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ABSTRACT OF THE DISSERTATION

Assessing characterization of large-scale groundwater quality with remote sensing

By

Aimée Christine Gibbons

Doctor of Philosophy in Earth System Science

University of California, Irvine, 2016

Professor James S. Famiglietti, Chair

NASAs Gravity Recovery and Climate Experiment (GRACE) mission measures global grav-

ity variability, which are converted into monthly groundwater storage variations in the

world’s largest watersheds. Large-scale groundwater storage variability is determined from

GRACE and supplementary data at monthly and longer timescales for regions that are

150,000 km2 and greater. Estimates of groundwater availability focus on quantity, but

methods to infer groundwater quality have not yet been developed, in part due to a lack of

spatially representative quality data. Natural contaminants dissolved in groundwater gen-

erally increase with depth due to continued dissolution of rock and soil material along flow

paths. Anthropogenic contaminants are generally concentrated near the water table due to

changes in frequency and location of recharge. These basic relationships between groundwa-

ter quality and depth provide the conceptual framework for the project research. This work

aims to characterize relationships between observed total dissolved solid (TDS) concentra-

tions and GRACE-derived subsurface storage anomalies for the High Plains aquifer in the

central United States and the Central Valley aquifer in California. The relationship between

observed water levels and contaminant concentrations are expected to vary based on physical

parameters influencing spatial and/or temporal patterns of infiltration including dominant

land use type, principle rock and soil types, and constituent. In this work, a database of pub-

licly available in situ TDS concentrations in groundwater and groundwater levels is compiled

x



for each of the study areas and assessed for simplistic preliminary relationships, and methods

of scaling point observations and large-scale gridded data are explored. Models estimating

average TDS concentrations through time as a function of in situ groundwater levels and

season are constructed and explore potential improvements by classifying models in terms

of dominant lithology and land use, and by including GRACE-derived subsurface storage

anomalies as a potential predictor. Finally, two spatial analysis approaches explore methods

of TDS characterization on a subbasin scale and TDS variability in time and space on re-

gional scales. Results of this work have implications on improving groundwater management

practices by exploring potential methods of estimating groundwater quality on regional to

global scales using remote sensing.
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Chapter 1

Background and introduction

Groundwater is an important source of freshwater. It is a primary freshwater source to 2

billion people globally (Alley et al. [2002]), provides buffering capacity to populations relying

primarily on surface water, and irrigates agriculture. Current demands on groundwater

resources are expected to increase, particularly with a growing population and freshwater

redistribution fueled by climate change (Solomon [2007], Wada et al. [2010], Gleeson et al.

[2012]). Groundwater abstractions reapplied at the surface are also prone to redistribution

by evapotranspiration (Lo and Famiglietti [2013]), providing positive feedback mechanisms

enhancing shifts in water availability given likely changes in climate.

Developed and developing countries are currently facing groundwater depletion and con-

tamination (Gleeson et al. [2011]), the two primary strains on groundwater resources (Wada

et al. [2010]). To date, groundwater availability studies conservatively consider only quantity

(Shiklomanov [2000], Vörösmarty et al. [2010], Gleeson et al. [2012]). Groundwater depletion

rates are estimated in numerous studies (Rodell and Famiglietti [2002], Rodell et al. [2009],

Wada et al. [2010], Famiglietti et al. [2011], Gleeson et al. [2012], Scanlon et al. [2012b,a],

Voss et al. [2013], Döll et al. [2014], Richey et al. [2015b], Nanteza et al. [2016]), and only

one study attempts to quantify remaining reservoir volumes (Richey et al. [2015a]). Es-

timating stress on groundwater resources accounts for availability, historically represented

by renewable water cycle fluxes (WWAP [2003]) and more recently by withdrawal statistics
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(Döll [2009], Wada et al. [2010, 2011]) or recharge flux (Richey et al. [2015b]). The recent

approaches to quantifying groundwater stress are improvements upon historic methods, but

continue to lack an explicit component of groundwater quality estimating the proportion

of storage meeting water quality criteria for the intended use. To further address global

groundwater availability, it is necessary to incorporate terms of quantity and quality that

account for potability.

1.1 Historic groundwater quality

Depending on the intended use, the quality of groundwater is nearly as important as the

quantity. This section gives a brief overview of the groundwater quality literature to provide

context to the work in the following chapters.

1.1.1 Space and time scales of historic case studies

Classic groundwater quality studies generally focus on attributing a contamination event to

a local source (e.g. Garrels and Mackenzie [1967], Todd et al. [1980], Presser and Ohlendorf

[1987], Wagner and Gorelick [1987], Deverel and Gallanthine [1989], Meisinger et al. [1991],

Alley [1993], Loftis [1996], Pebesma and De Kwaadsteniet [1997]). These studies are based on

contamination point measurements, groundwater contamination transport models, and/or

laboratory column experiments. Back-trajectories are estimated to isolate potential local

point or non-point sources of contamination, such as from land-fills or agriculture (Meisinger

et al. [1991], Kent and Landon [2013]). Studies falling under this category are generally on

local spatial scales, as collecting and analyzing samples and running computational ground-

water transport models can be expensive. While the literature in each of these fields is well

established, initial conditions and parameterization are difficult where point measurements

of groundwater quality are unavailable, limiting applicability of predictions to larger spatial

2



scales.

Basin-scale studies are important to understanding the quantity of freshwater within a wa-

tershed and can provide insight on the evolution of the water quality. Groundwater quality

studies on basin scales are able to consider all sources of recharge within the watershed and

whether the quality of recharge changes from the point of infiltration (Charles et al. [1993],

Lashkaripour et al. [2005], Lashkaripour and Ghafoori [2011], Shamsudduha et al. [2015]).

Regional-scale groundwater quality studies are rooted in national monitoring assessment

programs. National networks are generally implemented to identify sources of public health

risks and inform management practices to prevent future exposure (Pebesma and De Kwaad-

steniet [1997], Swartjes [1999], Broers and van der Grift [2004], Lashkaripour et al. [2005],

Hossain [2006], Lashkaripour and Ghafoori [2011], Shamsudduha et al. [2015]).

Beginning in the early 1990s, groundwater quality research in the US turned toward as-

sessing overall quality, as evidenced by the implementation of the National Water-Quality

Assessment (NAWQA) Program by the United States Geological Survey (USGS) in 1991

(USGS NAWQA). The NAWQA program aims to provide ”long-term consistent and com-

parable information on streams, rivers, groundwater, and aquatic systems” to help inform

water management decisions from local to national levels using standardized sampling and

analyzing protocol (Lapham et al. [1995]). The experiments in the following chapters would

not be possible without the information collected and provided publicly by the NAWQA

program.

Several studies compile data from the NAWQA program to evaluate changes in groundwater

quality on regional spatial scales (Embrey and Runkle [2006], Anning et al. [2007], McMahon

et al. [2007], McMahon and Chapelle [2008], DeSimone and Hamilton [2009], Gurdak et al.

[2009], Lindsey et al. [2009], Ayotte et al. [2011], Lindsey and Rupert [2012], Chaudhuri and

Ale [2014a]). It is challenging to obtain regularly-spaced samples over such large regions,
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let alone within a small time frame, so such studies focus on aggregate sets of observations

taken over a period of up to ten years and compare concentrations of constituents against

either established health standards or a second set of observations taken over a different

period. The median of the difference in total dissolved solid concentrations range from no

significant change to significant increases in the range of 10-50 mg/L, depending on the land

use network type and location in the Central Valley and no significant changes in the High

Plains between 1988 and 2010 (Lindsey and Rupert [2012]). The median of the difference in

chloride concentration ranges from no significant change to an increase between 1-20 mg/L

in the Central Valley and significant chloride increases from 1-20 mg/L in the High Plains

between 1988 and 2010 (Lindsey and Rupert [2012]). The median of the difference in nitrate

concentration ranges from no significant change to an increase greater than 0.5 mg/L as N

in both the Central Valley and the High Plains between 1988 and 2010 (Lindsey and Rupert

[2012]).

1.1.2 Commonly studied groundwater quality parameters

Physical measures of water quality are those that quantify overall properties without specif-

ically identifying constituent species present. Physical observations of water quality includes

temperature, pH, turbidity, total suspended solids, electrical conductivity (E. C.), dissolved

oxygen, salinity, and total dissolved solids. Parameters like temperature, pH, turbidity, and

total suspended solids are useful for indicating habitability of surface water for fish and other

macrofauna. Dissolved oxygen content is observed to determine whether an environment is

oxic or anoxic and identify reduction-oxidation (redox) conditions, important in determining

the direction of other chemical processes (e.g. denitrification or nitrification) (McMahon

and Chapelle [2008], Landon et al. [2011]). Electrical conductivity is a cost-effective means

of measuring the ionic content, and is closely linked to salinity and total dissolved solid

concentrations (Deverel and Gallanthine [1989], Letey et al. [2002], Subramani et al. [2005],

4



Chaudhuri and Ale [2014a,b]). Total dissolved solid concentrations are a measure of all par-

ticles in a volume of water, and is a commonly used metric as an indicator of salinity (Alley

[1993], Planert and Williams [1995], Loftis [1996], Anning et al. [2007], Lindsey and Rupert

[2012]).

Regional geology is the expected source of natural groundwater contaminants in a given

location. Local formations and underlying bedrock are the parent material source of natural

contaminants, which can be dissolved into groundwater over time. Elements dissolved into

groundwater related to common rock-forming materials include sodium (Na), potassium (K),

calcium (Ca), magnesium (Mg), silicon (Si), aluminum (Al), carbon (C), sulfur (S), and iron

(Fe) (Alley [1993]). Other naturally occurring elements in groundwater are of potential

concern due to toxicity in humans, including lead (Pb), arsenic (As), selenium (Se), mercury

(Hg), cadmium (Cd), nitrogen (N), sulfur (S), uranium (U), manganese (Mn), copper (Cu),

zinc (Zn), barium (Ba), and chromium (Cr) (Alley [1993], Jurgens et al. [2010]).

Arsenic is a groundwater contaminant commonly studied particularly because it is poisonous

to humans at elevated concentrations, especially over long periods of time. Groundwater

contamination by arsenic is intensely monitored in India and Bangladesh (Chatterjee et al.

[1995], Bhattacharya et al. [1997], Acharyya et al. [2000], Chowdhury et al. [2000], Fazal

et al. [2001], Hossain [2006], Shamsudduha et al. [2015]), where mass arsenic poisonings

have occurred. Arsenic can infiltrate groundwater resources through certain fertilizer and

pesticides, still used particularly in Asia. In most cases, however, arsenic is a naturally

occurring contaminant eroded from natural deposits, currently thought to originate from

pyrite oxidation triggered by lowering of the water table and/or natural reduction of oxy-

hydroxide (Fazal et al. [2001], Hossain [2006]). Naturally occurring arsenic is also present

in parts of China, Thailand, Vietnam, Mongolia, Nepal, Chile, Argentina, Mexico, and the

southwest United States (Erban et al. [2013]).

Anthropogenic contaminants are those sourced from human practices. Common anthro-
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pogenic contaminants include nitrogen, chloride, pesticides, heavy metals, and hydrocarbons

(Walker et al. [1991], Böhlke [2002], Jurgens et al. [2010], Ayotte et al. [2011], Lindsey and

Rupert [2012], Exner et al. [2014]). A common anthropogenic contaminant is nitrogen, which

generally originates from non-point sources such as fertilizer, septic systems, and atmospheric

deposition (Lindsey et al. [2009], Exner et al. [2014]). Nitrogen typically occurs in groundwa-

ter as nitrate and/or nitrite, a major component of inorganic fertilizers. Nitrate and nitrite

are small, water-soluble ions which, when applied as fertilizer, provide biologically available

nitrogen to increase crop yields. Liberal fertilizer use is practiced globally in agriculture, as

it is a relatively cost-effective investment. However, when combined with regular irrigation

increasing the frequency of recharge, the underlying groundwater is increasingly suscepti-

ble to nitrate contamination (Gurdak and Qi [2006], McMahon et al. [2007], McMahon and

Chapelle [2008], Puckett et al. [2008], Lindsey et al. [2009], Landon et al. [2011], Kent and

Landon [2013], Exner et al. [2014]).

1.1.3 Statistical tools used to describe water quality

Mapping observations of water quality is a common method of identifying potential patterns

of contamination and identifying potential sources (Loftis [1996], Pebesma and De Kwaad-

steniet [1997]). Spatial patterns of water quality are determined by spatially interpolating

available observations. The most common spatial interpolation technique is kriging. Or-

dinary and simple kriging are the most common types, where ordinary kriging assumes an

unknown mean value remains constant in unsampled locations, and simple kriging requires

the mean value is known and is stationary over the domain (Tabios and Salas [1985], Cressie

[1988, 1990]). Maps interpolated by kriging show the spatial distribution of groundwater

quality concentrations, which can be used to identify contaminant sources or processes in-

fluencing water quality (McMahon et al. [2007], Landon et al. [2011], Shamsudduha et al.

[2015]).
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Detection of trends in water quality over time requires relatively frequent sampling. Trend

detection methods and transformations for water quality concentrations are common. Selec-

tion of trend analysis techniques require familiarity with the data to select the best methods

for the intended outcome (Lettenmaier [1976], Mosteller and Tukey [1977], Tukey [1977],

Hirsch et al. [1982, 1991], Helsel and Hirsch [2002]). Transformations are applied to reshape

the distribution of values and generally are log-transformed, although again familiarity with

the data is necessary to selecting the best transformations (Lettenmaier [1976], Mosteller

and Tukey [1977], Tukey [1977], Hirsch et al. [1982, 1991], Helsel and Hirsch [2002]). In

general, non-parametric tests are implemented over parametric tests because the former do

not assume that the spread of data have a specific distribution, often the normal distri-

bution. To determine whether a potential trend through time exists, a rank correlation is

often calculated between time and constituent concentration (Hirsch et al. [1991], Broers and

van der Grift [2004], Lindsey et al. [2009], Kent and Landon [2013]). If the rank correlation

is significant, then the magnitude of the trend is estimated using a Mann-Kendall test, also

known as a Sen slope estimator (Hirsch et al. [1991], Loftis [1996], Broers and van der Grift

[2004], Landon et al. [2011], Kent and Landon [2013]).

If temporally frequent samples are not available, it is common to define two or more periods

for comparison, such as wet and dry seasons (e.g. Kent and Landon [2013], Bexfield and

Jurgens [2014]) or different decadal periods (e.g. Lindsey and Rupert [2012], Chaudhuri

and Ale [2014a], Shamsudduha et al. [2015]). Determining changes in groundwater quality

parameters between two periods of time allows for collection and analysis of samples over

larger spatial extents (Chaudhuri and Ale [2014a], Shamsudduha et al. [2015]). Potential dif-

ferences between two periods are often determined using Wilcoxon rank-sum test, a seasonal

Kendall test, or a Mann-Whitney test for median differences (Lettenmaier [1976], Hirsch

et al. [1982, 1991], Loftis [1996], Helsel and Hirsch [2002], Lindsey et al. [2009], Lindsey and

Rupert [2012]).
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1.1.4 Variables attributed to water quality

Hydrogeologic properties determine characteristics of groundwater flow which logically af-

fect groundwater quality patterns in time and space. The descriptive properties dictating

3-dimensional flow direction and velocity, such as hydraulic head gradients, porosity, specific

yield, and hydraulic conductivity, determine the spatial patterns of potential constituent

plumes and how the plume moves through the aquifer over time (Alley [1993], Fetter and

Fetter [1999], Shamsudduha et al. [2015]). The presence or absence of confining rock or

clay layers influence vertical movement within the aquifer. Geologic characteristics such

as bedrock type or presence of natural deposits determine the natural constituent species

expected due to dissolution. Hydrogeologic properties may be homogeneous or heteroge-

neous in space, determined by field surveys and tests, but a particular characteristic is often

described as a range of values or as an average value over a given region.

Recharge is an important factor affecting groundwater quality, particularly in shallow ground-

water. A well-established field of study, groundwater recharge is generally a function of

climate, geomorphology, soil properties, and vegetation (Lerner et al. [1990], de Vries and

Simmers [2002], Maxwell et al. [2016]). Natural freshwater recharge carrying contaminants

in runoff can infiltrate an aquifer at the land surface or through surface water (Deverel and

Gallanthine [1989], Lerner et al. [1990], Charles et al. [1993], de Vries and Simmers [2002],

Gurdak and Qi [2006], Shamsudduha et al. [2015]). In arid climates where irrigated land

cover is linked to soil salinization by evaporites, recharge by irrigation is a mechanism of

constituent infiltration from soils to groundwater (Swartjes [1999], de Vries and Simmers

[2002], Scanlon et al. [2005], Chaudhuri and Ale [2014a,b]).

Land use cover affects properties of recharge such as rates, frequency, and location, and

therefore mechanisms of contaminant infiltration (Walker et al. [1991], Harbor [1994], Eck-

hardt and Stackelberg [1995], de Vries and Simmers [2002], Scanlon et al. [2005]). In areas

8



of natural land cover, the rate and frequency of recharge are related to regional climate

and precipitation with infiltration related to properties of the lithology and geomorphology

(Lerner et al. [1990], de Vries and Simmers [2002]). Land use cover changes from natural to

anthropogenic uses alters properties of recharge and risk of exposure to constituents. The

type of anthropogenic land use dictates the particular constituents introduced to a system

deposited to the soil, leaving underlying groundwater reserves susceptible to contamination

with future infiltration (Böhlke [2002], Scanlon et al. [2005], Kent and Landon [2013], Exner

et al. [2014]). Paved urban land use reduces local recharge and redirects runoff with increased

risk of exposure to contaminants such as hydrocarbons. Unpaved anthropogenic land use

such as landfills and agriculture can recharge locally. Landfills can deposit chlorine, hydro-

carbons, and heavy metals (Lisk [1991]). As discussed in section 1.1.2, agricultural land use

is known to elevate concentrations of nitrate and TDS in soils and groundwater (Meisinger

et al. [1991], Swartjes [1999], Böhlke [2002], Letey et al. [2002], Gurdak and Qi [2006], Lind-

sey et al. [2009], Landon et al. [2011], Lindsey and Rupert [2012], Kent and Landon [2013],

Chaudhuri and Ale [2014b], Exner et al. [2014]).

1.2 Remote sensing and groundwater

Studies exploring remote sensing of water quality are currently limited to assessing water

color or turbidity as an indicator of surface water quality variations (e.g. Mertes et al.

[1993], Ritchie et al. [2003]). The Gravity Recovery and Climate Experiment (GRACE)

mission measures changes in terrestrial water storage from which components of storage can

be removed to give changes in groundwater storage, as described in the following sections.

The large-scale behaviors can be used to evaluate groundwater dynamics over time, including

rapid decreases in storage attributed to pumping.
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1.2.1 GRACE terrestrial water storage anomalies

GRACE, a joint mission between the United States (NASA) and Germany (DLR), is a

pair of satellites measuring time-variable gravity by orbiting Earth one after another in a

pole-ward orientation, completing one global cycle approximately once a month (Tapley et al.

[2004]). As GRACE passes over regions with larger mass, and therefore gravitational pull, the

distance between the two satellites increases as the first satellite experiences the gravitational

pull towards the surface mass before the other. The distance between them decreases when

the second satellite also experiences the gravity of the larger mass on the surface. Moving

away from the surface mass, the first satellite moves away from the surface, increasing the

distance between the twin satellites. The distance between the GRACE satellites changes

once more as the second satellite also moves away from the surface mass. By measuring the

precise distance between the two satellites, changes in global gravity can be mapped at high

vertical resolution.

The distance between the two satellites is constantly monitored by a microwave sensor,

accurate to one micron (1× 10−6m). North-south striping artifacts resulting from the pole-

ward orbit path are removed, and gravitational effects of atmospheric pressure systems and

glacial isostatic adjustments are subtracted from the time-variable gravity fields (Landerer

and Swenson [2012]). The gravity fields are then spatially smoothed by applying a Gaussian

filter with a 300 km radius in the RL05 level 3 solutions, then are inverted into mass variations

(Wahr et al. [1998], Rodell and Famiglietti [1999, 2001], Velicogna et al. [2001], Swenson and

Wahr [2002], Swenson et al. [2003], Landerer and Swenson [2012]). Orbiting at an altitude

of 450 km, the monthly mass anomalies have a 300 km horizontal resolution at the Earth’s

surface, and a vertical accuracy of approximately 1-2 cm equivalent water height.

The resulting gridded monthly GRACE mass anomalies are attributed to total terrestrial

water storage variations over land (Wahr et al. [1998], Rodell and Famiglietti [1999, 2001],
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Velicogna et al. [2001], Swenson and Wahr [2002], Swenson et al. [2003]). GRACE mea-

surements are holistic in that there is no differentiation between reservoir types (e.g. soil

moisture, surface water, snow), providing the total integrated water storage anomalies in a

column.

Because of filtering and truncation of spherical harmonics, the GRACE RL05 level 3 signal

is attenuated. The amplitude is restored by applying the accompanying gridded scale factor

to each month of storage anomalies (Landerer and Swenson [2012]). The scaling factor is

generated by quantifying the differences between the filtered GRACE product and the Com-

munity Land Model (CLM) with the same filtering applied, provided by Swenson [2012].

Leakage errors, introduced by filtering and truncation of spherical harmonics, and measure-

ment errors are both scaled to match the magnitude of scaled gridded GRACE data, with

the total error of each grid cell equal to the square root of the sum of squared errors. For

specific basins, the total error is calculated to account for correlation between neighboring

grid cells.

1.2.2 GRACE and groundwater

GRACE is used to study total water storage and groundwater storage variations in many

regions such as the Central Valley, High Plains, Northern India, Illinois, and the East African

basin (Rodell and Famiglietti [2002], Yeh et al. [2006], Strassberg et al. [2007], Rodell et al.

[2007, 2009], Strassberg et al. [2009], Famiglietti et al. [2011], Scanlon et al. [2012a,b], Voss

et al. [2013], Richey et al. [2015a,b], Nanteza et al. [2016]). Because GRACE provides

total integrated storage anomalies, groundwater anomalies are derived by subtracting the

other regionally important hydrologic storage components from a water balance, as shown

in equation 1.1 (Rodell and Famiglietti [2002]):

dS = dSurface+ dSnow + dSoil + dGroundwater (1.1)
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where d denotes anomalies, S is total terrestrial water storage, Surface is surface water stor-

age, Snow is snow water equivalent storage, Soil is soil moisture storage, and Groundwater

is groundwater storage. Surface water storage is generally the sum of all surface water such

as rivers or lakes, as well as water stored in vegetation such as tree canopies. The relevant

water storage terms vary by region. For example, ground-based groundwater level observa-

tions and modeled soil moisture are shown to match well with GRACE total water storage

estimates in the High Plains aquifer in the central United States (Strassberg et al. [2007]).

Auxiliary data are necessary to isolate groundwater storage anomalies from the GRACE

signal (Strassberg et al. [2007], Rodell et al. [2007, 2009], Strassberg et al. [2009], Famiglietti

et al. [2011], Scanlon et al. [2012b], Richey et al. [2015a,b], Nanteza et al. [2016]). When

available, in situ data are used to estimate regionally significant components of water storage

variability, as demonstrated for snow water equivalent storage in Famiglietti et al. [2011].

When a piori data are unavailable, modeled storage estimates are used, as done for soil

moisture by Famiglietti et al. [2011].

GRACE-derived groundwater depletion estimates indicate strong anthropogenic withdrawal

impacts on quantity (Rodell and Famiglietti [2002], Yeh et al. [2006], Rodell et al. [2009],

Famiglietti et al. [2011], Richey et al. [2015b]). Groundwater pumping, particularly in large

volumes, alters hydrologic properties affecting flow mechanisms (Gurdak et al. [2009], McMa-

hon et al. [2007]), which influences contaminant concentrations with depth by promoting

vertical mixing. Mixing high and low quality water can result in an overall change in av-

erage water quality, where the direction of change depends on the relative volumes and

concentrations of constituents of each water parcel.

Quantifying groundwater reserves has poignant implications for sustainable use and man-

agement; however such studies have not addressed freshwater availability as a factor of both

quantity and quality. In the following work, the holistic perspective on groundwater quantity

variations of GRACE are used with local point measurements of groundwater contaminant
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Although often overlooked, 
ground water is increasingly 

important to all of our lives. Ground 
water is the primary source of 
drinking water to approximately half 
the Nation’s population (134 million 
people), provides about 40 percent 
of the irrigation water essential for 
the Nation’s agriculture, sustains the 
flow of most streams and rivers, and 
helps maintain a variety of aquatic 
ecosystems. Moreover, the near-term 
trend in ground-water withdrawals 
for public supply and irrigation is 
continuing to rise (Hutson and others, 
2004). As the Nation’s principal reserve 
of freshwater, ground water requires 
periodic inventories and ongoing 
evaluations to ensure the resource 
is sufficient to meet the numerous 
needs of the Nation. This fact sheet 
provides a description of the U.S. 
Geological Survey (USGS) Ground-
Water Resources Program and presents 
highlights of ongoing science activities.

What is the Ground-Water 
Resources Program?
      The Ground-Water Resources 

Program is the principal USGS 
program for assessing the availability of 
ground-water resources at the regional 
and national scale (fig. 1). The Ground-
Water Resources Program evolved from 
the Regional Aquifer-System Analysis 
(RASA) Program. RASA studies 
(1987–95) primarily were designed to 
quantify ground-water budgets for the 
Nation’s principal aquifers, including 
depletions within those aquifers. The 
Ground-Water Resources Program 
updates and builds upon the RASA 
studies. Data collection and process-
oriented ground-water science are used 

to assess the long-term availability 
of ground-water supplies while also 
addressing the environmental effects 
of ground-water development on land 
and surface-water resources. Studies 
currently funded by the Ground-
Water Resources Program conduct 
regionally integrated ground-water 
assessments that fill the information 
gap between national efforts, such 
as the previous RASA studies, and 
local-scale efforts, conducted by the 
USGS Cooperative Water Program in 
conjunction with local partners. The 
scope and complexity of changing 
ground-water issues along with funding 
realities require integration of efforts 
both within the USGS and with other 
Federal, State, and local governments, 
as well as the private sector. Priorities 
for the Ground-Water Resources 
Program include regional and national 
overviews, scientific assessments of 

critical ground-water issues, field 
methods and model development, 
and improved access to fundamental 
ground-water data.

The Ground-Water Resources Program provides objective scientific information and understanding  
needed to assess and assure the availability of the Nation’s ground-water resources.

