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ARTICLE

Host gut resistome in Gulf War chronic
multisymptom illness correlates with
persistent inflammation
Dipro Bose1,7, Somdatta Chatterjee1,7, Ethan Older2,7, Ratanesh Seth1, Patricia Janulewicz3, Punnag Saha 1,

Ayan Mondal1, Jeffrey M. Carlson3, Alan W. Decho 1, Kimberly Sullivan3, Nancy Klimas4, Stephen Lasley5,

Jie Li 2 & Saurabh Chatterjee 1,6✉

Chronic multisymptom illness (CMI) affects a subsection of elderly and war Veterans and is

associated with systemic inflammation. Here, using a mouse model of CMI and a group of

Gulf War (GW) Veterans’ with CMI we show the presence of an altered host resistome.

Results show that antibiotic resistance genes (ARGs) are significantly altered in the CMI

group in both mice and GW Veterans when compared to control. Fecal samples from GW

Veterans with persistent CMI show a significant increase of resistance to a wide class of

antibiotics and exhibited an array of mobile genetic elements (MGEs) distinct from normal

healthy controls. The altered resistome and gene signature is correlated with mouse serum

IL-6 levels. Altered resistome in mice also is correlated strongly with intestinal inflammation,

decreased synaptic plasticity, reversible with fecal microbiota transplant (FMT). The results

reported might help in understanding the risks to treating hospital acquired infections in this

population.
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Antibiotic resistance has emerged as a threat to public
health on the local and global scale1,2. Resistance to
antibiotics is conferred on bacteria by ARGs. All of the

ARGs collectively form a resistome, and usually are carried by the
opportunistic pathogens humans may encounter, thus increasing
the risk of acquired infections that are difficult to treat with
currently approved antibiotics3–6. The evolution of drug resis-
tance in such pathogens is driven by chromosomal mutation and
the acquisition of ARGs. Since most of the ARGs are linked to
MGEs, they can transfer easily through horizontal gene transfer
(HGT) among different clones, taxa and habitats7–10.

The human gut harbors multiple commensal microorganisms
and forms a good reservoir of ARGs. The gut environment pre-
disposes ARG transfer, sometimes leading to emergence and
spread of specific bacterial clones carrying genes of resistance
and/or virulence. The most frequently reported genes are those
directed against tetracycline, β-lactams, aminoglycosides, and
glycopeptides. Tetracycline and glycopeptide resistant genes are
most common in fecal samples of human4,11–13. On the other
hand, human microbiota is also influenced by environmental
factors like exposure to chemicals (pesticide, biocide) along with
antibiotics that can alter the microbial composition and affect
colonization resistance to pathogens. The selection pressure due
to the exposure to such chemicals have resulted in emergence and
increase of ARGs in both environment as well as gut
microbiome14–18. A report from Sun et al., shows that changes in
living environment can alter the human gut microbiota and
resistome12. Another similar study by Gao et al. suggested that
exposure to Triclosan resulted in gut microbiome and resistome
alteration that persisted over a prolonged exposure19,20.

Numerous studies have reported that elderly and war Veterans
often suffer from multiple syndromes with inflammatory phe-
notypes and are more susceptible to resistance against a large
number of antibiotics21–23. Veterans have been reported to be
resistant to amoxicillin, β-lactams, fluoroquinolones, methicillin
and most importantly the carbapenem group of antibiotics24,25.
In our present study, we aimed to analyze the ARG and MGE
patterns in a Gulf War Illness (GWI) mouse model as well as in a
cohort of GW Veterans. GWI is a complex multisymptom illness
often closely associated with chronic multisymptom illnesses but
now classified exclusively as GWI. The above referred condition
are reported by a section Veterans who returned from Operation
Desert Shield/Desert Storm in 1990–1991. Symptoms reported by
the GW Veterans include fatigue, headache, cognitive dysfunc-
tion, musculoskeletal pain, respiratory and gastrointestinal dys-
functions more often characterized by a persistent systemic
inflammation with higher IL-6, TNF-R1 and IL-1β blood levels.
These symptoms have been linked to chemical exposures
experienced during the war26–28.

Several studies in preclinical mouse models of GWI have
reported that exposure to chemicals such as insecticides and anti-
nerve gas agents resulted in gut microbial dysbiosis. There has
been a decrease in the relative abundance of several beneficial
bacteria. Recently, a study in GWI Veterans also reported similar
alteration of gut microbiome29–32. With reported studies on
microbial dysbiosis patterns in the preclinical animal models as
well as the GW Veterans well established, and with studies sug-
gesting the potential of environmental chemicals in increasing
antibacterial resistance, we hypothesized that exposure to envir-
onmental pesticides and pyridostigmine bromide (PB) may also
lead to an alteration of ARGs and MGEs expression, an important
constituent of the gut resistome. In the present study we used
both GW Veteran stool samples and fecal pellets from a GWI
persistence mouse model administered with representative GW
chemicals to study the alteration in gut resistome. We also studied
the possible associations between gut resistome and GWI

proinflammatory pathology by using a prolonged fecal microbiota
transfer regimen that aimed to recolonize the mouse gut with
microbiota from a healthy donor.

Results
Characterization of antimicrobial resistance in mouse fecal
samples. We performed whole-genome shotgun sequencing,
metagenomic assembly, and functional gene annotation on fecal
samples collected from three groups (Control, GWI, and
GWI_FMT) to construct ARG profiles associated with the GWI
mice model and the FMT treatment. We detected 455 unique
ARGs across all groups with 538 ± 16 (mean ± standard error)
total ARGs in Control, 514 ± 15 total ARGs in GWI, and 567 ± 19
total ARGs in GWI_FMT. Performing PERMANOVA revealed a
significant deviation in the ARG profiles across sample groups
(p= 0.0001, R2= 34%). This indicated that the resistome profile
of each sample group were distinct from each other. To get a
clearer picture of the specific changes in the resistome, we per-
formed differential abundance analysis of the ARGs to identify
significantly changed genes (DESeq2, negative binomial general-
ized linear models (GLMs), Wald’s test, p < 0.05). Comparing
these selected ARGs between sample groups, we observed a sig-
nificant decrease in their sum relative abundances from Control
to GWI (p= 0.02021, Welch two-sample t-test) and a significant
increase when comparing GWI to GWI_FMT group
(p= 0.00005425, Welch two-sample t-test, Fig. 1a).

Looking to connect ARG changes with gut microbiome
composition, we performed procrustes rotation of the principal
component analyses (PCAs) of the resistome and microbiome
profiles which showed a significant correlation (p= 0.0001,
PROTEST, M2= 0.4302, Fig. 1b), confirming that resistome
changes were in fact linked to microbial dysbiosis. Further,
principal coordinate analysis of ARG profiles showed clustering
of profiles according to sample group with the first two axes
accounting for 49% of the variance in the ARG profiles. The
GWI_FMT group formed an independent cluster from both GWI
and Control groups (ape, pcoa, PCoA1 accounting for 34% of
variance in ARG profile, Fig. 1c).

