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Sentinel Node Imaging Via a Nonparticulate
Receptor-Binding Radiotracer
David R. Vera, Erik R. Wisner and Robert C. Stadalnik
Department of Radiology, University of California, Davis, Medical Center, Sacramento, California

Technetium-99m-labeled polydiethylenetriamine pentaacetic acid
polymannosyl polylysine (DTPA-man-PL) was synthesized and
tested for lymph node scintigraphy by subcutaneous administration.
The agent was designed for receptor-mediated uptake by mannose-
binding protein, which resides on the plasma membrane of reticu-
loendothelial cells. Methods: Subcutaneous injections of a "Re

labeled agent having 18 DTPA and 82 mannosyl groups attached to
a polylysine of 100 units (p9mTc]DTPA18-man82-PL100)were made

at the level of the metacarpus and metatarsus of three healthy
rabbits. Images were acquired at 1, 6, 12 and 24 hr. Popliteal and
axillary nodes were then assayed for percent of injected dose (%ID).
A negative control study was performed in three normal rabbits with
[""TcpTPA-^-PI-KX). Results: Significant differences in mean
24-hr %ID between the receptor specific and nonspecific agents
were observed for both the popliteal (p < 0.006) and axillary (p <
0.012) nodes. Popliteal percent injected dose at 24 hr was 3.00 Â±
0.72% for [""TcJDTPA-man-PL and 0.13 Â±0.08% for [""Tc]
DTPA-polylysine. Axillary accumulation at 24 hr was 2.84 Â±0.83%
for [99mTc]DTPA-mannosy/-polylysine and 0.22 Â±0.12% for [""Te]
DTPA-polylysine. Percent injected dose of the receptor-specific
agent was highest (4%) during the 6-hr scan. Accumulation of the
nonspecific agent by the popliteal and axillary nodes at 6-hr postin-
jection was approximately 0.5%. Conclusion: This study provides
proof of principle for lymphoscintigraphy by receptor-mediated
delivery of a nonparticulate imaging agent.
Key Words: lymphoscintigraphy; receptor-binding radiopharma-
ceutical; sentinel node imaging
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Ã¶entinel node imaging is a nuclear medicine examination that
identifies the first lymph node to receive lymphatic flow from
the primary tumor site. Because this node will be invaded first
by malignant cancer cells, its removal and microscopic exam
ination is an extremely sensitive index of metastatic disease (7).
Also, using an intraoperative probe, sentinel node scintigraphy
can be used as a basis for accurately detecting and excising
regional lymph nodes for cancer staging (2-6). These proce
dures entail administering a paniculate radiopharmaceutical
intradermally or subcutaneously and localizing radiopharma
ceutical uptake in targeted regional lymph nodes using a planar
gamma camera as well as a gamma-probe intraoperatively at the
time of staging lymphadenectomy. Advantages of these proce
dures include preoperative or intraoperative localization of the
sentinel node which reduces extent of surgical intervention;
verification of excision of the sentinel node increasing accuracy
of cancer staging; and real-time detection of additional lymph
nodes at the surgical site.

With the withdrawal of 99mTc-labeled antimony-trisulfide

from the U.S. market, clinicians were left without an agent
specifically designed for lymphoscintigraphy. Filtered 99mTc-
sulfur colloid (7,8), 99mTc-labeled colloimdal albumin (9) and
99mTc-human serum albumin are used as replacements, but do

not possess the attributes of an ideal sentinel node imaging
agent. Such an agent would provide a 100% detection rate for
the sentinel lymph node. The current agents do not achieve this
goal. In patients with breast cancer, 99mTc-antimony-trisulfide

(10) and unfiltered technetium-sulfur colloid have detection
rates of 91% and 82%, respectively. Filtered technetium-sulfur
colloid yields a detection rate of 84% in patients with melanoma
(//). This rate was increased to 96% when both preoperative
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lymphoscintigraphy and an intraoperative blue dye injection
were used. This observation leads us to conclude that an ideal
sentinel node imaging agent would have the injection site
clearance of a dye and the retention time within the lymph node
of a colloid. We, therefore, propose a new radiopharmaceutical
based on receptor-binding technology which will permit opti
mization of imaging properties through rational chemical de
sign (12-14).

