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Abstract

Forest carbon management in mangroves and monoculture plantations

by

Jacob J. Bukoski

Doctor of Philosophy in Environmental Science, Policy and Management

University of California, Berkeley

Associate Professor Matthew D. Potts, Chair

Restoring forest cover is a prominent strategy for offsetting emissions of greenhouse gases.
When done appropriately, restoring forest cover can remove atmospheric carbon dioxide and
confer non-carbon benefits such as biodiversity conservation, ecosystem service provisioning,
or direct economic returns to local communities. Although a range of pathways exist for
restoring forest cover, two prominent avenues have caught the attention of decision-makers
and investors across the globe: blue carbon and plantations. The three chapters of my
dissertation consequently examine the degree to which mangroves, a prominent blue carbon
ecosystem, and monoculture plantations, the dominant approach for restoring forest cover,
can meet our climate change goals.

In the first chapter of my dissertation, I compare and critically assess estimates of carbon
stocks in mangroves using i) empirical field data, and ii) outputs of predictive models at
global scales. Global maps of carbon stocks are increasingly used to inform environmental
management, policy, and decision-making, but may produce biased estimates of mangrove
carbon stocks at local scales. My findings suggest that although global maps of mangrove
carbon perform well at regional scales, comparison with empirical field data at local scales
identifies statistically significant differences in carbon stocks. The results suggest that despite
recent advances in computing power, compilation of global datasets, and remote sensing,
empirical measurements of mangrove carbon stocks will remain key to informed decision-
making at local scales.

My second chapter examines a critical question for mangrove conservation and restoration
policy-making: are the carbon stocks of deforested mangroves recoverable over time scales
meaningful for mitigating climate change? Deforestation of mangroves induces massive car-
bon emissions from the soil organic carbon pool; however, the pace at which these soil organic
carbon stocks are recovered following reforestation is unclear. Using high resolution spatial
datasets of land cover and land use change over the last 20 years and models of carbon stock
loss and gain in mangroves, I use scenario analysis to examine the net balance of carbon
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stocks associated with mangrove gain and loss within Thailand. My findings indicate that
in areas where regenerating mangroves are commonly re-cleared, carbon stock losses may
be four-fold greater than what net change in mangrove extent statistics would otherwise
suggest.

Finally, my third chapter turns to monoculture plantations, the dominant approach for
restoring forest cover globally. Approximately two thirds (66%) of high-level commitments
in the tropics for forest restoration involve planting and almost half (45%) involve the estab-
lishment of monoculture plantations. Despite the prominence of this approach, the science
and policy communities lack systematic understanding of the degree to which monoculture
plantations can meet climate change mitigation goals. Thus, my colleagues and I compiled a
database of approximately 3,500 empirical estimates of aboveground carbon in monoculture
plantations across the globe. I then used this database to examine variation in growth pat-
terns as well as the key drivers that mediate this growth. I used nonlinear growth curves to
more accurately model the accumulation of aboveground carbon stocks with time, which I
found to vary substantially by genus of tree and plant functional type. Furthermore, I found
factors such as genus, endemism, prior land use, and plant traits to strongly mediate carbon
accumulation in monoculture plantations, whereas factors such as biome were found to have
little effect.

Taken comprehensively, the chapters of my dissertation critically assess the scientific datasets
and approaches that are guiding actions and commitments within the reforestation space.
The chapters employ data that have been collected through in situ forest inventories, pre-
dictive modeling, and government programs, as well as methodological approaches such as
statistical modeling and data synthesis. The findings provide key insights such as i) improved
understanding of a critical uncertainty (i.e., the recoverability of mangrove carbon stocks) for
investors in reforestation of blue carbon ecosystems, as well as ii) improved understanding
of carbon accumulation patterns in global monoculture plantations. I anticipate that these
findings will facilitate improved environmental outcomes from reforestation efforts, which
are rapidly scaling across the globe.
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Chapter 1

Introduction

1.1 Motivation

Mitigating climate change through the conservation and expansion of forests is a long-
standing idea that has taken various forms over the last few decades. Two key reasons
drive the interest in using forests to mitigate greenhouse gas emissions. First, conversion
of forest to non-forest land cover types induces large emissions of organic carbon that are
currently sequestered in biomass and soils. Second, the continued or new growth of forests
sequesters carbon in biomass and soils, producing a large draw-down of atmospheric carbon
dioxide at relatively low cost. Most recently, interest in the climate change mitigation po-
tential of forests has focused on quantifying the potential climate benefits associated with
forest conservation and expansion at global scales.

Within the current forests and climate arena, two types of actions are prominent: first,
the conservation and restoration of mangroves, a ”blue carbon” ecosystem; and second, ex-
pansion of forest cover with monoculture plantations. Mangroves, the intertidal forests that
exist along most tropical and subtropical coastlines, are carbon-rich ecosystems that have
disproportionate impacts on the climate relative to their spatial extent. As a result of this,
there is widespread interest in investing in their conservation and restoration [152]. Monocul-
ture plantations, on the other hand, are less carbon rich ecosystems; however, establishment
of monoculture plantations is currently the dominant commitment to restoring forest cover
across the globe [92]. Furthermore, monoculture plantations are controversial because they
can adversely impact local environments when poorly implemented and have relatively minor
biodiversity value relative to naturally regenerated forests.

Despite the prominence of these two actions, there remains substantial uncertainty around
the degree to which mangroves and monoculture plantations can meet the climate change
mitigation goals of the international community. For example, while it is relatively well-
understood that the conversion of mangroves to other land uses, such as shrimp farming,
can induce massive emissions of organic carbon to the atmosphere, it is currently unclear how
quickly carbon stocks are recovered upon reforestation. While some suggest that restored
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mangroves may recover the same carbon stocks as reference forests within 7-17 years [117],
others suggest that recovery of carbon stocks in organic soils may take centuries [79]. For
monoculture plantations, one key uncertainty is whether these systems sequester carbon
faster than naturally regenerating forests, which is a reforestation pathway that is commonly
lower cost that planting and therefore potentially easier to scale.

Given this context, the overarching goal of this dissertation was to improve our under-
standing of the degree to which mangroves and monoculture plantations might meet inter-
national goals to mitigate climate change. Specifically, I sought to answer three key research
questions:

1. How accurate are predictive models of standing carbon stocks in extant mangroves?

2. Are ecosystem carbon stocks in deforested mangroves recoverable over meaningful time-
frames for climate change mitigation?

3. How quickly does carbon accumulate in monoculture plantations and how variable are
these rates of accumulation across the globe?

Answers to these questions are of direct relevance for actors and decision-makers in both
the public and private sectors. As such, the major findings of this dissertation are highly
applied in nature. In recognizing this, I have tried to situate my results by commenting on
their implications for environmental management and policy-making as much as possible.

1.2 Structure

The three chapters that form the body of my dissertation correspond to each of the three
key research questions listed above. Chapters 2 and 3 are focused on mangrove ecosystems,
whereas Chapter 4 is focused on monoculture plantations. Each of these chapters is focused
at broad, but varying, geographic scales: Chapter 2 is focused at the site level for five
mangrove forests spread across the globe, Chapter 3 is focused on the whole of Thailand, and
Chapter 3 is focused on global patterns in monoculture plantations. The scale of each chapter
not only reflects that of the research question, but also the decision-making community that
would be most interested in the results.

In Chapter 2, I compared and critically assessed two approaches for estimating baseline
carbon stocks in mangroves. Specifically, I compared estimates of ecosystem carbon stocks
that have been derived from field-based forest inventories versus global maps of carbon stocks
that have been produced by predictive modeling. Understanding of how estimates of carbon
stocks vary between the two approaches is critical for forest carbon programs. On the one
hand, field-based estimates are the conventional approach and are typically seen to be more
accurate than other methods; however, they are resource intensive given accessibility con-
straints in mangrove ecosystems. On the other hand, global maps of mangrove carbon stocks
may be less accurate than field-based inventories, but are highly valuable for countries or
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programs that do not have the resources to run field-based inventories. The accuracy of these
global maps is consequently of high interest for the development of mangrove forest carbon
programs, as their use could help reduce costs in the development and establishment of such
programs. I conducted this analysis using the three-tier framework of the Intergovernmental
Panel on Climate Change, the foremost authority on carbon accounting within the land use
sector.

In Chapter 3, I examine the climate impacts of land use and land cover change in Thai-
land’s mangroves. Mangroves are among the most carbon rich ecosystems globally and their
deforestation induces large emissions of carbon to the atmosphere, mostly from their soils.
However, it is less clear how quickly these dense carbon stocks can be recovered if areas
that were formerly mangroves are reforested. Although others have examined this question,
they have used carbon stock recovery curves that are derived from data in all blue carbon
ecosystems (i.e. including sea grasses and salt marshes) that are unlikely to accurately rep-
resent carbon stock recovery in mangroves. Thus, I re-examined these dynamics for the
case of Thailand, a country that has lost large extents of mangrove and is interested in
their reforestation as part of their Nationally Determined Contribution to the 2015 Paris
Agreement. The specific objectives of this study were to i) assess whether data specific to
carbon stock recovery in mangrove ecosystems produced different findings relative to blue
carbon ecosystems more broadly, ii) assess whether net loss-of-area statistics for changes in
mangrove extent mask greenhouse gas emissions in areas of dynamic land use change, and
iii) quantify the potential of mangrove reforestation to contribute to Thailand’s Nationally
Determined Contribution.

I turn to monoculture plantations in my fourth chapter. Monoculture plantations are
controversial because they can have adverse impacts on local environments when imple-
mented poorly and may have limited biodiversity value relative to natural forests. However,
they currently account for the vast majority of commitments by global actors to expand
forest cover, including up to 45% of those in the tropics. Although understanding of growth
rates and the factors that mediate this growth are well-known for localized systems (e.g.,
slash pine in the Southern United States), we lack synthetic understanding of growth rates
in monoculture plantations, variation in these rates, and the factors that mediate these rates
of growth at global scales. Understanding of this is key because mitigating climate change
is a primary motivation for expanding monoculture plantations globally and rates of growth
directly describe the rate at which carbon accumulates within plantation systems. I there-
fore compiled a large database of aboveground carbon estimates in monoculture plantations
across the globe and used this database to i) fit theoretically defensible growth curves to
describe the accumulation of carbon in monoculture plantations across time, ii) examine
how this carbon accumulation varies across geographic regions, genus of tree crop, and type
of tree, and iii) examine the factors that mediate variation in growth rates across spatial
scales. The results provide foundational understanding of the degree to which widespread
investments in planting forests can meet our climate change goals.

Finally, in Chapter 5, I provide concluding thoughts on the key results of this dissertation
as well as their implications for forest carbon management and decision-making. Taken
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comprehensively, they represent a synthetic examination of two key avenues for mitigating
climate change with forests: conservation and reforestation of mangroves and the expanded
planting of monoculture plantations. As with most research projects, the findings of the
chapters have opened more questions than those that they have answered. I consequently
conclude my dissertation by providing thoughts on future research directions that would
continue to refine our understanding of forest carbon management at a range of geographic
scales.

1.3 Other relevant work

The chapters in this dissertation directly respond to the objectives described above. However,
I have also undertaken a number of other research collaborations during my doctoral studies
that parallel the goals of this dissertation. These studies have taken the form of peer-reviewed
publications, working papers for international forestry agencies, and a special issue collection
for the Journal of Sustainable Forestry.

The publications that support this dissertation but are not directly included are:

• Rovai, A.S., Twilley, R.R., Castañeda-Moya, E., Midway, S.R., Friess, D.A., Trettin,
C.C., Bukoski, J.J., et al. 2020. Macroecological patterns and drivers of mangrove
forest structure and carbon stocks across biogeographic regions and coastal morpholo-
gies. Global Ecology and Biogeography 30(5): 1000-1013. doi: /10.1111/geb.13268

• Elwin, A., Bukoski, J.J., Jintana, V., Robinson, E.J.Z., and J. Clark. 2019. Preser-
vation and recovery of mangrove ecosystem carbon stocks in abandoned shrimp ponds.
Scientific Reports 9: 18275. doi: 10.1038/s41598-019-54893-6

• Sanderman, J., Hengl, T., Fiske, G., Solvik, K., Adam, M.F., Benson, L., Bukoski,
J.J., et al. 2018. A global map of mangrove forest soil carbon at 30 m spatial resolu-
tion. Environmental Research Letters. doi: 10.1088/1748-9326/aabe1c

• Bukoski, J.J., Drazen, E., Johnson, W.R., and Swamy, L. 2018. Tropical forests
for sustainable development: Shaping the 2030 Agenda for Sustainable Development
with knowledge from the field. Journal of Sustainable Forestry 37(2): 77-81. doi:
10.1080/10549811.2018.1418255

• Swamy, L., Drazen, E., Johnson, W.R., and Bukoski, J.J. 2017. The future of
tropical forests under the United Nations Sustainable Development Goals. Journal of
Sustainable Forestry 37(2): 221-256. doi: 10.1080/10549811.2017.1416477

• Bukoski, J.J., Broadhead, J.S., Donato, D.C., Kauffman, J.B., Murdiyarso, D., and
Gregoire, T.G. 2017. The use of mixed effect models for obtaining low-cost ecosystem
carbon stock estimates in mangroves of the Asia-Pacific. PLoS ONE 12(1): e0169096.
DOI: 10.1371/journal.pone.0169096
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• Broadhead, J.S., Bukoski, J.J. and Beresnev, N. 2016. Mangrove carbon stock es-
timator and monitoring guide. United Nations Food and Agricultural Organization,
Regional Office for the Asia Pacific (UN FAO-RAP) & International Union for the
Conservation of Nature (IUCN).

Additionally, the first chapter of my thesis has been published in Environmental Research
Letters with minor differences from the version that is published here.

• Bukoski, J.J., Elwin, A., MacKenzie, R.A., Sharma, S., Purbopuspito, J., Kopania,
B., Apwong, M., Poolsiri, R., and M.D. Potts. 2020. The role of predictive model data
in designing mangrove forest carbon programs. Environmental Research Letters. doi:
10.1088/1748-9326/ab7e4e

I anticipate that the second and third chapters will be published in peer-reviewed journals
shortly after the completion of this dissertation.
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Chapter 2

The role of predictive model data in
designing mangrove forest carbon
programs

With Angie Elwin, Richard A. MacKenzie, Sahadev Sharma, Joko Purbopuspito, Benjamin
Kopania, Maybeleen Apwong, Roongreang Poolsiri, and Matthew D. Potts.

Originally published in Environmental Research Letters (2020) and reproduced with permis-
sion from all coauthors here.

Abstract

Estimating baseline carbon stocks is a key step in designing forest carbon programs. While
field inventories are resource-demanding, advances in predictive modeling are now providing
globally coterminous datasets of carbon stocks at high spatial resolutions that may meet this
data need. However, it remains unknown how well baseline carbon stock estimates derived
from model data compare against conventional estimation approaches such as field invento-
ries. Furthermore, it is unclear whether site-level management actions can be designed using
predictive model data in place of field measurements. We examined these issues for the case
of mangroves, which are among the most carbon dense ecosystems globally and are popular
candidates for forest carbon programs. We compared baseline carbon stock estimates de-
rived from predictive model outputs against estimates produced using the Intergovernmental
Panel on Climate Change’s (IPCC) three-tier methodological guidelines. We found that the
predictive model estimates out-performed the IPCC’s Tier 1 estimation approaches but were
significantly different from estimates based on field inventories. Our findings help inform the
use of predictive model data for designing mangrove forest policy and management actions.



8

Keywords

blue carbon, climate change mitigation, carbon offsets, carbon accounting, wetlands

2.1 Introduction

Forest carbon offset programs are controversial, partly due to the high levels of uncertainty
associated with estimating carbon fluxes from land use change [53, 144, 50]. The validity of
these programs for mitigating climate change depends in part upon these estimates and it
is therefore important for them to be accurate [51]. One key step in accurately estimating
the climate benefits from these programs is the estimation of baseline carbon stocks, or the
reference levels upon which potential project interventions are evaluated [10, 52]. Despite
their importance, obtaining accurate estimates of baseline carbon stocks can be a barrier for
program design due to the costs of implementing statistically valid field inventories. There
has consequently been longstanding interest in improving both the accuracy and precision
of baseline carbon stock estimates at lower costs [148, 90].

The Intergovernmental Panel on Climate Change (IPCC) is the foremost authority on
inventorying ecosystem carbon stocks. The IPCC provides a three-tier system for categoriz-
ing the accuracy and uncertainty of baseline carbon stock estimates [68]. Under the IPCC’s
guidelines, the Tier 1 and Tier 2 approaches use global and regional default parameters, re-
spectively. The Tier 3 approach uses “higher-order methods,” which may include models or
field data from national forest inventories to meet country-specific conditions. Inventorying
baseline carbon stocks under the Tier 3 approach provides the highest data quality but is
the most complex and resource-demanding [85].

To better understand global variation in forest carbon and potentially provide baseline
carbon stock estimates under a Tier 3 approach, global maps of carbon stocks are increasingly
being produced using predictive modeling. Modern classification techniques (e.g., machine
learning algorithms), access to remotely sensed data, and larger compilations of empirical
data have enabled these models to accurately predict trends in environmental variables from
global to sub-regional scales [121, 9, 44]. The benefits of these models include wall-to-
wall mappings of environmental variables, which can account for broad-scale variation in
forest carbon stocks or land use change [60]. The shortcomings, on the other hand, include
relatively coarse spatial resolutions as well as the risk of introducing bias when correlating
remotely sensed metrics to field data. Despite their promise, it remains unclear i) whether
the estimates are sufficiently accurate for designing forest carbon programs at local scales,
and ii) how these global predictive models fit best within the IPCC’s three tiers of approaches
for estimating carbon stocks [90, 61].

Mangroves are one ecosystem for which accurate estimates of baseline carbon stocks from
predictive models would be highly valuable [98]. Mangroves provide many environmental and
social benefits, including the stocking of large amounts of organic carbon [45, 35]. Further,
conservation of mangroves could help achieve many of the United Nations Sustainable Devel-
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opment Goals [17, 137]. As a consequence, mangrove-holding nations are interested in “blue
carbon” projects, or the financing of mangrove conservation and restoration through forest
carbon programs [143, 97, 58]. However, quantifying baseline carbon stocks in mangroves is
particularly resource demanding due to limited accessibility and the importance of the soil
organic carbon pool. Numerous predictive models of mangrove carbon stocks have conse-
quently emerged in recent years, potentially meeting the demand for accurate estimates of
baseline carbon stocks [65, 72, 122, 134].

Although a number of studies have compared predictive models of forest carbon stocks
against empirical data for pan-tropical forests, no study has done this for mangroves de-
spite their explicit inclusion in the 2013 Supplement to the IPCC Guidelines for National
Greenhouse Gas Inventories [66]. The lack of such a study is a key gap in the literature as
pan-tropical forest carbon maps are often inaccurate for mangroves due to unique ecological
conditions. For example, tidal dynamics greatly influence remotely sensed imagery often
used to produce these pan-tropical maps, potentially inducing high levels of uncertainty [89].
Operationalizing predictive models of mangrove carbon stocks for forest carbon program
design thus requires assessing the accuracy of these datasets as well as guidance on their use.

The goal of this study was to i) compare estimates of baseline carbon stocks in mangroves
derived from predictive model data against stock estimates derived through the IPCC’s meth-
ods, and ii) assess the accuracy of the predictive model data estimates against statistically
valid field inventories. To do so, we compared estimates of baseline carbon stocks built
off predictive model data against the IPCC’s approaches for mangroves located along four
coastlines of the globe. We compared the four estimates to gain insight into potential biases,
shortcomings, and benefits of each of the approaches. While the results are directly relevant
for the blue carbon community, the study also provides guidance on the role of predictive
models in environmental decision-making.

2.2 Methods

Study sites

We estimated ecosystem carbon stocks for mangroves along four coastlines of the world: a)
the northwest coast of the United Arab Emirates, b) the Brazilian coast south of the Amazon
river, and both c) the western and d) eastern coasts of peninsular Thailand (Figure 1). The
sites were selected to capture a range of mangrove climatic and geomorphological variation
(Table 1), including arid mangroves (UAE), sites heavily influenced by fluvial transport of
sediment (Brazil and eastern Thailand), and tidally-dominated estuaries (western Thailand).
Furthermore, only sites that used standardized methods and had field inventory data not
included in the predictive model parameterization were used. Each of the sites were sampled
with the primary objective of estimating site-level carbon stocks, and each of the sampling
regimes used protocols that were designed specifically to meet the IPCC’s Tier 3 approach.
Additional details of the sites and our selection criteria for inclusion are provided in the
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supplementary material.

