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ABSTRACT
The isobar model for a+b > 1+ 2+'3 is reexamiﬁed in light of
the requirements of subenergy.unitarity. Discontinuities of the amplitude '
across the subenergy variables are removed and a unitarized version of
the isobar émpiitude is presented. We make a.comparison of the amplitudes
with and without the unitarity‘corrections and suggest a ratio test to

check the validity of the isobar model. '

¥



I. INTRODUCTION

In reéent years there has been considerable interest in doing
partial wave analysis of the reactions of the type a+b ~ 1+2+3. In
analyzing such a pfocess, one finds it convenient to assume that the
rea;tion proceeds through an intermediate state dominated by a two-particle
resonance or:an isobar which ultimately breaks up into its constituents in
the final state. Now, it may RKappen fhat many such isobars are likelyvto
be present in the intermediate state. In such a cése, it has been
customary to simply add the various amplitudes corresponding to different
isobaré to obtain the total amplitude. This is the so-called isobar
model which has been widely employed in such reactions as 7N - ﬂﬂN.1’2’3
This simple séheme, however, is only an approximation and has been criti-
cized lately on grounds that it does not satisfy unitarity.

In the present paper, we outline the isobar model, state the various
assumptions that go into it; derive the necessary unitarity constraints fo
‘modify it and suggest some tests to check its validity. In doing so, we
shall confine ourselves to considerations of normal thresholds in subenergy
variables only. :Qur aim is to carry the formal resglts to a stage where
numerical estimates can be easily made. For this reason, we shall present
all the necessary details for performing such estimates as we develop the
formalism. |

In Section II we introduce the necessary representations in the
Hilbert space of two- and three-particle systems. Then in Section III we
discuss the isobar model as currently practiced. Next, in Section IV we

develop the unitarity constraints and write down the new version of the

amplitude. In Section V we deal with the comparison of the isobar
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amplitude and the unitarized amplitude. Finally, in;SeCtion VI we offer

our concluding remarks.

II.  REPRESENTATIONS

We consider particles with spin and use relativistically invariant .

normalization of states.

A. Two Particles

Quite generally, in an arbitrary reference frame, the plane wave

-

states are normalized as

>y ';*'*.. _ > > > > ‘ '
Cpuppswiwy [pppsuw ) = 2E; 2B 8(p; -D,) §(py -p,) Sulu 6ugub (11-1)

Here My denotes the z-component of spin o which we shall suppress.
Going over to the angular momentum representation, the states of total

- ’ :
momentum P, energy E, angular momentum J and its z-component M have

the following normalization.

> - 4y's > | , . ‘
(PE'J'M'2'0' |[PEJMRO) = T 8Pt -P) 8B -E)8 5, 18yyBg g8y (11-2)

where the center of mass (c.m.) momentum and energy are denoted by q and
/s, respectively. The total spin 0 and the relative angular momentum £

in the c.m. are coupled in the usual manner.

-(; _ > +->
= 0, ob,
(11-3)
-> > ->
J = 2 + 0



B. Three Particles

The normalization of plane wave states in an arbitrary reference

frame is given by
BoPePysuoHahy [Popgbyiughghy) = 2By 8(By-By) ... 2B 8(b, : ) ST Gu;uy
o | (I1-4)

In contrast to the case of two particles, a three-particle system

has three linearly independent angular momentum representatiqns. We may

couple particles B and y and obtain a state given in (II-2). In particular,

we may construct this state in the overall cénter of mass system (o.c.m.)
> ->

- ,
so that PBY = -Qa where Qa is the momentum of o in the o.c.m. This state,

in fact, can be regarded as representing a '"particle BY" which can then be
coupled to a, again using the prescription (II-2). Finally, the state thus

realized in the o.c.m. can be given a Lorentz boost. We shall indicate the

dynamical variables of this state by superscript o. It is normalized as

1 ' ' ' ' 1 ' oy ! 1> ' -
<'P’0. E(l J(X Md LOL Z(l j('X. RCX O'O,L SOL IPOLE(XJ(XMOLLCXZO.jU.QIOtGOLSOL
'
o _ SCX)
(I1-5)

[ L .

4@? e AR 20 LI - TN S [
Q q JJ (o M)

In the above, s* and qa for the B,y pair have the same meaning as defined

earlier. W* ié the total energy of the entire system in the o.c.m. The

meaning of various angular momenta will be clear from the following coupling

scheme which is an extension of (II-3).