Mannose-binding protein (MBP) belongs to a class of recep
tors called lectins (75). This receptor binds mannose-terminated
glycoproteins (16) and is found in high densities in mammalian
lung macrophages (/ 7), liver nonparenchymal and parenchyma!
cells (18), serum (19) and lymphoid tissue (20). The receptor
within lymph node tissue exhibits calcium-dependent binding
within a within a pH range of 7-9 and demonstratesequal affinity
for glycoproteinswith carbohydratesidechainsthat terminate with
TV-acetyl-mannosamine,/V-acetylglucosamine, mannosamine or
mannose.

As a first step toward the design of a sentinel node imaging
agent, we report lymphoscintigraphy using a nonparticulate
receptor-binding radiotracer. In this article, we propose the
ideal properties of a sentinel node radiopharmaceutical and
discuss the chemical attributes of a synthetic MBP ligand with
which we will optimize sentinel node detection.

MATERIALS AND METHODS

Experimental Design
To demonstrate lymphoscintigraphy through MBP-mediated

binding, we imaged healthy rabbits with the MBP analog ligand
[99mTc]DTPA-ma/7n(WV/-polylysine.yje a[so Â¡magecjrabbits with
["TcJDTPA-polylysine. This molecule is not a MBP ligand, and

therefore, served as a negative control. Additionally, we adminis
tered an amount of [99mTc]DTPA-Â»;a/;nos)7-polylysinethat would

saturate receptor sites within the sentinel node. This allowed us to
approximate lymph node MBP density. This value will enable us to
optimize the sentinel node uptake in future studies.

Synthesis
Polydiethylenetriamine pentaacetic acid polymannosyl polyly-

sine (DTPA-man-PL) was synthesized in two steps: first, by
covalent attachment of diethylenetriamine pentaacetic acid
(DTPA) to polylysine (PL), and second, by covalent attachment of
mannose to the remaining lysine residues of DTPA-PL. Coupling
of DTPA to the polylysine backbone used the mixed anhydride
method (27). The molar ratio of DTPA to poly-L-lysine hydrobro-
mide polydispersity = 1.32, average mol wt = 20.9 kDa, degree of
polymerization = 100) was approximately 12 to 1. After stirring
overnight at room temperature, the organic solvents were removed
by rotary evaporation. The product was then isolated by diafiltra-
tion with an ultrafiltration membrane having a molecular weight
cutoff of 3 kDa. After 10 exchange-volumes of distilled water, the
retentate was concentrated to 10 ml. The product was then filtered
(0.45 /Â¿m)into a serum vial for lyophylization. The molecular
weight and DTPA density were calculated as previously described
(22). The product, DTPA^-PL,,,,,, had a molecular weight of 21.3
kDa and a DTPA density of 18 mol per mole of polylysine.

Conjugation of DTPA^-PL,,,,, with mannose was accomplished by
reductive alkylation. The mannosyl coupling reagent, 3-oxypropy-
2,3,4,6-tetra-O-acetyl-l-thio-ÃŸ-D-mannoside, was synthesized by
the following route. Tetra-O-acetyl-a-D-mannopyranosyl bromide
was produced by a two-step reaction in chloroform (23). After
rotary evaporation to a syrup, the product was immediately reacted
with thiourea to produce 2-S-(2,3,4,6-tetra-0-actyl-j3-D-mannopy-
ranosyl)-2-peusdothiourea-hydrobromide (24), which was recrys-
tallized in acetone. This product was derivatized with acrolein (25)