Goals

• Identify, describe, and make available 
fundamental information regarding 
ground-water availability in the Nation’s 
major aquifer systems, and evaluate this 
information over time.

• Characterize natural and human 
factors controlling recharge, storage, and 
discharge in the Nation’s major aquifer 
systems, and improve understanding of 
these processes.

• Develop and test new tools and field 
methods for the analysis of ground-water 
flow systems and the interactions these 
systems have with surface water.
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Figure 1. Locations of Ground-Water Resources Program studies in the United States, 2005.

Figure 1.1: Map showing locations of case study areas in the US: California’s Central
Valley and the High Plains from Dennehy [2005].

concentrations to improve understanding of relationships between quantity and quality vari-

ations. To understand and develop these relationships, two case studies in the US serve as

the focus: the High Plains aquifer and the California Central Valley aquifer, shown in Figure

1.1. These aquifers rank among the worlds largest, each having a contributing watershed

area of > 150, 000km2, important to reducing error of GRACE dS, and are both monitored

on a local level by the USGS in coordination with relevant state agencies. National and state

programs described in section 2.2.1 provide groundwater quality data and depth to water

data for each aquifer, shown in Figure 2.1.

1.3 Hydrogeologic settings of study aquifers

1.3.1 High Plains

The High Plains aquifer lies under eight states in the central US, shown in Figure 1.1,

including Wyoming, South Dakota, Nebraska, Kansas, Colorado, Oklahoma, New Mexico,

and Texas. It extends from southern South Dakota in the north through the Texas panhandle

in the south, and is bounded by the Rocky Mountains to the west, and extends into Nebraska,

western Kansas, and the Oklahoma panhandle to the east (Whitehead [1996], Miller and
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Appel [1997]). The elevation is highest in the west near the Rockies around 7,800 feet, and

declines eastward to about 1,100 feet (Dennehy [2000]).

The High Plains has a dry continental semi-arid climate with frequent winds, low humidity,

high evaporation rates, and moderate precipitation (Dennehy [2000], McMahon et al. [2007]).

The mean annual air temperature is lowest in the northwest at approximately 5◦C, and

increases moving south to 18◦C (Thornton et al. [1997], McMahon et al. [2007]). Precipitation

on the High Plains is the main source of recharge to the aquifer (Whitehead [1996], Miller and

Appel [1997], McGuire [2009], McGuire et al. [2012], McGuire [2014]). Precipitation reaches a

maximum during late spring and early summer monsoons, with a mean annual precipitation

reaching approximately 16 inches in the west, and 28 inches in the east (Dennehy [2000],

McMahon et al. [2007], Gurdak et al. [2009], McGuire et al. [2012]). The aquifer discharges

to surface water streams and to the atmosphere by evapotranspiration where the water table

is near the land surface (Dennehy [2000]).

The principal geologic feature is the Ogallala formation underlying 80% of the High Plains

(Dennehy [2000]). Some older formations are present in portions of the northern High Plains,

the Arikaree and Brule, and some younger deposits are present on top of or adjacent to

the Ogallala, namely alluvial deposits along river systems and the Nebraska Sand Hills

(Whitehead [1996], Miller and Appel [1997], Dennehy [2000], McMahon et al. [2007], Qi and

Christenson [2010]). The aquifer is generally unconfined, unconsolidated sand and gravel

with a regional flow system, with an average specific yield of 0.15 (Whitehead [1996], Miller

and Appel [1997], Dennehy [2000], McGuire [2009]).

Groundwater generally flows from west to east following the elevation gradient (Dennehy

[2000], McMahon et al. [2007]). Groundwater levels have declined in some areas since pre-

development (circa 1950), mostly occurring within the central and southern portions of

the High Plains (McMahon et al. [2007], McGuire [2009], McGuire et al. [2012], McGuire

[2014]). Pumping for irrigation, beginning around 1950, continue to reduce groundwater
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storage (McGuire [2009], Qi and Christenson [2010], McGuire et al. [2012], McGuire [2014]).

Contamination of recently recharged groundwater in the High Plains is generally attributed

to interactions with rock material, redox reactions, mixing with water from other sources,

and widespread irrigated cropland (McMahon et al. [2007]). Contaminants commonly stud-

ied in the High Plains aquifer include nitrate, dissolved solids, and pesticides, with high

dissolved solid concentrations associated largely with bedrock types and in irrigated alluvial

valleys, and nitrate and pesticides associated with agricultural land use (Whittemore [1995],

Mehta et al. [2000], Whittemore et al. [2000], McMahon et al. [2007], Gurdak et al. [2009],

Lindsey and Rupert [2012]).

The High Plains aquifer is the principal freshwater source in the region and supports one of

the largest agricultural sectors in the country (Dennehy [2000]). Groundwater is the primary

water source for approximately 80% of the 2 million people living within the High Plains

boundaries (Dennehy [2000], McMahon et al. [2007]). Rangeland and agriculture are the

dominant land cover uses in the area (McMahon et al. [2007], Homer et al. [2015]), with

livestock being predominantly cattle and pigs (McMahon et al. [2007]). The region produces

wheat, sorghum, and soybeans, and has recently increased production of corn, hay/alfalfa,

cotton, and peanuts (McMahon et al. [2007]).

1.3.2 Central Valley

California’s Central Valley aquifer extends through the middle of the state, as shown in

Figure 1.1. It is almost entirely surrounded by mountain ranges with the Sierra Nevada

Range to the east, the Coastal Ranges to the west, the Cascade and Klamath ranges to the

north, and the Tehachapi Mountains to the south. The Sierra Nevada and Cascade ranges

are primarily igneous formations, and the Coastal Ranges are marine sedimentary formations

(Planert and Williams [1995]).
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In the arid to semi-arid hot climate, surface water resources can be limited in the Cen-

tral Valley due to low precipitation and relatively high reference evapotranspiration (Faunt

[2009]). Mean annual precipitation between 1968 and 2003 was 11-16.8 inches, with a median

of 13 inches (Faunt [2009]), falling mostly between November and April in average years.

Before the 1960s, precipitation only accounted for a small portion of recharge, with streams

carrying snow melt from the Sierra Nevada in the eastern valley and Cascade and Klamath

mountains in the northern valley being the primary source of aquifer recharge (Planert and

Williams [1995]). Currently, water users in the Valley rely heavily on a complex system of

surface water diversions and Sierra Nevada melt water. In dry years, the underlying aquifer

is pumped to meet the agricultural and urban needs (Faunt [2009], Scanlon et al. [2012b],

Lo and Famiglietti [2013]). The water table is in steady decline as a result of decades of

virtually unrestricted groundwater pumping (Faunt [2009], Famiglietti et al. [2011], Scanlon

et al. [2012b]).

The valley-fill aquifer has a regional flow system and sits on top of the subsurface continuation

of the Sierra Nevada, which has a slight slope westward (Faunt [2009]). The sediment fill

originates from marine deposits, continental deposits, and deltaic deposits generally from

the Sierra Nevada and Coastal ranges (Farrar and Bertoldi [1988], Faunt [2009]). Alluvial

fans are present on all sides of the valley, with larger stream channels along the eastern

boundary (Faunt [2009]). Approximately the top one hundred meters of the Central Valley

aquifer is heterogeneous and unconfined, providing the primary source of freshwater, with

conditions becoming increasingly confined with increasing depth due to the presence of clay

beds (Planert and Williams [1995], Faunt [2009]). Saline water is present under the freshwater

zone, but can be found at shallower depths due to upward migration of deeper water, estuary

water trapped during sedimentation, or concentration of evaporites (Farrar and Bertoldi

[1988], Faunt [2009]).

Groundwater contaminants from natural sources in the Central Valley include total dissolved
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solids, chloride, boron, arsenic, and selenium (Deverel and Gallanthine [1989], Dubrovsky

et al. [1993], Lindsey and Rupert [2012]). TDS concentrations in Central Valley groundwater

can originate in streams, eroded from the parent material of the surrounding mountains.

The igneous formations to the north and east have relatively low concentrations of TDS,

particularly compared to the marine sedimentary formations to the west. TDS generally

increases with depth, but is expected to be elevated in deeper wells of the southern and

western portion of the San Joaquin Valley (Planert and Williams [1995]). Boron in the

Central Valley is a result of leaching from rocks and soils containing borate and borosilicate

minerals. Arsenic and selenium occur naturally in the San Joaquin Valley (Presser and

Ohlendorf [1987], Deverel and Gallanthine [1989], Presser and Swain [1990], Dubrovsky et al.

[1993], Welch et al. [2000], Letey et al. [2002]), and have been shown to be increasing in these

areas (Presser and Swain [1990], Rezaie-Boroon and Fisher [2012]).

The Central Valley aquifer provides an alternative freshwater source in dry years when

surface water deliveries cannot meet the needs of the increasing 3.8 million population and

a large agricultural sector (Faunt [2009]). With a mostly flat valley floor and abundant

sunshine, Central Valley farms produce a majority of the fruits and vegetables in the US

with an estimated value of $17 billion per year (Faunt [2009]). Over 250 crop types are grown

in the Central Valley, with the dominant types being cereal grains, hay, cotton, tomatoes,

vegetables, citrus and tree fruits, nuts, and grapes (Faunt [2009]).

1.4 Research objectives and hypotheses

There is a strong literature history assessing groundwater quality in the US and abroad

(e.g. Alley [1993], Litke [2001], McMahon et al. [2007], Gurdak et al. [2009], Lindsey and

Rupert [2012], Shamsudduha et al. [2015]). The literature identifies point and non-point

contaminant sources and processes influencing groundwater quality variability such as local
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flow paths and mixing effects of pumping large volumes of groundwater (Charles et al. [1993],

Lashkaripour et al. [2005], Schoups et al. [2005], Lashkaripour and Ghafoori [2011], Kent and

Landon [2013], Bexfield and Jurgens [2014], Exner et al. [2014], Shamsudduha et al. [2015]).

However, such classic studies are limited to relatively small spatial scales and/or step-wise

changes of well clusters, with the intent to identify contaminant sources specific to one area.

The work presented here aims to characterize groundwater quality on large spatial scales,

and assess the role of water storage fluctuations on a more consistent temporal scale.

Total dissolved solid concentrations (TDS) are examined in this study for several reasons,

many of which stem from the fact that it is a physical parameter. TDS is relatively easy

to measure (e.g. compared to measuring total nitrogen), and is therefore expected to have

a relatively large number of in situ observations. A sample of known volume is filtered

for coarse material, dried at 180◦C, and weighed as a dry mass per unit volume, typically

reported in mg/L. TDS has a relatively straightforward mass balance, as there is a lack of

potential physical, chemical, or biological transformations, making the methods developed

here applicable to other constituents. The sources used in this work publishing TDS ob-

servations also publish measurements of other constituents of interest. TDS can encompass

regionally-specific groundwater contaminants, as it is a physical parameter, but the relevance

of TDS concentrations is not aquifer-specific, and so the methods detailed in this work can

be applied to other regions.

The objective of this work is to explore paths to characterizing large-scale TDS concentra-

tions. We first detail database compilation of in situ TDS concentrations and groundwater

levels, explore approaches to scaling point and gridded data, and assess preliminary relation-

ships between TDS and groundwater levels. Models to predict average TDS concentrations

through time are constructed as a function of groundwater levels and season. We hypothesize

that constructing models by classification of dominant lithology and dominant land use add

characteristics of groundwater recharge which improve prediction of TDS, and that including
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GRACE-derived subsurface storage anomalies as a potential explanatory variable improves

accuracy of TDS predictions. Lastly, two methods of spatial analysis are explored, one to

characterize TDS on subbasin scales, and the other to characterize regional TDS variability

in space and time. We hypothesize that spatial patterns of TDS on subbasin and regional

scales can be related to spatial patterns of GRACE-derived subsurface storage anomalies

over the GRACE period. Methods of characterizing TDS on large scales developed in the

following studies lay the groundwork for characterizing large-scale groundwater quality us-

ing regionally important constituents, and ultimately predicting fluctuations in groundwater

quality using remote sensing.
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Chapter 2

Database compilation and evaluating scaling

approaches of well data

2.1 Introduction

Groundwater resources provide the primary source of freshwater for domestic and agricul-

tural use for over 2 billion people globally (Alley et al. [2002]). The demand on groundwater

is likely to increase with a growing population. Climate change, groundwater contamina-

tion, and natural variability in groundwater quality with depth further complicate projected

demands on groundwater. Climate change is driving a redistribution of precipitation, a pri-

mary source of groundwater recharge, from mid-latitudes to high and low latitudes (Solomon

[2007]), which will likely increase dependence on groundwater sources as surface water re-

sources retreat in arid and semi-arid regions. Groundwater contamination by both natural

and anthropogenic sources are the subjects of many studies (see section 1.1), but typically

apply to local spatial scales and relatively short time periods. The heavy reliance on ground-

water reserves and the complex nature of groundwater quality point to the importance of

characterizing groundwater quantity and quality.

NASAs Gravity Recovery and Climate Experiment (GRACE) mission monitors monthly

groundwater storage variations in some of the world’s largest surface and groundwater
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basins (Rodell and Famiglietti [2002], Swenson and Wahr [2006], Landerer and Swenson

[2012], Swenson [2012]). Large-scale groundwater storage variations can be determined from

GRACE and supplementary data at monthly and longer timescales for regions that are

150,000 km2 and greater. Estimates of groundwater availability focus on quantity (Rodell

and Famiglietti [2002], Rodell et al. [2009], Famiglietti et al. [2011], Gleeson et al. [2012],

Scanlon et al. [2012a,b], Voss et al. [2013], Döll et al. [2014], Richey et al. [2015a,b]), but

methods to infer groundwater quality are not yet developed, in part due to a lack of spatially

representative quality data.

Groundwater quality observations are not as readily available as groundwater level observa-

tions. The limited availability of samples is likely rooted in the costs associated with field

campaigns and sample analysis. Groundwater generally moves slowly relative to surface

water, and so it is thought that groundwater quality changes also occur slowly. Where ob-

servations are available, the necessary metadata attributing location and date of sampling

are not always provided and therefore cannot be incorporated in this analysis. To maximize

the available groundwater quality data, we focus on total dissolved solid concentrations.

The total dissolved solid concentration (TDS) of a sample is the mass of dried material from

a unit of volume, typically reported in milligrams per liter (mg/L). TDS is a commonly

measured physical parameter used as a general description of water quality. The mass

balance of TDS is relatively straightforward because there are inherently no chemical or

physical changes. The significance of TDS is not regionally specific and is therefore an ideal

test parameter for developing methods to characterize large-scale groundwater quality.

The High Plains aquifer has a total area of 450,000 km2 under portions of eight states in

the center of the United States, stretching from the southern edge of South Dakota to the

panhandle of Texas. The High Plains aquifer is a primary freshwater source to a large

agricultural sector as well as most rural and urban inhabitants (McMahon et al. [2007]).

The Central Valley watershed has a total area of 160,000 km2, which includes the underlying
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aquifer having a total area of 52, 000km2 (Faunt [2009], Famiglietti et al. [2011]). It supplies

water for irrigation to a highly productive agricultural industry, and to a growing urban

population (Faunt [2009]). The High Plains and Central Valley aquifers are among the

largest and most heavily studied aquifers in the US. The large areal extents and relatively

rich recorded histories make the two aquifers prime candidates for this work.

Satellite and regional model output products are improving and becoming unique tools to

assess many earth system processes, particularly in the face of climate change (Solomon

[2007], Taylor et al. [2012], Stocker et al. [2013]). Remote sensing and modeling products

such as GRACE are invaluable, but output accuracy must be validated with real-world

observations (Strassberg et al. [2007, 2009], Henry et al. [2011], Scanlon et al. [2012b]).

Bridging spatial scales between in situ point observations and large-scale regional data is

increasingly necessary as the latter becomes more readily available.

This chapter details database compilation, discusses scaling approaches, specifically using

point observations and gridded products, and explores preliminary assessment of the com-

piled in situ database.

2.2 Data sources and pre-processing

2.2.1 In situ groundwater data

A major obstacle to modeling large-scale groundwater quality is the limited availability of

spatially and temporally consistent in situ observations, as discussed in section 1.1. Spa-

tially consistent data is necessary to ensure the entire study area is represented, and tempo-

rally consistent data is necessary to avoid signal aliasing. This section details data sources,

database compilation, and pre-processing of ground-based observations to ensure quality

control across sources and remove potential duplicate records while maintaining as much
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spatial and temporal representation as possible in each study area.

Total dissolved solid concentrations and groundwater level observation sources include the

USGS National Water Quality Assessment (NAWQA) Program (USGS NAWQA), the Cal-

ifornia Groundwater Ambient Monitoring Assessment (GAMA) program (California State

Water Resources Control Board/Division of Water Quality), and the USGS Historical Water

Quality Data for the High Plains Regional Ground-Water Study Area (Litke [2001]). Non-

detect TDS values are included and prescribed to be the half of the detection limit of 10

mg/L (Hirsch et al. [1991], Lapham et al. [1995]). Supplementary groundwater levels are

sourced from the USGS National Water Information System (NWIS) (USGS) and from the

California Statewide Groundwater Elevation Monitoring (CASGEM) Program courtesy of

Brian F. Thomas (California Department of Water Resources [a]). All data are downloadable

online with the exception of Litke [2001], which is available on CD-ROM upon request.

Study area Variable No. sites No. observ. Date range

Central Valley
TDS 18,356 69,390 May 1923 - Jan 2015
WL 40,127 1,230,770 May 1916 - Feb 2015

High Plains
TDS 11,155 18,130 Nov 1931 - May 2015
WL 35,736 1,656,695 Jan 1905 - Aug 2015

Table 2.1: Summary of compiled database for the Central Valley and High Plains study
areas. Note that some sites provide both TDS and water level (WL) data.

All in situ records include associated relevant metadata, namely well location coordinates,

date of observation, site identification number, and measurement units. Data and metadata

contain both numeric and alphanumeric information, downloaded as text or csv files. Some

sources provide site metadata in a separate file, associated to individual observations by an

alphanumeric site identification number. One row corresponds to one observation, and each

column corresponds to the measurement and its metadata.

For each of the above in situ data sources, the relevant file is imported and associated with

relevant metadata. Because the files are not strictly numeric, each file is read in by line.

Observations are discarded if there is no value recorded for TDS and/or water level, the
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measurement date is incomplete, or if outside the study area of interest. Each observation

is associated with site metadata by a site identification number, if provided in separate files.

If necessary, units are converted to be uniform across data sources (e.g. site coordinates to

decimal degrees, observation dates to a uniform string order format, TDS to mg/L, water

levels to cm below the land surface). This filtered data for each source contains the following

columns: site name, site identification number, observation date, latitude, longitude, water

level value, and TDS value. Placeholders are used where a water level or TDS value exists

without the other. For each study area, all data from each source is combined.
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Figure 2.1: Locations of in situ well sites and bounding polygon defining area of interest
in the Central Valley and High Plains. Sites providing supplementary groundwater levels
are denoted in blue and sites providing total dissolved solid concentrations in red. Note that
relative sizes of study areas are not to scale.

In each study area, the raw data from all sources are compiled preserving variable columns

and row indices, and checking that the data format and reporting convention within each

column are uniform. Water level observations are converted from feet below the land surface

to centimeters below the land surface. Note that water levels are most frequently reported

as positive values below the surface in the data sources above, so larger values denote deeper

in situ water levels and smaller values denote shallower water levels. Sample date strings

are converted into date numbers. Original date strings are maintained in a new column for
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(a) Central Valley WL (b) High Plains WL

(c) Central Valley TDS (d) High Plains TDS

Figure 2.2: Complete raw record of in situ groundwater levels (WL) in m below the
land surface (2.2(a), 2.2(b)) and total dissolved solid concentrations (TDS) in mg/L (2.2(c),
2.2(d)) for the Central Valley (2.2(a), 2.2(c)) and the High Plains (2.2(b), 2.2(d)). Number
of observations per calendar month for each variable are denoted in gray.

reference.

To define spatial boundaries for each study area, the smallest possible area enclosing the

maximum number of well sites is determined by connecting as few vertices as possible into

a convex polygon, as shown in Figure 2.1. Vertices are defined in decimal coordinates. Data

falling outside of the polygon are removed if necessary. The convex polygon coordinates are

stored for later use.

Unique pairs of well site identification number and observation date are identified to remove

multiple or duplicate data. If there are more site identification, date pairs than unique
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observation values, and the site coordinates are identical or in very close proximity (< 1 km),

the mean of the values is taken. We then check for remaining multiples of site identification

number, date pairs that have coordinates reported to a different number of decimal places,

generally a minimum of 5. These cases are assumed to be taken from the same location,

and are averaged. Finally, the observation dates are grouped by calendar month. Again,

the original dates are preserved but set aside for reference if necessary. The resulting TDS

and water level observations and associated metadata are referred to as the raw data set,

summarized in Table 2.1 and locations shown in Figure 2.1.

2.2.2 GRACE and auxiliary data

GRACE CSR RL05 terrestrial water storage anomalies (dS) are obtained from NASA’s

TELLUS portal (Swenson and Wahr [2006], Landerer and Swenson [2012], Swenson [2012]).

As described in section 1.2.1, the level 3 GRACE data is a 1◦×1◦ gridded product of vertically

integrated total water storage anomalies and accompanying CLM4 300 km scaling factor,

scaled measurement error, and scaled leakage error. The scaling factor is applied to restore

amplitude to the attenuated storage anomaly signal resulting from filtering and processing

of gridded data (Landerer and Swenson [2012]). The Central Valley and High Plains aquifer

study areas are each isolated from the global data by masking out data outside of the relevant

study area using longitude and latitude coordinates. Values are reported in centimeters water

equivalent height unless otherwise noted.

Gridded dS values are converted to subsurface storage anomalies (dSubsurface) using a

rearranged water balance:

dSubsurface = dS − (dRR + dCan+ dSWE) (2.1)

where dRR is routed river storage anomalies, dCan is canopy storage anomalies, and dSWE
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is snow water equivalent anomalies. Snow water equivalent and canopy storage are from the

GLDAS suite model outputs, specifically CLM, VIC, and NOAH 1◦ × 1◦ monthly products.

Monthly routed river storage from CLM4 at 0.5◦× 0.5◦ resolution, courtesy of Sasha Richey

and MinHui Lo, are linearly interpolated to 1◦ × 1◦ resolution to match GRACE and other

GLDAS model outputs (Rodell et al. [2007], Perry and Niemann [2007], Scanlon et al. [2012b],

Richey et al. [2015a,b]). Each storage variable from each model is converted from monthly

absolute storage to monthly anomalies. Storage anomalies are then averaged across models

for each variable, and used to calculate subsurface storage anomalies as in equation 2.1. Note

that dSubsurface includes both groundwater and soil moisture storage anomalies.

The error of dSubsurface is equal to the square root of the sum of squared errors for

each term in equation 2.1. The error for dS includes the scaled measurement errors, scaled

leakage errors, and the error associated with correlation between neighboring grid cells for

each masked basin (Swenson [2012], Richey et al. [2015a]). The error for routed river storage

is assumed to be 50% (Richey et al. [2015a]). Canopy storage and snow water equivalent

errors are calculated as the standard deviation of storage anomalies of the GLDAS suite

(Richey et al. [2015a]).

Soil moisture is not readily measured in the US. Observations that are available generally

exist on short-term and local spatial scales (Perry and Niemann [2007], Strassberg et al.

[2009], Longuevergne et al. [2010]) and therefore are not representative at the GRACE scale.

Previous studies removing soil moisture storage from GRACE often utilize modeled soil

moisture (Rodell et al. [2009], Tiwari et al. [2009], Famiglietti et al. [2011], Henry et al.

[2011], Scanlon et al. [2012b]). In this work, soil moisture storage is not explicitly removed

to maintain a conservative estimate of subsurface storage anomalies because of the large

increase in error associated with modeled soil moisture variability within and across models

(Richey et al. [2015a,b]).

27



2.3 Scaling approaches

(a) Central Valley average raw WL (b) High Plains average raw WL

(c) Central Valley average raw TDS (d) High Plains average raw TDS

Figure 2.3: Monthly average of raw groundwater levels (WL) in cm below the land surface
(2.3(a), 2.3(b)) and TDS in mg/L (2.3(c), 2.3(d)) for the Central Valley (left) and High
Plains (right).

In this section we evaluate select common scaling approaches. The goal is to have both

point observations and relatively coarse grid cells on a common spatial scale, necessary

for combined analyses. The focus of this evaluation is on monthly point observations and

monthly uniform 1◦× 1◦ grids matching the GRACE product resolution, but can be applied

at other temporal and/or spatial scales.

Note that kriging of point data is intentionally excluded from this analysis. Accurate analy-

sis and interpretation of kriging requires additional rigorous assumptions of the in situ data

be met, depending on the type of kriging method. The most common versions are ordi-
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nary and simple kriging. To accurately interpolate by kriging, the observed process must

have some degree of stationarity (Tabios and Salas [1985], Cressie [1988, 1990]). Ordinary

kriging assumes an unknown mean value is constant over the unsampled domain (Cressie

[1988]). Simple kriging requires a known mean and assumes it to be stationary over the

domain (Cressie [1988, 1990]). Groundwater TDS behavior on large-scale domains is not

well-known, making it difficult to accurately interpret results of TDS kriging. In excluding

kriging approaches, we aim to preserve the observed TDS recorded dynamics.

To gain some insight into the raw average monthly values, the mean of all raw observations

within each calendar month is calculated to generate Figure 2.3. Note that this averaging

does not consider any spatial areas or weighting. The averages are susceptible to outliers or

extreme values, but can be used as a guideline for comparing basin averages from the spatial

interpolation approaches.

2.3.1 Averaging points within 1◦ × 1◦ grids

The first approach to represent a larger area with point observations is to average values

falling into each grid cell as defined by the GRACE spatial resolution. This is straightforward

to implement, and requires no further treatment of GRACE data. In each study area, ground-

based water levels and TDS within a 1◦ × 1◦ grid cell are compiled into monthly maps. All

values of TDS and water levels are averaged within each GRACE 1◦ × 1◦ grid cell for each

calendar month. Groundwater constituent sampling at each well site, and therefore within

a grid cell, is often temporally inconsistent for periods exceeding 2-3 months. To avoid data

processing artifacts, interpolations to estimate a continuous monthly time series for point

data are not performed in this relatively coarse upscaling.