->
& = 5, +3
B Y
- <>
ja = %4 5 |
» (I1-6)
o _ o, > ‘
X N
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For further details of this canonical representation we refer the reader

to refs. 8, 9 or 10.

C. Transformation Functions

The states introduced so far describe the two- and three-particle
systems in an arbitrary frame; Since relativistic nqrmalization is used,
the final result Will not depend on the choice of thé fréme which we shall
now take as the o.c.m., omitting thevlabel 3==0 from.thé'states.

The states:defined by (II-1) and (II-2) are connécfed by a trans-

formation function which is given by

> > : 4w . . o
(P, Py U My IWIMRo) = T C(0,0,05H,1pIC(ROT5M - (u_ + “b_) M) X
(w) > > _'. : ]
Yo M- (u + 1) §(p, +p )SMW- (E +E))  (II-7)

where w = (6,¢) are the spherical coordinates in the c.m. with arbitrary

orientation of the axes. Similarly, the connection between (II-4) and

\v

(II-5) is given by

(o

. ) a ? ‘ : .
> > > o L0, O Ol 0L.OL,0l=0L O 4W 4vV's pat )
. = . C(o,0. 0 ;v,V. ) X
<papspy’“a“3“y|w JOMAL Y2 %3%0%5%s™) ; o E | (00,6 5V, )
v -

sVnasV,
motgrty

0-0.0, O .0 o, o 00l 0L o o. o
x €% %m% - (vgrv ), Vg + v IC( 0 I ) CALPT I MY - (o) i) X

™) @) B e I N s o33

x | (€)) (€\) 8(py*Pg+P,) X
Yz"‘,m“-(vis) YL"‘,M"—(m"‘ma) Hgs B D“v"v Yoo Te B Y

x 8(W*- (B, +Eg +E.)) 8(s*- (pg+P,)") | (11-8)

where wa = (60,¢a):and Q% = (Oa,Qa) are the spherical coordinates in the

c.m. of By and the'o.c.m. respectively (see Fig. 1). The presence of the



D-functions is due to the fact that the spins undergo Lorentz rotation.

Later we shall give explicit formulas for their arguments.

D. ~ Recoupling Coefficients

. , .
At this point, it is convenient to introduce our choice of the

coordinate axes in the 6.c.m. For the |a) representation, we take the
z-axis in the qpposite directidn to 6&, the‘x—axis toward B and orthogonal
to z-axis and y—éxis out of the paper so that Oxyz forms a right-handed
system (see Fig. 2). Similar choices are made for the IB) and |Y> repre-
sentations by cyclic‘permutations of o, B, Y. |

The three representations |a), |B8), |Y) for the three-particle
system are equivalent in the sense that they are connected.by unitary
transformations. Indeed, it is this transformation function that plays
an important role in the partial wave anaiysis of a three;body final state
process and also in its unitarity calculations. For helicity representaQ
tions, this reéoupling coefficient has been given by Wick.11 Calculations
for the canonical case proceed along similar lines. Here we only give
the'final result referring the intereéted reader to ref. 10 for details,.

The recoupling coefficient between the |a) and |y) representations is given by

WML %% 25 WY g TMYLYE Y3 Y0 Y5 sy

164/ s%Y |
= sw*-wNs 8 <—-’1—-—)\/(2L°‘ +1) LY +1) ——-——-——> x
J%Y vMN\25%+ 1 q%qYQ%Q"

) -OL_ l‘ 1 (1—0!..(1. (o) -1 ! Mo OL. o [] ] ]
Z , Y{C(cBoYo g IC T %% g ¢ w00 2% g vy )
uduBqu
1 x C(L
Y

Opy0%. 5 A% . =Y. Y=Y.Y.LY
u&uéu 2°J750,A7) (0,040 51U Hg)C(R707] 5m My *+Ug) X

JOt

GUCACRASLARS R AS AFLHAD I JOS o)



where

The angles 6 andvx are shown

% B . .Y 08 B..,Y ,0 OY B ,a.,

v, OC+E I, OC+EL-E000.,, (X -ED) x

UMy o d“B“B B ~B quuY‘ Y -
Yzama(esv) YzYmY(eBY)} (11_.9)

A0L=m0.+l+|+v
Ua UB UY

= m )
m + Ua + UB + Y

AY
, Y

in Fig. 2. Each angle is to be calculated

in the inertial frame located at its vertex. The Lorentz spin rotations

are given by

B _ Y
Ea X - BaY - eya
g8 _ o
by = X By * By

with the angles B as indicated in Fig. 2. The spherical harmonics only

depend on the polar angles and can be expressed in terms of the associated

Legendre polynomials. All angles are in the x-z plane and the entire

expression of (II-9) is real. Our convention for the fofation operators

is that of Rose.12

between other repreéentations-can be easily obtained by permutation of the

indices in cyclic order.