and fractionated on a Sephadex LH-20 column (5 X 186 cm, 0.5
ml/min 95% ethanol) using the same elution parameters as 3-oxo-
propyl-tetra-0-acetyl-1-thiogalactoside (26). After rotary evapora
tion the product was stored as a clear syrup at â€”20Â°C.Deacetyla-
tion of 3-oxopropyl-tetra-O-acetyl-l-thiomannoside (50 mM) was
performed at room temperature for 24 hr using sodium methoxidc
(40 mM) in freshly distilled methanol. After neutralization with 0.1
M acetic acid, 100 ml of the clear golden solution was transferred
to a recovery flask and rotary-evaporated under reduced pressure.
Coupling to DTPA|8-PL10(, (100 mg) was conducted in 70 ml of

phosphate buffer (0.2 M, pH 7.0) with 0.70 g of NaCNBH, (0.15
M) at 37Â°Cwhile shaking for 20 hr. The molar ratio of coupling

reagent to unconjugated lysine was 12.5 to 1. Unreacted coupling
reagent was removed by diafiltration (molecular weight cutoff = 3
kDa) with 10 exchange volumes of distilled water. After concen
tration to 10 ml, the retentate was filtered (0.45 jam) into a glass
serum vial and lyophylized. Measurement of mannose density and
the molecular weight calculation used the method outlined for
[Gd]DTPA-ga/-PL (22).

Labeling
Technetium-99m labeling of both agents used a modification to

a tin reduction method that has been previously described (26).
Briefly, in a 2-ml glass vial fitted with a rubber septum, 1.6 X 10~7

mol of DTPA18-mflH82-PL|(>()or DTPA|8-PL]00 in 0.50 ml of saline
(0.9%) was combined with a 0.25-ml saline (0.9%) solution of
sodium pertechnetate (50 mCi). After purging with nitrogen for 10
min, a fresh 0.10-ml solution of tin chloride (5.0mg SnCU in 0.175
ml of 37% HC1 followed by 25 ml of 0.9% saline) was added and
the reaction was allowed to stand for 90 min at room temperature.
The product was then applied to a size-exclusion column (Seph
adex G-10, 1 X 10 cm, 1.0 ml/min 0.9% saline), and the labeled
product was collected during the second 1.5 min of elution. A
similar column equipped with a flow-through gamma detector was

used to measure the labeling yield. The concentration of the
injectate was determined by UV absorption (225 nm) with a known
concentration of DTPA^-man^-Pi-too or DTPAi8-PLUH) as the
standard.

Imaging
Three normal adult New Zealand white rabbits were imaged

with the receptor-binding radiotracer [Wn'Tc]DTPA-w<i/;Â«ayv/-

polylysine, and three age and size-matched rabbits were imaged
with a nonspecific radiotracer [WmTc]DTPA-polylysine. Each
rabbit received a subcutaneous injection (0.05 ml, â€”0.4mCi, 2 X
10~8 mol) at the level of the metacarpus and metatarpus, bilaterally

(total of four injection sites). Images were acquired (512 X 512 X
8, 500,000 cts) at 0.25, 1, 6 and 24 hr postinjection with the
injection sites shielded with lead. Immediately after aquisition of
the 24-hr image, each rabbit was euthanized and the popliteal and

axillary lymph nodes were excised and assayed for radioactivity.
We calculated lymph node uptake in the following manner. The

percent of injected dose (%ID) of each node was measured by
counting (100-200 keV) the excised nodes with a known fraction

of the administered dose. Regions of interest (ROI) were drawn
around each node within the 0.25, 1, 6 and 24-hr images. Counts
per minute within each ROÃ•were determined, corrected for decay
and background and converted to percent injected dose using the
counting rate within each 24-hr ROI and the percent injected dose
measured at 24 hr. One popliteal node from a [99rnTc]DTPA18-

manK2-PLlmtstudy could not be found at dissection. One popliteal
node and two axillary nodes from the negative control study could
not be found.
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FIGURE 1. Technetium-99-labeled DTPA-mannosy/-polylysine Â¡sthe syn
thetic ligand to the mannose-binding protein receptor. The conjugate used in

this study was composed of a polylysine backbone of 100 lysines, 18
diethylenetriamine pentaacetic acid molecules complexed with ""Tc and 82

marnose groups which served as the receptor substrate.