The simplistic averaging method does not account for the spatial distribution of well sites in

a grid cell for a given month with respect to the grid cell center or to other wells. Because

29



(a) (b)

(c) (d)

Figure 2.4: Examples showing in situ observations averaged within 1◦ × 1◦ grid cells
for December 2014. TDS observations in mg/L are shown for the Central Valley (top).
Groundwater level observations in cm below the land surface are shown for the High Plains
(bottom).

the GRACE level 3 product processing employs Gaussian smoothing, giving more weight to

in situ values nearer the grid cell center may improve agreement. An observation near the

perimeter of a grid cell bears the same weight to that grid cell value as one at the center,

with no impact on values to the nearest neighboring grid cell value. In reality, wells within

or across grid cells may or may not be hydrologically connected. However, wells clustered

in close proximity (few to tens of kilometers) can share a hydrologic link or at a minimum

environmental setting characteristics.

Figure 2.4 shows two examples of one month (December 2014) of in situ observations and

the resulting map when averaging by 1◦ × 1◦ grid cells, with TDS in the Central Valley and

groundwater levels in the High Plains. Note that the example shown for Central Valley TDS

during the GRACE period has one of the largest numbers of in situ observations within the
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(a) Central Valley WL (b) High Plains WL

(c) Central Valley TDS (d) High Plains TDS

Figure 2.5: Monthly area-weighted basin average time series of groundwater levels in cm
below the land surface (2.5(a), 2.5(b)) and TDS in mg/L (2.5(c), 2.5(d)) averaged within
1◦ × 1◦ grid cells for the Central Valley (left) and High Plains (right).

compiled database (see Figure 2.2). The areal extent is generally preserved in both areas,

as each monthly grid cell value is defined as the average of any well locations falling within

said grid cell. However, the inconsistency of point observations from month to month and

in spatial extent mean that this simple upscale approach is vulnerable to applying a single

value to an entire grid cell, which can easily go unnoticed if not explicitly checked. The

monthly basin average time series of upscaled groundwater levels and TDS for this method

are noisy (Figure 2.5), and the relative magnitudes of peaks do not match the raw basin

averages particularly well, likely due to the inconsistency of in situ observations in space

and time.

This approach to upscaling is crude and susceptible to attributing a small number of values

to the larger pixel resolution, particularly if ground-based observations are sparse in space

and/or time. While the spatial extent is generally preserved in this upscaling method, the

accurate representation of observed groundwater quality dynamic changes and associated
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uncertainty is not likely preserved.

2.3.2 Linear interpolation to 1◦ × 1◦ grids

(a) Central Valley WL (b) High Plains WL

(c) Central Valley TDS (d) High Plains TDS

Figure 2.6: Monthly area-weighted basin average time series of groundwater levels in cm
below the land surface (2.6(a), 2.6(b)) and TDS in mg/L (2.6(c), 2.6(d)) using linear inter-
polation for the Central Valley (left) and High Plains (right).

The linear interpolation approach is perhaps the most common method of scaling between

different grid resolutions (e.g. Helsel and Hirsch [2002], Rodell et al. [2007], Perry and

Niemann [2007], Scanlon et al. [2012b], Harris et al. [2014], Richey et al. [2015a,b]). First, a

uniform grid domain defining the query points is created to match the 1◦×1◦ GRACE domain

for the area of interest. Next, the well coordinates and data values (TDS or water level) of

raw point observations are used to calculate an interpolant surface at each time step. The

interpolant surface is then evaluated at the query points for each month, producing monthly

gridded products of TDS and groundwater levels.
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(a) Observed TDS, Dec. 2014. (b) Linear interpolation. (c) Inverse distance weighting.

Figure 2.7: Locations of TDS point observations for December 2014 in the Central Valley
(2.7(a)) upscaled to 1◦ × 1◦ grids by linear interpolation (2.7(b)), and by inverse distance
weighting (2.7(c)). TDS values are indicated by color in mg/L. Note the coordinate axes
and color bar apply to all panels.

2.3.3 Inverse distance weighting interpolation to 1◦ × 1◦ grids

Inverse distance weighting is another common interpolation method (e.g. Richey et al. [2016],

Sahoo et al. [2016], Thomas et al. [2016]) that does just what the name suggests: weights

observations by proximity to the desired interpolation point. The weighting function is equal

to the reciprocal of the distance, d, between a known point, xi, and the query point, x, raised

to a power parameter, p, for ui observations, as shown for one dimension in equations 2.2

and 2.3. More weight is given to observations closer to the interpolated point for values of p

larger than the number of dimensions. In this analysis, 3 spatial dimensions and one temporal

dimension are considered, thus a conservative value of p = 5 is applied. Large values of p

produce an interpolated surface increasingly towards Thiessen polygons (Teegavarapu and

Chandramouli [2005], Chang et al. [2006]), described in section 2.3.4.

u(x) =
Σ(wi × ui)

Σwi
(2.2)
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(a) Central Valley WL (b) High Plains WL

(c) Central Valley TDS (d) High Plains TDS

Figure 2.8: Monthly area-weighted basin average time series of groundwater levels in cm
below the land surface (2.8(a), 2.8(b)) and TDS in mg/L (2.8(c), 2.8(d)) using inverse
distance weighting interpolation for the Central Valley (left) and High Plains (right).

wi =
1

d(x, xi)p
(2.3)

Similar to the linear interpolation approach, a query grid domain is first defined to match the

1◦ × 1◦ GRACE domain for the area of interest. Next, the raw point observations occurring

at each monthly time step are identified, and the data values are weighted based on the

proximity of each well site to the query points. A fixed radius of 0.5◦ is used in this analysis

to reduce the influence of values outside the bounds of each 1◦×1◦ grid cell. Inverse distance

weighting of points to a 1◦ × 1◦ grid performs better than linear interpolation, retaining

much of the areal extent, variability, and spatial pattern of the point observations, as shown

for one month of TDS in the Central Valley in Figure 2.7 with basin averages for TDS and

groundwater levels shown in Figure 2.8 for the Central Valley and High Plains.
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Figure 2.9: All well locations and Thiessen polygons in the Central Valley and High Plains.
TDS well locations used to construct polygons are denoted by green markers. Note that
relative sizes of study areas are not to scale.

2.3.4 Thiessen polygons

Thiessen polygons are a version of nearest-neighbor interpolation where the relative distances

between a set of points determine delineated areas (Thiessen [1911]). Each dividing line is

equidistant to two points, and each node is equidistant to 3 or more points. The partitioned

areas can then be represented by the respective points. By name, Thiessen polygons are spe-

cific to meteorology and geophysics, but the delineations are also known as voronoi polygons,

Dirichlet tessellations, and Wigner Seitz unit cells in other applications.

Thiessen polygons are constructed using locations of wells providing TDS observations at

relative temporal consistency (Thiessen [1911], Rodell et al. [2007], Houborg et al. [2012]).

From the full raw data for each study area, unique well sites are identified by site identifi-

cation number and longitude and latitude coordinates. In instances of two sites having the

same coordinates but different identification code names, the shorter of the two records is

discarded. The number of observations through time for each location is determined. Each

variable column is then distributed into a matrix organized by unique well site and date

of observation. Three matrices of equal size are created, one storing values of each in situ
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variable of interest (TDS and water level) and one storing the associated observation dates,

where rows indicate a unique well site and columns indicate different observation dates.

Placeholders are used where necessary. Each site row is sorted by observation date. Multiple

observations at a well site within a calendar month are averaged, if necessary. A two-column

matrix is created with rows corresponding to unique well sites storing longitude and latitude

coordinates.

(a) Central Valley WL (b) High Plains WL

(c) Central Valley TDS (d) High Plains TDS

Figure 2.10: Full monthly basin-average record of in situ groundwater levels (WL) in cm
below the land surface and total dissolved solid concentrations (TDS) in mg/L in the Central
Valley and High Plains calculated using Thiessen polygons.

Well sites providing at least 3 months of TDS observations and 4 or fewer months between

successive TDS observations are identified. Sites with 3 or more observations are consid-

ered to represent active wells and thus more likely to represent long-term characteristics of

groundwater constituent concentrations (Rodell et al. [2007], Kent and Landon [2013]). Sites

with 4 or fewer consecutively missing months of observations are considered to represent sea-

sonal variability (Rodell et al. [2007], Houborg et al. [2012]). At well sites meeting the above

criteria, monthly TDS values are interpolated linearly up to 3 months (3 values), and are

identified as locations around which Thiessen polygons are constructed. Exterior polygons
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(a) (b)

(c) (d)

Figure 2.11: Examples showing gridded GRACE subsurface storage anomalies (cm) re-
distributed into constructed polygons in the Central Valley and High Plains for December
2013.

are bounded by the lines connecting the convex vertices defining the area of interest, as

described in section 2.2.1. The vertices of each constructed Thiessen polygon are stored and

saved.

The area of individual Thiessen polygons are calculated as a fraction of the total enclosed

area of interest. The total area of the study region is calculated using the surface area of

the polygon vertices on a unit sphere with a radius equal to the average radius of the Earth,

6, 371km. The total areas are 96, 489km2 and 750, 429km2 for the Central Valley and High

Plains, respectively. The area of individual Thiessen polygons are then calculated in km2

using the fractional areas of the total. The values of the total area and individual polygon

areas are stored and saved.

Constructed Thiessen polygons are chosen to be static through time to maintain spatial
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(a) Central Valley dS. (b) High Plains dS.

(c) Central Valley dSubsurface. (d) High Plains dSubsurface.

Figure 2.12: Monthly basin-averages of GRACE-derived dS and dSubsurface in cm cal-
culated by 1◦× 1◦ grids (blue) and by polygons (red) in the Central Valley and High Plains.
Errors are indicated in gray.

representation of each study area in its entirety, whether or not a value is reported in each

polygon at every time step. If internal polygons change based on available observations for

each month, only fractions of each study area would be represented at a time, and it would

be difficult to draw robust conclusions on areas of constantly varying locations and spatial

extents.

TDS data from selected Thiessen polygon sites are temporally interpolated to fill in data

for periods of up to 3 months. To avoid losing areal extent and drawing results from too

small a database, all well records with at least 4 months of observations and any length

of missing observation months supplement Thiessen polygon monthly averages, but are not

interpolated through time. Well sites and constructed Thiessen polygons for the High Plains

and the Central Valley are shown in Figure 2.9, where red and light blue markers indicate

TDS and water level wells meeting the selection criteria, and green and dark blue markers

indicate wells providing supplementary TDS and water level data.
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Gridded GRACE terrestrial water storage and GRACE-derived subsurface storage anomalies

are spatially redistributed into Thiessen polygons for comparison with in situ observations in

the High Plains and the Central Valley study regions. The monthly GRACE-derived value

of a polygon is calculated as an area-weighted average of the overlapping 1◦×1◦ grid cells, as

shown in Figure 2.11. Area-weighted basin average time series calculated using the polygon

redistribution approach closely match time series calculated using the conventional gridded

averaging approach in both study areas, as shown in Figure 2.12. The close match of the

different averaging approaches indicates that the GRACE signal is not apparently perturbed

in polygon redistribution processing on a basin scale.

2.4 Discussion

2.4.1 Database compilation and preliminary assessment

The ground-based observational records in the Central Valley and High Plains study areas

begin long before the GRACE period. Data recorded before the satellite launch in 2002

cannot be used in an analysis with GRACE. However, historical data can provide context

for the long-term TDS and groundwater levels in each study region. Ultimately, the goal

of this work is to characterize TDS in groundwater as a function of explanatory variables

such that average TDS can be predicted given a set of known variables. Although it is most

likely that TDS variability cannot be explained by only one or two variables, namely time

and groundwater levels, this section explores the potential of the compiled raw database to

explain observed TDS.

Raw TDS and water level data in both the Central Valley (Figure 2.2(a), 2.2(c)) and the

High Plains (Figure 2.2(b), 2.2(d)) begin roughly in the 1930s. The raw time series of TDS

and water levels are noisy in both study areas, and it is difficult to determine whether the
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apparent patterns are truly representative, or if they are an artifact of regular sampling

schedules. Observation counts are low at the beginning of each record, and so are not likely

to be representative of large areal extents. The number of observations increase by the 1950s.

The number of observations makes the raw data difficult to read, but the trends of the

extremes are identifiable. From the beginning of the record in the Central Valley until

roughly the 1960s, the deepest groundwater levels become deeper. The California State

Water Project began surface water deliveries to the Central Valley for irrigation in 1960,

which alleviated reliance on groundwater. California experienced record flooding late in 1955

to early 1956, which is reflected in the groundwater level record shown in Figure 2.2(a). TDS

in the Central Valley appears to be highest in the 2000s, reaching larger maximum observed

values than in the previous 60 years of the record, perhaps pointing to the salinization of

soil in the San Joaquin Valley (Dubrovsky et al. [1993]). In the High Plains, in Figure

2.2(b), groundwater levels appear to steadily deepen for the majority of the observed record,

particularly from 1954 to the end of the record in 2014. TDS in the High Plains appear to

have high values throughout the record until the early 1990s, however it is unclear if TDS

truly declines during this period or if it is an artifact of the number of TDS observations,

which drop off drastically in the 2000s (Figure 2.2(d)).

The scatter plots in Figure 2.13 are to specifically examine potential relationships between

raw TDS concentrations and groundwater levels. Note that only observations that have both

a water level and TDS value are included, which total to 885 in the Central Valley between

December 1949 and July 2014, and 1,527 in the High Plains between November 1931 and

May 2015. If a linear increase in TDS with increasing depth is expected, as in a natural

setting, then TDS is expected to increase as groundwater levels deepen. However, there

is no such linearity in either Figure 2.13(a) or 2.13(b). The wide range of TDS values in

shallow groundwater suggests loading at the surface for both regions, indicative of fertilizer

application (McMahon et al. [2007]). There is no apparent long-term trend in the relationship
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Figure 2.13: Scatter plots of raw TDS (mg/L) versus groundwater level (m below surface)
for the Central Valley and High Plains. Colors denote year of observation. Note the difference
in the y-axes.

between TDS and groundwater levels in either study area, as there is no discernible pattern

by year, denoted by colors in Figure 2.13.

Preliminary regression on the raw ground-based data is performed to determine if any sim-

plistic relationships can be quantified. While linear relationships are not expected, simple

regressions may indicate directions of potential trends. To investigate simple relationships

over the entire length of each in situ record, a linear regression is performed where time, as

the number of days since January 0, 0000, is the only independent variable and TDS and

water level are each a response variable. Then a linear regression is performed using ground-

water levels as the sole predictor of TDS concentrations. As is often the case in regression,

intercept values do not always carry physical meaning, but can not be excluded without

meaningful justification.

In the Central Valley, groundwater levels became shallower on average over the full record, as

denoted by the negative slope in equation 2.4. As a reminder, larger values of groundwater

levels indicate deeper below the land surface. Although it is clear in Figure 2.2(a) that the

deepest observations of groundwater levels get deeper until about 1960, there appears to be
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some recovery beginning in the 1980s. The number of observations before 1980 are fewer

than those after 1980, effectively making the average water level response after 1980 carry

more weight in this simplistic regression. TDS concentration increases with time, having a

positive slope associated with the time component, as shown in equation 2.5. Again, the

larger number of observations in the more recent past are effectively weighted over the earlier

portions of the record with fewer observations, and the extreme values are larger for the end

of the record (Figure 2.2(c)).

WLCV = −0.0394t+ 3.0658e4 (2.4)

TDSCV = 0.0481t− 3.3903e4 (2.5)

In the High Plains, the positive slope in equation 2.6 suggests groundwater levels deepened

on average over the full record, albeit small. As previously discussed for Figure 2.2(b), the

extreme water levels appear to steadily deepen beginning in the mid-1950s. The positive

TDS slope with time in equation 2.7 suggests a very small increase in concentration over the

full record.

WLHP = 0.0749t− 5.2065e4 (2.6)

TDSHP = 0.0022t− 962.0253 (2.7)

Raw TDS is estimated as a function of raw groundwater levels. Note again that only ob-

servations providing a value for both TDS and water level can be used here. The raw TDS
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values are regressed using raw water levels as the predictor, shown in equations 2.8 and

2.9 for the Central Valley and High Plains. The respective Pearson’s correlation values,

R, of -0.1584 and -0.0356 are small and further support the hypothesis that groundwater

levels alone can not explain the variability of TDS, as expected. The negative slope values

of groundwater levels support the scatter plots in Figure 2.13 suggesting TDS loading in

shallow groundwater.

TDSCV = −0.0674WLCV + 608.6928 (2.8)

TDSHP = −0.0103WLHP + 690.4019 (2.9)

Monthly box-and-whisker plots of the raw data in Figure 2.14(a) and 2.14(c) suggest seasonal

cycles of groundwater levels. In the High Plains, median groundwater levels gradually shallow

during the summer monsoon months from March to October, as shown by smaller values in

Figure 2.14(c). This is expected, as the summer monsoon precipitation is the main source of

recharge to the aquifer (McMahon et al. [2007]). However, there is no apparent seasonality

of TDS in Figure 2.14(d), nor is there a suggestion that TDS is directly influenced by the

groundwater level seasonal cycle.

In the Central Valley, median groundwater levels beneath the surface become shallower be-

tween March and October, as denoted in Figure 2.14(a). While counter-intuitive for an

arid/semi-arid climate characterized by warm and dry summers, the timing of this seasonal-

ity likely reflects the availability of surface water from spring snow melt and deliveries to the

Central Valley. Snow melt from the Sierra Nevada mountains runs into the Valley through

natural river systems beginning in March or April (Miller et al. [2003]). Surface water de-

liveries via concrete-lined aqueducts generally peak in volume between June and August
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(d) High Plains TDS

Figure 2.14: Quartiles of natural log of raw in situ groundwater levels (WL) in cm below
the surface and total dissolved solid concentrations (TDS) in mg/L grouped by calendar
month. The median of each month is denoted by the red line in the middle of each box,
with the top and bottom of each box indicating the 25th and 75th percentiles, respectively.
Values more than 1.5 times the interquartile range are denoted by red markers.

and decline sharply in September and October (California Department of Water Resources

[b]). California water laws currently determine surface water allocation volumes based on

use in the previous year, essentially requiring end users to use as much of their allotment as

possible each year to ensure a comparable amount in the future (Shupe et al. [1989]). When

surface water is readily available during the spring and summer months, users in the Central

Valley rely less on groundwater. When surface deliveries decline in late summer and fall, a

period also characterized by relatively low precipitation, users turn to groundwater to meet

water needs. As in the High Plains, there is no apparent seasonal cycle of TDS concentra-

tions in the Central Valley or indication that TDS is directly related to the seasonality of

groundwater levels.
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The in situ dataset compiled here provides a long-term picture of total dissolved solid con-

centrations in groundwater in the Central Valley and High Plains aquifers. Preliminary

exploratory data analysis suggests a long-term decline in groundwater levels in the Central

Valley (Figure 2.2(a)) and a long-term slight recovery in the High Plains (Figure 2.2(b)).

Seasonality of raw groundwater level data are subtle without further noise reduction, but

do indicate responses to surface water deliveries and/or precipitation (Figures 2.14(a) and

2.14(c)). Total dissolved solid observations are much more limited in number, and the vari-

ability is not as easily explained by known surface water processes. Preliminary analysis

suggests a long-term increase in groundwater TDS over the full record in both study areas

(Figures 2.2(c) and 2.2(d)), but there is no apparent seasonality or direct response to fluctua-

tions in groundwater levels because both systems are likely well-mixed rather than stratified

as expected in a natural system (Figures 2.14(b) and 2.14(d), equations 2.8 and 2.9). As ex-

pected, TDS concentrations can not be characterized by time and groundwater levels alone,

particularly in regions with high agricultural productivity that may be susceptible to surface

loading potentially from fertilizer use (Figure 2.13).

2.4.2 Spatial scaling

In both the Central Valley and High Plains, the magnitude of average water level depth is

dampened using linear interpolation and inverse distance weighting compared to the Thiessen

polygons. The dampening is likely due to the area weighting of the linearly interpolated

basin time series. It is expected that the magnitude of area weighted average values differ

from the rough raw monthly average, as the latter has no consideration of areas. More

importantly, patterns of average groundwater levels over time appear to be represented by

linear interpolation, inverse distance weighting, and Thiessen polygon scaling approaches.

The long-term patterns in groundwater levels seen in the raw data for both study areas

(Figure 2.2(a), 2.2(b)) are identifiable in the basin averages for each method. The Kendall’s
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tau rank correlation values are calculated for each monthly basin average against the raw

monthly average to compare how well the patterns are captured by each method, shown in

Table 2.4.2. In both locations, inverse distance weighting results in the highest correlation,

closely followed by Thiessen polygon scaling, with linear interpolation having the lowest

correlation for groundwater levels. The large number of groundwater level observations,

particularly at the end of each record in both basins is an obvious advantage to all scaling

approaches. Groundwater level observations in both study areas are an order of magnitude

or two larger than the TDS counterparts.

As with groundwater levels, the relative magnitudes of TDS within each basin are dampened

compared to the raw monthly averages. The overall patterns of the raw data are not reflected

in the linear interpolation for either study area likely due to too few observations for accurate

spatial representation in a 1◦× 1◦ grid cell, with tau correlations of 0.2755 and 0.1599 in the

Central Valley and High Plains, respectively. Average TDS patterns are better captured by

inverse distance weighting and Thiessen polygon approaches. In the High Plains, inverse dis-

tance weighting results in only slightly larger correlation values than the Thiessen polygons,

at 0.3330 versus 0.3160. It is worth noting that the end of the High Plains raw TDS record

becomes sparse in the early 2000s, which is reflected in the polygon basin average but not in

the inverse distance weighting. In the Central Valley, the Thiessen polygon method results

in a very slightly larger rank correlation of 0.4492 compared to inverse distance weighting

at 0.4452. The relative sizes of TDS concentrations by Thiessen polygons appear to more

closely match the raw monthly average than inverse distance weighting, such as the increase

between 1984 and 1994 relative to the increase between 2004 and 2014. Inverse distance

weighting is also slightly noisier in the Central Valley than Thiessen polygons, for example

during the period of relatively low concentrations between 1994 and 2004.
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Study area Variable Linear IDW Thiessen

Central Valley
TDS 0.2755 0.4453 0.4492

WL 0.5806 0.6359 0.6100

High Plains
TDS 0.1599 0.3330 0.3160

WL 0.5947 0.6409 0.6347

Table 2.2: Kendall’s Tau rank correlations of monthly raw mean values against area
weighted basin averages calculated by linear interpolation, inverse distance weighting, and
Thiessen polygon scaling approaches. All values are statistically significant at the 1% level.

Linear interpolation of points to 1◦× 1◦ grid cells does not perform well compared to inverse

distance weighting interpolation. The example in Figure 2.7(a) shows observed TDS in

December 2014, a month with relatively large sample size and spatial extent of TDS, reaching

from approximately 35.5◦ N to over 40◦ N, and from −119◦ W to over −122◦ W. After linear

interpolation, the original areal extent is reduced to only three 1◦ × 1◦ grid cells between

36.5◦ to 39.5◦ and −118.5◦ to −121.5◦. The variability of TDS values is dampened and the

pattern of values is misconstrued using linear interpolation. In the example shown in Figure

2.7(a) for the Central Valley, in situ point values range from approximately 200 mg/L in

the northern and southern most locations to 2,000 mg/L around the middle-west ( −121.3◦

W, 37.75◦ N), with one observation reaching over 3,000 mg/L. Linear interpolation reduces

the range of values for December 2014 to be between roughly 250 mg/L and 1,250 mg/L at

best. The pattern of raw TDS values for this particular month show a general increase in

TDS from the northeastern valley boundary towards the southwestern boundary which is

reflected by the inverse distance weighting pattern, whereas the linearly interpolated pattern

instead suggests TDS increases towards the northwest.

Inverse distance weighting is the most successful approach to spatially scaling points to 1◦×1◦

grid cells. Taking into account the proximity of point observations to the desired grid cell
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query point is clearly advantageous to preserving as much of the original point information

as possible. Unlike linear interpolation, the inverse distance weighted interpolation grid cells

match the spatial extent of the point observation locations as well as maintaining an accurate

representation of the observed spatial pattern (Figure 2.7).

(a) Central Valley WL. (b) High Plains WL.

(c) Central Valley TDS. (d) High Plains TDS.

Figure 2.15: Percent of total area represented at each monthly time step by linear inter-
polation, inverse distance weighting, and Thiessen polygon scaling approaches.

Thiessen polygons constructed around selected TDS well sites are temporally static to force

consistent areal representation of each region. As with scaling to 1◦ × 1◦ grid cells, months

with no observations in a polygon do occur. Individual polygons are represented by monthly

time series, providing insight to average TDS concentrations in groundwater and average

groundwater levels based on all data available for each month.

Applying constructed Thiessen polygons to the compiled database can be used to identify

patterns of groundwater levels and TDS concentrations. For example, Figure 2.16 shows

the median TDS concentration for individual polygons in each study area. Sub-regions
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with higher median TDS can be identified and potentially attributed to a specific event or

phenomenon, such as the soil salinization in the San Joaquin Valley in the southern half of

the Central Valley (Dubrovsky et al. [1993]).

(a) Central Valley (b) High Plains

Figure 2.16: Median TDS (mg/L) by Thiessen polygon for the Central Valley and High
Plains.

Individual Thiessen polygons can be used to study ground-based observations for smaller

areas. In most cases, individual polygons are smaller than 1◦ × 1◦ grid cells, the latter of

which are on too large a scale to have meaningful implications from a local water municipality

standpoint. Polygons constructed here represent spatial scales closer to cities or counties

and may be a useful local groundwater management tool. For example, the monthly average

groundwater level and TDS concentration for a polygon can be generated to study the long-

term record.

2.5 Conclusions

Although imperfect, lacking comprehensive metadata such as screened well depth and hy-

drogeologic formation, the compiled data set is as complete a compilation of TDS in ground-

water as is publicly available from several national and state agencies all following the same
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sampling protocol. Steps are taken to ensure duplicate information is removed, and that

all information across sources is reported in uniform format or units. This database is the

basis from which we aim to characterize responses to various hydroclimatic conditions (e.g.

droughts, wet periods, land use).

The long-term in situ data set provides context of large-scale TDS concentrations in ground-

water and groundwater levels leading up to and during the GRACE period in the Central

Valley and High Plains, but using GRACE to characterize TDS likely requires supplemental

hydroclimatic and/or hydrogeological information. Future work using data from the planned

GRACE follow-on mission (GRACE-FO) could potentially provide additional records nec-

essary to characterize long-term TDS responses to groundwater variability.