Estimation approaches

We compared baseline carbon stock estimates at each site using four different approaches. It
is worth noting that there are errors and biases inherent to estimates of baseline carbon stocks
derived from both field inventories and predictive models, and objective comparisons of the
approaches are limited by the absence of “true” values of extant carbon stocks [61]. However,
it is valid to assume that each of the approaches provide independent estimates of the “true”
values of site-level baseline carbon stocks, and thus their comparison is informative. We
followed each of the IPCC’s Tier 1, Tier 2, and Tier 3 approaches for estimating baseline
carbon stocks, which are defined in terms of increasing methodological rigor. The Tier 1
and 2 approaches use global default parameters and country-level data on baseline carbon
stocks, respectively. The Tier 3 approach uses empirical data that account for site-specific
conditions and are collected through statistically valid field inventories. In addition to the
Tier 1, Tier 2 and Tier 3 approaches, we also performed site-level pseudo-inventories by
extracting carbon stock data from the modeled datasets at each of our field plots. We then
compared the plot-level and site-level estimates of baseline carbon stocks using each of the
estimation approaches.

Field inventories

Field inventory data were collected using variations of the Kauffman and Donato protocols
for sampling forest structure and carbon stocks in mangrove forests [77]. The protocols were
designed to fit the IPCC’s Tier 3 approach for estimating baseline carbon stocks. We sampled
the sites in Thailand and obtained plot level field inventory data for the UAE and Brazilian
sites from published datasets that used the same protocols [80, 126]. All field inventories
were designed with the stated purpose of estimating site-level ecosystem carbon stocks. The
boundaries of the sites under consideration were delineated using geographic information
systems software. Transects consisting of five to six circular plots at 25 m intervals were
randomly located and placed perpendicular to the shoreline within each mangrove forest,
allowing for unbiased estimation of site-level ecosystem carbon stocks. Within each plot,
all trees were identified to species and their stem diameters at breast height were recorded.
Additionally, soil cores up to 2 m depth were collected from the center of each plot with a
Russian peat auger.

Biomass carbon was estimated by converting diameter at breast height measurements to
volume estimates using species-specific allometric equations when available. In the absence
of species-specific equations, a general allometric equation for mangroves with species-specific
wood densities was used [83]. Soil carbon was estimated by coring each plot, collecting 5
cm soil samples at five depth intervals (0-15, 15-30, 30-50, 50-100, and 100-200 cm), and
processing the samples for percent organic carbon, bulk density, and soil organic carbon
density. Minor variations in the laboratory analyses of soil carbon existed across the studies,
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but all methods used widely accepted techniques for deriving bulk density (drying until
constant mass) and percent organic carbon (dry combustion with an elemental analyzer)
[119]. Soil organic carbon density was calculated as the product of percent organic carbon
and bulk density. Despite coring to a maximum of 2 m depth, we only examined soil organic
carbon stocks in the top meter of soil to match the predictive model data. The field inventory
methods are described in full detail in the supplementary information, as well as in the other
publications associated with the published datasets [18, 40, 80, 126].

Pseudo-sampling using predictive model data

We performed a pseudo-inventory of each site using the locations of the field inventory plots
by substituting predictive model data for field data. We used two raster maps at 30 x 30
m spatial resolution to extract modeled estimates of aboveground biomass and soil organic
carbon to 1 m depth using the Simard et al and Sanderman et al datasets, respectively [134,
122]. The Simard et al mangrove biomass data were produced by extracting mean canopy
height from synthetic aperture radar data and converting the measurements to biomass
estimates using allometric equations. The Sanderman et al dataset of soil organic carbon
was produced using the random forest algorithm to predict soil organic carbon in mangroves
as a function of globally coterminous covariates. Additional details of the predictive models
are provided in the supplementary information.

We used the plot-specific coordinates to extract the modeled estimates of aboveground
biomass and soil organic carbon from each sampling plot. We excluded plots whose geo-
graphic coordinates either could not be confirmed or did not align with the extents of the
modeled data. Aboveground biomass was converted to aboveground biomass carbon using
the IPCC’s conversion factor of 45.1% dry-weight biomass to biomass carbon. Accurate
estimates of belowground biomass are lacking due to the difficulties of field sampling root
biomass, and predictive models of belowground biomass in mangroves consequently do not
exist [4]. While we excluded belowground biomass from our statistical tests, we calculated
rough estimates using a simple root-to-shoot factor for mangroves of 27.8% and a below-
ground dry-weight biomass to biomass carbon ratio of 39% for a more complete picture of
ecosystem level carbon stocks [35, 77]. Others have recommended the adjustment of below-
ground biomass based on salinity and stem density; however, these variables are absent for
our plots and we did not apply this correction [4]. For those plots that were less than 1 m in
soil depth, we adjusted the predictive model estimates of soil organic carbon to the actual
soil depth of the plot given that the modeled soil organic carbon data are estimated at 1 m
depth.

Calculation of Tier 1 and Tier 2 estimates

We calculated Tier 1 and Tier 2 estimates of ecosystem carbon stocks using global and
regional default factors, respectively. For the Tier 1 estimates, we used default parameters
for mangroves specific to different climatic zones from the IPCC Guidelines [66]. While the
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IPCC Guidelines were recently updated, the specific guidance for wetlands were not refined
[96]. Losses from the soil organic carbon pool under shifting forest management practices
are assumed to be non-existent under the Tier 1 approach, and we therefore omitted the soil
organic carbon pool from our Tier 1 estimates. The IPCC’s Tier 2 methods are analogous
to Tier 1 methods but use country- or region-specific estimates of ecosystem carbon stocks
to reduce uncertainty. For the Tier 2 estimates, we used ecosystem carbon stock estimates
from published studies out of the same region. Specifically, we used a regional inventory
from Southeast Asia, an inventory from mangroves in Northeastern Brazil, and two studies
quantifying biomass and soil organic carbon stocks for mangroves from the Red Sea [35,
78, 6, 1]. Additional details of these studies and the Tier 2 approach are provided in the
supplementary information.

Statistical analyses

We calculated mean baseline carbon stocks for all sites using each of the four approaches.
For those approaches that allowed estimation of uncertainty, we also report the standard
error of the mean. Normality in the field inventory and model-derived data were assessed
using Shapiro-Wilk tests and quantile-quantile plots. We tested for significant differences in
baseline carbon stocks between the field inventory and model-derived estimates. To account
for spatial autocorrelation within transects, biomass carbon and soil organic carbon from all
plots within the same transect were averaged for both the field inventory and model-derived
data prior to the statistical tests. The statistical tests were performed with one-way analysis
of variance for normally distributed data and non-parametric Kruskal-Wallis analysis of
variance for non-normally distributed data.

2.3 Results

The estimates of baseline carbon stocks varied by both site and estimation approach. Figure 2
shows the ecosystem carbon stocks for the individual sites using each of the four estimation
approaches. The Tier 1 estimates do not incorporate soil organic carbon and therefore
differed substantially from the other estimation approaches at an ecosystem level. Given
that the sites only fell within two of the IPCC’s climatic classes for mangroves, only two
Tier 1 parameters were used (33.8 Mg C ha-1 for the UAE site, and 86.6 Mg C ha-1 for all
others). The Tier 2 estimates (regional defaults) both over- and under-estimated baseline
ecosystem carbon stocks relative to the Tier 3 field data (Table 2). Visual comparison of
baseline carbon stock estimates using the field inventory vs. predictive model data revealed
significant biases, particularly for aboveground biomass carbon.

Pooling the data across all sites, we did not find a significant difference in aboveground
biomass carbon for the field inventory versus predictive model data (Kruskal Wallis Test, χ2

= 0.114, p-value = 0.7). However, for the soil organic carbon data, we found a significant
difference between the field inventory and predictive model data when pooling across all sites
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(Kruskal-Wallis test, χ2 =11.4, p-value = <0.001). The results were variable for individual
sites. One of the five sites showed a significant difference for aboveground carbon stock
estimates whereas four of the five sites had significant differences in soil organic carbon
estimates (Table 3).

2.4 Discussion

Our results reveal substantial differences in baseline carbon stock estimates that arise from
the estimation approaches. The results suggest that estimating site-level baseline carbon
stocks in mangroves using default factors is inaccurate and does not account for important
regional and local variation. If we assume the field inventory data are the most accurate for
estimating true carbon stocks (as is widely done), it is clear that the predictive model data
better-approximate these estimates compared to the IPCC Tier 1 defaults and may outper-
form the Tier 2 approach in certain cases. These results parallel similar findings for predictive
models of biomass in tropical forests more generally and suggest that the widespread avail-
ability of predictive models of biomass may obviate the IPCC’s default factors at global
scales [90]. We delve more deeply into the differences in results below, offering explana-
tions for apparent contrasts that may emerge due to methodological differences. We then
make recommendations for the design of blue carbon programs and situate the estimation
approaches within ongoing systematic efforts for space-based monitoring of forest biomass.

Results of the four approaches for estimating baseline carbon
stocks in mangroves

Our results reveal substantial differences in baseline carbon stock estimates that arise from
the different estimation approaches. For the sites in which the Tier 2 estimates closely
approximated the site geomorphology (i.e., neighboring sites rather than regional invento-
ries; Brazil and the United Arab Emirates), the Tier 2 estimates based on field data better
approximated site level values than estimates from predictive model data. However, the esti-
mates derived from predictive model data better approximated the field inventory estimates
than the Tier 2 estimates for the sites in Thailand. These results suggest that while the
predictive models are capable of accounting for regional scale variation in ecosystem carbon
stocks, this ability begins to break down at local scales. For mangroves, these differences
at sub-regional scales are likely a result of differing mangrove typologies, which may depend
upon the particular hydrological, sedimentary, or climatic conditions at a given site [142].
While previous studies have provided country-level estimates of mangrove carbon stocks, a
potentially promising and more ecologically-informed update would be to produce country-
specific default mangrove carbon stocks by mangrove typology (e.g., lagoon vs. deltaic vs.
estuarine sites) [58, 120].

Despite the promise of predictive models for improving default estimates of carbon stocks,
our statistical comparisons of field inventory versus predictive model carbon stock estimates
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at the site level reveal significant differences. The findings emphasize that even with the
relatively fine spatial resolution of the predictive models (30 m), caution should be taken
in their use at site-level scales. These differences are particularly pronounced at the pixel
level, confirming the warnings of model producers against use of products at local scales
(panel b of Figure 2). While we acknowledge that direct comparisons of the plot-level field
inventory and predictive model estimates of carbon stocks are not valid due to their differing
spatial footprints, we visualize the data to further emphasize this point. Visual inspection of
plot-level carbon stock estimates against a one-to-one line (i.e., perfect alignment of stocks
estimates from field inventory and predictive model data) indicates that the variation in field
inventory aboveground biomass at the plot-level was not captured by the predictive models
(Figure 2). Estimates of aboveground biomass from the predictive model data fell between
<1 to 114.4 Mg C ha-1 across all sites whereas the estimates from the field inventories varied
from <1 to 490.3 Mg C ha-1. Although it is not possible to say for certain, the use of different
allometric equations (regional-level equations based on height for the predictive model vs.
species-specific based on diameter at breast height for the field inventories) likely contributed
to the differences in plot-level estimates of biomass. Other sources of uncertainty may have
included geolocation errors, error propagation and differences in timing of measurements.

Recommendations for the design of blue carbon projects

In considering our results, we recommend the use of predictive model outputs for estimating
site-level baseline carbon stocks over global defaults (Tier 1) and regional inventories (Tier
2). The predictive model data can provide large improvements in accuracy and are freely
available for those with capacity in geographic information systems (GIS). Free and open
source GIS software are sophisticated, well-developed, and provide a readily accessible means
to analyze the publicly available maps of mangrove carbon examined here. We further discuss
the utility of GIS for designing blue carbon projects in the supplementary information.

However, our results also indicate that Tier 2 estimates may out-perform predictive model
estimates when using field data from neighboring sites with similar geomorphological and
climatic conditions (e.g., see panel (a) of Figure 2 for the Arabian Gulf and Coast of Para). It
is important for blue carbon projects to justify their use of one data type over the other and
may be most appropriate to provide both. Additionally, we advise caution in using predictive
model data for decision-making at the within-site level despite their high spatial resolution.
Methodological differences in producing the datasets may bias estimates of carbon stocks
and may ultimately be ill-suited for interventions that are not uniform across space.

A hybrid approach that uses the predictive model outputs for stratifying sampling regimes
may hold promise in reducing uncertainty at lower costs. The aboveground biomass model is
based on a remotely sensed measure of canopy height, which is an appropriate variable to use
for stratifying sampling regimes of mangrove biomass. Should programs have capacity in GIS
analyses on hand, significant cost reductions can be achieved by using predictive model data
to inform stratified inventories [139]. Ultimately, a combination of modeled-derived data
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and field inventory data may provide the best combination of cost-efficiency and accuracy
in estimating baseline carbon stocks.

It is important to note that the epistemic stance of this paper emerges primarily from
the field of predictive modeling. While accurate estimates of carbon stocks are of clear
importance for advancing valid forest carbon programs in mangroves, there are other critical
barriers that emerge from disciplines such as the field of environmental justice [128]. For
example, equitable benefit sharing, assent of local communities, and de-/centralization of
governance can be equal, if not larger, barriers to forest carbon programs [95, 43]. Our aim
here is not to argue for more complicated measurements of forest carbon in mangroves but
rather situate the accuracy of publicly available datasets that may meet this need. While
we only note the importance of these additional barriers to carbon forestry programs here,
we provide additional discussion of them in the supplementary information.

Considerations for future field-based vs. model-based approaches

The uncertainty associated with not knowing the “true” value of ecosystem carbon stocks
will persist within forest carbon programs and is likely best addressed by a combination of
field inventory and model-based data. Given the absence of “true” values of mangrove car-
bon stocks at our sites, we cannot state that the predictive model data or field inventory data
provide more accurate or more valuable estimates of baseline carbon stocks in mangroves.
Field inventories provide nuanced measurements of ecosystem variables such as forest struc-
ture but are resource-demanding to collect and require the extrapolation of measurements
from plot to stand or site-level scales. Conversely, predictive models also provide direct es-
timates of forest metrics across broad regions but are limited in their ability to account for
fine scale variation. While both have their strengths and limitations, they are capable of
providing complementary information.

Numerous satellite missions with the primary objectives of estimating and monitoring
ecosystem biomass will be launched from 2020-2030 [60]. These missions will be critical
for measuring changes in forest biomass over broad scales, but will also need corresponding
field inventory data to validate the measurements and calibrate the predictive models based
upon them [124, 25]. Although limited in number, networks of large permanent plots exist
for other tropical forest types that will facilitate the use of space-based estimates of forest
biomass. However, to the best of our knowledge, permanent field plots of mangrove forest
structure and biomass are largely absent. While the Kauffman and Donato protocols and the
associated widespread collection of mangrove forest structure data have greatly benefited the
mangrove community, the next phase of mangrove forest biomass estimation and monitoring
would be appropriate in aligning with space-based missions capable of estimating ecosystem
structure.
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2.5 Conclusion

We tested the utility of predictive models to estimate baseline carbon stocks in mangroves,
which are among the most carbon dense ecosystems globally. Our results show that predictive
models are capable of providing more accurate estimates of ecosystem carbon stocks at
local levels relative to the IPCC’s Tier 1 default parameters. However, we also found that
estimates of mangrove carbon stocks derived from predictive model data were significantly
different from analogs based on comprehensive field inventories (IPCC Tier 3 approach). We
recommend the use of predictive models in designing national or regional forest policy and
strategies but also recommend caution in using them at local scales.
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Tables and Figures

Table 1. Key climatic and geomorphological characteristics of the sites. The mean annual
total suspended matter and tidal amplitude values are calculated by extracting and averaging
TSM and tidal amplitude data within a 50 km buffer of all plots, and averaging across those
values.

Table 2. IPCC Tier 1 and Tier 2 estimates of baseline ecosystem carbon stocks for the
mangroves of this study. The Tier 1 estimates use global default parameters provided in the
Wetlands supplement to the IPCC Good Practice Guidelines for National Greenhouse Gas
Inventories [66]. The Tier 2 estimates used published parameters from the countries and
regions of our mangrove sites. All carbon stock estimates are provided in mean Mg C ha-1,
and standard errors of the mean are provided where available. Soil organic carbon stocks
are constrained to 1 m depth.
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Table 3. Results of statistical tests for differences in site-level carbon pool estimates using
predictive model vs. field inventory data. The tests are performed for aboveground biomass
carbon (AGC) and soil organic carbon (SOC) constrained to a maximum of 1 m depth.
All values are in Mg C ha-1. All statistical tests are performed with the non-parametric
Kruskal-Wallis analysis of variance given non-normality in the data.
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Figure 1. Location of the mangrove sites included in this study. The mangrove sites are
located in Brazil, the United Arab Emirates, and Thailand. The three panels show: (A) the
Brazilian plots located along the coast of Para, (B) the mangrove sites in the Arabian Gulf,
and (C) the plots located in peninsular Thailand.
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Figure 2. Two-panel plot summarizing the estimation of ecosystem carbon stocks for each of
the five sites. Panel (a) compares the estimation approaches of Tier 1 (T1), Tier 2 (T2), Tier
3-model (T3m), and Tier 3-field (T3f) for the three key ecosystem carbon pools. Panel (b)
shows Tier 3-model vs. Tier 3-field estimate of plot-level carbon stocks for the aboveground
biomass and soil organic carbon pools. The SOC estimates in panel (a) are constrained to
1 m for the T2, T3m and T3f estimates. The Arabian Gulf plots are from the United Arab
Emirates, the Coast of Para plots are from Brazil, and the Krabi River Estuary, Pak Panang
Mangrove and Palian River Estuary plots are from Thailand.
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2.6 Supplementary Information

1. Additional details of the study sites

Overview

The sites included in our analyses were selected for several key reasons. The first was
that each of the inventories were designed with the primary objective of estimating site-
level carbon stocks. The second was that they used a variation of the Kauffman and Donato
protocols for sampling, which were designed to provide statistical estimates of forest structure
and carbon stocks in mangroves. The protocols were designed specifically with the IPCC’s
Tier 3 estimation approach in mind and consequently provide a high quality estimate of
ecosystem carbon stocks. Third, we selected sites that represented a range of different
climatic and geomorphological settings in mangroves (estuarine, deltaic, and arid). The sites
are not exhaustive of all mangrove typologies globally, but represent a range of environmental
conditions in which mangroves are found. Finally, we selected sites with field inventory data
that had not been included in the parameterization of the model. Both the predictive models
used in this study were published within the last two years and thus there are limited field
inventory datasets to test these models against given their exhaustive collection of inventory
data. We personally collected the field inventory data for the sites in Thailand whereas we
used published datasets for the sites from Brazil and the United Arab Emirates.

Coast of Para, Brazil

The mangroves in Brazil are found within a stretch of estuaries to the south of the
Amazon River. While several of the mangroves sampled are located along different rivers,
there is not sufficient data to treat them each as a separate site, and we therefore pool all
plots into a single site for the coastline. For our purposes, the sites do not differ in terms
of climatic conditions, tidal range (0.6 – 4.6 m), or total suspended matter, which are our
key variables for defining geomorphological setting. Similarly, the salinity and pH levels
across all sites are quite similar, indicating our pooling of sites across rivers is justified. The
mangroves receive suspended sediment from the Amazon River, which is transported along
the coast by wave action and subsequently transported into the mangrove forests by tidal
flooding. Species composition across all sites consisted of Rhizophora mangle, Avicennia
germinans, and Laguncularia racemosa. Examining the published estimates of biomass and
soil organic carbon across the sites shows relative consistency, adding further justification
for our pooling of all sites along the coastline [80].

Arabian Gulf, United Arab Emirates

The mangroves in the United Arab Emirates were located within the Arabian Gulf.
Annual rainfall in the Arabian Gulf is <100 mm, whereas evaporation rates are 1000-2000
mm. The mangrove data from these sites are therefore representative of arid mangroves.
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Salinity along the coastline is high and may reach >70 PSU during the summer due to
restricted tidal flushing and low precipitation rates. The mangroves along the Arabian Gulf
are monospecific stands of Avicennia marina, which are stunted in height due to climatic
factors. The tidal regime is complex due to the development and interaction of waves within
the Arabian Gulf. The spring tidal range is approximately 2.5 m, and tidal regimes are a
mix of diurnal and semi-diurnal [126]. Similar to the sites from the Coast of Para, we pool
the mangrove sites from the Arabian Gulf given data limitations and similarity in climatic
and geomophological conditions across sites.

Krabi River Estuary, Thailand

The Krabi River Estuary is located in Krabi province along the Andaman coast of Thai-
land. The Krabi River Estuary was designated as a Wetland of International Importance un-
der the Ramsar Convention in 2001. Although extensive aquaculture exists within the Krabi
River Estuary, several groups (e.g., the Mangrove Action Project and the Raak Thai Foun-
dation) are actively conducting mangrove restoration and afforestation through Community-
Based Ecological Mangrove Restoration, particularly within abandoned shrimp ponds. The
Krabi River Estuary is a relatively stable tidally-dominated mangrove. Transports of sedi-
ment occur along coastlines with heavy tidal flows shaping channels and islands parallel to
tidal flows within the mangrove.