Statistical Analysis
The unpaired Student's t-test was used to determine the p-level

between the mean percent injected doses of the receptor-specific
and the nonspecific radiotracers. A p level >0.05 was considered
significant.

RESULTS

Synthesis
Figure 1 represents the receptor-specific agent [99mTc]DTPA-

mÂ«wÂ«o.vy/-polylysine.The DTPA and mannose densities and
molecular weight were 18 and 82 mol/mol of polylysine and
41.5 kDa, respectively. Typical labeling yields measured before
size-exclusion chromatography were in excess of 98%. The
specific activity was typically 0.03 Ci//j,mol.

Imaging
Figures 2 and 3 are representative of the imaging study.

Six hours after administration of the receptor-specific agent
[99mTc]DTPA-/wa/iÂ«o.sT/-polylysine, the first-order axillary

nodes are easily visualized (Fig. 2A). The nodal activity persists
up to 24 hr (Fig. 2B), indicating a receptor-specific interaction
that is highly irreversible. The percent injected dose for the left
popliteal, right popliteal, left axillary and right axillary nodes
were 2.2%, 2.4%, 3.7% and 3.6%, respectively. At 6-hr post-
administration of the nonspecific agent [99mTc]DTPA-polyly

sine, a faint impression of the nodes (Fig. 3B) is presumably
due to the flow of radioactivity through the lymph channel and
passive accumulation within intranodal lymph fluid; these
processes peaked during the 0.25 and 1-hr scans. A nonspecific
image at 24 hr is presented in Figure 3B. The percent injected
dose for the left popliteal, right popliteal, left axillary and right
axillary nodes were 0.26%, 0.21%, 0.46% and 0.47%, respec
tively.

Table 1 summarizes the percent injected dose for the popli
teal and axillary nodes at 24-hr postadministration of the
receptor-binding agent [99mTc]DTPA-wawÂ«OA>>/-polylysineand
the nonspecific agent [99mTc]DTPA-polylysine, which being

devoid of the receptor substrate (mannose) served as a negative
control. Popliteal percent injected dose at 24 hr was 3.00 Â±
0.72% for [99mTc]DTPA-manmwy/-polylysine and 0.13 Â±
0.08% for [99mTc]DTPA-polylysine. Axillary accumulation at
24 hr was 2.84 Â±0.83% for [99mTc]DTPA-/naÂ«n<Â«y/-polyly-
sine and 0.22 Â±0.12% for [99mTc]DTPA-polylysine. Accumu-

FIGURE 2. Whole body lymphoscintigramsof a normal rabbit obtained 6 (A)
and 24 hr (B) after subcutaneous injection of [99nrTc]DPTA-mannosy/-polyly-

sine into all four distal extremities. There is significant activity in the axillary
and popliteal lymph nodes. The injection sites were shielded.

lation of the nonspecific agent by the popliteal and axillary
nodes at 6-hr postinjection was approximately 0.5% of the dose.
The receptor-specific agent delivered over 10 times the radio
activity than the nonspecific radiotracer.

Significant differences in mean 24-hr percent injected dose
between the receptor-specific and nonspecific agents were
observed for both the popliteal (p < 0.006) and axillary (p <
0.012) nodes. The p levels for percent injected dose differences
of the axillary nodes at 0.25, 1 and 6 hr postinjection were
0.738, 0.049 and 0.011, respectively. The p levels for the
popliteal nodes were 0.007, 0.002 and <0.001 at 0.25, 1 and 6
hr.