Of the scaling approaches attempted, the inverse distance weighting and Thiessen polygons

methods are best able to represent the variability, spatial extent, and pattern of available

in situ observations. TDS patterns and variability are best represented by these two spa-

tial interpolation methods, suggesting the observed TDS dynamics are likely preserved. To

characterize large-scale TDS, the two following chapters will focus on using Thiessen poly-

gons and inverse distance weighting to bridge the disparity of spatial resolutions of in situ

observations and 1◦ × 1◦ GRACE grid cells.
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Chapter 3

Lithology and land use regime models using

GRACE time-variable gravity data

3.1 Introduction

California’s Central Valley aquifer extends through the middle of the state bounded by

mountain ranges. In the arid/semi-arid climate, surface water resources can be limited

due to low precipitation, a median of 13 inches between 1968 and 2003, which generally

falls between October and March (Faunt [2009]). Water users in the Valley rely heavily on a

complex system of surface water diversions and Sierra Nevada melt water controlled by local,

state, and federal institutions. In dry years, the underlying aquifer is pumped to meet the

agricultural and urban needs. The water table is in steady decline as a result of decades of

virtually unrestricted groundwater pumping (Faunt [2009], Famiglietti et al. [2011], Scanlon

et al. [2012b]).

The High Plains aquifer lies under 8 states in the central US. Precipitation reaches a max-

imum during late spring and early summer monsoons, with a mean annual precipitation

reaching approximately 16 inches in the West, and 28 inches in the East (McMahon et al.

[2007], Gurdak et al. [2009], McGuire et al. [2012]). Beginning around 1950, groundwater

pumping for irrigation reduced storage and saturated thickness in the High Plains (Rodell
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and Famiglietti [2002], Strassberg et al. [2007], McGuire et al. [2012]).

Agriculture production in both study areas rely on groundwater as a source for irrigation

(Rodell and Famiglietti [2002], Strassberg et al. [2007], Faunt [2009], Famiglietti et al. [2011],

Scanlon et al. [2012b], McGuire et al. [2012]). While studies have investigated instances of

groundwater contamination in the Central Valley (Lindsey and Rupert [2012]) and the High

Plains (McMahon et al. [2007], Gurdak et al. [2009], Lindsey and Rupert [2012], McGuire

et al. [2012]), it is currently unclear if or how the decline of the water table affects the quality

of water produced by the aquifer. The quality of freshwater produced has implications on

the accessibility and cost of use, should treatment be necessary.

A common metric to assess freshwater quality is the total dissolved solid concentration.

Total dissolved solid concentrations (TDS) are relatively easy to measure (e.g. compared to

measuring total nitrogen), and therefore expected to have a relatively large number of in

situ observations. A sample of known volume is filtered for coarse material, dried at 180◦C,

and weighed as a dry mass per unit volume, typically reported in mg/L. Because there are

no physical or chemical transformations, TDS has a relatively straightforward mass balance

making the methods developed here a potential template to apply to other constituents.

TDS can encompass regionally-specific groundwater contaminants, but the relevance of TDS

concentrations is not aquifer-specific, and so the methods detailed in this work can be applied

to other regions.

In order to use point in situ observations and relatively coarse 1◦× 1◦ gridded GRACE data

in one analysis, the spatial resolution disparity must be addressed. Thiesesn polygons are a

nearest-neighbor weighting method for defining areas of interest, as described in the previous

chapter (Thiessen [1911], section 2.3.4). In an attempt to keep processing errors low for in

situ observations, criteria are defined for selecting well sites around which Thiessen polygons

are constructed. The constructed polygons are considered to be units representative of an

area larger than point observations and smaller than 1◦ × 1◦ grid cells.
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Lithology and land use cover affect properties of groundwater recharge, and therefore mech-

anisms of constituent infiltration. Lithology acts as a measure of texture affecting recharge

rates as porosity and specific retention in the soil matrix (e.g. clay versus sand). Land

use cover types also affect rates and frequencies of recharge (Charles et al. [1993]), and can

indicate whether anthropogenic constituents should be anticipated (e.g. grassland versus

developed). Data maps of lithology and land use cover are available at relatively high spa-

tial resolutions, but are generally a snapshot in time. We hypothesize using lithology and

land use cover types, physical characteristics controlling recharge and likely contaminant

infiltration, to define categories is useful for comparing differences in the average effects on

recharge of constituents to groundwater.

Collecting and measuring data in situ can be expensive and time consuming, and it is dif-

ficult to accurately represent large spatial extents. Recent groundwater availability studies

estimate large-scale aquifer depletion rates and aquifer stress using monthly water stor-

age variations from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission

(Famiglietti et al. [2011], Scanlon et al. [2012a], Richey et al. [2015a,b]). To further evaluate

available groundwater resources, assessing potability of groundwater is necessary. This is

especially true when assessing groundwater stress (Richey et al. [2015b]) which accounts for

availability. In Richey et al. [2015b], availability is represented by groundwater recharge flux.

In reality, availability is a function of the recharge flux and groundwater storage of freshwa-

ter that meets water quality criteria for its proposed use. We hypothesize that GRACE as

an additional predictor variable significantly improves models characterizing average TDS

concentrations in groundwater on relatively large spatial scales.
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3.2 Data

3.2.1 In situ water level, total dissolved solid observations

In situ water level and total dissolved solid (TDS) observations are compiled from well

records in the Central Valley and the High Plains study area, as described in section 2.2.1.

In the Central Valley, water level below the land surface and TDS observations are compiled

from the USGS National Water Quality Assessment (NAWQA) Program and California’s

Department of Water Resources Groundwater Ambient Monitoring Assessment (GAMA)

program. In the High Plains, in situ observations are compiled from the USGS National

Water Quality Assessment (NAWQA) Program and the USGS Historical Water Quality

Data for the High Plains Regional Ground-Water Study Area (Litke [2001]). In both study

areas, supplementary water levels are compiled from the USGS National Water Information

System (NWIS).

Water level records are more readily available in both space and time than TDS records in

the Central Valley and High Plains study areas. In general, more TDS data are available in

the Central Valley than in the High Plains, especially during the GRACE period.

3.2.2 GIS maps: Lithology and land cover

Conterminous US geology classification maps are available in digitized form (Ludington et al.

[2007], Stoeser et al. [2005]), compiled by state by the USGS Mineral Resources Program

(http : //minerals.usgs.gov/). The digitized maps have spatial resolutions ranging from

1:100,000 to 1:1,000,000, based on the resolution of the original map. Information regarding

geologic formations and parent material are useful to identifying expected natural constituent

species dissolved in groundwater. However, TDS encompasses all dissolved material natural

and anthropogenic. Thus the intended use of digitized geologic maps in this work focus on

54



identifying the dominant lithology. The dominant lithology type describes physical charac-

teristics of the rock unit in an area, such as texture and grain size, which have implications

on groundwater recharge rates and therefore infiltration of constituents.

The USGS National Land Cover Database (NLCD) provides land cover maps at 30 meter

spatial resolution for 2001, 2006, and 2011 (Homer et al. [2015]). The NLCD maps provide

the spatial extent and distribution of 16 discrete land cover categories over the contiguous

US. For the purposes of this work, only 2011 is used. The 16 categories are consolidated to

9 broader groups: water and ice, developed, barren, forest, shrub and scrub, grassland and

herbaceous, pasture and hay, cultivated crops, and wetlands.

3.2.3 GRACE and auxiliary data

Gridded GRACE CSR RL05 terrestrial water storage anomalies (dS) are obtained from

NASA’s TELLUS portal (Rodell and Famiglietti [2002], Swenson and Wahr [2006], Landerer

and Swenson [2012], Swenson [2012]) and processed as in section 2.2.2. Subsurface storage

anomalies (dSubsurface) are defined as the sum of soil moisture and groundwater storage

anomalies (Richey et al. [2015a,b]), derived from total water storage anomalies by subtracting

routed river, canopy, and snow water equivalent storage anomalies from modeled output

(see section 2.2.2). Gridded subsurface storage anomalies are redistributed into constructed

Thiessen polygons as described in section 2.3.4 (see Figures 2.11, 2.12).

Specific yield is the ratio of the volume of water drained by gravity (Vg) to the total volume of

water (Vtotal) in porous media, and is related to soil porosity (n) and specific retention (Sr), as

in equation (3.1). Specific yield can be used to convert between groundwater storage changes

(∆GWS) and water table changes (∆WT ) over a known areal extent (A). Described further

in section 3.3.3, dSubsurface is divided by specific yield. Maps of specific yield produced

55



by USGS studies are available online (Faunt [2009], McGuire et al. [2012]).

Sy =
Vg
Vtotal

= n− Sr (3.1)

∆GWS = A× Sy ×∆WT (3.2)

3.3 Methods

3.3.1 In situ point observations

As described in sections 2.2.1 and 2.3.4, compiled well data are processed by well site co-

ordinate pair and code identification name. Well sites providing TDS data with 4 or more

collective months of observations, and 3 or fewer consecutive months of absent observations

are selected to construct temporally static Thiessen polygons, shown in Figure 2.9. Well

sites having 4 or more collective months of observations are considered to represent active

wells and thus more likely to represent long-term characteristics of groundwater constituent

concentrations. Sites having 3 or fewer consecutive months of absent observations are con-

sidered to represent seasonal variability (Rodell et al. [2007]). Sites with fewer than 4 months

of observations and/or 3 or more consecutively missing months of observations are used to

supplement monthly polygon time series.

Monthly water level and TDS time series are calculated for each Thiessen polygon by aver-

aging all in situ observations occurring within each calendar month. If no observations in a

month are available in a polygon, the break in the record is reflected in that polygon time

series as a missing value. Area weighted average timeseries for the Central Valley and High

Plains are shown in Figure 2.10.
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The in situ TDS data is the smallest subset of the compiled database (see Table 2.1).

Preliminary work used all available TDS observations to construct models. However, using

all available data for model construction creates an issue of model validation. The lack of

independent data for model validation makes it difficult to assess the ability of each model

to predict TDS given new predictor variable values. Instead of using all available TDS data

to construct each model, a Monte Carlo cross validation sub-sampling is implemented to

improve understanding of model variability.

Training and validation subsets are created from the matrix of in situ observations organized

by well site. The training subset is selected as 75% of all observation time indexes, TDS and

water level, by generating random integers from one to the maximum observation-holding

index. The validation subset is defined as the remaining 25% of in situ observation values.

Thiessen polygon and basin averages are calculated as described in section 2.3.4 for the

training and validation subsets separately. Each model construction proceeds as described

in section 3.3.4 using only the training subset. The validation subset polygon averages of

water levels are then used as ”new” predictor values, and the predicted TDS values from

each model are evaluated against the validation TDS subset using summary statistics. Monte

Carlo re-sampling into training and validation subsets is performed 1,000 times in each study

area.

3.3.2 Lithology, land cover regimes

GIS data maps of lithology (Ludington et al. [2007], Stoeser et al. [2005]), land cover (Homer

et al. [2015]), and specific yield (Faunt [2009], McGuire et al. [2012]) for both study areas

are considered to be one snapshot in time. Using ArcGIS software, all spatial data maps

are partitioned into constructed polygons. A histogram of categorical data is generated and

used to calculate dominant lithology, dominant land cover, and average specific yield for

each polygon.
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Regime number Lithology Land use
1 Alluvium WaterIceSnow
2 Alluvium Developed
3 Alluvium Barren
4 Alluvium Forest
5 Alluvium ScrubShrub
6 Alluvium GrasslandHerbaceous
7 Alluvium PastureHay
8 Alluvium Crops
9 Alluvium Wetlands
10 Andesite Developed
11 Andesite Barren
12 Andesite Forest
13 Andesite ScrubShrub
14 Dune sand WaterIceSnow
15 Dune sand Developed
16 Dune sand Barren
17 Dune sand PastureHay
18 Dune sand Crops
19 Dune sand Wetlands
20 Gabbro Developed
21 Gabbro Forest
22 Gabbro ScrubShrub
23 Granodiorite Developed
24 Granodiorite Forest
25 Granodiorite ScrubShrub
26 Intermediate volcanic rock Forest
27 Mafic volcanic rock Developed
28 Mafic volcanic rock Forest
29 Mudstone Developed
30 Mudstone Forest
31 Mudstone ScrubShrub
32 Peridotite Developed
33 Peridotite Forest
34 Rhyolite Developed
35 Sandstone Developed
36 Sandstone Barren
37 Sandstone Forest
38 Sandstone ScrubShrub
39 Sandstone GrasslandHerbaceous
40 Sandstone Crops
41 Schist Developed
42 Schist Forest
43 Schist ScrubShrub
44 Slate Forest
45 water Developed
46 water Forest

Table 3.1: Dominant lithology, dominant land use cover, and associated regime number for
the Central Valley. 58



Regime number Lithology Land use
1 Arkose Developed
2 Arkose GrasslandHerbaceous
3 Clay or mud Developed
4 Clay or mud Forest
5 Clay or mud ScrubShrub
6 Clay or mud GrasslandHerbaceous
7 Clay or mud Wetlands
8 Fine grained mixed clastic rock Developed
9 Gravel WaterIceSnow
10 Gravel Developed
11 Gravel Forest
12 Gravel GrasslandHerbaceous
13 Gravel Wetlands
14 Limestone Developed
15 Limestone GrasslandHerbaceous
16 Mudstone Developed
17 Mudstone Forest
18 Mudstone GrasslandHerbaceous
19 Mudstone Wetlands
20 Sand Developed
21 Sand ScrubShrub
22 Sand GrasslandHerbaceous
23 Sandstone Developed
24 Sandstone Forest
25 Sandstone ScrubShrub
26 Sandstone GrasslandHerbaceous
27 Sandstone Wetlands
28 Shale Developed
29 Shale Forest
30 Shale ScrubShrub
31 Shale GrasslandHerbaceous
32 Silt Developed
33 Silt GrasslandHerbaceous
34 Siltstone GrasslandHerbaceous
35 water GrasslandHerbaceous

Table 3.2: Dominant lithology, dominant land use cover, and associated regime number for
the High Plains.
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(a) Central Valley. (b) High Plains.

Figure 3.1: Dominant lithology type for Thiessen polygons in the Central Valley and High
Plains. Note that number types do not translate between study areas.

As discussed in section 3.2.2, only the land use cover map for 2011 is considered here. Note

that the dominant land cover for the large majority of polygons by area in both the Central

Valley and High Plains did not change between the previous map years (2001 and 2006).

Dominant lithology and dominant land cover pairs are used to categorize polygons into

regimes with similar physical characteristics potentially affecting recharge rates and ground-

water quality. Maps of lithology and land cover are partitioned into constructed polygons

in ArcGIS in both the Central Valley and High Plains. A histogram of all lithology and

land cover classifications is generated for each polygon, and the dominant lithology and land

cover types are determined. In cases where there are two or more types of lithology or land

use considered dominant for a particular polygon, if any of the neighboring polygons share

a dominant categorization type, the common type is chosen as dominant for the polygon

of interest. Unique pairs of dominant lithology and dominant land cover are considered a

lithology, land cover regime. As mentioned in section 3.2.2, land cover types are consolidated

from 16 to 9 categories, substantially reducing the maximum possible number of dominant

lithology, land cover pairs. The classification process results in 46 total regimes in the Cen-

tral Valley (Figure 3.3(a), Table 3.1) and 35 regimes in the High Plains (Figure 3.3(b), Table
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(a) Central Valley. (b) High Plains.

Figure 3.2: Dominant land use cover for Thiessen polygons in the Central Valley and High
Plains.

3.2).

The spatial distribution of dominant lithology and dominant land cover are expected to

generally occur in specific areas, due to the presence of large geologic formations or the

prominence of a particular land cover. Lithology, land cover regimes are not restricted by

location in that all polygons within a particular regime are not required to be adjacent, as

shown in Figure (3.3). Lithology, land cover regimes do not necessarily translate between

the Central Valley and High Plains study areas (Tables 3.1, 3.2). While the 9 land cover

categorizations are easily translated across regions, it is not surprising that dominant lithol-

ogy types are mostly different. Only 6 regimes occur in both areas: mudstone/developed,

mudstone/forest, sandstone/developed, sandstone/forest, sandstone/shrub and scrub, sand-

stone/grassland and herbaceous, and sandstone/grassland.

Average time series for each lithology, land cover regime are calculated as an area-weighted

average of regime polygons for each month.

61



-123 -122.5 -122 -121.5 -121 -120.5 -120 -119.5 -119 -118.5
34

35

36

37

38

39

40

41

42
Dominant lithology, land use regimes

R
eg

im
e 

nu
m

be
r

5

10

15

20

25

30

35

40

45

(a) Central Valley

-106 -105 -104 -103 -102 -101 -100 -99 -98 -97 -96
30

32

34

36

38

40

42

44
Dominant lithology, land use regimes

Re
gi

m
e 

nu
m

be
r

5

10

15

20

25

30

35

(b) High Plains

Figure 3.3: Locations of lithology, land use regimes by Thiessen polygon in the Central
Valley and High Plains. Note that numbers assigned to regimes do not translate across study
regions.

3.3.3 GRACE and specific yield

As described in section 2.3.4, monthly GRACE dSubsurface grids are redistributed into

Thiessen polygons, and the average specific yield is applied to incorporate a measure of

porosity. For each polygon, an area-weighted average of the overlapping 1◦ × 1◦ grid cells

is calculated for each month. Basin averaged subsurface storage anomalies calculated by

Thiessen polygon closely match gridded basin average anomalies (Figure 2.12), suggesting

GRACE storage anomalies are not significantly perturbed in polygon redistribution at the

basin scale.

Specific yield maps are partitioned into polygons in ArcGIS, and a histogram of values

is used to calculate the weighted average Sy for each polygon. Following equation 3.2,

dSubsurface is divided by average specific yield for each polygon. To distinguish between

GRACE-derived subsurface storage anomalies resulting from equation 2.1 and the specific

yield-applied subsurface storage anomalies resulting from equation 3.2, the latter is referred

to as dSubsurfaceSy for the remainder of this work. Note again that this dSubsurfaceSy

does not explicitly exclude soil moisture storage anomalies.
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As with in situ data, time series for each lithology, land cover regime are calculated as

an area-weighted average of regime polygons for each month. This approach presents a

caveat, as aquifer properties and individual GRACE grid cells are not independent in space.

Specific yield and hydraulic conductivity are generally lognormally distributed in space.

Post-processing de-striping, Gaussian filtering, and truncation, and the associated spatial

covariance of GRACE data is well-documented (Wahr et al. [1998], Swenson and Wahr

[2006], Wahr et al. [2006], Landerer and Swenson [2012]). Constructed polygons function

as irregularly shaped units, rather than uniformly shaped grid cells. While lithology, land

use cover regime polygons are generally grouped together in space, it was not a specified

requirement. Furthermore, no account of neighboring polygons within or across regimes

are considered. So the relevant polygons used to calculate the area-weighted average time

series of a given regime may not always be adjacent to polygons of the same regime. The

categorization by regime polygons is not likely affected by the potential covariance of in

situ data, as the spatial scales of polygons are large by comparison. However, the spatial

extent of polygons are generally smaller than a 1◦×1◦ GRACE grid cell, with few exceptions

in the northeastern, central, and south High Plains (see Figure 2.11). The approach used

here effectively ignores the spatial covariance inherent to the gridded GRACE product by

assuming polygons act as individual units for GRACE-derived dSubsurfaceSy .

3.3.4 Generalized linear models and model construction

Generalized linear models (GLMs) are a distinguished set of regression models in which the

distribution of response variable values can be non-normal. Distributions in the GLM family

include normal, Poisson, inverse Gaussian, binomial, and gamma. The response variable

is related to the predictor variables by a canonical link function, and term coefficients are

denoted as β.

Measures of water quality often have skewed-right distributions (Helsel and Hirsch [2002],
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Shamsudduha et al. [2015]). Preliminary work assumed a Poisson distribution of TDS values,

as all TDS observation values are inherently positive. However, the Poisson distribution is a

discrete probability distribution, and TDS and other water quality constituent observations

are continuous. The gamma distribution, a positive continuous distribution, better matches

possible expected values of TDS and other constituents and is also able to deal with the

issue of non-detect values (Shamsudduha et al. [2015]). All models in this work assume a

gamma distribution with a logarithmic canonical link (Shamsudduha et al. [2015]).

Each generalized linear model is calculated using area weighted monthly average time series

of in situ TDS as the response variable, and monthly average time series of in situ water

levels, x1, categorical season (wet or dry), x2, and when applicable dSubsurfaceSy , x3, as

predictor variables. Area-weighted monthly average time series for TDS, water levels, and

dSubsurfaceSy are calculated as described in sections 3.3.1 and 3.3.3, respectively. A cat-

egorical variable for season is included as an indicator of wet versus dry months based on

climatological precipitation for each region. The most precipitation occurs from approx-

imately October to March in the arid/semi-arid Central Valley (Faunt [2009]), and from

March to August in the High Plains summer monsoons (McMahon et al. [2007]).

log TDS = β0 +β1x1 +β2x2 +β3x3 +β4x
2
1 +β5x

2
2 +β6x

2
3 +β7x1x2 +β8x1x3 +β9x2x3 (3.3)

Quadratic, linear, linear interaction, and intercept terms are considered following Shamsud-

duha et al. [2015]. While included in the full possible equation of predictor terms (equation

3.3), x2 is categorical, so the squared term βx22 is not considered. The minimum form for all

models is the constant model, so the constant β0 occurs in 100% of all resampling runs for

both study areas. As is often true in regression analyses, intercept terms do not necessarily

carry physical meaning, but cannot be excluded without meaningful justification. GLMs are

first constructed including all possible prediction terms, as shown in equation 3.3, then are

adjusted step-wise to include only predictor terms that significantly improve the model. A

64



term is added to the model if the sum of squared errors (SSE) is less than 0.05. A term

is removed from the model if the p-value of the F-statistic is larger than 0.10. To prevent

potential continuous adding and removing of the same terms, the number of adjustments is

limited to 20.

Several model forms are constructed to test each of the two hypotheses. In total, there

are 4 model categories: (1) the most basic models, model0 for the entire in situ record and

model0Gt for the GRACE period, (2) the basic GRACE model, modelG0, (3) the basic regime

models, lith/land0 for the full in situ record, and lith/land0Gt for the GRACE period, and

(4) the full regime models, lith/land.

Model type Time period Regimes dSubsurfaceSy

model0 full - -
model0Gt GRACE - -
modelG0 GRACE - y
lith/land0 full y -
lith/land0Gt GRACE y -
lith/land GRACE y y

Table 3.3: Summary of model categories. The time period refers to whether or not the
model is limited to the GRACE period. Regimes refer to polygon categorization by lithology,
land use regime, where no regimes (-) indicates one basin-wide model. dSubsurfaceSy refers
to inclusion (y) or exclusion (-) of GRACE dSubsurfaceSy as a potential predictor variable.

Each model type has specific set of constraints, summarized in Table 3.3. The two most

basic models, model0 and model0Gt, exclude GRACE dSubsurfaceSy as a predictor variable

and ignore regime classifications, resulting in two basin-wide models over the full historic

record and the GRACE record, respectively. The basic GRACE model, modelG0, is also

basin-wide as it ignores regime classifications. The basic regime models, lith/land0 and

lith/land0Gt, are constructed for each lithology, land use regime excluding GRACE as a

potential predictor for the full and GRACE periods, respectively. Finally, the full regime

models, lith/land, are constructed for each lithology, land use regime and include GRACE

dSubsurfaceSy as a potential predictor.

65



Models including GRACE dSubsurfaceSy as a potential predictor variable can have up to 10

terms, as shown in equation 3.3, and are limited to the GRACE period (2003-2014). Models

excluding GRACE can have up to 6 terms, as in equation 3.4, and are not necessarily limited

to the GRACE period. Models categorized using lithology, land use regimes can begin as

either 3.3 or 3.4, depending on whether GRACE dSubsurfaceSy is included as a predictor

variable or not.

lnTDS = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 (3.4)

To test the hypothesis that lithology, land use regimes are valuable for comparing differences

in average recharge effects on TDS to groundwater, we compare the most basic single model,

model0, against the basic regime models, lith/land0. The most basic single model, model0,

uses only water level and season as predictor variables of TDS, and is basin-wide. The basic

regime models also only use water level and season as predictor variables of TDS, but a

model is constructed for each lithology, land use regime. GRACE dSubsurfaceSy terms are

intentionally excluded from this portion of the analysis to test only the success or failure of

the regime classification. Because dSubsurfaceSy is ignored here, there is no restriction to

the GRACE period, so the full length of in situ observation records for the Central Valley

and High Plains are included.

To test the hypothesis that GRACE dSubsurfaceSy is a valuable predictor variable, we first

assess cases in which at least one dSubsurfaceSy term is included in the final step-wise model.

Then we compare a model with dSubsurfaceSy as a potential predictor, modelG0, against a

model excluding dSubsurfaceSy , model0Gt, over the GRACE period. The lithology, land use

regimes are ignored to test only the impact of GRACE dSubsurfaceSy as a TDS predictor,

and so are basin-wide.

Finally, we examine models characterized by lithology, land use regimes that also include
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GRACE as a potential predictor. Because dSubsurfaceSy is included in this analysis, the

time period is restricted to the GRACE period. Again, all models initially include all possible

predictor terms, then terms are removed and/or added based on improvement of the model

SSE.

3.4 Results

All models are reconstructed based on the training subset for each Monte Carlo resampling.

In one resampling run, three basin-wide models and three sets of regime models are calcu-

lated, totaling to 141 models for the Central Valley and 108 models for the High Plains.

Time and computational restraints limit the amount of data output that can be saved for

each resampling run. Instead of saving every resampling set run, summary statistics are

generated.

For each model and resampling run, 31 variables are saved, which can be grouped by model

term coefficients, model fit, and model prediction. Once each model is constructed with the

training subset, the calculated coefficients (β) and associated p-values of relevant predictor

terms are saved. Model fit statistics are calculated using the training TDS data (y) and

the expected TDS values (ŷ) from the model. Model fit statistics include the number of

observation months (N), correlation and p-value of the training data and the expected TDS

(Ry,ŷ, pvalRy,ŷ
), root mean squared error of the expected TDS (rmsey,ŷ), standard deviation

of the training TDS data (σy) and the expected TDS (σŷ), mean model bias (meanbiasy,ŷ),

dispersion, deviance, and F-statistic versus a constant model and p-value (Fstat, pvalFstat).

