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Approval policies for modifications to machine learning-based 
software as a medical device: A study of bio-creep

Jean Feng, Scott Emerson, Noah Simon
Department of Biostatistics, University of Washington, Seattle, WA, USA

Abstract

Successful deployment of machine learning algorithms in healthcare requires careful assessments 

of their performance and safety. To date, the FDA approves locked algorithms prior to marketing 

and requires future updates to undergo separate premarket reviews. However, this negates a key 

feature of machine learning—the ability to learn from a growing dataset and improve over time. 

This paper frames the design of an approval policy, which we refer to as an automatic algorithmic 

change protocol (aACP), as an online hypothesis testing problem. As this process has obvious 

analogy with noninferiority testing of new drugs, we investigate how repeated testing and adoption 

of modifications might lead to gradual deterioration in prediction accuracy, also known as 

“biocreep” in the drug development literature. We consider simple policies that one might consider 

but do not necessarily offer any error-rate guarantees, as well as policies that do provide error-rate 

control. For the latter, we define two online error-rates appropriate for this context: bad approval 

count (BAC) and bad approval and benchmark ratios (BABR). We control these rates in the simple 

setting of a constant population and data source using policies aACP-BAC and aACP-BABR, 

which combine alpha-investing, group-sequential, and gate-keeping methods. In simulation 

studies, bio-creep regularly occurred when using policies with no error-rate guarantees, whereas 

aACP-BAC and aACP-BABR controlled the rate of bio-creep without substantially impacting our 

ability to approve beneficial modifications.

Keywords

AI/ML-based SaMD; alpha-investing; gate-keeping; group-sequential; online hypothesis testing

Due to the rapid development of artificial intelligence (AI) and machine learning (ML), the 

use of AI/ML-based algorithms has expanded in the medical field. As such, an increasing 

number of AI/ML-based Software as a Medical Device (SaMD) are seeking approval from 

Correspondence: Jean Feng, Department of Biostatistics, University of Washington, Seattle, WA, USA. jeanfeng@uw.edu. 

OPEN RESEARCH BADGES
This article has earned an Open Materials badge for making publicly available the components of the research methodology needed to 
reproduce the reported procedure and analysis. All materials are available at https://github.com/jjfeng/aACP.

DATA AVAILABILITY STATEMENT
Code to generate data and reproduce all tables and figures are available as Supporting Information as well as in http://github.com/
jjfeng/aACP.

SUPPORTING INFORMATION
Proofs, algorithms, and additional simulation results referenced in Sections 6 and 6 are available with this paper at the Biometrics 
website on Wiley Online Library.

HHS Public Access
Author manuscript
Biometrics. Author manuscript; available in PMC 2021 March 11.

Published in final edited form as:
Biometrics. 2021 March ; 77(1): 31–44. doi:10.1111/biom.13379.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/jjfeng/aACP
http://github.com/jjfeng/aACP
http://github.com/jjfeng/aACP


the Center of Diagnostics and Radiologic Health (CDRH) at the US Food and Drug 

Administration (FDA). ML algorithms are attractive for their ability to improve over time by 

training over a growing body of data. Thus, rather than using a locked algorithm trained on a 

limited dataset, developers might like to train it further on a much more representative 

sample of the patient population that can only be obtained after deployment. To collect input 

on this regulatory problem, the FDA recently outlined a proposed regulatory framework for 

modifications to AI/ML-based SaMDs in a discussion paper (FDA, 2019).

Regulating evolving algorithms presents new challenges because the CDRH has historically 

only approved “locked” algorithms, i.e., algorithms that do not change after they are 

approved. This is a new regulatory problem because updating traditional medical devices 

and drugs is often logistically difficult whereas updating software is both fast and easy.

FDA (2019) proposes companies stipulate SaMD pre-specifications (SPS) and an algorithm 

change protocol (ACP). When listing the anticipated modifications in the SPS, it behooves 

the company to cast as wide a net as possible within FDA-imposed constraints. The ACP 

specifies how the company will ensure that their modifications are acceptable for 

deployment. Once the FDA approves the SPS and ACP, the company follows these pre-

specified procedures to deploy changes without further intervention. As such, we refer to the 

ACP in this paper as an “automatic ACP” (aACP). The aACP is the FDA’s primary tool for 

ensuring safety and efficacy of the modifications. However, specific aACP designs or 

requirements are noticeably absent from FDA (2019). This paper aims to address this gap.

A manufacturer has two potential motivations for changing an AI/ML-based SaMD: to 

advance public health and to increase their financial wealth. Modifications that improve 

performance and usability are encouraged. On the other hand, changes that do not and are 

deployed only for the sake of change itself have been used in the past to advance a 

manufacturer’s financial interest and are contrary to public interest. Historically, such 

modifications have been used to (1) decrease competition because it is difficult for 

competitors to compare against an ever-changing benchmark; (2) file for a patent extension 

and keep prices artificially high; and (3) increase sales for a supposedly new and improved 

product (Gupta et al., 2010; Hitchings et al., 2012; Gottlieb, 2019). To prevent this type of 

behavior with drugs and biologics, the FDA regulates modifications through various types of 

bridging studies (International Conference on Harmonisation, 1998). Likewise, an aACP 

should only grant approval to modifications to AI/ML-based SaMD after ensuring safety and 

efficacy.

This paper provides a framework for designing and evaluating an aACP, considers a variety 

of aACP designs, and investigates their operating characteristics. We assume the 

manufacturer is allowed to propose arbitrary (and possibly deleterious) modifications, which 

include changes to model parameters, structure, and input features. For this paper, we focus 

on the setting of a constant population and data source, rather than more complicated 

settings with significant time trends. Throughout, we evaluate modifications solely in terms 

of their operating characteristics. Thus, the aACPs treat simple models and complex black-

box estimators, such as neural networks and boosted gradient trees, the same. This parallels 
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the drug approval process, which primarily evaluates drugs on their efficacy and safety with 

respect to some endpoints, even if the biological mechanism is not completely understood.