Figure 4 is a plot of the mean percent injected dose within the
popliteal and axillary nodes at 0.25, 1, 6 and 24 hr. Accumu
lation of the receptor-specific agent peaked at 4% during the
6-hr scan. Accumulation by the popliteal and axillary nodes of
the nonspecific agent during the 6-hr scan was approximately
0.5%. Based on a maximum uptake of 4% of the injected
[99mTc]DPTA-maÂ«Hoj}>/-polylysine and a typical lymph node

B

FIGURE 3. Whole-body lymphoscintigramsof a normal rabbit obtained 6 hr
(A) and 24 hr (B) after subcutaneous injection of [99mTc]DTPA-polylysine into

all four distal extremities. There is significantly less lymph node activity as
compared with corresponding Â¡magesof the previous figure. The injection
sites were shielded.
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TABLE 1
Percent Injected Dose at 24 Hours

Percent injected dose
Lymph
node |99mTc]DTPA18-man82-PL100 [""TcJDTPA^-PL^ p level

Popliteal
Axillary

*n = 6.

*n = 4.

3.00 Â±0.72*
2.84 Â±0.83*

0.13 Â±0.08t
0.22 Â±0.15*

0.006
0.012

weight of 0.2 g, the receptor density is approximately 4 nmol/g
of lymphoid tissue.

This approximation assumes that 100% of the receptor sites
were occupied. Although other lymph nodes were detected with
99mTc-DTPA-waw-PL, the axillary and popliteal were the only

nodes that were excised and assayed for radioactivity. There are
no central nodes which receive afferent drainage from the
axillary nodes. However, there are proximally located pelvic
lymph nodes with afferent lymphatic communications from the
popliteal nodes (27). Internal iliac node activity was identified
if the urinary bladder was devoid of activity. These nodes,
which are adjacent to the urinary bladder, were difficult to
visualize and dissect when the bladder contained activity.

DISCUSSION
Our results demonstrate recognition and binding of a man-

nose-terminated macromolecule. Imaging and biodistribution
measurements demonstrated lymph node uptake of [99mTc]

DTPA-maÂ«Â«oo7/-polylysine. Technetium-99m-labeled-DTPA-
polylysine, which consisted of the same molecular backbone
without carbohydrate sidechains, did not exhibit lymph node
uptake. These data are consistent with the biochemical proper
ties of the receptor MBP.

Sentinel node imaging has used two classes of imaging
agents: radiolabeled particulates that bind to lymphoid tissue

Lymph Node Uptake

0

FIGURE 4. Percent injected dose versus time of the receptor-binding
lymphotrophic imaging agent [99rT1Tc]DTPA-mannosy/-polylysine(â€¢,A) and a
negative control Â¡"TcJDTPA-polylysine (O, A). The percent injected dose of

the popliteal nodes (A, A) were significantly different at all time points. The
percent injected dose of the axillary nodes (â€¢,O) were significantly different
at 1, 6 and 24 hr.

and radiolabeled macromolecules that provide node images as
they flow through the lymph node chain. Sentinel node imaging
of malignant melanoma originally used 198Au-gold colloid (28),
99mTc-stannous phytate (29) and 99mTc-labeled dextran (30).
Most nuclear medicine departments switched to 99rnTc-antimony-

trisulfide colloid when it became available through a Phase III
company-sponsored IND. When ')9rnTc-antimony-trisulfide col
loid was removed from the market in the U.S., 99mTc-labeled

human serum albumin (TcHSA) (6), and various forms of
filtered particulates, such as Millipore-filtered 99mtechnetium-
sulfur colloid (7,8), and filtered 99mTc-labeled colloidal albu

min (9) were used. None of these agents, however, were
designed specifically for sentinel node imaging. As a result,
sentinel imaging with any of these agents suffers several
deficiencies.

Filtered colloids and 99mTc-antimony-trisulfide colloids have

mean diameters in the 1-10-nm range. These agents exhibit
slow clearance from the injection site. The half-times for
filtered TcHSA colloid and 99rntechnetium-sulfur colloid are 5.5

and 10.5 hr, respectively (31). This translates to approximately
65% and 85% of the dose at the injection site at 3-hr postin-
jection, the optimal time for the intraoperative search for the
sentinel node (10). Ege (32) reported a slow and highly variable
injection site clearance of 1-35% over 24 hr. Labeled macro-

molecules have diameters within the same range but exhibit
faster clearance (31,33). Technetium-99m-labeled-dextran (33)
(molecular weight = 110 kDa) and Tc-HSA (31) (radius of
gyration = 3.3 nm) have half-times of 0.5 and 2.8 hr, respec

tively. At physiologic pH, polylysines exist as random coils
(34); consequently, both Tc-DTPAlx-man82-PL1()0 (molecular
weight = 42 kDa) and Tc-DTPAIg-PL100 (molecular weight =
21 kDa) have molecular dimensions (35) smaller than human
serum albumin (molecular weight = 69 kDa).