Isospin States’

Finally, to complete our discussion of representations, we give

the necessary formulas for the isospin states. As usual, the states have

unit normalization in terms of kronecker §-functions.

The transformation

coefficients, analogous to (II-7) and (II-8), are, in an obvious notation,

Since we have used cyclic notation throughout, recouplings



<1112;1112|1112;1]> = .c(11121;11,12). | | (11-10)
R R N = I S0y O L
(Ialsly,lalelleaIBIY,I i1 C(IBIYIv,lelY)C(I I, ?18*'1y’1a)
, - | _ . (II-11)
'_*a-r_—» ! :
where I = IB + IY is the intermediate isospin.

As in'the configuration space, there are three equivalent isospin
representations whose relationship to the '"plane wave" states in isospin
space can be obtained by cyclic permutation in (II-11). The unitary

transformation between these representations, similar to (II-9), can be

expressed in ferms~of the Racah coefficients, W.lz‘

0. 070, ‘ Y Y3Y
. I .
(I IBI ;0T IB; ST

_ :E : - . . 0. L0 . L.
- B . : e . X
GIaIY'GiaiY C(IBIYI ’181Y)C(I IaI ,1B-+1Y,1a)

:!.a].Bl,Y
: Y. . s Y 1Y, N
X C(IaIBI ’1a’18)c(1 IYI ,1a-+18,1Y)
o .
=5 5 (-)I"‘+I -f CI,I 1%i,,i)C(L.I1% i ,ig+1i) x
%77 %Y : By "By a Ptat B Ty
11
1a,18‘,1Y
e L T ZP U
X CIITY1,4)CAYT 1Vd +dg,1)
I +1%-1%
= 8 ) ° NS o1y wer 1.1% 1Y%
oY 1047 (21%+ 1) (217 + 1) W(TI1% 51T

(I1-12)
In what follows, we shall always understand these states to be included

in our representations.



III.  ISOBAR MODEL
Let T23'b¢_the scattering operator for the process a+b > a+B+yvy.
In the isobar model, one decomposes this operator into a linear sum of

products of two operators.

-
MT B =1,2,3  (III-1)
A6 T

T =
23 g
The opérator Msxdescribes the process Y+a > y+a and in the context of
the isobar model it is sometimes called the decay operétor. The other
operator TB, on the bther hand, describes the process 3ﬂ+b + 3-+(ya) and
is often referred to as the prodpctioﬁ operator. Thé'kinematical factor
AB is inclﬁded_for_convenience and will be defined shortiy.

We can nbw“téke the matrix element of (III-1).  As we are primafily
interested in the partial wave amplitudes, we use the apgﬁlar momentum
representation; Fdr the final state we may choose any‘One of the three
equivalent representations, say |a>. Then, indicating.the initial angular
momentum state by']a), we have
<a|MBTB|a) =73 (aIB')p'(B']MBTB|a) ds' dw

a8 BB A®

(a|T,5|a) = '%.
(111-2)

v

<

where we have inserted the unit operator implied by (IIésj; with

B B .
R L W | (111-3)

16W5/sB

and the sum B' extending over all the discrete variablés_in the |B) repre-
sentation. For brevity, we shall omit the superscript B wherever possible.

Again, using the unit operator,



g MPrBlay = z.l.<6 |MB|@'> p"(B"|TB|a) ds" dw (I111-4)
] B"

" Now the meaning of <3'|MB|3"} is that

(B! IM.Blsn) - (W'J'M'L'Z'j vlvv‘avsl ;I'i'i' |MBIW"J"M"L"Z"j"2"(-)'"5';;I"i"i">
= I s S wWns(st-s) S, f‘a' 6 | Va 8. X
Q' Jran MYM'_ IR ALNRS A ALERE RE L

| s; | PR
X GI'I" (Si'l" Gi'i" B'(i'i)?,'a"ﬂ,"a'" R , (1I11-5)

that is, the matrix element describes the two-body elastic process

B

a+y + o+y. For the T term we have .