To our knowledge, there is no prior work that directly addresses the problem of regulating 

modifications to AI/ML-based SaMD, though many have studied related problems. In online 

hypothesis testing, alpha-investing procedures are used to control the online false discovery 

rate (FDR) (Foster and Stine, 2008; Javanmard and Montanari, 2015; Ramdas et al., 2017, 

2018; Zrnic et al., 2018), which is important for companies that test many hypotheses over a 

long period of time (Tang et al., 2010). We will consider aACPs that use alpha-investing to 

control online error rates; However, we will need to significantly adapt these ideas for use in 

our context. In addition, differential privacy methods (Blum and Hardt, 2015; Dwork et al., 
2015) have been used to tackle the problem of ranking model submissions to a ML 

competition, where the submissions are evaluated using the same test data and models are 

submitted in a sequential and adaptive manner. Though that problem is related, those 

approaches cannot evaluate modifications that add previously unmeasured covariates. 

Finally, online learning methods are a major motivation for studying this regulatory problem 

and can be used to automatically update the model (Shalev-Shwartz, 2012). However, rather 

than designing bespoke aACPs for online learning methods, we will consider approval 

policies for arbitrary modifications as a first step.

This paper evaluates the rates at which different policies make bad approvals as well as their 

rates of approving beneficial modifications. Due to the analogy between this problem and 

noninferiority testing of new drugs, we investigate how repeated testing of proposed 

modifications might lead to gradual deterioration in model performance, also known as “bio-

creep” (Fleming, 2008). We compare simple aACPs that one might consider, but do not 

necessarily have error-rate guarantees, to policies that do provide error rate control. For the 

latter, we define two online error rates appropriate for this context—the expected bad 

approval count (BAC) and bad approval and benchmark ratios (BABR)—and control them 

using policies aACP-BAC and aACP-BABR, respectively. In simulation studies, bio-creep 

frequently occurred when using the simple aACPs. By using aACP-BAC or aACP-BABR 

instead, we significantly reduce the risk of bio-creep without substantially reducing the rate 

of model improvement. Based on these findings, we conclude that (1) bio-creep is a major 

concern when designing an aACP and (2) there are promising solutions for mitigating it 

without substantially hindering model improvements.

1 | MOTIVATING EXAMPLES

We present examples of actual AI/ML-based medical devices and discuss possible 

modifications that manufacturers might consider. The examples are ordered by increasing 

regulatory complexity and risk. Throughout, we only discuss regulating modifications to the 

software and assume the intended use of the device remains constant.

1.1 | Blood tests using computer vision

Sight diagnostics has developed a device that collects and images blood samples to estimate 

complete blood count (CBC) parameters. They are evaluating the device in a clinical trial 

(ClinicalTrials.gov ID NCT03595501) where the endpoints are the estimated linear 
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regression parameters (slope and intercept) between their CBC parameter estimates and gold 

standard.

The FDA requires locking the entire procedure, which includes blood collection, imaging, 

and the ML algorithm, prior to marketing. Nonetheless, the company might want to improve 

the accuracy of their test after obtaining regulatory approval. For instance, they can train 

more complex models that capture nonlinearities and interactions (between covariates and/or 

outcomes) or use a different FDA-approved device to image the blood sample. All these 

changes have the potential to improve prediction accuracy, though it is not guaranteed.

To regulate such modifications, we will need to define acceptable changes to endpoint 

values. This is not straightforward when multiple endpoints are involved: Do all endpoints 

have to improve? What if the model has near-perfect performance with respect to some 

endpoints and room for improvement for others? To tackle these questions, we must run both 

superiority and noninferiority (NI) tests. Moreover, introducing NI tests prompts even more 

questions, such as how to choose an appropriate NI margin.

1.2 | Detecting large vessel occlusion from CT angiogram images of the brain

ContaCT is a SaMD that identifies whether CT angiogram images of the brain contain a 

suspected large vessel occlusion. If so, it notifies a medical specialist to intervene. The 

manufacturer evaluated ContaCT using images analyzed by neuro-radiologists. The primary 

endpoints were estimated sensitivity and specificity. The secondary endpoint was the 

difference in notification time between ContaCT and standard-of-care. ContaCT achieved 

87% sensitivity and 89% specificity and significantly shortened notification time.

Having obtained FDA approval (FDA, 2018), the company might want to improve ContaCT 

by, say, training on more images, extracting a different set of image features, or utilizing 

clinical covariates from electronic health records. This last modification type requires 

special consideration since the distribution of clinical covariates and their missingness 

distribution are susceptible to time trends.

1.3 | Blood test for cancer risk prediction

GRAIL is designing a blood test that sequences cell-free nucleic acids (cfNAs) circulating in 

the blood to detect cancer early. They are currently evaluating this test in an observational 

study (ClinicalTrials.gov ID NCT02889978) where the gold standard is a cancer diagnosis 

from the doctor within 30 months. For time-varying outcomes, one may consider evaluating 

performance using time-dependent endpoints, such as those in Heagerty and Zheng (2005).

After the blood test is approved, GRAIL might still want to change their prediction 

algorithm. For example, they could collect additional omics measurements, sequence the 

cfNAs at a different depth (e.g., lower to decrease costs, higher to improve accuracy), or 

train the model on more data. Regulating modifications to this blood test is particularly 

difficult because the gold standard might not be observable in all patients, its definition can 

vary between doctors, and it cannot be measured instantaneously. In fact, the gold standard 

might not be measurable at all because test results will likely affect patient and doctor 

behavior.
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2 | PROBLEM SETUP

In this section, we provide a general framework and abstractions to understand the approval 

process for modifications to AI/ML-based SaMD. We begin with reviewing the approval 

process for a single AI/ML-based SaMD since it forms the basis of our understanding and is 

a prerequisite to getting modifications approved.