Sentinel node extraction of 99mTc-antimony-trisulfide colloid

and filtered particulates is not complete. Ege et al. (36) reported
that the percentage of 99mTc-antimony-trisulfide colloid re

tained in all visualized nodes averaged less than 3% of the
injected dose. In sentinel node imaging the typical nodal uptake
is 4% (37); consequently, distal nodes also accumulate activity.
The result can be confusing as to which of many nodes is the
first in the chain. Therefore, the most frequently noted problem
is that the timing of the intramammary tracer injection before
surgery will have a significant effect on the number of nodes
found intraoperatively (10). When multiple nodes are visual
ized, one cannot assume that the node nearest the tumor is the
sentinel node (38); lymphatic vessels can bypass proximal
nodes and then return to the node nearest the tumor. Static
imaging of this anatomy using an agent with incomplete nodal
extraction will produce a false-positive study. Dynamic imag
ing can mitigate this problem, however the best solution is an
agent that completely accumulates within the sentinel node.

A less frequently encountered problem exists with the current
agents. There are reports of severely diminished sentinel node
uptake when the node has a high tumor burden (39). This can
occur when radiopharmaceuticals of low specific activity are
used. Filtered radiolabeled colloids will be susceptible to this
problem. This stems from the fact that the overall radiochemical
yield of these preparations ranges from 7% to 10%. Therefore,
very high levels of pertechnetate (200-300 mCi) are required
for a single dose. A receptor-binding agent, such as [99mTc]DTPA-
/naÂ«HO5'v/-polylysinecan overcome this problem.

An optimal sentinel node imaging agent would deliver nearly
100% of the injected activity to the sentinel node. This would
eliminate the need for a dynamic imaging study and prevent
confusion with nonsentinel nodes during intraoperative detec-
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tion. Complete clearance from the injection site would prevent
the remaining activity from obscuring the sentinel node. Con
sequently, an ideal sentinel node imaging agent would exhibit
the following properties: (a) rapid clearance from the injection
site, (b) rapid, complete and sustained uptake by the sentinel
lymph node, (c) low uptake by more distal second-order nodes
and (d) a facile technetium-99m labeling system of high
radiochemical purity and specific activity. The standard features
of low radiation absorption, and high biological safety also apply.
In reality, complete uptake by the first node within a chain will not
occur; however, the distribution of a small fraction to the distal
nodes could help identify the lymphatic anatomy.

We consider [WmTc]DTPA.-mannosyl-po\ylysine as a proto

type structure; its sole purpose was a demonstration of lympho-
scintigraphy by targeting a receptor within lymphoid tissue. An
optimized chemical structure will have a higher mannose
density, and a higher specific activity than the agent used in this
study. The backbone would be hydrophilic and produce an
MBP ligand with an apparent size less than the current
lymphoscintigraphic agents. These attributes would yield an
agent with a rapid injection site clearance, similar to 99mTc-

labeled dextran. Additionally, the backbone should provide an
adequate number of attachment sites, which will determine the
mannose and DTPA densities. These densities will control
receptor affinity and specific activity, respectively. An imaging
agent of high receptor affinity would have a high sentinel nodel
extraction efficiency; and a high specific activity would permit
injections of low molar dose and administration volume.