Pak Panang Mangrove, Thailand

The Pak Panang Mangrove is located in Nakorn Si Thammarat province on the east coast
of peninsular Thailand. The Pak Panang Mangrove is publicly managed by the Department
of Marine and Coastal Resources. Although publicly owned, local communities have resided
in the mangrove since the 1960s and have used the forest to varying degrees. Despite a logging
ban that exists in Thailand, dispersed cutting of trees and harvesting of non-timber forest
resources such as crabs occurs throughout the mangrove forest. The Pak Panang Mangrove is
a highly active depositional landscape primarily influenced by wave action. Large amounts
of sediment are deposited at the mouth of the Pak Panang River, which is subsequently
shaped by northward wave action along the coast to form the Talumphuk peninsula and
spit. The Talumphuk peninsula shelters the Pak Panang Bay, which allows for low energy
conditions necessary for mangrove trees to establish. In addition to natural regeneration,
afforestation and restoration efforts have been undertaken within the Pak Panang Mangrove
since the 1990s.

Palian River Estuary, Thailand

The Palian River Estuary is located in Trang province on the west coast of peninsular
Thailand. Intact mangroves exist within the Palian River Estuary, as well as several stands of
closed-canopy mangroves that were restored in abandoned aquaculture ponds. The mangrove
forests are publicly managed by the Department of Marine and Coastal Resources and while
no cutting is allowed, conversion of mangroves to aquaculture along the forest fringes has



24

occurred. The mangroves of the Palian River Estuary are similar in geomorphological setting
to the Krabi River Estuary but with a few key differences. Relative to the Krabi River
Estuary, the main channel of the Palian River exists as a more prominent feature in the
estuary, possibly providing a more significant riverine influence.

Calculation of Total Suspended Matter and Tidal Amplitude metrics

We characterized each site based on metrics of total suspended matter (TSM) and tidal
amplitude. TSM is estimated from MERIS imagery produced by the Envisat satellite of
the European Space Agency. The ocean colors bands of MERIS imagery provide spectral
data optimized for conversion to estimates of total suspended matter, among other products.
We extracted monthly TSM data for the near shore environment at each of our sites, and
averaged all months from 2000-2012 to characterize mean annual sedimentary inputs to
each site. The estimates are reported in Table 1 of the manuscript. We used the M2 tidal
elevation amplitude product (FES2012) to characterize tidal amplitude. The FES2012 data
is a hydrodynamic model that estimates tidal elevation (i.e., amplitude), tidal currents and
tidal loading by assimilating altimeter data. We used the same total suspended matter and
tidal elevation data that was input to the global map of soil organic carbon for examining
variation in tidal influence across our sites [122].

2. Additional details of the methods

General approach

We compared baseline carbon stock estimates for five sites across four coastlines in Brazil,
the United Arab Emirates, and Thailand. We used the IPCC’s three tiers of methodological
approaches for estimating extant carbon stocks as well as a pseudo-inventory that substitutes
data from predictive models for field inventory data. The four different approaches were:
i) global default parameters (IPCC Tier 1), ii) regional default parameters (IPCC Tier 2),
iii) a statistically designed field inventory (IPCC Tier 3), and iv) a pseudo-inventory that
substitutes predictive model data for field inventory data. The Tier 3 field inventory data
were collected through intensive sampling campaigns of biomass and soil carbon stocks at
each of the sites. We assumed that the Tier 3 field inventory data were of the highest
accuracy as is commonly done within the literature. Using the modeled datasets of global
mangrove carbon, we performed a pseudo-inventory by extracting carbon stock data from
the modeled datasets using the geographic coordinates of each of our field plots. Finally, we
estimated baseline carbon stocks for each site using the IPCC’s Tier 1 and Tier 2 approaches.
We then used statistical tests to identify significant differences in the baseline carbon stock
estimates across sites. We compared both site-level and plot-level values given that both are
important for carbon forest program design.

Additional details of the predictive models

Two spatially-contiguous maps of mangrove carbon stocks were used in this study. The
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first is a dataset of mangrove biomass stocks that was derived from remotely sensed mea-
surements of mean canopy height and regional-level allometric equations [134]. The second
is a dataset of soil organic carbon to 1 m depth that was modeled as a function of empirical
estimates of soil organic carbon as well as environmental covariates [122]. Both datasets
were produced at 30 x 30 m resolution and are publicly available for mangroves, globally.
We recount key details of the models here whereas the full descriptions of their production
can be found in the original publications.

The mangrove biomass dataset was produced by converting remotely sensed measure-
ments of mean canopy height to biomass using allometric equations. The remotely sensed
measurements of canopy height were extracted from the digital elevation model of the Shut-
tle Radar Topography Mission as well as lidar heights from the ICESat/GLAS Spaceborne
Lidar mission. Field plots across three regions of the globe were then sampled to build
regional scale allometric equations for both canopy height and basal-area weighted canopy
height to biomass. Both allometric equations were assessed and the basal-area weighted
canopy height equation was found to more accurately estimate biomass. Following the pro-
duction of basal-area weighted canopy height maps, the data were converted to estimates of
biomass using the regional allometric equations. The authors report notably high RMSEs of
the biomass data, which range from 54.3 – 134.3 Mg ha-1 depending on the region-specific
allometric equations (Supplementary Table 8 of the original study).

The soil organic carbon dataset was produced with a different approach. First, a global
dataset of depth interval specific soil organic carbon measurements was collected using pub-
lished and unpublished data. Second, a large list of environmental covariates that are known
to influence soil organic carbon stocking and are globally available were collated as a raster
stack. The geographic locations of the empirical soil carbon measurements were then used
to extract estimates of the environmental covariates at those locations, and a random forest
model was used to predict depth interval specific soil organic carbon as a function of the
environmental covariates. Following its validation, the model was used to produce a globally
coterminous map of mangrove soil organic carbon at 30 x 30 m resolution. Cross-validation
of the model produced an R2 value of 0.63 and a RMSE of 10.9 kg m-3 compared to a mean
soil organic carbon density of 29.6 kg m-3. Additional details are provided in the original
publication [122].

Tier 3 field inventories of baseline carbon stocks Field inventories of the mangroves in Brazil

and the United Arab Emirates

The mangrove sites in Thailand were sampled by the authors of this study, whereas the
mangroves of Brazil and the United Arab Emirates were sampled by others. We refer the
reader to the original publications for the Brazil and United Arab Emirates inventories for
the full details of the sampling designs and methods [126, 80]. All field inventories used
comparable sampling designs. Transects were randomly located within the forests and five
to six plots of 7 m radius were established at 25 m intervals along each transect. All trees
(DBH >5 cm) within the 7 m plot were identified to species and the stem diameter at
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breast height (DBH; 1.37 m height) was recorded. Soil cores were collected up to 2 m depth
using standardized methods, which we describe in detail below. The data from the field
inventories were collected from published datasets of the full field inventories (i.e., tree-level
measurements of DBH). The data from the United Arab Emirates are available through the
supplemental information of [126], whereas the data from the Brazil mangroves are available
through the Sustainable Wetlands Adaptation and Mitigation (SWAMP) program database
hosted by the Center for International Forestry (CIFOR).

Field inventories of the mangroves in Thailand

The mangrove forests of Krabi River Estuary and Pak Panang Mangrove were initially
sampled in 2015, with additional soil cores collected from the forest plots in 2018 [18, 40].
All sampling in the Palian River Estuary was conducted in 2013. Sampling points for
the establishment of transects were randomly located in the forest irrespective of distance
from the shoreline. This design was taken given a primary concern for estimating site-level
structure and carbon stocks rather than stratifying across ecological gradients (e.g., fringe
vs. interior forests). Each transect consisted of four to six plots spaced at 25 meter intervals,
totaling 75-125 m in length. The plots were 7 m in radius with a 2 m subplot nested at its
center.

All trees greater than 5 cm DBH were identified to species and their DBH was subse-
quently recorded with a diameter tape. Within the subplot, the DBH of all saplings (height
>1.37 m; DBH <5 cm) was recorded and trees were identified to species, whereas seedlings
(height <1.37 m) were identified to species and counted. Soil cores were taken using a peat
auger of one meter length, which minimizes compaction of soil cores in wet sediment. Upon
extraction of a complete core, subsamples were taken from each of the 0-15, 15-30, 30-50,
and 50-100 cm depth intervals. A second core from 100 – 200 cm depth was then taken from
the same location and a fifth soil subsample was taken randomly from the 100 – 200 cm
depth interval. Subsamples were 3 to 5 cm in length and were selected from the most “full”
section of the depth interval. Soil depth was estimated by inserting a 3 m avalanche probe
until the point of refusal (or its full length) at three separate points within each plot. The
three depth estimates were averaged for a total plot-wise soil depth estimate.

All DBH measurements for trees and seedlings were converted to biomass volume es-
timates using allometric equations. Species-specific allometric equations derived from the
region were used when available [18]. In the absence of a species-specific equation, we sub-
stituted species-specific equations from the same genus (e.g., use of an Avicennia marina for
Avicennia alba) given similar tree morphologies. A general allometric equation for mangrove
trees with species-specific wood densities was used in all other cases [24, 84, 151]. All volume
estimates were summed within plots and averaged across plots to obtain transect-wise es-
timates of dry-weight biomass volume. Conversion factors of 0.47 for aboveground biomass
and 0.39 for belowground biomass were used to estimate biomass carbon as a function of
dry-weight biomass.

All soil laboratory analyses were performed at the Faculty of Forestry at Kasetsart Uni-
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versity in Bangkok, Thailand. Soil samples were analyzed for bulk density and percent
organic carbon. The soil samples were dried at 60 °C until constant mass and bulk density
was estimated as a function of dry-weight to volume. Total carbon was calculated using
a TCN analyzer and the dry combustion method for carbon analysis. Soil organic carbon
density (g/cm3) was calculated as the product of bulk density and percent organic carbon.
Total soil organic carbon estimates per ha were estimated by extrapolating depth-interval
specific carbon densities to the volume of the depth interval and summing across depth in-
tervals. Average values for each ecosystem carbon pool were calculated for all transects and
used to estimate total ecosystem carbon stocks for all three sites. Additional details of the
field sampling are provided in the supplementary information of [18].

Tier 1 & 2 carbon stock estimation overview

The IPCC provides guidance in estimating Tier 1 and Tier 2 carbon stocks and emis-
sions. Tier 1 estimates are derived from default parameters and equations whereas Tier 2
estimates are derived from country- or region-specific parameters and equations. In calcu-
lating Tier 1 and Tier 2 estimates of carbon stocks for each of our sites, we followed the
IPCC guidance from three key documents: i) the 2019 refinement to the 2006 Guidelines for
National Greenhouse Gas Inventories, ii) the Good Practice Guidelines for Land Use, Land
Use Change and Forestry, and iii) the 2013 Supplement to the 2006 IPCC Guidelines for
National Greenhouse Gas Inventories: Wetlands [39, 66, 67].

Tier 1 estimates of mangrove carbon stocks

The IPCC provides two methods for estimating changes in ecosystem carbon stocks: i) the
gain-loss method, and ii) the stock-difference method [39]. The gain-loss method calculates
the net change in biomass as a function of gross biomass gains and gross biomass losses.
The stock-difference method, on the other hand, is time-resolved and spatially-explicit. The
stock-difference method calculates changes in carbon stocks for distinct locations at given
points in time. For the Tier 1 approach, only the gain-loss method is appropriate given
data constraints [39]. Specifically, global default parameters do not allow for modeling gains
or losses at distinct places or points in time but rather aggregate estimates of net change
in stocks. The stock-difference approach is therefore only appropriate for Tier 2 or Tier 3
approaches.

For estimating baseline ecosystem stocks under a gain-loss method, the IPCC provides
default global parameters for mangroves in the 2013 Supplement to the 2006 IPCC Guidelines
for National Greenhouse Gas Inventories: Wetlands [66]. Under the Tier 1 approach, losses
from the soil organic carbon pool are assumed to be non-existent and we therefore omitted
the soil organic carbon pool from our Tier 1 estimates of baseline carbon stocks. Similarly,
while the IPCC recommends reporting the coarse woody debris pool, it is commonly omitted
due to high levels of uncertainty and the relatively small contribution of coarse woody debris
to ecosystem carbon stocks in mangroves. We consequently report only default parameters
for aboveground biomass and belowground biomass carbon in mangroves.
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The IPCC reports average values by land use and land use conversion type for estimation
of biomass carbon. Given that we are concerned with baseline estimates of carbon stocks, we
used values for “forest land remaining forest land.” We used Tier 1 default parameters specific
to “tropical wet” mangroves for the sites in Brazil and Thailand, which is the appropriate
climatic zone for our sites. The IPCC reports an average dry-weight biomass value of 192
Mg C ha-1, as well as a percent biomass carbon factor of 45.1%. Additionally, we estimated
belowground biomass using the aboveground to belowground biomass ratio of 49% reported
in the 2013 Wetlands Supplement. For the mangroves from the United Arab Emirates,
we used values for “subtropical” mangroves. The IPCC reports limited default parameters
for mangroves and the “subtropical” mangroves values best approximated the United Arab
Emirates sites. The IPCC reports average dry-weight biomass of 75 Mg C ha-1 for subtropical
mangroves, which we also adjusted by the percent biomass carbon factor of 45.1%. We
estimated belowground biomass carbon as a function of aboveground biomass carbon similar
to the tropical sites.

Tier 2 estimates of carbon stocks in mangroves

We derived Tier 2 estimates (country- or region-specific) using default parameters of
ecosystem carbon stocks from published values of mangrove carbon stocks in the academic
literature. We used values from individual studies for both Brazil and Thailand whereas
we used a combination of two studies for the United Arab Emirates. To the best of our
knowledge, no single inventory of both biomass and soil organic carbon stocks other than
the inventory included in our analysis exists for the arid mangroves of the Middle East.
Thus, we used the estimates of biomass and soil organic carbon from two separate studies.

For Brazil, we used published values of aboveground biomass carbon and soil organic
carbon from a study that quantified mangrove ecosystem carbon stocks in the state of Ceará
[78]. The state of Ceará is located along the same section of coastline as Para and also uses
the Kauffman and Donato sampling protocols. The estimates of baseline carbon stocks are
therefore expected to closely approximate the Brazil field inventory data used in our analysis
and are justifiable values for a Tier 2 estimate. We used the estimates of biomass carbon
stocks reported in the article directly whereas we constrained estimates of soil organic carbon
to a maximum of 1 m depth to match the predictive model estimates of soil organic carbon.

We used two studies reporting biomass carbon and soil organic carbon stocks from man-
groves of the Red Sea as Tier 2 estimates of baseline ecosystem carbon stocks for mangroves
in the Arabian Gulf [1, 6]. Baseline carbon stock inventories in arid mangroves of the
Middle East region are relatively rare. The studies we extracted values from did not use
the Kauffman and Donato protocols but nonetheless provided robust estimates of site-level
aboveground biomass carbon and soil organic carbon stocks in arid mangroves. The general
approach of the biomass and soil organic carbon were sufficiently similar to the Kauffman and
Donato protocols to justify their use. Specifically, aboveground and belowground biomass
carbon were estimated by converting tree DBH measurements to dry-weight biomass esti-
mates through allometric equations [1]. Sampling of soil carbon was performed through
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coring and subsampling the core along specified depth intervals, thus accounting for varia-
tion in soil organic carbon density with depth [6]. Both sites were monospecific stands of
Avicennia marina and had similar climatic and geomorphological conditions to the Arabian
Gulf.

For Thailand, we used values from one of the most well-cited studies for mangrove car-
bon stocks in Southeast Asia [35]. The study performed a regional inventory of mangrove
carbon in Southeast Asia (25 sites across Borneo, the Ganges-Brahmaputra Delta, Java,
Kosrae, Palau, Sulawesi, and Yap) and reports estimates of carbon stocks across all ecosys-
tem carbon pools for mangroves. Mangrove carbon stocks are reported for all sites as well
as disaggregated into estuarine and oceanic sites. We use the summary values for estuarine
mangroves given that they are the most appropriate for our sites. The aboveground biomass,
belowground biomass, and coarse woody debris are used directly from the table, whereas the
soil organic carbon values require extrapolation to 1 m depth. No horizon specific data on soil
bulk density, percent organic carbon, or carbon density is reported. We are consequently
limited to using average bulk density and percent organic carbon values for the full core
depth despite the fact that soil carbon density varies as a function of soil depth.

3. Additional points of discussion

The role of Geographic Information Systems (GIS) for mangrove carbon programs

Both of the modeled carbon stock datasets examined in this study are available as global
rasters at 30 x 30 m resolution. Access, use, and analyses of these data therefore require the
use of Geographic Information Systems (GIS) software, warranting a brief discussion of the
role of GIS for mangrove carbon programs. Geospatial data analyses are common within the
mangrove research community and may include studies of land cover and/or land use change,
inventories, and predictive modeling as exemplified by the studies considered here [134, 122].
A large amount of sophisticated and well developed free and open source GIS software
exists, including both graphical user interface (e.g., QGIS) and code-based (e.g., Program
R, Python) platforms. Common within the research community, basic spatial analyses steps
such as overlaying rasters and extracting values at points of interest or summarizing data
for regions of interest are feasible for mangrove managers, policy-makers and practitioners.
A large number of freely available resources exist to aid in these endeavors [14].

An extension of GIS is remote sensing, which typically consists of converting raw imagery
of landscapes into processed data. Remote sensing can refer to a wide range of datasets but
perhaps most commonly refers to the analysis of satellite imagery at local to global scales.
Similar to GIS, remote sensing in mangroves is common but has unique challenges due to the
mixing of water, soil, and vegetation within the same pixel [89, 47]. Ongoing satellite missions
(e.g., the NASA Landsat program) provide publicly available data at repeat time intervals,
which can allow for basic analyses and monitoring of landscapes. Although conversion of raw
imagery to useful datasets is perhaps more complicated than analyzing pre-existing spatial
datasets, there are also a large number of online tutorials to assist potential users in basic
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remote sensing procedures.

Additional discussion of predictive modeling in mangroves

Modern classification techniques, publicly available remotely sensed imagery, and large
databases of ecological data have greatly enabled predictive modeling in the environmental
sciences. Mangroves are simultaneously conservation hotspots and difficult to access, render-
ing predictive models particularly useful for filling important data gaps. As larger datasets
and more powerful modeling techniques become available in the future, additional global
datasets of key variables for mangroves will likely emerge. For example, moving beyond ex-
tant stocks to model net primary productivity, soil carbon accretion, or export of particulate
and/or dissolved organic carbon would be highly valuable for the mangrove community. Pre-
dictive models are works in progress that are ultimately limited by the data available during
their production. Approaches in which models are consistently maintained and updated via
the incorporation of new training data are particularly valuable. Nevertheless, it is critical
for model producers to provide clear guidance on the use of model outputs. Additionally,
predictive modeling in mangroves would do well to align with existing and future efforts such
that data are directly comparable across time and space. For example, the large number of
remote sensing missions capable of measuring forest structure are likely to provide more con-
sistent and regular estimates of biomass in forests, globally. Aligning future modeling efforts
with these datasets will not only facilitate better understanding of their ecology and impacts
from change, but also advance the forecasting of impacts from future pressures (including
climate change) on mangroves in the future.

Other barriers to forest carbon programs

While we believe that accurate estimates of carbon stocks are important for designing and
implementing valid carbon forestry programs, we recognize that there are other important
barriers to the success of these programs [95, 146]. The quantification of carbon stocks
in mangroves is a technical science, whereas the management of natural resources requires
accounting for social, economic, and political factors. Considerations that relate to the
human side of natural resource management – e.g., de-/centralization of governance, benefit
sharing, assent of stakeholders, and/or leakage – can be stronger barriers or challenges for
the success of carbon forestry programs than the quantification of carbon stocks [128, 70].
Our aim in this study was not to argue for more technical or complex inventories of carbon
stocks in mangroves, which are often more expensive and add financial barriers to programs,
but rather to situate publicly available data that is potentially more accurate and more
representative of mangrove carbon stocks, globally. Uncertainty in carbon stocks can be
dealt with by using conservative estimates, but may ultimately result in reduced benefits for
local communities. Ultimately, carbon stock estimates should not constrain the development
of carbon forestry programs, but should be robust enough that programs induce tangible
draw-downs in atmospheric carbon. Although we only note a few of these barriers here,
there is a large and robust literature on socio-economic and socio-political constraints to
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forest carbon programs. We strongly recommend the reader examine this literature for a
more full and complete picture of forest carbon programs.
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Chapter 3

Net loss statistics underestimate
carbon emissions associated with
mangrove land use and land cover
change

Abstract

Converting mangroves to other land cover types can induce large emissions of carbon dioxide,
depending on the type of land use and land cover change (LULCC). However, mangroves may
also recover their ecosystem carbon stocks rapidly following restoration, potentially offset-
ting prior losses of carbon stocks. While a number of studies have quantified these tradeoffs
at global scales using coarse metrics, fewer studies have quantified them at national scales at
higher resolution. Here, we used high resolution datasets of land use and land cover in the
mangrove-holding regions of Thailand to quantify emissions of carbon associated with gross
versus net changes in mangrove extent from ∼1960-2014. We found emissions associated with
metrics of gross gain and loss (7.18 ± 0.24 million Mg C) to be greater than those associated
with net area change statistics (1.65 ± 0.26 million Mg C) by a factor of four. The difference
in estimates arises from slower rates of carbon stock recovery following reforestation relative
to carbon stock loss following LULCC. Overall, we found the greatest gains in mangrove
carbon stocks to be from mangrove expansion in areas of accreting sediments, which were
strongly correlated with district-level extent of undisturbed mangroves. Our results show
that net loss statistics may greatly underestimate emissions associated with LULCC in man-
groves. Additionally, our findings suggest that carbon sequestration associated with natural
establishment by standing mangroves may offset substantial carbon stock losses at national
scales.
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3.1 Introduction

Vegetated coastal ecosystems such as mangroves, seagrass beds, and salt marshes—commonly
referred to as blue carbon ecosystems—are capable of stocking large quantities of organic
carbon [35, 96, 98]. The vegetation structures of blue carbon ecosystems help promote the
rapid burial of organic material in soils, both through direct contributions from belowground
biomass production as well as the capturing of suspended mineral sediment in water columns
[87]. Furthermore, the anaerobic conditions and abundant sulphate of intertidal soils help to
suppress remineralization of soil organic carbon once it has been buried [19]. As a result of
these processes, blue carbon ecosystems are estimated to account for half of the carbon burial
in marine sediments despite occupying less than 2% of the coastal ocean floor [36]. Con-
serving and restoring blue carbon ecosystems have consequently been identified as promising
natural climate solutions, potentially providing large carbon drawdowns at low costs [55, 71,
132].