2.1 | AI/ML-based SaMD

Formally, the FDA defines SaMD as software intended to be used for one or more medical 

purposes without being part of a hardware medical device. An AI/ML system is software 

that learns to perform tasks by tracking performance measures. A SaMD must be approved 

for a specific indication, which describes the population, disease, and intended use. Here we 

only consider SaMDs whose predictions do not change the observed outcome; We leave 

SaMDs that affect the observed outcome (e.g., by recommending treatment) to future work.

Predictive accuracy is typically characterized by multiple endpoints, or co-primary endpoints 

(Offen et al., 2007; FDA, 2017). The most common endpoints for binary classifiers are 

sensitivity and specificity because they tend to be independent of disease prevalence, which 

can vary across subpopulations (Pepe, 2003). Additionally, we can evaluate endpoints over 

different subgroups to guarantee a minimum level of accuracy for each one.

We now define a model developer (the manufacturer) in mathematical terms. Let X be the 

support of the targeted patient population, where a patient is represented by their covariate 

measurements. Let Y be output range (possibly multivariate). Let Q be a family of 

prediction models f :X Y. Each model f defines the entire pipeline for calculating the 

SaMD output, including feature extraction, pre-processing steps, and how missing data is 

handled. The model developer is a functional g that maps the training data 

XT , Y T ∈ Xn × Yn to a function in Q. Let P be the family of distributions for X × Y. The 

performance of a model f on population ℙ ∈ P is quantified by the K-dimensional endpoint 

m:Q × P ℝK. For each endpoint mk, we assume that a larger value indicates better 

performance.

2.2 | Modifications to AI/ML-based SaMD

The proposed workflow in FDA (2019) for modifying an AI/ML-based SaMD iterates 

between three stages. First, the manufacturer proposes a modification by training on 

monitoring and/or external data and adds this to a pool of proposed modifications. Second, 

the aACP evaluates each candidate modification and grants approval to those satisfying 

some criteria. The most recently approved version is then recommended to doctors and 

patients. Finally, a new batch of monitoring data is collected, which can be used to evaluate 

and train future models. For simplicity, suppose these three stages are executed in the above 

order over a fixed grid of time points t = 1, 2, ….

The model developer is allowed to propose arbitrary modifications in a sequential and 

possibly adaptive manner. For example, the modification can depend on all previously 

collected monitoring data as well as the set of approvals up to that time point. For generality, 
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we represent each modification as an entirely separate model. Let filtration ℱt be the sigma 

algebra representing the information up to time t, which includes observed monitoring data, 

proposed models, and aACP outputs up to time t. The model developer is a sequence of 

functionals {gt : t = 1, 2, …}, where gt is a ℱt-measurable functional mapping to Q. Let f t
be the realized model proposal at time t. In addition, suppose that each proposed model f t
has a maximum wait time Δt that specifies how long the manufacturer will wait for approval 

of this model, i.e. the model is no longer considered for approval after time t + Δt.

Time trends are likely to occur in long-running processes, as found in long-running clinical 

trials and noninferiority trials (Altman and Royston, 1988; Fleming, 2008). This includes 

changes to any component of the joint distribution between the patient population and the 

outcome, such as the marginal distributions of the covariates, their correlation structure, their 

prognostic values, and the prevalence of the condition. As such, let the joint distribution at 

time t of patients Xt and outcomes Yt be denoted ℙt. The value of endpoint m for model f at 

time t is then m f, ℙt . More generally, we might characterize a model by the average 

endpoint value over time points t to t + D − 1 for some D ≥ 1. We denote the average 

endpoint using m f, ℙt: t + D − 1 , where ℙt: t′ indicates a uniform mixture of ℙt, …, ℙt′. Here D 

acts as a smoothing parameter; Larger D increases the smoothness of endpoint values.

Finally, this paper assumes that monitoring data collected at time t are representative of the 

current population ℙt. Of course, satisfying this criteria is itself a complex issue. We will not 

discuss the challenges here and instead refer the reader to Pepe (2003) for more details, such 

as selecting an appropriate sampling scheme, measuring positive versus negative examples, 

and obtaining gold standard versus noisy labels.

2.2.1 | Defining acceptable modifications—A fundamental building block for 

designing an aACP is defining when a modification is acceptable to a reference model. Our 

solution is to represent which modifications are acceptable using a directed graph between 

models in Q. If there is a directed edge from model f to model f′, then it is acceptable to 

update f to f′. This “acceptability graph” is parameterized by a pre-defined vector of non-

inferiority margins ϵ ∈ ℝ+
K. An update from f to f′ is acceptable if it demonstrates non-

inferiority with respect to all endpoints and superiority in at least one (Bloch et al., 2001, 

2007). So for a binary classifier where the endpoints are sensitivity and specificity, one may 

select the NI margins to encourage modifications that shift the model to a better ROC curve 

(Figure 1). An acceptability graph is formally defined below:

Definition 1.: For a fixed evaluation window D ∈ ℤ+ and NI margin ϵ ∈ ℝ+
K, the 

acceptability graph at time t over Q contains the edge from f to f′ if 
mk f, ℙt: t + D − 1 − ϵk ≤ mk f′, ℙt: t + D − 1  for all k = 1,…,K and there is some k = 1,…,K 

such that mk f′, ℙt: t + D − 1 > mk f, ℙt: t + D − 1 . The existence of this edge is denoted f 

→ϵ,D,t f′ and f ↛ϵ,D,t f′ otherwise.
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In this paper, we assume D is fixed and use the notation f →ϵ,t f′. For simplicity, Definition 

1 uses the same NI margin across all models. In practice, it may be useful to let the margin 

depend on the reference model or the previously established limits of its predictive accuracy.

