mean µi’s with the true values that are either -1.5

or 1.5.

Similarly, Figure 3.9 provides a histogram of posterior medians of the prior standard de-

viation σi on the random intercepts β0i. The results are from our proposed Sigma-DPM

hierarchical Bayesian proportional hazard model that is run on a single dataset generated

under the simulation scenario where random intercepts β0i’s are sampled from an equally

weighted mixture of two Normal distributions both with mean µ = 0 and with the stan-

dard deviation of σ1 = 1 and σ2 =
√

5. As one can see, as the number of within subject
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Figure 3.8: Histogram of the posterior median of µi’s from the proposed Mean-DPM hier-
archical Bayesian proportional hazard model, where µi is the subject-specific prior mean on
the random intercept of subject i. All plot are based on a simulation scenario where random
intercepts are sampled from a mixture of two Normal distributions of N(µ1 = −1.5, σ = 1)
and N(µ1 = 1.5, σ = 1) that are equally weighted. Moving from left to right, the first plots
shows posterior median of µi’s with li = 1 within subject measurement, the next plot shows
the results with li = 3, the next plot shows the results under data with li = 6 within subject
measurements, and finally, the last plot to the right shows the results with li = 12 within
subject measurements.

measurements li increases, our proposed Sigma-DPM can better estimate the prior standard

deviations σi’s with the true values that are either 1 or
√

5.

As Figure3.8 and Figure3.9 show, using our proposed Mean-DPM and Sigma-DPM hierarchi-

cal Bayesian proportional hazard model, the larger within subject number of measurements,

li, are, the more accurate the posterior medians of prior means µi and prior standard devia-

tions σi will be. µi and σi are the hyper-parameters that are parameters of prior distributions

on the random intercepts β0i.

Figure 3.10 includes scatterplots that show the relation between the true β0i values and

the posterior medians from our proposed Mean-DPM and Sigma-DPM proportional hazard

models on simulated data with the true subject-specific random intercepts β0i sampled from

a mixture of two Normal distributions of the form θiN(µ = −1.5, σ = 1) + (1 − θi)N(µ =
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Figure 3.9: Histogram of the posterior median of σi’s from the proposed Sigma-DPM hier-
archical Bayesian proportional hazard model, where σi is the subject-specific prior standard
deviation on the random intercept of subject i. All plot are based on a simulation sce-
nario where random intercepts are sampled from a mixture of two Normal distributions of
N(µ1 = 0, σ = 1) and N(µ1 = 0, σ =

√
5) that are equally weighted. Moving from left to

right, the first plots shows posterior median of σi’s with li = 1 within subject measurement,
the next plot shows the results with li = 3, the next plot shows the results under data with
li = 6 within subject measurements, and finally, the last plot to the right shows the results
with li = 12 within subject measurements.

1.5, σ = 1), where θi is distributed Bernoulli with the parameter p = 0.5. As one can

infer from the plots in this figure, as the number of within-subject measurements increase,

posterior medians of the random intercepts provide a more accurate estimate of the true β0i.

Similarly, Figure 3.11 includes similar scatterplots that show the relation between the true

β0i values and the posterior medians from our proposed Mean-DPM and Sigma-DPM pro-

portional hazard models on data simulated with the true subject-specific random inter-

cepts β0i sampled from a mixture of two Normal distributions of the form θiN(µ = 0, σ =

1) + (1− θi)N(µ = 0, σ =
√

5), where θi is distributed Bernoulli with the parameter p = 0.5.

From the plots in the figure, one can clearly realize that as the number of within-subject

measurements increase, posterior medians of the random intercepts provide a more accurate

estimate of the true β0i.
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Figure 3.10: A grid of scatter plots that shows the relation between the true values of
the subject-specific random intercepts, β0i, and the posterior median of random intercepts
from our proposed Mean-DPM and Sigma-DPM hierarchical Bayesian proportional hazard
models. The red dashed line in every plot represents the 45 degree line and the results
are from a single simulated under the simulation scenario where random intercepts β0i are
simulated from an equally weighted mixture of two Normal distributions one with mean
µ1 = −1.5 and the other with mean µ2 = 1.5, where both distributions have the standard
deviation of σ = 1. The first row represents the results from our proposed Mean-DPM and
the second row represents results from our proposed Sigma-DPM model. On each row, from
left to right, the scatter plots represents the results from a simulated data with li = 1, li = 3,
li = 6, and li = 12 within subject measurements.

Table 3.7 provides results on the sensitivity of our models under the first simulation scenario

and table 3.8 provides the result on the sensitivity of our models under the second simulation

scenario. As the results in Table 3.7 and Table 3.8 show, with larger number of within subject

measurements li, our proposed models can better estimate the latent random intercepts, and

hence, lead to a smaller error in estimating the true conditional coefficient estimate.
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Figure 3.11: A grid of scatter plots that shows the relation between the true values of
the subject-specific random intercepts, β0i, and the posterior median of random intercepts
from our proposed Mean-DPM and Sigma-DPM hierarchical Bayesian proportional hazard
models. The red dashed line in every plot represents the 45 degree line and the results
are from a single simulated under the simulation scenario where random intercepts β0i are
simulated from an equally weighted mixture of two Normal distributions both with mean
µ = 0 but one with the standard deviation σ1 = 1 and another with the standard deviation
of σ2 =

√
5. The first row represents the results from our proposed Mean-DPM and the

second row represents results from our proposed Sigma-DPM model. On each row, from left
to right, the scatter plots represents the results from a simulated data with li = 1, li = 3,
li = 6, and li = 12 within subject measurements.

3.4.2 Sensitivity to |µ2 − µ1|

In this section, we test the sensitivity of our proposed Mean-DPM and Sigma-DPM pro-

portional hazards models with respect to the distance between the mean parameters µ1 and

µ2, where µ1 and µ2 are the mean parameters of two Normal distributions that are used

87



Mean-DPM Sigma-DPM
li βx = 1.000 SD MSE βx = 1.000 SD MSE
1 0.998 0.223 0.0291 0.754 0.228 0.104
3 1.014 0.200 0.0283 0.939 0.218 0.044
6 1.010 0.182 0.033 0.958 0.211 0.039
12 1.002 0.170 0.029 1.000 0.209 0.033

Table 3.7: To test the sensitivity of our proposed proportional hazards models with respect to
the number of within subject measurements li, time-to-event data generated with differential
subject-specific log baseline hazards induced by subject-specific random intercepts that are
distributed according to a mixture distribution of the form θiN(µ = −1.5, σ = 1) + (1 −
θi)N(µ = 1.5, σ = 1), where θi are distributed Bernoulli with parameter p = 0.5. Results
are from 1, 000 different simulated data each with N = 300 subjects and li within subject
measurements.

Mean-DPM Sigma-DPM
li βx = 1.000 SD MSE βx = 1.000 SD MSE
1 0.939 0.321 0.077 0.803 0.237 0.080
3 0.984 0.201 0.031 0.947 0.201 0.039
6 0.987 0.190 0.039 0.995 0.210 0.047
12 1.014 0.184 0.046 0.997 0.206 0.046

Table 3.8: To test the sensitivity of our proposed proportional hazards models with respect
to the number of within subject measurements li, time-to-event data were generated with
differential subject-specific log baseline hazards induced by the subject-specific random in-
tercept. The random intercepts are distributed according to a mixture distribution of the
form θiN(µ = 0, σ = 1) + (1 − θi)N(µ = 1.5, σ =

√
5), where θi are distributed Bernoulli

with parameter p = 0.5. Results are from 1, 000 different simulated data each with N = 300
subjects and li within subject measurements.

to simulate subject-specific random intercepts. Subject-specific random intercepts are sam-

pled from a mixture of two Normal distributions of the form β0i
iid∼ θiN(µ = −1.5, σ =

1) + (1− θi)N(µ = 1.5, σ = 1), where θi is distributed Bernoulli with the parameter P = 0.5.

In this section, we evaluate the sensitivity of our proposed Mean-DPM and Sigma-DPM

proportional hazards models with respect to the distance between the means µ1 and µ2. In

particular, we consider five cases where the distance is half of the standard deviation shared

between both components, σ, or is equal to the σ, or is two times bigger than the σ, or three

times bigger, or four times bigger (Table 3.9).

Figure 3.12 provides a histogram of posterior medians of the prior mean µi on the random
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intercepts β0i. The results are from our proposed Mean-DPM hierarchical Bayesian propor-

tional hazard model that is run on a single dataset that is generated under the simulation

scenario where random intercepts β0i’s are sampled from an equally weighted mixture of two

Normal distributions with means µ1 or µ2 and with the standard deviation of σ = 1. In

order to test the sensitivity of our models with respect to the distance between µ1 and µ2,

we consider 5 cases based on the distance between µ1 and µ2. Those cases are when the

distance between the means is half of the standard deviation σ, equal to σ, twice of the σ,

three times of the σ, or four times of the σ.

Figure 3.13 includes scatterplots that show the relation between the true β0i values and

the posterior medians from our proposed Mean-DPM and Sigma-DPM proportional hazard

models on simulated data with the true subject-specific random intercepts β0i sampled from

a mixture of two Normal distributions of the form θiN(µ1, σ = 1) + (1 − θi)N(µ2, σ = 1),

where θi is distributed Bernoulli with the parameter p = 0.5. To test the sensitivity of our

proposed models with respect to the distance between µ1 and µ2, we consider 5 different

cases. Those cases are when the distance between the means are σ/2, σ, 2σ, 3σ, and 4σ.

As the results in Table 3.9 show, our proposed models are very robust in terms of the distance

between the mean parameters µ1 and µ2. One may consider this fact that when µ1 and µ2 are

far apart, the Dirichlet process mixture prior can easily differentiate random intercepts that

are sampled from the Normal distribution with the mean µ1 from random intercepts sampled

from the Normal distribution with the mean µ2. On the other hand, when µ1 and µ2 are very

close, a Normal prior with an incorrectly specified mean can still cover the random intercepts

that are sampled from the correct Normal distribution. Hence, our proposed models are not

sensitive to the distance between the means of the Normal distributions they are sampled

from.
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Figure 3.12: Histogram of the posterior median of µi’s from the proposed Mean-DPM hi-
erarchical Bayesian proportional hazard model, where µi is the subject-specific prior mean
on the random intercept of subject i. All plot are based on a simulation scenario where
random intercepts are sampled from a mixture of two Normal distributions of N(µ1, σ = 1)
and N(µ2, σ = 1) that are equally weighted with N = 300 subjects each with li = 12 within
subject measurements. Moving from the left to right, the first plots shows posterior me-
dian of µi’s when µ1 = −0.25 and µ2 = 0.25 (a distance of σ/2), the next plot shows the
results when µ1 = −0.5 and µ2 = 0.5 (a distance of σ), the next plot is corresponding to
the true µ1 = −1.0 and µ2 = 1.0 (a distance of 2σ), the next plot is corresponding to the
true µ1 = −1.5 and µ2 = 1.5 (a distance of 3σ), the next plot is corresponding to the true
µ1 = −2 and µ2 = 2 (a distance of 4σ).

3.4.3 Sensitivity to σ2
σ1

In this section, we test the sensitivity of our proposed Mean-DPM and Sigma-DPM propor-

tional hazards models with respect to the relative ratio of the standard deviations σ1 and

σ2 when the subject-specific random intercepts are sampled from a mixture of two Normal
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Figure 3.13: A grid of scatter plots that shows the relation between the true values of
the subject-specific random intercepts, β0i, and the posterior median of random intercepts
from our proposed Mean-DPM and Sigma-DPM hierarchical Bayesian proportional hazard
models. The red dashed line in every plot represents the 45 degree line and the results
are from a single simulated under the simulation scenario where random intercepts β0i are
simulated from an equally weighted mixture of two Normal distributions of N(µ1, σ = 1)
and N(µ2, σ = 1). The first row represents the results from our proposed Mean-DPM and
the second row represents results from our proposed Sigma-DPM model. On each row, from
the left to the right, the scatter plots represents the results from a simulated data under the
5 cases of µ1 = −0.25 and µ2 = 0.25 (a distance of σ/2), µ1 = −0.5 and µ2 = 0.5 (a distance
of σ), µ1 = −1.0 and µ2 = 1.0 (a distance of 2σ), µ1 = −1.5 and µ2 = 1.5 (a distance of 3σ),
and µ1 = −2 and µ2 = 2 (a distance of 4σ).

distributions of the form β0i
iid∼ θiN(µ = 0, σ1) + (1− θi)N(µ = 0, σ2), where θi is distributed

Bernoulli with the parameter P = 0.5. In this section, we evaluate the sensitivity of our pro-

posed Mean-DPM and Sigma-DPM proportional hazards models with respect to the relative

ratio of σ1 and σ2 that is of the from σ2/σ1. In particular, we consider four cases where the

ratio 1.5, or the ratio is 2.0, or 3.0, or 5.0. As the results in Table 3.10 show, our proposed
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Mean-DPM Sigma-DPM
|µ1 − µ2| βx = 1.000 SD MSE βx = 1.000 SD MSE
σ/2 0.996 0.125 0.016 1.021 0.216 0.043
σ 1.000 0.132 0.020 1.019 0.231 0.049
2σ 1.021 0.164 0.027 0.987 0.285 0.076
3σ 1.002 0.170 0.029 1.000 0.209 0.033
4σ 0.998 0.152 0.021 1.001 0.211 0.034

Table 3.9: To test the sensitivity of our proposed proportional hazards models with respect to
the distance between µ1 and µ2, time-to-event data were generated with differential subject-
specific log baseline hazards induced by the subject-specific random intercept. The random
intercepts are distributed according to a mixture distribution of the form θiN(µ1, σ = 1) +
(1−θi)N(µ2, σ = 1), where θi are distributed Bernoulli with parameter p = 0.5. Results are
from 1, 000 different simulated data each with N = 300 subjects and li = 12 within subject
measurements.

models are robust to the changes in the ratio between the standard deviations of the mixture

components.

Mean-DPM Sigma-DPM
σ2/σ1 βx = 1.000 SD MSE βx = 1.000 SD MSE

1.5 0.990 0.255 0.060 1.001 0.257 0.069
2.0 0.988 0.302 0.100 1.000 0.304 0.090
3.0 0.960 0.351 0.113 0.989 0.338 0.118
5.0 1.027 0.368 0.129 0.976 0.365 0.129

Table 3.10: To test the sensitivity of our proposed proportional hazards models with respect
to the ratio of σ1 and σ2, time-to-event data were generated with differential subject-specific
log baseline hazards induced by the subject-specific random intercept. The random intercepts
are distributed according to a mixture distribution of the form θiN(µ = 0, σ1)+(1−θi)N(µ =
0, σ2), where θi are distributed Bernoulli with parameter p = 0.5. Results are from 1, 000
different simulated data each with N = 300 subjects and li = 12 within subject measure-
ments.

Figure 3.14 provides a histogram of posterior medians of the prior standard deviation σi

on the random intercepts β0i. The results are from our proposed Sigma-DPM hierarchical

Bayesian proportional hazard model that is run on a single dataset that is generated under

the simulation scenario where random intercepts β0i’s are sampled from an equally weighted

mixture of two Normal distributions of the form N(µ = 0, σ1) and N(µ = 0, σ2). In order

to test the sensitivity of our models with respect to the relative ratio of σ2 and σ1 (σ2/σ1),
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we consider 4 cases. Those cases are when the relative ratio of σ2/σ1 is either 1.5, or 2.0, or

3.0, or 5.0.
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Figure 3.14: Histogram of the posterior median of σi’s from the proposed Sigma-DPM hier-
archical Bayesian proportional hazard model, where σi is the subject-specific prior standard
deviation on the random intercept of subject i. All plot are based on a simulation sce-
nario where random intercepts are sampled from a mixture of two Normal distributions of
N(µ = 0, σ1) and N(µ = 0, σ2) that are equally weighted with N = 300 subjects each with
li = 12 within subject measurements. Moving from the left to right, the first plots shows
posterior median of σi’s when σ1 = 1 and σ2 = 1.5 (a relative ratio of 1.5), the next plot
shows the results when σ1 = 1 and σ2 = 2.0 (a relative ratio of 2.0), the next plot is corre-
sponding to the true σ1 = 1 and σ2 = 3.0 (a relative ratio of 3.0), and the last plot to the
right is corresponding to the true σ1 = 1.0 and σ2 = 5.0 (a relative ratio of 5.0).

Figure 3.15 includes scatterplots that show the relation between the true β0i values and

the posterior medians from our proposed Mean-DPM and Sigma-DPM proportional hazard

models under the four simulation scenarios and on simulated data with the true subject-

specific random intercepts β0i sampled from a mixture of two Normal distributions of the

form θiN(µ = 0, σ1) + (1 − θi)N(µ = 0, σ2), where θi is distributed Bernoulli with the

parameter p = 0.5
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Figure 3.15: A grid of scatter plots that shows the relation between the true values of
the subject-specific random intercepts, β0i, and the posterior median of random intercepts
from our proposed Mean-DPM and Sigma-DPM hierarchical Bayesian proportional hazard
models. The red dashed line in every plot represents the 45 degree line and the results
are from a single simulated under the simulation scenario where random intercepts β0i are
simulated from an equally weighted mixture of two Normal distributions of N(µ = 0, σ1)
and N(µ = 0, σ2). The first row represents the results from our proposed Mean-DPM and
the second row represents results from our proposed Sigma-DPM model. On each row, from
the left to the right, the scatter plots represents the results from a simulated data under the
4 cases of σ1 = 1.0 and σ2 = 1.5 (a relative ratio of 1.5), σ1 = 1.0 and σ2 = 2.0 (a relative
ratio of 2.0), σ1 = 1.0 and σ2 = 3.0 (a relative ratio of 3.0), and σ1 = 1.0 and σ2 = 5.0 (a
relative ratio of 5.0).
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3.5 Application of the Proposed Models to Compare

Durability of Different Dialysis Access Types Among

Hemodialysis Patients

End stage renal disease (ESRD) is a condition where kidneys are not capable of filtering

blood from toxins. Standard care for ESRD patients are either kidney transplantation or

hemodialysis. Hemodialysis is a technique that removes blood from the body through access

needles and cleans the blood out of toxins using a dialysis machine.

ESRD patients who are treated with hemodialysis, typically undergo this treatment three to

four sessions a week each session three to four hours. Given the frequency of the treatment,

it’s unfeasible to insert a new access at every treatment session as repeatedly inserting a

new access may result in irreparable damage to the patient’s vein. As an alternative to a

temporary access, a permanent access may be surgically placed in patient’s body. Permanent

accesses are in two main types of prosthetic graft and autogenous arteriovenous fistula (AVF).

Prosthetic graft can be easily placed in patient’s body. Similarly, AVF access can be placed

as a standard attachment to a vein. When veins are hard to find, which is common among

diabetic patients, AVF access is placed in the patient’s body using a venous transplantation.

Although permanent access technology has improved over time, yet access failure has re-

mained a major issue among the hemodialysis patients. It’s of interest to compare dura-

bility of different access types among hemodialysis patients. To do so, observational data

were collected on 1,255 hemodialysis patients from clinics across the United States. Patients

were asked to participate in the study at the time that they had their first permanent access

placement. They were then followed over time prospectively and the time to failure from the

time of access placement was recorded. Since patients must always have an access in order

to do hemodialysis, if an access fails, the access is replaced with another access which may
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be of a different type than the previous access. Our data include an overall of 1,647 access

records from an overall of 1,255 subjects. Some subjects may have multiple access failures

during the study. In particular, over the study followup, 76.7% of subjects had no access

failure, 18% of subjects had one access failure, 4% had two access failures, and 1.3% had

three or more access failures.

Table 3.11 shows the result of analyzing the association between the access type and time to

failure of the access. We started by analyzing the data using the Cox proportional hazards

model. Note that in the case of multiple access failures per subject in the data, within

subject measurements are correlated. In this case, the within subject correlation should be

taken into account and standard errors of the estimated coefficients should be taken into

account. To do so, we considered the approach proposed by Lee et al. (1992) in which

first the coefficients in the Cox model are estimated using maximizing the partial likelihood

under an independent covariance assumption and then a robust sandwich covariance matrix

is used to account for within-cluster correlations. This method is available in R programming

language using the ’cluster()’ function that is used inside the ’coxph()’ function in order to

fit a Cox model.

Next, we analyzed the data with our proposed Mean-DPM and Sigma-DPM proportional

hazards model. While Cox model is not capable of taking the latent population subgroups

into account and hence, coefficient estimates from this model are marginalized over all popu-

lation subgroups, our proposed Mean-DPM and Sigma-DPM models, however, by accounting

for the differential subject-specific baseline hazards, are capable of estimating the conditional

coefficient estimates that are conditioned on subject-specific baseline hazards.

Our proposed Mean-DPM and Sigma-DPM models suggest that different access types, after

adjusting for other potential risk factors in the model, are different in terms of the risk of

failure. In particular, compared to the graft access, both venous and the standard fistula

method have higher risk of failure under. The fitted Cox model, however, finds the standard
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Cox Model Mean-DPM Model Sigma-DPM Model
No. of No. of Relative Risk Relative Risk Relative Risk

Covariates Cases Failure (95% CI) P-value (95% CR) (95% CR)
Access Type

graft 1,140 271 1.0 1.0 1.0
standard fistula 367 81 0.91 (0.70,1.18) 0.471 1.11 (0.80,2.13) 1.09 (0.73, 2.18)
venous transposition fistula 140 40 1.43 (1.02,2.00) 0.039 1.46 (0.96,2.19) 1.45 (0.93,2.17)

Age 1,647 392 1.00 (0.99-1.01) 0.513 1.00 (0.94,1.01) 1.01 (0.92,1.04)

Female 1,647 392 1.11 (0.90-1.38) 0.328 1.12 (0.85,1.52) 1.14 (0.82,1.57)

Race
Caucasian 987 218 1.0 1.0 1.0
African American 550 152 1.22 (0.98,1.52) 0.071 1.24 (0.71,1.65) 1.24 (0.70,1.65)
other 110 22 0.79 (0.50,1.22) 0.288 0.81 (0.43,1.40) 0.82 (0.39,1.38)

BMI 1,647 392 0.99 (0.98-1.01) 0.287 0.99 (0.93,1.01) 0.98 (0.91,1.03)

Smoking
never smoked 900 219 1.0 1.0 1.0
former smoker 517 116 0.98 (0.78,1.24) 0.89 0.98 (0.66,1.30) 0.99 (0.64,1.32)
current smoker 230 57 1.10 (0.81,1.50) 0.541 1.08 (0.44,1.61) 1.07 (0.42,1.65)

Serum Calcium (mg/dL) 1,647 392 0.97 (0.87-1.08) 0.595 0.99 (0.19,1.10) 0.99 (0.18,1.13)

Serum Phosphorus (mg/dL) 1,647 392 1.02 (0.96-1.07) 0.524 1.00 (0.71,1.09) 1.00 (0.68,1.10)

Hematocrit (g/dL) 1,647 392 0.99 (0.97-1.01) 0.317 0.99 (0.91,1.01) 0.99 (0.90,1.04)

Serum Albumin (g/dL) 1,647 392 1.01 (0.84-1.21) 0.909 0.88 (0.36,1.24) 0.83 (0.36,1.29)

Diabetes 1,647 392 1.24 (1.01-1.54) 0.041 1.18 (0.5,1.58) 1.16 (0.52 ,1.51)

Table 3.11: In order to compare durability of different hemodialysis access types, observa-
tional data on 1,255 hemodialysis patients were analyzed using the Cox proportional hazards
model, our proposed Mean-DPM proportional hazards model, and our proposed Sigma-DPM
hazards model.

fistula access to have lower risk of failure compared to the graft method. This difference

might be an indication of the attenuation in the marginal coefficient estimates under the

Cox model, compared to the conditional coefficient estimate suggested by our proposed

Mean-DPM model.
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3.6 Discussion

A model with different marginal and conditional coefficient estimands is a non-collapsible

model. Examples of such models include the logistic regression and the proportional hazard

models. In this chapter and in the context of analyzing repeated measure data, we pro-

posed hierarchical Bayesian models with the Dirichlet process mixture priors and we show

our proposed models are capable of detecting latent subgroup effects and hence, are capable

to estimate the true conditional parameters where a population consists of sub-populations

with latent sub-population effects. In particular, we considered hierarchical Bayesian lo-

gistic regression and hierarchical Bayesian proportional hazards models with the Dirichlet

process mixture prior on latent subgroup intercepts. We compared coefficient estimates un-

der our proposed models with the coefficient estimates under common logistic regression and

proportional hazards models. Further, we showed that our proposed models are robust to

distributional mis-specification of the latent subgroup effects. Further, the sensitivity of our

proposed models were tested in terms of their sensitivity to the number of within-cluster

measurements as well as the distribution parameters of the latent cluster-specific intercepts.

Using simulation studies, we compared coefficient estimation under our proposed Dirich-

let process mixture models with common statistical longitudinal models. In particular, we

compared our proposed Dirichlet process logistic regression models with the generalized lin-

ear model with the logit link, the generalized estimating equation with the logit link, the

generalized linear mixed effects model with the logit link, Bayesian logistic regression, and

Bayesian hierarchical logistic regression. We also compared our proposed proportional haz-

ards models with the frequentist Cox model, the Weibull accelerated failure time model,

a marginal Bayesian proportional hazards model, and a hierarchical Bayesian model. We

learned that among all these models, our proposed Dirichlet process mixture models lead

to the minimum mean squared errors in estimating the conditional coefficient estimands.