Mangroves—the intertidal forests of tropical and subtropical coastlines—are a high-profile
blue carbon ecosystem. Mangroves have historically had very high rates of deforestation
[37] but have more recently seen reduced rates of loss [48, 116]. The ability of mangroves
to rapidly sequester organic carbon while also providing abundant non-carbon ecosystem
services has encouraged coastal managers and policymakers to reduce their deforestation [42].
At global scales, mangrove loss rates have been reduced from as much as 2% per year in the
early 2000s to a mean annual rate of 0.26-0.66% from 2000-2012 [37, 57]. Given widespread
historic losses of mangroves, there is interest in not only halting further deforestation of
mangroves but also also in their restoration [54, 91].

Despite these successes, human-driven land use and land cover change (LULCC) continues
to drive losses of mangroves [48]. LULCC in mangroves has both substantial and varied
impacts on ecosystem carbon stocks, depending on the carbon pool and the type of LULCC
that occurs [42, 81, 123]. For LULCC that disturbs organic soils—where the majority of
carbon is found in mangrove ecosystems—the impacts on the climate over near- to mid-term
time frames are uncertain. Some studies have shown rapid recovery of soil organic carbon
stocks in mangroves following restoration [2, 117] whereas others have deemed the resulting
emissions “irrecoverable,” or unable to be recovered on meaningful timescales for avoiding
dangerous climate change [49, 79]. Others have suggested that substantial quantities of soil
organic carbon may be preserved in aquaculture soils following LULCC [40].

Understanding of mangrove loss and gain has largely been driven by global or regional
analyses of earth observation data [46, 116, 140]. While valuable in providing global snap-
shots of the state of mangroves, many of these studies use coarse aggregations of land use and
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land cover type (e.g., mangrove vs. non-mangrove) that make it difficult to disaggregate the
effects of specific LULCC types on carbon emissions. While these methodologies are effective
at quantifying mangrove deforestation in areas of rapid mangrove loss such as Myanmar [28],
they may underestimate loss in regions where net loss is relatively static but conversion of
mature mangroves to other land uses continues to occur. In recognizing this, recent studies
have noted the importance of smaller-scale studies that are capable of modeling LULCC in
mangroves across more-specific land cover classes and at finer spatial resolutions [42, 149].

Thailand is one country in which net mangrove loss is relatively low yet LULCC within
its mangrove-holding regions continues to occur. Thailand has lost approximately half of
its historical mangrove extent, largely through conversion to shrimp aquaculture [5]. Today,
Thailand’s coasts are a shifting mosaic of mangrove forest, active and abandoned aquacul-
ture ponds, and other coastal land uses such as agriculture and salt farms. Within this land-
scape, it is unclear if mature mangrove forests are truly protected from further conversion,
or whether continued losses are offset by gains in mangrove canopy cover from restoration
projects and natural regeneration. Although widespread within Thailand, mangrove restora-
tion projects are controversial due to low rates of establishment and seedling survival [141].
Under the case in which continued mangrove loss is offset by planted mangroves with low
rates of survival, the greenhouse gas emissions associated with this shifting coastal landscape
may be greatly underestimated by statistics of net area loss.

To examine the impacts of shifting LULCC on mangrove carbon stocks, we quantified
gross versus net changes in Thailand’s mangrove carbon stocks across nine different land
cover classes from before their widespread conversion (ca. 1960) to the present (2014).
Specifically, we asked how do changes in mangrove carbon stocks disaggregated by type of
LULCC compare to carbon stock change estimates based on statistics of net loss of area?
We answered this using multiple high-resolution datasets of land use and land cover data
from mangrove-holding regions in Thailand. These datasets allowed us to model LULCC
over multiple time periods and through distinct trajectories, as well as the associated gains
and losses of pool-specific carbon stocks. Finally, we used scenario analysis to examine
the potential of mangrove restoration to contribute to Thailand’s Nationally Determined
Contribution under the United Nations Framework Convention on Climate Change.

3.2 Methods

Description of datasets

Our analysis is based on datasets of mangrove carbon stocks and land use and land cover
along Thailand’s coasts. We used five datasets in this study: two published rasters of above-
ground carbon and soil organic carbon stocks in mangroves, and three maps of land use
and land cover in Thailand’s mangrove holding regions. The aboveground carbon and soil
organic carbon data are published rasters at approximately 30 x 30 m spatial resolution,
which have been widely used for modeling of carbon stock changes in mangroves at broad
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geographic scales [122, 134]. Specifically, these maps have informed analyses at both national
[88] and global scales [3, 117, 152]. Although in situ measurements of aboveground carbon
and soil organic carbon data are preferable over global maps, these data are unavailable
across wide geographic scales for Thailand, hence necessitating the use of these maps. More-
over, the maps of carbon stocks have been cross-validated and have associated uncertainty
measurements, which we have incorporated into our analyses.

We obtained land use and land cover data from the Thai Department of Marine and
Coastal Resources. The datasets map land use and land cover in mangrove holding regions
of Thailand for the years 2000 and 2014. The extent of all land use and land cover categories
in the 2000 dataset corresponds to the historical extent of mangroves in Thailand, giving us
a third dataset before the widespread conversion of mangroves to aquaculture. Given that
Thailand saw significant changes in its extent of mangroves beginning in the 1960s, we refer
to this dataset as the “pre-1960” dataset [5]. All datasets were processed to align spatial
properties (i.e., extent, resolution and projection) and data formats before being analyzed
(see Section S1.1 of the supplementary information).

Characterization of district-level mangrove carbon stocks

To estimate potential changes in carbon stocks associated with mangrove loss and gain, we
used the aboveground carbon and soil organic carbon rasters to derive average carbon stock
values for each of Thailand’s 97 coastal districts. The aboveground carbon and soil organic
carbon datasets provided estimates of mangrove carbon stocks for the year 2000. Given no
other means of estimating carbon stocks from pre-1960 or 2014, we consequently assumed
that the district level averages are representative of carbon stocks in established mangroves
across this time period. For districts that had mangroves fully extirpated from them by 2000,
we obtained district-level averages by averaging across all districts within the province.

Mangrove carbon stocks vary spatially as a function of environmental constraints on
their productivity and burial rates of carbon in sediments. Although the raster datasets
account for spatial variability, the potential for geomorphology to vary within districts and
potentially bias our estimates of carbon stocks exists. We tested for the spatial scale at which
proxies for site geomorphology influenced mangrove carbon stocks using a k-means clustering
algorithm and raster products of total suspended matter and tidal amplitude (Section S1.2).
The clustering algorithm produced clusters at broader scales than districts, suggesting that
district-level stock averages are sufficient for our purposes.

Modeling of land use and land cover change

We estimated LULCC for two time periods: from pre-1960 to 2000 and from 2000 to 2014.
The total extent of the land use and land cover data from 2000 is the Thai Department of
Marine and Coastal Resource’s best estimate of the original extent of mangroves in Thai-
land (pers. comm. Srisawalak & Vincent), and we therefore used it as our estimate of
pre-1960 mangrove extent. To obtain estimates of LULCC from 1960-2000, we summed the



36

land use and land cover classes from the 2000 dataset. Although it is likely that individ-
ual pixels underwent multiple instances of LULCC from 1960 and 2000 (e.g., mangrove to
aquaculture to mangrove), we did not have the independent estimates of losses and gains
necessary to estimate gross changes in carbon stocks associated with these transitions. We
consequently omitted the potential impacts on carbon stocks of these transitions from our
analysis. Using the spatially-aligned rasters of land use and land cover from 2000 and 2014,
we cross-tabulated the datasets to obtain LULCC from 2000 to 2014. We quantified transi-
tions of a “no data” category in 2000 to other land use and land cover classes in 2014, which
allowed us to identify new stands of mangroves that colonized areas not included in the 2000
dataset (e.g., prograding shorelines).

Modeling gains and losses of mangrove carbon stocks

Next, we modeled changes in carbon stocks as a function of the district-level average carbon
stock densities and extents of LULCC. Our approach was similar to those of other recent
studies [117]; however we believe it is a marked improvement for several reasons. First,
we used data that identifies nine different land use and land cover types, which allows for
examining LULCC specific effects on mangrove carbon stocks. Second, we used an improved
approach for modeling changes in mangrove aboveground carbon and soil organic carbon
stocks. Former approaches have relied on carbon stock recovery models that include all
blue carbon ecosystems (i.e., both seagrasses & salt marshes) and may therefore use overly
optimistic recovery rates of carbon stocks in mangroves [117, 103]. That is, aboveground
carbon (and possibly soil organic carbon) pools in forests are expected to take substantially
longer to develop relative to seagrass and salt marsh ecosystems and conflating their recovery
times may produce biased results. Third, we modeled the recovery of aboveground carbon
and soil organic carbon separately, which provides a refined description of carbon stock
recovery in mangroves.

We parameterized five equations to model changes in carbon stocks as a function of time:
loss of aboveground carbon, loss of soil organic carbon, gain of aboveground carbon, gain
of soil organic carbon, and foregone carbon sequestration by standing forests. We excluded
changes in carbon in the belowground biomass pool given that this pool is highly uncertain
in mangroves. Moreover, default ratios for estimating belowground biomass as a function of
aboveground biomass (e.g., a root:shoot ratio) are likely to vary spatially and we did not
have a means to account for this variation [4].

Each of Eqs 1a, 1b, & 2 predicts the natural logarithm of the response ratio, where
the response ratio is the ratio between carbon stocks in a disturbed versus undisturbed
reference site. The losses in aboveground carbon and soil organic carbon are modeled as a
linear function of time since LULCC, whereas gains in soil organic carbon are modeled as a
log-linear function of time since LULCC.

Eqs. 1a & 1b:
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ln(RR)AGC, SOC Loss = a+ b ∗ t

Eq. 2:

ln(RR)SOC Gain = a+ b ∗ ln(t)

Where:

• ln(RR) is the natural logarithm of the response ratio for aboveground carbon loss (Eq.
1a), soil organic carbon loss (Eq. 1b), and soil organic carbon gain (Eq. 2),

• t is time since LULCC in years,

• and a and b are statistical parameters to be estimated from the data.

To parameterize the aboveground carbon loss (Eq. 1a), the soil organic carbon loss (Eq.
1b), and the soil organic carbon gain (Eq. 2) equations, we used data from two quantitative
meta-analyses on impacts of land cover change on mangrove carbon stocks [103, 123]. Data
from Sasmito et al was used to parameterize the aboveground carbon loss (Eq. 1a) and
soil organic carbon loss (Eq. 1b) equations. For Eq.2, we used data on the recovery of
carbon stocks in blue carbon ecosystems, which included all ecosystem pools and vegetated
blue carbon ecosystems (e.g., seagrasses, salt marshes, and mangroves) [103]. However, we
filtered their references to only those that report data on soil organic carbon recovery in
restored mangroves and added data from one additional study that reports data on soil
carbon recovery in Thai mangroves (S1.3) [40].

We then fit Eq. 1a using a linear regression model given that all data points came from
independent sites, whereas we fit Eq. 1b and Eq. 2 using mixed effect models due to site-level
correlations in the data. To account for this correlation, we included a random intercept by
site. We fit Eq. 1 using the ”lm” function in the base package of Program R, whereas we fit
the mixed effects models with the {nlme} package [112].

We modeled recovery of aboveground carbon in mangroves separately from soil organic
carbon stocks using data reported by Sasmito and colleagues [123]. To model recovery of
aboveground carbon, we used the Chapman-Richards growth curve, which is both a flexible
and theoretically defensible descriptor of forest development across time (Eq. 3). The
Chapman-Richards growth curve has four parameters, each of which describes theoretical
components of growth: A, the maximum asymptotic growth limit, b a scaling parameter, k
the rate of growth, and m an allometric constant. For our purposes, we were most concerned
with A, the asymptotic growth limit, and k the rate of growth, which we discuss in detail
below. The Chapman-Richards curve is specified as:

Eq. 3:
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AGC = A ∗ (1− b ∗ e(−k∗t))(1/(1−m))

Where:

• AGC is aboveground carbon in Mg C ha-1,

• t is the age of the forest stand in years, and

• A, k, b, and m are parameters to be statistically estimated from the data.

Given that mangrove restoration has only begun to occur over the last 20-30 years, there
are limited data on aboveground carbon stocks in older, restored forests. We consequently
“anchor” our growth curve with data from established secondary mangrove forests in Thai-
land [18, 16, 40]. The data come from three sites, each of which have had continuous
mangrove cover for over 20 years [16]. Given that the exact age of these stands are unknown
(but are known to exceed 20 years), we randomly assigned stand ages from 30-60 years using
a uniform distribution. Although an unconventional approach, we believe it to be reasonable
for two reasons. First, this is functionally equivalent to setting the asymptotic growth limit
parameter (A), a common practice to produce a modified form of the Chapman-Richards
growth function. We do this using empirical data from three different sites spread across
Thailand, which provide an empirically informed estimate of steady state aboveground car-
bon stocks in Thailand’s mangroves. Second, for the purposes of our modeling, we are only
concerned with estimating aboveground carbon stock recovery for mangroves up to 14 years
of age. The asymptotic growth limit is therefore less important than accurate estimation of
the aboveground carbon stocks in forests of no more than 14 years of age.

Nevertheless, we examined the effect of setting the asymptotic growth limit on our esti-
mates of recovered aboveground carbon stocks with a sensitivity analysis. Specifically, we
examined how varying our estimate of A by ± 50% effected our final results. Doing so
varied our final estimate of net change in carbon stocks by 8%, which was within the 95%
confidence interval of our best estimate. Further, varying the asymptotic growth limit by
± 50% adjusted the curve form to encompass the vast majority of our aboveground carbon
stock data from 0 to 14 years of age, suggesting that these curves might represent minimum
and maximum rates of aboveground carbon stock recovery (Figure S2 of the supplementary
material). We therefore concluded that our approach for estimating the maximum potential
growth was reasonable and had a minor impact on our results.

Finally, we used these data to estimate the model parameters for the Chapman-Richards
function. To simplify statistical estimation of the parameters, it is common to fix both the
scaling parameter b and the allometric constant m, allowing for the theoretical maximum
stand-level biomass (A) and growth rate (k) to be statistically fit to the data [20]. Given rel-
atively limited data, we followed this procedure and fixed both the scaling parameter (b = 1)
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and allometric constant (m = 0.5). We then estimated the asymptotic maximum stand-level
biomass and growth rate parameters (A and k) using non-linear mixed effects models, with
site included as a random effect. All growth curves were parameterized using the {saemix}
package in Program R (version 4.0.4), which employs the Stochastic Approximation Expec-
tation Maximization algorithm to derive maximum likelihood estimates of the parameters
[26].

Spatially-explicit values of carbon sequestration are absent for extant mangroves. To
estimate the foregone carbon sequestration that is associated with loss of mangroves, we
multiplied a global mean rate of carbon sequestration (1.5 Mg C ha-1 yr-1) by the number of
years since LULCC [7, 3].

Eq. 4:

Foregone Sequestration (Mg C ha−1) = 1.5 Mg C ha−1 yr−1 ∗ years

Eqs. 1-4 describe the district-level losses and gains of aboveground carbon, soil organic
carbon, and carbon sequestration potential associated with LULCC. Given that we did
not have exact dates associated with when LULCC occurred, we followed the approach of
Richards and colleagues and used a uniform distribution to randomly assign an “activity
year” from 2000 – 2014 to each district [117]. This modeled all activity in an individual
district as occurring in the same year, which is a strong simplification, but better approxi-
mates the time dependent nature of carbon stocks and gains relative to assuming all changes
occurred in the year 2000. After assigning each district an activity year, we used Eqs. 1-4
to model the district-level carbon stock losses and gains and subsequently multiplied them
by the district-level LULCC specific extents of mangrove loss and gain.

Quantifying gross vs. net change in mangrove carbon stocks

Using the LULCC data, we then modeled district level mangrove carbon losses (i.e., losses
associated with loss of mangrove cover), recovery (reforestation of areas that were formerly
mangrove), and gain (colonization of new areas that were not historically mangroves). The
distinction between recovered mangrove carbon stocks and gains is important given that soil
organic carbon is capable of being preserved following land cover change, even under systems
of heavy disturbance such as conversion to aquaculture [40].

To estimate the recovery of carbon stocks that are associated with mangrove reforestation,
we accounted for preserved carbon in our change in carbon stock estimates. We therefore
subtracted estimates of preserved carbon stocks to obtain the net change in carbon stocks
associated with mangrove loss, recovery and gain. Specifically, we multiplied the district-level
extent of mangrove loss by the sum of the mean carbon stocks and foregone sequestration,
less the preserved stocks in the soil organic carbon pool (Eq. 5). The estimate of preserved
carbon is obtained from Eqs. 1a & 1b, which return the preserved carbon stocks as a function
of time since LULCC.
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Eq. 5:

C Stockloss = Extent Loss ∗ (C Stock + Sequestration− Preserved C)

For carbon stock gains in reforested or newly colonized areas, we multiplied the district-
level extents of mangrove recovery and gain by the aboveground carbon and soil organic
carbon gains in carbon stocks minus our modeled estimates of preserved carbon (Eq. 6).
We subtracted estimates of preserved carbon from the carbon sequestration associated with
establishment of new mangrove forests (i.e., gain estimates) to account for carbon stocks that
may be present in the soil systems of mudflats, river banks, or other areas that mangroves
may colonize. Although this is an approximate estimate, carbon stocks in the mud flats of
Singapore have been estimated at 124-143 Mg C ha-1, which is roughly equivalent to our
estimates of preserved soil organic carbon stocks [110].

Eq. 6:

C Stockrecovery, gain = Extentrecovery, gain ∗ (C Gain− Preserved C)

Finally, we summed the district-level estimates of carbon stock loss (Eq. 5) and carbon
stock gain (Eq. 6) to obtain our estimates of carbon stock changes associated with gross
changes in mangrove extent (Eq. 7). The key distinction of this approach is the recognition
that carbon stocks in mangroves are lost and gained at different rates. The time-dependent
modeling of carbon stock gains and losses consequently accounts for this under this approach.

Eq. 7:

C Stockgross area change = C Stockloss + C Stockrecovery, gain)

We then compared these estimates against those based on a net area loss statistic, which
we estimated as a function of the net area change statistic (i.e., difference between 2000
and 2014 extents of mangroves) and our models for carbon lost with LULCC (Eq. 8).
Notably, this approach focuses solely on loss and does not account for carbon stock gains
on the landscape (however, our approach does account for preserved carbon stocks following
LULCC). Estimating carbon emissions associated with net loss of area represents the most
widely used approach within the literature.

Eq. 8:

C Stocknet area loss = Net Area loss ∗ (C Stock + Sequestration− Preserved C)
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Quantification of uncertainty

We quantified uncertainty in the district-level carbon stock values and the modeled estimates
of carbon stock gains and losses, whereas we did not have a means of quantifying uncertainty
in the land use and land cover data. The land use and land cover data were produced via a
combination of remote sensing and ground-truthing. Officials from the Thai Department of
Marine and Coastal Resources visited the individual land use and land cover polygons and
confirmed the land use and land cover type, ensuring a high-quality dataset (pers. comm.
Thai DMCR). Although we were not able to quantify uncertainty associated with these data,
it is likely that their uncertainties do not exceed those of remote sensing products commonly
used to estimate mangrove change at global scales [46].

We used a Monte Carlo simulation approach to quantify uncertainty in our estimates.
First, we randomly generated district-level values for the aboveground carbon stocks, soil
organic carbon stocks, and activity years using their statistical distributions. We used the
first and second moments of the stocks’ distributions (assumed to be Gaussian), whereas we
generate values from a uniform distribution (ranging from 1 to 14) for the activity years.
We then used the carbon stock values and our above models (Eqs. 1-5) to calculate district-
level loss, recovery, and gain of mangrove carbon stocks. We saved the loss, recovery and
gain values as the outputs of a single run and repeated the process for each district a total
of 100 times, which we determined as an appropriate trade-off between simulation time
and stabilization of standard errors of the means. Finally, we averaged the simulation run
values and calculated their standard error as our final estimates of carbon stock changes and
associated uncertainty.