We obtain different graphs for different choices of ϵ. For instance, ϵ = 0 means that a model 

is only acceptable if it is superior with respect to all endpoints, though this can be overly 

strict in some scenarios. Setting ϵ ≠ 0 is useful for approving modifications that maintain the 

value of some endpoints or have very small improvements with respect to some endpoints.

Finally, we define hypothesis tests based on the acceptability graph. In an ϵ-acceptability 

test, we test the null hypothesis that a model f′ is not an ϵ-acceptable update to model f at 

time t, i.e. H0 : f ↛ϵ,t f′. A superiority test is simply an ϵ-acceptability test where ϵ = 0.

3 | AN ONLINE HYPOTHESIS TESTING FRAMEWORK

At each time point, we suppose an aACP evaluates which candidates to approve by running 

a battery of hypothesis tests. Since AI/ML-based SaMDs can be modified more easily and 

frequently compared to drugs, the aACP may run a large number of tests. To account for the 

multiplicity of tests, we will frame aACPs as online hypothesis testing procedures where the 

goal is to control the error rate over a sequence of tests.

Each aACP specifies a sequence of approval functions At for times t = 1, 2,…. (Figure 2), 

where At is a ℱt-measurable function that outputs the index of the most recently approved 

model at time t (some value in {0, … , t − 1}). Filtration ℱt is the sigma-algebra for 

monitoring data up to time t and proposed models and aACP outputs up to time t − 1. The 

index of the latest approved model at time t is denoted Ât. A model was approved at time t if 
Ât ≠ Ât−1. Assuming companies are not interested in approving older models, we require Ât 

≥ Ât−1.

Different approval functions lead to different aACPs. In this paper, we consider only aACPs 

that evaluate candidate modifications using prospectively-collected monitoring data, that is, 

data collected after the candidate modification has been proposed, as candidate 

modifications can train on all previously-collected monitoring data. The following are two 

simple aACPs that one may plausibly consider but do not provide error-rate guarantees:

aACP-Baseline approves any modification that demonstrates ϵ-acceptability to the initially 

approved model at a fixed level α. This can be useful when the initial model has high 

predictive accuracy. The manufacturer may also argue this is reasonable policy because the 

current laws only require a model to perform better than placebo, i.e., the standard of care 

without utilizing AI/ML-based SaMDs.

aACP-Reset approves any modification that demonstrates ϵ-acceptability to the currently 

approved model at some fixed level α. As opposed to aACP-Baseline, this policy encourages 

the model to improve over time.
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4 | ONLINE ERROR RATES FOR aACPs

We define two online Type I error rates for this setting and describe aACPs that uniformly 

control these error rates over time. Manufacturers and regulators should select the error rate 

definition and aACP most suitable for their purposes. These aACPs achieve error rate control 

as long as their individual hypothesis tests are controlled at their nominal levels.

For both definitions, the error rate at time T is evaluated over the window 1 ∨ (T − W) to T 
for some width W ≥ 1. The hyperparameter W must be pre-specified and specifies different 

trade-offs between error control and speed: W = ∞ requires the strongest error rate control, 

but is overly strict in most cases, and W = 1 requires the weakest error control, but can lead 

to bad long-running behavior. The desired trade-off is typically in between these extremes.

4.1 | Bad approval count

We define a bad approval as one where the modification is unacceptable with regards to any 
of the previously approved models. The first error rate is defined as the expected bad 

approval count (BAC) within the current window of width W:

Definition 2.: The expected bad approval count within the W-window at time T is

BACW (T ) = E ∑
t = 1   ∨ (T − W )

T
1 ∃t′ = 1, …, t − 1 s.t. fAt′ ↛ϵ, t fAt .

This error rate captures two important ways errors can accumulate over time: bio-creep and 

the multiplicity of hypotheses. We discuss these two issues below.

When a sequence of NI trials is performed and the reference in each trial is the latest model 

that demonstrated NI, the performance of the approved models will gradually degrade over 

time; This phenomenon has been called bio-creep in previous work (Fleming, 2008). 

Biocreep can also happen in our setting: Even if each approved model demonstrates 

superiority with respect to some endpoints and NI with respect to others, repeated 

applications of ϵ-acceptability tests can still lead to approval of strictly inferior models. The 

risk of bio-creep is particularly pronounced because the model developer can perform 

unblinded adaptations. To protect against bio-creep, Definition 2 counts it as a type of bad 

approval.

Second, when a long sequence of hypothesis tests is performed, the probability of a false 

rejection is inflated due to the multiplicity of hypotheses. Definition 2 accounts for 

multiplicity by summing the probabilities of bad approvals across the window. It is an upper 

bound for the probability of making any bad approval within the window, which is similar to 

the definition of family-wise error rate (FWER). In fact, we use the connection between 

FWER and BAC in the following section to design an aACP that controls this error rate.

4.1.1 | aACP to control bad approval counts—We now present aACP-BAC, which 

uniformly controls BACW(·). An aACP is defined by its skeletal structure, which specifies 

Feng et al. Page 8

Biometrics. Author manuscript; available in PMC 2021 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the sequence of hypothesis tests run, and a procedure that selects the levels to perform the 

hypothesis tests. To build up to aACP-BAC, we (i) first describe a simple aACP skeleton that 

launches a fixed sequence of group sequential tests (GSTs), (ii) add gate-keeping to increase 

its flexibility, and (iii) finally pair it with a sequence of ℱt-measurable functions {αt : t = 1, 

2, …} for choosing the hypothesis test levels. The full algorithm is given in Algorithm 1 in 

Supporting Information. For now, we assume the distributions are constant and simply use 

the notation →ϵ in place of →ϵ,t. We discuss robustness to time trends in a later section.