The molecular backbone will be the primary determinant of
injection site clearance. Polylysine is linear and bears a net
positive charge; the linearity reduces its apparent size (40)
which increases diffusion. Polylysine, however, is extremely
expensive. The other potential backbones are human serum
albumin, dextran, synthetic copolymers (41) and starburst
dendrimers (42). Dextran, a branched polymer of glucose, has
an extensive human-use experience, and offers the highest ratio
of attachment sites per molecular weight. It is also very
hydrophilic; this feature makes it extremely effective in enter
ing the lymph channel (33). Of the group, dextran is the least
expensive. Numerous methods exist (43) for covalent attach
ment of various substrates to the hydroxyl units of polysaccar-
ides. Synthetic copolymers offer linearity and a net neutral
charge which also increases diffusion. Although the copolymers
can be synthesized in bulk, there are many steps in the reaction
sequence which significantly adds to their expense. Lastly,
there is limited human-use experience with this backbone.
Starburst dendrimers provide less molecular weight heteroge
neity. Their disadvantage is that they offer the lowest number of
attachment sites per backbone, and therefore may not provide
an adequate density of mannose, and consequently may yield an
agent of low receptor affinity.

The mannose density will control the sentinel node extraction
efficiency and, as a result, accumulation of the tracer. A general
feature of neoglycoconjugate binding to lectins (44) is that
binding affinity is directly proportional to carbohydrate density
of the ligand. More specifically, in vitro measurements of
galactosyl-neoglycoalbumin binding (72) to its lectin, hepatic
binding protein demonstrate that the forward binding rate
constant increases with higher galactose density, while the
reverse binding rate constant does not change. It is the forward
binding rate constant that controls the extraction efficiency of a
receptor-binding agent (45). The ability to chemically control
the forward binding rate constant is a critical feature of an
imaging agent that does not recirculate through the target tissue.
Therefore, uptake of a lymphoscintigraphic agent depends on

the ability of the tissue to extract the agent during a single
passage through the node.

Indirect labeling of the neoglycoconjugate through DTPA
yields an extremely stable product of high-specific activity and
radiochemical purity. Using a 30-min incubation time we
routinely label DTPA-ga/ac7oiv/-polylysine (26) with radio-
chemical purities in excess of 98% and specific activities of 100
Ci/ju,mol. At this specific activity the administration of a 1-mCi
dose would require 0.01 nmol of receptor for complete binding
of the agent at the sentinel node. Depending on the species,
tissue densities of mammalian lectins (75) are in the range of
0.5-1.0 nmol/g of tissue. Studies of rat lymphoid tissue indicate
that MBP density is at the high end of this range (20). This
value is similar to our density measurement of 4 nmol/g MBP.
Therefore, a 0.01-nmol injection will occupy less than 1% of
the receptor sites within a 1-g lymph node. As a result, a MBP
ligand should be capable of delivering 100% to a node that was
replaced with 90% tumor.

Our goal is to achieve a sentinel node imaging agent with
increased diagnostic performance at a lower cost than the
current lymphoscintigraphic agents. We envision a tin-based
kit, which achieves a quantitative labeling yield after a 30-min
incubation at room temperature. The preparation would be
stable for many hours and would, therefore, provide for multi
ple studies. Rapid and complete injection site clearance would
permit early imaging and the possibility of SPECT scanning if
desired. High sentinel node extraction would eliminate the need
for dynamic imaging, which would reduce camera and technol
ogist time. Most importantly, this same property would also
increase the specificity of intraoperative sentinel node detec
tion. Lastly, it may be possible to incorporate a dye into the
ligand structure. This would permit visual guidance during
resection of the sentinel node.

CONCLUSION
This study provides a proof of principle that a nonparticulate

radiotracer can successfully image lymph nodes through recep
tor-specific uptake by MBP. Unlike particulate agents, MBP
radioligands offer greater chemical flexibility for the rational
design of a sentinel node imaging agent. It is our hypothesis that
such a radiopharmaceutical will provide higher diagnostic
performance at substantially reduced expense over current
sentinel node imaging with 9mTc-labeled colloids.
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Is this a normal liver? For acquisition information, see page 643.
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