We also examined the profiles of MGEs constituting the
mobilome in each sample group. We detected 77 unique MGEs
evenly distributed across all groups with 77 ± 3 total MGEs in
Control, 74 ± 2 total MGEs in GWI, and 81 ± 3 total MGEs in
GWI_FMT. PERMANOVA showed significant differences in the
mobilomes with respect to sample group, supporting the observed
deviations in resistome profile which we previously linked to
changes in the microbiome composition (p= 0.0001, R2= 24%).
We selected differentially abundant MGEs (DESeq2, negative
binomial GLMs, Wald’s test, p < 0.05), compared their sum
relative abundances as previously described for ARGs. The
changes observed in the sum relative abundances between
Control to GWI (p= 0.4717, Welch two-sample t-test) and
between GWI and GWI_FMT (p= 0.1119, Welch two-sample t-
test, Fig. 1d) were not statistically significant. Hence, on
administration of representative GW chemicals in GWI mice
model, we did not see an increase in the relative abundance of
ARGs and the changes observed in the relative abundances of
MGEs were not significant.

Distribution of ARGs and MGEs across the different groups in
GWI mouse model. We detected multiple ARGs imparting
resistance to antimicrobial classes which have been marked as
highly important and critically important by the World Health
Organization (WHO) (AGISAR, 2018). In our analysis, glyco-
peptide resistance genes were the most abundant ARG observed
across all three mice groups (not statistically significant). Using
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differential abundance analysis, we identified the individual ARGs
which were significantly altered (DESeq2, negative binomial
GLMs, Wald’s test, p < 0.05). Among these ARGs, vanXYN (ARO:
3002969), and adeS (ARO: 3000549) were significantly increased
in the GWI group compared to the Control group (DESeq2,
negative binomial GLMs, Wald’s test, p < 0.05, Fig. 2a). This
result is suggestive of a potential effect of GW chemicals on the
individual ARGs. FMT treatment decreased the abundance of
vanXYN and adeS genes as observed in the GWI_FMT group
over the GWI group, however it was not statistically significant.
Interestingly, there were 6 unique ARGs which were only present
in the mouse GWI group.

When comparing the resistant drug classes across the three
groups, it was observed that glycopeptide antibiotics followed by
aminoglycosides, peptide, phenicol, and diaminopyrimidine

antibiotics were among the resistant drug classes that were
detected in the 3 experimental mice groups (p= 0.0001,
PERMANOVA, R2= 33%, Fig. 2b). Based on their mechanisms
of resistance, antibiotic efflux, antibiotic target alteration, anti-
biotic target protection, and antibiotic inactivation mechanisms
were among the antibiotic resistance mechanisms that were
detected in the 3 experimental mice groups (p= 0.0001,
PERMANOVA, R2= 31%, Fig. 2c).

ARGs have a high propensity to mobilize from one bacterium
to another through the MGEs by horizontal gene transfer9. We
thus investigated the presence of different MGEs and MGE types
among the three mice groups. We observed that relative
abundances of ISCR8, ISCrsp1, and Tn916-orf6 increased (not
statistically significant) in the GWI group compared to Control
but significantly decrease in the GWI_FMT group (DESeq2,

Fig. 1 Distribution of ARGs and MGEs in persistence GWI mouse models. a Box plots showing sum relative abundance (%) of selected antibiotic
resistance genes (ARGs) in Control (adult C57BL/6 J mice administered with vehicle, n= 11 biologically independent samples), GWI (adult C57BL/6 J mice
administered with GW chemicals, n= 11 biologically independent samples) and GWI_FMT (adult C57BL/6 J mice group exposed to GW chemicals
followed by Fecal Microbiota Transfer (FMT) treatment, n= 6 biologically independent samples). Median values of 4.38% in Control, 3.12% in GWI, and
4.37% in GWI_FMT indicated by solid black lines. b Procrustes rotation analysis comparing resistome (blue) and microbiome (red) changes using PCA
ordinations, (X-axis: PCA1, Y-axis: PCA2, PROTEST, M2= 0.4302, p= 0.0001). c PCoA of Bray-Curtis dissimilarity between ARG and Taxa profiles across
sample groups. Principal coordinate axes PCoA1 (34%) and PCoA2 (15%) are calculated to explain 49% of variance detected. Lines connect points from
the center of gravity of each sample group. d Box plots showing sum relative abundance (%) of selected mobile genetic elements (MGEs) Control, GWI
and GWI_FMT. Boxes in the box plots indicate interquartile range. Error bars in the box plots extend to the most extreme values within 1.5 times the
interquartile range. Outlier data points are represented by black dots drawn outside of the box plot. p-values were determined using PROTEST or Welch’s
t-test where p < 0.05 was considered statistically significant.
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negative binomial GLMs, Wald’s test, p < 0.05, Fig. 2d). Transpo-
sase, insertional sequences ISCR and integrase were among the
abundant MGE types detected in all the samples across the 3 mice
groups (Fig. 2e). Multivariate analysis of the MGE type profiles
showed a significant deviation and correlation pattern that was
dependent on sample groups (p= 0.0002, PERMANOVA,
R2= 33%).

Demographic Information of GW Veterans. In this study, we
obtained samples from 33 GW Veterans. Out of these 33

participants, 28 met the required Kansas GWI Criteria and were
categorized into the Hum_GWI group. The remaining 5 parti-
cipants did not meet the criteria and were considered as the
Hum_Control group. There were no major differences based on
age, height, weight, or body mass index of the participants in both
groups (Supplementary Table 2). In the Hum_GWI group, 61%
of the participants reported diarrhea and nausea, 57% reported
abdominal pain or cramping, 46% reported irritable bowel syn-
drome (IBS). In the Hum_Control group, there were no reports
of diarrhea or IBS, but 40% of participants reported nausea and
20% reported abdominal pain or cramping.

Fig. 2 Classification of selected ARGs and MGEs in persistence GWI mouse model. a Grouped bar graph showing relative abundance (%) of selected
ARGs in Control (adult C57BL/6 J mice administered with vehicle, n= 11 biologically independent samples), GWI (adult C57BL/6 J mice administered with
GW chemicals, n= 11 biologically independent samples), and GWI_FMT (adult C57BL/6 J mice group exposed to GW chemicals followed by FMT
treatment, n= 6 biologically independent samples) groups. Stacked bar analysis of relative abundance (%) of b drug classes resistances and cmechanisms
of resistance. d Grouped bar graph showing relative abundance (%) of selected MGEs in Control, GWI and GWI_FMT groups. e Stacked bar analysis of
relative abundance (%) of MGE types. Data represented as Mean±SD (SD: Standard deviation) for the bar graphs. p-values were determined using Wald’s
test or PERMANOVA where p < 0.05 was considered statistically significant.
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Characterization of antimicrobial resistance gene in Veteran
samples. We studied the gut resistome pattern in GW Veterans.
We performed whole-genome shotgun sequencing, metagenomic
assembly, and functional gene annotation as with the mouse
samples. We detected 604 unique ARGs with 224 ± 11 and
238 ± 6 total occurrences in the Hum_Control group and
Hum_GWI groups respectively. Comparing the ARG profiles of
the two groups, we observed only minor and insignificant
deviation in the resistome profiles between the two groups
(p= 0.2826, PERMANOVA, R2= 3.4%). When investigating
relative abundance of significantly changed ARGs (DESeq2,
negative binomial GLMs, Wald’s test, p < 0.05), we observed that
the sum relative abundance of selected ARGs increased but not
statistically significant in the Hum_GWI group compared to the
Hum_Control group (p= 0.08362, Fig. 3a). Procrustes analysis
showed a significant correlation of bacterial taxa and the ARGs
(p= 0.0001, PROTEST, M2= 0.6665, Fig. 3b). PCoA analysis
showed clustering of the Hum_Control and Hum_GWI groups
with major overlap on the first two axes accounting for only 24%
of the total variance in the dataset (Fig. 3c). Considering the

minor divergence indicated by PERMANOVA and the low pro-
portion of explained variance, this result might have stemmed
from the increased complexity of the human gut microbiome
compared to that of our mouse model.