Let us first consider a simple aACP skeleton that compares each proposed model to 

previously approved models using a single hypothesis test (Figure 3). More specifically, at 

time t, it launches a group sequential ϵ-acceptability test with the null hypothesis

H0: ∃t′ = 1, …, t s.t. fAt′ ↛ϵ f t . (1)

The number of interim analyses is the maximum wait time Δt and the critical values are 

chosen according to an alpha-spending function specified prior to launch (DeMets and Lan, 

1994). At each time point, we also perform interim analyses for all active hypothesis tests 

(i.e., those not past their maximum wait time). The aACP approves f j at time t if it 

demonstrates acceptability to fA1, …, fAt − 1. If multiple models are acceptable, it selects the 

latest one.

A drawback of this simple aACP skeleton is that it fails to adapt to new model approvals that 

occur in the middle of a group sequential test (GST). Consider the example in Figure 3, 

where a GST with null hypothesis Hf0 ↛ fϵ 1
0  is launched at time t = 1and a second GST 

with null hypothesis Hf0 ↛ fϵ 2
0  is launched at time t = 2. If f1 is approved at time t = 3, this 

aACP cannot approve f2 since its GST only compares f2 to f0. Ideally, it could adapt to the 

new approval and add a test comparing f2 to f1.

aACP-BAC addresses this issue by evaluating proposed model f t using a family of 

acceptability tests instead (Figure 4). In addition to the aforementioned test for the null 

hypothesis (1), this family includes acceptability tests to test each of the null hypotheses

H0, j:f j ↛ϵ f t  for j = At + 1, …, t − 1. (2)

As before, a model is approved at time t only if it demonstrates acceptability compared to all 

approved models up to time t. To control the online error rate, aACP-BAC controls the 

FWER for each family of tests using a serial gate-keeping procedure. Recall that gate-

keeping tests hypotheses in a pre-specified order and stops once it fails to reject a null 

hypothesis (Dmitrienko and Tamhane, 2007). No alpha adjustment is needed in gate-

keeping; It controls FWER at α by performing all tests at level α. Here, the tests are 

naturally ordered by the index of the reference models, from oldest to latest. Moreover, this 

ordering maximizes the probability of approval, assuming the proposed models improve in 

predictive accuracy. We use the overall hierarchical rule to perform GSTs with gate-keeping 

(Tamhane et al., 2018).
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To uniformly control BACW(·) at α, aACP-BAC computes an over-estimate of BACW(·) at 

each time t and selects level αt such that the over-estimate is bounded by α. Using a union 

bound like that in Bonferroni correction, it uses the overestimate

BACW (t) = ∑
t′ = 1

t
αt′1 t − W ≤ t′ + Δt′ ≤ t (3)

and selects αt such that

BACW (t) ≤ α . (4)

See Supporting Information for a proof that aACP-BAC achieves the nominal rate.

Alternatively, we can think of aACP-BAC as an alpha-investing procedure (Foster and Stine, 

2008) that begins with an alpha-wealth of α, spends it when a family of tests is launched, 

and earns it back when the family leaves the current window. Thus, aACPs that control BAC 

over window size W = ∞ inevitably have low power to approve later modifications because 

they only spend but never earn alpha-wealth. This is analogous to the so-called “alpha-

death” issue that occurs in procedures that control online FWER (Ramdas et al., 2017). We 

sidestep the issue of alpha-death by selecting a reasonable value for W.

4.2 | Bad approval and benchmark ratios

If the goal is to ensure that the SaMD improves on average and occasional drops in 

performance are tolerated, the approval policies for controlling BACW can be overly strict 

and unnecessarily conservative. There are two solutions to this problem. One approach 

(reward approach) is to reward the company for each superior model by resetting the level 

alpha. The FDA essentially uses this procedure right now, as each clinical trial resets the 

alpha-spending clock. Another idea (FDR approach) is to draw on the false discovery rate 

(FDR) literature: These procedures control the expected proportion of false rejections rather 

than the FWER, which has higher power when some of the null hypotheses are false 

(Benjamini and Hochberg, 1995). This section defines a second online error rate based on 

these ideas.

The reward approach punishes bad approvals and rewards the approval of superior models. 

To signify that a recent set of modifications has led to the creation of a superior model, we 

now define aACPs with an additional function that can label models as “benchmarks.” By 

labeling a model as a benchmark, the aACP is claiming that it is superior to the previous 

benchmark. More formally, we define a benchmark function Bt as a F t measurable function 

that outputs the index of the latest benchmark model at time t. For t = 0, we have B0 ≡ 0. We 

require benchmarks to be a previously approved model since superiority implies 

acceptability. Again, we use the hat notation to indicate the realized benchmark index. A bad 

benchmark is one in which fBt − 1 ↛0, t fBt. We do not compare against all previous 

benchmarks since ↛0,t is a transitive property when the superiority graph is constant.
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Based on the FDR approach, we now introduce bad approval and benchmark ratios. An 

aACP needs to control both ratios to control the frequency of bad approvals and 

benchmarks.

Definition 3.: For NI margin ϵ, the bad approval ratio within W-window at time T is

BARW (T ) =
∑t = 1 ∨ (T − W )

T 1 ∃t′ = 1, …, t − 1 s.t. fAt′ ↛ϵ, t fAt
1 + ∑t = 1 ∨ (T − W )

T 1 Bt ≠ Bt − 1
. (5)

The bad benchmark ratio within W-window at time T is

BBRW (T ) =
∑t = 1 ∨ (T − W )

T 1 fBt − 1 ↛0, t fBt
1 + ∑t = 1 ∨ (T − W )

T 1 Bt ≠ Bt − 1
. (6)

Since only approved models can be designated as benchmarks, BARW is an upper bound for 

the proportion of bad approvals (this is approximate because the denominator is off by one).

The denominator in (5) was deliberately chosen to be the number of unique benchmarks 

rather than the number of approvals because the latter is easy to inflate artificially. We can 

simply propose models by alternating between two models that are ϵ-acceptable to each 

other. This strategy does not work for benchmarks because they require demonstrating 

superiority.