Furthermore, while other candidate models may depend on explicit distributional assump-
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tions over the latent sub-group random intercepts, our proposed Dirichlet process mixture

models are robust to distributional mis-specification. Using sensitivity analysis, we showed

that our proposed Dirichlet process mixture models are robust in terms of the number of

within-cluster measurements. We also showed that when cluster-specific random intercepts

simulated from a mixture of two normal distributions, our proposed models are robust re-

gardless of the distributional overlap of the mixing components. More generally and with

the support of the simulation studies presented in this chapter, in analyses aiming to charac-

terize conditional effect of covariates using the proportional hazards or the logistic models,

our proposed Dirichlet process mixture models will serve the best in terms of mean square

error of estimating conditional estimands compared to other candidate models that were

considered in this chapter.

Despite the capability of our proposed methods in estimating conditional estimands in re-

peated measure data with latent sub-group random intercepts, our proposed methods, how-

ever, are computationally demanding. Our proposed Dirichlet mixture models, on average,

and for a dataset with 300 subjects each with 12 within subject measurements and using,

takes 3 hours to fit using a 2.53 GHz intel Core 2 Duo processor and 4 GB 1067 MHz DDR3

RAM. In future, instead of using MCMC posterior sampling, one may use the variational

methods in Dirichlet process mixture models to gain more computational efficiency and

more scalability as the number of subjects and the number of within-subject measurements

increase.

Robustness to distributional mis-specifications and the capability of estimating conditional

covariate effects even under the non-collapsible models have made Dirichlet process mixture

models an interesting modeling choice. In the next chapter, we will introduce a broad joint

longitudinal-survival modeling framework, where as part of the joint model, we propose using

a Dirichlet process mixture survival model in order to better estimate conditional covariate

effects.
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Chapter 4

Flexible Joint Longitudinal-Survival

Models for Quantifying the

Association Between Longitudinal

Biomarkers and Survival Outcomes

In this chapter we propose flexible joint longitudinal-survival models in order to test the

association between a longitudinally collected biomarker and a time-to-event endpoint. Our

proposed models are robust to common parametric and semi-parametric assumptions in that

they avoid explicit distributional assumptions on longitudinal measures and allow for subject-

specific baseline hazard in the survival component. Fully joint estimation is performed to

account for the uncertainty in the estimated time-dependent biomarker covariate in the

survival model.

We start with a brief introduction in Section 4.1. We then introduce the methodology

in Section 4.2. In Section 4.3, simulation studies are presented to assess the operating
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characteristics of the proposed models. All models are then applied to the data on end-

stage renal disease patients that was obtained from the United States Renal Data System in

Section 4.4. We finally conclude with a discussion in Section 4.5.

4.1 Introduction

Survival analysis often involves evaluating the effects of longitudinally measured biomark-

ers on mortality. When longitudinal measures are sparsely collected, incomplete, or prone

to measurement error, including them directly as a traditional time-varying covariate in a

survival model may lead to biased regression estimates (Prentice (1982)). Alternatively, one

could apply a two-stage method, where the first stage consists of modeling the longitudi-

nal components via a mixed-effects model, and in the second stage, the modeled values or

their summaries (e.g., first-order trends) are included in a survival model (Dafni and Tsi-

atis (1998), Tsiatis et al. (1995)). However, this approach fails to account for uncertainty

in the estimated longitudinal summary measures. To overcome these issues, several joint

longitudinal-survival models have been proposed (Prentice (1982); Bycott and Taylor (1998);

Hanson et al. (2011b); Wang and Taylor (2001a); Faucett and Thomas (1996); Brown and

Ibrahim (2003); Wulfsohn and Tsiatis (1997a); Song et al. (2002), and Law et al. (2002a)),

where all these models account for uncertainty in longitudinal measures by modeling them

simultaneously with the survival outcome. However, most existing joint models still rely on

multiple restrictive parametric and semi-parametric assumptions and generally focus only on

associating the first moment of the distribution of the longitudinal covariate with survival.

In this chapter we propose three flexible joint longitudinal-survival models that avoid simple

distributional assumptions on longitudinal measures and allow for subject-specific baseline

hazard in modeling a survival outcome. Our models are motivated by data on end-stage

renal disease (ESRD) patients obtained from the United States Renal Data System (US-
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RDS). Specifically, our interest lies in quantifying the association between the longitudinally

measured serum albumin (a leading index of protein-energy malnutrition (PEM)) and time-

to-death using a joint survival-longitudinal modeling approach.

Flexibility in our joint model is achieved in the longitudinal component via the use of a

Gaussian process prior with a parameter that captures within-subject volatility in the lon-

gitudinally sampled albumin. The survival component of our proposed models quantifies

the association between the longitudinally measured albumin and the risk of mortality us-

ing a Dirichlet process mixture of Weibull distributions. The clustering mechanism of the

Dirichlet process provides a platform for borrowing information when estimating subject-

specific baseline hazards in the survival component. Estimation for the longitudinal and

survival parameters is carried out simultaneously via Bayesian parameter posterior sampling

approach.

4.2 Methodology

In this section, we provide the details of our proposed joint models for a longitudinal covari-

ate, X, and a survival outcome, Y . Throughout this section, we consider n independent

subjects where li longitudinal measurements, Xij, are obtained for subject i at time points

tij, j = 1, . . . , li. Also, associated with each subject, there is an observed survival time,

Yi ≡ min{Ti, Ci} and event indicator δi ≡ 1[Yi=Ei], where Ti and Ci denote the true event

and censoring time for subject i, respectively. Further, we make the common assumption

that Ci is independent of Ti for all i, i = 1, . . . , n.
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4.2.1 The Joint Model

Being interested in estimating the effect of longitudinal measures on survival outcomes, in

specifying the joint model likelihood, we took a similar approach as Brown and Ibrahim

(2003), where we define the contribution of each subject to the joint model likelihood as the

multiplication of the likelihood function of the longitudinal measures for that subject and

her/his time-to-event likelihood that is conditioned on her/his longitudinal measures. Let

f
(i)
L , f

(i)
S|L, and f

(i)
L,S denote the longitudinal likelihood contribution, the conditional survival

likelihood contribution, and the joint likelihood contribution for subject i. One can write

the joint longitudinal-survival likelihood function as

fL,S =
n∏
i=1

f
(i)
L,S =

n∏
i=1

(
f

(i)
L × f

(i)
S|L
)
. (4.1)

4.2.2 Longitudinal Component

We motivate the development of the Gaussian process model for the longitudinal biomarker

by first considering the following simple linear model for estimating the trend in the biomarker

for a single subject i with an li × 1 vector of measure biomarkers of Xi which is of the form

Xi =



Xi(ti1)

Xi(ti2)

...

Xi(tili)


,
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where

Xi|β(L)
i0 ∼ N(β

(L)
i0 ,Σi).

with β
(L)
i0 as the subject-specific intercept, β

(L)
i0 is vector of repeated β

(L)
i0 value that is of size

li × 1, and Σi = σ2Ili×li .

By adding a stochastic component that is indexed by time in the model, one can extend the

model to capture non-linear patterns over time. Specifically, we consider a stochastic vector,

W , that is a realization from a Gaussian process prior, W (t) with mean zero and covariance

function C(t, t′). Thus for subject i, Wi ∼ Nli(0,Cli×li), where Wi = (Wti1 , . . . ,Wtili
)′ and

the (j, j′) element of Cli×li is given by C(tij, tij′),j, j
′ ∈ {1, . . . , li}. We characterize the

covariance function, Cli×li , using the following squared exponential form

Cli×li(j, j
′) = κi

2e−ρ
2(tij−tij′ )2 .

In this setting, the hyperparameter ρ2 controls the correlation length, and κ2 controls the

height of oscillations (Banerjee et al. (2014)), and tij and tij′ are two different time points.

For notational simplicity, we define Ki = e−ρ
2(tij−tij′ )2 ; j, j′ ∈ {1, . . . , li}, and re-write our

longitudinal model as

Xi|β(L)
i0 , κi

2, ρ2, σ2 ∼ N(β
(L)
i0 , κi

2Ki + σ2Ili×li),
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where σ2 is assumed to be common across all subjects. The correlation length parameter

ρ2 controls the maximum distance in time between two time-dependent measurements to be

still correlated. This distance for GP models is often called the practical range. Diggle et al.

(2007) defined the practical range for GP as the distance in time between two time-dependent

measurements where the correlation between those two measurements is 0.05. With the

squared exponential covariance function, that practical range distance is of the form
√

3/ρ2.

At a ρ2 = 0.1, the practical range distance is 5.7 months which is a reasonable range for the

real data on end-stage renal disease patients that was obtained from the USRDS. Hence, we

fix ρ2 to 0.1, where this value was obtained from the real data on end stage renal disease

patients data. By defining our model in this way, subject-specific parameter κ2
i will have

the role of capturing within-subject volatility of the longitudinal measures. In the context

of the motivating USRDS example, κ2
i can be of primary scientific interest as it reflects the

within-subject volatility (Figure 4.1) in serum albumin over time, which is hypothesized to

be negatively correlated with longer survival time (Holsclaw et al, 2014).

We specify the longitudinal component of our joint model to have a likelihood of the form

Xi|Wi, β
(L)
i0 , κi

2, ρ2, σ2 ∼ N(β
(L)
i0 +Wi, σ

2Ili×li), (4.2)

where Xi is a vector of longitudinal measures on subject i, Wi is a Gaussian process stochas-

tic vector, β
(L)
i0 is subject specific intercept for subject i, κi

2 is a subject-specific measure

of volatility for subject i, ρ2 is a fixed correlation length, σ2 is a measurement error that is

shared across all subjects, and finally Ili×li represents the identity matrix of size li where li

is the number of longitudinal measures on subject i. The Gaussian process stochastic vector
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Figure 4.1: With a fixed correlation length parameter ρ2, κ2 parameter captures volatility
in Gaussian process models with the squared exponential covariance function. In each plot,
ten random realizations of the Gaussian process were selected, where the plot to the left has
a κ2 parameter of 0.01, the plot in the middle has a κ2 value of 0.5, and the plot to the right
has a κ2 value of 1.0. In all plots, correlation length ρ2 is fixed to 0.1 .
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Wi is distributed Gaussian process as

Wi|κi2, ti
ind∼ GPmi

(~0, κi
2Ki), (4.3)

where ti is a vector of the time points at which longitudinal measures on subject i were

collected and Ki = e−ρ
2(tij−tij′ )2 , with tij and tij′ are the jth and j′th element of the time

vector ti. We assume a Normal prior on the subject-specific random intercepts β
(L)
i0 that is

of the form

β
(L)
i0

i.i.d∼ N(µ
β
(L)
0
, σ2

βL
0
), (4.4)

where µ
β
(L)
0

and σ2
βL
0

are prior mean and prior variance respectively. Ki, where i ∈ {1, . . . , n}

with n as the number of subjects in the study, are assumed to have a log-Normal prior with

the prior mean µκ2 and the prior variance σκ2 that is of the form

κi
2 i.i.d∼ log −Normal(µκ2 , σκ2). (4.5)

The correlation length ρ2 is assumed to be fixed and known in our model. Finally, the

measurement error σ2 is assumed to have a log-Normal prior of the form

σ2 ∼ log −Normal(µσ2 , σσ2), (4.6)

where µσ2 and σσ2 are the prior mean and the prior variance respectively.
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4.2.3 Survival Component

In order to quantify the association between a longitudinal biomarker and a time-to-event

outcome, we define our survival component by using a multiplicative hazard model with the

general form of

λ(Ti|Zi(s),Zi(L)) = λ0(Ti)exp{ζ(s)Zi(s) + ζ(L)Zi
(L)(t)}, (4.7)

where Zi
(s) is a vector of baseline covariates, Zi

(L) is a vector of longitudinal covariates

from the longitudinal component of the model, λ0(Ti) denotes the baseline hazard function,

and ζ(S) and ζ(L) are regression coefficients for the baseline survival covariates and the

longitudinal covariates, respectively.

We consider a Weibull distribution for the survival component to allow for log-linear changes

in the baseline hazard function over time. Thus we assume

Ti ∼ Weibull(τ, λi), (4.8)

where Ti is the survival time, τ is the shape parameter of the Weibull distribution, and

exp{λi} is the the scale parameter of the Weibull distribution. One can write the density

function for the Weibull distribution above for the random variable Ti as

f(Ti|τ, λi) = τTi
τ−1exp

(
λi − exp(λi)Tiτ

)
. (4.9)
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In this case, the Weibull distribution is available in closed form providing greater computa-

tional efficiency. Under this parameterization, covariates can be incorporated into the model

by defining λi = ζ(s)Zi
(s) + ζ(L)Zi

(L). In particular, we specify our model as

Ti|τ, ζ(s), ζ(L),Zi(s),Zi(L) ∼ Weibull(τ, λi = β
(s)
i0 + ζ(s)Zi

(s) + ζ(L)Zi
(L)), (4.10)

where τ is a common shape parameter shared across all subjects. β
(s)
i0 is a subject specific

coefficient in the model which allows for a subject-specific baseline hazard. Zi
(s) and ζ(s) are

baseline covariates and their corresponding coefficients, respectively. Finally, Zi
(L) and ζ(L)

are coefficients linking the longitudinal parameters of interest to the hazard for mortality.

In order to avoid an explicit distributional assumption for the survival times, we specify

our survival model as an infinite mixture of Weibull distributions that is mixed on the β
(s)
i0

parameter. In particular, we use the Dirichlet process mixture of Weibull distributions that

is defined as

β
(s)
i0 |µi, σ2

β
(s)
0

∼ N(µi, σ
2

β
(s)
0

), (4.11)

µi|G ∼ G, (4.12)

G ∼ DP
(
α(S), G0), (4.13)

where σ2

β
(s)
0

is a fixed parameter, µi is a subject-specific mean parameter from a distribution

G with a DP prior, α(S) is the concentration parameter of the DP and G0 is the base

distribution. By using the Dirichlet process prior on the distribution of β
(s)
i0 , we allow patients

with similar baseline hazards to cluster together which subsequently provides a stronger

likelihood to estimate the baseline hazards. For other covariates in the model, we assume a
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multivariate normal prior of the form

(
ζ(s), ζ(L)

)
∼ MVN(0, σ0

2I),

where σ0
2 is a prior variance and I is an identity matrix.

The shared scale parameter τ is considered to have a Log-Normal prior of the form

τ ∼ Log −Normal(aτ , bτ ),

where aτ and bτ are fixed prior location and prior scale parameters, respectively.

Finally, we assume that information about the concentration parameter of the Dirichlet

process can be specified with the prior

α(S) ∼ Γ(a(S)
α , b(S)

α ),

where a
(S)
α and b

(S)
α are fixed prior shape and prior scale parameters, respectively.

4.2.4 Linking Summary Measures of the Biomarker to Survival

Times

The proposed modeling framework easily allows for associating multiple summaries of the

longitudinal biomarker with the time-to-event outcome. Here we consider three models that

incorporate various summary measures of the longitudinal trajectory that are easily and
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flexibly estimated using the GP model presented in Section 4.2.2:

Model I: directly modeling longitudinal outcome at each event time t as a covariate

in the survival model:

Zi
(L) = X i(t)

Model II: modeling both the value of the longitudinal covariate and also the average

rate at which the biomarker changes for each subject. We define this average rate as

a weighted area under the derivative curve of the biomarker trajectory

Zi
(L) =

(
Xi(t), X

′
AUC

τ0−τ1)
where, X ′AUC

τ0−τ1 =

∫ τ1

τ0

Q(u)X ′(u)du

where X ′AUC
τ0−τ1 is a time-dependent covariate that is a weighted average of the deriva-

tive of the biomarker trajectory, that is denoted by X ′(u) from τ0 to τ1 where τ1 is the

time of death for each subject. This average area under the derivative curve can be a

weighted average with weights Q(u).

Model III: modeling summary measures of the longitudinal trajectory. Motivated by

the scientific question of interest, in this paper we consider random intercepts and

subject-specific volatility as summary measures of interest:

Zi
(L) =

(
β

(L)
0i , κ

2
i

)

Below, we shall explain the three models above in more detail.
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Model I: a Survival model with Longitudinal Biomarker at event time as a co-

variate

This model quantifies the association between a longitudinal biomarker of interest and the

time-to-event outcome by directly adjusting for the biomarker measured values in the sur-

vival component. While usually biomarkers are measured on a discrete lab-visit basis, the

event of interest happens on a continuous basis. While common frequentist models use the

so-called last-observation-carried forward (LOCF) technique where the biomarker value at

each even time is assumed to be the same as the last measured value for that biomarker,

our joint flexible longitudinal-survival model provides a proper imputation method for the

biomarker values at each individual’s event time. In particular, in each iteration of the

MCMC, given the sampled parameters for each individual and by using the flexible Gaus-

sian process prior, there exists posterior trajectories of biomarker for that individual. Our

method, then, considers the posterior mean of those trajectories as the proposed trajectory

for that individual’s biomarker values over time at that iteration. The trajectory, then, can

be used to impute time-dependent biomarker covariate value inside the survival component.

To be more specific, consider the longitudinal biomarker Xi of the form

Xi|β(L)
i0 , κi

2, ρ2, σ2 ∼ N(β
(L)
i0 , κi

2Ki + σ2Ili×li),

where β
(L)
i0 is subject-specific random intercept for subject i, β

(L)
i0 is a vector of repeated

subject-specific intercept β
(L)
i0 that is of size li×1, κi

2 is subject-specific measure of volatility

in the longitudinal biomarker for individual i, ρ2 is a fixed measure of correlation length, σ2

is the measurement error shared across all subjects, Ki is a an li × li matrix with it’s jj′

element as Kijj′ = e−ρ
2(tij−tij′ )2 where li is the number of longitudinal biomarker measures

on subject i, and Ili×li is the identity matrix.
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For a new time-point t∗, predicted albumin biomarker for individual i is X∗ and can be

written as

X∗|Xi, t, t
∗ ∼ N(µ∗,Σ∗),

where the conditional posterior mean µ∗ is

µ∗ = βLi0 +K(t∗, t)KX
−1(Xi − β(L)

i0 ), (4.14)

and the conditional posterior variance Σ∗ is

Σ∗ = K(t∗, t∗)−K(t∗, t)KX
−1K(t∗, t)′, (4.15)

where K(t∗, t) is defined as

K(t∗, t) = κi
2e−ρ

2(t∗−t)2 , (4.16)

and K−1
X is defined as

K−1
X = (K(t, t) + σ2Ili×li)

−1. (4.17)

In order to relate the biomarker value at each time point t to the risk of the event of interest
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at that time point, ”death”, we form the survival component of the model as

Ti|τ, ζ(s), ζXi
∼ Weibull(τ, λi = β

(s)
i0 + ζ(s)Zi

(s) + ζXi
Xi(t)),

where Ti is the survival time, τ is the shape parameter of the Weibull distribution, ζ(s) is

a vector of coefficients relating baseline survival covariates to the risk of the occurrence of

the event of interest, ζXi
is the coefficient that relates the biomarker value at time t and

the risk of ”death” at that time point, λi is the log of the scale parameter in the Weibull

distribution, β
(s)
i0 is the subject-specific baseline hazard for subject i, Zi

(s) is a vector of

survival coefficients, and Xi(t) is the biomarker value at time t.

Model II: A Survival model with covariates of Biomarker Value and the Deriva-

tive of its Trajectory at event Time

In order to get more precision in quantifying the association between the biomarker value at

time t and the risk of death, we can extend our proposed model-I by including a measure of

the average slope of the biomarker over time. In particular, we define this average slope from

time τ0 to τ1 as the area under the derivative of the trajectory curve of the biomarker from

τ0 to τ1. More generally, this area under the curve can be a weighted sum where weights

are chosen according to the scientific question of interest. One may hypothesize that the

area under the derivative curve that are closer to the event time should be weighted higher

compared to the areas that are farther away from time point t. In general, we define a

weighted area under the derivative curve of the form

X ′AUC
τ0−τ1 =

∫ τ1

τ0

Q(u)X ′(u)du,
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where τ0 and τ1 are arbitrary time points chosen according to the scientific question of

interest, Q(t) is a weight, and X ′(t) represents the derivative of the biomarker over time. In

particular, we consider two weighted approaches, where one assumes an equal weight of the

form

Q(t) =
1

τ1 − τ0

,

and another weight of the form

Q(t) =


1, if t = Ti

0, otherwise.

Under the first weighting scheme, X ′AUC will be the area under the derivative with equal

weights, whereas the second weighting scheme leads to the pointwise derivative value at

the the event time. Under this model, the survival component of our joint model will now

include two longitudinal covariates, one the biomarker value Xi(t), and another the average

derivative of the biomarker trajectory, X ′AUC .

The derivative of the Gaussian process is still a Gaussian process with the same hyper

parameters ρ2 and κ2. Therefore, using the same idea of modeling the trajectory of the

biomarker, we can also model the derivative of that trajectory. In our model-I, we proposed

using the posterior mean of all plausible biomarker trajectories as the proposed trajectory

for each subject in order to impute biomarker values at any time point t inside the survival

component of the model. Similarly, we propose using the posterior mean of all plausible

derivative trajectories for each subject in order to compute the average derivative up until

time t. Given the fact that differentiation is a linear operation, one can easily compute the

posterior mean of the derivative curve by simply switching the order of the differentiation
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and the expectation as

E(X ′i(t)) = E(
∂Xi(t)

∂t
)

=
∂
(
E(Xi(t))

)
∂t

.

Hence, by using Formula (4.14) and by taking the derivative of the posterior mean trajectory

of the biomarker with respect to time t∗, the posterior mean of the derivative of the biomarker

trajectory is of the form

∂
(
E(Xi(t

∗))
)

∂t∗
= −2ρ2(t∗ − t)′

(
K(t∗, t)KX

−1(Xi − β(L)
i0 )
)
, (4.18)

where E
(
Xi(t

∗)
)

denotes the posterior mean of the biomarker trajectory as a function of time

t∗, ρ2 is the correlation length, t∗ is the time-point at which we desire to impute the biomarker

value and the average derivative of the biomarker trajectory, β
(L)
i0 is subject-specific random

intercept, K(t∗, t) is defined as

K(t∗, t) = κi
2e−ρ

2(t∗−t)2 , (4.19)

and K−1
X is defined as

K−1
X = (K(t, t) + σ2Ili×li)

−1. (4.20)

Given the the biomarker value Xi(t) and the average derivative value X ′AUC,i(t), the survival
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component of our proposed joint model is of the from

Ti|τ, ζ(s), ζXi
, ζX′i ∼ Weibull(τ, λi = β

(s)
i0 + ζ(s)Zi

(s) + ζXi
Xi(t) + ζX′iX

′
AUC,i(t)),

where Ti is the survival time, τ is the shape parameter of the Weibull distribution, ζ(s) is a

vector of coefficients relating baseline survival covariates to the risk of the occurrence of the

event of interest, ζXi
is the coefficient that relates the biomarker value at time t and the risk

of ”death” at that time point, ζX′i is the coefficient that relates the average derivative of the

biomarker trajectory up until t and the risk of ”death” at that time point, λi is the log of

the scale parameter in the Weibull distribution, β
(s)
i0 is the subject-specific baseline hazard

for subject i, and Zi
(s) is a vector of survival coefficients.

Model III: A Survival Model with Summary Measures of the Longitudinal Curve

as Covariates

One may choose to characterize longitudinal trajectories with summary measures instead of

using the actual biomarker value. In specific, the longitudinal model we proposed provides

a natural parameter for describing the within-subject volatility. Given the nature of our

proposed longitudinal model, one can summarize the longitudinal trajectory of biomarker

by using β
(L)
0i as a measure of subject-specific intercept of longitudinal biomarker as well as

κ2
i as a measure of volatility of those trajectories. The survival component of the model is

then of the form

Ti|τ, β(s)
i0 , ζ

(s), ζβ0i
(L), ζκi2

(L) ∼ Weibull(τ, λi = β
(s)
i0 + ζ(s)Zi

(s) + ζβ0i
(L)β0i

(L) + ζκi2
(L)κi

2),
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where Ti is the survival time, τ is the shape parameter of the Weibull distribution, ζ(s)

is a vector of coefficients relating baseline survival covariates to the risk of the occurrence

of the event of interest, ζβ0i
(L) is the coefficient that relates the subject specific random

intercept β0i
(L) and the risk of ”death”, ζκi2

(L) is the coefficient that relates the subject-

specific measure of volatility of the biomarker measure and the risk of ”death”, λi is the log

of the scale parameter in the Weibull distribution, β
(s)
i0 is the subject-specific baseline hazard

for subject i, and Zi
(s) is a vector of survival coefficients.

4.2.5 The Posterior Distribution

Consider the joint longitudinal-survival likelihood function, fL,S, introduced in equation 4.1.

Let ω be a vector of all model parameters with the joint prior distribution π(ω). The

posterior distribution of the parameter vector ω can be written as

π(ω|X,Y ) ∝ fL,S × π(ω), (4.21)

where X and Y denote longitudinal and time-to-event data respectively, and fL,S is the

joint model likelihood function (equation 4.1).

The posterior distribution of the parameters in our proposed joint model is not available

in closed form. Hence, samples from the posterior distribution of the model parameters

are obtained via Markov Chain Monte Carlo (MCMC) methods. We use a hybrid sampling

technique where in each iteration of the MCMC, we first sample subject-specific frailty terms

in the survival model using Neal’s algorithm 8. Then given the sampled frailty terms, we use

the Hamiltonian Monte Carlo (Neal (2011)) to draw samples from the posterior distribution.

Prior distributions on parameters of the joint model were explained in details in Sections
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4.2.2 and 4.2.3, and we assume independence among model parameters in the prior (ie. π(ω)

is the product of the prior components specified previously). We provide further detail on

less standard techniques for sampling from the posterior distribution when using a GP prior

and issues in evaluating the survival portion of the likelihood function when time-varying

covariates are incorporated into the model.