We estimated uncertainty in the aboveground carbon and soil organic carbon raster data
by simulating random spatial fields. To do this, we inputted district-level mean values
(e.g., mean aboveground carbon for the district of Pak Phanang) into a spatial trend model
and inputted raster-specific model errors (cross-validation root mean square error) into a
covariance function. We used the models to simulate random spatial fields for each raster
at the district-level, repeated this process a total of 40 times, and saved the mean carbon
stock values from each run. We averaged these values and calculated their standard error
as our final estimates of district level carbon stocks and associated uncertainty. Similar to
above, we determined a total of 40 simulation runs to be an appropriate tradeoff between
stabilization of uncertainty and computational time (Figure S1). All spatial simulations were
performed using the {RandomFields} and {geostatsp} packages in R Version 4.0.4. [15, 127].
Additional details on the raster simulation are provided in the supplementary information
(S1.4). Unless otherwise noted, we report all uncertainty in our results as mean values ±
standard error of the mean.
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Scenario analysis of potential for mangrove restoration to meet
Thailand’s Intended Nationally Determined Contribution

Finally, we examined the potential carbon sequestration that could be achieved via mangrove
restoration through scenario analysis. Using the land use and land cover data from 2014,
we identified land use and land cover classes that are likely to be available for mangrove
restoration: aquaculture, agriculture, salt farms, and abandoned land. Other land use and
land cover classes are either under extensive development (e.g., urban areas) or are inap-
propriate for restoration. Given that not all areas under aquaculture, agriculture, or salt
farms are available for restoration, we examined the potential carbon sequestration associ-
ated with restoring set proportions of each land cover class. Specifically, we examined the
climate change benefits associated with restoring 0.1%, 1%, 2%, 5%, and 10% of all land
potentially available for restoration. The scenarios range from a feasible scenario (0.1%) to
an ambitious target (10%) for restoring potentially available land. Given that we were more
concerned with the technical potential for carbon sequestration through mangrove restora-
tion than social, economic, or political constraints on restoration here, we distributed sites of
restored agriculture and aquaculture evenly across all districts. In other words, we assumed
that up to 10% of the district-level extents of agriculture, aquaculture and salt farms are po-
tentially available for restoration. To quantify the associated carbon sequestration benefits,
we multiplied the extents of potentially restorable land in each scenario using the district
level averages of the aboveground carbon pool. Finally, we compared our estimates of the
climate change mitigation potential from mangrove restoration against Thailand’s Intended
Nationally Determined Contribution under the United Nations Framework Convention on
Climate Change.

3.3 Results

Characterization of land use and land cover change

In 2014, Thailand’s mangrove cover was approximately 53% (245,300 ha) of its historical ex-
tent with substantial impacts from human-driven LULCC. The LULCC data confirm aqua-
culture as a major driver of mangrove loss, particularly during the period of extensification
before 2000 (Tables 1 and S2). Aquaculture, agriculture and salt farms were the greatest
drivers of mangrove loss in Thailand, occupying approximately 15.4%, 11.8% and 5.5% of
the study region in the year 2014. Furthermore, extensive transitions in land use and land
cover type across the aquaculture, agriculture, and salt farm classes occurred, suggesting
that Thailand’s mangrove holding regions are indeed a shifting landscape. For example,
approximately 7,800 ha of aquaculture transitioned to agriculture and approximately 6,100
ha of aquaculture transitioned to salt farms between 2000 and 2014.

The data also show that net loss statistics greatly underestimate gross losses of mangroves
in Thailand. Between 2000 and 2014, approximately 203,000 ha of mangrove extent did not



43

undergo a land use or land cover transition. In other words, of the 252,000 ha of mangrove
identified in 2000, approximately 49,500 ha of mangrove coverage was lost and 42,300 ha
of mangrove coverage was gained by 2014, for a net loss of 7,200 ha. The largest changes
in land use and land cover were seen for the aquaculture, agriculture, water, and the “no
data” classes. The data show a loss of 8,300 ha of mangroves to aquaculture as well as a
gain of 10,500 ha of mangroves in aquaculture areas for a net gain of 2,200 ha. Conversely,
gains of approximately 7,900 ha of mangrove cover in agricultural areas were heavily offset
by extensive losses of 19,000 ha of mangrove to agricultural lands.

We also found losses and gains that were not associated with direct anthropogenic land
use or land cover conversion to be substantial. The largest gains in mangrove extent (17,200
ha) were identified as transitions from the “no data” class to mangroves, which we interpreted
as mangrove colonization of regions that were not included in the 2000 land use and land
cover data. Visual inspection of these regions suggest that they are largely mudflats, river
banks, and prograding deltas. Additionally, the second largest loss transition (13,200 ha)
was mangrove to the “water” class, which suggests the role of erosion and/or relative sea
level rise and aligns with the findings of other studies [3, 48]. Although these transitions
largely offset one another, the gains were higher than losses for a net gain of approximately
4,000 ha of mangrove (Table 1).

The spatial patterns of LULCC reveal that local mangrove loss (measured as a percent
loss of mangrove extent within district) has been greatest along the Gulf of Thailand (Figure
1, Panel b). Massive losses of mangrove extent have occurred within the Chao Praya River
delta (i.e., Bangkok), the eastern regions near Cambodia, and the southeastern coast of
peninsular Thailand. Of the 97 districts examined, the top 10 in terms of areal extent of
mangrove loss account for approximately 42% of total loss within the country (Table 2).
Eight of these ten districts are found in either the Chao Praya River delta (i.e., Bangkok
region) or the eastern region of the country. Furthermore, the top half of districts (by extent
of loss) accounts for approximately 89% of national loss.

Parameterization of the carbon stock gain and loss models

The gain and loss models for aboveground carbon and soil organic carbon stocks in mangroves
are shown in Figure 2, whereas the model coefficients are provided in Table 3. Although
there are markedly few data points for the aboveground carbon loss model, deforestation of
mangroves results in rapid loss of biomass by definition and thus the model is sufficient for
our purposes. The relationships between time since LULCC and loss of aboveground carbon
and soil organic carbon are linear, whereas the relationships between time since LULCC and
aboveground carbon and soil organic carbon recovery are logistic and logarithmic, respec-
tively (Figure 2).
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Carbon emissions from mangrove LULCC

Net losses of mangrove carbon due to human-driven land use change (i.e., conversion of
mangroves to aquaculture, agriculture, abandoned land, salt farms, or urban areas and
ports) were approximately 32.26 ± 0.51 million Mg C from pre-1960 to 2000. For the more
recent period of 2000 to 2014, gross total losses of land use change in mangroves were 9.79
± 0.15 million Mg C. However, we also estimated gains in carbon stocks during the same
time period of 2.60 ± 0.09 million Mg C, resulting in a net loss of 7.18 ± 0.24 million Mg C.
Estimating carbon losses as a function of the net area of loss statistic (i.e., Eq. 8) estimates
carbon emissions at approximately 1.65 ± 0.26 million Mg C for the same time period.
Notably, the total emissions estimate from summing the gross losses and gains is greater
than those based on net change in area by a factor of approximately four (Figure 3).

Carbon sequestration associated with recovery of areas that were formerly under man-
grove was large, at approximately 2.08 ± 0.20 million Mg C. However, we also identified
substantial carbon sequestration associated with the colonization of new areas of mangroves
at 1.27 ± 0.12 million Mg C. Visual inspection of areas with high gains of mangrove extent
suggests that these are driven by mangrove colonization of areas such as mud flats, river
banks, or other areas of rapidly accreting sediment. Furthermore, gains in mangrove ex-
tent at the district-level were greatest for those districts that maintained large extents of
undisturbed mangroves. Examining the relationship between district-level extent of new col-
onization and undisturbed extant mangroves revealed a strong positive correlation (Pearson’s
Correlation = 0.87) (Figure 4).

Carbon sequestration potential associated with mangrove
restoration

The land use and land cover data show 1,500 ha of abandoned land potentially available
for restoration in 2014. Similarly, approximately 70,700 ha of aquaculture, 54,500 ha of
agriculture, and 25,300 ha of salt farms spanned Thailand’s coastlines in 2014. Under our
various scenarios of potential regeneration (all 1,500 ha of abandoned land and 0.1-10% of
aquaculture, agriculture and salt farms), we estimate a range in potential associated carbon
sequestration of 0.14 – 1.46 million Mg C over the next 10 years (Table 4). The low estimate
corresponds to the restoration of 1,651 ha of deforested mangrove, whereas the high estimate
corresponds to 16,550 ha of restored forest. Thailand committed to a 20% reduction in its
business as usual emissions scenario of approximately 555 Mt CO2e by 2030 in its Intended
Nationally Determined Contribution. As such, Thailand is responsible for reducing emissions
by 111 Mt CO2e, or the equivalent of 30.3 million Mg C, by 2030. Our most optimistic
estimate of carbon sequestration from mangrove restoration is approximately 1.46 million
Mg C. This suggests that mangrove restoration, even under our best-case scenario, is likely
to represent only 4.8% of Thailand’s INDC from 2020-2030.
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3.4 Discussion

Irrecoverable carbon and land use and land cover change in
Thailand’s mangroves

Our study provides three major insights for quantifying carbon emissions from land use
and land cover change in mangroves. First, we demonstrated that quantifying greenhouse
gas emissions associated with net loss of mangrove forests may underestimate emissions in
regions with shifting land use and land cover patterns. We attribute this result to higher
rates of carbon loss with mangrove conversion relative to carbon stock recovery with re-
establishment of mangrove cover, despite high levels of carbon stock preservation and rapid
rates of carbon stock recovery following forestation. For our specific case of Thailand, our
estimates of carbon emissions from mangrove loss and gain were approximately 7.18 ± 0.24
million Mg C between 2000 and 2014, whereas calculating carbon emissions from net loss of
mangrove extent numbers estimated emissions from the same time period to be 1.65 ± 0.26
million Mg C. The two estimates in emissions differ by a factor of almost 4. These results
suggest that despite reduced rates of net mangrove deforestation in recent years [48, 116],
emissions associated with patterns of mangrove clearing and re-establishment of new forests
– either via natural colonization or active planting – may still be high over the decadal time
frames crucial for mitigating climate change [49].

Our second key finding was the unexpected result that substantial expansion of mangrove
extent was due to colonization of areas not included in the 2000 dataset (i.e., the “no data”
to mangrove transition), accounting for approximately 41% of total gains. This transition
was roughly equivalent to re-establishment of mangroves in both aquacultural and agricul-
tural areas combined. Although some of this mangrove expansion may be due to planting
programs, it is likely that much of these gains represent patterns of natural establishment.
Visual inspection of these regions shows that many of these new gains are along the coastal
fringes of mangroves, mudflats, river banks, and on rapidly prograding deltas (e.g., the Pak
Phanang Mangrove forest). District-level extent of newly established mangrove forest and
extent of undisturbed mangrove forest were highly positively correlated (Pearson Correla-
tion = 0.87; Figure 4). This suggests that large undisturbed extents of mangroves contribute
heavily to expansion of mangrove cover and the associated sequestration of carbon, offsetting
anthropogenic (e.g., land use conversion) and natural (e.g., erosion) drivers of loss.

Finally, we estimated the potential carbon sequestration benefits associated with restora-
tion of mangroves to be 1.46 ± 0.05 million Mg C by 2030 under our best-case scenario, which
is approximately 5% of the emission reductions that Thailand has committed to by 2030.
While 1.46 ± 0.05 million Mg C is a substantial drawdown of atmospheric carbon, mangrove
restoration is unlikely to play a major role in Thailand’s climate change mitigation goals.
This finding aligns with the conclusions of others that sequestration of carbon in mangroves
is likely to play a relatively small role in reducing greenhouse gas emissions at national
scales [138]. Furthermore, mangrove reforestation is commonly plagued by low rates of es-
tablishment and survival coupled with ineffective metrics of success, such as extent planted
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rather than monitoring of forest establishment [91, 141]. Our estimate of potential carbon
sequestration from restoration may therefore be optimistic, particularly given the assump-
tion that 10% of aquaculture and agriculture are available for mangrove reforestation within
a landscape of shifting land use, and the assumption that all restoration would be initiated
in the year 2000. Examining the gross gains and losses of aquaculture, agriculture, and salt
farm extent between 2000-2014, a net gain of only 2,200 ha of mangrove cover was found in
aquaculture areas, which represents just 2.9% of aquacultural extent in the year 2000.

Our results show a greater climate change mitigation opportunity in halting continued
loss of mangroves relative to mangrove reforestation activities. For example, under a busi-
ness as usual scenario in which gross loss and gain rates from 2020-2030 match those from
2000-2014, an additional 4.4 million Mg C is expected to be emitted from land cover change
in Thailand’s mangrove holding regions. These emissions are more than double the poten-
tial carbon sequestration benefits from the base case restoration scenario, suggesting that
greater climate change mitigation opportunities exist in halting continued turnover of man-
grove forests relative to reforestation. The finding suggests that addressing the ephemerality
of natural regeneration is a critical challenge for securing climate benefits from forests, which
parallels the findings of others in terrestrial forest systems [114]. Furthermore, when coupled
with our finding that most gains were found in districts with large extents of undisturbed
mangrove forests, limiting loss may suggest conservation as an efficient mechanism for ex-
panding mangrove cover. This finding parallels calls for further strengthening protection of
existing forests in addition to afforestation and reforestation efforts in the land sector more
broadly [131].

Potential limitations and sources of uncertainty

Our findings are dependent upon the models of carbon stock loss and gain, as well as the
datasets that we used to parameterize them [103, 123]. Calculating mean gain and loss rates
across all districts as a function of the national average carbon stocks helps put our gain
and loss rates into perspective. Across all districts, the average carbon stock loss rate after
approximately 7.5 years (the mean activity year from the simulation) was approximately
51% of average carbon stocks at the national level (i.e., losses of 198.4 Mg C ha-1 relative
to mean stocks of 390.5 Mg C ha-1). In other words, we estimated roughly half of mangrove
carbon stocks to be preserved 7.5 years after LULCC, which is similar to what other studies
have reported within Thailand [40]. Similarly, we estimated gains of carbon stocks to average
83.4 Mg C ha-1 (20.5 Mg C ha-1 of aboveground biomass carbon, 62.9 Mg C ha-1 soil organic
carbon) across all districts for the same time period, or approximately 21% of mean national
carbon stocks (i.e., an average of 72% of reference level carbon stocks in restored mangrove
after 7.5 years).

Although filtering the carbon stock recovery data from O’Connor and colleagues to just
soil organic carbon in mangroves presents a less optimistic picture relative to all total carobn
stocks across blue carbon ecosystem combined, our mean numbers still represent rapid rates
of carbon burial in mangrove soils. Annualized across the mean activity year period of 7.5
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years, these gains would correspond to an average of 8.4 Mg C ha-1 yr-1 buried in soils.
This value closely approximates some of the higher values (9.5 Mg C ha-1) that have been
reported in the literature and exceeds those reported for colonization of new areas by non-
native mangroves (4.5 Mg C ha-1 yr-1) [2, 135]. Similarly, estimating soil carbon gains using
the upper and lower bounds of the soil organic carbon recovery model’s 95% confidence
interval estimates carbon stocks at 48-118% of a reference site after 7.5 years, which roughly
corresponds to the time period of 10-25 years that others have estimated for carbon stock
recovery in restored mangroves [2, 29, 86]. However, data on soil carbon stock recovery was
notably limited and we feel that these estimates are uncertain and warrant further research.

A key assumption of our analysis was that the soil organic carbon stocks of mangroves in
the year 2000 were well approximated by our district level averages. From our land use and
land cover change statistics (Table 1), it is clear that mangrove-holding regions in Thailand
are a shifting mosaic of aquaculture, agriculture, salt farms, and mangroves. Under the case
in which a large extent of mangroves in 2000 are restored forests with pre-existing losses
of their soil organic carbon stocks, the magnitude of soil organic carbon losses from these
forest stands may be overestimated by a district-level average. However, we believe our
results to be robust for several reasons. First, the mangrove soil organic carbon model we
used incorporated soil carbon stocks in both undisturbed as well as restored and planted
forests. While there may be biases due to over-sampling of primary forests, the dataset
that the soil organic carbon model was parameterized on should mitigate these effects [122].
Second, research in Thailand has shown that aquaculture ponds are capable of preserving
and recovering carbon stocks under re-establishment of mangrove cover, particularly within
the top 15 cm of soil [40]. Under the scenario in which a mangrove stand is converted to
aquaculture, the pond is abandoned, and mangroves re-establish in the pond, re-conversion
of that pond to active aquaculture may involve re-disturbance of the soil as well as further
mineralization of carbon that was preserved in the pond.

Another key uncertainty of our analyses was the inclusion of soil organic carbon losses
from the transition of mangroves to the “water” class. Little data on the fate of soil or-
ganic carbon following the drowning of mangrove stands exists. However, with the death
of drowned mangrove trees and rapid loss of biomass carbon, we would expect associated
losses of soil organic carbon [42]. Research into methane production in mangroves suggests
that aerenchyma in dead mangrove trees may act as conduits for gas exchange between
belowground and aboveground systems, potentially oxidizing submerged soils and inducing
mineralization of soil organic carbon stocks [73]. Others have found evidence that suggests
particulate and dissolved organic carbon may be exported and sequestered in deep oceanic
sinks, which would reduce losses from drowned mangrove soils [99]. It is unlikely, however,
that losses of soil organic carbon in drowned mangrove stands are zero and thus our estimate
that approximately half of soil organic carbon stocks are lost is a reasonable coarse estimate
absent empirical data.
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Implications for mangrove conservation and restoration

While our study was specific to Thailand, the results have implications for mangrove restora-
tion as a climate change mitigation action at global scales. Specifically, Thailand has key
characteristics that would suggest it may benefit greatly from mangrove reforestation as a
climate change mitigation action: it historically had large extents of mangroves, approxi-
mately 50% of its mangroves have been lost to land use change, and expansion of mangrove
cover is specifically listed in its INDC. Thailand is also consistently ranked in the top 10-20
nations in terms of mangrove extent, standing carbon stocks, and potential carbon emissions
[8, 58]. These characteristics suggest that Thailand stands to benefit heavily from mangrove
restoration. However, as our results show, the climate benefits from mangrove restoration
are modest relative to halting potential emissions from gross losses.

For countries with fewer opportunities for mangrove reforestation, it is perhaps unlikely
that mangrove afforestation and reforestation will provide major climate change mitigation
benefits in the short and medium-term. Furthermore, our findings suggest that large extents
of undisturbed mangroves are associated with extensive gains in mangrove cover, which offset
anthropogenic and natural drivers of loss. The findings ultimately suggest a multi-pronged
approach that focuses on not only protecting established mangroves, but also strengthening
protection of naturally regenerating areas, investing in restoration of deforested and degraded
areas, and in research to increase planting survival.

Lastly, it is important to unambiguously state that our findings are not arguments against
mangrove restoration. Mangroves provide myriad environmental goods and benefits to hu-
mans across local and global scales and expanding mangrove coverage will ensure these ben-
efits continue to accrue. Sequestration of atmospheric carbon is included in these ecosystem
services and we should therefore expect climate change mitigation benefits with successful
restoration of mangroves. Rather, out study tempers expectations concerning the magnitude
at which restoring mangroves might mitigate carbon emissions at national scales over relevant
timeframes for mitigating dangerous climate change and adds further credence to protect-
ing extant mangroves. To realize these benefits, heightened monitoring and enforcement
of avoided mangrove conversion must occur simultaneously. Further, our findings suggest
that net loss of area statistics may mask adverse changes to our environment. These same
dynamics have recently been shown for wetlands in China, finding that extensive losses of
natural wetlands are being replaced by artificial wetlands, which in turn drives the loss and
degradation of ecosystem services [150]. It is apparent that monitoring conservation and
restoration goals should focus on gross loss and gain statistics rather than net loss, as these
statistics will uncover trade-offs in the values that we attribute to ecosystems.

3.5 Conclusion

Mangroves are carbon-rich ecosystems whose conversion and restoration have substantial
impacts on the climate. Our results demonstrate that net loss of area statistics in mangroves
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may greatly underestimate emissions from mangrove loss. Areas in which mangroves are lost
and subsequently recovered may consequently hide emissions from the soil organic carbon
pool, which can be large. For our particular case of Thailand, we estimated emissions to
be almost four times greater than those of a net loss approach when accounting for gross
changes in area. In addition to better estimates of mangrove carbon stocks, improved data
on specific LULCC transitions in mangrove holding regions is critical for better management
of blue carbon in mangroves. Accounting for hidden emissions from shifting land use in
mangrove holding regions is key to designing mangrove conservation policy, particularly
given the current prevalence of ecosystem restoration globally.

Acknowledgements

This research could not have been performed without the layers of land use and land cover
change in Thai mangroves, which were provided by Orapan Srisawalak and Jeff R. Vincent.
Additionally, we thank Sigit Sasmito for sharing the data associated with figure 5A of their
cited publication. Drew Hart and Giuseppe Amatulli provided invaluable feedback on the
quantification of uncertainty in the raster data. JJB acknowledges the support of a National
Science Foundation Graduate Research Fellowship, which supported him during the analysis
of the data. We also thank the members of the Potts Group at U.C. Berkeley for their
valuable contributions to the development of this manuscript, particularly Clarke Knight
and Jimena Diaz for their feedback on early drafts of this study.