When studying the transferability, we identified 110 unique
MGEs across both groups with 80 ± 5 and 86 ± 2 total MGEs in
the Hum_Control group and the Hum_GWI groups respectively.
We observed minor variation in the MGE profiles of the two
groups which was shown to not be significantly dependent on the
sample group variable (p= 0.3757, PERMANOVA, R2= 3.3%).
The relative abundance of selected MGEs were significantly
increased in Hum_GWI group compared to the Hum_Control
(p= 0.01677, Welch two-sample t-test, Fig. 3d).

Distribution of selected ARGs and MGEs in human samples.
Our results showed that the relative abundance of individual
ARGs was significantly higher in Hum_GWI group compared to
Hum_Control group. The glycopeptide resistance gene was found
to be the most abundant ARG in both groups of GW Veteran

Fig. 3 Distribution of ARGs and MGEs in GWI Veteran groups. a Box plot showing relative abundance (%) of ARGs in Hum_Control (Veteran group
without GWI symptom, n= 5 biologically independent samples) and Hum_GWI (Veteran group with GWI symptom, n= 28 biologically independent
samples). Median values of 9.0% in Hum_Control and 9.86% in Hum_GWI are indicated by solid black lines. b Procrustes rotation analysis comparing
resistome (blue) and microbiome (red) changes using PCA ordinations, (X-axis: PCA1, Y-axis: PCA2, PROTEST, M2= 0.6665, p= 0.0001). c PCoA of
Bray-Curtis dissimilarity between ARGs and Taxa. Principal coordinate axes PCoA1(12.7%) and PCoA2 (11.5%) account for 24.2% of detected variance.
d Box plot showing relative abundance (%) of selected MGEs in Hum_Control and Hum_GWI. Boxes in the box plots indicate interquartile range. Error bars
in the box plots extend to the most extreme values within 1.5 times the interquartile range. Outlier data points are represented by black dots drawn outside
of the box plot. p-values were determined using PROTEST or Welch’s t-test where p < 0.05 was considered statistically significant.
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samples (not statistically significant). Based on differential
abundance analysis, we found that the abundance of 3 ARGs were
significantly increased in the Hum_GWI group compared to the
Hum_Control group (DESeq2, negative binomial GLMs, Wald’s
test, p < 0.05, Fig. 4a).These ARGs were lra-3 (ARO: 3002510),
mexD (ARO: 3000801) and novA (ARO: 3002522). Agrobacter-
ium fabrum chloramphenicol acetyltransferase (afca) (ARO:
3004451) increased in Hum_GWI but it was not statistically
significant. These ARGs confer resistance against multiple criti-
cally important antibiotics which are used as human medicine
(WHO, AGISAR 2018). Furthermore, there were 250
unique ARGs found in Hum_GWI group which were absent in

Hum_Control group. Changes in the drug classes and antibiotic
resistance mechanism were not statistically significant between
the 2 groups (Fig. 4b, c).

The abundance of individual MGEs were also altered in
Hum_GWI group compared to Hum_Control group. The MGE
tniB significantly increased in the Hum_GWI group (p= 0.021,
DESeq2, negative binomial GLMs, Wald’s test, Fig. 4d). Although
a change in the relative abundance of istB and ISCre2 was
observed in Hum_GWI group over the Hum_Control group, it
was not statistically significant. Among the MGE types,
transposons, and most importantly insertional sequence ISCR
was increased in the Hum_GWI group (not statistically

Fig. 4 Classification of selected ARGs and MGEs in GWI Veterans groups. a Grouped bar graph showing relative abundance (%) of selected ARGs in
Hum_Control (Veteran group without GWI symptom, n= 5 biologically independent samples) and Hum_GWI (Veteran group with GWI symptom, n= 28
biologically independent samples). Stacked bar analysis of relative abundance (%) of b drug classes and c mechanisms of resistance. d Grouped bar graph
showing relative abundance (%) of selected MGEs in Hum_Control and Hum_GWI groups. e Stacked bar analysis of relative abundance (%) of MGE types.
Data represented as Mean±SD (SD: Standard deviation) for the bar graphs. p-values were determined using Wald’s test or PERMANOVA where p < 0.05
was considered statistically significant.
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significant, Fig. 4e). ISCR has been reported to cause increased
mobilization of ARGs among bacteria, presence of this type of
mobilome in GW Veterans raises the concern of increased
antibiotic resistance33. According to our procrustes analysis in
GW Veteran samples, changes in the resistome are correlated
with the altered gut microbiome, hence increases in MGEs like
ISCR might increase the chances of ARG mobilization which
could be fatal for the GW Veteran health due to increase in
resistance to antibiotics. Multivariate analysis of the MGE class
profiles revealed minor deviation between sample groups which
was not significant (p= 0.1422, PERMANOVA, R2= 4.5%).
Further investigations in GW Veterans are required to prove
the resistance against the individual ARGs.

Expression study of antimicrobial resistance genes in mouse
and GW Veteran samples by q-RTPCR analysis. To confirm the
expression of the ARGs observed by the gene annotation studies
in the previous sections (differential abundance by DESeq2), we
performed q-RTPCR analysis of the same ARGs, using DNA
extracted from the mouse (Fig. 5a) and GW Veteran fecal samples
(Fig. 5b).

In the mouse samples, expression of vanXYN was significantly
increased by 17.65-fold in the GWI group compared to the
Control group (p < 0.001, two-way ANOVA with Bonferroni’s
post hoc test). Expression of vanXYN (12.87 fold compared to the
Control group) significantly decreased in the GWI_FMT group
compared to the GWI group (p= 0.002, two-way ANOVA with
Bonferroni’s post hoc test). Similarly, expression of adeS was
significantly increased by 23.59-fold (p < 0.001, two-way ANOVA
with Bonferroni’s post hoc test) in the GWI group compared to
the Control group. The expression of adeS (12.63 fold compared
to the Control group) significantly decreased (p < 0.001, two-way
ANOVA with Bonferroni’s post hoc test) in the GWI_FMT group
compared to the GWI group. Although q-RTPCR analysis results
showed similar trend like the gene annotation study, i.e.,
significant increase in expression of the respective ARGs in the
mice GWI group and a decrease (statistically significant by q-
RTPCR) in GWI_FMT group, further experimental proof would
be required to confirm that FMT administration indeed was
successful in decreasing the individual ARG expressions.