Model prediction statistics are generated using predicted TDS (ŷp) and the independent val-

idating TDS data (yv). Predicted TDS ŷp is a new model estimate produced by evaluating

the constructed model with the validation groundwater level subset. Categorical season is

applied as necessary in the same manner as done for the training subset. Model predic-
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tion statistics include correlation and p-value of predicted and validating TDS data (Ryv ,ŷp ,

pvalRyv,ŷp
), root mean squared error of the validating TDS (rmseyv ,ŷp), standard deviation of

the validating TDS data (σyv) and the predicted TDS (σŷp), and mean bias (meanbiasyv ,ŷp).

In the following sections, each set of model comparisons are discussed first by model fit

statistics, followed by term coefficients, and finally by model prediction statistics. Each of the

statistics listed is discussed in terms of the mean or median value from all 1,000 Monte Carlo

resampling runs. When appropriate, the standard deviation or the interquartile range (iqr)

of the statistic from all resampling is noted. Unless otherwise stated, statistical significance

is reported at the 1% level.

3.4.1 Regime models

Unfortunately, the lack of temporally consistent TDS data limits model construction for

several regimes. For months when a TDS value occurs in a regime, a corresponding in situ

water level is not always available, or vice versa. The lack of available concurrent in situ

data within the same month leads to several regime models that can not be constructed,

despite meeting criteria for the in situ database and even Thiessen polygon construction.

The regimes affected include 4, 17, and 41 in the Central Valley and 2, 8-13, 24, 29, 30,

32, 34, and 35 in the High Plains. While it may seem like a lot of models, particularly in

the High Plains, the percent of total area affected is small, totaling to 0.69% (665.78 km2)

in the Central Valley and 5.30% (39,772.8 km2) in the High Plains. Because the affected

regime models can not be constructed given the available data, they will be omitted from

the remaining analysis.
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Model N* (σN) Ry,ŷ

(%smallp)
rmsey,ŷ Mean biasy,ŷ F-stat

(σF−stat)

CV model0 920.469
(3.226)

0.3539 (1) 52.76 -4.304 33.675
(4.911)

CV
lith/land0 2

885.208
(3.28)

0.133 (1) 96.01 -1.29 9.53 (1.73)

CV
lith/land0
35

757.077
(5.15)

0.256 (1) 169.61 -12.05 17.84 (2.66)

HP model0 711.475
(4.10)

0.2329 (1) 67.55 -4.29 12.62 (3.08)

HP
lith/land0
25

102.42 (3.18) 0.2569
(0.524)

71.55 -2.48 4.99 (3.19)

HP
lith/land0
31

356.45 (5.14) 8.81e-17
(0.024)

189.32 -1.3e-12 2.76 (1.11)

Table 3.4: Summary of model fit statistics for the basic model, model0, and the two
lith/land0 models covering the largest area in each case for the full in situ record. Reported
values are a median of the 1,000 Monte Carlo resampling runs, unless denoted by an asterisk
(*) indicating the mean value is reported.

3.4.1.1 Full in situ record (excludes dSubsurfaceSy)

To test the usefulness of polygon categorization by lithology, land use regimes, the most

basic model, model0, is compared to the basic regime models for the full in situ record.

The model fit statistics for the basin wide model0 and two lith/land0 models covering the

largest fractional area in each location are summarized in Table 3.4. Central Valley lith/land0

regimes 2, alluvium/developed, and 35, sandstone/developed, cover the largest fractional ar-

eas of 27.46% and 23.28% respectively. High Plains lith/land0 regimes 25, sandstone/scrub,

shrub, and 31, shale/grassland, herbaceous, cover the largest areas at 12.51% and 15.84%

of the total area respectively. The lith/land0 models summarized in Table 3.4 are selected

by fractional area because larger spatial extents are likely to encompass a larger number of

ground-based observations for model construction.
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After lith/land0 regimes 2 and 35, Central Valley lith/land0 model 45 has the largest average

number of months of observations at 235.61 (σN = 5.25), despite only covering 1.42% of

the total area. Ten models (9, 12, 13, 15, 29, 32, 37, 38, 39, 43) have reasonably large

numbers of observations between 103 and 153.73 average months. The remaining thirty

models have moderate to low average months of observations between 1.98 and 91.7. Ten

models (3, 10, 11, 14, 16, 18, 19, 25, 27, 33) have high median Ry,ŷ values between 0.341

(26.3% significance rate) and 0.99999 (81.4%), but have low average number of observations

between 3.82 and 73.39. Models 29, 34, and 38 have the highest median Ry,ŷ values and

corresponding significance rates of 0.246 (59.4%), 0.284 (90.2%), and 0.313 (79.1%). Fifteen

models have moderate Ry,ŷ values but low significance rates. The remaining fifteen models

(1, 5, 7, 9, 12, 13, 15, 24, 2, 30, 31, 32, 36, 40, 44) have very small Ry,ŷ values on the order

of 10−15 to 10−17 with low significance rates.

Seven Central Valley lith/land0 models (11, 13, 25, 26, 28, 33, 43) have median rmsey,ŷ

values lower than model0 between 0.595 for model 11 and 52.7 for model 25. The Central

Valley lith/land0 models with the lowest median rmsey,ŷ are 11, 13, 26, 28, and 33. However,

models 11 and 33 have very low numbers of observations relative to the full period at 3.82

and 18.54 months, respectively. Seventeen models (2, 6, 8, 10, 12, 14, 15, 18, 19, 20, 22,

23, 27, 31, 34, 42, 44) have moderate rmsey,ŷ values between 53.7 for model 14 and 98.8 for

model 22. The remaining nineteen models (1, 3, 5, 7, 9, 16, 21, 24, 29, 30, 32, 35, 36, 37, 38,

39, 40, 45, 46) have large rmsey,ŷ values between 101.7 for model 37 and 1.14e3 for model

40. Only four Central Valley lith/land0 models have small F-statistic standard deviations

and relatively high significance rates, two of which are models 2 and 35 which both have

F-statistic significance rates of 100%, summarized in Table 3.4. The other two are models

8, with σF = 5.86 at 92.2%, and 34, with σF = 3.16 at 61.1% significance.

In the High Plains, lith/land0 models 20, 21, and 22, follow area coverage of models 25 and

31 covering 5%, 9%, and 12.04% of the total area, respectively. Although lith/land0 20-22
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are 3,000+ km2 smaller than lith/land0 25, they have averages of 211.05 (σN = 4.20), 214.63

(σN = 4.43), and 287.38 (σN = 4.47) months of in situ observations over all resampling runs.

Models 1, 6, 16, and 28 have 148.38 (σN = 3.76), 129.18 (σN = 3.18), 114.29 (σN = 3.08), and

110.03 (σN = 4.05) months of observations of the full record respectively, with the remaining

thirteen models having averages between 3.94 and 99.72 months. Models 17 and 27 have

the highest median Ry,ŷ values of 0.997 (62.2% significance rate) and 0.964 (16.8%), but

have very low average number of months of observations of only 6.57 and 3.94 respectively.

Models 1, 6, 7, and 22 have the highest median Ry,ŷ values and corresponding significance

rates of 0.424 (99.9%), 0.258 (69.4%), 0.285 (43.8%), and 0.261 (99.7%). Six lith/land0

models have moderate Ry,ŷ values between 0.173 and 0.305, but have either a low number of

observations or low rates of significance over Monte Carlo resampling. The eight remaining

lith/land0 models have very small median Ry,ŷ values on the order of 10−16 to 10−18 with

low significance rates.

The two High Plains lith/land0 models (17, 27) with the lowest median rmsey,ŷ are again

those with very few months of observations. Seven models (6, 7, 14, 16, 18, 19, 25) have

reasonably large numbers of monthly observations and the lowest median rmsey,ŷ between

44.27 mg/L for model 7 and 90.75 mg/L for model 6. Thirteen models (1, 3-5, 15, 20-23, 26,

28, 31, 33) have moderate to high values of rmsey,ŷ between 103.07 mg/L and 840.54 mg/L.

Models 1, 21, and 22 have the highest rates of significant F-statistics with reasonably low

F-statistic standard deviations, with 99.9% significance and σF = 10.21 for model 1, 71.9%

and σF = 2.55 for model 21, and 98.9% and σF = 5.89 for model 22.

In the Central Valley, β0 is statistically significant for 100% of runs for model0, lith/land0

2, lith/land0 35, and twenty-eight other lith/land0 models (3, 7-10, 12, 13, 15, 20- 26, 28,

29, 31-34, 37- 39, 43- 46). However, three models (9, 23, 39) out of those twenty-eight have

a iqrβ0 value larger than the value of β0 itself on the order of 1076 to 1078. Eight models

(1, 6, 14, 16, 18, 19, 27, 40) have high significance rates between 83.2% and 99.7% with β0
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Table 3.5: Summary of coefficient terms and interquartile ranges (iqr) for model0 and the
two lith/land0 models covering the largest fractional area in each case. Coefficient values
are reported as a median of all resampling runs. Note all terms including dSubsurfaceSy

are excluded.

Central Valley High Plains
Term model0 lith/land0

2
lith/land0
35

model0 lith/land0
25

lith/land0
31

β0 (iqr) 2.96
(0.055)

3.81
(0.064)

3.75
(0.098)

2.55 (0.15) 4.62 (0.11) 4.52
(0.085)

βx1 (iqr) 1.4e-3
(6.4e-4)

3.28e-4
(7.4e-4)

1.3e-3
(1.37e-4)

1.6e-3
(2.2e-4)

8.24e-5
(1.8e-5)

-1.3e-3
(1.1e-3)

βx2 (iqr) -1.16
(0.039)

-0.875
(0.078)

-0.78
(0.07)

0.257
(0.069)

0.195
(0.036)

0.315
(0.072)

βx21 (iqr) -6.06e-7
(9.6e-8)

4.53e-7
(5.6e-8)

-3.22e-7
(6.5e-8)

-4.19e-7
(6.87e-8)

3.83e-8
(9.4e-9)

5.41e-7
(8.3e-8)

βx1x2 (iqr) 6.99e-4
(1.2e-4)

6.64e-4
(8.5e-5)

3.99e-4
(7.8e-5)

2.22e-4
(4.02e-5)

-1.14e-4
(3.4e-5)

6.62e-4
(1.5e-4)

values between 3.02 (iqrβ0 = 0.81) for model 11 and 9.53 (iqrβ0 = 0.036) for model 36. The

remaining five models (5, 11, 30, 36, 42) have moderate to low significance rates between 0%

for model 42 and 68.9% for model 36.

Only model0 and lith/land0 35 have βx1 significant for 100% of runs in the Central Valley,

with the term occurring in 3% and 18% of runs respectively. Three models (8, 19, 23) have

significance rates from 80.6% to 87.7%, but models 19 and 23 have iqrβx1 values larger than

βx1 . Model 8 has an median βx1 of 0.0033 with iqrβx1 of 8.5e-47, present in 89.9% of runs.

Twenty-three other lith/land0 models (1, 2, 3, 6, 7, 9, 11, 13, 14, 16, 20, 21, 24, 26, 29,

32, 33, 36, 37, 39, 40, 43, 45) have iqrβx1 values larger than βx1 . Three models (8, 10, 12)

have the next highest significance rates for βx1 between 61.1% and 87.7% occurring between

18.5% and 89.9% of runs. The remaining fifteen models (13, 15, 20, 24-26, 28-31, 33, 34, 40,

44, 45) have relatively low significance rates topping out around 25% of runs. Models 5 and

42 do not have a βx1 term for any runs.

Central Valley model0 and lith/land0 models 2 and 35 have βx2 terms significant for 100%
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of runs occurring in 3%, 21.9%, and 18% of runs respectively, with values as reported in

Table 3.5. Three other lith/land0 models (23, 27, 39) have high significance rates between

71.4% and 82.3% but only model 27 has a reasonable βx2 and iqrβx2 values of -2.46 and 1.2

respectively while models 23 and 39 have values on the order of 1077 to 1078 with relatively

low occurrences between 10.5% and 27.7%. Two models (20, 34) have moderate significance

rates of 39.98% and 64.4% occurring in 91.3% and 97.8% of runs. The remaining models

have a combination of low significance rates, and/or low occurrence. Models 5 and 42 do

not have a βx2 term for any runs.

The βx21 term in Central Valley model0 is significant at 37.5%, occurring in 97.8% of runs. In

lith/land0 2 and 35, βx21 is significant at 0% and 95.8% occurring in 5.3% and 99.7% of runs

respectively. Ten other lith/land0 models (3, 6, 9, 10, 12, 21, 22, 23, 38, 39) have significance

rates for βx21 higher than model0 between 42.9% and 79.1%, but only models 3, 10, 12, and

22 have reasonable βx21 values and smaller iqrβ
x21

values. Models 5, 30, 42, and 45 do not

have a βx21 term for any runs.

The βx1x2 in Central Valley model0 is significant at 12.7%, occurring in 97% of runs. In

lith/land0 2 and 35, βx1x2 is significant at 0% and 7.3% occurring in 78.1% and 82% of runs

respectively. βx1x2 generally has low frequency of occurrence in the Central Valley lith/land0

models, below 30% for twenty nine models generally with low significance rates. Six models

(6, 21, 23, 25, 27, 39) have moderate to high occurrence between 36.7% and 82.9%, low to

moderate significance rates between 1.9% and 60%. Six models (5, 14, 30, 36, 42, 45) had

no occurrence of βx1x2 .

In the High Plains, β0 is statistically significant for 100% of runs for model0 and fifteen

lith/land0 models (3, 6, 7, 16, 18-23, 25, 26, 28, 31, 33), all of which have iqrβ0 one order of

magnitude smaller than the value of β0, between 3.999 (iqrβ0 = 0.598) for model 3 and 6.017

(iqrβ0 = 0.073) for model 20. Five lith/land0 models (1, 4, 5, 14, 17) have high β0 significance

rates between 92.4% and 99.9%. The remaining two models (15, 27) have significance rates
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of 56.7% and 60.2% and relatively large iqrβ0 compared to β0.

The βx1 term occurs in 94.7% of runs, significant at 100% for model0. Only three High Plains

lith/land0 models (1, 17, 22) have high significance rates and moderate to high occurrence

of βx1 between 90.8% (88.3% occurrence) and 92.9% (56% occurrence), with βx1 values

between 2.45e-4 (iqrβx1 = 6.04e-5) for model 22 and 0.0021 (iqrβx1 = 3.5e-5) for model 17.

The remaining lith/land0 models all have significance rates of βx1 below 50%. Four of the

remaining models (3, 6, 7, 25) have high occurrence rates between 76.1% and 88.2%. Eleven

models have low occurrence of βx1 between 2% and 55%. Four models (20, 23, 31, 33) have

no βx1 term for any runs.

High Plains model0 has a βx2 term present in 92.8% of runs, with a significance rate of

only 39.1%. lith/land0 model 26 has the highest βx2 significance rate of 57.6%, occurring

in only 3.3% of runs, with a value of 1.63 (iqrβx2 = 0.0016). Model 6 has the highest

occurrence of 77%, but is only significant for 18.4% of runs, with a βx2 value of 0.1869

(iqrβx2 = 0.044). Models 25 and 28 have moderate occurrence of a βx2 term of 61.6% and

64.8% respectively, but low significance rates of 4.6% and 21.5%. All remaining lith/land0

models have significance rates below 30% and occurrence rates below 50%. Five models (1,

4, 5, 18, 33) have no βx2 term for any runs.

The βx21 term in model0 occurs in 100% of runs, significant at 99.9% in the High Plains.

Only lith/land0 model 3 has a high occurrence of 93.1% and relatively high significance rate

of 63.3% for βx21 , with a value of -4.81e-7 (iqrβ
x21

= 1.17e-7). Models 6 and 17 have moderate

significance rates of 24.9% and 54.7% and occurrence rates of 68.3% and 9.5% respectively,

with βx21 values of 3.40e-8 (iqrβ
x21

= 9.0e-9) and -4.6e-4 (iqrβ
x21

= 2.25e-5). The remaining

models have low significance and low occurrence rates, both below 50%.

The βx1x2 in model0 occurs in 5.3% of runs, significant at 5.7%. High Plains lith/land0 model

26 has the highest occurrence of βx1x2 in 91.1% of runs, and the highest significance rate of all
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Table 3.6: Summary of model prediction statistics for basin-wide model0 and select
lith/land0 models over the full in situ record. Reported values are a median of the 1,000
Monte Carlo resampling runs. Units for rmseyv ,ŷp and meanbiasyv ,ŷp are mg/L.

Central Valley High Plains
Statistic model0 lith/land0

2
lith/land0
35

model0 lith/land0
25

lith/land0
31

Ryv ,ŷp (%
small p)

0.2420
(1)

0.092
(0.548)

0.189
(0.988)

0.191
(0.99)

0.2015
(0.107)

-4.9e-17
(0.006)

rmseyv ,ŷp 38.12 82.5 121.99 54.36 51.69 111.17
meanbiasyv ,ŷp 5.42 12.66 8.34 11.64 -1.16 23.77

lith/land0 models at 54% with a βx1x2 of 0.0026 (iqrβx1x2 = 6.7e-4). Models 15 and 21 have

moderate to low significance and moderate occurrence rates of 44.3% (40.6% occurrence)

and 16.4% (65.2% occurrence), respectively, with βx1x2 values of -0.0055 (iqrβx1x2 = 0.0021)

and -2.72e-4 (iqrβx1x2 = 8.3e-5). The remaining models have significance and occurrence

rates below 40%.

In the Central Valley, the median correlation Ryv ,ŷp for model0 is 0.2420 significant for 100%

of runs. The median rmseyv ,ŷp is 38.12 mg/L, and the median meanbiasyv ,ŷp is 5.42 mg/L.

Only three lith/land0 models (2, 25, 35) in the Central Valley have comparable prediction

statistics to model0. Model 25 has the highest Ryv ,ŷp of 0.5620, but is only significant for

38.2% of runs, with rmseyv ,ŷp of 62.69 mg/L and a low meanbiasyv ,ŷp of 4.35 mg/L. Model 2

has the lowest Ryv ,ŷp of 0.092 significant for 54.8% of runs, with rmseyv ,ŷp of 82.5 mg/L, and

a relatively low meanbiasyv ,ŷp of 12.66 mg/L. Model 35 has a Ryv ,ŷp of 0.189 significant for

98.8% of runs, with a moderately high rmseyv ,ŷp of 121.99 mg/L, and a low meanbiasyv ,ŷp of

8.34 mg/L. Prediction statistics for the entire set of lith/land0 models in the Central Valley

are described below.

Five Central Valley lith/land0 models (2, 25, 27, 34, 35) have the largest magnitude median

Ryv ,ŷp and highest accompanying significance rates over resampling with values of 0.092

(54.8%), 0.562 (38.2%), 0.799 (40.8%), 0.293 (32.3%), and 0.189 (98.8%) respectively. Six

models (8, 19, 20, 29, 33, 38) have moderately large Ryv ,ŷp magnitudes but low significance
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rates, from 0.119 at 0.6% for model 33 to 0.218 at 10.1% for model 20. Ten models (3, 10,

21, 22, 23, 28, 37, 39, 43, 45) have moderately low Ryv ,ŷp magnitudes between -0.0044 for

model 21 and 0.0985 for model 23, with significance rates up to 3.7%. Sixteen models (6, 7,

9, 12, 13, 14, 15, 16, 24, 26, 31, 32, 40, 42, 44, 46) have very small Ryv ,ŷp positive or negative

values on 10−16 to 10−18 orders of magnitude, with significance rates at less than 1% or 0%.

Models 1, 5, 11, 18, 30, and 36 have Ryv ,ŷp values of 0, also with significance rates at less

than 1% or 0%.

Only two lith/land0 models (13, 28) have median rmseyv ,ŷp values smaller than model0 of

25.66 and 31.43 respectively. Twenty-one models (2, 5, 6, 10-12, 14, 15, 20, 23, 25-27, 31-34,

37, 42-44) have moderate rmseyv ,ŷp values under 100 mg/L, on the same order of magnitude

as model0. The remaining twenty lith/land0 models (1, 3, 7, 8, 9, 16, 18, 19, 21, 22, 24,

29, 30, 35, 36, 38, 39, 40, 45, 46) have high median rmseyv ,ŷp values between 100 mg/L and

1.36e3 mg/L.

Nine Central Valley lith/land0 models (6, 10, 12, 13, 22, 25, 33, 34, 45) have a lower

magnitude meanbiasyv ,ŷp value than model0 between -0.083 for model 34 and 4.43 for model

10. Nine models (1, 14, 18, 20, 23, 28, 32, 35, 37) have relatively low magnitude meanbiasyv ,ŷp

between 5.83 for model 1 and -9.60 for model 18. Nineteen models (2, 3, 5, 7, 8, 9, 11, 15,

19, 24, 26, 29, 31, 38, 39, 42, 43, 44, 46) have moderate meanbiasyv ,ŷp magnitudes under 100,

and the remaining six models (16, 21, 27, 30, 36, 40) have high meanbiasyv ,ŷp magnitudes

between 100 and 1.19e3 for model 40.

In the High Plains, the median correlation Ryv ,ŷp for model0 is 0.191 significant for 99% of

runs. The median rmseyv ,ŷp is 54.36 mg/L, and the median meanbiasyv ,ŷp is 11.64 mg/L.

Four lith/land0 models, 1, 6, 22, and 25 in the High Plains have comparable prediction

statistics to model0. Model 22 has a Ryv ,ŷp of 0.2179 with the highest significance rate of

64.7% and a relatively low meanbiasyv ,ŷp of -18.77, but has a large value for rmseyv ,ŷp of
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317.58 mg/L. Model 6 has the lowest Ryv ,ŷp of 0.195 significant for only 16.8% of runs,

but has a moderately low rmseyv ,ŷp of 87.17 mg/L, and the lowest meanbiasyv ,ŷp of -0.5737

mg/L. Model 25 has Ryv ,ŷp of 0.2015 significant for only 10.7% of runs, but has relatively low

rmseyv ,ŷp of 51.69 mg/L, and a small meanbiasyv ,ŷp of -1.16 mg/L. Model 1 has the highest

Ryv ,ŷp of 0.2526 significant for 43.6% of runs, with a moderate rmseyv ,ŷp of 118.98 mg/L,

and a moderately low meanbiasyv ,ŷp of 38.52 mg/L. Prediction statistics for the entire set of

lith/land0 models in the High Plains are described below.

The High Plains lith/land0 models 1, 6, 22, 25, and 27 have the highest median Ryv ,ŷp in

the High Plains at 0.2526 (43.6% of runs significant), 0.1954 (16.8%), 0.2179 (64.7%), 0.2015

(10.7%), and 0.4883 (0.3%) respectively. Five models (3, 7, 21, 26, 28) have moderate Ryv ,ŷp

magnitudes between -0.0267 (1.8% significant) for model 21 and 0.176 (3.6%) for model

7. The remaining thirteen models have very small ( 10−16) or 0 values for Ryv ,ŷp , with

significance rates at less than 1% or 0%.

Five lith/land0 models (7, 17, 18, 25, 27) have median rmseyv ,ŷp values lower than that

of model0 between 7.78 for model 17 and 51.69 for model 25. Four models (6, 14, 16, 19)

have moderate rmseyv ,ŷp values between 64.13 and 87.17. The remaining thirteen models

have high rmseyv ,ŷp values between 111.17 and 937.54. Eight models (4, 5, 6, 7, 25, 27, 28,

33) have smaller magnitude median meanbiasyv ,ŷp than model0 between -0.344 for model 5

and 11.33 for model 27. Ten models (1, 3, 14, 15, 16, 18, 19, 20, 22, 31) have moderate

meanbiasyv ,ŷp magnitudes between 15.05 for model 14 and 47.5 for model 15. The remaining

four models (17, 21, 23, 26) have high meanbiasyv ,ŷp .

3.4.1.2 GRACE-period record, including dSubsurfaceSy

To assess whether including regime categorizations improves upon a basin-wide model in-

cluding GRACE dSubsurfaceSy as a predictor, the basic GRACE dSubsurfaceSy model,
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modelG0 is compared against the full regime models, lith/land, including dSubsurfaceSy .

Central Valley modelG0 has an average N of 132 months, the total possible for the GRACE

period, with a median Ry,ŷ of 0.4307 significant for 100% of runs. The median rmsey,ŷ for

modelG0 is 63.08 mg/L and median meanbiasy,ŷ of 58.61. The median F-statistic versus the

constant model is 8.65 significant for 100% of runs, with a σF−stat of 2.51.

Central Valley models 2 and 35 are the only two lith/land regimes to have N over 100. Nine

models (8, 9, 12, 15, 37-39, 43, 45) have at least half of the possible N , and thirteen models

(1, 5, 11, 14, 16, 18, 19, 22, 30, 31, 36, 40, 42) have small average N below 10. Models 2

and 35 have Ry,ŷ significance rates of 100%, but have smaller values of Ry,ŷ at 0.4029 and

0.3691 respectively. Nine models (1, 8, 11, 16, 18, 19, 21, 27, 33) have Ry,ŷ values larger than

modelG0 between 0.4991 (97.4% significance) and 1 (65.8% significance), but only model 8

has moderately large N . Twenty models (6, 7, 10, 12, 14, 15, 20, 23, 25, 28, 31, 32, 34, 37, 38,

40, 43-46) have moderate Ry,ŷ and significance, and the remaining twelve lith/land models

(3, 5, 9, 13, 22, 24, 26, 29, 30, 36, 39, 42) have very small Ry,ŷ values and low significance

rates.

Eleven lith/land models (2, 11, 12, 13, 25, 26, 27, 28, 33, 37, 43) have a median rmsey,ŷ

smaller than modelG0 between 0.6325 for model 11 and 57.07 for model 37. Sixteen models

(1, 5, 6, 8, 10, 14, 15, 18, 19, 20, 31, 32, 34, 42, 44, 45) have moderate rmsey,ŷ values between

64.8 for model 31 and 119.58 for model 5. The remaining sixteen models have large rmsey,ŷ

values. Thirty lith/land models (1-3, 5-8, 10, 12-6, 18-20, 24-26, 28, 29, 31-34, 37, 42-45)

have median meanbiasy,ŷ magnitudes smaller than modelG0 between 2.09e-11 for model 1

and -58.84 for model 3. Nine models (11, 21, 22, 27, 30, 35, 36, 40, 46) have moderate to

high median meanbiasy,ŷ magnitudes between -61.45 and 3.74e3. The remaining four models

(9, 23, 38, 39) have unrealistically high meanbiasy,ŷ magnitudes on the order of 1076.