50

Tables and Figures

Table 1. Land use and land cover transitions in areas of Thailand historically under man-
grove cover from 2000 to 2014. All values are in thousands of hectares. The red row represents
loss of mangroves to other land use and land cover categories in 2014, whereas the green
column represents transition of other land use and land cover classes to mangroves.

Table 2. Top ten districts as ranked by absolute area of mangrove loss. The ten districts
account for approximately 42% of historical mangrove loss in Thailand.
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Table 3. Model coefficients and statistics for the aboveground carbon and soil organic
carbon loss and recovery models.

Table 4. Scenario analysis of potential carbon sequestration from mangrove restoration in
abandoned land and various proportions of aquaculture, agriculture, and salt farm extent.
The time frame of consideration is the same as Thailand’s Nationally Determined Contribu-
tion, or from 2020-2030. All potential carbon sequestration values are reported as the mean
± the standard error.
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Figure 1. District level summaries of a) historical mangrove extent (in thousands of
hectares), b) percent loss of historical mangrove extent, c) percent of mangrove loss at-
tributed to aquaculture, and d) percent of mangrove loss attributed to agriculture.
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Figure 2. Relationships between time since LULCC and gains and losses of aboveground
carbon and soil organic carbon. Losses of aboveground carbon (a) and soil organic carbon
(b) and gains of soil organic carbon (d) are modeled as the natural log of the response ratio,
which are the carbon stocks present following LULCC relative to an undisturbed reference
site. The recovery of aboveground carbon relationship (c) is modeled using the Chapman-
Richards growth curve. The red points in (c) are from established secondary mangrove
forests in Thailand to “anchor” the growth curve at older ages.
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Figure 3. Summary of carbon stock changes in mangrove holding regions of Thailand for
the periods from ca. 1960 to 2000, and 2000 to 2014. For the period of 2000-2014, both the
gross loss and gain approach used in this study (“2000-2014, LULCC”) and an emissions
estimate based on a mangrove net loss statistic (“2000-2014, net”) are shown. Gains in
mangrove carbon stocks were not able to be estimated from 1960 to 2000 are consequently
not shown. The error bars show the 95% confidence intervals of each estimate.
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Figure 4. Relationship between district-level extent of mangrove establishment in new areas
versus extent of undisturbed mangrove forest. The gray points are values from individual
districts whereas the trend line is a linear fit between the two variables. A positive and
highly correlated relationship is found between the two variables, suggesting much of the
gains in mangrove cover between 2000-2014 were associated with large undisturbed extents
of mangroves.
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3.6 Supplementary Information

Additional details of methods

Pre-processing of spatial datasets

The data were prepared by first resolving differences in the spatial properties of the datasets.
We processed all spatial data with Geospatial Data Abstraction Library (GDAL) functions.
We elected to use the aboveground biomass dataset as a reference for matching the spatial
properties of the other datasets given that the aboveground biomass dataset is provided as a
raster that fully encompasses Thailand’s coastlines. We aligned the soil organic carbon data
to the aboveground biomass data by reprojecting and resampling the soil organic carbon
data. Specifically, we downloaded and merged tiles from the soil organic carbon dataset
that correspond to the extent of Thailand, reprojected the data, and resampled the data
to precisely match the pixel-level locations of the aboveground biomass data (provided as a
raster for all of Thailand). Both rasters were then reprojected to an equal-area projection
(Asia South Albers Equal Area Conic, EPSG:102028).

The land use and land cover data were collected under an extensive campaign of remote
sensing and ground-truthing by the Thai DMCR and are among the best available data
of coastal land use in Thailand (pers. comm. DMCR 2020). The data demarcate land
use and land cover in 2000 and 2014 for regions of Thailand that were historically under
mangrove forest cover. Consequently, combining all land use and land cover categories in
the 2000 dataset provided us with a dataset of historical mangrove extent (pre-1960), which
we considered a largely undisturbed state. The three datasets thereby provide us with high
quality information on historical mangrove extent from pre-1960 as well as land use and land
cover type from 2000 and 2014.

The land use and land cover datasets contained cover types that were overly detailed for
the purposes of our study and would complicate the interpretation of our results. Before
converting the three datasets to rasters, we collapsed land use and land cover categories that
were both i) functionally similar in terms of carbon fluxes from LULCC, and ii) relatively
minor in extent (e.g., 138 ha for the “ports” land use). Specifically, we combined classes
for “terrestrial forest,” “peat forest,” and “beach forest” into a single “other forest” class,
combined classes for “urban areas,” “ports,” and “mines” into a single “developed areas”
class, and combined a “sand” class with a “mudflats” class (Table S1). Any transitions from
mangroves to these combined types would impact similar ecosystem carbon pools, which
was our primary concern for the LULCC data. After resolving differences in land use and
land cover categories, we produced the historical mangrove cover dataset by merging the
features across all land use and land cover classes in the 2000 dataset. Finally, we converted
the three datasets (1960, 2000, and 2014) to rasters, providing us with spatially-identical
rasters of aboveground biomass carbon, soil organic carbon, and land use and land cover
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from pre-1960, 2000, and 2014.

K-means clustering algorithm to test for effects of site
geomorphology

To examine the potential for site geomorphology to vary within districts, we used a k-means
clustering algorithm and raster datasets of total suspended matter and tidal amplitude to
assess variation in proxies of site geomorphology [75]. Both the total suspended matter and
tidal amplitude data were obtained as published products. The total suspended matter data
were calculated using the ocean colors band of Envisat’s MERIS imagery whereas the tidal
amplitude data were produced using the FES 2012 hydrodynamic model [23]. Using these
datasets, we extracted total suspended matter and tidal amplitude data along the coasts
of Thailand and subsequently input these values into a k-means clustering algorithm. The
algorithm identified regions of similar geomorphology at broader scales than the district
level (i.e., a single cluster for the whole eastern coast of Thailand and two clusters for
the western coast), suggesting that the district-level averages produced stock averages at
finer-scale spatial resolutions than a modeling exercise based on proxies of geomorphology
otherwise would.

Compiling of data on soil organic carbon stock recovery in
mangroves

To better approximate soil organic carbon stock recovery in mangroves, we filtered the data
from Figure 4 of O’Connor and colleagues to just those studies that report data on soil
organic carbon stock recovery in mangroves [103]. We filtered the references of their study
using titles and abstracts to those that report soil organic carbon stocks to at least 50 cm
depth in both restored mangroves as well as an undisturbed reference site. Namely, we
filtered their studies to six studies [2, 11, 22, 38, 111, 153], as well as a relevant study
from Thailand that they had omitted [40]. We then extracted carbon stock data for both
the restored sites and undisturbed reference sites, as well as the time since the sites were
restored. We then calculated the natural logarithm of the response ratio for these data,
which we then used to parameterize our soil organic carbon recovery model.

Additional details of estimating uncertainty in the carbon rasters

For the two carbon rasters, we estimated uncertainty using a Monte Carlo approach that
accounted for raster-specific model error. To estimate uncertainty in the raster data, we
combined the reported model error with district-level mean carbon stock values and simu-
lated spatial random fields for each raster layer within each district [15, 64]. Specifically,
we modeled the spatial random field as a non-zero mean stationary Gaussian process with
an isotropic covariance function [15, 32]. The covariance function depends solely on the



58

distance between two points and is appropriate for our purposes given that we have no ad-
ditional information on spatial dependence in the data. We input the district-level mean
values (e.g., mean aboveground biomass for the district of Pak Phanang) into a spatial trend
model, whereas we input the raster-specific model errors (cross-validation root mean square
error) into the covariance function. We then used this model to simulate random spatial
fields for both rasters, clipped to each district. Each random spatial field can be interpreted
as a plausible realization of the data, incorporating both model uncertainty and spatial
covariance.

To determine an appropriate number of simulations to run, we repeated the process for a
subset of districts up to 50 times and plotted the improvement in standard errors resulting
from increased numbers of runs. We identified forty runs as an appropriate balance between
a stable standard error value and computational time. Consequently, we simulated spatial
random fields forty times for each raster within each district, calculating and saving the
district-level means of the simulated data in each run. We then calculated the average of these
means and the standard error of the means as our final estimates of mean carbon stock value
and associated uncertainty. All spatial modeling was performed with the {RandomFields}
and {geostatsp} packages in R Version 3.6.3 [15, 127].
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Supplementary Tables & Figures

Table S1. Land use and land cover classes of the original datasets as well as the collapsed
land cover types that we designated. Land use and land cover classes that were functionally
similar in terms of the climate change impacts from their transitions and that were relatively
minor in extent were combined. Numbers in parentheses are approximate areal extents in
thousands of hectares.
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Figure S1. Sensitivity of the aboveground carbon growth curve to setting the theoretical
asymptotic growth limit parameter (A). The solid blue line represents our best estimate of
the growth curve, whereas the dashed blue lines represent varying the asymptotic growth
limit parameter by ± 50%. Varying the asymptotic growth limit by ± 50% produced minor
changes in our final results of approximately 8%, which was within the 95% confidence
interval of our best estimate.
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Figure S2. Relationship between standard error of the mean and the number of simulations
for simulating random spatial fields of the aboveground carbon and soil organic carbon data.
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Chapter 4

Rates and drivers of aboveground
carbon accumulation in global
monoculture plantations

Abstract

Restoration of forest cover has been highlighted as a key action for mitigating climate change.
While there are myriad ways to restore forest cover, planting of monoculture plantations is
a globally dominant strategy. Despite the prevalence of monoculture plantations, we lack
robust understanding of the degree to which they can meet international goals to mitigate
climate change. To improve this understanding, we assembled a comprehensive database of
3,436 field-plot measurements from monoculture plantations across all forested continents of
the globe. We then used these data to model carbon accumulation in aboveground biomass
and examined the biological, environmental and human factors that mediate this growth.
We identified carbon accumulation rates as high as 8.1 Mg C ha-1 yr-1 for select genera
(e.g., Eucalyptus); however, these rates varied by a factor of approximately four across
genera, plant functional types, and biomes. We further found that broadleaved species
(both temperate and tropical) had growth rates that were roughly three to five times those of
temperate and tropical needleleaved species. Variation in aboveground carbon accumulation
rates was strongly mediated by genera, endemism, prior land use, and plant traits across
global scales, whereas factors such as biome were found to have little effect. Although
planting of exotic species had a strong positive effect on rates of carbon accumulation,
this effect was only marginally significant after accounting for fertilizer use. By fitting
globally-applicable nonlinear growth curves, we anticipate that our results will facilitate
more sophisticated understanding of the climate impacts of monoculture plantations relative
to the more commonly used mean annual rates.
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4.1 Introduction

Restoring forest cover is a high-profile option for using nature to mitigate climate change [55,
130]. Although a range of options exist for successfully restoring forest cover to landscapes,
actors across the public, private, and non-profit sectors have interpreted this as a need
for planting trees [62, 131]. For example, two thirds (66%) of high-level commitments for
tropical forest restoration involve planting and almost half (45%) involve the establishment
of monoculture plantations [92]. Despite their dominance within the forestry space, we lack a
sophisticated understanding of the degree to which monoculture plantations can meet goals
for mitigating climate change.

Tree planting—and monoculture plantations specifically—are controversial because they
can negatively impact ecosystems when poorly implemented [109]. Tree planting in native
grasslands, for example, can have perverse impacts on biodiversity and grassland ecosystem
functioning [145]. Elsewhere, plantations may have limited or adverse biodiversity impacts
depending on the species planted and the prior land cover type [63]. On the other hand,
tree planting can be an effective action to mitigate climate change when done appropriately
[34], and monoculture plantations may also be the most viable option to restore forest
cover in areas where economic returns are paramount. Further, we need rapid removals
of atmospheric carbon to constrain the climate crisis and plantation forests may sequester
carbon slightly more rapidly than naturally regenerating forests, particularly during early
phases of establishment [13, 69].

Plantation forestry is a well-established practice for growing trees that has existed for
centuries [109]. Plantation forest managers have adopted practices from the agricultural
sector as well as developed silvicultural practices to improve the growth, form, and yields of
trees [21, 82, 100]. As such, plantation managers face myriad decisions in the establishment
and management of plantations [31]. For example, not only are managers tasked with locat-
ing plantation forests, but they must also make decisions on what species to plant as well
as how to manage the trees over short and long time frames. At local scales with relatively
constrained conditions (e.g., loblolly pine plantations in the southern United States), these
decisions are well-understood. However, there is widespread desire to invest internation-
ally in forests for their climate benefits, and the consequences of management decisions on
climate outcomes at global scales are poorly understood [12]. Specifically, we lack even a
systematic understanding of how much carbon monoculture plantations can capture and how
that mitigation potential varies by factors such as species, location, or management type.

To improve this understanding, we systematically reviewed the literature and extracted,
from over 600 publications, empirical measurements of carbon held in the aboveground
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biomass of monoculture plantations. Using this dataset, we then analyzed potential drivers
of variation in rates of aboveground carbon accumulation in monoculture plantations, pa-
rameterized curves to predict carbon stocks as a function of time, and derived default ac-
cumulation rates. In assessing the potential drivers of carbon accumulation, we sought to
account for the major biological, environmental, and human factors that affect growth rates
in plantation forests. Our objective was to close key knowledge gaps on the important yet
under-studied role that monoculture plantation establishment, a dominant global reforesta-
tion strategy, may play in mitigating climate change.

4.2 Methods

Dataset compilation and standardization

We systematically reviewed the literature to identify studies reporting data on biomass and
carbon stocks in monoculture plantations. The search was part of a larger effort to quantify
biomass accumulation associated with re-establishing tree cover more generally [27]. We
provide an abbreviated description of the dataset compilation and standardization process
here whereas the full details are provided in both the Supplementary Information and other
studies that used the same literature search [27].

The literature search considered over 11,000 articles, which we filtered to 640 studies
quantifying biomass (or carbon) stocks in forest plantations. We then further winnowed
these to include studies that reported i) empirical measurements of biomass or carbon in
the aboveground pool; ii) age of the plantation at the time of field measurements; and iii) a
latitude and longitude pair or sufficient geographic detail from which geographic coordinates
could be obtained. We only collected data on aboveground stocks given that belowground
biomass and soil organic carbon stock data were sparse, and variation in field sampling meth-
ods make synthesizing belowground biomass and soil organic carbon stocks across studies
difficult [27, 101, 102]. We omitted understory biomass given that understory vegetation in
monocultures is a small proportion of total biomass [13].

For each included study (n = 236), we collected information on biomass (or carbon)
stocks, age, geolocation, tree crop species, prior land use/disturbance, and management
practices such as planting density, rotation length, site preparation, fertilization, irrigation,
vegetation control, and thinning. To account for spatial structures in the data, we grouped
measurements by site. When studies empirically determined the percent biomass that was
carbon, we retained their values; however, when studies used a default factor (e.g., 0.5) to
convert biomass to carbon within biomass, we adjusted these values using the Intergovern-
mental Panel on Climate Change’s recommended factor of 0.47 [39].
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Potential drivers of variation in aboveground carbon accumulation

To explain variation in biomass accumulation across global plantations, we sought to account
for the major biological (genus, endemism, and plant traits), human (prior land use and
management practices), and environmental (biome) factors that may control growth. We
describe the collection of these data below and summarize key characteristics of each of the
potential drivers in Table 1.

Tree crops are commonly selected from a limited number of genera for characteristics
such as growth rate and suitability for wood products. Furthermore, exotic species are
commonly planted within monoculture plantations for the same reasons, but may also have
adverse impacts on local environments. We collected data on the planted tree species from
all studies; however, we collapsed the species data to genus (including both hybrids and
clones) to reduce the feature space of the data. Additionally, to test for the effect of planting
exotic species on growth, we coded all species as being either endemic or exotic to the locale
in which they were planted.

Although genus can serve as a proxy for suites of plant traits, we further examined the
effect of species-level plant traits given that trait data may vary within genera. Analyzing
trait data could be informative for selecting additional candidate species not commonly
used within plantation forestry (e.g., endemic species). To create an initial list of candidate
traits, we used the TRY Plant Trait Database to identify plant traits with data for as many
of the planted species in our database as possible [76]. Doing so identified 12 candidate
traits; however, we ultimately excluded eight of these due to insufficient variation in the
trait to explain variation in aboveground carbon. For example, all species were classified as
“woody” for the “plant woodiness” trait. For the traits we included (leaf compoundness, leaf
phenology, leaf type, and nitrogen fixation capacity), we then manually filled data gaps for
species that were not found in the TRY database. Additionally, we extracted species-specific
wood density data from the Global Wood Density Database [151]. We averaged wood density
values for species with more than one wood density observation in the database, whereas we
used genus level averages for species not found in the database.

Prior land use can have a strong control on subsequent vegetation growth depending on
both the type and intensity of land use [129]. Studies commonly reported prior land use
type, which we coded into our database. However, we were unable to include intensity of
land use as it was rarely reported. We generally found four types of land use/disturbance to
be well-represented within the literature: clear-cut harvest, croplands (inclusive of shifting
cultivation), pasture, and fire. When studies reported multiple prior land use types, we
coded the most recent land use into our database.

We examined the effect of management practices on carbon accumulation in plantations
to the degree that studies allowed. Studies did not consistently report management prac-
tices at the same level of detail, but many provided information on planting density, site
preparation, fertilization, irrigation, management of competing vegetation, or thinning. We
qualitatively recorded all management practices that were reported in the studies, which we
then coded into a presence versus absence variable for statistical analyses. Although sub-
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stantial variation in the use of a given management practice may exist (e.g., different types
or quantities of fertilizer), a presence/absence variable for each type of management practice
was an optimal compromise between accounting for the use of management practices and
obtaining management data for as many studies as possible.

Finally, biomass accumulation in plantations is expected to vary across climates, which
can be proxied by biome type. To examine the effect of climate on plantation biomass, we
spatially intersected the locations of all sites with a map of major ecological zones. Namely,
we used both a map of global biomes as well as the United Nations Food and Agriculture
Organizations classification of ecozones [33, 106]. We refer to the first as “biomes” whereas
we refer to the second dataset as “FAO Ecozones.” Plantations are not common across all
global biomes and we therefore omitted biomes for which data were sparse (e.g., flooded
grasslands and savannas, mangroves, and montane grasslands and shrublands). Further,
plantations in non-forest biomes are often not successful and can cause severely negative
biodiversity impacts [145].

Statistical analyses of variation in plantation biomass

For each of the potential drivers of aboveground carbon accumulation in plantations, we
tested for their effect in explaining variation in plantation carbon using linear mixed effects
models [59]. We square root transformed both aboveground carbon and stand age prior to
fitting the models to improve the linear relationship between the two variables (Figure S1
of the Supplementary Information). Random intercepts for site were included in all models
to account for spatial autocorrelation [13, 125]. We then modeled aboveground carbon as a
function of stand age, the driver under consideration, and the interaction of stand age and
the driver (all fixed effects). Since data on drivers were missing for some observations, we
subsetted the data to each driver of interest before fitting the models. Further, for genus of
tree crop, we filtered the subsetted dataset to only genera with 20 or more observations to
reduce the levels of the driver and potential effects of sparse data. We examined each of the
14 individual drivers (i.e., a separate analysis per trait and management practice; see Table
1), testing for the significance of including the driver of interest via Analysis of Variance
(ANOVA). When assessing the significance of variables, we fit each model using maximum
log-likelihood to allow comparison of models with different fixed effects.

To examine the relative effects of the drivers, we ran three full models using the observa-
tions that had complete data across three subsets of drivers. First, we ran a model including
all drivers except those relating to management practices (i.e., genus, endemism, plant traits,
prior land use, and biome). We ordinated the plant trait data prior to including it in the
model given that the majority of the trait data were categorical in nature, repeated across
species, and likely exhibited correlation across traits. To do so, we used Factor Analysis of
Mixed Data (FAMD), a principal component method appropriate for datasets of both con-
tinuous and categorical variables. Data on management practices were highly limiting and
we were therefore only able to consider two management practices—planting density and the
use of fertilizer—each of which was considered in a separate model in combination with all
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other drivers. Again, we included the ordinated plant trait data in these models. Similar
to our models of individual drivers, we filtered the datasets to only those genera with 20 or
more observations to reduce the levels of this driver and reduce potential effects of sparse
data. Given data limitations, we did not include interactions in the model but specified each
driver as an additive effect. We accounted for spatial autocorrelation by including random
intercepts by site, similar to our models of individual drivers. All models were fit using the
{nlme} package in Program R [112].

Development and validation of growth curves

We produced predictive growth curves of aboveground carbon stocks for all genera and
plant functional types with greater than 100 observations in the database. Plant functional
types are a means of representing broad classes of plants that share similar growth forms
and life histories across biomes. For our purposes, plant functional types are a convenient
way of incorporating data from relatively less-represented genera into growth curves, as well
as producing curves that are generalizable across plantation species not included in our
database. Here, we combined climatic information from our biome dataset with leaf type to
produce plant functional types for all species within our database (e.g., tropical broadleaf
species).