In the GW Veteran samples, expression of mexD, novA, and
afca was significantly increased by 3.68, 5.59, and 2.81-fold
respectively in the Hum_GWI group compared to the Hum_-
Control group (for mexD p, for <0.001 novA p < 0.001, for afca
p < 0.001 between Hum_Control and Hum_GWI group, two-way
ANOVA with Bonferroni’s post hoc test, Fig. 5b).

Gastrointestinal, systemic, and neuronal inflammation and its
association with ARGs and Drug Classes in mouse GWI model
samples and GW Veteran samples. Gastrointestinal and neu-
ronal inflammation is reported in GW Veterans and in preclinical
GWI mice models due to the influence of GW chemicals31,34–38.
Increases in systemic inflammatory markers were also reported in
GW Veterans and mouse models31,38–40. Following our study of
the abundance and expression of ARGs and MGEs, we sought to
identify a link between ARGs and biomarkers of GWI pathology
which would aid in establishing a role of gut resistome in influ-
encing host health. The purpose of this study was also to show
whether a predictive insight can be made regarding future sus-
ceptibility to infectious diseases related to hospital acquired
infections in GW Veterans, elderly, and immunocompromised
individuals. Results in mice showed that the expression of IL-1β
in the small intestine significantly increased in GWI group
(p < 0.001, one-way ANOVA with Tukey’s post hoc test) com-
pared to the Control group, as shown through immunoreactivity

of the cytokine in the villi (Fig. 6a, c). Treatment with FMT
significantly decreased the expression of IL-1β in the GWI_FMT
mice group compared to the GWI group (p < 0.001, one-way
ANOVA with Tukey’s post hoc test, Fig. 6a, c). To study the
association between IL-1β expression and ARG diversity, we
performed a correlation analysis. Results showed a positive cor-
relation (r= 0.9849, p < 0.001 and r= 0.9414, p < 0.001 respec-
tively, Pearson regression analysis) between α-diversity of ARGs,
resistant drug classes and increased IL-1β in GWI mice group,
suggesting that alteration of the gut resistome profile had a sig-
nificant association with gastrointestinal inflammation (Fig. 6f).

We observed a significant increase in serum IL-6 level in the
GWI mice group when compared to the Control. Further, there

Fig. 5 Relative expression levels of antimicrobial resistance genes.
Relative mRNA expression of ARGs. a Between mouse experimental groups
Control (n= 11 biologically independent samples), GWI (n= 11 biologically
independent samples) and GWI_FMT (n= 6 biologically independent
samples). b Between GW Veteran groups Hum_Control (n= 5 biologically
independent samples) and Hum_GWI (n= 28 biologically independent
samples). The mRNA expression was calculated as fold change against
control (in Fig. 6a) and against Hum_Control (in Fig. 6b). Data are
represented as mean ± SEM (SEM:Standard Error Mean). p-values were
determined using by two-way ANOVA with Bonferroni’s post hoc test for
GWI mice groups and GW Veteran groups where p < 0.05 was considered
statistically significant.
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was a significant decrease in serum IL-6 levels in GWI_FMT
groups when compared to GWI group (p < 0.001 between GWI
and Control, p= 0.009 between GWI and GWI_FMT, one-way
ANOVA with Tukey’s post hoc test, Fig. 6d). We also observed
that α-diversity of ARGs and resistant drug classes were positively
correlated (r= 0.9546, p < 0.001 and r= 0.8732, p < 0.001,

Pearson regression analysis) with increased systemic IL-6 level
in the GWI mice group (Fig. 6g).

Our previous studies have shown that a decrease in synaptic
plasticity marker brain derived neurotrophic factor (BDNF) played
a key role in brain pathology in GW chemical exposed mice41.
Results showed that the expression of BDNF significantly decreased
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in GWI group when compared to Control. Further, the levels of
BDNF as determined by morphometry from immunohistochem-
ical analysis showed that there was a significant increase in the
BDNF levels in the GWI_FMT mice groups when compared to
GWI group (p < 0.001 between Control vs GWI; p < 0.001 between
GWI vs GWI_FMT respectively, one-way ANOVA with Tukey’s
post hoc test, Fig. 6b, e). Interestingly, a negative correlation was
observed between BDNF and ARGs and resistant drug classes
(r=−0.9668, p < 0.001 and r=−0.9146, p < 0.001 respectively,
Pearson regression analysis) suggesting that increased ARG-α-
diversity may have a strong influence on observed neuroinflamma-
tion in the GWI mice group (Fig. 6h).

Furthermore, we studied the level of systemic IL-6 in the serum
collected from the respective GW Veterans in this study. Results
showed a significantly increased level of serum IL-6 in the
Hum_GWI group compared to the Hum_Control group
(p= 0.046, Welch’s t-test; Fig. 7a). Correlation analysis between
serum IL-6 level and the α-diversity of ARGs and resistant drug
classes (r= 0.9173, p < 0.001 and r= 0.4840, p= 0.042 respec-
tively, Pearson regression analysis) in GW Veterans showed a
positive correlation (Fig. 7b, c). This results may be suggestive of a
link between altered gut resistome and increased systemic IL-6 in
the human samples. However, further experimentation is
required to confirm this hypothesis.

Discussion
In the present study, we report an alteration of host gut resistome
in chronic multisymptom illness as observed in a subsection of
Gulf War Veterans. We also report the association of systemic
inflammation with an altered gut resistome that in turn is further
correlated with increased circulating proinflammatory cytokine
IL-6, intestinal pathology and neurotrophic factor BDNF in
preclinical GWI mice model. Most importantly, we have shown
that increased systemic IL-6 had strong association with altered
human gut resistome in GW Veterans. IL-6 has been shown to be
a pleiotropic cytokine and is key to gastrointestinal disturbances,
and cognitive deficits42,43. Recent advances in understanding the
host resistome improved our knowledge about evolution, origins
and emergence of antibiotic resistance though the field is con-
tinuously evolving44. Previously, our knowledge of resistome
included proto-resistance and silent-resistance genes44. Silent-
resistance genes do not cause phenotypic resistance until they are
transferred via MGEs, or a mutation occurs in the associated
regulatory elements. Gut microbiome is usually associated with a
silent resistome, as they have the potential to contribute in clinical
resistance through mobilization44. Our study supports the exist-
ing evidence that the resistome is highly dependent on the gut
microbiome and indicates to a possible association between
changes in the bacteriome and the gut resistome, particularly in

GWI groups, both in the case of mouse models and Veterans with
GWI as studied by PERMANOVA and procrustes analysis
(Figs. 1b and 3b).