Evaluation of the Longitudinal Likelihood

The longitudinal component of our model uses the Gaussian process technique. Gaussian

process models are typically computationally challenging to fit because in each iteration of the

MCMC the evaluation of the log-posterior probability becomes computationally challenging

as the number of measurements increases. In particular, consider our proposed longitudinal

model introduced in Section 4.2.2 where

Xi|Wi, β
(L)
i0 , κi

2, ρ2, σ2 ∼ N(β
(L)
i0 +Wi, σ

2Ili×li),

Wi|κi2, ti ∼ GPmi
(~0, κi

2Ki),

with Xi denoting a vector of longitudinal measures on subject i, W i a Gaussian process

stochastic vector, β
(L)
i0 a subject specific intercept for subject i, κi

2 a subject-specific measure

of volatility for subject i, ρ2 a fixed correlation length, σ2 a measurement error that is

shared across all subjects, Ili×li denoting the identity matrix of size li with li the number

of longitudinal measures on subject i, ti a vector of the time points at which longitudinal

measures on subject i were collected, and Ki = e−ρ
2(tij−tij′ )2 , where tij and tij′ are the jth

and j′th element of the time vector ti.

In order to sample from the posterior distribution of κi
2 and σ2 parameters, one can consider
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a marginal distribution of the following form

Xi|β(L)
i0 , κi

2, ρ2, σ2 ∼ N(β
(L)
i0 , κi

2Ki + σ2Ili×li) (4.22)

The marginal distribution above has log-density of the form

log(f(Xi|β(L)
i0 , κi

2, ρ2, σ2)) = constant

− 1

2
log|κi2Ki + σ2Ili×li | (4.23)

− 1

2
(Xi − β(L)

i0 )T (κi
2Ki + σ2Ili×li)

−1(Xi − β(L)
i0 ),

that is the log contribution of subject i to the longitudinal likelihood ( i.e. log(f
(i)
L ) ).

sampling from the posterior distribution of κi
2 and σ2 requires evaluation of the log-density

in equation (4.23) that involves evaluation of the determinant and the computation of the

inverse of the covariance matrix at each iteration of the MCMC. This process requires O(li
2)

memory space and a computation time of O(li
3) per subject, with li as the number of within

subject measurements.

In our model setting, we defined Ki = e−ρ
2(tij−tij′ ) with a fixed ρ2 parameter. This means

Ki can be pre-computed before starting posterior sampling using MCMC. Furthermore, we

propose using the eigenvalue decomposition technique for a faster log-posterior probability

computation. Our proposed method was motivated by Flaxman et al. (2015) and is as

follows.

Consider the covariance matrix κi
2Ki + σ2Ili×li in the marginal log-density in equation

(4.23). Our goal is now to propose a method that makes computation of the inverse and the
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determinant of this covariance function as efficient as possible. As shown earlier, Ki can

be pre-computed before starting the MCMC process as it does not involve any parameter.

Consider the eigenvalue decomposition ofKi = QΛQT , where Λ is a diagonal matrix with the

eigenvalues ofKi as the diagonal elements, andQ is the corresponding matrix of eigenvectors.

κi
2 is a scalar parameter that is sampled in each iteration of the MCMC. Multiplication of κi

2

times the matrix Ki implies the eigenvalues of this matrix will be κi
2 times bigger where the

eigenvectors remain the same. Hence, we can conclude that the eigenvalue decomposition

of the matrix κi
2Ki is of the form κi

2Ki = Q(κi
2Λ)QT , where Q and Λ are elements

of the eigenvalue decomposition of the pre-computed matrix Ki. Given the pre-computed

eigenvalue decomposition of the matrix Ki, at each iteration of the MCMC, the determinant

of the covariance function of the marginal log-density in equation (4.23) can be computed as

log|κi2Ki + σ2Ili×li | = log|Q(κi
2Λ)QT + σ2Ili×li |

= log|Q(κi
2Λ + σ2Ili×li)Q

T |

= log
( li∏
k=1

(κi
2λik + σ2)

)
=

li∑
k=1

log
(
κi

2λik + σ2
)
. (4.24)

In equation (4.24), λik’s are pre-computed eigenvalues of the matrix Ki whereas κi and σ2

are parameters sampled at each iteration of the MCMC.

Similarly and by using the same trick, we can compute the term (Xi − β
(L)
i0 )T (κi

2Ki +
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σ2Ili×li)(Xi − β(L)
i0 ) in a more computationally efficient as

(Xi − β(L)
i0 )T (κi

2Ki + σ2Ili×li)
−1(Xi − β(L)

i0 ) = (Xi − β(L)
i0 )T

(
Q(κi

2Λ)QT + σ2Ili×li

)−1
(Xi − β(L)

i0 )

= (Xi − β(L)
i0 )T

(
Q(κi

2Λ + σ2Ili×li)Q
T
)−1

(Xi − β(L)
i0 )

= (Xi − β(L)
i0 )T

(
Q(κi

2Λ + σ2Ili×li)
−1QT

)
(Xi − β(L)

i0 ).

(4.25)

In equation (4.25), Xi is the data matrix and is fixed, Q and Λ are pre-computed eigen-

vector and diagonal eigenvalue matrices corresponding to the eigenvalue decomposition of

the matrix Ki. Finally, by utilizing an eigenvalue decomposition, instead of evaluating the

term (κi
2Ki+σ2Ili×li)

−1, one can simply evaluate
(
Q(κi

2Λ+σ2Ili×li)
−1QT

)
, where the term

(κi
2Λ + σ2Ili×li)

−1 in the middle is simply the inverse of a diagonal matrix.

Evaluation of the Survival Likelihood

Here we consider evaluation of the survival component of the decomposed joint likelihood.

Consider the survival time for subject i that is denoted by ti and is distributed accord-

ing to a Weibull distribution with shape parameter τ and scale parameter exp(λi), where

λi = ζ(S)Z
(S)
i + ζ(L)Z

(L)
i (t), where Z

(S)
i and Z

(L)
i (t) are vectors of covariates for subject i,

with potentially time-varying covariates, corresponding to the survival and the longitudinal

covariates respectively, and ζ(S) and ζ(L) are vectors of survival and longitudinal coefficients

respectively. One can write the hazard function hi(t) as

hi(t) = τtτ−1exp(λi − exp(λi)tτ ). (4.26)
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The survival function Si(t) can be written as

Si(t) = exp{−
∫ t

0

hi(w)dw}.

Consider survival data on n subjects, some of whom may have been censored. Let event

indicator δi that is 1 if the event is observed, and 0 otherwise. The survival likelihood

contribution of subject i can be written in terms of the the hazard function hi(t) and the

survival function Si(t) as

f
(i)
S|L = hi(ti)

δiSi(ti)

= hi(ti)
δie−

∫ ti
0 hi(w)dw.

The overall survival log-likelihood can be written as

log(L) =
n∑
i=1

log(f
(i)
S|L)

=
n∑
i=1

(
δilog(hi(ti))−

∫ ti

0

hi(w)dw
)
.

The hazard function in the equation (4.26) includes some time-varying covariates which often

makes the integral of the hazard function non-tractable. In this case, one can estimate the

integral using the rectangular integration as follows:

Integration of Survival Hazard with Time-Varying Covariates

1. Set a fixed number of rectangles m and set A = 0
2. Divide (0, ti) interval into m equal pieces each of length L = ti/m
for i ∈ {1, . . . ,m} do
tmid ← L/2 + (i− 1) ∗ L
Atemp ← L ∗ hi(tmid)
A← A+ Atemp

end for
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4.3 Simulation Study

In this section, we evaluate our proposed models using a simulation study. We simulated

200 datasets that resembled the real data on end stage renal disease patients that was

obtained from the United States Renal Data System (USRDS). To this end, we first simulated

longitudinal trajectories with κ2’s which are sampled from a uniform distribution from 0 to

1. We fixed ρ2 = 0.1 for all subjects. The subject-specific intercepts for albumin trajectories

were randomly sampled from the Normal distribution N(µ = 5.0, σ2 = 0.5). We simulate

9 to 12 longitudinal albumin values per subject. Using the simulated albumin trajectories,

we generated survival times from the Weibull distribution in equation (5.17) that is of the

following form for each of the proposed models

• Model I:

Ti|τ, β1, Xi(t) ∼ Weibull(τ, λi = β
(s)
i0 + β1Xi(t)), (4.27)

• Model II:

Ti|τ, β1, Xi(t) ∼ Weibull(τ, λi = β
(s)
i0 + β1Xi(t) + β2X

′
AUC,i(t)), (4.28)

• Model III:

Ti|τ, β1, Xi(t) ∼ Weibull(τ, λi = β
(s)
i0 + β1Gender + β2β0

(L) + β3κi
2). (4.29)

The true values of the coefficients are set as follows

• model I: β1 = −0.5,
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• model II: β1 = 0.5,

• model III: β1 = 0.5,

where in all simulations, β
(s)
i0 are simulated from a mixture of two Normal distributions of

the form θiN(µ = −1.5, σ = 1) + (1− θi)N(µ = 1.5, σ = 1), where θi is distributed Bernoulli

with parameter p = 0.5.

Finally, the censoring times were sampled from a uniform distribution and independently

from the simulated event times with an overall censoring rate of 20%.

All results are from 200 simulated datasets of size n = 300 subjects each. For each dataset,

we fit our proposed joint models with 10,000 draws where the first 5,000 considered as a

burn-in period. Relatively diffuse priors were considered for all parameters. Details of the

priors used in the simulations ass well as the results are as follow.

4.3.1 Model I - Simulation Results

In order to compare our proposed joint longitudinal-survival model that is capable of flexibly

modeling longitudinal trajectories with simpler models with explicit functional assumptions

on the longitudinal trajectories, we simulated longitudinal data once from quadratic poly-

nomial longitudinal trajectory curves and another time from random non-linear curves. We

then fit our joint model with a Gaussian Process longitudinal component as well as a joint

model with the explicit assumption that the longitudinal trajectories are from a quadratic

polynomial curve. As a comparison model, we also fit a two-stage Cox model where in stage

one longitudinal data are modeled using our proposed Gaussian process longitudinal model

and in the second stage, given the posterior mean parameters from the longitudinal fit, a

Cox proportional hazard will fit the survival data.
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In particular, we generate synthetic longitudinal and survival data on 300 subjects, each with

9 to 12 within subject longitudinal albumin measures. Under the scenario where the longi-

tudinal data are generated from quadratic polynomial longitudinal trajectories, we consider

quadratic polynomial curves of the form

Xij = β
(L)
0i + β1it+ β2t

2 + εij,

where the true value of β0i are simulated from the Normal distribution N(µ = 5, σ = 1), β1i

are simulated from the Normal distribution N(µ = −0.5, σ = 0.1), β2 is set to be equal to

-0.1, and finally εij is the measurement error that is independent across measures and across

subjects and are simulated from the Normal distribution N(µ = 0, σ = 0.1).

Under the second scenario, longitudinal albumin values are generated from random non-

linear curves. In particular, we generate random non-linear albumin trajectories that are

realizations of a Gaussian process that are centered around the subject-specific random in-

tercepts β
(L)
0i that are generated from the Normal distribution N(µ = 5, σ = 1). We consider

a Gaussian process with the squared exponential covariance function with the correlation

length of ρ2 = 0.1 and the subject-specific measures of volatility κ2
i that are generated from

the uniform distribution U(0, 1).

For each simulation scenario, once longitudinal measures are generated, we generate survival

data where survival times are distributed according to the Weibull distributionWeibull(τ, λi),

where the shape parameter τ is set to 1.5 and λi, which is the log of the scale parameter of

the Weibull distribution, is set to β
(S)
i0 + β1Xi(t), where β

(S)
i0 are generated from an equally

weighted mixture of two Normal distributions of N(µ = −1.5, σ = 1) and N(µ = 1.5, σ = 1),

β1 is fixed to -0.5, and Xi(t) is the longitudinal value for subject i at time t that is already

simulated in the longitudinal step of the data simulation.

Our proposed joint longitudinal-survival model assumes the Normal prior N(µ = 5, σ = 2)
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on the random intercepts βi0, the log-Normal prior log−Normal(−1, 2) on κ2
i , the log-Normal

prior log−Normal(−1, 1) on σ2, the log-Normal prior log−Normal(0, 1) on τ , the Normal

prior N(µ = 0, σ = 5) on the survival shared intercept β0, the Normal prior N(µ = 0, σ = 5)

on the survival coefficient β1, the Gamma prior Γ(3, 3) on the concentration parameter of

the Dirichlet distribution, and the Normal prior N(µ = 0, σ = 5) as the base distribution of

the Dirichlet distribution.

As the results in Table 4.1 show, when data are simulated with a longitudinal trajectories

that are quadratic polynomial curves, the joint polynomial model performs better in terms

of estimating the albumin coefficient in the survival model with a smaller mean squared

error compared to our proposed joint longitudinal-survival. In real world, however, the

true functional forms of the trajectories of the biomarkers are not known. Under a general

case where the biomarker trajectories can be any random non-linear curve (scenario 2), our

proposed joint model outperforms the joint polynomial model. Further, our joint modeling

framework that is capable of estimating differential subject-specific log baseline hazards

provides significantly better coefficient estimates compared to the proportional hazard Cox

model. Estimates under the Cox model are marginalized over all subjects and due to the

non-collapsibility aspect of this model (Struthers and Kalbfliesch (1986), Martinussen and

Vansteelandt (2013)), coefficient estimates shrink toward 0.

4.3.2 Model II - Simulation Results

In model II, not only do we adjust for the albumin value at time Yi, but we also adjust for

a weighted average slope of albumin from time τ1 = 0 up until the time τ2 = Yi, where Yi

is either the event time for subject i or is the time that the subject got censored. This new

model differentiates between the risk of death for a patient whose albumin value is improving

compared to another patient with the same albumin level whose albumin is deteriorating. In
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Covariate of True Conditional Two-Stage Cox Joint Polynomial Model Joint Model
Interest Estimand Mean SD MSE Mean SD MSE Mean SD MSE

Scenario 1
Albumin(t) -0.5 -0.273 0.056 0.119 -0.495 0.019 0.003 -0.441 0.105 0.012

Scenario 2
Albumin(t) -0.5 -0.258 0.080 0.125 -0.380 0.080 0.034 -0.462 0.110 0.010

Table 4.1: Model I Simulation results - joint longitudinal-survival data were generated under
the simulation scenarios of one when longitudinal measures are sampled from the quadratic
polynomial trajectories (scenario 1) and another scenario when longitudinal measures are
sampled from random non-linear curves (scenario 2). Under each scenario, we fit three models
of a joint longitudinal-survival model with the assumption that longitudinal trajectories are
quadratic polynomial (Joint Polynomial Model), our proposed joint longitudinal-survival
with a flexible Gaussian process longitudinal component (Joint Model), and a two-stage Cox
proportional model with longitudinal trajectories with parameters that set to the posterior
mean of a Gaussian process longitudinal model that is fit separately.

particular, we consider weighted average slope of albumin once under the weighting scheme

of the form

Q(t) =
1

τ1 − τ0

,

and another time under the weighting scheme of

Q(t) =


1, if t = Ti

0, otherwise.

The first weighting scheme leads to the area under the derivative curve. The second weighting

scheme will result in a point-wise derivative of albumin at time Yi.

We generate synthetic data for 300 subjects each with 9 to 12 longitudinal measurements

where longitudinal albumin values are generated from a Gaussian process that is centered

around the subject-specific random intercepts β
(L)
0i which are generated from the Normal

distribution N(µ = 5, σ = 1). We consider a Gaussian process with the squared expo-

nential covariance function with the correlation length of ρ2 = 0.1 and the subject-specific
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measures of volatility κ2
i that are generated from the uniform distribution U(0, 1). Once

longitudinal measures are generated, we generate survival data where survival times are dis-

tributed according to the Weibull distribution Weibull(τ, λi), where the shape parameter τ

is set to 1.5 and λi, which is the log of the scale parameter in Weibull distribution, is set to

β
(S)
i0 + β1Xi(t) + β2X

′
AUC,i(t), where β

(S)
i0 are generated from an equally weighted mixture of

two Normal distributions of N(µ = −1.5, σ = 1) and N(µ = 1.5, σ = 1), β1 is fixed to 0.3,

β2 is fixed to 0.5, Xi(t) is the longitudinal value for subject i at time t and X ′AUC,i(t) is the

average slope of albumin.

Our proposed joint longitudinal-survival model assumes the Normal prior N(µ = 5, σ = 2)

on the random intercepts βi0, the log-Normal prior log−Normal(−1, 2) on κ2
i , the log-Normal

prior log−Normal(−1, 1) on σ2, the log-Normal prior log−Normal(0, 1) on τ , the Normal

prior N(µ = 0, σ = 5) on the survival shared intercept β0, the Normal prior N(µ = 0, σ = 5)

on the survival coefficient β1, the Normal prior N(µ = 0, σ = 5) on the survival coefficient

β2, the Gamma prior Γ(3, 3) on the concentration parameter of the Dirichlet distribution,

and the Normal prior N(µ = 0, σ = 5) as the base distribution of the Dirichlet distribution.

We fit our proposed joint longitudinal-survival model. As a comparison, we also fit a two-

stage Cox model where the longitudinal curve of albumin and its derivative curve are esti-

mated using hyper-parameters set as the posterior median of a Bayesian Gaussian Process

model. As we can see from table 4.2, our joint model provides closer estimates to the coeffi-

cient values with a smaller mean squared error compared with the two-stage Cox model. Our

proposed model is capable of detecting differential subject-specific baseline hazards whereas

the Cox model is not capable of differentiating between subjects and provides estimates that

are marginalized across all subjects. Further, the simulation results show the capability

of our method in detecting the true underlying longitudinal curves and the ability of our

method on properly estimating the average derivative of those curves.
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Covariate of True Conditional Two-Stage Cox Joint Model
Interest Estimand Mean SD MSE Mean SD MSE

Case 1 - Uniform Weights

Albumin(t) 0.3 0.191 0.099 0.022 0.303 0.109 0.008
Area under the derivative curve(t) 0.5 0.346 0.179 0.053 0.449 0.188 0.030

Case 2 - Point-Wise Weights

Albumin(t) 0.3 0.142 0.095 0.033 0.261 0.104 0.009
d(Albumin(t))

dt
0.5 0.412 0.123 0.022 0.477 0.152 0.013

Table 4.2: Model II simulation results - joint longitudinal-survival data were generated for
300 subjects each with 9 to 12 within subject measurements where longitudinal albumin
values are generated from a Gaussian process that is centered around the subject-specific
random intercepts β

(L)
0i which are generated from the Normal distribution N(µ = 5, σ = 1).

We consider a Gaussian process with the squared exponential covariance function with the
correlation length of ρ2 = 0.1 and the subject-specific measures of volatility κ2

i that are
generated from the uniform distribution U(0, 1). Once longitudinal measures are generated,
we generate survival data where survival times are distributed according to the Weibull
distribution Weibull(τ, λi), where the shape parameter τ is set to 1.5 and λi, which is the

log of the scale parameter in Weibull distribution, is set to β
(S)
i0 + β1Xi(t) + β2X

′
AUC,i(t),

where β
(S)
i0 are generated from an equally weighted mixture of two Normal distributions of

N(µ = −1.5, σ = 1) and N(µ = 1.5, σ = 1), β1 is fixed to 0.3, β2 is fixed to 0.5, Xi(t) is the
longitudinal value for subject i at time t and X ′AUC,i(t) is the average slope of albumin. We
fit our proposed joint longitudinal-survival model as well as a two-stage Cox proportional
hazard model as a the comparison model.

4.3.3 Model III - Simulation Results

In model III, we test the association between the summary measures of the longitudinal

biomarker trajectories and the survival outcomes. In particular, we consider the relation

between the summary measures of subject-specific random intercept β
(L)
i0 and subject-specific

measure of volatility κ2
i and survival times.

We generate synthetic data for N = 300 subjects each with 9 to 12 longitudinal measure-

ments where longitudinal albumin values are generated from a Gaussian process that is

centered around the subject-specific random intercepts β
(L)
0i which are generated from the

Normal distribution N(µ = 5, σ = 1). We consider a Gaussian process with the squared ex-

ponential covariance function with the correlation length of ρ2 = 0.1 and the subject-specific
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measures of volatility κ2
i that are generated from the uniform distribution U(0, 1). Once

longitudinal measures are generated, we generate survival data where survival times are dis-

tributed according to the Weibull distribution Weibull(τ, λi), where the shape parameter τ

is set to 1.5 and λi, which is the log of the scale parameter in Weibull distribution, is set to

β
(S)
i0 +β1Age+β2βi0

(L) +β3κ
2
i

(L)
, where β

(S)
i0 are generated from an equally weighted mixture

of two Normal distributions of N(µ = −1.5, σ = 1) and N(µ = 1.5, σ = 1), β1 is fixed to

0.5, β2 is fixed to -0.3, β3 is fixed to 0.7, Age is a standardized covariate that is generated

from the Normal distribution N(µ = 0, σ = 1), βi0
(L) is subject-specific random intercepts

of the longitudinal trajectories, and κ2
i

(L)
are subject specific measure of volatility of the

longitudinal trajectories.

Our proposed joint longitudinal-survival model assumes the Normal prior N(µ = 5, σ = 2)

on the random intercepts βi0, the log-Normal prior log−Normal(−1, 2) on κ2
i , the log-Normal

prior log−Normal(−1, 1) on σ2, the log-Normal prior log−Normal(0, 1) on τ , the Normal

prior N(µ = 0, σ = 5) on the survival shared intercept β0, the Normal prior N(µ = 0, σ = 5)

on the survival coefficient β1, the Normal prior N(µ = 0, σ = 5) on the survival coefficient

β2, the Gamma prior Γ(3, 3) on the concentration parameter of the Dirichlet distribution,

and the Normal prior N(µ = 0, σ = 5) as the base distribution of the Dirichlet distribution.

We fit our proposed joint survival-longitudinal model (model III) as well as a two-stage Cox

proportional hazard model as a comparison model. The two-stage Cox model is a simple

Cox proportional hazard model with covariate β
(L)
0i and κ2

i
(L)

that are posterior medians

from a separate longitudinal Gaussian process model. As the results in Table 4.3 show,

our proposed joint model provides closer estimates to the true coefficients that also have

significantly smaller mean squared error compared to the two-stage Cox model. Our proposed

joint model is capable of detecting the differential subject-specific baseline hazards. Unlike

our model, Cox model is blind to the subject-specific baseline hazards and hence, provides

coefficient estimates that are marginalized over all subjects. These marginalized estimates
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from the Cox model shrink toward 0 as the Cox model with a multiplicative hazard function

is non-collapsible.

As one can see in the joint model results in Table 4.3, the coefficient estimate for κ2(L)
is not

as close to the true coefficient value compared with other coefficient estimates. This is due

to the fact that only 9 to 12 longitudinal measures per subject, there exists many plausible

κ2
i

(L)
values that flexibly characterize the trajectory of the measured albumin values. This

additional variability in plausible κ2
i

(L)
values has caused the coefficient estimate to shrink

toward 0. Larger number of within subject longitudinal measures will provide more precision

in estimating the true underlying κ2
i

(L)
and will lead to a coefficient estimate closer to the true

value. In order to confirm this fact, we simulated additional data once with 36 within subject

measures and another time with 72 within subject measures. Table 4.4 shows the results

of fitting our proposed joint longitudinal-survival model to datasets that include subjects

with 9 to 12 within subject measurements, to datasets with subjects with 36 within subject

measurements, and to datasets with subjects with 72 within subject measurements. As the

results show, with larger number of within subject measurements, coefficient estimate for

κ2
i

(L)
is closer to the true value. This is due to the fact that with larger number of within

subject albumin measurements, there exists a stronger likelihood to estimate the subject-

specific volatility measures κ2
i , and hence, there is less uncertainty about the estimated value

of volatility measures.
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Covariate of True Conditional Two-Stage Cox Joint Model
Interest Estimand Mean SD MSE Mean SD MSE

Age (scaled) 0.5 0.262 0.124 0.070 0.492 0.149 0.013

Baseline Albumin (β0i
(L)) -0.3 -0.141 0.118 0.040 -0.284 0.116 0.008

κ2i
(L)

0.7 0.414 0.212 0.127 0.595 0.271 0.042

Table 4.3: Model III simulation results - joint longitudinal-survival data were generated
for 300 subjects each with 9 to 12 longitudinal measurements where longitudinal albumin
values are generated from a Gaussian process that is centered around the subject-specific
random intercepts β

(L)
0i which are generated from the Normal distribution N(µ = 5, σ = 1).

We consider a Gaussian process with the squared exponential covariance function with the
correlation length of ρ2 = 0.1 and the subject-specific measures of volatility κ2

i that are
generated from the uniform distribution U(0, 1). Once longitudinal measures are generated,
we generate survival data where survival times are distributed according to the Weibull
distribution Weibull(τ, λi), where the shape parameter τ is set to 1.5 and λi, which is the

log of the scale parameter in Weibull distribution, is set to β
(S)
i0 +β1Age+β2βi0

(L) +β3κ
2
i

(L)
,

where β
(S)
i0 are generated from an equally weighted mixture of two Normal distributions of

N(µ = −1.5, σ = 1) and N(µ = 1.5, σ = 1), β1 is fixed to 0.5, β2 is fixed to -0.3, β3 is
fixed to 0.7, Age is a standardized covariate that is generated from the Normal distribution
N(µ = 0, σ = 1), βi0

(L) are subject-specific random intercepts of the longitudinal trajectories,

and κ2
i

(L)
are subject specific measures of volatility of the longitudinal trajectories. We fit our

proposed joint longitudinal-survival model as well as a two-stage Cox proportional hazard
model as a the comparison model.