Only lith/land model 2 has a significant F-statistic for 100% of runs, with an F-statistic
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comparable to modelG0 of 8.02 and a smaller σF−stat than modelG0 of 1.699. Sixteen other

lith/land models (3, 10, 13, 20, 24, 25, 26, 28, 29, 32, 35, 37, 43, 44, 45, 46) have F-statistic

values over 1.5, σF−stat smaller than the respective F-statistic value and than that of modelG0

between 0.87 and 2.42, but only models 35 and 43 have moderate to high significance rates

of 99.7% and 69.8% respectively. Three models (8, 14, 34) have σF−stat larger than modelG0

but smaller than the F-statistic value itself. The remaining models have either significance

rates of 0% or σF−stat larger than the F-statistic value.

In the High Plains, modelG0 has an average N of 55.015 months of the 132 total possible

for the GRACE period, with a median Ry,ŷ of 0.3091 significant for 40.7% of runs. The

median rmsey,ŷ for modelG0 is 56.19 mg/L and median meanbiasy,ŷ of 22.26. The median

F-statistic versus the constant model is 3.47 significant for 27.9% of runs, with a σF−stat of

289.2.

The number of observations during the GRACE period in the High Plains are low, with

average N between 1 and 33.7 out of 132 possible months. Three lith/land models (25,

31, 33) have larger median Ry,ŷ and higher significance rates than modelG0 of 0.601 (52.8%

significance), 0.531 (63.1% significance), and 0.916 (52.9% significance) respectively. Another

six models (3, 16, 18, 22, 26, 27) have larger Ry,ŷ between 0.464 and 0.975, but lower

significance rates than modelG0. Model 6 has a lower Ry,ŷ value of 0.192 but a higher

significance rate of 46.3% than modelG0. The remaining twelve models have smaller median

Ry,ŷ and significance rates than modelG0. Four lith/land models (7, 16, 18, 27) have smaller

median rmsey,ŷ values than modelG0 between 3.56 mg/L for model 27 and 50.68 mg/L for

model 18. Eight models (6, 14, 17, 19, 22, 25, 28, 33) have moderate median rmsey,ŷ values

between 58.31 mg/L and 95.03 mg/L. The remaining ten models (1, 3, 4, 5, 15, 20, 21, 23,

26, 31) have large rmsey,ŷ values between 103.1 and 1.04e3 mg/L.

Seven lith/land models (7, 14, 18, 19, 22, 23, 27) have median meanbiasy,ŷ magnitudes

smaller than that of modelG0 between 1.36e-10 for model 27 and 20.3 for model 23. Six
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models (1, 6, 16, 20, 21, 25) have moderate meanbiasy,ŷ magnitudes between -31.67 and

-46.86, with models 16 and 25 having positive magnitudes. The remaining nine models (3, 4,

5, 15, 17, 26, 28, 31, 33) have large meanbiasy,ŷ values between -92.4 and 1.37e4. Four High

Plains lith/land models (18, 23, 25, 31) have larger median F-statistics and smaller σF−stat

than modelG0, but only models 18 and 25 have σF−stat values smaller than the F-statistic

value itself of 4.404 with σF−stat of 3.38 significant for 9.8% of runs for model 18, and 4.77

with σF−stat of 2.067 significant for 21.6% of runs. Model 14 has a σF−stat smaller than the

F-statistic value, but is still 2 orders of magnitude larger than modelG0. The remaining

models have σF−stat values larger than the respective F-statistic by at least two orders of

magnitude, as well as being larger than σF−stat for modelG0.

The median term coefficient and associated interquartile range for Central Valley modelG0

are summarized in Table 3.8. All lith/land models have significance rates of β0 and βx1

lower than modelG0. Four lith/land models (18, 22, 23, 39) have higher βx2 significance

rates than modelG0 between 70.7% and 100%. Twenty-six models (1, 2, 6, 7, 9-12, 15, 16,

18, 19, 21, 23, 25, 27, 31, 33, 35, 37, 38-40, 43-45) have higher βx3 significance rates than

modelG0 between 4.0% and 99.57%. Thirty-one models (1, 3, 6-12, 15, 18-21, 23, 25-28, 31-

36, 38, 39, 43-46) have higher βx21 significance rates than modelG0 between 6.12% and 97.8%.

Twenty-nine models (1, 3, 6-9, 11, 12, 15, 16, 18-21, 23, 25, 27, 29, 31-35, 38-40, 43, 45, 46)

have higher βx23 significance rates than modelG0 between 1.47% and 98.3%. Twenty-eight

models (1, 3, 6-10, 12, 15, 19-28, 31-35, 38, 39, 44-46) have higher βx1x2 significance rates

than modelG0 between 3.8% and 95.1%. Thirty-one models (1-3, 6-12, 15, 16, 18-21, 23,

25-28, 31-35, 38, 39, 43, 44, 46) have higher βx1x3 significance rates than modelG0 between

5.17% and 93.98%. Twenty-three models (1-3, 6-9, 12, 15, 19-21, 23, 25, 27, 31, 33-35, 38,

39, 45, 46) have higher βx2x3 significance rates than modelG0 between 8.67% and 94.82%.

The average term coefficient and associated standard deviation for High Plains modelG0

are summarized in Table 3.8. Seventeen models (3, 6, 7, 14-23, 25-27, 33) have higher β0
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Table 3.7: Summary of model prediction statistics for basin-wide modelG0 and select
lith/land models over the GRACE period, including dSubsurfaceSy as a potential predictor.
Reported values are a median of the 1,000 Monte Carlo resampling runs. Units for rmseyv ,ŷp
and meanbiasyv ,ŷp are mg/L.

Central Valley High Plains
Statistic modelG0 lith/land 2 lith/land

35
modelG0 lith/land

25
lith/land
31

Ryv ,ŷp (%
small p)

0.2644
(0.76)

0.2756
(0.811)

0.2579
(0.746)

0.004675
(0.033)

0.148
(0.006)

0.2529
(0.076)

rmseyv ,ŷp 59.7 34.45 189.25 484.2 94.3 110.8
meanbiasyv ,ŷp 62.3 32.46 132.1 176.99 30.8 73.1

significance rates than modelG0 between 48.4% and 99.8%. Ten lith/land models (3, 6,

14, 15, 19, 20, 23, 26, 27, 28) have higher βx1 significance rates than modelG0 between

21.93% and 79.63%. Eleven models (3, 6, 16, 18, 22, 23, 25, 26, 28, 31, 33) have higher βx2

significance rates than modelG0 between 8.6% and 84.9%. Two models (26, 31) have higher

βx3 significance rates than modelG0 of 71.8% and 84.4% respectively. Two lith/land models

(26, 28) have higher βx21 significance rates than modelG0 of 66.5% and 49.1% respectively.

Eleven models (3, 6, 16, 18, 22, 23, 26, 27, 28, 31, 33) have higher βx23 significance rates

than modelG0 between 9.64% and 68.0%. Eight models (3, 6, 23, 25, 26, 28, 31, 33) have

higher βx1x2 significance rates than modelG0 between 12.97% and 72.3%. Eight models (3,

6, 16, 18, 23, 26, 28, 33) have higher βx1x3 significance rates than modelG0 between 17.1%

and 61.42%. Four models (3, 6, 26, 31) have higher βx2x3 significance rates than modelG0

between 15.5% and 66.3%.

In the Central Valley, the basin wide model modelG0 has a Ryv ,ŷp value of 0.2644 with a 76%

significance rate, a median rmseyv ,ŷp of 59.73 mg/L, and a median meanbiasyv ,ŷp of 62.33

mg/L. The only two lith/land models that have similar prediction statistics are models 2

and 35. The lith/land 2 model has the highest Ryv ,ŷp value of the three of 0.2756 significant

for 81.1% of runs, a low rmseyv ,ŷp of 34.45 mg/L, and a low meanbiasyv ,ŷp of 32.46 mg/L.

Regime model 35 has a comparable Ryv ,ŷp value to modelG0 of 0.2579 with a significance
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rate of 74.6%, a larger rmseyv ,ŷp of 189.25 mg/L, and a larger meanbiasyv ,ŷp of 132.13 mg/L.

Three Central Valley lith/land models (2, 27, 33) have larger Ryv ,ŷp values than modelG0,

but models 27 and 33 have relatively low significance rates of 36% and 4.9% respectively.

Five models (19, 20, 34, 35, 43) have comparable Ryv ,ŷp magnitudes, but have significance

rates below 14% with the exception of model 35 at 74.6% significance. All other lith/land

models have low Ryv ,ŷp magnitudes and significance rates.

Seven lith/land models (2, 12, 13, 26, 28, 37, 43) have smaller rmseyv ,ŷp values than modelG0

between 25.53 for model 13 and 49.57 for model 37. Thirteen models (5, 10, 14, 15, 20, 25,

31, 32, 33, 34, 42, 44, 45) have moderate rmseyv ,ŷp values larger than that of modelG0, but

under 100 mg/L. Nineteen models (1, 3, 6, 7, 8, 11, 16, 18, 19, 21, 22, 24, 27, 29, 30, 35,

36,40, 46) have moderate to large rmseyv ,ŷp values between 110.04 for model 18 and 1.64e3

for model 21. The remaining four models (9, 23, 38, 39) have very large values on the order

of 1076.

Twenty-nine Central Valley lith/land models (1-3, 5-8, 10-15, 18, 20, 24-26, 28, 29, 31-34,

37, 42-45) have smaller magnitude meanbiasyv ,ŷp than that of modelG0 between 0.0624 for

model 13 and 56.44 for model 29. Model 46 has a moderate meanbiasyv ,ŷp on the same order

of magnitude as for modelG0 of -86.57. Nine models (16, 19, 21, 22, 27, 30, 35, 36, 40) have

higher magnitude meanbiasyv ,ŷp than model0 between 132.13 for model 35 and 4.05e3 for

model 27, with the remaining four models (9, 23, 38, 39) on the order of 1076.

In the High Plains, the basin wide model modelG0 has a Ryv ,ŷp value of 0.004675 with a 3.3%

significance rate, a median rmseyv ,ŷp of 484.19 mg/L, and median meanbiasyv ,ŷp of 176.99

mg/L.

Three High Plains lith/land models (26, 28, 31) have higher Ryv ,ŷp values and higher sig-

nificance rates than modelG0 of 0.0372 (3.9% significance), 0.0782 (14.8% significance), and

0.2529 (7.6% significance) respectively. Five additional models (22, 23, 25, 27, 33) have

82



higher Ryv ,ŷp values than modelG0 between 0.1010 and 0.4965, but have low significance

rates of 2% or lower.

Nineteen lith/land models (1, 4, 5, 6, 7, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 31, 33)

have smaller median rmseyv ,ŷp values than modelG0 between 21.08 for model 27 and 357.6

for model 23. Three models (3, 20, 26) have larger rmseyv ,ŷp values than modelG0. Nineteen

models (1, 4, 5, 6, 7, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 31, 33) have smaller

magnitude meanbiasyv ,ŷp than modelG0 between 6.15 for model 27 and 131.5 for model 15.

Only three lith/land models (3, 26, 28) have larger median meanbiasyv ,ŷp magnitudes than

modelG0.

3.4.2 GRACE dSubsurfaceSy
as a predictor variable

3.4.2.1 Basin-wide models over the GRACE period record (excludes regimes)

To test the TDS predictability added by including GRACE dSubsurfaceSy as a predictor,

the most basic model limited to the GRACE period, model0Gt, is compared to the basic

GRACE model, modelG0. Both models cover the same time period, exclude regime clas-

sifications (basin-wide), and include ground-based water level observations and categorical

season as predictors. The only difference is that the basic GRACE model modelG0 includes

dSubsurfaceSy as a possible predictor variable. Note that the total number of months in

the GRACE period is 132.

In the Central Valley, including dSubsurfaceSy as a potential predictor modestly improves

model fitting of average TDS during the GRACE period. Both basin-wide models have in

situ observations for each month in the GRACE period (132), but the estimated TDS (ŷ)

from modelG0 is more correlated with TDS training data than model0Gt, with median val-

ues of Ry,ŷ of 0.4307 and 0.3783, respectively. It is worth noting that for every Monte Carlo
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resampling run in the Central Valley, Ry,ŷ is statistically significant at pvalRy,ŷ
< 0.01. The

median rmsey,ŷ are 64.432 and 63.08 mg/L for model0Gt and modelG0 respectively, suggest-

ing that estimation accuracy is improved by including dSubsurfaceSy , albeit moderately.

The median F-statistics versus the respective constant models are 12.327 for model0Gt and

8.654 for modelG0, which are statistically significant at the 1% level for every resampling

run in the Central Valley. While the larger median F-statistic for model0Gt suggests more

strongly against the respective constant model, the standard deviations the F-statistics of

2.967 for model0Gt and 2.514 for modelG0 over all resampling runs indicate that the model

fit variability is reduced by including dSubsurfaceSy .

The High Plains case study is much more uncertain than the Central Valley during the

GRACE period due to the substantial reduction in TDS observations beginning in the late

1990s, as shown in Figure 2.2(d). Although characterizing average TDS in the High Plains

during the GRACE period poses a particular challenge given the current availability of ob-

servations, assessing model statistics may still provide some insight into the potential of

GRACE dSubsurfaceSy as a potential predictor. Both model0Gt and modelG0 have an av-

erage of 55.015 (σN = 0.93) months of in situ data out of 132 GRACE-period months. With

ground-based values for fewer than half of the period of interest, including dSubsurfaceSy

as a predictor improves Ry,ŷ and the occurrence of significance at the 1% level, with median

values of 0.1356 for model0Gt, statistically significant for only 13.3% of resampling runs,

and 0.3091 for modelG0, significant for 40.7% of resampling runs. The median rmsey,ŷ of

56.19 mg/L for modelG0 compared to 55.88 mg/L for model0Gt are very close. However,

dSubsurfaceSy terms may introduce variability, as suggested by a meanbiasy,ŷ of 22.26 for

modelG0 compared to 2.16 for model0Gt. The F-statistic and the percent occurrence of

statistical significance improve from 2.467 significant for 3.4% of resamples for model0Gt

to 3.470 significant for 27.9% of resamples for modelG0, but the F-statistic standard devi-

ations of 1.459 and 289.216, respectively indicate that including dSubsurfaceSy introduces

substantial variability to the model fit.
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Table 3.8: Summary of coefficient terms and interquartile ranges for model0Gt and
modelG0. Coefficient values are reported as a median of all resampling runs.

Central Valley High Plains
Term model0Gt modelG0 model0Gt modelG0

β0 (iqr) 3.982
(0.090)

3.97 (0.11) 3.78
(20.18)

17.899
(21.3)

βx1 (iqr) 7.520e-4
(1.04e-4)

7.69e-4
(1.1e-4)

-0.0179
(5.2e-3)

-0.0175
(8.1e-3)

βx2 (iqr) -0.415
(0.081)

-0.370
(0.088)

0.647
(0.082)

0.7799
(0.14)

βx3 (iqr) - 1.76e-4
(2.8e-5)

- -0.0213
(7.1e-3)

βx21 (iqr) -5.14e-7
(2.22e-7)

-4.87e-7
(9.5e-8)

3.86e-6
(1.05e-6)

4.12e-6
(1.3e-6)

βx23 (iqr) - -1.98e-7
(2.0e-8)

- -2.35e-4
(4.8e-4)

βx1x2 (iqr) 6.02e-4
(1.42e-4)

6.90e-4
(1.5e-4)

-2.4e-3
(5.3e-4)

-0.0025
(6.2e-4)

βx1x3 (iqr) - -4.33e-7
(7.65e-8)

- -1.98e-5
(8.1e-5)

βx2x3 (iqr) - -3.75e-4
(7.41e-5)

- -0.0124
(0.037)

In the Central Valley, β0 for model0Gt and modelG0 are statistically significant for 100% of

resampling runs. The form of model0Gt varies minimally, as suggested by relatively small

interquartile ranges shown in Table 3.8. Inclusion of βx1 and βx2 each occur in 95.5% of runs,

with statistical significance at 99.9% and 89.5% respectively, when present. The squared and

interaction terms βx21 and βx1x2 are likely negligible for model0Gt, occurring for only 2.5%

and 4.1% of runs, with 0% and 2.44% significance rates. The form of modelG0 is much more

variable than model0Gt in the Central Valley, with each possible predictor term occurring in

the course of resampling. Linear terms βx1 , βx2 , and βx3 occur in 39.8%, 86.9%, and 11.6% of

runs, having significance rates of 100%, 63.2%, and 3.4% respectively. The two interaction

terms including dSubsurfaceSy occur more frequently in runs than the interaction term

excluding it. βx1x3 is included in 59.5% of runs and 11.1% include βx2x3 , with 4.37% and

4.5% significance rates, respectively. The squared term βx21 occurs in a small 7.6% of runs,
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Table 3.9: Summary of model prediction statistics for basin-wide model0Gt and modelG0

over the GRACE period, excluding and including dSubsurfaceSy as a potential predictor
respectively. Reported values are a median of the 1,000 Monte Carlo resampling runs. Units
for rmseyv ,ŷp and meanbiasyv ,ŷp are mg/L.

Central Valley High Plains
Statistic model0Gt modelG0 model0Gt modelG0

Ryv ,ŷp (%
small p)

0.2558
(0.637)

0.2644
(0.76)

-6.4e-17
(0.007)

0.0047
(0.033)

rmseyv ,ŷp 58.76 59.73 44.7 484.2
meanbiasyv ,ŷp 39.9 62.3 27.5 176.99

with 5.26% significance. The two terms with the lowest rates of inclusion, βx1x2 in 1.9% of

runs and βx23 in only 0.4%, also both have significance rates of 0%.

In the High Plains, β0 are significant for 59% and 37.5% of runs for model0Gt and modelG0,

respectively. Groundwater levels appear to be more informative to average TDS than cate-

gorical season in the High Plains version of model0Gt. The linear and squared terms βx1 and

βx21 occur in 46.8% and 45.3% of resampling runs, with significance rates of 14.1% and 16.78%

respectively. The categorical terms βx2 and βx1x2 are included in 1.9% and 4.8% of runs,

both with significance rates of 0%. Including dSubsurfaceSy as a predictor in modelG0 gives

the illusion of improving the model form compared to model0Gt, with increased inclusion

and significance of βx1 , βx2 , βx21 , and βx1x2 . All possible dSubsurfaceSy terms occur in the

course of resampling, most notably βx3 occurring in 81.3% of runs with 48.46% significance.

However, as previously mentioned for the High Plains, including dSubsurfaceSy introduces

variability to the model, as demonstrated by the large standard deviations of coefficient

values for modelG0 compared to model0Gt in Table 3.8.

Predicted TDS ŷp is moderately more correlated with the independent validation TDS subset

yv with median Ryv ,ŷp values of 0.2558 for model0Gt and 0.2644 for modelG0 in the Central

Valley, and -6.40e-17 for model0Gt and 0.004675 for modelG0 in the High Plains. The percent

of resampling runs with statistically significant correlations also increases for modelG0 by

12.3% in the Central Valley and 2.6% in the High Plains. The median rmseyv ,ŷp are very
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close between the two models in the Central Valley, at 58.76 mg/L for model0Gt and 59.73

mg/L for modelG0, but are an order of magnitude larger in the High Plains when including

dSubsurfaceSy , at 44.70 mg/L for model0Gt and 484.19 mg/L for modelG0. The median

meanbiasyv ,ŷp over all runs are 39.91 mg/L for model0Gt and 62.33 mg/L for modelG0 in

the Central Valley, and 27.48 mg/L for model0Gt and 176.99 mg/L for modelG0 in the High

Plains.

3.4.2.2 Regime models excluding and including dSubsurfaceSy

It is also of interest to test whether adding GRACE dSubsurfaceSy as a predictor improves

lithology, land use regime models. We compare basic regime models, lith/land0Gt, against

the full regime models, lith/land, excluding and including dSubsurfaceSy as a predictor,

respectively. Again, both sets of models are limited to the GRACE period so differences can

be accurately attributed to the inclusion (or exclusion) of dSubsurfaceSy as a predictor.

In the Central Valley, the average number of observation months N and σN are the same

between lith/land0Gt and lith/land for all regimes. Models 2 and 35 are the only two

regimes to have N over 130. Nine models (8, 9, 12, 15, 37-39, 43, 45) have at least half of

the possible N between 66.3 (σN = 2.89) and 80.1 (σN = 2.72). Thirteen models (1, 5, 11,

14, 16, 18, 19, 22, 30, 31, 36, 40, 42) have small average N below 10. Model 35 has a higher

median Ry,ŷ in lith/land of 0.3691 than in lith/land0Gt of 0.3571, both significant for 100%

of runs. Twenty-one lith/land models (1-3, 6-9, 12, 14, 15, 19, 21, 25-27, 31, 33, 37, 43, 45,

46) have higher median Ry,ŷ and higher significance rates than the lith/land0Gt versions.

Models 40 and 44 have higher Ry,ŷ values for lith/land, but lower significance rates. Five

models (16, 20, 24, 28, 34) have lower Ry,ŷ for lith/land, but higher significance rates. The

remaining fourteen models have lith/land median Ry,ŷ and significance rates that are less

than or equal to the lith/land0Gt versions.
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Twenty Central Valley lith/land models (1, 2, 5, 7, 8, 12, 15, 18, 19, 21, 22, 26-28, 30,

33, 35, 43, 45, 46) have smaller median rmsey,ŷ values than in lith/land0Gt between 30.9

for model 33 and 1.03e3 for model 36. Model 36 rmsey,ŷ is the same for lith/land0Gt and

lith/land. The remaining twenty-two models have a higher rmsey,ŷ for lith/land than for

lith/land0Gt, with four models (9, 23, 38, 39) having unrealistically large values for lith/land

on the order of 1076. Only three models (5, 6, 10) have smaller magnitude meanbiasy,ŷ for

lith/land than for lith/land0Gt of -28.89, 1.13, and 12.37 respectively. Model 36 maintains

the same meanbiasy,ŷ for lith/land0Gt and lith/land. The remaining thirty-nine models

have higher magnitude meanbiasy,ŷ medians for lith/land, with four models (9, 23, 38, 39)

having unrealistic values on the order of 1076.

Ten lith/land models (3, 9, 10, 25, 26, 28, 32, 34, 43, 46) in the Central Valley have smaller

σF−stat and higher F-statistic significance rates than the lith/land0Gt versions. Six additional

lith/land models (6, 7, 21, 23, 39, 40) have smaller σF−stat and higher F-statistic significance

rates than the lith/land0Gt versions, but the σF−stat values are larger than the median F-

statistic values. Model 35 has a smaller σF−stat for lith/land than for lith/land0Gt with a

high F-statistic significance rate of 99.7% for both versions. Five models (8, 13, 20, 24, 29)

have larger or equal σF−stat values and smaller or equal significance rates for lith/land versus

lith/land0Gt. Twelve models (1, 2, 14-16, 22, 27, 31, 33, 37, 44, 45) have larger σF−stat for

lith/land than for lith/land0Gt, but only four of those models (2, 14, 44, 45) have σF−stat

values smaller than the F-statistic in both cases. The nine remaining models (5, 11, 12,

18, 19, 30, 36, 38, 42) have σF−stat values at least two orders of magnitude larger than the

median F-statistic value in both lith/land and lith/land0Gt versions, with the exception of

lith/land0Gt model 12.

In the High Plains, the average number of observation months N and σN are the same

between lith/land0Gt and lith/land for all regimes. Again, the number of observations

during the GRACE period in the High Plains are low, with average N between 1 and 33.7
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out of 132 possible months. Seven lith/land models (3, 16, 18, 25, 27, 31, 33) have higher

median Ry,ŷ values and significance rates than the lith/land0Gt counterparts. Ten lith/land

models (6, 14, 15, 17, 19, 20-23, 26) have smallerRy,ŷ and lower significance rates compared to

the lith/land0Gt versions. Two of the remaining models, 7 and 28, have lower lith/land Ry,ŷ

values with significance rates that stay the same and increase, respectively. The remaining

three models (1, 4, 5) have an average N between 1 and 1.76 months, and therefore a value

of Ry,ŷ can not be quantified. These three models will be ignored for this portion of the

analysis.

Nine High Plains lith/land models (3, 16, 18, 22, 23, 25, 27, 31, 33) have smaller me-

dian rmsey,ŷ values compared to lith/land0Gt, with reductions ranging from 0.42 (lith/land

rmsey,ŷ = 3.56) for model 27 to 123.1 (lith/land rmsey,ŷ = 892.6) for model 3. The other

thirteen lith/land models (1, 4-7, 14, 15, 17, 19-21, 26, 28) have increased rmsey,ŷ compared

to the lith/land0Gt versions by between 1.4 for model 7 to 834.6 for model 20. Only two

models (20, 27) have smaller median meanbiasy,ŷ magnitudes for lith/land of -41.03 and

1.36e-10 respectively than for the lith/land0Gt versions. The remaining twenty models have

larger magnitude meanbiasy,ŷ for lith/land with values between 4.06 for model 14 and 1.37e4

for model 3.

High Plains model 25 is the only model that has a larger F-statistic value and smaller σF−stat

of 4.77 (σF−stat = 2.07) in lith/land versus 3.49 (σF−stat = 2.22) in lith/land0Gt, suggesting

more strongly against the constant model with lower variability of model fit. The F-statistic

and σF−stat increase from the basic lith/land0Gt for model 18 from 3.96 (σF−stat = 2.74) to

4.40 (σF−stat = 3.38) for lith/land. All other models have a σF−stat value larger than the

F-statistic value in both lith/land0Gt and lith/land versions.

In the Central Valley, five lith/land models (6, 16, 22, 25, 40) have higher β0 significance

rates than in lith/land0Gt between 95.0% and 100%. Twenty-seven lith/land models (1,

3, 6-13, 16, 18, 20, 22, 23, 25, 26, 28, 29, 31-33, 35, 38-40, 43) have higher βx1 significance
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rates than in lith/land0Gt between 1.99% and 100%. Twenty-three lith/land models (1-3,

6, 8-12, 16, 18-23, 28, 31-34, 39, 40) have higher βx2 significance rates than in lith/land0Gt

between 2.33% and 100%. Nineteen lith/land models (1, 3, 6-8, 10, 18, 20, 23, 25, 26, 28,

31-34, 39, 43, 44) have higher βx21 significance rates than in lith/land0Gt between 6.12% and

97.8%. Nineteen lith/land models (1, 3, 6, 8, 10, 12, 15, 20, 23, 25, 27, 31, 32, 33, 34, 35, 38,

39, 44) have higher βx1x2 significance rates than in lith/land0Gt between 7.81% and 95.08%.