. { Bv'v ITBIa) ( W"J"M"L"Z"j"2"6"5";I"i"I"' |TB|WJ ML O';Ii)

) B(W SH)
G(W" w)GJ"J M"M GI"I 5il' TI J 2/0 LHZH "2/”0"1"

. (III-6)
A sihilar expreesion hoIds forhthe 1eftﬁhand side 5&1(111-2)' After sub—
st1tut1ng (III 3) through (III 6) and u51ng (II- 9) and (II 12) to replace
(aIB'} one can carry out the sums and 1ntegrals 1n (III 2) utlllzlng the

§-functions to get

T, W,s™) = }E:- ./” QW) ( ) (alB") MB B,,(s ) TB”(W s')ds’ |
B,B',B" a | @iy v

where, for brevity, the notation is .-

T..(W,s™ =T ,3(Wss” b
23 Lazajaza —0=0 IJ’lo
S (111-8)
B _ B :
MBan(s') = M']':vj|'q,|5v9,n6—'|(5')
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™ w,s) = 18 (w $ )

LHZH ”2"0" I J 2 o—

(a|B') = (II-10) x (II 13) w1th Y'*B' and excludlng .
. (I11-8)
- W ; -
the 8- functlons G(W W )5JaJ. MaM' IaI' Siai'
.B',.B". jvgvvaviv;anuzuan o jvgvaj f.quz,vv;anau
We now choose g :
B - g | e o (111-9)

4s"

so that (p') (g?)-i— = p' and we have

23(w s BZ f(a|8') Mgy gn (s') TB"(W s')p'ds' - (ITI-10)
g, R" L ' )

This is the basic expression for the total partial wéve:émplitﬁde.ih terms
of the.prodﬁctipn andvdecay ampiitudes. .The decay.amﬁiitUde Mg,sn‘is |
usually a known‘function so that the production'parameteré TB"ican be
determined by ﬁsing.(III-lO) in the expression for cfoss-#ection (which we
shall not go ihtO);" In the rest of the paper wé shall be brimarily intér?
ested in 7N + ﬂﬂN for which wé have, when conservation of parity ié‘taken

into account,

o ! 6-"‘

L = n

so that the B'" label becomes superfluous and will be dropped from now on.

B

The parameters TB are functions of continuous variables W and s".
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In order to further simplify the task of fitting the data, it has been
customary to approximate T8 by a threshold factor times another parameter

which is independent of subenergy.

‘

Tg.(W,S') ~ fg.(W,s') KS.(W)f' (I11-11)
We shall call this '"minimal approximation'. Equation (ITI-10) now becomes
T23(W,su) = 3 Kg,(W)j’<a|B'>MS,(s') fB,(W,s')p'ds' (I11-12)

BB’

With a suitable choice of barriers f, the integral can now be carried out

to obtain .
Tysh,s®) = ] pg?(w,s“)-ig,(W) (111-13)
BB' '

where

B,s% = [ B 0B [calen ul, sP)effas® arraag

Index B', signifying the sum over different isobars in the |B) representation,
will henceforth Be absorbed in the index B. Expression (III-13) is a direct
outcome of (III-1) and (IXI-11). It coﬁtains the recoﬁpling coefficients
explicitly whose presence is due to the fact that we have ekpressed the
entire-amplitude'T23 in one final state representation_la); ‘Indeed, if we

carry out the partial wave expansion of Eq. (III-1), we get

CE|Tygli) = za j'<f|a>pa<a|T23|a> 0, (a|i?dsa (I11-15)

a,

where the sum and integral are over the relevant variables in the two- and
three—particle'étates and the transformation functions ¢ f|a) and (a|i) are

as given by (I1-8) and the complex éonjugate of (1177) respectively. Then,



=12+

making use of (III-10) and (III-11) in the above, we get

CE|Tygli) = aza jl(fla) o* o gﬁdls)ms(ss) Te(w,56)95d58 <o, (i) ds®

(111-16)
= To alid ] [eelp) MBisByePow, sByRBan oBasP (1II-17)
a B : . .
>
B R K L1 LU VM
. Jso By
x C'(oaobO;uaub)C(!L‘o J ;M»- (g ¥ 1) sH + ub)CI(O—BOYa;VB\)'Y).
a-0.0, 0 . ' A a.-d
x C(L7073 ;m - (\)B+vy),v8+vy)C(3 qaZ _’m ua)
o N
x COL% M- (@ +p ), m*+p ) Y@ _
_ i o o Yza,ma_ (\)B+V )
_ B Y
%) * () % -
X (&)
La,M— (ma-l»ua) .M - (ua+ub) DUB\)B_ B . a
‘no :
X DY €2y M s® ™, sh ' - (I11-18)
CHRYYYT |