4.2.1 | aACP to control bad approval and benchmark ratios—Instead of 

controlling the expectations of (5) and (6), we describe aACP-BABR for controlling the 

modified expected bad approval and benchmark ratios. These modified ratios are based on a 

similar quantity in the online FDR literature known as modified online FDR (Foster and 

Stine, 2008). We chose to control the modified versions because they can be controlled 

under less restrictive conditions and using relatively intuitive techniques (Ramdas et al., 
2017). Moreover, Foster and Stine (2008) found that modified online FDR has similar long-

running behavior to online FDR. We define modified expected bad approval and benchmark 

ratios below.

Definition 4.: For NI margin ϵ, the modified expected bad approval ratio within W-window 

at time T is

meBARW (T ) =
E ∑t = 1 ∨ (T − W )

T 1 ∃t′ = 1, …, t − 1 s.t. fAt′ ↛ϵ, t fAt
E 1 + ∑t = 1 ∨ (T − W )

T 1 Bt ≠ Bt − 1
. (7)

The modified expected bad benchmark ratio within W-window at time T is
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meBBRW (T ) =
E ∑t = 1 ∨ (T − W )

T 1 fBt − 1 ↛0, t fBt
E 1 + ∑t = 1 ∨ (T − W )

T 1 Bt ≠ Bt − 1
. (8)

Next, we describe how aACP-BABR uniformly controls meBARW(·) and meBBRW(·) at 

levels α and α′, respectively (Algorithm 2). We begin with its skeleton and then discuss the 

alpha-investing procedure. Again, we assume the distributions ℙt are constant.

aACP-BABR uses the acceptability tests from aACP-BAC to approve modifications and 

superiority tests to discover benchmarks. So at time t, in addition to launching a family of 

acceptability tests to evaluate model f t for approval, aACP-BABR also launches a family of 

group-sequential superiority tests comparing f t to models with indices Bt − 1, …, t − 1 , 

which are executed in a gate-keeping fashion from oldest to latest. Let Δt′ be the maximum 

wait time for the superiority tests, which can differ from the maximum wait time for 

acceptability tests. A model f j is designated as a new benchmark at time t if it demonstrates 

superiority to models fBj − 1, …, fBt − 1. If multiple benchmarks are discovered at the same 

time, the aACP can choose any of them (we choose the oldest one in our implementation).

aACP-BABR uses an alpha-investing procedure based on Ramdas et al. (2017) to control the 

error rates. Let the F t-measurable function αt′ specify the level to perform superiority tests 

launched at time t. At time t, aACP-BABR constructs over-estimates of the error rates 

BARW(t) and BBRW(t) and selects αt and αt′ such that the over-estimates are no larger than 

the nominal levels. The overestimates are

BARW (t) =
∑t′ = 1

t αt′1 t − W ≤ t′ + Δt′ ≤ t
1 + ∑t′ = 1 ∨ (T − W )

T 1 Bt′ ≠ Bt′ − 1
(9)

BBRW (t) =
∑t′ = 1

t αt′1 t − W ≤ t′ + Δt′′ ≤ t
1 + ∑t′ = 1 ∨ (T − W )

T 1 Bt′ ≠ Bt′ − 1
. (10)

It selects αt and αt′ such that

BARj(t) ≤ α ∀j = 1, …, W (11)

BBRj(t) ≤ α′ ∀j = 1, …, W . (12)

(We consider all window sizes since we also need to over-estimate future errors BARW(t′) 
and BBRW(t′) for t′ > t.) So, aACP-BABR earns alpha-wealth when new benchmarks are 

discovered, which unites ideas from FDR-approach and reward-approach. See the 

supporting information for a proof that aACP-BABR provides the desired error control.
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4.3 | Effect of time trends

Time trends are likely to occur when an aACP is run for a long time. We now discuss how 

robust aACP-BAC and -BABR are to time trends. We consider levels of increasing severity: 

the distributions are relatively constant over time (no-trend), the distributions are variable 

but the acceptability graphs are relatively constant (graph-constant), and the acceptability 

graphs change frequently (graph-changing).

When the distributions are relatively constant over time, aACP-BAC and aACP-BABR 

should approximately achieve their nominal error rates. Recall that the two aACPs perform 

paired t-tests by approximating the distribution ℙt: t + D − 1 with monitoring data sampled 

from ℙj ∨ j′: t − 1, which is reasonable when the distributions are relatively constant over 

time. When there are multiple endpoints, one can either choose a GST that rejects the null 

hypothesis when all endpoints surpass the significance threshold at the same interim time 

point or when the endpoints surpass their respective thresholds at any interim timepoint. The 

former approach is more robust to time trends with only modest differences in power 

(Asakura et al., 2014).

When the distributions are not constant but the acceptability graphs are, the GSTs have 

inflated error rates since they only guarantee Type I error control under the strong null. To 

handle heterogeneity in distributions over time, we can instead use combination tests, such 

as Fisher’s product test and the inverse normal combination test, to aggregate results across 

time points (Fisher, 1932; Hedges and Olkin, 1985). Since we assumed that the acceptability 

graphs are constant, this tests the null hypothesis that the shared acceptability graph does not 

have a particular edge (i.e., H0 : f ↛ϵ,· f′); The alternative hypothesis is that the edge exists. 

Thus, we can replace GSTs with combination tests to achieve the desired error control.

The most severe time trend is where the acceptability graphs change frequently. Controlling 

error rates in this setting is difficult because previous data is not informative for future time 

points. In fact, even bad approvals are not well-defined since the relative performance of 

models changes over time, e.g., an approval at time t that looks bad at time t + 1 might turn 

out to be a very good at time t + 2. As such, we recommend checking that the acceptability 

graphs are reasonably constant to ensure proper use of aACP-BAC and -BABR. For 

example, one could track a moving average for the evaluation metrics of all previously 

proposed modifications and check that their values and/or their relative orderings are stable 

over time.