The intention of comparing lith/land0Gt models to lith/land models is to determine whether

including dSubsurfaceSy terms improves TDS characterization models. Only Central Valley

lith/land model 2 has a βx3 value larger than iqrβx3 of 0.0015 and 2.5e-4 respectively, and a

high significance rate of 77.1% occurring in 14% of runs. No other lith/land models have βx3

values on reasonable magnitudes or that are larger than iqrβ
x23

and a 70% significance rate.

Models 9, 23, 38, and 39 have high βx23 , βx1x3 , and βx2x3 significance rates for lith/land, but

all interquartile ranges are over 1070 in magnitude. Models 19 and 21 have βx2x3 significance

rates over 70% with values of -0.0359 (iqrβx2x3 = 0.0064) and 0.0016 (iqrβx2x3 = 4.05e-4)

respectively.

In the High Plains, ten lith/land models (6, 7, 14, 15, 17, 19, 20, 21, 22, 27) have higher β0

significance rates than in lith/land0Gt between 51.3% and 93.8%. Fifteen lith/land models

(6, 7, 14-16, 19-21, 23, 25-28, 31, 33) have higher βx1 significance rates than in lith/land0Gt

between 14.9% and 79.6%. Seven lith/land models (6, 16, 23, 25, 26, 28, 31) have higher βx2

significance rates than in lith/land0Gt between 8.6% and 65.5%. Nine lith/land models (6,

16, 18, 23, 25, 26, 28, 31, 33) have higher βx21 significance rates than in lith/land0Gt between

16.2% and 66.5%. Six lith/land models (3, 6, 18, 25, 28, 33) have higher βx1x2 significance

rates than in lith/land0Gt between 6.9% and 41.2%.

Only High Plains lith/land models 26 and 31 have βx3 terms with significance rates of at

least 70% of -0.0351 (iqrβx3 = 0.0166) and -0.05 (iqrβx3 = 0.0187) respectively. No other

dSubsurfaceSy terms have significance rates of at least 70% in the High Plains lith/land
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Table 3.10: Summary of model prediction statistics for lith/land0Gt and lith/land regime
models over the GRACE period, excluding and including dSubsurfaceSy as a potential
predictor respectively. Reported values are a median of the 1,000 Monte Carlo resampling
runs. Units for rmseyv ,ŷp and meanbiasyv ,ŷp are mg/L.

Central Valley High Plains
Statistic lith/land0Gt

2
lith/land 2 lith/land0Gt

35
lith/land
35

lith/land0Gt
31

lith/land
31

Ryv ,ŷp (%
small p)

0.2159
(0.446)

0.2756
(0.811)

0.279
(0.751)

0.2579
(0.746)

0 (0.005) 0.2529
(0.076)

rmseyv ,ŷp 33.8 34.45 184.7 189.25 97.6 110.8
meanbiasyv ,ŷp 28.6 32.46 79.8 132.1 41.1 73.1

models.

In the Central Valley, fourteen lith/land models (2, 3, 6, 12, 15, 21, 26, 27, 33, 37, 39, 44-46)

have larger median Ryv ,ŷp values and larger significance rates than the lith/land0Gt versions.

Three models (19, 23, 25) have larger Ryv ,ŷp values for lith/land than lith/land0Gt, but have

smaller significance rates. Twelve models (1, 7, 9, 13, 16, 20, 28, 29, 31, 34, 40, 43) have

larger Ryv ,ŷp values but smaller significance rates for lith/land versions. Eight models (8, 10,

18, 24, 32, 35, 36, 38) have smaller or equal Ryv ,ŷp values and smaller or equal significance

rates for lith/land compared to lith/land0Gt. The five remaining models (5, 14, 22, 30, 42)

have significance rates of Ryv ,ŷp of 0 for both lith/land and lith/land0Gt versions.

Seven Central Valley lith/land models (16, 22, 26, 30, 37, 40, 46) have smaller median

rmseyv ,ŷp values than the lith/land0Gt versions albeit small, with the largest reduction for

model 22 of 15.15. Model 36 has the same median rmseyv ,ŷp for lith/land and lith/land0Gt

of 1.2e3 mg/L. The remaining thirty-five models (1-3, 5-15, 18-21, 23-25, 27-29, 31-35, 38, 39,

42-45) have larger rmseyv ,ŷp for lith/land than lith/land0Gt, with four models (9, 23, 38, 39)

having unrealistic rmseyv ,ŷp for lith/land on the order of 1076. Ten models (3, 5, 7, 10, 11,

13, 16, 31, 34, 37) have smaller meanbiasyv ,ŷp magnitudes for lith/land than lith/land0Gt,

with improvements between 0.52 for model 31 and 24.3 for model 5. Model 3 is the only

model with an improved meanbiasyv ,ŷp to switch signs, going from 43.61 in lith/land0Gt to
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-14.15 in lith/land. The remaining thirty-two models have larger meanbiasyv ,ŷp magnitudes

for lith/land than lith/land0Gt, with four models (9, 23, 38, 39) having unrealistic values

for lith/land on the order of 1076.

In the High Plains, only models 26 and 31 have median Ryv ,ŷp values improve from 0.0015

(2.8% significance) and 0 (0.5% significance) for lith/land0Gt to 0.0372 (3.9% significance)

and 0.2529 (7.6% significance) for lith/land. The remaining models have weakened Ryv ,ŷp

magnitudes for lith/land versus lith/land0Gt. Only two models (15, 22) have reduced

rmseyv ,ŷp from lith/land0Gt to lith/land, with model 15 decreasing from 280.0 to 235.84,

and model 22 from 254.88 to 214.64. The remaining twenty models have increased rmseyv ,ŷp

from lith/land0Gt to lith/land. Nine models (1, 7, 14, 15, 21, 22, 23, 25, 27) have reduced

median meanbiasyv ,ŷp magnitudes from lith/land0Gt to lith/land between 6.15 for model 27

and 131.5 for model 15. Thirteen models (3-6, 16-20, 26, 28, 31, 33) have increased median

meanbiasyv ,ŷp magnitudes from lith/land0Gt to lith/land between 17.24 for model 19 and

6.9e7 for model 28.

3.5 Discussion

It is clear that some models are unrealistic with median statistics on very large orders of

magnitude, specifically the Central Valley lith/land0 regime models 9, 23, and 39, and

lith/land regime models 9, 23, 38, and 39. These regimes represent small proportions of the

total area, between 0.246% for model 23 and 2.4% for model 38, but are not the smallest

areal representation compared to other regimes. Model 23 has relatively few average months

of in situ observations of 17.55 during the GRACE period, and models 9, 38, and 39 have a

moderate number of average months of in situ observations between 66.27 and 80.14, so it is

likely that the available data are not sufficient to accurately constrain average TDS. These

models will be excluded from the remaining analysis.
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3.5.1 Regime models

To determine whether regime categorization is advantageous, we first compare the basic

model0 against the basic regime lith/land0 models for the full in situ record.

In the Central Valley, model0 and lith/land0 35 have the highest significance rates of cor-

relation between validating TDS subsets and predicted TDS over Monte Carlo resampling,

but the median Ryv ,ŷp value for model0 is larger than lith/land0 35 suggesting the basin-wide

model better captures variability. Other lith/land0 models have higher median Ryv ,ŷp values

than model0 in the Central Valley such as lith/land0 25 and 27, but with much lower signifi-

cance rates it is prudent to scrutinize the predictive capabilities of such models. Overall, the

median Ryv ,ŷp values of model0 and lith/land0 models are generally low, indicating additional

processes or parameters are important to average TDS characterization, as is expected.

The basic model0 has a small median rmseyv ,ŷp between validating TDS and predicted TDS,

with only lith/land0 13 and 28 having smaller median values, suggesting model0 is more

accurately constrained than most lith/land0 models. This is supported by the large average

N for model0 compared to lith/land0. The median meanbiasyv ,ŷp magnitude for model0 is

positive and small, indicating a small overestimation of average TDS. Models 13 and 25 have

smaller median meanbiasyv ,ŷp magnitudes than model0, and models 28 and 35 are relatively

small on the same order of magnitude, all of which are positive.

For the full Central Valley in situ record, the basin-wide model0 is better constrained than

the lith/land0 models, and so more accurately predicts average TDS with only ground-based

groundwater levels and categorical season as explanatory variables. In the overwhelming

majority of runs, the model form of Central Valley model0 is a function of the intercept, x21,

and x1x2 terms. The intercept is significant at the 1% level for all runs, and βx21 and βx1x2

are significant at the 5% level for most runs.
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In the High Plains, model0 has the highest significance rate of correlation between validating

TDS subsets and predicted TDS over Monte Carlo resampling. Two lith/land0 models, 1

and 22, have higher median Ryv ,ŷp values than model0, but even with the highest significance

rates of the High Plains lith/land0 models, they are much lower than the 99% significance

rate of model0. Two other lith/land0 models, 6 and 25, have higher median Ryv ,ŷp values

than model0, but again have relatively low significance rates. As with the Central Valley, the

overall low median Ryv ,ŷp values suggest additional information is necessary to characterize

average TDS.

Basin-wide model0 in the High Plains has a moderately small median rmseyv ,ŷp between

validating TDS and predicted TDS. All five of the lith/land0 models with smaller median

rmseyv ,ŷp values have relatively few months of observations, with lith/land0 17 and 27 having

fewer than 10 and models 7, 18, and 25 with average N between 77 and 103. Similarly, the

eight models with smaller median meanbiasyv ,ŷp magnitudes than model0 have relatively

small N , with lith/land0 4, 27, and 33 having average N fewer than 50, and lith/land0 5,

6, 7, 25, and 28 having average N between 77 and 130 over the entire record. The two

lith/land0 models with the highest average N in the High Plains, 22 and 31, have high

rmseyv ,ŷp compared to model0, but comparable meanbiasyv ,ŷp magnitudes.

For the full High Plains in situ record, basin-wide model0 has at least twice as many months

of observations than any lith/land0 model, and is therefore better constrained than the

lith/land0 models given in situ water levels and categorical season as predictor variables. In

the large majority of runs, the High Plains model0 equation is a function of the intercept,

x1, x2, and x21 terms. The intercept term is significant at the 1% level for all runs. The βx1

term is significant at the 1% level for all runs in which the term is present (present in 94.7%

of runs). The βx2 term is significant at the 5% level for most (90.4%) runs when present

(present in 92.8% of runs). The βx21 term is present in every run, and is significant at the

1% level for all runs.
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Next, we compare basin-wide modelG0 against the lith/land models to determine whether

regime categorization improves models which include GRACE dSubsurfaceSy .

In the Central Valley, the two lith/land models (2, 35) covering the largest fractional ar-

eas have prediction statistics comparable to those of modelG0. The lith/land 35 model

has a comparable median Ryv ,ŷp value and significance rate to modelG0, but larger median

rmseyv ,ŷp and median meanbiasyv ,ŷp . The lith/land 2 model prediction statistics are all

improved over the basin-wide model.

It is difficult to determine whether there are improvements in average TDS in the High Plains

modelG0 compared to lith/land models with so few observations during the GRACE period.

The modelG0 prediction statistics are not particularly high, with very small median Ryv ,ŷp

value and significance rate, and relatively large median rmseyv ,ŷp and median meanbiasyv ,ŷp .

Over the entire in situ record, regime categorization does not appear to improve upon the

basin-wide models in either the Central Valley or High Plains with only groundwater levels

and categorical season as predictors. When focusing on the GRACE period and including

dSubsurfaceSy as a potential predictor, categorizing by regime results in Central Valley

lith/land model 2 more accurately predicting TDS than the basin-wide modelG0, having

all model prediction statistics improve. The lith/land model 35 is comparable to modelG0,

predicting TDS with slightly less accuracy. Central Valley regime 2 is alluvium/developed,

covers the largest percent area, and is centrally located running through the center of the

study area. Regime 35 is sandstone/developed, covers the second-largest percent area in

the Central Valley, and is mostly located on the southwestern border with some excep-

tions, always adjacent to at least one other sandstone/developed polygon. It is likely that

some combination of these factors explain the prediction improvement. Covering the largest

percent areas likely increases the number of in situ observations available to constrain the

model. Dominant lithology types alluvium and sandstone imply a generally larger grain size,

which suggests a larger porosity and permeability and therefore hydraulic connectivity to
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the surface. The developed dominant land use may suggest a link to anthropological runoff.

3.5.2 GRACE dSubsurfaceSy
as a predictor

The effects of including dSubsurfaceSy as a possible predictor of large-scale TDS are isolated

by comparing basin wide models model0Gt and modelG0, each ignoring lithology, land use

regime classifications.

Due to the sharp reduction of in situ TDS observations in the High Plains leading up to and

during the GRACE period, it is difficult to accurately constrain the basic model0Gt, let alone

quantify improvement or degradation attributed to including dSubsurfaceSy in modelG0.

Instead, we use the opportunity to compare relative variability. While the fit statistics

of model0Gt suggest a moderate fit considering there are fewer than half of the possible

months with a ground-based value, inconsistency of significant predictor terms selected and

the poor prediction statistics values indicate the inability to accurately constrain the basic

model0Gt in the High Plains given the available data. Including dSubsurfaceSy as a potential

predictor only increases model variability. Summarized in Table 3.8, the differences in average

coefficient terms and relative standard deviations between model0Gt and modelG0 succinctly

demonstrate the additional variability introduced by including dSubsurfaceSy . With the

exceptions of the categorical season and dSubsurfaceSy linear terms, the term coefficient

values and the standard deviations of modelG0 are many orders of magnitude larger than

the model0Gt counterparts.

Including dSubsurfaceSy as an additional predictor in the Central Valley suggests an im-

provement in characterizing basin-averaged TDS. The fit and prediction statistics of modelG0

are generally an improvement over those of model0Gt. The modelG0 form is somewhat more

variable in which terms are present, but the average coefficient values of shared terms in

modelG0 are within one standard deviation of the estimate in model0Gt, as shown in Table
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3.8. It is also worth noting that the coefficient standard deviations in modelG0 are each

one order of magnitude smaller than the average coefficient estimate. Small standard devia-

tions of coefficient values and a smaller standard deviation of F-statistic values for modelG0

suggest low variability of model fit in the Central Valley.

To determine whether including dSubsurfaceSy as a predictor of TDS improves lithology,

land use regime models, the basic regime models limited to the GRACE period but ex-

cluding dSubsurfaceSy , lith/land0Gt, are compared to the full regime models including

dSubsurfaceSy as a potential predictor, lith/land.

Again, the limited availability of High Plains TDS observations during the GRACE period

pose an additional challenge to determining whether or not including dSubsurfaceSy to

regime models improves TDS prediction. Only High Plains lith/land models 26 and 31 have

improved correlations between TDS prediction and validating TDS, but the low significance

rates indicate these improvements are not likely reliable. Only models 15 and 22 have smaller

median rmseyv ,ŷp and median meanbiasyv ,ŷp when including dSubsurfaceSy as a possible

predictor in the High Plains.

Including dSubsurfaceSy as a potential predictor in Central Valley lith/land models im-

proves TDS prediction accuracy for models 37 and 46, with all model prediction statistics

improving over the lith/land0Gt versions. Model 16 had smaller median rmseyv ,ŷp and me-

dian meanbiasyv ,ŷp values and a larger Ryv ,ŷp , but the reduced significance rate of Ryv ,ŷp for

the lith/land version implies the correlation is less reliable. Central Valley models 37 and

46 cover 4.34% and 1.63% of the total area, respectively, and have moderate to low average

numbers of observation months of 69.97 and 36.2 respectively. The two models covering the

largest area in the Central Valley (2, 35) have larger Ryv ,ŷp and larger or comparable corre-

sponding significance values for the lith/land versions, but slightly larger median rmseyv ,ŷp

values and larger median meanbiasyv ,ŷp values. Although the TDS predictions improve com-

pared to validating TDS data for models 2 and 35, the increased rmseyv ,ŷp and meanbiasyv ,ŷp
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suggest that including dSubsurfaceSy introduces additional variability to the models.

3.6 Conclusions

Over the full in situ record and excluding GRACE dSubsurfaceSy , the basin-wide model0

is better constrained than the lith/land0 models in the Central Valley, having the largest

number of observational months for model construction, the highest correlation of predicted

and validating TDS with the most consistent statistical significance, and among the lowest

rmseyv ,ŷp and meanbiasyv ,ŷp . This is expected, as there is more data available to constrain

the basin-wide model0 than the lith/land0 models.

During the GRACE period, the centrally located Central Valley alluvium/developed model

including dSubsurfaceSy more accurately predicts TDS concentrations than the basin-wide

modelG0. Covering the largest proportion of the study area, the alluvium/developed model

likely has more in situ observations for model construction than the other lith/land models.

The developed land use category includes developed open space (largely lawn grasses), low,

medium, and high intensity as defined by the National Land Cover Database, with impervi-

ous surfaces accounting for less than 20% to 100% of the total cover (Homer et al. [2015]).

The specific regime categorization implies hydraulic connectivity between the surface and

subsurface, and suggests a link between average TDS and anthropogenic runoff in these

areas.

Including GRACE-derived dSubsurfaceSy as a potential predictor of TDS in groundwater

introduces additional variability into nearly all regime model predictions. This may be due to

regimes areas well below the recommended spatial extent of gridded GRACE products (Lan-

derer and Swenson [2012]). However, a GRACE product can provide additional information

to characterizing TDS in groundwater on a large spatial scale. Including dSubsurfaceSy as

a potential predictor of TDS in the basin-wide Central Valley modelG0 improves accuracy
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of TDS prediction compared to the basin-wide model excluding dSubsurfaceSy , with low

variability of model fit.

Generalized linear models can be powerful tools of characterizing groundwater quality, as in

Shamsudduha et al. [2015]. But extensive, readily available information on hydrogeologic

settings and a robust groundwater quality monitoring network are necessary to accurately

constrain models and accurately attribute constituent events.

Future directions of this work may include studying TDS in groundwater for specific regime

types, which may confirm (or reject) the possible explanations for improved model prediction

given here. Future work may also pursue characterizing TDS in time as well as space, rather

than just through time as in this work.
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Chapter 4

Evaluation of two spatial analysis approaches

on well and GRACE data

4.1 Introduction

In the previous chapter, Thiessen polygons in the Central Valley and High Plains aquifers are

categorized by dominant lithology and dominant land use cover pairs to build regime models

of average TDS concentrations. As noted in section 3.3.3, lithology, land use regimes are not

restricted to adjacent Thiessen polygons. So redistribution of dSubsurfaceSy into polygons

and the subsequent categorization into regimes ignore the spatial covariance inherent in the

GRACE gridded product (see section 1.2.1).

This chapter explores two approaches to address the spatial covariance caveat of the previous

chapter. The first approach is based on a step of pre-processing gridded GRACE data

which greatly increases the spatial covariance. This approach is referred to as the GRACE

footprint. The second approach, empirical orthogonal function (EOF) decomposition, is

a well-documented method of analyzing spatial and temporal variability (Bjornsson and

Venegas [1997], Perry and Niemann [2007], Schmidt et al. [2008], Becker et al. [2010], Crossley

et al. [2012], Scanlon et al. [2012b]).
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4.2 GRACE footprints

4.2.1 Theoretical basis

Pre-processing of the GRACE CSR RL05 level 3 gridded product includes Gaussian filtering

of total water storage anomalies, dS, and the accompanying CLM4 scaling factor for each grid

cell with a radius of 300 km (Landerer and Swenson [2012]). Gaussian filtering effectively

influences the value of one grid cell as dependent on all other values within the 300 km

radius, with the values nearest the grid cell center of interest having the strongest influence.

1◦ × 1◦ grid cells are approximately 111 km × 111 km at the equator, so the 300 km radius

of influence for a 1◦ × 1◦ grid cell includes the area covered by several neighboring grid cells

depending on the latitude. We refer to the 300 km area of influence for a grid cell as the

GRACE footprint.

If each GRACE 1◦ × 1◦ grid cell value is influenced by all values within a 300 km radius, it

stands to reason that in situ observations falling within a grid cell footprint are inherently

part of that GRACE grid cell value. The goal of this experiment is to characterize average

TDS within GRACE footprints as a function of in situ groundwater levels and dS in defining

subbasin areas of interest.

Subbasin Grid cell center TDS sites WL sites
North CV (-122, 40) 10,409 25,717
South CV (-120, 36) 16,456 32,768
North HP (-101, 41) 2,650 14,412

Central HP (-101, 37) 4,813 10,434
South HP (-102, 34) 6,339 12,359

Table 4.1: Summary of GRACE 1◦× 1◦ selected grid cell center coordinates in the Central
Valley (CV) and High Plains (HP) subbasins and the number of in situ well sites within
each footprint over the full in situ record.
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4.2.2 Methods: Footprint of a grid cell

(a) GRACE dS grid cells. (b) Central Valley well sites.

(c) GRACE dS grid cells. (d) High Plains well sites.

Figure 4.1: Maps of 1◦× 1◦ GRACE dS for January 2003, footprint areas, and in situ well
sites for each subbasin in the Central Valley and High Plains.

The High Plains and Central Valley are separated into subbasins based on physical charac-

teristics of local aquifer dynamics and climate (McMahon et al. [2007], Faunt [2009], Scanlon

et al. [2012a]). The High Plains is divided into three subbasins, north, central, and south.

The Central Valley covers a smaller area, divided into two subbasins in the north and south.

A 1◦× 1◦ grid cell nearest the center of each subbasin is selected. The selected grid cells are

chosen to minimize the footprint area overlapping neighboring subbasins and areas outside

of the in situ database aquifer boundaries, to the extent possible. The selected grid cell
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center coordinates are considered the center of each footprint area, summarized in Table 4.1.

The area within a 300 km radius from each grid cell center is determined, shown in Figure

4.1.

Figure 4.1 depicts all grid cells for the Central Valley and High Plains for one month to

illustrate the number of adjacent grid cells within a footprint radius. The dS time series for

each GRACE footprint is simply the calculated dS value of the selected grid cell through

time. All in situ well locations within each footprint are used to calculate monthly values

for that footprint.

The in situ TDS and groundwater level sites located within each footprint area are identified

by longitude and latitude decimal coordinates. For each footprint area, the mean and median

of all ground-based observations occurring in a given calendar month are calculated for the

full available record. Because there are no spatial delineations within each footprint to

calculate area-weighted averages, the median value of in situ observations is taken to reduce

the influence of potential outliers.

4.2.3 Results and discussion

The full in situ period records of the GRACE footprint areas are shown in Figures 4.2 and

4.3 for the Central Valley and High Plains respectively. The differences in groundwater

levels between footprint subbasins is particularly clear, with the y-axis scales in both north

footprints being substantially smaller than those further south. As expected from the climate

gradients from north to south in both the Central Valley and High Plains, groundwater levels

in the southern portions of each area reach deeper than those in the north.

The differences in TDS between subbasins is less clear than groundwater levels. Again, the

northern footprints in both areas have generally smaller TDS concentrations over the full

record, with smaller y-axis scales than the subbasins further south. In the Central Valley,
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Figure 4.2: Complete records of median in situ groundwater levels (WL) in cm below the
land surface (4.2(a), 4.2(b)) and median total dissolved solid concentrations (TDS) in mg/L
(4.2(c), 4.2(d)) for the north and south GRACE footprints in the Central Valley. Note the
different y-axes scales for groundwater levels, and the semi-log axes for TDS.

median TDS in the north and south footprints both increase between 2004 and 2014, peaking

under 1,000 mg/L in both subbasins. In the High Plains, median TDS in the central footprint

appears to have the largest peak values occurring around 1964 and 1973. While there are a

relatively large number of basin-wide observations during these periods for the High Plains

(see Figure 2.2), the number of TDS observations in one month over the full record is

generally under 200 with few exceptions, so it is possible that the median TDS peaks are

the result of only a few observations. It is worth noting that there is some overlap between

each of the subbasin footprint areas and therefore well observations in both locations.

Over the full record, the Kendall tau rank correlations between median TDS and median

groundwater levels are small in magnitude, as summarized in Table 4.2. The correlations

between TDS and groundwater levels for both the north and south Central Valley footprints

over the full record are significant at the 1% level. Negative tau values suggest TDS concen-

trations increase with shallowing groundwater levels, likely indicating the influence of soil
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Figure 4.3: Complete records of median in situ groundwater levels (WL) in cm below the
land surface (4.3(a), 4.3(c), 4.3(e)) and median total dissolved solid concentrations (TDS)
in mg/L (4.3(b), 4.3(d), 4.3(f)) for the north, central, and south GRACE footprints in the
High Plains. Note the different y-axes scales for groundwater levels, and the semi-log axes
for TDS.

105



(a) N Central Valley (b) S Central Valley

Figure 4.4: Scatter plots of median TDS in mg/L versus median groundwater level (WL)
in cm below the land surface for the north and south GRACE footprints in the Central
Valley separated by 3 month season. Colors indicate year, shapes indicate month. Note the
different axes scales.

(a) N High Plains (b) S High Plains

Figure 4.5: Scatter plots of median TDS in mg/L versus median groundwater level (WL)
in cm below the land surface for the north and south GRACE footprints in the High Plains
separated by 3 month season. Colors indicate year, shapes indicate month. Note the different
axes scales.
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salinization and irrigation (Deverel and Gallanthine [1989], Dubrovsky et al. [1993], Bexfield

and Jurgens [2014]).

Correlations for the High Plains north and south footprints are significant at the 5% level.

Although small in magnitude, the relative signs of tau for the north and south footprints

are indicative of the hydrogeologic setting of each subbasin. The positive tau in the north-

ern High Plains suggests TDS concentrations in groundwater increase, albeit slightly, with

increasing groundwater level depth below the surface, as would be expected of a system

relying more heavily on precipitation and surface water than pumping groundwater (McMa-

hon et al. [2007], Gurdak et al. [2009]). As in the Central Valley, the negative sign of tau

in the southern High Plains suggests shallower groundwater has a higher concentration of

TDS, likely due to salinization, fertilizer application, and irrigation (McMahon et al. [2007],

Chaudhuri and Ale [2014a,b]).

To determine whether any seasonal relationships exist, scatter plots of median TDS versus

median groundwater level for the north and south footprint areas are shown in Figures 4.4

and 4.5, where each panel is a three-month season and colors indicate year. If a seasonal

relationship existed, a pattern of median TDS against median groundwater level may be

expected, and could change over time. In the Central Valley, there are no apparent patterns

that could suggest a relationship as each of the panels have a spread of median groundwater

levels and a generally limited range of median TDS concentrations. Nor is a change in

relationship over time apparent, as there is no discernible pattern of color.