4.4 Application of the Proposed Joint Longitudinal-

Survival Models to Data from the United States

Renal Data System

In this section, we apply our proposed joint longitudinal-survival models to data on n = 1, 112

end stage renal disease patients participating in the Dialysis Morbidity and Mortality Studies

(DMMS) nutritional study that is obtained from the United States Renal Data System.

For every participating patient in the study, up to 12 albumin measurements were taken

uniformly over two years of followup. The presented analyses are restricted to only the

patients who had at least nine albumin measurements in order to provide sufficient data for

modeling the trajectory and the volatility of albumin. The censoring rate in the data is at
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Covariate of True Conditional Joint Model (li = 12) Joint Model (li = 36) Joint Model (li = 72)
Interest Estimand Mean SD MSE Mean SD MSE Mean SD MSE

Age (scaled) 0.5 0.492 0.149 0.013 0.493 0.144 0.015 0.495 0.145 0.016

βi0
(L) -0.3 -0.284 0.116 0.008 -0.308 0.116 0.006 -0.295 0.115 0.007

κ2i
(L)

0.7 0.595 0.271 0.042 0.639 0.284 0.043 0.651 0.293 0.039

Table 4.4: Model III simulation results with datasets with li = 36 and li = 72 within subject

measurements. In order to test the sensitivity of the κ2(L)
coefficient estimate to the number

of within subject measurements, li, we simulated joint longitudinal-survival data once when
each subject has 36 within subject measurements and another time when each subject has
72 within subject measurements. Under each scenario, we simulated 200 datasets each with
300 subjects. Other simulation parameters remained the same as the simulation parameters
used in Table 4.3. This means, we simulated longitudinal data from Gaussian process that
is centered around the subject-specific random intercepts β

(L)
0i which are generated from the

Normal distribution N(µ = 5, σ = 1). We consider a Gaussian process with the squared
exponential covariance function with the correlation length of ρ2 = 0.1 and the subject-
specific measures of volatility κ2

i that are generated from the uniform distribution U(0, 1).
Once longitudinal measures are generated, we generate survival data where survival times are
distributed according to the Weibull distribution Weibull(τ, λi), where the shape parameter
τ is set to 1.5 and λi, which is the log of the scale parameter in Weibull distribution, is set to

β
(S)
i0 +β1Age+β2βi0

(L) +β3κ
2
i

(L)
, where β

(S)
i0 are generated from an equally weighted mixture

of two Normal distributions of N(µ = −1.5, σ = 1) and N(µ = 1.5, σ = 1), β1 is fixed to
0.5, β2 is fixed to -0.3, β3 is fixed to 0.7, Age is a standardized covariate that is generated
from the Normal distribution N(µ = 0, σ = 1), βi0

(L) are subject-specific random intercepts

of the longitudinal trajectories, and κ2
i

(L)
are subject specific measures of volatility of the

longitudinal trajectories.

43% over a maximal follow-up time of 4.5 years.

Using the same data, Fung et al. (2002) showed that both baseline albumin level and the slope

of albumin over time are significant predictors of mortality among ESRD patients. While

our models are capable of replicating Fung et al’s findings, our models are also capable of:

• model 1: testing the association between albumin value at the time of death and the

risk of death

• model 2: testing the association between albumin value and an average derivative of

albumin up until time t and the risk of death.

• model 3: Testing the association between risk of mortality and the two summary
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measures of the baseline and the volatility of albumin measures

In order to adjust for other potential confounding factors, our proposed models also include

patient’s age, gender, race, smoking status, diabetes, an indicator of whether the patient

appeared malnourished at baseline, BMI at baseline, baseline cholesterol, and baseline sys-

tolic blood pressure. The adjusted covariates are consistent with those originally presented

in Fung et al. (2002).

Table 4.5 and Table 4.6 provide the results of fitting our proposed model I, Model II, and

Model III to the USRDS data. All joint models were run for 10,000 posterior samples where

the initial 5,000 samples are discarded as burn-in samples.

4.4.1 Model I - Application to USRDS data

We fit our proposed joint model I to the data. As a comparison model, we also fit as last-

observation carried forward (LOCF) Cox model. Table 4.5 shows the estimated coefficients

from both models. Between the two models, the estimated relative risk associated with all

time-invariant baseline survival covariates are similar between the two models. However, the

relative risk associated with every one unit decrement in serum albumin is much larger under

our proposed joint model compared to the last-observation carried forward Cox model. This

is quite expected as our model is capable of estimating subject-specific albumin trajectories

over time and is capable of accurately testing the association between albumin value at time

of death and risk of death. Unlike our model,the LOCF Cox model uses the most recent

albumin measure which in reality might be quite different than the albumin value at the time

of death. In both models, albumin is identified as a significant risk factor of mortality. In

particular, based on the results from our proposed joint Model I, it is estimated that every

1 g/dL decrement in albumin is associated with a 4.5 times higher risk of death.
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LOCF Cox Model Joint Model
No. of No. of Relative Risk Relative Risk

Covariates Cases Deaths (95% CI) P-Value (95% CR)
Age (10y) 1,112 630 1.44 (1.35-1.53) <.001 1.45 (1.36,1.55)
Sex

Men 560 312 1.0 1.0
Women 552 318 0.96 (0.81,1.13) 0.60 0.97 (0.82,1.16)

Race
White 542 350 1.0 1.0
Black 482 243 0.81 (0.68,0.96) 0.01 0.79 (0.67,0.94)
Other 88 37 0.52 (0.37,0.74) <.001 0.49 (0.34,0.69)

Smoking
Nonsmoker 645 337 1.0 1.0
Former 307 197 1.17 (0.98,1.41) 0.09 1.20 (0.99,1.44)
Current 160 96 1.52 (1.19,1.94) <.001 1.53 (1.21,1.95)

Diabetes
No 716 363 1.0 1.0
Yes 396 267 1.66 (1.40,1.97) <.001 1.69 (1.43,2.00)

Undernourished
No 958 517 1.0 1.0
Yes 154 113 1.39 (1.12,1.72) 0.003 1.35 (1.08,1.66)

BMI (per-5 kg/m2

decrement) 1,112 630 1.08 (1.00,1.17) 0.07 1.08 (1.00,1.17)
Cholesterol (per 20

mg/dL) 1,112 630 0.97 (0.93,1.00) 0.08 0.96 (0.93,1.00)
Systolic blood pressure

(per 10mm Hg) 1,112 630 0.98 (0.95,1.02) 0.38 0.98 (0.95,1.02)
Serum albumin(t) (1-g/dL decrement) 1,112 630 2.48 (2.00,3.07) <0.001 4.54 (3.03,5.55)

Table 4.5: Estimated Relative Risk and corresponding 95% credible region from our pro-
posed joint model where we adjust for time-dependent albumin value that is imputed from
the longitudinal component of the model. We also fit a last-observation carried forward
Cox proportional hazards model with last albumin value carried forward where we report
coefficients estimates, 95% confidence interval, and p-value for the estimated coefficients. In
both models, we adjust for potential confounding factors as reported by Fung et al. (2002).

4.4.2 Model II - Application to USRDS data

Other than the albumin value at the time of death, the average slope of albumin over time

might also be a risk factor of mortality in end-stage renal disease patients. In our proposed

joint Model II, we also adjust for the area under the derivative curve of the albumin trajectory

from the time that the followup starts until the survival time which is either the time of death

or the censoring time. Table 4.6 shows the results from our proposed model. Based on the
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results, every one g/dL decrement in albumin is associated with 3.95 times higher risk of

death. Also, higher average slope of albumin, that is every 1 g/dL/month increase in the

average slope, is associated with 2.3 times higher risk of death. This is consistent with Fung

et al. (2002) results on the association between the slope of albumin and the risk of death.

Our proposed method is also capable of adjusting for the local effect of the slope of albumin.

For instance, instead of averaging the slope of the follow-up time, one may only integrate

over the 6 months prior to the time of death.

4.4.3 Model III - Application to USRDS data

Fung et al. (2002) showed that the baseline albumin and the slope of albumin over time

are two independent risk factors of mortality among the end-stage renal disease patients. It

is quite natural to hypothesize that the volatility of albumin could also be a risk factor of

mortality among these patients. In our proposed joint longitudinal-survival Model III, we

consider two summary measures of the trajectories of the longitudinal albumin values, one

the baseline albumin measures (β0i
(L)), and another the subject-specific volatility measure

of albumin (κ2
i

(L)
). Table 4.6 also shows the results from our proposed Model III. The

results from our model confirms that the baseline serum albumin is a risk factor of mortality.

Further, the results from our model indicate that the volatility of albumin is also a significant

risk factor of mortality, where every one unit increase in κ2, which indicates a higher volatility,

is associated with 1.2 times higher risk of death.

Figure 4.2 shows albumin trajectories of 10 randomly sampled individuals. Hollow circles

are the actual albumin measures for each subject. Also, plots show the posterior Gaussian

process trajectory fit along with it’s 95% credible region.
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Joint Model
No. of No. of Relative Risk

Covariates Cases Deaths (95% CI)

Model 2
Serum Albumin(t) (1-g/dL decrement) 1,112 630 3.95 (3.18,4.71)
Average Derivative of Serum Albumin1 (1-g/dL/month decrement) 1,112 630 2.33 (1.40,3.73)

Model 3

Baseline Albumin(β0i
(L)) (1-g/dL decrement) 1,112 630 5.54 (4.19,6.94)

κ2i
(L)

(increase in volatility)2 1,112 630 1.23 (1.02,1.41)
1 : One may only consider the local effect of average serum albumin slope by computing the area under the

derivative from 6 months prior to death up until the time of death.
2 : In a similar model, we adjusted for κ2 values as a categorical variable with a cut point equal to the

posterior mean of all κ2 values (0.1) and we got a similar estimate relative risk (1.21).

Table 4.6: Model II and Model III results that show the estimated relative risk and cor-
responding confidence intervals from our proposed joint model II and model III. Potential
confounding factors, as reported by Fung et al. (2002), were also adjusted in the model but
have been removed from the tables for brevity. Our proposed Model II is capable of testing
the association between albumin values at the time of death as well as the average derivative
of the subject-specific albumin trajectories from the time the follow up time starts up until
the death or the censoring time. Our proposed Model III tests the association risk of mortal-
ity and two albumin trajectory summary measures of the subject-specific random intercepts

(β0i
(L)) and the subject specific volatility measures (κ2

i
(L)

).

4.5 Discussion

Monitoring the health of patients often involves recording risk factors over time. In such

situations, it is essential to evaluate the association between those longitudinal measurements

and survival outcome. To this end, joint longitudinal-survival models provide an efficient

inferential framework.

We proposed a joint longitudinal-survival framework that avoids some of the restrictive

assumptions commonly used in the existing models. Further, our methods propose a stronger

link between longitudinal and survival data through an introduction of new ways of adjusting

for the biomarker value at time t, adjusting for the average derivative of the biomarker over

time, and moving beyond the first-order trend and accounting for volatility of biomarker

measures over time.
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Figure 4.2: Actual longitudinal albumin trajectories of 10 randomly selected individuals
with end-stage renal disease that were selected from the USRDS data. Hollow circles are the
actual measured albumin values, red lines are the posterior median fitted curves from our
proposed Model III, and the dashed blue lines are the corresponding 95% posterior prediction
intervals for the fitted trajectories. The title of each plot shows the posterior median of the
volatility measure κ2 for the subject whose albumin measures are shown in the plot.

A two-stage approach to associating biomarker volatility with the survival outcome has been

proposed by Holsclaw et al. (2014). Our work here extends this approach by simultaneously

estimating longitudinal and survival parameters, thus accounting for uncertainty in the lon-

gitudinal measures. Our proposed models can also be considered as an extension of the joint

model proposed by Brown and Ibrahim (2003) in that we use the same idea of dividing the

joint likelihood into a marginal longitudinal likelihood and conditional survival likelihood.

However, instead of fitting quadratic trajectories, we use a flexible longitudinal model based
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on the Gaussian processes. Further, for the survival outcome, instead of assuming a piecewise

exponential model, we use a flexible survival model by incorporating the Dirichlet process

mixture of Weibull distributions. Our proposed modeling framework is capable of modeling

additional summary measures of longitudinally measured biomarkers and relating them to

the survival outcome in a time-dependent fashion.

Our proposed models, despite their flexibility and novelty, have some limitations. By using

th Bayesian non-parameteric Dirichlet process and the Gaussian process techniques, while

we provide a flexible modeling framework that avoids common distributional assumptions,

however, these techniques are generally not scalable when the number of subjects and the

number of within subject measurements increase. Furthermore, the survival component

of our model still relies on the proportional hazard assumption. In future, our modeling

framework can be extended to include a more general non-proportional hazard survival

models that can also include time-dependent coefficients inside the survival model. By using

some alternatives to the common MCMC techniques, including parallel-MCMC methods and

variational methods, our method can become more computationally efficient and scalable for

larger datasets.

Often times in monitoring the health of patients, multiple longitudinal risk factors are mea-

sured. One can use our introduced modeling framework in this chapter in order to build

a joint longitudinal-survival model with multiple longitudinal processes each process mod-

eled independently from other longitudinal processes. In reality, however, one expects that

patients longitudinal risk factors to be correlated. A methodology that is capable of mod-

eling multiple biomarkers simultaneously by taking the correlation between biomarkers into

account can be beneficial specially when there exists differential densities between different

longitudinal processes. In the next chapter, we introduce a joint modeling framework that is

capable of modeling multiple longitudinal processes simultaneously by taking the correlation

between those processes into account.
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Chapter 5

A Flexible Joint Longitudinal-Survival

Model for a Simultaneous Modeling of

Multiple Longitudinal Biomarkers

One natural extension to the flexible joint longitudinal-survival model introduced in Chapter

4 is to build a model that is capable of modeling multiple longitudinal biomarkers simul-

taneously. Using the flexible joint modeling framework introduced in Chapter 4, one can

include multiple longitudinal biomarkers each modeled separately. However, by simultane-

ously modeling biomarkers and by taking the correlation between biomarkers into account,

one can gain more efficiency in modeling the trajectory of those biomarkers and hence, can

better establish the relation between the longitudinal biomarkers and the survival outcomes.

We start with a brief introduction in Section 5.1. Our proposed methodology is introduced

in Section 5.2. In Section 5.3, Simulation studies are presented to assess the operating

characteristics of the proposed model. In Section 5.4, we present the result of applying the

proposed method to real data on dialysis patients from DaVita database. We finally conclude
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with a discussion in Section 5.5.

5.1 Introduction

Often times in clinical trials with survival end points, multiple longitudinal biomarkers are

collected during the study follow up. Collected longitudinal measures on each subject are cor-

related as they are taken on the same subject as well as they are temporally dependent. An

example is blood test biomarkers collected on end-stage renal disease patients on a monthly

basis. While one can model the trajectory of each biomarker independently from other col-

lected biomarkers, however, by simultaneously modeling the trajectory of all biomarkers, one

can take the correlation between the different biomarkers into account, and hence, can gain

more precision in modeling the biomarkers trajectories. When some biomarkers are measured

less frequently compared to the other biomarkers, simultaneously modeling biomarkers can

be particularly useful as one can gain more precision in estimating less frequent biomarkers

by taking the correlation between all biomarkers into account and by borrowing information

from the higher frequency biomarkers to better predict the lower frequency ones. Finally,

a joint longitudinal-survival model with a flexible longitudinal component, which is capable

of modeling the trajectory of multiple biomarkers simultaneously, can be used to test the

association between the survival outcomes and the longitudinal biomarkers. We shall use the

word ”joint” when we model longitudinal-survival data simultaneously. We reserve the word

”simultaneous” to refer to modeling multiple longitudinal measures at a same time rather

than modeling each biomarker trajectory independently from others.

Simultaneously modeling longitudinal biomarkers can be considered in the context of a mul-

tivariate temporal process model that can be used both for inferential purposes as well as

prediction and interpolation purposes. In order to develop such model, specification of a

valid cross-covariance function is necessary. A valid cross-covariance function is required
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to lead to a valid positive-definite covariance matrix for any number of time points and at

any choice of these time points Gelfand and Banerjee (2010). A common cross-covariance

function is to use separable cross-covariance function construction that shall be explained in

more detail in Section 5.2.

The question of describing the correlation between multiple longitudinal measures has been

addressed from a different perspective in geostatistics literature with a focus on spatial data.

Bernardo et al. (1998) and Berger et al. (2003) described the kernel convolution technique

for creating stationary and non-stationary spatial processes. Majumdar and Gelfand (2007)

proposed producing cross-covariance functions by using convolution of covariance functions.

Multivariate models in geostatistics started with Matheron (1973) and by introduction of

some new concepts including cross-variogram and co-Kriging. Gelfand and Banerjee (2010)

defined co-Kriging as a spatial prediction method that uses both the information of the pro-

cess being considered as well as the information from other related processes. Co-Kriging

is commonly addressed in the context of the linear models as these models are easily inter-

preted. These models that are commonly known as linear model of co-regionalization (LMC)

have been considered widely in the literature including Grzebyk and Wackernagel (1994),

Schmidt and Gelfand (2003), and Ver Hoef et al. (2004).

Following our idea from Chapter 4 on developing a flexible longitudinal model using Gaussian

Process models, we are interested in extending our method to a flexible Gaussian process

model capable of modeling multiple biomarkers simultaneously. In Sec 5.2, we will show

how a Gaussian process model can be extended to a multivariate Gaussian process to model

multiple longitudinal biomarkers simultaneously. Using our proposed multivariate Gaussian

process, we then build a joint longitudinal-survival model capable of relating longitudinal

biomarkers to survival outcome.
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5.2 Methodology

5.2.1 Multivariate Gaussian Process

Consider the function f that relates an input space T to an output space X . As an alternative

to an explicit functional assumption on f , one can assume a Gaussian process prior on f

. One may consider time as the input space and the space of a longitudinal measure X as

the output space and may use Gaussian process prior as a prior on all plausible functions f

relating time t to the longitudinal measure X at time t.

X(t) = f(t) + ε

f ∼ GP (µ(t), Cf (t, t
′))

In the setting above, f is considered as a univariate function with one output at each time

point t. In general, however, f can be a multivariate function with a vector of outputs at

each time t. A multivariate function f will require a multivariate Gaussian process prior.

One can consider a more general frame work of the following form

X(t) = f(t) + ε,

f(t) ∼ GP (µf (t),Cf(t, t
′)),

where X(t) is a vector of outputs at time t, f is a multivariate function with a multivariate

Gaussian process prior with a mean vector function µf (t) and a cross-covariance matrix

function Cf (t, t′).

Consider a multivariate longitudinal vectorX(t) at time t with the dimension q×1. Without

loss of generality and for simplicity of the notations, we assume a multivariate longitudinal

random vector with mean zero, E[X(t)] = 0. A cross-covariance function between two
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generic time points t and t′ is a matrix function with dimension q × q where the (i, j)th

element of this matrix is defined as

Cij(t, t
′) = Cov

(
Xi(t), Xj(t

′)
)

= E[Xi(t)Xj(t
′)]− E[Xi(t)]E[Xj(t

′)]

= E[Xi(t)Xj(t
′)], (5.1)

where E[Xi(t)] and E[Xj(t
′)] are 0. Equation (5.1) indicates that the cross-covariance matrix

function C(t, t′) can be defined as

C(t, t′) = E[X(t)X(t′)
T

]. (5.2)

Consider n arbitrary time points {t1, t2, . . . , tn}. At each time point ti, X(ti) is a q × 1

vector. Concatenating n such output vectors, one can define an nq × 1 vector X, where

X = [X(t1),X(t2), . . . ,X(tn)]. Random vector X is mean-zero with a covariance matrix

ΣX with the dimension nq×nq. ΣX is a block matrix where each block is the cross-covariance

matrix corresponding to time ti and tj for all q outputs at each time point.

As a covariance matrix, ΣX has to be symmetric and positive definite. As Gelfand and

Banerjee (2010) showed, this requires the covariance matrix function C(t, t′) to satisfy the

two following conditions of

1. C(t, t′) = CT (t, t′),

2. for any integer value n and for any arbitrary collection of ”n” time points:∑n
i=1

∑n
j=1X

T (ti)C(ti, tj)X(tj) > 0.

A multivariate processX(t) is stationary if the cross-covariance matrix function depends only

on the time difference between t and t′, where we can write C(t, t′) = C(t′− t). Multivariate
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process X(t) is called isotropic if the cross-covariance matrix function depends only on the

absolute difference between t and t′, where we can write C(t, t′) = C(|t′ − t|). Yadrenko

(1987) showed that under isotropic condition, a covariance function Cij(h) will form a valid

cross-covariance matrix function if and only if the Cij(h) function for a positive-definite

measure F (.) has a cross-spectral representation of the form

Cij(h) =

∫
exp(2πitTh)d(Fij(t)).

Despite the existence of many methods proposed in the literature, when cross-covariance

functions are unknown, specification of a valid cross-covariance function based on the ob-

served data is a very difficult task. One common approach to specify a valid cross-covariance

function is to use a class of covariance functions known as separable cross-covariance struc-

tures that shall be introduced in the next section.

5.2.2 Separable Cross-Covariance Functions

Consider X(t) as a vector of q longitudinal variables all measured at time t. The cross-

covariance matrix function C(t, t′) is then a q × q matrix where it’s (i, j)th element is equal

to Cij(t, t
′) that was defined in equation (5.1). One can assume that the covariance between

the q longitudinal variables at each time-point remains the same at all time points t and can

be specified with a positive definite covariance matrix R. The correlation between measured

values at time t and measured values at time t′ can then be expressed using a univariate

correlation function ρ(t, t′). Given this specification, one can write

C(t, t
′) = ρ(t, t′)R, (5.3)
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where R is of size q×q and represents the covariance matrix between the q elements of X(t)

that remain the same at all time points t, and ρ(t, t′) represents the correlation between

measures at time t and measures at time t′.

Now consider n time points {t1, t2, . . . , tn} where at each time point ti, we observe a stack

of q longitudinal random variables X(ti). Consider X = [X(t1),X(t2), . . . ,X(tn)]T as the

vertical stack of n longitudinal vectors, each element of that vector is an observed X(ti) at

a time point ti. Cov(X) can be defined as

Cov(X) = R⊗ S, (5.4)

where the (i, j)th element of S is represented with Sij and is equal to Sij = ρ(ti, tj), the

notation ⊗ represents the Kronecker product, andR is the non-temporal covariance function

between the q longitudinal variables that is assumed to remain the same across time points

ti’s.

By using a separable cross-covariance function and given that R matrix is positive defi-

nite by definition, with a positive definite matrix S, it’s guaranteed that Cov(X) will be

positive definite. Furthermore, by using a separable cross-covariance structure, the deter-

minant of the cross-covariance function, |Cov(X)|, and the inverse of the cross-covariance

function,Cov(X)−1, will become computational convenient to deal with. In particular, by

using the properties of the Kronecker product, one can show that the determinant of the

cross-covariance can be written as |Cov(X)| = |R|q|S|n, where |R| and |S| are the deter-

minant of the R matrix and the determinant of the S, respectively. Also, the inverse of the

cross-covariance function can be written as Cov(X)−1 = R−1 ⊗S−1. We shall use the class

of separable cross-covariance functions to setup our proposed model.

While the class of separable covariance functions are guaranteed to provide a valid cross

covariance function, however, a limitation of a separable cross-covariance function is that
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it assumes that the covariance structure between longitudinal outputs at time tremains the

same as t changes. In reality, this assumption might not necessarily hold.

5.2.3 A Joint Longitudinal-Survival Model with Multiple Longi-

tudinal Biomarkers

In this section we introduce our proposed joint longitudinal-survival model that is capable

of simultaneously modeling multiple longitudinal biomarkers and jointly relating them to

the survival outcomes. We first start by introducing the likelihood specification of joint

models. We then continue with introducing the longitudinal component of the model and

the survival component. Our proposed method can work for any number of longitudinal

biomarkers, however, for the sake of simplicity of the notations, we consider only two longi-

tudinal biomarkers. We refer to the first longitudinal biomarker with X(1) and to the second

biomarker withX(2). We denote survival outcome with Y . n refers to how many subjects are

being followed up in the study. l
(1)
i and l

(2)
i refer to the number of longitudinal biomarker 1

measures and biomarker 2 measures obtained for subject i at time points t
(1)
ij , j = 1, 2, . . . , l

(1)
i

and t
(2)
ik , k = 1, 2, . . . , l

(2)
i , respectively. Also, associated with each subject, there is an ob-

served survival time, Yi ≡ min{Ti, Ci} and event indicator δi ≡ 1[Yi=Ei], where Ti and Ci

denote the true event time and the censoring time for subject i, respectively. Further, we

make the common assumption that Ci is independent of Ti for all i, i = 1, . . . , n.

5.2.4 The Joint Model

Similar to Section 4.2.1, we define the contribution of each subject to the joint model like-

lihood as the multiplication of the likelihood function of the longitudinal measures for that

subject and her/his time-to-event likelihood that is conditioned on her/his longitudinal mea-
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sures. Let f
(i)
L , f

(i)
S|L, and f

(i)
L,S denote the longitudinal likelihood contribution, the conditional

survival likelihood contribution, and the joint likelihood contribution for subject i. One can

write the joint longitudinal-survival likelihood function as

fL,S =
n∏
i=1

f
(i)
L,S =

n∏
i=1

(
f

(i)
L × f

(i)
S|L
)
. (5.5)

We now explain the components specification of the model and we will conclude this section

by explaining the posterior distribution of the joint model.