Exposure to environmental chemicals like pesticides, biocides,
aerosols have been reported to the increase in antimicrobial
resistance via HGT which have long-lasting changes and increase
in these resistant bacterial population in human due to selection
pressure leads to treatment failure with available
antibiotics12,16,17,19,45–48. This led us to our hypothesis that
exposure to a mixture of environmental hazards (war theater) in
GW Veterans as well as representative GW chemical exposure in
GWI mice model may affect the gut resistome. Our results sug-
gested that representative GW chemicals PB and permethrin
(Per) may change the ARGs significantly, but the changes
observed in individual MGE profiles in GWI group of the mouse
model when compared to the control group were not significant.
One of the limitations in this study includes our inability to
experimentally confirm that the GW chemical-treated mice were
indeed resistant to the classes of antibiotics or the individual
ARGs that has been found in this study. However, we would also
like to state that to the best of our knowledge no GWI mice model
could exactly mimic the health condition of the GW Veterans.
Different combinations of GW chemicals along with different
routes of administration needs to be included during the various
GWI mice model studies to further elucidate the mechanisms
proposed. Future studies need to overcome these limitations for
in-depth mechanistic links to gut resistome in GWI mice models.

Previous reports stated that elderly individuals and Veterans
had increased resistance to sulfonamide, macrolide, β-lactam
antibiotics followed by tetracycline as well as fluoroquinolones
especially found in Acinetobacter baumannii isolates49,50. Reports
also stated that fluoroquinolones and cephalosporin usage should
be prescribed in a limited manner among the elderly and
Veterans as they have higher susceptibility in developing resis-
tances upon treatment with such high generation antibiotics50.
However, there is very little evidence about the ARGs in Veterans,
especially GW Veterans suffering from CMI or collectively
referred as GWI who were deployed 30 years back and are pre-
sently in the age range of 50–60 years. The present study
attempted to report the alteration of ARG and MGE signature in
GW Veterans belonging to the aforementioned age group.
Another limitation of the present study includes the inability to
confirm whether the gut resistome alteration is a result of GW
chemical exposures alone. GW Veterans may have been exposed
to multiple courses of antibiotics at different points in their
lifetime, along with this factors like diet, metabolic conditions like
obesity that might prompt an increase in the altered gut resis-
tome. A further limitation in our analysis of gut resistome in GW
Veterans may be whether the GW Veterans recruited in our study

Fig. 6 Gastrointestinal, systemic, brain inflammation and its correlation with antibiotic resistance genes and the resistant drug classes in GWI mice
model. a Representative immunohistochemistry image showing immunoreactivity of proinflammatory cytokine IL-1β (marked by red circle) in mouse
experimental groups Control (n= 11 biologically independent samples), GWI (n= 11 biologically independent samples) and GWI_FMT (n= 6 biologically
independent samples). Images were taken at 20X magnification. Scale bar= 100 μm b Representative immunohistochemistry image showing
immunoreactivity of synaptic plasticity marker BDNF (marked by red arrows) in Control (n= 11 biologically independent samples), GWI (n= 11 biologically
independent samples), GWI_FMT (n= 6 biologically independent samples) mice groups. Images were taken at 20X magnification. Scale bar= 100 μm. FC
Frontal Cortex, HC Hippocampus. c Bar graph depicting immunoreactivity of IL-1β. Data are represented as mean ± SD (SD: Standard deviation) of %ROI
(mean value calculated from two different fields in each sample). d Bar graph depicting the serum IL-6 level at pg/ml in Control, GWI, GWI_FMT mice
groups. Data represented as mean ± SD. e Bar graph depicting immunoreactivity of BDNF. Results are represented as mean ± SD of %ROI (mean value
calculated from 2 different fields in each sample). f Correlation plot between α-diversity (Chao1) of resistant ARGs and drug classes and immunoreactivity
of IL-1β in mouse GW group in small intestine section. g Correlation plot between α-diversity (Chao1) of resistant ARGs and drug classes and serum IL-6
level in mouse GW group. h Correlation plot between α-diversity (Chao1) of resistant ARGs and drug classes and immunoreactivity of BDNF in mouse GW
group in brain section. r-value was determined by Pearson’s Regression analysis. Pearson’s linear regression is shown in red with 95% confidence bands.
Statistical significance was analyzed by one-way ANOVA (Tukey’s post hoc test) where p < 0.05 was considered statistically significant.
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were actually resistant to the ARGs and antibiotics reported. The
limitation is also confounded by the small sample size of Veterans
that may have caused low significance of our ARG and MGE
results. To overcome these limitations, future studies with a large
cohorts with sufficient power would help to obtain more in-depth
knowledge about the antibiotic resistance in GWI Veterans. We
identified that glycopeptide resistance was high in GWI compared
to other mouse groups as well as in GW Veterans (not statistically
significant). Glycopeptide group of antibiotics especially

Vancomycin is used to treat bacterial infections like methicillin-
resistant Staphylococcus aureus (MRSA), Clostridium difficle, and
Enterococcus spp.51. Recently it has been reported that adminis-
tration of Vancomycin in patients at Veterans Affair Hospitals
have been ineffective against these clinically important bacteria
and causing nephrotoxicity52–55. Increased glycopeptide resis-
tance as detected in our GW Veteran samples might be suggestive
of the reason behind the ineffectiveness of Vancomycin antibiotic
used to treat a section of Veterans. A further study of the resistant
drug classes as well as mechanisms of resistance could be helpful
to confirm this result.

FMT has been reported to restore the beneficial microbiome in
pathological conditions like inflammatory bowel disease (IBD),
type 2 diabetes, nonalcoholic steatohepatitis and neurological
disorders where gut microbial dysbiosis plays a direct role in the
disease progression56–62. Studies have also reported that FMT
administration have decreased the ARGs in patients with cir-
rhosis and Clostridium difficile infection62. In the present study,
we aimed to study if FMT could be a therapeutic by decreasing
antimicrobial resistance in GWI condition in preclinical GWI
mice model. We observed a decrease in relative individual ARGs
and MGEs in GWI_FMT group compared to GWI group in the
GWI mice model (Fig. 2a, d). FMT treatment was able to sig-
nificantly ameliorate GW chemical induced gastrointestinal
inflammation and systemic inflammation and significantly
increase synaptic plasticity marker expression. Moreover, future
dosing considerations are required in FMT treatment since pro-
longed FMT treatment may cause stress alteration of gut
microbiome and resistome. This also emphasizes the need for
screening the fecal samples of healthy donors for FMT which has
been a limitation63. Hence, these criteria should be considered in
using FMT as a therapeutic measure to ameliorate gut resistome
alteration and systemic inflammation in GW Veterans through
carefully designed clinical trials.

Interestingly, we observed the accumulation of ARGs that are
highly mobile and transferable. The mice in the preclinical GWI
model were never exposed to any classes of antibiotics during the
entire course of the study, but they showed a spontaneous
acquisition of unique ARGs in GW chemical exposed group but
not in Control and GWI_FMT groups. This transfer may occur
due to intrinsic or extrinsic transfer by HGT method based on
MGE patterns. This study also suggested that GW chemical
exposure may be responsible for the alteration and appearance of
ARGs and MGEs in mice since they have been maintained in a
controlled environment with very limited risk of exposure to a
multifaceted environment, though the presence of these ARGs
needs to be further elucidated.

We were able to identify diverse types of MGEs in which
transposons were majorly observed in both mouse and GW
Veteran samples. A study by Parnanen et al. stated that trans-
posase constitutes the most abundant MGE class20. This study
completely is consistent with our observations about MGEs.