5 | CUMULATIVE UTILITY OF AN aACP

Just as hypothesis tests are judged by their Type I error and power, aACPs should be judged 

by their rates for approving bad and good modifications. Taking a decision-theoretic 

approach, we characterize the rate of good approvals as the cumulative mean of an endpoint, 

which we refer to as “cumulative utility.” This quantity is similar to “regret” in the online 

learning literature (Shalev-Shwartz, 2012).
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Definition 5.

The cumulative utility of an aACP with respect to endpoint m is

E 1
T ∑

t = 1

T
m fAt, ℙt . (13)

There is no single aACP that maximizes (13) for all possible model developers since we 

allow arbitrary unblinded adaptations. Instead, we suggest running simulation studies under 

probable model improvement rates to understand the cumulative utility under different aACP 

settings, such as window size W, NI margin ϵ, and monitoring data batch size.

6 | SIMULATIONS

Through simulation studies, we evaluate the operating characteristics of the following 

aACPs:

1. Blind: Approve all model updates

2. Reset: Perform an acceptability test at level 0.05 against the last-approved model

3. Baseline: Perform an acceptability test at level 0.05 against the initial model

4. aACP-BAC at level α = 0.2 with window W = 15

5. aACP-BABR at level α = α′ = 0.2 with window W = 15. The ratio of maximum 

wait times between the benchmark and approval was fixed at Δ′/Δ = 2.

6. Fixed: Only approve the first model

The first three aACPs have no error rate guarantees but are policies one may consider; The 

others provide error rate control. In the first two simulations, we try to inflate the error rates 

of the aACPs. The next two study the cumulative utility of the aACPs when proposed 

models are improving on average. The last simulation explores the effects of time trends.

In the simulations below, we consider a binary classification task with sensitivity and 

specificity as metrics. We compare aACPs by plotting the metrics of the approved model 

over time. We test for acceptability/superiority using repeated confidence intervals (Cook, 

1994) and Pocock alpha-spending functions (Pocock, 1977), where ϵ = 0.05 for both 

endpoints. Supporting Information contains summary statistics of aACP performance 

(Tables 1 and 2), simulation details (Section B), and sensitivity analyses to hyperparameters 

W and ϵ (Section C).

6.1 | Incremental model deterioration

In this simulation, the proposed models deteriorate gradually. This can occur in practice for 

a number of reasons. For instance, a manufacturer might try to make their SaMD simpler, 

cheaper, and/or more interpretable by using fewer input variables, collecting measurements 

through other means, or training a less complex model. Even if their modifications are well-

intended, the sponsor might end up submitting inferior models. A model developer can also 

inadvertently propose adverse modifications if they repeatedly overfit to the training data. 
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Finally, a properly trained model can be inferior if the training data is not representative of 

future time points if, say, the biomarkers lose their prognostic value over time.

This simulation setup tries to induce bio-creep by submitting models that are acceptable to 

the currently approved model but gradually deteriorate over time. Each proposed model is 

worse by ϵ/2 in one endpoint and better by ϵ/4 in the other. By alternating between 

deteriorating the two endpoints, the manufacturer eventually submits strictly inferior models.

Bio-creep occurs consistently when using the aACP-Reset since it only compares against the 

most recently approved model (Figure 5). Both the sensitivity and specificity for the 

approved model at the final time point are significantly worse than the initial model. aACP-

BAC and aACP-BABR properly controlled the occurrence of bio-creep since they require 

modifications to demonstrate acceptability with respect to all previously approved models.

6.2 | Periodic model deterioration and improvement

Next we consider a simulation in which the proposed modifications periodically decline and 

improve in performance. This scenario is more realistic than the previous section since a 

manufacturer is unlikely to only submit bad modifications. More specifically, the proposed 

models monotonically improve in performance over the first fifteen time points and, 

thereafter, alternate between deteriorating and improving monotonically every ten time 

points.

As expected, aACP-Baseline had the worst error and cumulative utility. It performed like 

aACP-Blind and the performances of the approved models were highly variable over time 

(Figure 6). In contrast, the other aACPs displayed much less variability and the 

performances were generally monotonically increasing. aACP-Reset had the highest utility 

here because it performs hypothesis tests at a higher level alpha than aACP-BAC and aACP-

BABR.

6.3 | Accumulating data model updates

We now suppose the manufacturer automatically generates modifications by training the 

same model on accumulating monitoring data. In this simulation, the developer iteratively 

performs penalized logistic regression. Since model parameters are estimated with 

increasing precision, the expected improvement decreases over time and performance 

eventually plateaus. As such, we investigate aACP behavior over a shorter time period.

aACP-Blind approved good modifications the fastest (Figure 7). We find that the remaining 

aACPs, excluding aACP-fixed, are close in cumulative utility because less efficient aACPs 

can “catch up”: Even if an aACP fails to approve a small improvement, there will eventually 

be a proposal with sufficiently large improvement that is easy to discern. aACP-BABR often 

discovered one or no new benchmarks within a window and was unable to earn alpha-wealth 

much of the time because the models improved at a slow pace and performance plateaued 

over time. As such, aACP-BAC and aACP-BABR behaved similarly in this simulation.
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6.4 | Significant model improvements

Next, we simulate a manufacturer that proposes models with large improvements in 

performance at each time point. Large improvements usually occur when the modifications 

significantly change the model, such as adding a highly informative biomarker or replacing a 

simple linear model with a complex one that accounts for nonlinearities and interactions.

Since large improvements are relatively rare, we used a short total time. We designed the 

simulation to be less favorable for aACP-BAC and aACP-BABR. The model developer 

proposes a modification that improves both endpoints by 4% compared to the most recently 

approved model. Therefore an aACP cannot catch up by simply waiting for large 

improvements.