Longitudinal Model

We motivate the development of the multivariate Gaussian process model of two longitudinal

biomarkers by first considering the following simple model for a single subject

X(1)
i

X
(2)
i

 |
β(1)

i0

β
(2)
i0

 ∼ N(

β(1)
i0

β
(2)
i0

 ,Σε =

Σ(1) 0

0 Σ(2)

). (5.6)

For simplicity of the notation, we assume that both biomarkers are measured simultaneously,

that means at each time point t, we get to obtain measures on both biomarkers. Our

method is not limited to this assumption and once readers are introduced with the model,

we shall extend the notation to a model with no such assumption. We define li as the

number of longitudinal measures per biomarker. These measures are obtained at an arbitrary

time points ti1, ti2, . . . , tili . In the equation (5.6), X
(1)
i and X

(2)
i are vectors of longitudinal

biomarker 1 measurements and longitudinal biomarker 2 measurements, each of size li × 1

respectively. We shall stack X
(1)
i and X

(2)
i together into a column vector X i that is of size
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2li×1. β
(1)
i0 is a vector of repeated random intercepts corresponding to biomarker 1 and β

(2)
i0

is a vector of repeated random intercepts corresponding to biomarker 2, each of size li × 1.

Also, we shall stack β
(1)
i0 and β

(2)
i0 into a column vector β

(L)
i0 of size 2li × 1. The model in

equation (5.6) assumes biomarker 1 and biomarker 2 are independent and each biomarker

has its own measurement error matrix. We consider Σ(1) = σ2
1Ili×li and Σ(2) = σ2

2Ili×li , where

σ2
1 and σ2

2 are shared parameters across all subjects.

By adding a stochastic component that is indexed by time to the model in equation (5.6),

we can relax the independence assumption between biomarkers and we can also extend the

model to capture non-linear patterns over time. Specifically, we consider a stochastic vector,

W , that is a realization from a multivariate Gaussian process prior, W (t), that is mean zero

and has a separable cross-covariance function. Thus for subject i, Wi ∼ N2li(0, C
i
2li×2li

),

where Wi is a column vector that includes a stack of W
(1)
i and W

(2)
i , where W

(1)
i =

(Wti1 ,Wti2 , . . . ,Wtili
) and W

(2)
i = (Wti1 ,Wti2 , . . . ,Wtili

).

We characterize the covariance function, Cov(Wi), using a separable cross-covariance struc-

ture as

Cov(Wi) = R⊗ Si, (5.7)

where R is a 2 by 2 matrix that characterizes the the covariance between the two biomarkers

and is assumed to be time-invariant, and Si is a temporal covariance matrix. The R matrix is

shared across all subjects with elements R11 and R22 characterizing marginal variances of the

first and the second biomarker processes respectively, and with theR12 element characterizing

the covariance between the two processes. In specific, one can decompose the covariance
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matrix R into the following form

R =

τ1 0

0 τ2

Ω

τ1 0

0 τ2

 , (5.8)

where τ1 and τ2 are square-root of the within biomarker 1 and biomarker 2 variances and

Ω is a correlation matrix. Commonly, τ1 is set to equal 1 where in that case, it’s assumed

that Si will also capture the within biomarker 1 variability and τ2 is treated as a parameter

indicating the relative biomarker variability between biomarker 2 and biomarker 1. Hence,

we define

τ =

1 0

0 τ2

 .
We re-write the equation (5.9) as

R = τΩτ. (5.9)

Si is the covariance matrix characterizing how longitudinal measures change over time. Un-

der the separable cross-covariance structure, we assume both biomarkers share the same

covariance structure for changes in their values over time. We characterize Si as an li × li

matrix with elements Si(j, j
′) that is defined as

Si(j, j
′) = κi

2e−ρ
2(tij−tij′ )2 , (5.10)

where the hyperparameter ρ2 controls the correlation length, and κ2 controls the height

of oscillations (Banerjee et al. 2004), and tij and tij′ are two different time points. For

notational simplicity, we define Ki = e−ρ
2(tij−tij′ )2 ; j, j′ ∈ {1, . . . , li}. We can extend the
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longitudinal model in equation (5.6) to the flexible model below

X i|β(L)
i0 ,Wi, σ

2
1, σ

2
2 ∼ N(β

(L)
i0 +Wi,Σε), (5.11)

where Wi is a stochastic vectors sampled from a Gaussian process prior of the form

Wi|κi2, ρ2 ∼ GP (0,R⊗ Si). (5.12)

In the model defined by equation (5.11), σ2
1 and σ2

2 are assumed to be common across all

subjects. Also, we assume the correlation length ρ2 is fixed and hence, the subject-specific

parameter κi
2 will have the role of capturing the within-subject volatility of the longitudinal

biomarkers. Finally, the longitudinal component of our proposed joint model can be written

as

Xi|Wi, β
(1)
i0 , β

(2)
i0 , κi

2, ρ2, σ2
1, σ

2
2 ∼ N(β

(L)
i0 +Wi,Σε)

β
(1)
i0 ∼ N(µ

β
(1)
0
, σ2

β
(1)
0

)

β
(2)
i0 ∼ N(µ

β
(2)
0
, σ2

β
(2)
0

)

σ2
1 ∼ log −Normal(µσ2

1
, σσ2

1
)

σ2
2 ∼ log −Normal(µσ2

2
, σσ2

2
) (5.13)

Wi|κi2, ρ2, ti ∼ GP (0, R⊗ Si)

κi
2 ∼ log −Normal(µκ2 , σκ2)

τ2 ∼ Cauchy(0, λ0)

Ω ∼ LKJcorr(ν0),
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where β
(1)
i0 and β

(2)
i0 are random intercepts associated with biomarker 1 and biomarker 2,

respectively. β
(L)
i0 is a column vectors of size 2li × 1 that is a stack of β

(1)
i0 and β

(2)
i0 each

repeated li times. Finally, R matrix was decomposed based on the equation (5.9).

Survival Model

Our goal is to quantify the association between the longitudinal biomarkers of interest and

the time-to-event outcomes by directly adjusting for biomarkers measured values in a sur-

vival component of our proposed joint model. While usually biomarkers are measured on

a discrete lab-visit basis (ex. every month), the event of interest happens on a continuous

basis. While common frequentist models use the so-called ”last-observation-carried” for-

ward, by jointly modeling longitudinal-survival data, one can properly impute biomarker

measures at each individual’s event time. In particular and from the Bayesian modeling

perspective, in each MCMC iteration, given the sampled parameters for each individual and

by using the flexible multivariate Gaussian process in the longitudinal component of the

model, there exists posterior trajectories of biomarkers for each individual. Our method,

then, considers the posterior mean of those trajectories as the proposed trajectory for each

individual’s biomarker values over time at that iteration. The posterior mean trajectories of

our biomarkers of interest, then, can be used to impute time-dependent biomarker covariates

inside the survival component of the model.

In order to quantify the association between two longitudinal biomarkers, which are mod-

eled simultaneously using the longitudinal component of the model, and the time-to-event

outcomes, we define our survival component by using a multiplicative hazard model with

the general form of

λ(Ti|Zi(s),Zi(L)) = λ0(Ti)exp{ζ(s)Zi(s) + ζ(L)Zi
(L)(t)},
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where Ti is the event time for subject i, λ0(Ti) denotes a baseline hazard function, Zi
(s)

is a vector of baseline covariates, Zi
(L) are longitudinal covariates from the longitudinal

component of the model, and ζ(S) and ζ(L) are regression coefficients interpretable as the

log relative risk of ”death” per every unit increase of their corresponding covariates.

Similar to the model in Chapter 4, we consider a Weibull distribution for the survival com-

ponent to allow for log-linear changes in the baseline hazard function over time. Thus we

assume

Ti ∼ Weibull(ν, λi), (5.14)

that means

f(Ti|ν, λi) = νTi
ν−1exp

(
λi − exp(λi)Tiν

)
. (5.15)

Weibull distribution is available in closed form and can be evaluated computationally effi-

ciently. Under this parameterization of the Weibull distribution, covariates can be incor-

porated into the model by defining λi = ζ(s)Zi
(s) + ζ(L)Zi

(L), where ζ(s) are coefficients

associated with baseline survival covariates Zi
(s), and ζ(L) are longitudinal coefficients as-

sociated with longitudinal covariates Zi
(L).

In particular, we are interested in a model that directly includes the two longitudinal

biomarker values at time t as a covariate inside the survival model. Hence, we define our

model as

Ti|ν, ζ(s), ζ(X(1)), ζ(X(2)),Zi
(s), X

(1)
i (Ti), X

(2)
i (Ti) ∼ Weibull(ν, λi), (5.16)
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with

λi = β
(s)
i0 + ζ(s)Zi

(s) + ζ(X(1))X
(1)
i (Ti) + ζ(X(2))X

(2)
i (Ti),

where ν is a common shape parameter shared with all subjects. β
(s)
i0 is a subject specific

coefficient in the model which allows subject-specific baseline hazard. Zi
(s) and ζ(s) are

baseline covariates and their corresponding coefficients, respectively. Finally, ζ(X(1)) and

ζ(X(2)) are coefficients linking the longitudinal biomarker1 value X
(1)
i (Ti) at time Ti and

longitudinal biomarker2 value X
(2)
i (Ti) at time Ti to the hazard for mortality, respectively.

In order to fit a fully joint longitudinal-survival model, at each iteration of the MCMC and

for a time-point t∗, predicted biomarker1 and biomarker2 values for individual i are of the

following form

X∗|Xi, t, t
∗ ∼ N2(µ∗,Σ∗),

where X is a 2× 1 vector where its first element is the predicted value of the first biomarker

and its second element is the predicted value for the second biomarker. Xi is a column vectors

of size 2li×1 that represents the observed biomarker values, where its first li elements are the

observed biomarker1 values and the remaining elements are the observed biomarker2 values.

t is column vector of size li that includes all time points at which values of the biomarkers

were observed. t∗ is the time at which by using the posterior trajectory of biomarkers at each

MCMC iteration, we want to impute a predicted value per biomarker. Given our proposed

longitudinal component setup, X is distributed bivariate Normal with mean µ∗ and with
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covariance matrix Σ∗ that are of the following forms

µ∗ = βLi0 +K(t∗, t)KX
−1(Xi − β(L)

i0), (5.17)

Σ∗ = K(t∗, t∗)−K(t∗, t)KX
−1K(t∗, t)′, (5.18)

where

K(t∗, t) = R⊗ κi2e−ρ
2(t∗−t)2 ,

K−1
X = (R⊗ Si + Σε)

−1, (5.19)

K(t∗, t∗) = R⊗ S∗i ,

where R and Si were defined earlier in Section 5.2.4. S∗i is defined similarly as Si except

that t is replaced with t∗. βLi0 is a column vector size 2 by 1 with random intercept of the

first biomarker, β
(1)
i0 , as its first element and random intercept of the second biomarker, β

(2)
i0 ,

as it’s second element. β(L)
i0 is a column vector of size 2li × 1, where the first li elements

are all the random intercept for the first biomarker and the remaining li elements are all the

random intercept for the second biomarker.

In order to avoid an explicit distributional assumption on the survival times, we specify our

survival model as an infinite mixture of Weibull distributions mixed on the β
(s)
i0 parameter.
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To do so, we use the Dirichlet process mixture of Weibull distributions defined as

β
(s)
i0 |µi, σ2

β
(s)
0

∼ N(µi, σ
2

β
(s)
0

), (5.20)

µi|G ∼ G, (5.21)

G ∼ DP
(
α(S), G0), (5.22)

where σ2

β
(s)
0

is a fixed parameter, µi is a subject-specific mean parameter from a distribution

G with a DP prior, α(S) is the concentration parameter of the DP and G0 is the base

distribution. By using the Dirichlet process prior on the distribution of β
(s)
i0 , we allow patients

with similar baseline hazards to cluster together which subsequently provides a stronger

likelihood to estimate the baseline hazards. For other coefficients in the survival model, we

assume a multivariate normal prior as

(
ζ(s), ζX

(1)

, ζX
(2)) ∼ MVN(0,Σ = σ0

2I),

where ζ(s) is a set of coefficients associated with the baseline survival covariates, ζX
(1)

and

ζX
(2)

are coefficients associated with value of the first and the second biomarkers respectively,

σ0
2 is a prior variance for each coefficient, and I is the identity matrix.

For the shared shape parameter ν, we consider a log-Normal prior, ν ∼ LogNormal(aν , bν),

and specify the prior on the concentration parameter of our DP model to be α(S) ∼ Γ(a
(S)
α , b

(S)
α ).

Finally, since the hazard function includes time-varying covariates, evaluation of the log like-

lihood that involves integration of the hazard function overtime is done using the rectangular

integration that was discussed in detail in Section 4.2.5.
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The Posterior Distribution

Consider the joint longitudinal-survival likelihood function, fL,S, introduced in equation 5.5.

Let ω be a vector of all model parameters with the joint prior distribution π(ω). The

posterior distribution of the parameter vector ω can be written as

π(ω|X,Y ) ∝ fL,S × π(ω), (5.23)

where X and Y denote longitudinal and time-to-event data respectively, and fL,S is the

joint model likelihood function (equation 5.5).

The posterior distribution of the parameters in our proposed joint model is not available

in closed form. Hence, samples from the posterior distribution of the model parameters

are obtained via Markov Chain Monte Carlo (MCMC) methods. In particular, we use the

Hamiltonian Monte Carlo (Neal (2011)) to draw samples from the posterior distribution.

Prior distributions on parameters of the joint model were explained in details under the lon-

gitudinal and survival component specification, and we assume independence among model

parameters in the prior (ie. π(ω) is the product of the prior components specified previ-

ously). We provide further detail on less standard techniques for sampling from the posterior

distribution when using a multivariate GP prior and we explain how to evaluate the survival

portion of the likelihood function when time-varying covariates are incorporated into the

model.

Evaluation of the Longitudinal Likelihood

Consider equation (5.11) and equation (5.12) where we introduced a flexible longitudinal

model to simultaneously model multiple longitudinal biomarkers by using the Gaussian pro-

158



cess prior. By marginalizing over W i in equation (5.11), one can show

X i|β(L)
i0 , σ

2
1, σ

2
2 ∼ N(β

(L)
i0 ,R⊗ Si + Σε). (5.24)

In order to sample from the posterior distribution of the parameters of the joint longitudinal-

survival model introduced in Section 5.2.3, at each iteration of the MCMC, we need to

compute the log posterior probability. Computing the log posterior probability involves

evaluation of log|R⊗Si + Σε| and (R⊗Si + Σε)
−1. This requires a memory space of O(li

2)

and a computation time of O(li
3) per subject i. Consider matrix Si = κ2

iKi, where the

(i, j)th element of K is Ki(i, j) = exp{−ρ2(tij − tij′)2}. Ki can be pre-computed prior to

starting the MCMC process. Further, by using the eigen-value decomposition technique, one

may make the calculation of the matrix determinant and inverse of the covariance matrix

more computationally efficient. Using a similar idea proposed by Flaxman et al. (2015), we

propose the following fast multivariate Gaussian process computation approach. We start

pre-computing the Ki matrix. Also, we can pre-compute the eigen-vale decomposition of

this matrix prior to starting the MCMC process. Consider an eigen-value decomposition of

the following form

Ki = UΛUT ,

where U is a matrix of eigen-vectors and Λ is a diagonal matrix of eigen-values. For a scalar

κ2
i , the eigen-value decomposition of κ2

iKi is of the form

Si = κ2
iKi

= U(κ2
iΛ)UT .
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At each iteration of the MCMC, one can obtain the eigen-value decomposition of the matrix

R,that is of the form

R = V DV T ,

where V is a matrix of eigen-vectors and D is a diagonal matrix of eigen-values. One can

then compute efficiently the log-determinant of the cross-covariance matrix, log|R⊗Si+Σε|,

as

log|R⊗ Si + Σε| = log|(V DV T )⊗ (U(κ2
iΛ)UT ) + Σε|

= log|(V ⊗ U)(D ⊗ κ2
iΛ)(V ⊗ U)T + Σε|

= log|(V ⊗ U)(D ⊗ κ2
iΛ + Σε)(V ⊗ U)T |

= log|(D ⊗ κ2
iΛ) + Σε|

= 2li

2∑
k=1

li∑
j=1

log(dkkλjj + σ2
1I[k == 1] + σ2

2I[k == 2]), (5.25)

and the inverse of the cross-covariance matrix, (R⊗Si + Σε)
−1, can be efficiently computed

as

(R⊗ Si + Σε)
−1 =

(
(V DV T )⊗ (U(κ2

iΛ)UT ) + Σε

)−1

=
(
(V ⊗ U)(D ⊗ κ2

iΛ)(V ⊗ U)T + Σε

)−1

=
(
(V ⊗ U)(D ⊗ κ2

iΛ + Σε)(V ⊗ U)T
)−1

=
(
(V ⊗ U)(D ⊗ κ2

iΛ + Σε)
−1(V ⊗ U)T

)
, (5.26)

In equation (5.26), computation of the inverse of the term (D ⊗ κ2
iΛ + Σε) in the middle

is very easy as it’s a diagonal matrix. Using our proposed efficient computation technique

introduced here, we noticed a 30 times faster computation speed in our simulations.
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Evaluation of the Survival Likelihood

Similar to Chapter 4, we evaluate the survival likelihood using piece-wise integration. Con-

sider the survival time for subject i that is denoted by ti and is distributed according to

a Weibull distribution with shape parameter τ and scale parameter exp(λi), where λi =

ζ(S)Z
(S)
i + ζ(L)Z

(L)
i (t), where Z

(S)
i and Z

(L)
i (t) are vectors of covariates for subject i, with

potentially time-varying covariates, corresponding to the survival and the longitudinal co-

variates respectively, and ζ(S) and ζ(L) are vectors of survival and longitudinal coefficients

respectively. One can write the hazard function hi(t) as

hi(t) = τtτ−1exp(λi − exp(λi)tτ ). (5.27)

The survival function Si(t) can be written as

Si(t) = exp{−
∫ t

0

hi(w)dw}.

Consider survival data on n subjects, some of whom may have been censored. Let event

indicator δi that is 1 if the event is observed, and 0 otherwise. The survival likelihood

contribution of subject i can be written in terms of the the hazard function hi(t) and the

survival function Si(t) as

f
(i)
S|L = hi(ti)

δiSi(ti)

= hi(ti)
δie−

∫ ti
0 hi(w)dw.
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The overall survival log-likelihood can be written as

log(L) =
n∑
i=1

log(f
(i)
S|L)

=
n∑
i=1

(
δilog(hi(ti))−

∫ ti

0

hi(w)dw
)
.

The hazard function in the equation (5.27) includes some time-varying covariates which often

makes the integral of the hazard function non-tractable. In this case, one can estimate the

integral using the rectangular integration as follows:

Integration of Survival Hazard with Time-Varying Covariates

1. Set a fixed number of rectangles m and set A = 0
2. Divide (0, ti) interval into m equal pieces each of length L = ti/m
for i ∈ {1, . . . ,m} do
tmid ← L/2 + (i− 1) ∗ L
Atemp ← L ∗ hi(tmid)
A← A+ Atemp

end for

5.2.5 A Mutivariate Gaussian Process Model for Modeling Non-

Overlapping Biomarker Measures

Consider two longitudinal biomarkers X(1) and X(2), each with l
(1)
i and l

(2)
i longitudinal

measures respectively. The obtained longitudinal measures need not to be taken at the same

time for both biomarkers. The two biomarkers may or may not have any measurement

time overlap. Consider biomarker observed time points of the form t
(1)
ij , j = 1, 2, . . . , l

(1)
i and

t
(2)
ik , k = 1, 2, . . . , l

(2)
i for biomarker1 and biomarker2, respectively. Define t̃ij as a set of unique

time points out of a pool of all biomarker observed times from both biomarkers. Define li

as the number of unique time-points t̃ij. It’s obvious that max{l(1)
i , l

(2)
i } ≤ li ≤ l

(1)
i + l

(2)
i .

Also, out of all the li unique time points, l
(1)
i one of them are the measurement time points

where the biomarker 1 measure were obtained and l
(2)
i of them are when the biomarker 2
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measurements were obtained. For biomarker 1, biomarker measurements at the remaining

(li − l
(1)
i ) time points can be treated as missing values. Similarly, for biomarker 2, there

are (li − l
(2)
i ) missing biomarker 2 measured values. One can consider a similar model as

in equation (5.13), where observed biomarkers column vector Xi includes (li − l(1)
i ) missing

values for biomarker 1 and (li − l(2)
i ) missing values for biomarker2. Despite some missing

biomarker measures at some time-points, cross-covariance function can be fully specified as

it only depends on observed time points t̃i which are all observed.

Under the Bayesian inference, any missing data point can be represented as a parameter

that can be estimated using posterior samples in the same way as any other parameter

in the model Gelman et al. (2014). Hence, our modeling approach introduced in Section

5.2.3 is not limited at all to overlapping biomarker measures, and can cover a general case

where obtained biomarker measures may or may not overlap in time. In non-overlapping

case, additional missing biomarker values are introduced in the problem that are treated as

parameters and can be easily estimated using posterior samples of those parameters.

5.3 Simulation Studies

In this section, we evaluate our proposed model using simulation studies. We first start

by focusing on our proposed longitudinal modeling technique in order to model multiple

longitudinal biomarkers simultaneously. One natural question is to ask whether there is any

benefit in modeling longitudinal processes simultaneously by taking the correlation between

processes into account as opposed to multiple independent longitudinal models each dealing

with one longitudinal process. Next, we provide simulation studies on our proposed joint

longitudinal-survival model.
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5.3.1 Multivariate Gaussian Process Model vs. Multiple Univari-

ate Gaussian Processes

We consider two longitudinal biomarkers of X(1) and X(2). By using summary statistics

from real data from the United States Renal Data System, we generate synthetic data for

100 subjects where the first longitudinal biomarker resembles measured albumin biomarker

values and the second longitudinal biomarker resembles BMI measured values. We generate

synthetic biomarker 1 and biomarker 2 values each with 60 longitudinal albumin and 60

longitudinal BMI measures. Albumin and BMI values are simulated out of multivariate

Gaussian process models of the form explained in the equation (5.24). The kappa2
i values

are simulated from the Uniform(0, 1) distribution. βalbumin0 and βBMI
0 are simulated from

the Normal(µ = 5, σ = 1) and the Normal(µ = 20, σ = 2) distributions, respectively.

Measurement errors σ2
albumin and σ2

BMI are both set to be equal to 0.3.

Our goal is to now to compare a bivariate Gaussian process technique, which models the

trajectory of both biomarkers simultaneously, with an alternative modeling approach that

independently models each biomarker using a univariate Gaussian processes approach that

was outlined in Chapter 4. Our general comparison scheme is to randomly remove some

obtained values out of the biomarkers values and to compare the two modeling techniques

in terms of the mean squared prediction error (MSE) of predicting the missing values. In

particular, we consider three simulation scenarios below

1. Scenario 1: In this scenario, we assume both biomarkers have the same number of

missing values. The interest is in comparing the two modeling techniques in terms of

MSE and as a function of the correlation between the two processes and the amount

of time overlap in missing values.

2. Scenario 2: In the second scenario, we assume that one biomarker is less-frequently

observed compared to the other biomarker. The interest is in comparing the two models
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in terms of MSE and as a function of the true correlation between the two processes

and how less-frequent one process is compared to the other process.

3. Scenario 3: Finally, in the simulation scenario, we consider a case where the measure

of biomarker volatility, kappa2
i , is different between the two biomarker processes for

each individual.

Scenario 1

Under this scenario, we remove 20 values out of each biomarker and treat them as missing.

These 20 values are removed in three different ways as follows:

1. One when out of 60 time-points where we observed both biomarkers, we choose 20

time points and we remove both biomarkers at each of those 20 selected time points.

In this case, missing values between the two biomarkers have 100% time-overlap.

2. Next, we choose 40 time-points out of the overall 60 observed time-points. In 20 of

them, we remove the first biomarker values but not the second biomarker. In the

remaining 20, we remove the second biomarker values but not the first one. In this

case, missing values between the two biomarkers have 0% time-overlap.

3. Finally, we choose missing values so that 50% of the missing biomarker values have

time-overlap. In this case, we choose 30 time points out of 60, in 10 of them we remove

both biomarker values and treat them as missing. We choose another 10 time-points

where we remove the first biomarker values but not the second biomarker values. In

the remaining 10 time-points, we remove the second biomarker values but not the first

biomarker values.

For each case, we consider 5 different correlation values between the two biomarker pro-

cesses. We show results from 100 simulated datasets in each case. Table 5.1 compares the
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average MSE between our proposed multivariate model (Multi) with the alternative way of

independently modeling biomarkers using the univariate approach proposed in Chapter 4

(Uni). As results in Table 5.1 show, overall, modeling two longitudinal biomarkers using a

multivariate GP, which takes the correlation between the biomarkers into account, leads to a

smaller MSE. %Dec. indicates the percentage decrease in MSE comparing the multivariate

model with the univariate model. As correlation between the two processes increases, the

multivariate model leads to a smaller MSE of predicting missing biomarker values compared

to the univariate model. As it’s expected, the amount of overlap between missing values

from the two processes has no effect on the univariate model. However, when we simulta-

neously model the two biomarkers and we take the correlation between the two biomarkers

using the multivariate into account, information from an observed biomarker can help to

better predict the missing values on the other biomarker. As the results in Table 5.1 show,

when missing overlap decreases, which indicates that when a biomarker value is missing, the

other biomarker is more likely to be observed, our proposed multivariate model can use the

information on the non-missing biomarker to better predict the other missing biomarker,

and hence, leads to smaller MSE values.