We considered four different growth curve forms to be fit to the data: logarithmic, lin-
earized logistic, logistic, and the Chapman-Richards growth function. After assessing each
curve form (see Supplementary Information), we elected to fit the Chapman-Richards func-
tion (Eq 1), which is i) based in theoretical growth of forest stands over time, ii) more flexible
than other logistic curves, and iii) widely employed within the forest modeling literature [20,
111, 118]. The Chapman-Richards curve is specified as:

AGC = A ∗ (1− b ∗ e(−k∗t))(1/(1−m))

Where:

• AGC is aboveground carbon in Mg C ha-1,

• t is the age of the forest stand in years, and

• A, k, b, and m are parameters to be statistically estimated from the data.

Given that the Chapman-Richards function is a theoretical growth curve, the parameters
are biologically meaningful. Specifically, A represents the asymptotic maximum stand-level
biomass, b is a scaling parameter, k is the rate of growth, and m is an allometric constant
that determines the shape of the curve. To simplify statistical estimation of the parameters,
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it is common to fix both the scaling parameter b and the allometric constant m, allowing
for the theoretical maximum stand-level biomass (A) and growth rate (k) to be statistically
fit to the data [20]. Given that our database is unbalanced and holds data across a host
of species found under varying environmental conditions, we followed this procedure and
fixed both the scaling parameter (b = 1) and allometric constant (m = 0.5). We then
estimated the asymptotic maximum stand-level biomass and growth rate parameters (A and
k) for each plant functional type and genus using non-linear mixed effects models, with
site included as a random effect. To reduce the effects of sparse data at older ages, we
truncated each data subset to the 95th percentile by age before fitting the models. All
growth curves were parameterized using the {saemix} package in Program R (version 4.0.4),
which employs the Stochastic Approximation Expectation Maximization algorithm to derive
maximum likelihood estimates of the parameters [26].

We assessed the predictive capability of the models using root-mean-square error (RMSE),
calculated via a cross-validation procedure with a 15% to 85% validation data to training
data split. Given that we used mixed effects models, we set aside data for validation by
randomly selecting all data from 15% of the sites rather than 15% of observations across all
sites. Although doing so ensures a true out-of-sample validation, the unbalanced nature of
our database will cause the number of observations included in the training versus validation
datasets to vary. We then calculated the RMSE across the predicted and observed values
retained in the validation dataset. We repeated this procedure a total of 25 times for each
growth curve, retaining the RMSE values from each run and averaging across them to obtain
our final RMSE estimates. We report both the averaged RMSE values as well as RMSEs that
are normalized by mean aboveground carbon, which facilitates comparison across models.

Calculation of annualized biomass accumulation rates

To improve the utility of our analyses for broader policy and practitioner audiences, we also
generated annualized rates to use as default values of aboveground carbon accumulation in
monoculture plantations. We calculated plot-level carbon accumulation rates by dividing
stand-level aboveground carbon by stand age. To reduce the effects of different species
tending to be managed on different rotation lengths, we first filtered all data to stands
younger than 30 years in age. After calculating the rates at the plot level, we subsequently
summarized these values for the major i) genera, ii) plant functional types, and iii) biomes
in our database. Unless otherwise stated, all values presented in the text are mean values ±
the standard error of the mean.
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4.3 Results

Data availability

Our final database includes 3,436 measurements of aboveground carbon in monoculture
plantations, collected from 2,339 plots across 579 distinct sites. The geographic location of
the sites were primarily in Asia (56%), North America (20%), Europe (10%), and South
America (9%), with the remainder located in Oceania and Africa ( 5%; see Figure 1). Data
from China drove the geographic distribution of the dataset, accounting for over 40% of
all observations. The plantation data included 90 distinct genera of tree; however, 34 of
these genera had fewer than three observations and were therefore poorly represented in the
database. The three most well represented genera of tree crop were Pinus, Eucalyptus, and
Cunninghamia, accounting for 63% of observations in the database. Across all observations,
the mean stand age was 16.9 years (range of 1 – 98 years) and the mean aboveground biomass
carbon was 47.5 Mg C ha-1 (range of 1.0 – 516.5 Mg C ha-1).

Drivers of aboveground carbon accumulation

Our results for the significance of each driver in explaining aboveground carbon accumulation
are summarized in Table 2, whereas we report the t-test results for individual levels of the
drivers in the text below. Due to the large number of levels of driver that have been tested
(>100), we do not summarize these results in a table but rather give an overview of the
direction and magnitude of the effects. Similarly, we only provide a summary table of the
significance of including drivers in our full models (Table 3), but discuss the key driver effects
of our full models in the text below.

As hypothesized, all driver types explained significant variation in aboveground carbon
in plantations, with the exception of planting density (Table 2). The effects of individual
genera were variable in both magnitude and direction. For example, the interaction of
genus and square root of stand age varied between 54% (Robinia, t = -3.68, P = 0.0002) to
148% (Eucalyptus, t = 4.69, P = <0.0001) of the base level effect for aboveground carbon
accumulation (Acacia, t = 10.76, P = <0.0001). Aboveground carbon accumulation rates
were 133% higher in plantations with exotic rather than endemic species (t = 7.82, P =
<0.0001). Prior land use of croplands, harvest, and pasture all had significant effects on the
rate of aboveground carbon accumulation. Specifically, the rate of carbon accumulation on
formerly harvested land (t = -4.99, P = <0.0001) and pasture (t = -4.57, P = <0.0001) was
roughly 70% and 65% of former croplands, respectively. Fertilizer use resulted in a relatively
minor increase (8%) in the rate of aboveground carbon accumulation (t = 2.2, P = 0.03)
relative to unfertilized stands, whereas thinning decreased the rate of carbon accumulation
by 26% (t = -7.88, P = <0.0001). Relative to Mediterranean Forests, Woodlands & Scrub,
only Temperate Broadleaf & Mixed Forests (t = -2.47, P = 0.01) and Tropical & Subtropical
Moist Broadleaf Forests (t = -2.56, P = 0.01) had significant effects on carbon accumulation
rates, both of which decreased rates by roughly 25%.
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Our full models identified stand age, genus, prior land use, and the ordinated plant
trait data as statistically significant effects across all three models (Table 3). Ordinating
the plant trait data produced two axes that explained approximately 54% of the trait data
variance. The first axis primarily accounted for the leaf type, leaf phenology, and nitrogen
fixation data, whereas the second axis primarily represented the wood density data (Table
3 & the Supplementary Information). For Full Model 1 (no management practices), we
identified the largest positive effects on rate of carbon accumulation for planting of exotic
tree species and the genus Eucalyptus. Conversely, we found strong negative effects on rate
of carbon accumulation for the coniferous genera (e.g., Picea and Cryptomeria relative to
Acacia) as well as prior land uses of fire, harvest and pasture (relative to cropland). For
the management data, the effect of planting density was non-significant, whereas we found
a significant positive effect on growth for the use of fertilizer (t = 3.2, P = 0.001). For the
model including the use of fertilizer, the effect of endemism was non-significant (t = 0.5,
P = 0.6), whereas it was highly significant with a strong positive effect on rate of carbon
accumulation in the other full models.

Growth curves

Relationships between aboveground carbon and stand age varied across plant functional
types (Figure 2) and genera (Figure 3). Of the four plant functional types considered,
tropical broadleaf forests had the fastest growth rate (k = 0.2) by a factor of roughly 1.7
(temperate broadleaf) to 5 (temperate needleleaf) times those of the other plant functional
types. Despite the slowest growth rate, temperate needleleaf forests had asymptotic growth
limits that were almost double those of the other plant functional types (1.7 to 1.9-fold).
The genera growth curves suggest that within temperate needleleaf forests, Pseudotsuga had
the highest asymptotic growth limits (199.7 Mg C ha-1). Growth rates across the six genera
of tree differed greatly, with the broadleaf genera again exhibiting growth rates that were
roughly 2-4 times greater than those of the needleleaf genera. Within broadleaf genera, the
two tropical genera (Eucalyptus and Acacia) had roughly double the growth rate of the sole
temperate broadleaf genus (Populus).

The results of the model validation procedure suggests that variation in the data is not
fully captured by a growth curve that predicts yield solely as a function of age. Our nor-
malized RMSE values ranged from 0.71 (Cunninghamia) to 1.36 (Populus), suggesting that
the model error ranged from roughly 75% of mean aboveground carbon in the best case to
133% of mean aboveground carbon in the worst case. Despite the large error, the nonlin-
ear growth curves are theoretically defensible and are an improvement over the annualized
(linear) growth rates and logarithmic growth curves that are commonly used to describe
forest growth. Linear growth rates do not reflect how forest stands develop over time and
logarithmic growth curves commonly start with negative intercepts, which are biologically
impossible.
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Calculation of aboveground carbon accumulation rates

Although Chapman-Richards growth curves best capture stand development through time,
practitioner and policy audiences frequently need robust linear rates to use in reforestation
strategy development. We therefore estimated annualized aboveground carbon accumulation
rates. These varied by genus of tree, plant functional type, and biome (Figure 4). Across
genera, Eucalyptus plantations had the highest annualized carbon accumulation rates (8.15
± 0.18 Mg C ha-1 yr-1). Generally, broadleaved tropical genera (Eucalyptus & Acacia) had
the highest accumulation rates and drove the high mean growth rates for tropical evergreen
broadleaf species and tropical & subtropical grasslands, savannas, and shrublands. Populus,
the primary temperate broadleaved genus in our database, exhibited a slightly higher carbon
accumulation rate (3.78 ± 0.23 Mg C ha-1 yr-1) relative to the coniferous genera; however,
some Populus monocultures in our database were from tropical biomes. All four coniferous
genera had roughly similar carbon accumulation rates, with the highest mean rate seen for
Pseudotsuga (3.16 ± 0.16 Mg C ha-1 yr-1).

Across plant functional types, differences in aboveground carbon accumulation rates were
less pronounced with the exception of tropical broadleaf plantations having the highest rate
(6.68 ± 0.15 Mg C ha-1 yr-1; Figure 4b). Across biomes, tropical & subtropical grasslands,
savannas, & shrublands (8.08 ± 0.36 Mg C ha-1 yr-1) and tropical & subtropical moist
broadleaf forests (4.39 ± 0.11 Mg C ha-1 yr-1) had the highest accumulation rates (Figure 4c).
The four other major biomes (temperate grasslands, savannas, and shrublands; temperate
broadleaf mixed forests; temperate coniferous forests; and Mediterranean forests, woodlands,
and shrublands) all had relatively similar rates of less than 3 Mg C ha-1 yr-1.

4.4 Discussion

Our results provide insight into the key drivers of variation in aboveground carbon accu-
mulation in monoculture plantations across global scales, as well as quantify differences in
accumulation patterns across major plant functional types and genera of tree. By using
a growth function with biologically meaningful parameters, we identified theoretical maxi-
mums of stand-level carbon as well as growth rates across the major genera of tree crops
planted globally. To facilitate better utility of our results and analyses, we provide addi-
tional discussion of i) how well our database represents global plantation forests, ii) drivers
of variation in aboveground carbon accumulation, and iii) the utility of our parameterized
growth curves and mean aboveground carbon accumulation rates in the following sections.

Database representativeness of global plantation forestry

Understanding of the typology and spatial distribution of global plantation forests is rela-
tively lacking due to a) proprietary holdings of plantation forest data, and b) difficulties in
differentiating between planted versus natural forests via remote sensing. The 2020 Forest
Resources Assessment of the United Nations Food and Agriculture Organization provides
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arguably the best snapshot view of plantation forests across the globe [41]. Relative to statis-
tics from the 2020 Forest Resources Assessment, our database represents some geographic
regions of plantation forests well, whereas it fully misses others. In 2020, China (84.7 Mha;
29%), the USA (27.5 Mha; 9%), Russia (18.8 Mha; 6%), Canada (18.2 Mha; 6%), Sweden
(13.9 Mha; 5%) and India (13.2 Mha; 5%) held the largest extents of global planted forests
(60% of plantation forests in total). Using the percent of database observations by country
as a proxy for representativeness, data from these countries were represented to varying de-
grees within our database. China (43%) and the USA (16%) were overrepresented, Canada
(2%) and India (3%) were underrepresented, and Russia (0%) and Sweden (0%) were wholly
absent from our database, a surprising result given their large expanses of plantation forests.

China was overrepresented in our database, primarily due to including approximately
1,700 observations summarized in one study [56]. We elected to include these observations
given the importance of China for plantation forests at global scales and the fact that the
data are a conglomeration of China’s National Forest Inventory. However, we tested the
sensitivity of our results to this decision by re-running our analyses without observations
from this study. Our key results, for example the ranking of genus-level accumulation rates
and their raw values, did not change when excluding these data. Rather, including the data
filled out our growth curves substantially for key species such as Chinese fir (Cunninghamia
lanceolata), which is estimated to account for over a quarter of all forested land and timber
production in China [154].

Despite differences at the country level, our database accounts for the genera of tree crop
species that dominate plantations globally. Comprehensive data on plantation species by
location and percent of global plantation forests is difficult to obtain, but 2006 data from
the FAO suggests that Pinus, Cunninghamia, Eucalyptus, Populus, Acacia, Larix, Picea,
Tectona, Castanea and Quercus plantations dominate global plantation forestry, representing
approximately 70% of global planted area [74]. Our database represented these genera well,
with these same ten genera accounting for 80% of our observations. Although data from
plantation forests in Russia and Sweden are absent from our database, we collected extensive
data on Pinus, Picea & Larix monocultures in northern latitudes from other countries (i.e.,
USA & Canada). Furthermore, while country level summaries provide a convenient lens for
assessing how well our database represents global plantation forests, our analyses were not
country specific. Rather, they were conducted by plant functional types, genera, and biomes.
It is unlikely that the absence of data from Russia or Sweden biases our results. Nevertheless,
future work on plantation biomass in Russia and Sweden would benefit understanding of
biomass growth in boreal planted forests.

Variation in drivers of aboveground carbon accumulation

With the exception of planting density, all of our hypothesized drivers of carbon accumula-
tion rates in plantations were found to have statistically significant effects when examined
individually (Table 2). Our full models are consequently most informative in understanding
the relative effects of drivers on aboveground carbon accumulation in plantations (Table
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3). Genus, prior land use, and plant traits were identified as key variables for explaining
variation in aboveground carbon accumulation. Genus and plant traits would suggest that
biological factors (i.e., growth traits inherent to species) are the major driver of variation in
growth rates at global scales. However, selection of species for planting can also be thought
of as a key management decision (i.e., a human factor). Endemism of tree species, another
factor in species selection, was also found to be highly significant in two of our models, but
was only marginally significant (F = 3.1, P = 0.08) in the full model that accounted for the
use of fertilizer. This finding suggests that should nutrient limitations on growth be lifted
within plantations, endemic species may perform as well as exotic species that are selected
for high growth limits. Further research to better understand the trade-off between use of
fertilizer versus exotic species would be of value given that both practices are believed to
typically have adverse impacts on local environments [109].

For the third highly significant driver, prior land use, we found carbon accumulation rates
to be higher for plantations established on former croplands relative to former pastures, clear-
cuts (of both prior rotations and native vegetation), or areas that have formerly burned. This
finding parallels the results of others, which show secondary forest growth to be higher on
former croplands than pasture, with negative growth effects associated with frequency of
fire [147]. Our findings further indicate that monoculture plantations established on former
crop or pasture lands may accumulate carbon faster than areas that were formerly forested
but clear-cut. This finding has key implications for siting of future monoculture plantations,
suggesting that clear-cutting of intact forests may not only have severe and adverse impacts
on biodiversity, but may generally have lower growth rates than establishing plantations on
former cropland or pastures.

Unexpectedly, biome was found to be non-significant in our full models. Synthetic anal-
yses of carbon accumulation in natural forests suggest that while biome is important, de-
composed metrics of climate variables (e.g., seasonality of precipitation) may be important
for parsing out variation in aboveground carbon accumulation [102]. The non-significance of
biome could also be due to the fact that plantations are actively managed, and constraints
on growth are less likely to be tied to climatic factors as much as species growth rates or
management practices that remove constraints on growth (i.e., fertilizer or irrigation) [133].

Our analyses of the relative effect of management practices were constrained by data
limitations. We were only able to examine two management practices within our full mod-
els given that including others would have required omission of key drivers that we sought
to control for (e.g., genus). Additionally, our categorical coding of management practices
greatly simplified the diversity of actions that may occur within each type of management
practice. Nevertheless, our results suggest that some management practices are likely to
be important for explaining variation in carbon accumulation in monoculture plantations.
Although we found planting density to have a non-significant effect on plantation biomass,
the use of fertilizer was statistically significant. This result agrees with expectations, given
that fertilizer use directly supports growth and would be expected to associate with higher
plantation biomass [133]. Our interpretation is that while management practices are impor-
tant for plantation biomass growth, they are difficult to generalize and may therefore have
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limited utility in predicting carbon accumulation across broad scales.

Nonlinear accumulation of aboveground carbon in plantation
forests

Although variation in our data was high, we identified distinct patterns of growth across plant
functional types and genera. Furthermore, our use of nonlinear growth functions provided
theoretically-informed understanding of aboveground carbon accumulation in monoculture
plantations (Table 4). For example, we were able to distinguish rapid growth rates for
genera commonly grown on short rotations for pulpwood (e.g., Eucalyptus, Acacia, or Pop-
ulus) versus slower growing coniferous species that are commonly grown for timber (e.g.,
Cunninghamia, or Pseudotsuga).

Although it is well known that species from genera such as Eucalyptus, Acacia or Populus
accumulate biomass quickly (indeed, it is why they are grown on short rotation lengths),
our parameterization of growth curves are valuable for multiple reasons. First, they are
significant improvements over annualized mean aboveground carbon accumulation rates,
which do not account for periods of slow growth during early stand development, the rapid
increase of biomass accumulation at intermediate growth rates, nor the slowing of growth
as stands age. These distinctions are critical for accurate assessments of time-dependent
actions to mitigate climate change within the forest sector. For example, initial delays in
carbon accumulation rates during the first five years of growth represent half of the time
window under which many public and private-sector programs have committed to reduce
emissions (e.g., by 2030). Assuming immediate and sustained rates of biomass accumulation
within forestry projects may have large consequences for carbon budgets at decadal scales.

Second, plantation forestry may be an attractive natural solution to climate change under
select circumstances given the economic benefits that can accrue to landowners, which may
help incentivize restoration of forest cover. The use of a nonlinear growth function is key
to modeling economic returns from productive plantation forestry. For example, key forest
management decision-making such as identifying optimal rotation lengths (including for joint
management of timber and carbon) is dependent on nonlinear stand growth [105]. Although
these curves are widespread within the commercial forestry sector, they are commonly pro-
prietary in nature and are therefore largely unavailable to the academic, governmental, and
non-governmental communities. Our growth curves may consequently prove useful in exam-
ination of the climate benefits that could be achieved by incentivizing improved plantation
forest management, particularly at broad geographic scales.

Annualized rates of aboveground carbon accumulation

Comparing our mean annualized carbon accumulation rates against those of naturally re-
generating forests helps situate our findings. However, the comparison should be made with
the understanding that planted and naturally regenerating forests are functionally different
systems and carbon accumulation rates are only one metric of comparison [13]. Converting
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aboveground biomass change rates (Mg ha-1 yr-1) derived by Requena-Suarez and colleagues
to accumulation of carbon in aboveground biomass yields accumulation rates in younger
(<20 years) naturally regenerating secondary forests of approximately 1.1 – 3.6 Mg C ha-1

yr-1 [115]. Similarly, Cook-Patton and colleagues found annualized aboveground carbon ac-
cumulation rates to range from 0.1 – 6.0 Mg C ha-1 yr-1 for naturally regenerating forests
[27]. For monoculture plantations, we determined a range of 0.9 – 8.2 Mg C ha-1 yr-1 for
aboveground carbon accumulation in young stands. While the lower rates are roughly sim-
ilar, the high end of biomass carbon accumulation in plantation forests is roughly 1.4 - 2.3
times greater than that of naturally regenerating forests. Other studies have found that
biomass accumulation rates averaged across all plantation types are significantly, but only
slightly, higher than biomass accumulation from natural regeneration [13]. In disaggregating
by plantation type, our results suggest that select monoculture plantations may have rapid
rates of biomass accumulation. However, we reiterate that rate of aboveground carbon ac-
cumulation is only one point of comparison and we discuss other important considerations
between monoculture plantations and other reforestation approaches in the following section.

Contextualizing our findings

It is important to situate our findings within the broader natural climate solutions arena,
which we attempt to do here. Monoculture plantations are only one pathway of many
(e.g., natural regeneration, assisted natural regeneration, agroforestry, diverse plantations)
for restoring forest cover [30, 62]. Currently, only 7% of global forest cover has been planted,
with the remainder having established through natural regeneration. As such, although it is
currently the dominant approach for commitments and investments in reforestation, planting
of monocultures accounts for a relatively small proportion of reforestation across the globe.