As expected, Blind-aACP is the most efficient, followed by aACP-Baseline and aACP-Reset 

(Figure 8). The aACPs with error rate control are less efficient. For example, the 

performance of the final models approved by aACP-BABR and aACP-Reset differed by 4% 

on average. Unlike in previous simulations, there is a clear improvement in efficiency from 

using aACP-BABR over aACP-BAP. Since the models here improve at a fast pace, aACP-

BABR earns enough alpha-wealth to discover new benchmarks with high probability.

6.5 | Robustness to time trends

Finally, we evaluate the robustness of aACP-BAC and - BABR to time trends by simulating 

the three time trend severity levels from Section 4.3. We simulate the endpoints of the 

proposed models to follow a sinusoidal curve. In addition, the proposed model is always 

strictly inferior to the currently approved model on average. For the graph-constant setting, 

the sinusoids are aligned so that the proposed model is unacceptable at all time points. For 

the graph-changing setting, the sinusoids are offset by exactly half the period so that the 

proposed model is superior to the currently approved model at certain time points.

The error rates in the graph-constant and no-trend settings were similar (Table 2 in 

Supporting Information), which implies that aACP-BAC and -BABR still control error rates 

if the acceptability graphs stay relatively constant. However, they performed poorly in the 

graph-changing setting since bad modifications appeared superior at particular time points.

7 | DISCUSSION

In this work, we have presented and evaluated different policies for regulating modifications 

to AI/ML-based SaMDs. One of our motivations was to investigate the possibility of bio-

creep, due to the parallels between this problem and noninferiority testing of new drugs. We 

found that the risk of bio-creep is heightened in this regulatory problem compared to the 

traditional drug development setting because software modifications are easy and fast to 

deploy. Nonetheless, we show that aACPs with appropriate online error-rate guarantees can 

sufficiently reduce the possibility of bio-creep without substantial sacrifices in our ability to 

approve beneficial modifications, at least in the specific settings discussed in this paper.

This paper considers only a limited scope of problems and there are still many interesting 

directions for future work. One direction is to develop more efficient aACPs, perhaps by 
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spending alpha-wealth more judiciously, discovering benchmarks using a different 

procedure, sequestering monitoring data for repeated testing, or considering the special case 

with pre-specified modifications. Also, we have not considered aACPs that regulate 

modifications to SaMDs that are intended to treat and are evaluated based on patient 

outcomes.

Our results raise the interesting question regarding the general structure of the regulatory 

policy framework. Although aACP-BAC and -BABR mitigate the effect of bio-creep, they 

cannot provide indefinite error rate control without large sacrifices in cumulative utility. So 

if one desires both indefinite error rate control and fast approval of good modifications, 

perhaps the solution is not to use a fully automated approach. For example, human experts 

could perform comprehensive analyses every couple of years and the manufacturer could use 

an aACP in between to quickly deploy modifications.

Finally, we highlight that regulating modifications to AI/ML-based SaMDs is a highly 

complex problem. This paper has primarily focused on the idealized setting of a constant 

diagnostic environment. Our findings suggest that problems with bio-creep is more 

pervasive when modifications are designed to accommodate time trends in the patient 

population, available measurements, and bioclinical practice. It is crucial that we thoroughly 

understand the safety risks before allowing modifications in these more complex settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Example of an acceptability graph for binary classifiers evaluated on sensitivity and 

specificity. Given a reference model (triangle) and NI margin ϵ, a candidate model is 

acceptable if one endpoint is noninferior and the other is superior compared to the reference 

model. The NI margin can be chosen to encourage approval of updates to a better ROC 

curve. Models in the shaded area are acceptable updates to the reference model. Model 3 is 

not acceptable since it is on a strictly inferior ROC curve. Model 1 and 2 are likely on better 

ROC curves, but 1 is not within the NI margin and is therefore not acceptable either
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FIGURE 2. 
An automatic algorithm change protocol (aACP) outputs the index of the most recently 

approved model Ât at each time t. To do so, it evaluates the pool of candidate models against 

the pool of previously approved models using monitoring data collected up to that time
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FIGURE 3. 
At each time point, this simple aACP launches a single group sequential test (GST) 

comparing the newly proposed model to previously approved models. Here, each model has 

a maximum wait time of Δ = 2 and each interim analysis is represented by a square. A 

checkmark indicates that the null hypothesis is rejected and an “X” indicates that the interim 

analysis is not performed. The final interim analysis for f2 is not performed because its GST 

only compares f2 to f0 and not the newly approved model f1. Thus, f2 has no chance of 

being approved
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FIGURE 4. 
At each time point, this aACP launches a family of group sequential tests (shaded gray 

boxes) comparing the newly proposed model to previously approved models as well as other 

models that might be approved in the interim. Within each family, we test the hypotheses 

using a gate-keeping procedure, which provides a mechanism for comparing a candidate 

model to newly approved models in the interim. We use the same notation in Figure 3. An 

arrow between squares indicates that we rejected a null hypothesis and proceeded to the next 

test in the gate-keeping sequence
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FIGURE 5. 
Comparison of the sensitivity and specificity of models approved by different aACPs when 

the proposed models are gradually deteriorating. (We omit aACP-Blind from this plot since 

it would obviously perform the worst.)

Feng et al. Page 24

Biometrics. Author manuscript; available in PMC 2021 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 6. 
Comparison of the sensitivity and specificity of models approved by different aACPs when 

the proposed models periodically deteriorate and improve in performance
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FIGURE 7. 
Comparison of the sensitivity and specificity of models approved by different aACPs when 

the model developer trains a logistic model on accumulating monitoring data
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FIGURE 8. 
Comparison of the sensitivity and specificity of models approved by different aACPs when 

the model developer adaptively proposes a significantly better model than the currently 

approved model. We evaluate three different settings for aACP-BABR, where a larger index 

means that alpha-wealth is spent more greedily
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