In the High Plains, both the north and south footprint areas show a general deepening

of median groundwater levels over time, with more yellow points associated with larger

magnitude median groundwater levels (in cm below the land surface) on the y-axes. An

analogous pattern for median TDS over time is not apparent in most panels shown in Figure

4.5, but rather tends to stay within the same range as median groundwater levels deepen

over time. In the summer months of July, August, and September (JAS), the north High
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Plains footprint shows about seven points occurring after the year 2000 which have median

TDS concentrations exceeding 1,000 mg/L. This appears to be a deviance from the general

upper bound median concentration for the northern High Plains, with a few exceptions in

the winter (JFM) and spring (AMJ) panels also occurring after the year 2000. The deviance

from prior summer seasons suggests either a potential change in the median TDS-median

groundwater level relationship, or more likely a specific event.

Subbasin TTDS,WL (p-val) TTDS,dS (p-val) TWL,dS (p-val)
North CV -0.1304 (5.97e-8) 0.091 (0.123) -0.419 (2.6e-7)
South CV -0.1475 (2.5e-11) 0.059 (0.32) -0.0997 (0.09)
North HP 0.0798 (0.02) -0.083 (0.56) 0.059 (0.31)

Central HP 0.0044 (0.88) 0.067 (1) 0.012 (0.84)
South HP -0.0594 (0.05) 0.20 (0.82) -0.062 (0.29)

Table 4.2: Kendall tau rank correlations and associated p-values of median monthly in situ
data for GRACE footprints. TTDS,WL is the correlation for the median TDS and median
WL for the full period, TTDS,dS is for the median TDS and dS for the GRACE period, and
TWL,dS is for the median WL and dS for the GRACE period.
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Figure 4.6: GRACE-period records of dS in cm, median in situ groundwater levels (WL) in
cm below the land surface, and median total dissolved solid concentrations (TDS) in mg/L
for the north and south GRACE footprints in the Central Valley. Note the different y-axes
scales.

Focusing on the GRACE period between January 2003 and December 2014, as expected,

there are no statistically significant correlations between median TDS and GRACE dS, as
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Figure 4.7: GRACE-period records of dS in cm, median in situ groundwater levels (WL) in
cm below the land surface, and median total dissolved solid concentrations (TDS) in mg/L
for the north, central, and south GRACE footprints in the High Plains. Note the different
y-axes scales.

shown in Table 4.2. Median TDS appears to increase gradually over the GRACE period in

both subbasins of the Central Valley, but as expected are not directly related to total storage

anomalies. As discussed in section 2.2.1 and shown in Figure 2.2, TDS observations in the

High Plains decline dramatically before the GRACE period. The central and south High

Plains footprints have only about five months of TDS values between 2003 and 2014 despite

having more TDS well sites than the north footprint (see Table 4.1). Although reported in

Table 4.2, drawing conclusions about the relationship between median TDS and groundwater

levels or dS during the GRACE period is impractical.

There appears to be some agreement between dS and median groundwater levels in the

northern Central Valley during the GRACE period in Figure 4.6(a) beginning around 2006,

supported by a correlation significant at the 1% level. California experienced periods of

droughts beginning around 2007, with decreased precipitation, and therefore snow melt and

stream flow. As expected, an increased reliance on pumping groundwater in response to

drought conditions result in groundwater level declines during this period, and are reflected
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in dS in the north Central Valley. The southern Central Valley dS fluctuates less than the

north with less precipitation and stronger dependence on surface water deliveries. The effects

of drought on dS in the southern Central Valley are discernible, particularly in 2007, 2009,

and 2012, but there does not appear to be a similar fluctuation in median groundwater levels

in Figure 4.6(b) until 2014 when both dS and groundwater levels decline. A notable pattern

of groundwater levels in the southern Central Valley is a sharp decline near the end of each

calendar year. This is very likely due to the reduction of surface water deliveries, which

generally taper off in volume in September or October (California Department of Water

Resources [b]), driving a return to groundwater pumping.

There are no apparent correlations between median groundwater level and dS in the High

Plains subbasins during the GRACE period, with small tau magnitudes and large associated

p-values. Median groundwater levels in the north and central High Plains do not appear to

reflect any patterns shown in dS, but rather fluctuate with some regularity, likely due to

stronger dependence on summer monsoon precipitation and available surface water resources

in these subbasins. Median groundwater levels in the southern High Plains are generally

deeper than in the north and central subbasins, with the shallowest median level around 3,000

cm below the land surface. The monthly median groundwater level in the southern High

Plains (Figure 4.7(c)) is noisy, but the upper and lower limits appear to deepen particularly

after 2011, when the value of dS is almost consistently negative.

4.3 EOF analysis

4.3.1 Theoretical basis: Spatial and temporal analysis

Empirical orthogonal function (EOF) decomposition is a statistical analysis method which

can isolate both temporal and spatial patterns. EOF analysis is a well-documented approach
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in the Earth sciences (e.g. Deverel and Gallanthine [1989], Bjornsson and Venegas [1997],

Perry and Niemann [2007], Taschetto and England [2009], Park and Sohn [2010], Dewitte

et al. [2012]), performed on GRACE total water storage anomalies (Schmidt et al. [2008],

Becker et al. [2010]), and has been used to bridge spatial scales between ground observations

and GRACE data (Crossley et al. [2012], Scanlon et al. [2012b]).

EOF analysis is performed on TDS, groundwater levels, and GRACE dSubsurface each

as individual fields, rather than on the coupled variability of two fields to better under-

stand large-scale TDS variability and identify potential similarities in groundwater levels

and dSubsurface. Coupled field analyses are challenging to interpret because only modes of

variability in which the two fields are strongly coupled are identified (Bjornsson and Venegas

[1997]). Coupled field analysis of TDS with groundwater levels or dSubsurface may mis-

direct or entirely overlook large-scale variability patterns of TDS in space and time, so this

work will focus on analysis of individual fields.

The goal of this experiment is to determine whether similarities in variability patterns of

ground-based TDS in groundwater and GRACE dSubsurface can be identified using EOF

decomposition, which may be indicative of potential underlying physical relationships. EOF

analysis requires that observations are available at the same locations for every time step

(Bjornsson and Venegas [1997], Perry and Niemann [2007]). As discussed in section 2.2.1

and shown in Figure 2.2, the spatial and temporal availability of the compiled TDS data is

much more variable in the High Plains than the Central Valley. The remaining analysis will

therefore focus only on the Central Valley. Unfortunately, results of an EOF decomposition

are domain-specific, so any potential pattern similarities or physical relationships between

TDS and GRACE dSubsurface can not necessarily be translated to other areas of interest.
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4.3.2 Methods

To meet the requirement that observations are present at the same locations for every time

step, the in situ TDS and groundwater level data are spatially interpolated to 1◦×1◦ grid cells

using inverse distance weighting, as described in section 2.3.3 (Bjornsson and Venegas [1997],

Perry and Niemann [2007], Sahoo et al. [2016], Richey et al. [2016], Thomas et al. [2016]). The

gridded TDS and groundwater level data are trimmed to the GRACE period, January 2003

to December 2013, which fortunately is the period when the spatial extent of the gridded

TDS interpolant is consistently largest. Gridded TDS and water level data are linearly

interpolated through time only if three or fewer consecutive months are absent for a given

grid cell. The data are then trimmed in space to maintain only grid cells that have a value

for each of the 132 possible GRACE months. The gridded TDS and groundwater level data

are then converted into spatial anomalies. GRACE dSubsurface is calculated as described

in section 2.2.2 for the Central Valley. Anomalies of in situ TDS, groundwater levels, and

dSubsurface are each regridded to two-dimensions, time and space, on which the EOF

analysis is performed. The resulting principal components and eigenvector spatial patterns

are then converted back to the original spatial and temporal dimensions. We perform the

analysis for the first three modes, which by definition account for the most variability.

4.3.3 Results and discussion

Figure 4.8 shows the first three modes of principal components of TDS, groundwater levels,

and dSubsurface, with Figure 4.9 showing the corresponding first three modes of eigenvector

spatial patterns. The eigenvector spatial patterns represent a standing oscillation with the

principal components representing that oscillation through time for the corresponding mode

(Bjornsson and Venegas [1997]). The areas in Figure 4.9 with the largest magnitude values

are where the standing oscillation fluctuates most for that mode.
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Figure 4.8: Principal components of the first 3 modes of gridded in situ TDS anomalies,
groundwater levels, and GRACE dSubsurface in the Central Valley. Note that PCs denoted
by * have y-axes on the order of 104.
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Figure 4.9: Eigenvectors of the first 3 modes of gridded in situ TDS anomalies, groundwater
level anomalies, and GRACE dSubsurface in the Central Valley.
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Figure 4.10: Spatial distribution of homogeneous variance for the first 3 modes of TDS and
groundwater levels in the Central Valley. Colors represent percent (%) of variance accounted
for by the relevant mode.

Over 90% of the total variance of TDS is captured in the first two modes for the GRACE

period. The first mode of EOF decomposition explains 51.4%, 92.6% and 96.1% of total

variance for in situ TDS, in situ groundwater levels, and dSubsurface respectively. The

second mode explains 42.4%, 5%, and 2.6% of total variance respectively. The third mode

explains 6.1%, 2.2%, and 1.2% of the total variance respectively.

Homogeneous maps of variance in Figure 4.10 show the spatial distribution of the percent of

variance accounted for by the respective mode (Bjornsson and Venegas [1997]). The variance

is calculated as the squared correlation of the principal components with each grid cell of
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Figure 4.11: Heterogeneous variance of TDS predictable by the first three modes of ground-
water levels and dSubsurface in the Central Valley. Colors represent percent (%) variance.
Note different color scales.

values within the same field, reported as a percent. For example, for the first mode of TDS,

the correlation between the first mode of principal components and each TDS grid cell value

over time is calculated and squared to produce the percent variance explained by the first

mode shown in Figure 4.11(d).

As Figures 4.11(d), 4.11(e), and 4.11(f) show, only three grid cells account for the most

variance of TDS in the Central Valley during the GRACE period in the first three modes.

The three grid cells accounting for the most variance of TDS are the southwestern-most

grid cells of the study area along the San Joaquin Valley. This suggests the majority of
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TDS variability during the GRACE period is likely linked to the soil salinization in the San

Joaquin Valley (Deverel and Gallanthine [1989], Andrews et al. [2002], Letey et al. [2002],

Pitman and Läuchli [2002], Schoups et al. [2005]) and selenium derived from the marine

sedimentary Coastal Ranges (Presser and Ohlendorf [1987], Deverel and Gallanthine [1989],

Presser and Swain [1990], Dubrovsky et al. [1993], Letey et al. [2002]).

As with TDS, very few grid cells account for most of the variance of groundwater levels in the

Central Valley during the GRACE period, as shown in Figures 4.11(a), 4.11(b), and 4.11(c).

The variance of the first mode, which as previously stated accounts for 92.6% of the total

variance, is almost entirely explained by one grid cell on the eastern boundary near the Sierra

Nevada ranges, which experience high annual variability of precipitation (Anderson [2016]).

Groundwater level variability in this area are likely highly sensitive to reductions in snow

melt water. The northern and southern most grid cells account for the majority of variance

in the second and third modes, respectively. The northern Central Valley experiences higher

average annual precipitation and runoff, likely reflected in the second mode. The southern

Central Valley is heavily reliant upon surface water imports which are often reduced in dry

years, likely reflected in the third mode.

Heterogeneous variance maps, shown in Figure 4.11, are similar to the homogeneous versions,

but calculate variance as a function of the principal components of one field and the grid cell

values of a different field to estimate how well the values of the second field can be predicted

if the principal components of the first field are known (Bjornsson and Venegas [1997]). The

maps in Figure 4.11 show the percent variance (%) of TDS that can be predicted by the first

three principal components of groundwater levels and dSubsurface. TDS concentrations

are unlikely to be accurately predicted by any of the first three modes of either groundwater

levels or dSubsurface, as indicated by the very small percent values in Figure 4.11, all well

below 10%.
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4.4 Conclusions

The GRACE footprint areas show potential for characterizing TDS with a GRACE product.

The complex and heavily managed hydrologic system in the Central Valley makes it difficult

to accurately quantify a relationship between TDS, groundwater levels, and total water

storage anomalies. The moderately less complex High Plains subbasins may be more suitable

for future work, provided a substantial volume of groundwater quality observations in time

and space. The database compiled for this work provide large-scale and long-term context

for groundwater levels and TDS concentrations in the Central Valley and High Plains leading

up to the GRACE period.

EOF decomposition is a powerful method of identifying and analyzing dominant variability

patterns in time and space in complex systems. The analysis on TDS suggests the majority of

TDS variability can be explained by the first two modes of decomposition over the GRACE

period, localized in the southern Central Valley known to have selenium infiltration and

soil salinization. Heterogeneous variance maps show the first three decomposition modes of

groundwater levels and dSubsurface are not likely to predict TDS in the Central Valley

during the GRACE period.

Large-scale TDS characterization is challenging, particularly during the relatively short

GRACE period. However, the methods described in this chapter have potential in future

work using a comprehensively monitored groundwater quality parameter with the planned

GRACE follow on mission (GRACE-FO) to characterize large-scale groundwater quality.
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Chapter 5

Conclusions

Groundwater quality has a strong literature background with studies in the US and abroad.

Point and non-point sources of contaminants and processes controlling variability of ground-

water quality, such as influences from agricultural land use or pumping large volumes of

groundwater leading to vertical mixing, are widely studied (e.g. Alley [1993], Charles et al.

[1993], Litke [2001], Lashkaripour et al. [2005], McMahon et al. [2007], Lindsey and Rupert

[2012], Shamsudduha et al. [2015]). The groundwater quality literature generally focuses

on relatively small spatial scales and/or step-wise changes in constituent concentrations

between two periods. The work presented here lays the groundwork for characterizing large-

scale groundwater quality on a more consistent temporal scale and assessing the role of water

storage fluctuations.

The total dissolved solid (TDS) concentration of a groundwater sample of known volume is

the weight of the dried, filtered material. The physical parameter is relatively easy to measure

so a large number of readily available observations is expected compared to constituent

parameters with more intensive measurement procedures such as total nitrogen. TDS has

a straightforward mass balance as there are no potential physical, chemical, or biological

transformations, so the methods described in this work can be applied to other constituents

of interest. TDS concentrations are not region-specific, making the methods explored in

this work applicable to other locations. TDS can include regionally-specific constituents,
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which can be highlighted using the analysis approaches explored here, such as selenium in

the southern Central Valley.

This work explores approaches to characterizing large-scale TDS concentrations in ground-

water, with the ultimate goal of predicting fluctuations in groundwater quality using remote

sensing. First, a database of in situ TDS and groundwater level observations are compiled

for the Central Valley aquifer in California and the High Plains aquifer in the central US,

and preliminary relationships and scaling approaches are evaluated. Next, models predicting

average TDS concentrations over time are constructed as a function of in situ groundwater

levels and categorical season, assessing whether dominant lithology and land use classifica-

tion and/or inclusion of GRACE-derived subsurface storage anomalies, dSubsurfaceSy , as

a potential predictor variable make quantifiable improvements to TDS predictions. Finally,

two spatial analysis approaches are explored, the first examining TDS characterization on

subbasin spatial scales, and the second evaluating regional TDS variability in space and time.

The compiled in situ TDS database is as comprehensive as possible using publicly available

observation records from various national and state agencies following the same sampling

procedures. The database is imperfect as it lacks metadata such as screened well depth

and hydrogeologic information that is not readily available from every sampling source, but

it does provide context of large-scale TDS in groundwater over an extended period. The

long-term in situ TDS and groundwater level data are used throughout this work to assess

TDS characterization and potential influences of various hydroclimatic conditions.

To characterize TDS on large spatial scales, with a particular interest in using NASA’s

GRACE product to explore the role of water storage fluctuations, four scaling approaches are

assessed to bridge point observations with a 1◦ × 1◦ grid. The scaling approaches evaluated

include an average of all points within a 1◦ × 1◦ grid cell, linear interpolation of points

to a 1◦ × 1◦ grid, inverse distance weighting of points to a 1◦ × 1◦ grid, and scaling in

situ points and 1◦ × 1◦ grid cells to constructed Thiessen polygons. The inverse distance
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weighting and Thiessen polygon approaches best represent the variability, spatial extent, and

patterns of observed TDS, suggesting the dynamics of TDS are preserved. Redistribution of

1◦×1◦ gridded GRACE total water storage anomalies and subsurface storage anomalies into

Thiessen polygons does not significantly perturb the basin-wide signal (see Figure 2.12).

TDS models with Thiessen polygons categorized by dominant lithology and dominant land

use regimes do not improve prediction of TDS through time compared to basin-wide mod-

els, both excluding GRACE-derived dSubsurfaceSy as a potential predictor. The effects

of fewer observations to constrain regime models outweigh the potential improvements of

dominant regime classification. Future work may include more comprehensive classifications

incorporating secondary or tertiary lithology and/or land use.

Over the GRACE period, the centrally-located alluvium/developed regime model covering

the largest fractional area in the Central Valley more accurately predicts TDS than the basin-

wide model over the same period, both including dSubsurfaceSy as a potential predictor.

The regime model improvement over the basin-wide model is likely due to some combination

of central location, large area and therefore large number of observations for model constraint,

the implied hydraulic connectivity between the surface and subsurface due to the dominance

of alluvium cover, and the suggested link between average TDS and anthropogenic runoff.

Future work may consider further investigating the potential explanations for improved TDS

prediction for the alluvium/developed regime model in the Central Valley compared to the

basin-wide model offered here.

TDS models including dSubsurfaceSy as a potential predictor generally introduces addi-

tional variability to regime model predictions. The additional variability may be due to the

relatively small regime areas compared to the area recommended for reduced error of grid-

ded GRACE products. However, the basin-wide model in the Central Valley better predicts

TDS when including dSubsurfaceSy as a predictor compared to the basin-wide model ex-

cluding dSubsurfaceSy over the same period with low variability of model fit, suggesting the
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additional information improves model constraint on the basin-scale. Future work may in-

corporate data from the planned GRACE-FO mission to improve robustness of a basin-wide

TDS model in the Central Valley.

The first spatial analysis approach are the GRACE footprints. GRACE footprints are defined

by the Gaussian filtering radius of pre-processing level 3 gridded data (Landerer and Swenson

[2012]). The footprint areas show potential for characterizing TDS on a subbasin scale

using a GRACE product. The heavily managed hydrology of the Central Valley makes TDS

difficult to characterize as a function of groundwater levels and total water storage anomalies.

The hydrologic system of the High Plains are more amenable to TDS characterization by

footprint areas, but is currently limited by the availability of in situ TDS observations during

the GRACE period. Future work may include data from the GRACE-FO mission, provided

increased availability of in situ TDS observations in time and space.

The second spatial analysis approach is single-field EOF decomposition. EOF analysis on

TDS interpolated by inverse distance weighting suggests the majority of variability is ex-

plained by the first two modes of decomposition during the GRACE period, localized in the

southern Central Valley where selenium infiltration and soil salinization are well-documented.

Heterogeneous variance analysis maps show the first three decomposition modes of ground-

water levels and GRACE-derived dSubsurface are not likely to predict TDS in the Central

Valley during the GRACE period. Future work incorporating GRACE-FO data may confirm

that decomposition modes of dSubsurface alone are not likely to accurately predict TDS.

Further work may explore heterogeneous variance analysis of a GRACE product with TDS,

or other constituent of interest, in another aquifer of interest.

The GRACE period alone is likely too short to accurately draw robust conclusions regard-

ing groundwater fluctuations and potential TDS responses. However, the long-term in situ

database over the Central Valley and High Plains study areas give context to large-scale TDS

concentrations and groundwater levels. Characterization of TDS concentrations in ground-
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water is difficult, particularly during the relatively short GRACE period between 2003 and

2014, but the methods described in this work show potential for future investigations of large-

scale groundwater constituent concentration characterization with the planned GRACE-FO

mission, provided ground-based observations of groundwater quality parameters are readily

available.

Freshwater availability and sustainability assessments must consider both quantity and qual-

ity of resources, particularly as global groundwater dependency is likely to increase with pop-

ulation growth and freshwater redistribution is driven by climate change. To achieve the goal

of predicting variability in large-scale groundwater quality using remote sensing, we must

first be able to accurately characterize and quantify constituent fluctuations. Comprehensive

in situ observations of groundwater constituents are crucial to accurately characterize fluctu-

ations in groundwater quality. Successful quantification of large-scale groundwater potability

will improve estimation accuracy of groundwater availability and sustainability.
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Global monthly water stress: 2. water demand and severity of water stress. Water Re-
sources Research, 47(7):n/a–n/a, 2011. ISSN 1944-7973. doi: 10.1029/2010WR009792.
URL http://dx.doi.org/10.1029/2010WR009792. W07518.

136

http://dx.doi.org/10.1002/2016WR018617
http://www.sciencedirect.com/science/article/pii/S0022169496031289
http://dx.doi.org/10.1029/2009GL039401
http://waterdata.usgs.gov/nwis
http://waterdata.usgs.gov/nwis
http://water.usgs.gov/nawqa/
http://water.usgs.gov/nawqa/
http://dx.doi.org/10.1029/2001JB000228
http://dx.doi.org/10.1029/2001JB000228
http://dx.doi.org/10.1029/2010GL044571
http://dx.doi.org/10.1029/2010GL044571
http://dx.doi.org/10.1029/2010WR009792


B. J. Wagner and S. M. Gorelick. Optimal groundwater quality management under parameter
uncertainty. Water Resources Research, 23(7):1162–1174, 1987. ISSN 1944-7973. doi:
10.1029/WR023i007p01162. URL http://dx.doi.org/10.1029/WR023i007p01162.

J. Wahr, M. Molenaar, and F. Bryan. Time variability of the Earth’s gravity field: Hy-
drological and oceanic effects and their possible detection using GRACE. Journal of
Geophysical Research: Solid Earth, 103(B12):30205–30229, 1998. ISSN 2156-2202. doi:
10.1029/98JB02844. URL http://dx.doi.org/10.1029/98JB02844.

J. Wahr, S. Swenson, and I. Velicogna. Accuracy of GRACE mass estimates. Geophysical
Research Letters, 33(6):n/a–n/a, 2006. ISSN 1944-8007. doi: 10.1029/2005GL025305.
URL http://dx.doi.org/10.1029/2005GL025305. L06401.

G. R. Walker, I. D. Jolly, and P. G. Cook. A new chloride leaching approach to the estimation
of diffuse recharge following a change in land use. Journal of Hydrology, 128(1):49 –
67, 1991. ISSN 0022-1694. doi: http://dx.doi.org/10.1016/0022-1694(91)90131-Z. URL
http://www.sciencedirect.com/science/article/pii/002216949190131Z.

A. H. Welch, D. Westjohn, D. R. Helsel, and R. B. Wanty. Arsenic in ground water of
the united states: Occurrence and geochemistry. Ground Water, 38(4):589–604, 2000.
ISSN 1745-6584. doi: 10.1111/j.1745-6584.2000.tb00251.x. URL http://dx.doi.org/

10.1111/j.1745-6584.2000.tb00251.x.

R. Whitehead. Ground Water Atlas of the United States: Segment 8, Montana, North
Dakota, South Dakota, Wyoming. Number 730-I. U. S. Geological Survey, 1996.

D. Whittemore, M. Tsou, C. McElwee, et al. Arkansas river salinity and contamination of the
High Plains aquifer. In Challenges facing irrigation and drainage in the new millennium.
Proceedings US Committee on Irrigation and Drainage, Fort Collins, Colorado, USA, June
2000., pages 225–246. US Committee on Irrigation and Drainage, 2000.

D. O. Whittemore. Geochemical differentiation of oil and gas brine from other saltwater
sources contaminating water resources: Case studies from Kansas and Oklahoma. Envi-
ronmental Geosciences, 2(1):15–31, 1995.

U. WWAP. United nations world water assessment programme. the world water development
report 1: Water for people, water for life, 2003.

P. J.-F. Yeh, S. C. Swenson, J. S. Famiglietti, and M. Rodell. Remote sensing of ground-
water storage changes in Illinois using the Gravity Recovery and Climate Experiment
(GRACE). Water Resources Research, 42(12):n/a–n/a, 2006. ISSN 1944-7973. doi:
10.1029/2006WR005374. URL http://dx.doi.org/10.1029/2006WR005374. W12203.

137

http://dx.doi.org/10.1029/WR023i007p01162
http://dx.doi.org/10.1029/98JB02844
http://dx.doi.org/10.1029/2005GL025305
http://www.sciencedirect.com/science/article/pii/002216949190131Z
http://dx.doi.org/10.1111/j.1745-6584.2000.tb00251.x
http://dx.doi.org/10.1111/j.1745-6584.2000.tb00251.x
http://dx.doi.org/10.1029/2006WR005374

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Background and introduction
	Historic groundwater quality
	Space and time scales of historic case studies
	Commonly studied groundwater quality parameters
	Statistical tools used to describe water quality
	Variables attributed to water quality

	Remote sensing and groundwater
	GRACE terrestrial water storage anomalies
	GRACE and groundwater

	Hydrogeologic settings of study aquifers
	High Plains
	Central Valley

	Research objectives and hypotheses

	Database compilation and evaluating scaling approaches of well data
	Introduction
	Data sources and pre-processing
	In situ groundwater data
	GRACE and auxiliary data

	Scaling approaches
	Averaging points within 1 1 grids
	Linear interpolation to 1 1 grids
	Inverse distance weighting interpolation to 1 1 grids
	Thiessen polygons

	Discussion
	Database compilation and preliminary assessment
	Spatial scaling

	Conclusions

	Lithology and land use regime models
	Introduction
	Data
	In situ water level, total dissolved solid observations
	GIS maps: Lithology and land cover
	GRACE and auxiliary data

	Methods
	In situ point observations
	Lithology, land cover regimes
	GRACE and specific yield
	Generalized linear models and model construction

	Results
	Regime models
	GRACE dSubsurfaceSy as a predictor variable

	Discussion
	Regime models
	GRACE dSubsurfaceSy as a predictor

	Conclusions

	Evaluation of two spatial analysis approaches
	Introduction
	GRACE footprints
	Theoretical basis
	Methods: Footprint of a grid cell
	Results and discussion

	EOF analysis
	Theoretical basis: Spatial and temporal analysis
	Methods
	Results and discussion

	Conclusions

	Conclusions
	Bibliography