Thus Eq. (III—i6);with the recoupling coefficient in it ié equivalent to
Eq. (III-17) which does not contain that term. Bécausé.of this reason,v
the latter is used in the analysis. We shall, howevér,:find later that
Eq. (III-16) is more suitable for comparison with the‘uhitarized amplitude.
-Equation (IT1I-18), apart from an overall energy-momentuﬁ 6-fuhction, is our
expreséion for_the tota1 partial-wave amplitude. ft is entirely in the

canonical representation and differs from, for example, the Berkeley-SLAC



-13-

version16 in that their spin states are the helicify states. For details
see ref. 10. it should be noted that our procedure for introducing sub-
energy unita%ity [Eqs. (IV-16) and (IV-17) below] does not, of course,
depend upon thé spécific representation cho;en.

The shortcoming of the model lies in assuming that the reduced
amplitudes A introduced in (III-}l) are independent of the subenergy

variables. We therefore concentrate on this problem in the next Section.

Iv. UNITARITY CONSTRAINTS

For the amplitude a+b > a+B+Yy, we shall be primarily interested
in the normal threshold singularities in the three-particle subenergy

. . : _p o
variables sa. For a given subenergy variable, say s, we have for the

discontinuity13
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Here we have suppressed the signs of the total energy'Wland the two sub-
energies sBsY which should be fixed at the same values in both amplitudes
on the left-hand side, say +++. For the =O= amplitude on the right-hand

8 and sY

side, only W(+) and sa(-) can be specified, s being integration
variables carry a more complicated prescription. For details we refer to
article 4.7 of ref. 13. Similar expressions can be written down for

B

discontinuities in S® and sY and the three expressions can be added.

The total discontinuity due to subenergy variables is then given by

It will also be useful to define the usual two-particlefK-matrix by

::(::):; - =k = =+ F— =5=x <+ (IV-2)
:@:_;K: =_1/2:®:Kr°— =-%-:K- - = (1v-3)

We now introduce a reduced amplitude J by

== - s X

and show that it is free from subenergy discontinuities. Toward this end, A

(1V-4)

g

we continue (IV-4) around the subenergy thresholds and let J+>1I. Then we

have

551::)22_,= =ASRED) EELE_Ef(::F:: | (IV-5) -

where the minus sign is a consequence of the two-particle phase space.

Now, subtracting (IV—S) from (IV-4), we get
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= =0= - =B - = 2 (o Lo
Using (IV-3),

ELCONEOS o E

:and using (IV-2),

— K : 1
= - L= - -

N
14

Il

Substitution of these in (IV-6) gives

=O=-=0= - - A f&@=
whlch in view of (IV 1), implies that EEZ{>§== Eﬁzf>§== e., J has-

no subenergy dlSCOHtlHUltleS

Next, following SmadJa,7_we go a step further and take

where division by the two-particle phase-space A

(Iv-7)

=M
Q,“

e
@)

(IV-8)

=[]
%]~
[
éﬁ;;

ensures the

4~/ s0 B

required smoothness of»J,'so'that (IV-4) becomes

=~
Q
+

.f!l!ffﬂﬂl’zz — -———55§ZG§§: » :E: AB ::.

=§:ﬁ—i%+%2fg=“ @ 52

o ‘ = a, B#o

1 ' - 1 ‘ o ‘ ' o
T . T (e - Le)
o a _
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where we used (IV-2) in the last step. Cancellation of the left-hand side

with the second‘térm on the right hand side yields

o

Bra

A possible solution of the above is : ! -
' . o 1 B ’
A — - -
= ﬁ 5 E , 2P (vIV 9)
- B#a 7
Decomposition (IV-7) is similar to the one used in (III-1). Equation

(IV-9) is a set of coupled integral equations which relates each prqduction

amplitude T® to other amplitudes TB,’B#ix. The term Jajis'ffee'frdﬁ Sub-‘

Y (o= e 3. =)

, energy discontihuity and hence represents Ta in the iSobar model apprdximation.