Fig. 7 Systemic IL-6 level and its correlation with antibiotic resistance
genes and the resistant drug classes in GW Veteran samples. a Bar graph
depicting the serum IL-6 level at pg/ml in Veteran control group
Hum_Control (n= 3 biologically independent samples) and Hum_GWI
(n= 18 biologically independent samples) groups. Correlation plot between
α-diversity (Chao1) of b resistant ARGs and c resistant drug classes and
serum IL-6 in Hum_GW group. Data are represented as mean ± SD (SD
standard deviation). r-value was determined by Pearson’s regression
analysis. Pearson’s linear regression is shown in red with 95% confidence
bands. Statistical significance was analyzed by Welch’s two-tailed t-test
where p < 0.05 was considered statistically significant.
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Higher abundance of MGEs belonging to transposon group along
with integrons, insertional sequence might indicate a probability
for inter-bacterial ARG transfer which might increase the adverse
consequences due to increase in antimicrobial resistance in GWI
pathology9,64,65. To track the ARG transfer through MGE, further
detailed investigation is needed to identify the ARGs associated
with the MGEs.

Studies have also reported that low dose antibiotics have
increased the abundance of a single pathogenic bacteria, however,
difference in ARGs were not significant compared to control
groups66. This study also showed change in immunological
markers but association between ARGs and immunological
markers have not been established66. Also, IBD phenotype is
known to be associated with microbiome dysbiosis which led to
upregulation of antibiotic resistance67, a condition also observed
in GW Veterans68. We have shown an association between gas-
trointestinal, systemic, and neuronal inflammation observed in
GWI pathology and diversity of ARGs and resistant drug classes
in a GWI mice model. Our results also indicated an association
between systemic inflammation reflected by increased serum IL-6
and ARG diversity in GW Veterans. Interestingly, association
between diversity of ARGs and systemic proinflammatory marker
IL-6 will be an important benchmark in future studies of chronic
multisymptom illness and other related pathology. Future
mechanistic studies are needed to establish the exact role of ARGs
in GWI pathophysiology by using germ free and gnotobiotic
models combined with the use of short chain fatty acid treatment
regimens such as butyrate therapy.

Limitations of the study. Modeling the chronic multisyptomatic
condition of GWI in rodent models to mimic the health condition
of the present-day GW Veterans has been challenging. Due to the
complex environmental chemical exposures during the Persian
Gulf War, it is imperative that incorporation of other chemicals
like organophosphates, N,N-diethyl-meta-toluamide (DEET),
depleted uranium exposure, vaccines, oil smoke along with Per
and PB would strengthen the translatability of the results in GWI.
The research in GWI should consider the differences in the routes
of exposure of these environmental mixtures such as the dermal
route for administration of Per, a widely used insecticide. Small
sample size of the GWI persistence mouse model as well as GWI
Veteran cohorts may have affected the resistome analysis, hence
an incorporation of a larger sample size along with studies with
significant statistical power in future mechanistic analyses of the
gut resistome will help us in better understanding the changes
ARGs and MGEs. This is especially important in detecting the
minute changes related to the resistant drug classes, antibiotic
resistance mechanisms and MGE types. In the GWI mice model,
inclusion of an FMT-only control would help us to clearly dis-
tinguish the effects of the above treatment regimen on gut
resistome. A modification of the treatment plan of FMT in the
murine model that takes into account the additional stress-
induced changes in the gut resistome that might have occurred,
would be pertinent to the present line of investigation. Future
studies would also need to screen the fecal samples from the
healthy mice-Control groups to minimize the transfer of ARGs to
the recipient group. The present study should not be conceived as
an attempt to integrate the mouse data with that of the data from
the human cohorts as there are remarkable differences in the
exposure patterns as underlined in our previous sections. The
human cohort was included to investigate if resistome alteration
occurred in GWI conditions as an effect of microbiome dysbiosis,
as reported in earlier studies. The GW Veterans have been
exposed to multiple environmental chemical exposures singly or
in combination. In addition, diet, sedentary lifestyle after

deployment, metabolic conditions like obesity and exposure to
multiple courses of antibiotics and treatment regimens may have
contributed to higher resistome diversity. Another significant
limitation might be the inability to confirm experimentally if the
GWI Veterans or the mice exposed to representative GWI che-
micals were actually resistant to the antibiotics observed from the
gene annotation studies. These limitations could have been
overcome by exposing GWI mice to representative antibiotics
following a bacterial infection or an acute challenge with bacteria
that cause pathogenesis. Inclusion of these set of experiments
might have supported our hypothesis that a resistome signature
can predict phenotypic disease susceptibility later in life. Also,
inclusion of the previously stated factors like diet and obesity in
the future GWI mouse model study along with use of humanized
and germ-free mice might improve the translatability of the
results obtained from the animal studies. We were also limited in
linking the MGEs with the ARGs as well as identifying the
mechanism that connected the GWI pathology with altered gut
resistome which we plan to study in the immediate future. The
present study is a preliminary report. The observations can help
build a stronger hypothesis that points to the role of the host gut
resistome in GWI disease pathology. Further studies with larger
sample sizes may establish causality and help in determining risk
of GWI Veterans to antibiotics and other co-morbidities.

In conclusion, to the best of our knowledge the present study is
the first to investigate gut resistome alterations in GWI. Further, a
preliminary association was established between an altered
resistome and systemic IL-6 levels in a translatable mouse model
that has broad implications in the general population suffering
from similar ailments though the actual causality is yet to be
established. It is expected that 78 million of the US population is
expected to be in the elderly category by 2030. Most of them have
a history of prolonged antibiotic use, a case similar with our aging
Veterans. The elderly population belonging to the age group of
50–60 years have increased risk of acquiring antibiotic resistance
due to several factors like impaired immune functioning,
immunosenescence, and exposure to muti-drug resistant bacteria
due to multiple visits to clinics and hospitals69–71. In the present
study, the GW Veterans were of the same age group (53–56 years)
and studies have reported that the present day GW Veterans have
a maladaptive immune system primarily due to GW chemical
exposure and aging72,73. The scenario is also significant owing to
old age associated hospitalizations and increased chances of
hospital acquired infections. Based on the above facts and our
study results, we can predict that GW Veterans may have a very
high chance of acquiring antimicrobial resistance. In addition,
FMT can be used as a therapeutic strategy against the increased
antibiotic resistance in Veterans and elderly to attenuate a
possible altered resistome. Knowledge gained from the micro-
biome and resistome profiles from GW Veterans can be very
helpful for treating a variety of bacterial diseases or hospital
acquired infections (following surgery) that may require anti-
biotic treatment in the Veterans and can be a useful tool for a
personalized medicine approach.