Scenario 2

Often times, due to the cost of the procedure or the difficulty of obtaining biomarker

measures, there are some biomarkers that are measured less frequently compared to other

biomarkers. Under this simulation scenario, we model two longitudinal biomarkers where

one is less-frequently measured compare to the other biomarker. We compare our proposed

multivariate longitudinal model with an alternative univariate model that models biomark-

ers independently. In particular, we consider three cases of one where per every 5 obtained

measures of one biomarker, only one measure of the other biomarker is obtained (20%), the

second case where per every two obtained measures of one biomarker, we obtain one measure
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Correlation 100% Overlap 50% Overlap 0% Overlap
ρ Multi Uni %Dec. Multi Uni %Dec. Multi Uni %Dec.

0.1 0.237 0.243 2.5% 0.202 0.206 1.9% 0.207 0.212 2.4%
0.3 0.201 0.207 2.9% 0.215 0.227 5.3% 0.206 0.217 5.1%
0.5 0.209 0.217 3.7% 0.209 0.228 9.3% 0.196 0.227 13.7%
0.7 0.207 0.217 4.6% 0.189 0.228 17.1% 0.185 0.235 21.3%
0.9 0.194 0.204 4.9% 0.158 0.219 27.9% 0.139 0.237 41.4%

Table 5.1: Comparing our proposed multivariate longitudinal approach (Multi) to model
two biomarkers by taking the correlation between those biomarkers into account as opposed
to an alternative modeling approach that models each biomarker independently (Uni) using
our proposed simulation scenario 1. ρ indicates the correlation between the two synthetic
biomarker values. Each biomarker has 60 measured values where 20 of them are randomly
selected to be missing in three different fashions of one when missing values between the two
biomarkers have 100% time-overlap, another when missing values between the two biomark-
ers have 50% time-overlap, and lastly, when missing values between the two biomarkers have
0% time-overlap.

of the other biomarker (50%), and finally the third case where per every 5 obtained mea-

sures of one biomarker, we obtain four measures of the other biomarker (80%). We generate

synthetic data for two biomarkers each with 60 measurements and at five different correla-

tion levels between the two biomarker processes. We then randomly remove measurements

from the first biomarker in order to simulate the 20%, 50%, and 80% cases explained above.

Removed measurements are considered as missing values. Our goal is now to model the

two biomarkers once jointly using our proposed multivariate longitudinal model and another

time using two independent univariate models. Under each model, we predict the missing

biomarker values and by comparing the true values and the predicted values, we compute

mean squared error of prediction (MSE). MSE is then considered as a means to compare our

proposed multivariate longitudinal model with an alternative univariate model that models

each biomarker independently.

Table 5.2 compares the average MSE between our proposed multivariate longitudinal model

(Multi) and an alternative univariate model (Uni). As the results in Table 5.2 show, the

proposed multivariate model leads to lower MSEs compared to the univariate model. %Dec
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indicates the percentage decreases in the MSE between the multivariate model and the

univariate model. As the correlation between the two processes increases, we get higher

prediction precision by using our proposed multivariate longitudinal model that is capable

of taking the correlation between the processes into account and is capable of using the

information on one longitudinal process to better impute the other process.

Correlation 20% Freq. 50% Freq. 80% Freq
ρ Multi Uni %Dec. Multi Uni %Dec. Multi Uni %Dec.

0.1 0.410 0.420 2.4% 0.281 0.286 1.8% 0.181 0.185 2.2%
0.3 0.391 0.423 7.6% 0.248 0.261 5.0% 0.188 0.197 4.6%
0.5 0.343 0.413 17.0% 0.226 0.264 14.4% 0.165 0.187 11.8%
0.7 0.319 0.407 21.6% 0.222 0.266 16.6% 0.152 0.188 19.2%
0.9 0.294 0.397 26.0% 0.190 0.245 22.5% 0.126 0.189 33.3%

Table 5.2: Comparing our proposed multivariate longitudinal approach (Multi) to model
two biomarkers by taking the correlation between those biomarkers into account as opposed
to an alternative modeling approach that models each biomarker independently (Uni) under
the simulation scenario 2. ρ indicates the correlation between the two synthetic biomarker
values. Measurements under one biomarker is obtained at a lower frequency compared to
the second biomarker. The higher-frequency biomarker has 60 measurements whereas the
second biomarker measurements are either at the 20% frequency, or at the 50% frequency,
or at the 80% frequency. Also, we consider five different correlation levels as shown by ρ.

Scenario 3

In building our proposed multivariate longitudinal model, we assumed a separable cross-

covariance structure. Our proposed model assumes that different longitudinal processes

share the same temporal covariance. In particular, our model assumes a shared volatility

measure κ2
i across different biomarkers. We, however, claim that despite a shared κ2

i across

longitudinal biomarkers, differences in additional within-biomarker variances can be easily

captured in our model through the R covariance matrix that is introduced earlier in equa-

tion (5.9). To show this, we simulate two longitudinal biomarkers of with different volatility

measure κ2
i values. Obviously, an independent univariate Gaussian processes can estimate
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different κ2
i values across different biomarker processes. Table 5.2 supports our claim that

despite a shared κ2
i parameters in our proposed multivariate Gaussian process model, the dif-

ferent variability measures across the processes can be easily handled using the R covariance

matrix. Similar to Table 5.1, in Table 5.3 we compare our proposed multivariate longitu-

dinal Gaussian process model with a univariate longitudinal Gaussian process in terms of

the mean squared error of the predicted values and as a function of the correlation and the

percentage of time-overlap in missing values. Table 5.3 shows that our proposed multivariate

longitudinal model is capable of handling processes with different volatility measures and

leads to a smaller MSE compared to the independent univariate Gaussian models that model

each biomarker independently of other present biomarkers.

Correlation 100% Overlap 50% Overlap 0% Overlap
ρ Multi Uni %Dec. Multi Uni %Dec. Multi Uni %Dec.

0.1 0.263 0.270 2.6% 0.250 0.260 3.9% 0.258 0.267 3.1%
0.3 0.247 0.256 3.6% 0.252 0.263 4.1% 0.249 0.265 5.9%
0.5 0.264 0.275 3.8% 0.232 0.250 6.9% 0.252 0.277 9.1%
0.7 0.236 0.247 4.4% 0.254 0.282 10.2% 0.207 0.243 14.7%
0.9 0.231 0.245 5.9% 0.211 0.254 16.8% 0.214 0.275 22.4%

Table 5.3: Comparing our proposed multivariate longitudinal approach (Multi) to model
two biomarkers by taking the correlation between those biomarkers into account as opposed
to an alternative modeling approach that models each biomarker independently (Uni) under
the third proposed simulation scenario. ρ indicates the correlation between the two synthetic
biomarker values. Each biomarker has 60 measured values where 20 of them are randomly
selected to be missing in three different fashions of one when missing values between the two
biomarkers have 100% time-overlap, another when missing values between the two biomark-
ers have 50% time-overlap, and lastly, when missing values between the two biomarkers have
0% time-overlap. Biomarkers were simulated with different volatility measures.
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5.3.2 Simulation Studies Using the Proposed Joint Multivariate

Longitudinal-Survival Model

In this section, we evaluate our proposed joint multivariate longitudinal-survival model using

simulation study. We simulated 200 datasets that resembled the real data on end-stage renal

disease patients that was obtained from the United States Renal Data System (USRDS).

Each dataset included 300 subjects. We first simulated longitudinal trajectories for two

biomarkers of X(1) and X(2), with 16 within subject biomarker 1 and 8 within subject

biomarker 2 measures. Both biomarkers are generated from a joint multivariate Gaussian

process with a high-correlation of 0.9 between the processes. In particular, biomarkers

measures for each subject i are simulated from

X i|β(L)
i0 , σ

2
1, σ

2
2 ∼ N(β

(L)
i0 ,R⊗ Si + Σε),

where β
(L)
i0 is a stack of two subject specific random intercepts for the two processes. Subject-

specific random intercepts for the first biomarker process are simulated from the Normal

distribution N(µ = 5, σ = 1) and the random intercepts for the second biomarker are

simulated from the Normal distribution N(µ = 20, σ = 2). σ2
1 and σ2

2 are both set to

0.3. Si is considered to be equal to Si = κ2
iKi, where κ2

i ’s are simulated from the uniform

U(min = 0,max = 1) distribution. Ki is the distance matrix of the form exp{−ρ2(tij−tij′)},

with a fixed ρ2 of 0.1 and time points tij’s that are sampled uniformly from a followup

time with a maximum of 15 months. The R matrix is the covariance matrix of the two

biomarkers with a high correlation of 0.9 between the processes and with scaled variances

for each biomarker process. Survival times are generated from a Weibull distribution of the

form

Ti ∼ Weibull(ν, λi),
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with the shape parameter of the distribution, ν, set to 1.5 and the log-scale parameter λi

that is of the form

λi = β
(s)
i0 + ζ(X(1))X

(1)
i (Ti) + ζ(X(2))X

(2)
i (Ti),

where β
(s)
i0 were sampled from an equally weighted mixture of two Normal distributions of

N(µ = −1.5, σ = 1) and N(µ = 1.5, σ = 1). ζ(X(1)) is fixed to 0.5 and ζ(X(2)) is fixed to -0.3.

Censoring times are generated from a uniform distribution and independent of the survival

times Ti with parameters that ensure a 20% censoring rate.

We fit three models to our simulated data. We first fit a last-observation carried forward

proportional hazard Cox model. Next, we fit our proposed joint longitudinal-survival that

was introduced in Chapter 4, where the model uses a univariate longitudinal component that

models each biomarker independently from the other biomarker. Finally, we fit our proposed

joint longitudinal-survival model introduced in this chapter with a longitudinal component

capable of modeling multiple biomarkers simultaneously by taking the correlation between

the biomarkers into account.

We put the Normal prior N(µ = 5, σ = 2) and the Normal prior N(µ = 20, σ = 5) on

the random intercepts for biomarker 1 and biomarker 2, respectively. We consider the

log−Normal(−1, 2) prior on κ2
i . Also, we put the log−Normal(−1, 1) prior on σ2

1 and σ2
2

parameters. We consider the R matrix to be of the form τΩτ , where τ is a 2×2 matrix with

diagonal elements of 1 and τ2 and Ω is the correlation matrix between the two biomarkers

that is of size 2 × 2. We consider a Cauchy(0, 2.5) prior on τ2 and an LKJ(1) prior on Ω.

We put the log − Normal(0, 1) prior on the Weibull shape parameter ν. We also consider

independent N(µ = 0, σ = 5) priors on ζ(X(1)) and ζ(X(2)). β
(s)
i0 are assumed to be distributed

according to an unknown distribution G with the Dirichlet process DP (α,G0) prior. We

consider the Γ(3, 3) prior on α and we consider G0 to be the standard Normal distribution
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N(µ = 0, σ = 1).

Table 5.4 shows the simulation results. As it was expected, the last observation carried

forward Cox model leads to estimates that are shrunk towards 0 as this model is blind

to the differential subject-specific baseline hazards that are induced by subject-specific β
(s)
i0

values. The estimates under the Cox model are marginalized over all subjects and due

to non-collapsibility of these models, the estimates are shrunk toward the null. Further,

this model carries the most recent longitudinal measures forward to the event time where

as the longitudinal measures at the event time might be quite different from the most re-

cent measures. This is also caused the estimates to shrink to ward 0. Next, our proposed

joint longitudinal-survival model in Chapter 4 provides estimates that are closer to the true

values compared to the Cox model as the model is capable of detecting baseline subject-

specific β0
i values as well as providing a good prediction of the two biomarkers at time t by

flexibly modeling the trajectory of the biomarkers. Third, our proposed joint multivariate

longitudinal-survival model in this chapter, as an extension of our proposed model in Chap-

ter 4, is capable of modeling multiple biomarkers simultaneously by taking the correlation

between the biomarkers and hence, leads to even closer coefficient estimates compared to

our joint univariate longitudinal-survival model.

Covariate of True Conditional LOCF Cox Uni. Joint Model Multi Joint Model
Interest Estimand Mean SD MSE Mean SD MSE Mean SD MSE

Albumin(t) 0.5 0.242 0.089 0.077 0.443 0.124 0.012 0.481 0.101 0.009
BMI(t) -0.3 -0.135 0.055 0.027 -0.278 0.127 0.003 -0.287 0.109 0.003

Table 5.4: A simulation study with 200 simulated longitudinal-survival datasets each with
300 subjects and two longitudinal biomarker processes one with 16 within subject mea-
surements and another with 8 within subject measurements. We consider three models of
the last-observation carried forward Cox model, our proposed joint univariate longitudinal-
survival model (Ch. 4), and our proposed joint multivariate longitudinal-survival models.
Coefficient estimates under these models are reported in the table along with the correspond-
ing standard deviation and mean-squared error values per estimated coefficient.
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5.4 Application of the Proposed Joint Multivariate Lon-

gitudinal Survival Model to DaVita Data on Hemodial-

ysis Patients

In this section, we apply our proposed joint multivariate longitudinal-survival model to data

on n = 929 hemodialysis patients. The data on these patients were obtained from a 5-year

(January 2007-December 2011) cohort of patients who were treated for dialysis in dialysis

clinics in the United States. For every participating patient in the study, up to 16 longitudinal

albumin and 16 longitudinal calcium measures were taken uniformly over the five years of

followup. The censoring rate in the data is 25.6%.

The analysis cohort used in the study were selected from a bigger cohort with 109,718

hemodialysis patients studied by Ravel et al. (2015) who had at least 8 longitudinal measures

of albumin and at least 8 longitudinal measures of calcium. Also, In order to adjust for

potential confounder factors, other than longitudinal albumin and calcium measures, our

proposed model also includes age, sex, race, a baseline measure of phosphorus, and a baseline

measure of iron.

In terms of the number of longitudinal albumin measures and longitudinal calcium measures,

study subjects have at least 8 measures of each and at most 16 measures of each. Longitudinal

measures of phosphorus and iron where also available, however, due to the small correlation

between these biomarkers and albumin and calcium, we chose to only consider the baseline

measure of phosphorus and iron. Table 5.5 shows the correlations between albumin, calcium,

phosphorus, and iron.

Although the longitudinal albumin and calcium biomarkers are supposed to be measured

during every lab visit, however, we noticed that in our study cohort, on average at 12.4% of

lab visits neither of these two biomarkers were measured. We also noticed that on average
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Albumin Calcium Phosphorus Iron
Albumin 1.000 0.462 0.175 0.257
Calcium 0.462 1.000 0.003 0.158

Phosphorus 0.175 0.003 1.000 0.071
Iron 0.257 0.158 0.071 1.000

Table 5.5: Correlations between the four biomarkers of albumin, calcium, phosphorus, and
iron among the study cohort.

in 26.8% of lab visits there were no measured albumin biomarker and in 15.1% lab visits,

there were no measured calcium biomarker.

With the aim of testing the association between mortality and the value of the biomarkers

of interest, albumin and calcium, among hemodialysis patients, we analyze the data once

using last-observation carried forward Cox model, another time using our proposed joint

longitudinal-survival model that was introduced in Chapter 4 (Uni. Joint Model), and

finally using our recent multivariate joint longitudinal-survival model (Multi. Joint Model).

Unlike the last observation carried forward Cox model that uses the most recent albumin and

calcium biomarker values as the values of these biomarkers at each event time, our proposed

joint longitudinal-survival models flexibly model the trajectory of these biomarkers over time

and at each event time, the models impute the most relevant biomarker values according to

the trajectories of those biomarkers. Further, unlike the Cox model that marginalize covari-

ate effects across all subjects, our proposed joint models are capable of detecting differential

subject-specific baseline hazards. Our joint longitudinal-survival model proposed in Chapter

4 models the longitudinal albumin and calcium processes independently of each other. Our

proposed multivariate joint longitudinal-survival model introduced in this chapter, however,

models the two processes simultaneously. Simultaneously modeling the two processes will

allow a better longitudinal trajectory specification as the model can borrow information from

measurements of one process when measurements of the other process are missing.

Table 5.6 shows the results of analyzing the data using the three models of last-observation
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LOCF Cox Model Uni. Joint Model Multi. Joint Model
No. of No. of Relative Risk Relative Risk Relative Risk

Covariates Cases Deaths (95% CI) (95% CR) (95% CR)
Age (10y) 929 691 1.33 (1.20,1.48) <.001 1.50 (1.33,1.68) 1.56 (1.35,1.76)
Sex

Men 546 412 1.0 1.0 1.0
Women 383 279 1.02 (0.78,1.32) 0.90 1.01 (0.72,1.41) 1.01 (0.73,1.41)

Race
White 489 337 1.0 1.0
Black 264 204 1.79 (0.90,3.58) 0.11 1.76 (0.82,3.69) 1.78 (0.84,3.76)
Hispanic 118 102 0.71 (0.40,1.25) 0.23 0.71 (0.39,1.26) 0.73 (0.37,1.28)
Other 58 48 0.55 (0.28,1.11) 0.10 0.57 (0.20,1.18) 0.58 (0.20,1.18)

Phosphorus
(mg/dL) 929 691 1.07 (0.99,1.17) 0.08 1.10 (0.99,1.23) 1.10 (0.99,1.23)
Iron
(g/dL) 929 691 0.99 (0.98,0.99) 0.002 0.98 (0.94,1.02) 0.98 (0.94,1.02)
Serum albumin(t)
(1-g/dL decrement) 929 691 3.36 (2.64,4.29) <0.0001 4.17 (2.78,5.72) 5.11 (3.86,6.29)
Calcium
(mg/dL) 929 691 1.09 (0.87,1.37) 0.45 1.19 (0.72,1.86) 1.27 (0.92,1.69)

Table 5.6: Results of analyzing the association between the longitudinal albumin and cal-
cium biomarkers and mortality among hemodialysis patients. A cohort of 929 hemodialysis
subjects were followed over a maximal follow-up time of 5 years. Three separate models
of last-observation carried forward Cox, univariate joint longitudinal-survival model, and
multivariate joint longitudinal-survival model were fit to the data.

carried forward Cox, our proposed univariate joint longitudinal-survival model, our proposed

multivariate joint longitudinal-survival model. The results from all three models consistently

show that age and albumin value at the time of death are significant risk factors of mortality

among hemodialysis patients. The results from the Cox model show that each 1 g/dL

decrement in albumin level corresponds to 3.4 times higher risk of death. The risk of death

per each 1 g/dL decrement in albumin is estimated to be 4.2 and 5.1 times higher under

our proposed univariate joint model and multivariate joint model, respectively. Further,

compared to the univariate joint model, the multivariate joint model leads to 32% and 36%

reduction in the 95% credible region of the estimated effect of every one unit decrement

in albumin and calcium, respectively. This observation was expected as the multivariate

joint model by simultaneously modeling albumin and calcium trajectories, estimate those

trajectories with higher precision compared with the univariate joint model.
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5.5 Discussion

When monitoring the health of subjects, often times multiple risk factors are measured over

time. Collected longitudinal risk factors are often correlated with each other as they are

measures taken on the same subject. Modeling these longitudinal risk factors simultane-

ously where the correlation between the risk factors are taken into account can be beneficial,

specially when there exists differential measuring density in the collected risk factors. Fur-

ther, the association between the collected risk factors and the survival outcomes is often

the practitioners’ primary interest. In this chapter, we proposed a joint longitudinal-survival

modeling framework with a longitudinal component capable of modeling multiple longi-

tudinal processes simultaneously with the correlation between those processes taken into

account. Our modeling framework is robust to common distributional assumptions as by

using the Bayesian non-parameteric Gaussian process and Dirichlet process techniques, we

avoid common functional and distributional assumptions in the model.

We used synthetic data in order to show the benefit of simultaneously modeling the trajec-

tories of multiple longitudinal processes using our proposed multivariate longitudinal model

as opposed to separate independent longitudinal models each modeling the trajectory of one

longitudinal process independently from other longitudinal processes. Our findings show

that a multivariate model has more precision in estimating the underlying trajectories of

the longitudinal risk factors. Next, using synthetic data we showed that our proposed joint

multivariate longitudinal-survival model in this chapter performs better in terms of mean-

squared error of the estimated survival coefficients compared to the modeling framework

introduced in Chapter 4 where the longitudinal biomarkers modeled independently.

In order to test the association between the longitudinal albumin and calcium biomarkers

and mortality among hemodialysis patients, we used data on 929 hemodialysis patients. We

analyzed the data using three models of last-observation carried forward Cox model, the
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univariate joint longitudinal-survival model proposed in Chapter 4, and the multivariate

longitudinal-survival model that was proposed in this chapter. While the results are con-

sistent across all models, our proposed multivariate joint model that is capable of modeling

the trajectory of longitudinal biomarkers with higher precision, leads to stronger estimated

biomarker with higher precision for the estimated effect.

Our proposed modeling framework has some limitations. Our modeling framework is limited

to the proportional hazards models only. Further, our method is computationally demanding

and may not be scalable as number of subjects and within-subject measurements increase.

In future, our modeling framework can be extended by relaxing the proportional hazard

assumption on the survival component. Also, one by using alternatives to the conventional

MCMC techniques, including variational methods can make our modeling framework more

computationally efficient. In the next chapter, we will conclude the dissertation by summa-

rizing our work and providing avenues for future work.
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Chapter 6

Future Work

Our work in this thesis can be summarized as follows. In Chapter 3, we proposed Dirichlet

process mixture models to model longitudinal data with latent sub-group random intercepts.

Using extensive simulation studies, we showed that our proposed Dirichlet process mixture

models compared to the common longitudinal models, perform the best in terms of the

mean squared error of estimating conditional covariate effects. This is particularly useful in

non-collapsible models including the logistic regression models and the proportional hazards

models. Using sensitivity analyses, we showed that our proposed Dirichlet process mixture

models are robust to the number of within-cluster measurements and to the underlying

distribution of the latent cluster-specific random intercepts.

In Chapter 4, we extended our proposed Dirichlet process mixture proportional hazards

model in Chapter 3 into a joint longitudinal-survival modeling framework. We proposed a

modeling framework with a flexible longitudinal and survival component that avoid com-

monly assumed distributional assumptions in these models. Our proposed modeling frame-

work proposes a stronger link between the longitudinal measures and the survival outcomes

as our model is capable of adjusting the biomarker value at time t in the model, adjusting
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for the average derivative of the biomarker trajectory over time, and adjusting for the sum-

mary measures of longitudinal trajectories including the higher order summary measure of

volatility.

In Chapter 5, we extend our proposed joint longitudinal-survival model introduced in Chap-

ter 4 into a joint longitudinal-survival model with a longitudinal component capable of

simultaneously modeling the trajectories of multiple biomarkers by taking the correlation

between biomarker processes into account. Using synthetic data we showed when multiple

longitudinal biomarkers are collected, by simultaneously modeling these biomarkers, where

the correlation between these biomarkers are taken into account, one can gain better preci-

sion in estimating the trajectory of each biomarker compared to an approach that models

biomarkers independently. Our introduced modeling framework in Chapter 5 provides a

strong tool for practitioners to test the association between multiple risk factors and sur-

vival outcomes.

Bayesian non-parameteric techniques, despite their flexibility, are often computationally de-

manding. Although MCMC methods are considered as gold standards as they provide

asymptotically accurate posterior samples, however, they are not scalable with big data.

Alternatively, many authors have proposed variational techniques, including the variational

Gaussian process (VGP) technique (Tran et al. (2016)), the variational Bayesian inference

to Dirichlet process mixture models (Blei and Jordan (2004)), the variational inference for

Dirichlet process mixtures (Blei et al. (2006)), and the collapsed variational Dirichlet pro-

cess mixture models (Kurihara et al. (2007)). Variational techniques are computationally

more efficient than MCMC techniques, however, the accuracy of their posterior samples is

debatable. Alternatively, Williamson et al. (2013) and Lovell et al. (2013) proposed a new

parameterization of Dirichlet process mixture models, where they introduce conditional inde-

pendence structure in the model with which one can run parallel MCMC methods. In future,

by using alternatives to MCMC, our proposed methods can become more computationally
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efficient and more scalable with large data.

Throughout the dissertation, our proposed models were based on the proportional hazards

assumption. In future, our proposed models can be extended to also include non-proportional

hazards models. De Iorio et al. (2009), proposed a non-proportional hazards survival model

by using dependent Dirichlet process technique. Further, our proposed survival models can

be extended to allow for covariates effect to vary over-times. Sebastien et al. (2008) proposed

a random-split time approach to model the time-varying effect of kidney transplant on the

risk of getting lymphoma. Similar ideas can be adapted in our modeling framework to allow

for a more general survival model that does not rely on proportional hazards assumption

and can include covariates with time-dependent effects.

Our proposed joint longitudinal-survival modeling framework provides a stronger link be-

tween longitudinal and survival data by introducing new ways of adjusting longitudinal

covariates. We introduced new ideas on a joint longitudinal-survival model where we adjust

for the biomarker values at time t, the average derivative of biomarkers, and the volatility of

biomarkers. In future, one can extend our models by adjusting for other summary measures

of biomarker trajectories. Additionally, when adjusting for biomarker values at time t, we

assume the effect of biomarker values on the risk of death are immediate. In reality, however,

there might be a time lag between the effect of a biomarker value and a risk of death. In

future, one can incorporated this time-lag effect into our modeling framework, where the

lag itself is treated as a parameter in the model and can be estimated using its posterior

samples.
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Appendix A

Programming Codes

Here I provide the codes I wrote to fit Bayesian models used in this dissertation.