The integral term provides the required.correction to the model.
In the terminology of Section III, (IV-9) reads -
| a0 BB . |
™ = J°‘+1§ MTB . . (1V-10)
Bfa A7 -

and can be written in the angular momentum representation by a procedure

similar to the one used in-obtaining (III-10) from (III;llj.

' AN . S : ‘

W,s% = J%W,s% + l‘;— ) f<a|s}_M'B(sB). ™®w,sP)oPasP  (-11)
o ' B#a R ‘ :

The above can be written in a more compact form14

T = J+XT (IV-12)

and can be formally solved to yield
T-XT = J o
or . o (Iv-13)

T = (1-%)"13 = W

We shall refer to H as the mixing matrix.
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To déal with the barriers, we set
JG(W,sd) ~ f“(w,_s“)3°‘(W) | (1V-14)
oW,s% ~ f“(w,s"‘ﬁ“(‘w,s“). (IV-15)

Notice that s is retained in Ta, thus distinguishing it from A% of Eq.
(ITII-11), but not in 3& which we assume to be constant over the Dalit:z

plot. This éssumption, however, is not crucial to our analysis; that is,

we could use‘a series expansion in s% for 3“(w,s“) at the expense, of
course, of additional parameters to be determined by the data. Substitution

of (IV-14) and (IV-15) in (IV-11) gives

- : o~ . o -
Pwsh = P o1 e T [l o, s5HTPm, s olas?
£f7(W,s7) ofB
' (1V-16)
or
Toe 3kt
which again implies a new mixing matrix through
T = (1-%)"'7 = 773 (IV-17)

' . o o - Yo :
Furthermore, since T  and J~ are related to Ta and J°, we can derive

a relation between H and ;i Using (IV-13) and (IV317) in.(IV-15), wé have
%fHas(w,sa,sB)JB'(w,sB)dsB - sy %fﬁas(w,s“,ss)ie(wmss
Putting (IV—i4) in the left-hand si&e of this equgtion
g [P, s, sy, sBHPBanas® - o, g [ #8w,s%,s%38 o as®

»

or
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7 3B [[H"‘B(w,s"‘,sB)fB(w,sB)ds‘3 - f“(w,s“)fﬁ“B(w,s“,sB)dsB] =0
B

Since the 38'5 are linearly independent parameters,'we get

(#8059, ByasF - _'__1__]HGB(W,s“,sﬁ)fB(w,sB)dsB

(o] a
£ (W,s7) (1V-18)

This result can now be incorporated into (IV-17).

%a(w,sa) - z.[ﬁaBEBdSB . -2 jsj"ﬁaBdSB ) jsj'HanSdSB
o B ’ B B

(Iv-19)
where the barriers are explicit. Calculation of H, in contrast to EL does
not require knowledge of the barrier factors which are somewhat arbitrary.

Equation (IV419) is our solution of the unitarity equations (IV-16).

V. ISOBAR MODEL AND UNITARITY

We now wish to include the unitarity corrections in the isobar
amplitude. Replacing AP in (I11-17) by T as given by (IV-19), we'get

L
B, B

C£|Tyqli) = g o, (ali) gf(f[B)MB(sB) eBow, sB)

B..B

ds .

%

I 3 1P, 5B, s 2w, 5% as® x p
[0 . ' ,

g

I o, ¢ali) ] EB(W)]f<f|a>M°‘(s°‘)fB(w,ss)H".‘B(w,s“,sB)pO‘d_s“ds
a af

(v-1)
where o and B were interchanged in the last step. This is the unitarized

amplitude which should replace (III-17).
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'If a fit to tﬁe data has already béen performed using the isobar
model, the questidn naturally arises-as to how good the results are, i.e.
whether the A%'s determined ffom %t would be much‘different from the J%'s
determined from (V-1) if a refit were performed. Equation (V-1), in contrast
to its counterpart (III-17), involves o and B indiées which are intefmixed.
This does not make the comparison quité obvious. If, however,vwe retain
the partial wave character of T23 we find that the two amplitudes can be

written in closely analogous forms. Thus, working with (III-16), we include

unitarity through (IV-19).,

_ . . ' 1 v :
’(f|T23|1) = g pa(all) g[(fla)pa as® g[(uIB)MBprB . e g JYIHBYdesY.- asb
- o tali) §fsloro®as® T [aalyrnte? T 3P [HVBefasfas?
a o Y B
= 7o, tli) z[<f|a>p°‘ds°‘ 7 BB, s% . (V-2)
a a R '
with
Bw,sd = f £P [ RCILE MYpYHYBdsY] asP (V-3)
4 .