Methods
Per and PB were purchased from Sigma-Aldrich. Primary antibodies anti-
interleukin-1β (IL-1β), anti-brain derived neurotrophic factor (BDNF) were pur-
chased from Santacruz Biotechnology (Dallas, TX, USA). Species specific bioti-
nylated secondary antibodies and streptavidin-HRP (Vectastain ABC Kit) were
purchased from Vector laboratories (Burlingame, CA, USA). All other chemicals
used in the present study were purchased from Sigma unless specified. Animal
tissues were sent for paraffin embedding and sectioning to AML Laboratories (St.
Augustine, FL, USA). Fecal samples from experimental mice groups and GW
Veterans were sent to COSMOSID (Germantown, MD, USA) for whole-genome
sequencing.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03494-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:552 | https://doi.org/10.1038/s42003-022-03494-7 |www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


Animals. C57BL/6 J wild type, male mice of 10 weeks age were purchased from
Jackson Laboratories (Bar Harbor, ME, USA). The mice were maintained in
accordance with local IACUC standards and National Institute of Health guidelines
for human care and use of laboratory animals. All animal experimental procedures
were approved by University of South Carolina at Columbia, SC (Animal protocol
number 2419-101345-072318, approved on 7/23/2020). All the mice had ad libitum
access to food and water and were housed at 22–24 °C with 12 h light/12 h dark
cycles. The mice were sacrificed after the animal experiments. Organs including
frontal cortex and distal part of small intestine were collected after dissecting the
mice and fixed in Bouin’s solution and 10% neutral buffered formaldehyde
respectively. Serum was collected from fresh blood of mice by performing cardiac
puncture after anesthesia. The fecal pellets were collected from colon, and it was
stored at −80 °C for whole-genome sequencing (WGS).

Mouse model of Gulf War illness. After 1 week of acclimatization, the mice were
randomly distributed into three groups. The first group received vehicle (0.6%
dimethyl sulfoxide) for 2 weeks and were denoted Control (n= 11). The second
and third mice groups denoted GWI (n= 11) and GWI_FMT (n= 6) were treated
with Per [200 mg/kg body dissolved in DMSO and phosphate buffer saline(PBS)]
and PB (2 mg/kg dissolved in PBS) by oral gavage tri-weekly for 15 days. After the
2 weeks of GW chemical exposure, GWI group mice were allowed to persist for
20 weeks. Fecal microbiota transplant was administered in GWI_FMT after GW
chemical exposure. 100 mg of fecal pellets were collected from healthy C57BL/6 J
mice of same age group as the GWI_FMT mice. The pellets were homogenized in
1 ml of PBS and centrifuged at 3000 × g for 5 min. 100 μl of supernatant was dosed
in each mouse on alternate days of a week for 20 weeks74–76 (Fig. 8a).

Human subjects: GW Veterans with GWI and controls. The Boston Gulf War
Illness Consortium (GWIC) performs preclinical and clinical studies to understand
the pathophysiology behind the complex symptoms in GW Veterans to aid in
designing of possible therapeutic strategies77. Veterans were included as partici-
pants in GWIC studies based on requirement that they had to be deployed in the
GW i.e., from August 1990 to July 1991. The GWIC used the Kansas GWI criteria
as the case definition which requires the Veterans to have symptoms in 3 out of 6
broadly defined group of symptoms (neurological, pain, gastrointestinal, skin,
respiratory, fatigue) to meet criteria of CMI in GW Veterans known as Gulf War
Illness (GWI)31,78. GW Veterans who do not meet Kansas criteria are deemed the
control group.

The Veterans who participated in the GWIC, underwent multiple tests
including neuropsychological assessments, health surveys, biological specimen
collection, and brain imaging27,77. The present study was conducted as a GWIC
call-back study in which we aimed to reassess 150 of the GWIC participants. For
this study, data from the first 33 recruited subjects from the microbiome call-back
study has been analyzed. The recruitment of participants was via telephone on
completion of GWIC study protocol. After filling out a brief questionnaire
regarding screening, the participants were sent a stool collection kit which was then
shipped back to the study investigators (Fig. 8b).

Collection of demographical, deployment exposure, and health symptom
information from GWIC participants. The full GWIC protocol has been pre-
viously published in Steele et al., 202177. Briefly, the GWIC participants had to
answer to surveys regarding demographics and health condition which included
Multi-dimensional Fatigue Inventory (MFI-20), Pittsburg Sleep Quality Index and
McGill Pain Inventory79–81. The Structured Neurotoxicant Assessment Checklist
(SNAC) and Kansas Gulf War and health Questionnaire and Kansas Gulf War
Experiences surveys were given to obtain details about self-reported exposures. The
survey regarding health condition provided the details if the participants had an
ascertained diagnosis of the medical conditions reported by them31,78,82. As part of
the call-back study, the Veterans also filled out questionnaires about their current
and recent gut health and use of antibiotics or probiotics.

Collection of stool samples from participants. The GWIC participants of the
microbiome study were mailed a Second Genome stool collection kit (Second Gen-
ome, San Francisco, CA, USA). The kit was a self-collecting kit which contained a
bar-coded vial with stabilizing solution for long term preservation of nucleic acids in
stool during transportation and storage. Once received from the subjects, the stool
samples were stored at −20 °C and upon collection of significant sample numbers,
they were sent for WGS by COSMOSID. The protocol was approved by Institutional
Review Board at Boston University School of Public Health (proposal no.
GW170068) on 4/15/2021. Sample collection from GWIC participants were done
following all ethical guidelines and informed consent was also obtained.

DNA extraction and whole-genome shotgun sequencing. Briefly, the total DNA
from mouse and human samples were isolated and purified using ZymoBIOMICS
Miniprep kit. DNA was quantified using Qubit dsDNA HS assay (Thermofisher,
Waltham, MA, USA). Illumina Nextera XT library preparation kit was used with
modifications for preparing DNA libraries. Illumina HiSeq 4000 and Illumina
NextSeq 550 platform was used to perform WGS for mice and human samples
respectively, following protocol optimized by vendor. 2x150bp of read length and
an average insert size of 1400 bp were used for sequencing. DNA libraries were
prepared using the Nextera XT DNA Library Preparation Kit (Illumina) with
Nextera Index Kit (Illumina) for mice and IDT Unique Dual Indexes for human
samples, with total DNA input of 1 ng. Genomic DNA was fragmented using a
proportional amount of Illumina Nextera XT fragmentation enzyme. Combinatory
dual indexes were added to each sample followed by 12 cycles of PCR to construct
libraries. DNA libraries were purified using AMpure magnetic Beads (Beckman
Coulter) and eluted in QIAGEN EB buffer. DNA libraries were quantified using
Qubit 4 fluorometer and Qubit™ dsDNA HS Assay Kit. Upon data arrival, raw data
were backed up to Amazon AWS and run through fastqc and a multiqc report was
generated83 The multiqc report was checked to ensure read depth thresholds were
met, and that there were no abnormalities with read quality, duplication rates, or
adapter content. Taxonomic results were checked on the COSMOSID-Hub
Microbiome platform to ensure there were contamination or barcoding issues.

We obtained a total of 536.92 million (M) sequencing reads with per sample
averages of 9.33 M reads in the Control samples, 8.49 M reads in the GWI samples,
10.12 M reads in the GWI_FMT samples, 11.32 M reads in the Hum_Control
samples, and 11.17 M reads in the Hum_GWI samples.