A.1 Chapter 3 Models

A.1.1 Bayesian Logistic Models

Bayesian Logistic Regression - STAN

data {

int<lower = 1> N;

int<lower = 1> Mi;

int<lower = 0, upper = 1> Y[N*Mi];

matrix[N, Mi] t;

}

parameters {
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real beta0;

real beta1;

}

model {

//int<lower = 0,upper = 1> YTmp[Mi];

beta0 ~ normal(0, 1);

beta1 ~ normal(0, 1);

for (i in 1:N){

for (j in 1:Mi){

Y[(i - 1)*Mi + j] ~ bernoulli_logit(beta0 + beta1*t[i,j]);

}

}

}
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Hierarchical Bayesian Logistic Regression - STAN

data {

int<lower = 1> N; // number of subjects

int<lower = 1> Mi; // number of longitudinal measures per subject

int<lower = 0,upper = 1> Y[N*Mi]; // Long. Time

matrix[N, Mi] t; // albumin val.

}

parameters {

vector[N] beta0_i;

real beta0;

real beta1;

}

model {

beta0 ~ normal(0, 1);

beta1 ~ normal(0, 1);

beta0_i ~ normal(0, 1);

for (i in 1:N){

for (j in 1:Mi){

Y[(i - 1)*Mi + j] ~ bernoulli_logit(beta0_i[i] + beta0 + beta1*t[i,j]);

}

}

}
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Dirichlet Process Mixture Logistic Regression (Mean Mixture) - JAGS

model {

B[1] <- b[1]

for (k in 2:K){

B[k] <- b[k]*((1- b[k-1])*B[k-1]/b[k-1])

}

B.sum <- sum(B)

for (k in 1:K){

b[k] ~ dbeta(1, 1)

BetaProb[k] <- B[k]/B.sum

}

for (k in 1:K){

muDP[k] ~ dnorm(0, 0.01)

}

for (n in 1:N){

z[n] ~ dcat(BetaProb)

}

for (i in 1:N){

for (j in 1:Mi){

Y[i,j] ~ dbern(mu[i,j])

mu[i,j] <- 1/(1 + exp(-(beta0_i[i] + beta0 + beta1*t[i,j])))

}
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}

for (i in 1:N){

beta0_i[i] ~ dnorm(Mu_i[i], 1)

Mu_i[i] <- muDP[z[i]]

}

beta0 ~ dnorm(0, 0.01)

beta1 ~ dnorm(0, 0.01)

}
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Dirichlet Process Mixture Logistic Regression (Sigma Mixture) - JAGS

model {

B[1] <- b[1]

for (k in 2:K){

B[k] <- b[k]*((1- b[k-1])*B[k-1]/b[k-1])

}

B.sum <- sum(B)

for (k in 1:K){

b[k] ~ dbeta(1, 1)

BetaProb[k] <- B[k]/B.sum

}

for (k in 1:K){

sigma2DP[k] ~ dlnorm(0, 5)

}

for (n in 1:N){

z[n] ~ dcat(BetaProb)

}

for (i in 1:N){

for (j in 1:Mi){

Y[i,j] ~ dbern(mu[i,j])

mu[i,j] <- 1/(1 + exp(-(beta0_i[i] + beta0 + beta1*t[i,j])))

}
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}

for (i in 1:N){

beta0_i[i] ~ dnorm(0, tau0_i[i])

tau0_i[i] <- 1/sigma2DP[z[i]]

}

beta0 ~ dnorm(0, 0.01)

beta1 ~ dnorm(0, 0.01)

}
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A.1.2 Bayesian Survival Models

Bayesian Survival Marginal Model - STAN

data {

int<lower = 1> N_times_Mi; // number of subjects

int<lower = 1> Num_obs; // Num of rows with nu = 1

int<lower = 1> Num_cens; // Num of rows with nu = 0

vector[Num_obs] X_obs;

vector[Num_cens] X_cens;

vector[Num_obs] t_obs;

vector[Num_cens] t_cens; // these are the current censoring times

vector[Num_obs] subjIDs_obs; // censoring indicator!

vector[Num_cens] subjIDs_cens; // censoring indicator!

}

parameters {

vector<lower=1>[Num_cens] myPrimitiveVec;

real<lower = 0> tau;

real beta0;

real beta1;

}

transformed parameters{

vector[Num_cens] t_actual_cens;

t_actual_cens <- myPrimitiveVec .* t_cens;

}

model {

real lambda_Tmp;
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tau ~ lognormal(-2, 3);

beta0 ~ normal(0, 1);

beta1 ~ normal(0, 1);

// likelihood - observed times:

for (i in 1:Num_obs){

lambda_Tmp <- beta0 + beta1*X_obs[i];

increment_log_prob(log(tau) + (tau - 1)*log(t_obs[i]) + lambda_Tmp

- exp(lambda_Tmp)*(pow(t_obs[i], tau)));

}

// likelihood - censored times:

for (i in 1:Num_cens){

lambda_Tmp <- beta0 + beta1*X_cens[i];

increment_log_prob(log(tau) + (tau - 1)*log(t_actual_cens[i])

+ lambda_Tmp - exp(lambda_Tmp)*(pow(t_actual_cens[i], tau)));

}

}
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Hierarchical Bayesian Survival Model - STAN

data {

int<lower = 1> N; // number of subjects

int<lower = 1> N_times_Mi; // number of rows in the survival data

int<lower = 1> Num_obs; // Num of rows with nu = 1

int<lower = 1> Num_cens; // Num of rows with nu = 0

vector[Num_obs] X_obs;

vector[Num_cens] X_cens;

vector[Num_obs] t_obs;

vector[Num_cens] t_cens; // these are the current censoring times

int<lower = 1> subjIDs_obs[Num_obs]; // censoring indicator!

int<lower = 1> subjIDs_cens[Num_cens]; // censoring indicator!

}

parameters {

vector<lower=1>[Num_cens] myPrimitiveVec;

real<lower = 0> tau;

vector[N] beta0_i;

real beta0;

real beta1;

}

transformed parameters{

vector[Num_cens] t_actual_cens;

t_actual_cens <- myPrimitiveVec .* t_cens;

}

model {

real lambda_Tmp;
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tau ~ lognormal(-2.0, 3.0);

beta0_i ~ normal(0, 1.0);

beta0 ~ normal(0.0, 1.0);

beta1 ~ normal(0.0, 1.0);

// likelihood - observed times:

for (i in 1:Num_obs){

lambda_Tmp <- beta0_i[subjIDs_obs[i]] + beta0 + beta1*X_obs[i];

increment_log_prob(log(tau) + (tau - 1)*log(t_obs[i]) +

lambda_Tmp - exp(lambda_Tmp)*(pow(t_obs[i], tau)));

}

// likelihood - censored times:

for (i in 1:Num_cens){

lambda_Tmp <- beta0_i[subjIDs_cens[i]] + beta0 + beta1*X_cens[i];

increment_log_prob(log(tau) + (tau - 1)*log(t_actual_cens[i]) +

lambda_Tmp - exp(lambda_Tmp)*(pow(t_actual_cens[i], tau)));

}

}

199



Dirichlet Process Mixture Survival (Mean Mixture) - JAGS

model {

B[1] <- b[1]

for (k in 2:K){

B[k] <- b[k]*((1- b[k-1])*B[k-1]/b[k-1])

}

B.sum <- sum(B)

for (k in 1:K){

b[k] ~ dbeta(1, 1)

BetaProb[k] <- B[k]/B.sum

}

for (k in 1:K){

muDP[k] ~ dnorm(0, 0.01)

}

for (n in 1:N){

z[n] ~ dcat(BetaProb)

}

for (i in 1:N){

for (j in 1:Mi){

is.censored[i,j] ~ dinterval(t.to.death[i,j], t.cen[i,j])

t.to.death[i,j] ~ dweib(tau, lambda[i,j])

log(lambda[i,j]) <- beta0_i[i] + beta0 + beta1*X[i]
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}

}

for (i in 1:N){

beta0_i[i] ~ dnorm(Mu_i[i], 1)

Mu_i[i] <- muDP[z[i]]

}

beta0 ~ dnorm(0, 0.01)

beta1 ~ dnorm(0, 0.01)

tau ~ dlnorm(1, 2)

}
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Dirichlet Process Mixture Survival (Sigma Mixture) - JAGS

model {

B[1] <- b[1]

for (k in 2:K){

B[k] <- b[k]*((1- b[k-1])*B[k-1]/b[k-1])

}

B.sum <- sum(B)

for (k in 1:K){

b[k] ~ dbeta(1, 1)

BetaProb[k] <- B[k]/B.sum

}

for (k in 1:K){

sigma2DP[k] ~ dlnorm(0, 5)

}

for (n in 1:N){

z[n] ~ dcat(BetaProb)

}

for (i in 1:N){

for (j in 1:Mi){

is.censored[i,j] ~ dinterval(t.to.death[i,j], t.cen[i,j])

t.to.death[i,j] ~ dweib(tau, lambda[i,j])

log(lambda[i,j]) <- beta0_i[i] + beta0 + beta1*X[i]
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}

}

for (i in 1:N){

beta0_i[i] ~ dnorm(0, tau0_i[i])

tau0_i[i] <- 1/sigma2DP[z[i]]

}

beta0 ~ dnorm(0, 0.01)

beta1 ~ dnorm(0, 0.01)

tau ~ dlnorm(1, 2)

}
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A.2 Chapter 4 Models

Our programming code for our proposed models in Chapter 4 include three main parts:

1. DP Sampler: Our code to sample from the posterior of Dirichlet process model.

2. HMC code: all sampling is done using our own HMC sampler.

3. Stan code: We used Stan software to calculation the log posterior posterior probability

and the gradients required by our HMC sampler.

A.2.1 DP Sampler

Our code to sample from posterior of Dirichlet process using Neal’s alg. 8 (Neal, R. M.

(2000)).

get.DP.alpha.L <- function(nSub, DP.alpha.curr, DPM_MU.star,

DP.alpha.a, DP.alpha.b){

k <- length(DPM_MU.star)

M <- nSub

eta <- rbeta(1, DP.alpha.curr + 1, M)

Pi.eta <- (DP.alpha.a + k - 1)/( (DP.alpha.a + k - 1)

+ (M*(DP.alpha.b - log(eta))) )

sampProb <- c(Pi.eta, (1 - Pi.eta))

DP.alpha.pool <- c(rgamma(1, shape = (DP.alpha.a + k),

scale = 1/(DP.alpha.b - log(eta)) ),

rgamma(1, shape = (DP.alpha.a + k - 1),

scale = 1/(DP.alpha.b - log(eta)) ) )

DP.alpha.new <- sample(DP.alpha.pool, 1, prob = sampProb)
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return(DP.alpha.new)

}

# We borrowed ideas from Dr. Shahbaba in writing this code.

get.Mui <- function(nSub, Beta0_current, Mu.star, indSet,

freqSet, DP.alpha, DP.G0.mean,

DP.G0.sd, sd_for_beta0_i_S){

M = 5

for (i in 1:nSub){

phi <- NULL

curInd <- indSet[i]

freqSet[curInd] <- freqSet[curInd] - 1

if (freqSet[curInd] == 0){

phi <- Mu.star[curInd]

freqSet <- freqSet[-(curInd)]

Mu.star <- Mu.star[-(curInd)]

indSet[indSet > curInd] <- indSet[indSet > curInd] - 1

kMinus <- length(freqSet)

Mu.star[kMinus + 1] <- phi

for (m in 1:(M - 1)){

Mu.star[kMinus + 1 + m] <- rnorm(1, mean = DP.G0.mean,

sd = DP.G0.sd)

}

}else{

kMinus <- length(freqSet)

for (m in 1:M){
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Mu.star[kMinus + m] <- rnorm(1, mean = DP.G0.mean,

sd = DP.G0.sd)

}

}

# q1: vector of sampling prob for exisiting parameters

# q2: vector of sampling prob for auxiliary parameters

# Prob. of Sampling Existing Parameters:

# Here, we are looking at beta0_i for subj i to write the likelihood

q1 <- rep(0, kMinus)

for (k in 1:kMinus){

q1[k] <- dnorm(Beta0_current[i], mean = Mu.star[k],

sd = sd_for_beta0_i_S, log = T)

}

q1 <- q1 + log(freqSet) - log(nSub - 1 + DP.alpha)

q2 <- rep(0, M)

for (k in 1:M){

q2[k] <- dnorm(Beta0_current[i], mean = Mu.star[kMinus + k]

, sd = sd_for_beta0_i_S, log = T)

}

q2 <- q2 + log(DP.alpha/M) - log(nSub - 1 + DP.alpha)

myProb <- c(q1, q2)

myProb.Max <- max(myProb)

myProb.Rel <- myProb - myProb.Max

myProb <- exp(myProb.Rel)

myProb <- myProb/sum(myProb)

picked <- which(rmultinom(1, 1, myProb) == 1)
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if (picked <= kMinus){

indSet[i] <- picked

freqSet[picked] <- freqSet[picked] + 1

Mu.star <- Mu.star[-( (kMinus + 1):(kMinus + M) )]

myProb <- myProb[-( (kMinus + 1):(kMinus + M) )]

}else{

indSet[i] <- kMinus + 1

freqSet <- c(freqSet, 1)

phi <- Mu.star[picked]

Mu.star <- Mu.star[-( (kMinus + 1):(kMinus + M) )]

myProb <- myProb[-( (kMinus + 1):(kMinus + M) )]

Mu.star[kMinus + 1] <- phi

}

}

return(list(Mu.star = Mu.star, indSet = indSet, freqSet = freqSet))

}

Remixing.Mu <- function(nSub, Mu.star, indSet, Beta0_current,

DP.G0.mean, DP.G0.sd, sd_for_beta0_i_S){

Mu_Uniq_n <- length(Mu.star)

for (i in 1:Mu_Uniq_n){

idsToConsider <- (1:nSub)[indSet == i]

Beta0_for_Mu_i <- Beta0_current[idsToConsider]

n_tmp <- length(idsToConsider)

mean_tmp <- ((sd_for_beta0_i_S^2/n_tmp)/

((sd_for_beta0_i_S^2/n_tmp) + DP.G0.sd^2))*DP.G0.mean
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+ ((DP.G0.sd^2)/((sd_for_beta0_i_S^2/n_tmp) + DP.G0.sd^2))

*(mean(Beta0_for_Mu_i))

var_tmp <- (sd_for_beta0_i_S^2/n_tmp)*(DP.G0.sd^2)

/((sd_for_beta0_i_S^2/n_tmp) + DP.G0.sd^2)

Mu.star[i] <- rnorm(1, mean = mean_tmp, sd = sqrt(var_tmp))

}

return(Mu.star)

}
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A.2.2 Joint Longitudinal-Survival Model HMC Code

Our generic HMC sampler that is shared for all proposed models in Chapter 4.

# calculating potential engergy:

U <- function(fit, un){

return(as.numeric(-log_prob(fit, upars = un, adjust_transform = T)))

}

# calculating gradient:

grad_U <- function(fit, un){

return(as.numeric(-grad_log_prob(fit, upars = un, adjust_transform = T)))

}

# HMC sampler (idea from Neal 2012 - MCMC using Hamiltonian Dynamics)

HMC <- function (fit, epsilon, L_low, L_hi, current_q_un){

L <- sample(L_low:L_hi, 1)

q = current_q_un

p = rnorm(length(q),0,1) # independent standard normal variates

current_p = p

# Make a half step for momentum at the beginning

p = p - epsilon * grad_U(fit, q) / 2

# Alternate full steps for position and momentum

for (i in 1:L){
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# Make a full step for the position

q = q + epsilon * p

# Make a full step for the momentum, except at end of trajectory

if (i!=L) p = p - epsilon * grad_U(fit, q)

}

# Make a half step for momentum at the end.

p = p - epsilon * grad_U(fit, q) / 2

# Negate momentum at end of trajectory to make the proposal symmetric

p = -p

# Evaluate potential and kinetic energies at start and end of trajectory

current_U = U(fit, current_q_un)

current_K = sum(current_p^2) / 2

proposed_U = U(fit, q)

proposed_K = sum(p^2) / 2

# Accept or reject the state at end of trajectory, returning either

# the position at the end of the trajectory or the initial position

if (runif(1) < exp(current_U-proposed_U+current_K-proposed_K))

{

return (list(q = q, acc = 1)) # accept

}
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else

{

return (list(q = current_q_un, acc = 0)) # reject

}

}
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A.2.3 Joint Longitudinal-Survival Model Stan Code

Model I

data {

int<lower = 1> N;

int<lower = 1> Mi;

matrix[N, Mi] time;

matrix[N, Mi] albumin;

vector[N] all_surv_times;

vector[N] nu;

vector[N] MU_for_beta0_i_S;

real sd_for_beta0_i_S;

}

transformed data {

matrix[Mi, Mi] Dist_GP[N];

matrix[Mi, Mi] Q1[N];

vector[Mi] R1[N];

for (i in 1:N){

for (j in 1:Mi) {

for (k in 1:Mi){

Dist_GP[i][j,k] <- exp(- pow(time[i,j] - time[i,k], 2.0));

}

}

Dist_GP[i] <- Dist_GP[i] + diag_matrix(rep_vector(.00001, Mi));

Q1[i] <- eigenvectors_sym(Dist_GP[i]);

R1[i] <- eigenvalues_sym(Dist_GP[i]);
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}

}

parameters {

vector[N] beta0_alb;

vector<lower = 0>[N] kappa_sq_alb;

real<lower = 0> sigma_sq_alb;

real<lower = 0> survShape;

vector[N] beta0S;

real beta0_shared;

real beta_alb;

}

model {

row_vector[Mi] mu_alb;

vector[Mi] YtQ_alb;

real alb_pred_at_t;

matrix[Mi,1] K_star_alb;

matrix[Mi,Mi] SigmaPred_alb;

matrix[1,Mi] K_transpose_div_SigmaPred_alb;

int censInd;

int obsInd;

real lambda_tmp;

real hazard_AUC;

real myStepSize;

real midPoint;

real intLength;

real Hazard_PieceWise_Const;

for (i in 1:N){
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mu_alb <- rep_row_vector(beta0_alb[i], Mi);

YtQ_alb <- (albumin[i,]*Q1[i])';

increment_log_prob(-0.5 * (sum(log(kappa_sq_alb[i] * R1[i]

+ sigma_sq_alb)))

- 0.5*sum((YtQ_alb - (mu_alb*Q1[i])').*(YtQ_alb - (mu_alb*Q1[i])')

./(R1[i] * kappa_sq_alb[i] + sigma_sq_alb)));

}

for (i in 1:N){

myStepSize <- all_surv_times[i]/10.0;

intLength <- myStepSize;

hazard_AUC <- 0.0;

for (aucInd in 1:10){

midPoint <- intLength/2.0 + (aucInd - 1.0)*intLength;

SigmaPred_alb <- kappa_sq_alb[i]*Dist_GP[i]

+ diag_matrix(rep_vector(sigma_sq_alb, Mi));

for (j in 1:Mi){

K_star_alb[j, 1] <- kappa_sq_alb[i] * exp(- pow(time[i,j]

- midPoint, 2.0));

}

K_transpose_div_SigmaPred_alb <- (K_star_alb)' / SigmaPred_alb;

alb_pred_at_t <- beta0_alb[i]

+ to_array_1d(K_transpose_div_SigmaPred_alb

* (row(albumin, i) - beta0_alb[i])')[1];

lambda_tmp <- beta0S[i] + beta0_shared + beta_alb*alb_pred_at_t;

Hazard_PieceWise_Const <- exp(lambda_tmp)*survShape
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*pow(midPoint, survShape - 1.0);

hazard_AUC <- hazard_AUC + intLength*Hazard_PieceWise_Const;

}

increment_log_prob(nu[i]*log(Hazard_PieceWise_Const) - hazard_AUC);

}

beta0_alb ~ normal(5, 2);

kappa_sq_alb ~ lognormal(-1, 2);

sigma_sq_alb ~ lognormal(-1, 1);

survShape ~ lognormal(0, 1);

beta0_shared ~ normal(0, 5);

beta_alb ~ normal(0, 5);

for (i in 1:N){

beta0S[i] ~ normal(MU_for_beta0_i_S[i], sd_for_beta0_i_S);

}

}

215



Model II

# This code is for the Area Under the Curve Model:

data {

int<lower = 1> N;

int<lower = 1> Mi;

matrix[N, Mi] time;

matrix[N, Mi] albumin;

vector[N] all_surv_times;

vector[N] nu;

vector[N] MU_for_beta0_i_S;

real sd_for_beta0_i_S;

}

transformed data {

matrix[Mi, Mi] Dist_GP[N];

matrix[Mi, Mi] Q1[N];

vector[Mi] R1[N];

for (i in 1:N){

for (j in 1:Mi) {

for (k in 1:Mi){

Dist_GP[i][j,k] <- exp(- pow(time[i,j] - time[i,k], 2.0));

}

}

Dist_GP[i] <- Dist_GP[i] + diag_matrix(rep_vector(0.00001, Mi));

Q1[i] <- eigenvectors_sym(Dist_GP[i]);

R1[i] <- eigenvalues_sym(Dist_GP[i]);

}
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}

parameters {

vector[N] beta0_alb;

vector<lower = 0>[N] kappa_sq_alb;

real<lower = 0> sigma_sq_alb;

real<lower = 0> survShape;

vector[N] beta0S;

real beta0_shared;

real beta_alb;

real beta_alb_drev;

}

model {

row_vector[Mi] mu_alb;

vector[Mi] YtQ_alb;

real alb_pred_at_t;

real alb_drev_pred_at_t;

matrix[Mi,1] K_star_alb;

matrix[Mi,Mi] SigmaPred_alb;

matrix[1,Mi] K_transpose_div_SigmaPred_alb;

int censInd;

int obsInd;

real lambda_tmp;

real hazard_AUC;

real myStepSize;

real midPoint;

real intLength;

real Hazard_PieceWise_Const;
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for (i in 1:N){

mu_alb <- rep_row_vector(beta0_alb[i], Mi);

YtQ_alb <- (albumin[i,]*Q1[i])';

increment_log_prob(-0.5 * (sum(log(kappa_sq_alb[i] * R1[i]

+ sigma_sq_alb)))

- 0.5*sum((YtQ_alb - (mu_alb*Q1[i])').*(YtQ_alb - (mu_alb*Q1[i])')

./(R1[i] * kappa_sq_alb[i] + sigma_sq_alb)));

}

for (i in 1:N){

myStepSize <- all_surv_times[i]/10.0;

intLength <- myStepSize;

hazard_AUC <- 0.0;

for (aucInd in 1:10){

midPoint <- intLength/2.0 + (aucInd - 1.0)*intLength;

SigmaPred_alb <- kappa_sq_alb[i]*Dist_GP[i]

+ diag_matrix(rep_vector(sigma_sq_alb, Mi));

for (j in 1:Mi){

K_star_alb[j, 1] <- kappa_sq_alb[i] * exp(- pow(time[i,j]

- midPoint, 2.0));

}

K_transpose_div_SigmaPred_alb <- (K_star_alb)' / SigmaPred_alb;

alb_pred_at_t <- beta0_alb[i]

+ to_array_1d(K_transpose_div_SigmaPred_alb *

(row(albumin, i) - beta0_alb[i])')[1];

alb_drev_pred_at_t <- alb_pred_at_t - albumin[i,1];

lambda_tmp <- beta0S[i] + beta0_shared + beta_alb*alb_pred_at_t
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+ beta_alb_drev*alb_drev_pred_at_t;

Hazard_PieceWise_Const <- exp(lambda_tmp)*survShape

*pow(midPoint, survShape - 1.0);

hazard_AUC <- hazard_AUC + intLength*Hazard_PieceWise_Const;

}

increment_log_prob(nu[i]*log(Hazard_PieceWise_Const) - hazard_AUC);

}

beta0_alb ~ normal(5, 2);

kappa_sq_alb ~ lognormal(-1, 2);

sigma_sq_alb ~ lognormal(-2.5, 1);

survShape ~ lognormal(0, 1);

beta0_shared ~ normal(0, 2);

beta_alb ~ normal(0, 1);

beta_alb_drev ~ normal(0, 1);

for (i in 1:N){

beta0S[i] ~ normal(MU_for_beta0_i_S[i], sd_for_beta0_i_S);

}

}
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Model II

# Model II: Code for Pointwise derivative model

data {

// longitudinal data!

int<lower = 1> N;

int<lower = 1> Mi;

matrix[N, Mi] time;

matrix[N, Mi] albumin;

vector[N] all_surv_times;

vector[N] nu;

vector[N] MU_for_beta0_i_S;

real sd_for_beta0_i_S;

}

transformed data {

matrix[Mi, Mi] Dist_GP[N];

matrix[Mi, Mi] Q1[N];

vector[Mi] R1[N];

for (i in 1:N){

for (j in 1:Mi) {

for (k in 1:Mi){

Dist_GP[i][j,k] <- exp(- pow(time[i,j] - time[i,k], 2.0));

}

}

Dist_GP[i] <- Dist_GP[i] + diag_matrix(rep_vector(0.00001, Mi));

Q1[i] <- eigenvectors_sym(Dist_GP[i]);

R1[i] <- eigenvalues_sym(Dist_GP[i]);
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}

}

parameters {

vector[N] beta0_alb;

vector<lower = 0>[N] kappa_sq_alb;

real<lower = 0> sigma_sq_alb;

real<lower = 0> survShape;

vector[N] beta0S;

real beta0_shared;

real beta_alb;

real beta_alb_drev;

}

model {

row_vector[Mi] mu_alb;

vector[Mi] YtQ_alb;

real alb_pred_at_t;

real alb_drev_pred_at_t;

matrix[Mi,1] K_star_alb;

matrix[Mi,1] K_der;

matrix[Mi,Mi] SigmaPred_alb;

matrix[1,Mi] K_transpose_div_SigmaPred_alb;

matrix[1,Mi] K_der_transpose_div_SigmaPred;

int censInd;

int obsInd;

real lambda_tmp;

real hazard_AUC;

real myStepSize;
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real midPoint;

real intLength;

real Hazard_PieceWise_Const;

for (i in 1:N){

mu_alb <- rep_row_vector(beta0_alb[i], Mi);

YtQ_alb <- (albumin[i,]*Q1[i])';

increment_log_prob(-0.5 * (sum(log(kappa_sq_alb[i] * R1[i] + sigma_sq_alb)))

- 0.5*sum((YtQ_alb - (mu_alb*Q1[i])').