To recast the isobar amplitude, we use (III-13) in (III-15).

(£]T, 1)

= 1o, ¢l zf<f|a>p°‘ as® ¥ AP rB(w,s%) (V-4)
a a B S
Expressions (V-2) and (V-4) are now similar, their only difference coming

from the F and G functions. Indeed, if the miXing matrix H is weak, we

can write it as

B, sY, s ~ &g (s - _sB) (V-5)
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and easily yerify that G=F, Thus, the effectivetstrength of mixing may '
by defined>byﬁa ratio of the two functions. Following our practice of
separating out the barrier factors, we can set |
Z.[(a|#) MYHYBdesY' . '
aaB(w,Sa’SB) = Y - ‘ (v_6)
@y MB B |

which is the ratio of the bracket terms in (V-3) and (I1I-14). The full

.

ratio R is, on the other hand,

- GaB(w’sa) -f{_»'

R¥Bw, s = eyt (V-7)
. ) F~ (w »S )
and includes the barrier terms in it. If these ratios are much different

from unity or ‘their subenergy dependence is appréciable, a refit is justified.

VI. CONCLﬁSION i
We havelpresented thevformalism of the isobar‘model and the suﬁenergy_
unitarity'céhstraints in a'systematic mannef with sufficiént detéils. For
the most part;,the results derived here are qqitebgeneral ahd can be applied
to many reattions of interest of the type a+b -+ 1~+2-+3. There are several
versions of:ﬁhe'three—ﬁody paftial wavé analysis as described in ref. 2;
the one ﬁsed hefe corresponds to ﬁhe'Berkeley-SLAC version in all but one
| respect —-we.usé caponical, instead of'helicity; fgpreéentation.
Our main results are the set of coupled integral equatibns for
productioﬁ amblitudes, (Iv-16), their formal solution (IV¥17), the total
unitarized ampiitude ( V-1) and the ratio (V-6) or (V—7). The method

presented here essentially involves the calculation of the mixihg_matrix
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H and its substitution into the usual expression for the partial wave
amplitude to obtain the unitarized amplitude. '

The reduced amplitudes J* have been treated as though they have no
subeﬁéfgy dependence at all. This assumption is a conveénient one as it
retainé the basic character of the production émplitudes used in the isobar
model (oﬂly' W dependence). Another poinf we should mention is that we
have only dealt with the subenergy discontinuities here. Other disconti-
nuities; in the total energy, arising from the two énd.three—particle
intermediate states have been reﬁoVéd by many authors.s’6 |

We have paid épecial attention to the handling of the barrier factors.
Pﬁiling them out from the production amplitudes will involve them in the
miking matriﬁl. Our preliminary results_indicate that the mixing matrix can
be qui%e sensitive to small changes in the barrier.factOrs. For this reason
we have tried”to'separate them'out'as far as possible.

The tests suggested in Section V should help determine the validity
of the isobar model. If the H matrix is rbughly diégonal, unitarity
corrections are not necessary. If it is not diagonal, then oneymust see
how their mixing actually modifies the isobar amplitude. This is the
motivétioﬁ for.the ratio test. An important feature of this test is that
it can be carried out before any fit is performed, i.e,, it does not
depend on any fitting parameters at all. Thus it provides an answer to
the question often asked: How much is the overlap between two given isobars?
If the ratio test fails, then of course one is obliged to fit the déta using
a unitarized version of the isobar model such as that presented here.

Finally, we have left out the important.discussion on identical

particles in the final state. The kernals X have certain symmetry property

with respect to the interchange of identical particles. This, along with
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the use of properly symmetrized amplitudes, enables us to reduce the number
of independent integral equations. This and other related topiés are
discussed in ref. 10. An application of the results derived in this.

paper to TN + 77N can be found in ref. 15.
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FIGURE CAPTIONS
Fig. 1. Three-particle state in the overail center;prmass frame with

arb@trary orientation of the coordinate axeS](see Eq. (II—8)),‘

Fig. 2. Three-particle state in the overall céntef—dfemass frame with
the three different sets of coordinate axes as defined in

Section II-D.
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Fig. 2
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