Metagenomic analysis and assembly. MetaPhlAn v3.0.784 was used to profile the
taxonomic composition of each sample with default parameters. The resulting
relative abundance tables were then merged with the provided python tool,
“merge_metaphlan_tables.py”. A custom python script was used to filter the data
to contain only species level identifications and prepare the operational taxonomic
unit (OTU) table for statistical analysis. The metaWRAP v1.3.285 pipeline was used
to process and assemble raw sequencing reads from each sample. First, the
“read_qc” module was used with default parameters to trim sequencing adapters
and bases with low PHRED scores. To decontaminate the data, reads mapping to
the human reference genome GRCh38.p12 (RefSeq Acc: GCF_000001405.38) and
the mouse reference genome GRCm38.p6 (RefSeq Acc: GCF_000001635.26) were
removed by the metaWRAP “read_qc” module. After decontamination and quality
control, we recovered a total of 532.43 million (M) sequencing reads with per
sample averages of 9.22 M reads in the Control samples, 8.24 M reads in the GWI
samples, 9.96 M reads in the GWI_FMT samples, 11.28 M reads in the Hum_-
Control samples, and 11.13M reads in the Hum_GWI samples. Decontaminated
reads were used for de novo assembly using metaSPAdes86 as contained in the
metaWRAP “assembly” module with default parameters. Resulting contigs were
binned by the “binning” module which uses three binning methods, metaBAT2
v2.12.187, MaxBin2 v2.2.688, and CONCOCT v1.0.089 to produce three sets of bins.
The “bin_refinement” module was used to refine these three bin sets to produce a
single set of best bins. Finally, the single bin set was used by the “bin_reassembly”
module which extracts the reads mapping to each bin and uses them for a second
round of de novo assembly to improve the completion and reduce the con-
tamination of the bins.

Antimicrobial resistance gene family and MGE identification. Contigs produced
through metaWRAP were used for open reading frame (ORF) finding using Meta-
Prodigal v2.6.390 with parameters “-c -p meta”. ORFs were then clustered with CD-

Fig. 8 A schematic representation of the experimental cohorts.
a Experimental mouse model of Gulf War Illness (GWI). b Study design of
Veteran participants in Boston Gulf War Illness Consortium (GWIC) based
on Kansas GWI criteria.
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HIT v4.8.191,92 with parameters “-c 0.95 -s 0.90” corresponding to 95% sequence
identity threshold over 90% of the shorter ORF length. Next, ORFs were mapped to
the Comprehensive Antibiotic Resistance Database (CARD) v3.1.093 and a recently
published customMobile Genetic Element (MGE) database composed of 278 distinct
genes and over 2000 unique gene sequences20 using the tool “nhmmer” from the
HMMER v3.3.194 software with parameters “-E 0.001 -incE 0.001” corresponding to
an e-value threshold of 0.001 for matches. A custom python script was used to filter
multiple hits to select the single best hit for each ORF. Finally, Microsoft Excel was
used to generate count data for ARGs and MGEs.

Laboratory methods
Immunohistochemistry. The fixed mouse small intestine and frontal cortex tissues
were paraffin embedded and 5 µm thick sections were done for immunohis-
tochemistry. Deparaffinization were performed following previous protocol41. Anti-
gen retrieval was performed using epitope retrieval solution and steamer (IHC world,
Woodstock, MD, USA). Three percent hydrogen peroxide was used for blocking
endogenous peroxidase activity for 20mins. Serum blocking was performed using
10% goat serum for 1 h. Tissue sections were incubated with primary antibodies for
IL-1β and BDNF at 1:200 dilution for overnight in humified chamber at 4 °C. After
incubation, the tissue sections were washed three times with PBS containing 0.05%
Tween 20 solution. Tissues were probed with species specific biotinylated antibodies
(1:200 dilution) followed by incubation with horse radish conjugated streptavidin
(1:500 dilution). 3,3'-diaminobenzidine was used as chromogenic substrate solution
and counterstaining was performed using Mayer’s hematoxylin. The stained tissues
sections were mounted using Aqua Mount (Lerner Laboratories, Kalamazoo, MI,
USA). The images were acquired using Olympus BX63 microscope (Olympus, Center
Valley, PA, USA). Morphometry was performed using Cellsens Software from
Olympus America (Center Valley, PA, USA).

Quantitative RT-PCR. Quantitative RT-PCR (qRT-PCR) was performed to mea-
sure ARG expression in DNA extracted from mouse and human stool samples.
Gene specific primers were designed using Primer3 (version 0.4.0) and IDT,
purchased from Sigma (St. Louis, MO, USA) (Supplementary Table 1). SYBR
Green Supermix (BioRad, Hercules, CA, USA) was used in CFX96 thermal cycler
(BioRad, Hercules, CA, USA). The samples (both mouse and human) were run in
triplicates for each gene. Ct or threshold cycle values of all ARG genes were
normalized with 16 S as internal control. 2−ΔΔct method was used to calculate the
relative fold change of the ARGs.

ELISA. Serum IL-6 level was estimated using serum collected from the mice groups
using commercially available kit from Proteintech (Rosemont, IL, USA). Serum IL-
6 of Veteran participants in this study was measured using commercially available
ELISA kit from Abcam (Boston, MA, USA). The ELISA was performed according
to the manufacturer’s protocol.

Statistical analysis and reproducibility. Analyses were performed using R v3.6.3 (1).
ARG, MGE, and OTU count data were normalized based on library size using the
“estimateSizeFactors” function from the “DESeq2” package95 with the parameters
“type= poscounts”. Normalized count data were then log transformed with the
base R function “log2”. Permutational analysis of variance (PERMANOVA) was
calculated using the “adonis” function from the package “vegan” (2) with Bray-
Curtis dissimilarity and 9999 permutations. Welch two-sample t-test was imple-
mented using the base R function “t.test” with the parameters “conf.level= 0.95,
alternative= two.sided” indicating 95% confidence level and two-tailed testing.
PCA ordinations of ARG and Taxonomy abundance data were performed using
the “rda” function from “vegan”. Procrustes analysis was performed using PCA
ordinations with the function “protest” from “vegan” with 9999 permutations.
Principle coordinate analysis (PCoA) was performed with the “pcoa” function from
the “ape” package with Bray-Curtis dissimilarity. Statistical analysis for q-RTPCR,
immunohistochemistry and ELISA was done using Prism (Graphpad, San Diego,
CA). One-way ANOVA was used for comparing between the three mice groups
and Welch’s t-test was used for comparison between the Veteran groups for sta-
tistical analysis of immunohistochemistry and ELISA. Chao1 α-diversity was cal-
culated using the “chao1” function from the “fossil” package. Correlation analyses
between α-diversity and selected biomarkers were performed using Pearson’s
correlation implemented by the base R function “cor”. All visualizations were
rendered using the “ggplot2” package unless otherwise described. For all analyses,
p < 0.05 was considered statistically significant, and data are represented as
mean ± standard error of mean or mean± standard deviation. Each figure and data
set has been provided with individual P-values for better clarity.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Microbiome and resistome sequence data that support the findings of this study have
been deposited in GenBank with the accession code: PRJNA734321 and PRJNA843121

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA843121) with the link. All data
generated or analyzed during this study are included in this published article (data
generated for this study is provided in the Supplementary Data file and public databases-
GenBank). Any other data such as certain metagenomic sequences that are not publicly
available due to space constraints are available from the corresponding author on
reasonable request.
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