Our analysis combined both productive and non-productive monoculture plantations,
which have very different values for society. It is currently unclear how commitments to
reforest by planting breakdown across productive versus non-productive plantations. Al-
though our growth curves describe accumulation of aboveground carbon across both system
types, there are additional considerations that are important for distinguishing between
them. For example, productive plantations provide key needs for society, including tim-
ber, paper, or other fiber based-products. When managed sustainably and integrated into a
broader landscape, plantation forestry can help reduce impacts on productive natural forests
(e.g., concessions) and meet demand for harvested wood products efficiently [109]. Further,
substitution of sustainably produced timber for carbon intensive products such as concrete
or steel can have large reductions in carbon intensity and expand carbon stocks beyond what
would otherwise be achieved on the landscape [93, 104]. Accurately assessing the climate
benefits of productive plantations therefore requires accounting for the carbon impacts of
harvested wood products from these systems.

For non-productive monoculture plantations, there are other critical factors to consider
in assessing their potential climate benefits. For example, although we identified rapid
rates of aboveground carbon accumulation, our dataset included productive systems and
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our curves may therefore poorly predict aboveground carbon accumulation over time-frames
that exceed typical rotation lengths. Studies have shown that biodiverse forests stock more
carbon than monoculture plantations over long-term timeframes, as these forests tend to
have more complex forest structures and greater niche partitioning of resources [94, 108].
Moreover, biodiverse forests are likely to be more resilient to disturbances such as pests or
natural disasters, which is key for the permanence and durability of carbon sequestered on
the landscape over long time-frames [107]. Additional work is urgently needed to better
understand the nature of commitments to reforest by planting such that we may better-
account for nuance and differences across these varying systems.

4.5 Conclusion

Monoculture plantations are a globally dominant strategy for mitigating climate change
in the land-use sector. Here, we provided improved understanding of aboveground carbon
accumulation rates across a variety of monoculture plantations, as well as the key drivers
that mediate their growth. Our results provide a foundation for improved modeling of in
situ carbon dynamics in monoculture plantations, as well as the climate benefits of improved
plantation management practices, such as optimizing rotation lengths for joint production of
wood products and carbon. We anticipate that our growth curves will provide a key building
block in more systematic understanding of the climate impacts that global monoculture
plantations will have.

While sequestration of atmospheric carbon is a key motivation for environmental plan-
ners and land use decision-makers, the selection of monoculture plantation forestry versus
other approaches for restoring forest cover should be made across myriad considerations:
biodiversity, economics, social factors, and feasibility, among others. Furthermore, although
we focused on monoculture plantations here, there are a wide variety of plantation systems
that are implemented across the globe (including biologically diverse ones), each of which
has varying benefits and drawbacks. In giving fair consideration to the numerous forestry
systems that exist today—one of which we explore here—we will better operationalize the
diverse array of tools that we have for avoiding the most severe impacts of climate change.
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Tables and Figures

Table 1. Potential drivers of variation in aboveground carbon accumulation rates across
global monoculture plantations.
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Table 2. Results of linear mixed effects regression analysis of potential drivers on above-
ground carbon accumulation in monoculture plantations. Aboveground carbon (AGC) and
stand age are square root transformed in all models.
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Table 3. Results of comparative models across drivers. F-Values and their significance are
produced by running an Analysis of Variance (ANOVA) on each model. For each model,
square root transformed aboveground carbon is modeled as a linear combination of the listed
drivers with site ID included as a random intercept. Stand age was square root transformed
to linearize its relationship with aboveground carbon.

Table 4. Parameter estimates of the Chapman-Richards growth curves. All subsets of the
data are constrained to the 95th percentile by age to reduce the effects of sparse data at older
ages.
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Figure 1. Global distribution of sites collected within the literature database. We identified
a total of 3,436 observations of aboveground carbon in plantations, spread across 2,339 plots
from 579 sites. Forested biomes are displayed in light green whereas grassland, savannas,
and shrubland biomes are displayed in pale yellow.
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Figure 2. Growth curves by plant functional type. Chapman-Richards growth functions
are displayed in red, with the top 5% of observations by age truncated to avoid the effects
of sparse data at older stand ages. The grey curves are for visual comparison of species level
trends only, and are logarithmic relationships between stand age and aboveground carbon
for individual species with greater than 20 observations in the database.
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Figure 3. Growth curves by genus. Chapman-Richards growth functions are displayed in
red, with the top 5% of observations by age truncated to avoid the effects of sparse data
at older stand ages. The grey curves are for visual comparison of species level trends only,
and are logarithmic relationships between stand age and aboveground carbon for individual
species with greater than 20 observations in the database.
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Figure 4. Aboveground carbon accumulation rates for the major genera (a), plant functional
types (b), and biomes (c). Red points represent mean values. Plant functional type codes:
TrB – tropical broadleaf; TeB – temperate broadleaf; TeN – temperate needleleaf; TrN
– tropical needleleaf; MeN – Mediterranean needleleaf. Biome codes: TSGSS – tropical
& subtropical grasslands, savannas, and shrublands; TSMBF – tropical & subtropical moist
broadleaf forests; TGSS – temperate grasslands, savannas & shrublands; TBMF – temperate
broadleaf & mixed forests; MFWS – Mediterranean forests, woodlands & scrub; TCF –
temperate conifer forests.
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4.6 Supplementary Information

Dataset Compilation

We systematically reviewed the literature to identify studies reporting data on biomass and
carbon stocks in monoculture plantations. The literature search was performed on 19 April
2017 and was part of a larger effort to collect data on biomass accumulation associated with
expanding forest cover more generally [27]. Studies published since 1975 were identified
on Web of Science using the keyword search terms: TOPIC: (biomass OR carbon OR agb
OR recover* OR accumulat*) AND (forest) AND (restorat* OR reforest* OR afforest* OR
plantation* OR agroforest* OR secondary*). We reviewed the abstracts and titles of the
10,937 peer-reviewed studies that the search initially returned to identify studies focused
on re-establishing tree cover (N ∼5,500), which we further constrained to those that quan-
tified biomass or carbon stocks (N ∼1,400). Finally, of these ∼1,400 studies, we identified
640 studies that quantified biomass stocks in forest plantations, comprising our final list of
candidate studies.

We then reviewed each of these 640 studies to determine whether the study was to be
included in our database. To be included, the study had to report i) empirical measures
of biomass or carbon in the aboveground pool; ii) age of the plantation at the time of field
measurements; and iii) a latitude and longitude pair or sufficient geographic detail from
which geographic coordinates could be obtained. We focused exclusively on aboveground
biomass, because accurate estimates of changes in soil organic carbon stocks require pre-
post measurements that are not readily available in the literature. Similarly, belowground
biomass data were sparsely reported, may be unreliable due to inconsistent field sampling,
and are believed to account for a small proportion of total biomass in plantation systems
[13]. Prior reviews have found that up to 62% of root biomass data is unreliable due to
unverifiable sampling methods [101]. We consequently did not collect information on be-
lowground biomass stocks. Additionally, we did not collect data on understory vegetation
biomass, as it is a minor component of total biomass in monoculture plantation systems.
Given the importance of management practices on plantation tree growth, we collected in-
formation on planting density, rotation length, site preparation, fertilization, irrigation, and
vegetation control (e.g., thinning), in addition to biomass (carbon) stocks, age, geolocation,
tree crop species, and prior land use/disturbance. We collected quantitative measures where
possible and later coded the qualitative data on management practices to facilitate statistical
analyses (described in the main text).

Preprocessing and Standardization of Data

We considered grouping measurements by both site and plot to account for spatial autocor-
relation. The precision of site geolocation was highly variable across studies. Some studies
reported specific geolocations for each plot within a site. We harmonized the site codes to
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better account for autocorrelation in environmental and climatic conditions across global
scales. For example, a large number of studies used chronosequences as their experimental
design, which attempt to control for environmental and climatic conditions by definition.
We therefore coded chronosequences as coming from a single site. Conversely, sites that
had repeat measurements across time (e.g., measurements of biomass across multiple years)
were grouped by plot but considered as distinct sites. Our handling of spatial structure in
the database consequently attempts to accounts for correlation across observations at global
scales.

When studies empirically measured carbon concentrations in biomass and reported values
of biomass carbon, we retained those values. Many studies used a default factor of 0.5 to
convert aboveground biomass to carbon in aboveground biomass, which we adjusted to
the IPCC’s default conversion factor of 0.47 [39]. The majority of studies reported only
biomass (carbon) in the tree crop without any reporting of understory vegetation. Further,
plantations commonly remove understory biomass and the relative contribution of understory
vegetation to total biomass is consequently small [27]. We therefore only collected tree crop
biomass data. Most studies used allometric equations that estimated biomass across the
stem, branch, twig, and foliage pools. We omitted those that reported only stem biomass
given that substantial biomass may be found in the branch and twig pools, but retained
studies that reported only woody biomass (stem, branch and twig) given the relatively small
contribution of foliage to total biomass.

One study reported biomass data across 1,716 plots from 323 planted forest sites across
China, accounting for a substantial portion of our final dataset [56]. Although others have
elected to exclude the portion of this dataset that corresponds to naturally regenerated forests
from their analyses, we elected to retain the data for three reasons: i) China represents a very
large proportion of the globe’s planted forests, ii) plotting of biomass data in Chinese planted
forests from this study versus those of others did not suggest the potential introduction of
bias, and iii) inclusion of the data substantially increased the number of observations in
our database. To avoid duplicates in data, we ensured that observations were not already
included in our database, matched site codes where appropriate, and filtered the dataset to
only monospecific plantations. Unfortunately, management information was not available
for these data and we were unable to include them in our analyses of drivers of variation in
aboveground carbon accumulation.

Additionally, a second study reported approximately 600 observations of biomass for
Eucalyptus plantations from eight sites in Brazil [136]. The study was focused directly
on the influence of water, nutrients and stand uniformity on biomass production and was
consequently highly relevant for our study. Eucalyptus plantations are managed on short
rotation lengths in Brazil and inclusion of observation level data from this study heavily
biased our data on tropical broadleaf forests towards younger ages. To reduce the influence
of these data on our growth curves, we averaged observations that were i) from the same
site, ii) were the same age, and iii) were managed via the same practices. Doing so reduced
the total number of observations from this study from 649 observations to 199 and alleviated
concerns that this study was overly influencing our Eucalyptus and tropical broadleaf growth
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curves.
Finally, we identified one measurement with an anomalously high carbon accumulation

rate that we could not explain (∼40 Mg C ha-1 yr-1). The value was greater than eight
standard deviations from the mean carbon accumulation rate for that genus (Acacia) and we
decided to exclude it. We also identified several other observations with carbon accumulation
rates greater than three standard deviations from their genus-level mean. Although this is a
strong deviation, we retained them in the final dataset. Finally, our measurements for stand
ages greater than 100 years were largely dominated by one study, and the degree to which
the study is representative of plantation forests is unclear. Given that time frames of less
than 100 years are more representative of plantation forests and are adequate for assessing
climate change mitigation actions, we filtered our database to those observations that were
less than 100 years of age.

Transformation of data for driver analysis

To help linearize the relationship between aboveground carbon and stand age, we square root
transformed both variables. The linear relationship facilitates the driver analysis, which was
examined through linear mixed effects models. The linearized data is shown in Figure S1.

Selection of growth curve forms

We considered four growth curve forms for modeling the accumulation of aboveground carbon
in monoculture plantations: logarithmic, linearized logistic, logistic, and the Chapman-
Richards curve. Logarithmic curves are commonly used to approximate biomass (or carbon)
accumulation in forests over time and, of the four curves considered, are the easiest to fit
[113]. However, they do not account for the logistical growth pattern known to describe
carbon accumulation in forests. The three remaining curves all describe logistic growth
patterns. The first (Linearized Logistic, Eq. S2) is common within the forest economics
literature and is commonly used due to its ease of fitting (taking the log of aboveground
carbon linearizes the equation). The logistic (Eq. S3) and Chapman-Richards (Eq. S4)
curves are nonlinear in form. Although more sensitive to nonlinear variations in data, they
are more complicated to fit.

The forms of each growth curve are:

Eq. S1. Logarithmic.

q(t) = loge(t)

Eq. S2. Linearized logistic.
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q(t) = e(1−b/t)

Eq. S3. Logistic.

q(t) = A/1− b ∗ e(−k∗t)

Eq. S4. Chapman-Richards.

q(t) = A ∗ (1− b ∗ e(−k∗t))1/(1−m)

Where:

• q(t) is aboveground carbon in Mg C ha-1,

• t is stand age in years, and

• A, b, k, and m are parameters to be estimated from the data.

We considered several criteria in selecting which growth curve to fit: ease of parameter-
ization, accurate description of theoretical biomass accumulation patterns (i.e., logarithmic
vs. logistic), and visual fit to the data. After plotting all four curves against several subsets
of the data (e.g., see Figure S2, data for temperate pines; other subsets not shown), it was
clear that the Chapman-Richards curve outperformed the other three logistic curves. Given
that the Chapman-Richards curve is commonly employed, is theoretically defensible, and
not overly complicated to fit, we elected to use it to model the accumulation of aboveground
carbon.

Factor Analysis of Mixed Data for plant trait data

Our plant trait Factor Analysis of Mixed Data (FAMD) reduced the trait data to two axes,
which accounted for 53.9% of the variance in the trait data. The first axis (33.2% of varia-
tion) primarily represented the leaf type, nitrogen fixing capacity, and leaf phenology data,
whereas the second axis (20.7% of variation) overwhelmingly represented the wood density
data (Figure S3a). Leaf compoundness did not contribute substantially to either axis. As
expected, we identified strong separation of species across the broadleaved versus needle-
leaved categories of leaf type, deciduous and evergreen categories of leaf phenology, and
N-fixing versus non N-fixing categories (Figure S3b). Distinct clustering is seen across the
four categorical traits (leaf type, leaf phenology, leaf compoundness and nitrogen fixation
capacity), whereas the spread of species within these groupings (i.e., the diagonal spread of
grey points) is primarily driven by differences in wood density (Figure S3b).
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Supplementary Figures

Figure S1. Linearization of the aboveground carbon and stand age data via square root
transformation.
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Figure S2. Comparison of growth curve forms. Four growth curve forms fit to all temperate
pine data in our database. The curves are logarithmic (red), linearized logistic (blue), logistic
(green), and the Chapman-Richards curve (purple).
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Figure S3. Exploratory analysis of trait data using factor analysis of mixed data. Panel a)
shows loading of the traits on the two FAMD axes, whereas panel b) shows the species-level
groupings across the levels of the categorical trait data. Diagonal distribution of grey points
in panel b) is driven by differences in wood density data.
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Chapter 5

Conclusion

5.1 Overview

Better forest stewardship has large potential for helping to mitigate climate change due to the
scale at which forest conservation and expansion could occur. Although a range of pathways
for conserving and expanding forests exist, this dissertation examined two prominent ones:
i) the conservation and reforestation of mangrove forests, and ii) the expanded planting
of monoculture plantations. I have examined these actions by undertaking three studies
with highly applied results. Further, the lenses and geographic scopes through which I have
examined these topics were designed to directly improve the management and policy that
impacts these forest ecosystems.

First, I critically assessed the role that predictive model data can play in mangrove forest
carbon design. Field-based measurements of carbon stocks in mangroves are expensive to
obtain due to access issues and the necessity of accounting for the soil organic carbon pool.
As such, the availability of accurate predictive model data is of great benefit to resource-
constrained actors. The results of my second chapter suggest that, at the site level, estimates
of carbon stocks in mangroves may vary depending on whether field data or predictive model
data is used. Although it is nearly impossible to determine a ”true” estimate of carbon stocks,
conventional belief is that for a given site, field based measurements are more accurate than
global maps. This does not mean that predictive modeling holds no value for carbon forest
programs in mangroves; rather, it means that further work to iterate on these models (as
well as additional collection of field-based assessments) would improve their utility. The
implications of the results speak to a broader concern within the forest carbon world; should
baseline estimates of forest carbon stocks be inaccurate, programs employing these baselines
may be subject to criticism that they are producing false climate benefits. For mangroves,
these global maps remain highly valuable (particularly at broader scales) but should be used
with caution.

Second, I used a modeling and scenario analysis framework to examine the degree to
which mangrove reforestation can contribute to Thailand’s climate change mitigation goals.
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Mangroves are among the most carbon rich ecosystems globally and their deforestation in-
duces large emissions of carbon to the atmosphere. However, recent evidence also suggests
that reforestation of mangroves may result in the rapid accumulation of carbon in the vege-
tation and soil pools. I iterated on recent studies to improve the modeling of carbon stock
recovery in mangroves, used high resolution land use and land cover change data, and situ-
ated my results at a national scale - the scale most relevant for mangrove conservation and
reforestation policy. The results of my third chapter suggest that the climate benefits from
widespread mangrove reforestation in Thailand would meet a significant but small propor-
tion of their Nationally Determined Contribution to the 2015 Paris Agreement. Further, my
results suggest that much of mangrove forest regrowth might be associated with natural ex-
pansion of undisturbed patches of mangroves; however, future research is needed to confirm
this. Importantly, the results of this chapter are constrained by key uncertainties. While the
mangrove community has done well to quantify carbon stocks in standing forests, data on
the time-dependent recovery of carbon stocks in mangroves is lacking. Additional research
that improves understanding of carbon accumulation in reforested mangroves would greatly
benefit the mangrove conservation and climate change mitigation communities.

Third, I produced a synthetic view of the rates and variations in rates at which carbon
is accumulated in the aboveground biomass of monoculture plantations globally. Although
growth of biomass in monoculture plantations is well understand in localized contexts, there
is currently no synthetic understanding of how this growth varies by key factors such as
genus of tree crop, geographic region, or management practice across the globe. This is a
key knowledge gap for the forests and climate arena, as the majority of commitments for
reforestation are for planting monoculture plantations and many of these are motivated by
a need to mitigate climate change. Taking a meta-analysis approach, I built a database of
approximately 3,500 observations of aboveground carbon in monoculture plantations across
the globe and produced a refined understanding of how carbon accumulates in these systems.
The results of my fourth chapter suggest that carbon accumulation rates vary substantially
across genus of tree and geographic region. Further, I found a range of biological, environ-
mental, and human factors to mediate these rates of growth. I used nonlinear growth curves
to model the accumulation of carbon across time, which is a more theoretically defensible
approach relative to mean accumulation rates or logarithmic growth curves. My findings
greatly improve our understanding of how carbon accumulates in monoculture plantations,
which will be of high utility for assessing various options to expand forest cover across broad
geographic scales.

5.2 Future research needs

Although my dissertation has improved understanding of forest carbon management in man-
groves and monoculture plantations, future research remains critical to further improve man-
agement and policy in the forests and climate arena. Below, I provide additional thoughts
and details on two key research avenues that would greatly benefit communities concerned
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with forest carbon management and policy-making.
The first avenue to consider is whether carbon stocks in deforested mangroves are recov-

erable over meaningful time-frames to mitigate climate change. Although my third chapter
sought to improve understanding of this question, an honest evaluation of the results would
suggest that the data necessary to answer this question are lacking. While the scientific
community has done well to quantify carbon stocks in extant mangroves, key uncertainties
on how quickly carbon accumulates in reforested mangroves remain. Furthermore, other
work that I have collaborated on during my doctoral studies suggests that shrimp aquacul-
ture ponds, the dominant driver of mangrove deforestation, are capable of preserving large
quantities of organic carbon in their soils. Mechanistic explanations of this are lacking. On
the one hand, flooding of aquaculture ponds may recreate anaerobic conditions shortly af-
ter their construction, suppressing oxidation rates of mangrove-derived organic carbon and
therefore preserving it in the soil. Conversely, aquaculture ponds are intensive systems that
receive large amounts of feed, nutrients, and other organic matter. As such, the soil organic
carbon found to be preserved in these ponds may be a result of the productive aquacul-
ture system rather than derived from preserved mangrove biomass. Further research on the
dynamics of carbon in aquaculture ponds would greatly improve our understanding of the
climate impacts of mangrove loss and gain, in addition to studies that quantify carbon gain
in these systems.

The second research need is a more holistic view of carbon dynamics in monoculture
plantations. Specifically, monoculture plantations are commonly established for productive
purposes, with the tree crops harvested at set ages for the production of timber, pulp and
paper, or other fiber-derived products. In these systems, substantial portions of carbon may
be removed from the landscape and integrated into the built environment through the use
of long-lived wood products (e.g., the use of timber in housing), which would produce ad-
ditional stocks of carbon following regrowth of the plantation. Currently, comparisons of
the climate benefits of monoculture plantations versus other pathways for forest expansion
rarely consider the additional stocks of carbon that may be produced through productive
plantation systems. Comprehensive understanding of carbon dynamics in monoculture plan-
tations and their associated harvested wood products is highly uncertain. On the one hand,
the climate impacts of forest management in plantations are poorly constrained, which my
fourth chapter sought to improve. On the other hand, life cycle assessments of the climate
impacts of forest products are uncertain and rarely account for the climate impacts of for-
est management decisions. Accurate understanding of the climate impacts of productive
plantations will ultimately require the life cycle assessment and forest management scien-
tific communities to align their respective fields. Only then will we have a comprehensive
understanding of the climate impacts of productive plantation forestry.
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