*(YtQ_alb - (mu_alb*Q1[i])')

./(R1[i] * kappa_sq_alb[i] + sigma_sq_alb)));

}

for (i in 1:N){

myStepSize <- all_surv_times[i]/10.0;

intLength <- myStepSize;

hazard_AUC <- 0.0;

for (aucInd in 1:10){

midPoint <- intLength/2.0 + (aucInd - 1.0)*intLength;

SigmaPred_alb <- kappa_sq_alb[i]*Dist_GP[i]

+ diag_matrix(rep_vector(sigma_sq_alb, Mi));

for (j in 1:Mi){

K_star_alb[j, 1] <- kappa_sq_alb[i] * exp(- pow(time[i,j] - midPoint, 2.0));

K_der[j,1] <- -1.99999*1.0*(midPoint - time[i,j])*K_star_alb[j,1];

}

K_transpose_div_SigmaPred_alb <- (K_star_alb)' / SigmaPred_alb;

K_der_transpose_div_SigmaPred <- (K_der)' / SigmaPred_alb;

alb_pred_at_t <- beta0_alb[i]

+ to_array_1d(K_transpose_div_SigmaPred_alb
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* (row(albumin, i) - beta0_alb[i])')[1];

alb_drev_pred_at_t <- to_array_1d(K_der_transpose_div_SigmaPred

* (row(albumin, i) - beta0_alb[i])')[1];

lambda_tmp <- beta0S[i] + beta0_shared

+ beta_alb*alb_pred_at_t

+ beta_alb_drev*alb_drev_pred_at_t;

Hazard_PieceWise_Const <- exp(lambda_tmp)*survShape

*pow(midPoint, survShape - 1.0);

hazard_AUC <- hazard_AUC + intLength*Hazard_PieceWise_Const;

}

increment_log_prob(nu[i]*log(Hazard_PieceWise_Const) - hazard_AUC);

}

beta0_alb ~ normal(5, 2);

kappa_sq_alb ~ lognormal(-1, 2);

sigma_sq_alb ~ lognormal(-2.5, 1);

survShape ~ lognormal(0, 1);

beta0_shared ~ normal(0, 2);

beta_alb ~ normal(0, 1);

beta_alb_drev ~ normal(0, 1);

for (i in 1:N){

beta0S[i] ~ normal(MU_for_beta0_i_S[i], sd_for_beta0_i_S);

}

}
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Model III

data {

int<lower = 1> N;

int<lower = 1> Mi;

matrix[N, Mi] time;

matrix[N, Mi] albumin;

vector[N] all_surv_times;

vector[N] nu;

vector[N] Continuous_Cov;

vector[N] MU_for_beta0_i_S;

real sd_for_beta0_i_S;

}

transformed data {

matrix[Mi, Mi] Dist_GP[N];

matrix[Mi, Mi] Q1[N];

vector[Mi] R1[N];

for (i in 1:N){

// dealing with distance matrix eigenvalue decomposition!

for (j in 1:Mi) {

for (k in 1:Mi){

Dist_GP[i][j,k] <- exp(- pow(time[i,j] - time[i,k], 2.0));

}

}

Dist_GP[i] <- Dist_GP[i] + diag_matrix(rep_vector(.00001, Mi));

// eigenvalue decomposition:
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Q1[i] <- eigenvectors_sym(Dist_GP[i]);

R1[i] <- eigenvalues_sym(Dist_GP[i]);

}

}

parameters {

vector[N] beta0_alb;

vector<lower = 0>[N] kappa_sq_alb;

real<lower = 0> sigma_sq_alb;

real<lower = 0> survShape;

vector[N] beta0S;

real beta0_shared;

real beta_cont_cov;

real beta_randIntercept;

real beta_volatility;

}

model {

row_vector[Mi] mu_alb;

vector[Mi] YtQ_alb;

int censInd;

int obsInd;

real lambda_tmp;

real hazard_AUC;

real myStepSize;

real midPoint;

real intLength;

real Hazard_PieceWise_Const;

for (i in 1:N){
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mu_alb <- rep_row_vector(beta0_alb[i], Mi);

YtQ_alb <- (albumin[i,]*Q1[i])';

increment_log_prob(-0.5 * (sum(log(kappa_sq_alb[i] * R1[i] + sigma_sq_alb)))

- 0.5*sum((YtQ_alb - (mu_alb*Q1[i])')

.*(YtQ_alb - (mu_alb*Q1[i])')

./(R1[i] * kappa_sq_alb[i] + sigma_sq_alb)));

}

for (i in 1:N){

myStepSize <- all_surv_times[i]/10.0;

intLength <- myStepSize;

hazard_AUC <- 0.0;

for (aucInd in 1:10){

midPoint <- intLength/2.0 + (aucInd - 1.0)*intLength;

lambda_tmp <- beta0S[i] + beta0_shared

+ beta_cont_cov*Continuous_Cov[i]

+ beta_randIntercept*beta0_alb[i]

+ beta_volatility*kappa_sq_alb[i];

Hazard_PieceWise_Const <- exp(lambda_tmp)*survShape

*pow(midPoint, survShape - 1.0);

hazard_AUC <- hazard_AUC

+ intLength*Hazard_PieceWise_Const;

}

increment_log_prob(nu[i]*log(Hazard_PieceWise_Const) - hazard_AUC);

}

beta0_alb ~ normal(5, 2);
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kappa_sq_alb ~ lognormal(-1, 2);

sigma_sq_alb ~ lognormal(-1, 1);

survShape ~ lognormal(0, 1);

beta0_shared ~ normal(0, 1);

beta_cont_cov ~ normal(0, 1);

beta_randIntercept ~ normal(0, 1);

beta_volatility ~ normal(0, 1);

for (i in 1:N){

beta0S[i] ~ normal(MU_for_beta0_i_S[i], sd_for_beta0_i_S);

}

}
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Model II

data {

int<lower = 1> N;

int<lower = 1> Mi;

matrix[N, Mi] time;

matrix[N, Mi] albumin;

vector[N] all_surv_times;

vector[N] nu;

vector[N] Continuous_Cov;

vector[N] MU_for_beta0_i_S;

real sd_for_beta0_i_S;

}

transformed data {

matrix[Mi, Mi] Dist_GP[N];

matrix[Mi, Mi] Q1[N];

vector[Mi] R1[N];

for (i in 1:N){

for (j in 1:Mi) {

for (k in 1:Mi){

Dist_GP[i][j,k] <- exp(- pow(time[i,j] - time[i,k], 2.0));

}

}

Dist_GP[i] <- Dist_GP[i] + diag_matrix(rep_vector(.00001, Mi));

Q1[i] <- eigenvectors_sym(Dist_GP[i]); // would be the same for Kernel GP

R1[i] <- eigenvalues_sym(Dist_GP[i]);

}
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}

parameters {

vector[N] beta0_alb;

vector<lower = 0>[N] kappa_sq_alb;

real<lower = 0> sigma_sq_alb;

real<lower = 0> survShape;

vector[N] beta0S;

real beta0_shared;

real beta_cont_cov;

real beta_randIntercept;

real beta_volatility;

}

model {

row_vector[Mi] mu_alb;

vector[Mi] YtQ_alb;

int censInd;

int obsInd;

real lambda_tmp;

real hazard_AUC;

real myStepSize;

real midPoint;

real intLength;

real Hazard_PieceWise_Const;

for (i in 1:N){

mu_alb <- rep_row_vector(beta0_alb[i], Mi);

YtQ_alb <- (albumin[i,]*Q1[i])';

increment_log_prob(-0.5 * (sum(log(kappa_sq_alb[i]
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* R1[i] + sigma_sq_alb)))

- 0.5*sum((YtQ_alb - (mu_alb*Q1[i])')

.*(YtQ_alb - (mu_alb*Q1[i])')

./(R1[i] * kappa_sq_alb[i] + sigma_sq_alb)));

}

for (i in 1:N){

myStepSize <- all_surv_times[i]/10.0;

intLength <- myStepSize;

hazard_AUC <- 0.0;

for (aucInd in 1:10){

midPoint <- intLength/2.0 + (aucInd - 1.0)*intLength;

lambda_tmp <- beta0S[i] + beta0_shared

+ beta_cont_cov*Continuous_Cov[i]

+ beta_randIntercept*beta0_alb[i]

+ beta_volatility*kappa_sq_alb[i];

Hazard_PieceWise_Const <- exp(lambda_tmp)*survShape

*pow(midPoint, survShape - 1.0);

hazard_AUC <- hazard_AUC + intLength*Hazard_PieceWise_Const;

}

increment_log_prob(nu[i]*log(Hazard_PieceWise_Const) - hazard_AUC);

}

beta0_alb ~ normal(5, 2);

kappa_sq_alb ~ lognormal(-1, 2);

sigma_sq_alb ~ lognormal(-1, 1);

survShape ~ lognormal(0, 1);
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beta0_shared ~ normal(0, 1);

beta_cont_cov ~ normal(0, 1);

beta_randIntercept ~ normal(0, 1);

beta_volatility ~ normal(0, 1);

for (i in 1:N){

beta0S[i] ~ normal(MU_for_beta0_i_S[i], sd_for_beta0_i_S);

}

}
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A.3 Chapter 5 Models

Similiar to the code in Chapter 4, our programming codes for our proposed model in Chapter

5 include three main parts: 1) DP Sampler, 2) HMC code, 3) Stan code.

A.3.1 DP Sampler

get.DP.alpha.L <- function(nSub, DP.alpha.curr, DPM_MU.star,

DP.alpha.a, DP.alpha.b){

k <- length(DPM_MU.star)

M <- nSub

eta <- rbeta(1, DP.alpha.curr + 1, M)

Pi.eta <- (DP.alpha.a + k - 1)/( (DP.alpha.a + k - 1)

+ (M*(DP.alpha.b - log(eta))) )

sampProb <- c(Pi.eta, (1 - Pi.eta))

DP.alpha.pool <- c(rgamma(1, shape = (DP.alpha.a + k),

scale = 1/(DP.alpha.b - log(eta)) ),

rgamma(1, shape = (DP.alpha.a + k - 1),

scale = 1/(DP.alpha.b - log(eta)) ) )

DP.alpha.new <- sample(DP.alpha.pool, 1, prob = sampProb)

return(DP.alpha.new)

}

# We borrowed ideas from Dr. Shahbaba in writing this code.

get.Mui <- function(nSub, Beta0_current, Mu.star, indSet,

freqSet, DP.alpha, DP.G0.mean, DP.G0.sd, sd_for_beta0_i_S){

M = 5
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for (i in 1:nSub){

phi <- NULL

curInd <- indSet[i]

freqSet[curInd] <- freqSet[curInd] - 1

if (freqSet[curInd] == 0){

phi <- Mu.star[curInd]

freqSet <- freqSet[-(curInd)]

Mu.star <- Mu.star[-(curInd)]

indSet[indSet > curInd] <- indSet[indSet > curInd] - 1

kMinus <- length(freqSet)

Mu.star[kMinus + 1] <- phi

for (m in 1:(M - 1)){

Mu.star[kMinus + 1 + m] <- rnorm(1, mean = DP.G0.mean,

sd = DP.G0.sd)

}

}else{

kMinus <- length(freqSet)

for (m in 1:M){

Mu.star[kMinus + m] <- rnorm(1, mean = DP.G0.mean,

sd = DP.G0.sd)

}

}

# q1: vector of sampling prob for exisiting parameters

# q2: vector of sampling prob for auxiliary parameters

# Prob. of Sampling Existing Parameters:
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# Here, we are looking at beta0_i for subj i to write the likelihood

q1 <- rep(0, kMinus)

for (k in 1:kMinus){

q1[k] <- dnorm(Beta0_current[i], mean = Mu.star[k],

sd = sd_for_beta0_i_S, log = T)

}

q1 <- q1 + log(freqSet) - log(nSub - 1 + DP.alpha)

q2 <- rep(0, M)

for (k in 1:M){

q2[k] <- dnorm(Beta0_current[i], mean = Mu.star[kMinus + k]

, sd = sd_for_beta0_i_S, log = T)

}

q2 <- q2 + log(DP.alpha/M) - log(nSub - 1 + DP.alpha)

myProb <- c(q1, q2)

myProb.Max <- max(myProb)

myProb.Rel <- myProb - myProb.Max

myProb <- exp(myProb.Rel)

myProb <- myProb/sum(myProb)

picked <- which(rmultinom(1, 1, myProb) == 1)

if (picked <= kMinus){

indSet[i] <- picked

freqSet[picked] <- freqSet[picked] + 1

Mu.star <- Mu.star[-( (kMinus + 1):(kMinus + M) )]

myProb <- myProb[-( (kMinus + 1):(kMinus + M) )]

}else{

indSet[i] <- kMinus + 1

freqSet <- c(freqSet, 1)
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phi <- Mu.star[picked]

Mu.star <- Mu.star[-( (kMinus + 1):(kMinus + M) )]

myProb <- myProb[-( (kMinus + 1):(kMinus + M) )]

Mu.star[kMinus + 1] <- phi

}

}

return(list(Mu.star = Mu.star, indSet = indSet, freqSet = freqSet))

}

Remixing.Mu <- function(nSub, Mu.star, indSet, Beta0_current,

DP.G0.mean, DP.G0.sd, sd_for_beta0_i_S){

Mu_Uniq_n <- length(Mu.star)

for (i in 1:Mu_Uniq_n){

idsToConsider <- (1:nSub)[indSet == i]

Beta0_for_Mu_i <- Beta0_current[idsToConsider]

n_tmp <- length(idsToConsider)

mean_tmp <- ((sd_for_beta0_i_S^2/n_tmp)/

((sd_for_beta0_i_S^2/n_tmp) + DP.G0.sd^2))*DP.G0.mean

+ ((DP.G0.sd^2)/((sd_for_beta0_i_S^2/n_tmp) + DP.G0.sd^2))

*(mean(Beta0_for_Mu_i))

var_tmp <- (sd_for_beta0_i_S^2/n_tmp)*(DP.G0.sd^2)

/((sd_for_beta0_i_S^2/n_tmp) + DP.G0.sd^2)

Mu.star[i] <- rnorm(1, mean = mean_tmp, sd = sqrt(var_tmp))

}

return(Mu.star)

}
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A.3.2 Joint Multivariate Longitudinal-Survival Model HMC Code

# calculating potential engergy:

U <- function(fit, un){

return(as.numeric(-log_prob(fit, upars = un, adjust_transform = T)))

}

# calculating gradient:

grad_U <- function(fit, un){

return(as.numeric(-grad_log_prob(fit, upars = un, adjust_transform = T)))

}

# HMC sampler (idea from Neal 2012 - MCMC using Hamiltonian Dynamics)

HMC <- function (fit, epsilon, L_low, L_hi, current_q_un){

L <- sample(L_low:L_hi, 1)

q = current_q_un

p = rnorm(length(q),0,1) # independent standard normal variates

current_p = p

# Make a half step for momentum at the beginning

p = p - epsilon * grad_U(fit, q) / 2

# Alternate full steps for position and momentum

for (i in 1:L){
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# Make a full step for the position

q = q + epsilon * p

# Make a full step for the momentum, except at end of trajectory

if (i!=L) p = p - epsilon * grad_U(fit, q)

}

# Make a half step for momentum at the end.

p = p - epsilon * grad_U(fit, q) / 2

# Negate momentum at end of trajectory to make the proposal symmetric

p = -p

# Evaluate potential and kinetic energies at start and end of trajectory

current_U = U(fit, current_q_un)

current_K = sum(current_p^2) / 2

proposed_U = U(fit, q)

proposed_K = sum(p^2) / 2

# Accept or reject the state at end of trajectory, returning either

# the position at the end of the trajectory or the initial position

if (runif(1) < exp(current_U-proposed_U+current_K-proposed_K))

{

return (list(q = q, acc = 1)) # accept

}

else
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{

return (list(q = current_q_un, acc = 0)) # reject

}

}
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A.3.3 Joint Longitudinal-Survival Model Stan Code

functions {

matrix kron_mvprod(matrix A, matrix B, matrix V) {

return transpose(A * transpose(B * V));

}

matrix calculate_eigenvalues(vector A, vector B, int n1,

real sigma_pr1, real sigma_pr2) {

matrix[2,n1] e;

for(j in 1:n1) {

e[1,j] <- (A[j] * B[1] + sigma_pr1);

e[2,j] <- (A[j] * B[2] + sigma_pr2);

}

return(e);

}

}

data {

int<lower = 1> N;

int<lower = 1> Mi;

int<lower = 1> N_Miss;

matrix[N, Mi] time;

vector[(2*N*Mi - N_Miss)] alb_bmi_obs;

int miss_ind[N_Miss, 2];

int obs_ind[(2*N*Mi - N_Miss), 2];

vector[N] all_surv_times;

vector[N] nu;

vector[N] MU_for_beta0_i_S;
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real sd_for_beta0_i_S;

}

transformed data {

matrix[Mi, Mi] Dist_GP;

matrix[Mi, Mi] Q1[N];

vector[Mi] R1[N];

for (i in 1:N){

for (j in 1:Mi) {

for (k in 1:Mi){

Dist_GP[j,k] <- exp(- pow(time[i,j] - time[i,k], 2.0));

}

}

Q1[i] <- eigenvectors_sym(Dist_GP);

R1[i] <- eigenvalues_sym(Dist_GP);

}

}

parameters {

vector[N] beta0_proc1;

vector[N] beta0_proc2;

vector<lower = 0>[N] kappa_sq;

real<lower = 0> sigma_sq_proc1;

real<lower = 0> sigma_sq_proc2;

real<lower = 0> tau2;

corr_matrix[2] Omega;

vector[N_Miss] alb_bmi_Miss;

real<lower = 0> survShape;

vector[N] beta0S;
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real beta0_shared;

real beta_alb;

real beta_bmi;

}

transformed parameters{

matrix[N, 2*Mi] alb_bmi;

for (i in 1:N_Miss){

alb_bmi[miss_ind[i,1], miss_ind[i,2]] <- alb_bmi_Miss[i];

}

for (i in 1:(2*N*Mi - N_Miss)){

alb_bmi[obs_ind[i,1], obs_ind[i,2]] <- alb_bmi_obs[i];

}

}

model {

matrix[2,2] C;

matrix[2, Mi] mu;

vector[Mi] R1_K_GP;

matrix[2, Mi] y[N];

matrix[2, Mi] myTempTransformer1;

matrix[2*Mi, 1] myTempTransformer2;

matrix[2, 2] Q2;

vector[2] R2;

matrix[2,Mi] eigenvalues;

vector[2] tau;

vector[2] alb_bmi_pred_at_t;

row_vector[Mi] K_star;

matrix[2,2*Mi] C_kron_K_star;
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int censInd;

int obsInd;

real lambda_tmp;

real hazard_AUC;

real myStepSize;

real midPoint;

real intLength;

real Hazard_PieceWise_Const;

tau[1] <- 1;

tau[2] <- tau2;

C <- quad_form_diag(Omega, tau);

Q2 <- eigenvectors_sym(C);

R2 <- eigenvalues_sym(C);

for (i in 1:N){

for (j in 1:Mi){

y[i][1,j] <- alb_bmi[i,j];

y[i][2,j] <- alb_bmi[i,Mi + j];

}

mu[1,] <- rep_row_vector(beta0_proc1[i], Mi);

mu[2,] <- rep_row_vector(beta0_proc2[i], Mi);

R1_K_GP <- kappa_sq[i] * R1[i];

eigenvalues <- calculate_eigenvalues(R1_K_GP, R2, Mi,

sigma_sq_proc1, sigma_sq_proc2);

increment_log_prob(-0.5 * sum((y[i] - mu)

.* kron_mvprod(Q1[i],Q2, kron_mvprod(transpose(Q1[i]),

transpose(Q2), (y[i] - mu)) ./ eigenvalues)) - 0.5

* sum(log(eigenvalues)));
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}

for (i in 1:N){

myStepSize <- all_surv_times[i]/10.0;

intLength <- myStepSize;

hazard_AUC <- 0.0;

for (aucInd in 1:10){

midPoint <- intLength/2.0 + (aucInd - 1.0)*intLength;

for (j in 1:Mi){

K_star[j] <- kappa_sq[i] * exp(- pow(time[i,j] - midPoint, 2.0));

}

C_kron_K_star[1, 1:Mi] <- C[1,1] * K_star;

C_kron_K_star[2, 1:Mi] <- C[2,1] * K_star;

C_kron_K_star[1, (Mi + 1):(2*Mi)] <- C[1,2] * K_star;

C_kron_K_star[2, (Mi + 1):(2*Mi)] <- C[2,2] * K_star;

mu[1,] <- rep_row_vector(beta0_proc1[i], Mi);

mu[2,] <- rep_row_vector(beta0_proc2[i], Mi);

R1_K_GP <- kappa_sq[i] * R1[i];

eigenvalues <- calculate_eigenvalues(R1_K_GP, R2, Mi, sigma_sq_proc1,

sigma_sq_proc2);

myTempTransformer1 <- kron_mvprod(Q1[i],Q2, kron_mvprod(transpose(Q1[i]),

transpose(Q2), (y[i] - mu))

./ eigenvalues);

myTempTransformer2[1:Mi,1] <- transpose(myTempTransformer1[1,]);

myTempTransformer2[(Mi + 1):(2*Mi),1] <- transpose(myTempTransformer1[2,]);

alb_bmi_pred_at_t <- mu[,1] + to_vector(C_kron_K_star * myTempTransformer2);
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lambda_tmp <- beta0S[i] + beta0_shared

+ beta_alb*alb_bmi_pred_at_t[1]

+ beta_bmi*alb_bmi_pred_at_t[2];

Hazard_PieceWise_Const <- exp(lambda_tmp)*survShape

*pow(midPoint, survShape - 1.0);

hazard_AUC <- hazard_AUC + intLength*Hazard_PieceWise_Const;

}

increment_log_prob(nu[i]*log(Hazard_PieceWise_Const) - hazard_AUC);

}

beta0_proc1 ~ normal(5, 2);

beta0_proc2 ~ normal(20, 5);

kappa_sq ~ lognormal(-1, 2);

sigma_sq_proc1 ~ lognormal(-1, 1);

sigma_sq_proc2 ~ lognormal(-1, 1);

tau2 ~ cauchy(0, 2.5);

Omega ~ lkj_corr(1);

survShape ~ lognormal(0, 1);

beta0_shared ~ normal(0, 5);

beta_alb ~ normal(0, 5);

beta_bmi ~ normal(0, 5);

for (i in 1:N){

beta0S[i] ~ normal(MU_for_beta0_i_S[i], sd_for_beta0_i_S);

}

}
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Appendix B

Posterior Samples Traceplots

Here in this chapter, we provide trace-plots for posterior samples of the Bayesian models

used in this dissertation.
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B.1 Chapter 3 Traceplots

B.1.1 Bayesian Logistic Models
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Figure B.1: Traceplots for Posterior samples under a simulation scenario when random
intercepts are Normally distributed
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Random Intercepts from Mixture of Two Normals with Different Means
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Figure B.2: Traceplots for Posterior samples under a simulation scenario when random
intercepts are from a mixture N(-1.5, 1) and N(1.5, 1)
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Random Intercepts from Mixture of Two Normals with Different Standard De-

viations
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Figure B.3: Traceplots for Posterior samples under a simulation scenario when random
intercepts are from a mixture N(0, σ = 1) and N(0, σ =

√
5)
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B.1.2 Bayesian Survival Models
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Figure B.4: Traceplots for Posterior samples under a simulation scenario when random
intercepts are Nornally distributed
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Random Intercepts from Mixture of Two Normals with Different Means
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Figure B.5: Traceplots for Posterior samples under a simulation scenario when random
intercepts are from a mixture N(-1.5, 1) and N(1.5, 1)
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Random Intercepts from Mixture of Two Normals with Different Standard De-

viations
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Figure B.6: Traceplots for Posterior samples under a simulation scenario when random
intercepts are from a mixture N(0, σ = 1) and N(0, σ =

√
5)
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B.2 Chapter 4 Traceplots

In this section, we provide traceplots for survival coefficients in the simulation studies pre-

sented in Section 4.3.
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Figure B.7: Traceplot of the βalb coefficient under the Model I simulation in Section 4.3
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B.2.2 Model II
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Figure B.8: Traceplot of the βalb coefficient under the Model I simulation in Section 4.3
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B.2.3 Model III
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Figure B.9: Traceplot of the βalb coefficient under the Model I simulation in Section 4.3
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B.3 Chapter 5 Traceplots

In this section, we provide traceplots for survival coefficients βx1 and βx2 in the simulation

studies presented in Section 5.3.

B.3.1 MGP Model
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B.3.2 UGP Model
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