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Functional network structure 
supports resilience to memory 
deficits in cognitively normal older 
adults with amyloid‑β pathology
Jenna N. Adams 1,2*, Miranda G. Chappel‑Farley 1,2, Jessica L. Yaros 1,2, Lisa Taylor 3, 
Alyssa L. Harris 1,2, Abanoub Mikhail 1,2, Liv McMillan 1,2, David B. Keator 3 & 
Michael A. Yassa 1,2,3*

Older adults may harbor large amounts of amyloid‑β (Aβ) pathology, yet still perform at age‑normal 
levels on memory assessments. We tested whether functional brain networks confer resilience or 
compensatory mechanisms to support memory in the face of Aβ pathology. Sixty‑five cognitively 
normal older adults received high‑resolution resting state fMRI to assess functional networks, 
18F‑florbetapir‑PET to measure Aβ, and a memory assessment. We characterized functional networks 
with graph metrics of local efficiency (information transfer), modularity (specialization of functional 
modules), and small worldness (balance of integration and segregation). There was no difference in 
functional network measures between older adults with high Aβ (Aβ+) compared to those with no/low 
Aβ (Aβ−). However, in Aβ+ older adults, increased local efficiency, modularity, and small worldness 
were associated with better memory performance, while this relationship did not occur Aβ− older 
adults. Further, the association between increased local efficiency and better memory performance 
in Aβ+ older adults was localized to local efficiency of the default mode network and hippocampus, 
regions vulnerable to Aβ and involved in memory processing. Our results suggest functional networks 
with modular and efficient structures are associated with resilience to Aβ pathology, providing a 
functional target for intervention.

The pathologies characteristic of Alzheimer’s disease (AD), namely aggregates of amyloid-β (Aβ) as amyloid 
plaques and hyperphosphorylated tau proteins as neurofibrillary tangles, begin to develop decades before the 
onset of frank clinical  symptoms1,2. To this effect, a significant proportion (20–30%) of older adults who are 
cognitively normal for their age group harbor elevated levels of Aβ  pathology3. Understanding how some older 
adults with high levels of AD pathology remain cognitively healthy is a critical research question.

This preservation of cognition may occur through mechanisms such as  resilience4,5 or  compensation4. Cog-
nitive reserve, a type of resilience mechanism defined as the anatomical and neurophysiological resources that 
help allow the brain to withstand  insult4,5, may be one such method of resilience to pathology. Cognitive reserve 
may be developed throughout the lifespan by interactions between  genetic6 and environmental  factors7, and may 
exist prior to age- or disease-related neural  insult4,5. In contrast, compensation reflects the ability of the brain 
to dynamically recruit additional neural resources to meet current cognitive demands, counteracting age- or 
disease-related cognitive decline, and may be more specific to the cognitive demand at  hand4.

Functional brain networks, which reflect coordinated neural activity that can be measured with functional 
 MRI8, are a compelling mechanism which may support resilience or compensation to pathology. Communication 
among brain regions can dynamically reconfigure in response to task  demands9, and functional networks meas-
ured at rest have been shown to change across the  lifespan10. Communication among elements of a network can 
be characterized using graph theory11,12. Graph theory models the complex interactions of the brain as a “graph”, 
with brain regions represented as “nodes” and the functional connections between pairs of regions represented 
as “edges”. Focusing on the strongest edges, the network can be reduced and subsequently analyzed to quantify 
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meaningful topological characteristics, such as measures representing efficiency of information transfer (i.e. local 
efficiency13,14), specialization of functional modules (i.e. modularity15), and balance of integration and segrega-
tion (i.e. small worldness16,17). Prior studies have found that these graph metrics are related to better cognition 
in healthy  individuals18–20.

Graph theory has also been applied to examine how functional brain networks change with aging and disease. 
Overall, aging is associated with reductions in graph metrics such as local efficiency, modularity, segregation, 
and small  worldness21–28, and these differences are exaggerated in patients with  AD21,29,30. However, few studies 
have examined whether graph measures of functional networks relate to preserved cognition in preclinical AD. 
A recent study by Ewers and  colleagues31 showed that increased system segregation of major functional net-
works was associated with better-than-expected cognition at equivalent levels of pathology in patients with AD, 
providing compelling evidence that modularization of functional networks may be a mechanism of resilience. 
However, whether this effect extends to cognitively normal older adults is still unknown.

The goal of our study was to test whether the structure of functional networks, characterized with graph 
theory, provide an early potential mechanism for resilience or compensation, enabling older adults to remain 
cognitively normal in the face of emerging AD pathology. We specifically focused on memory performance, as 
memory is the first domain to begin to exhibit decline in preclinical AD. We investigated a sample of cognitively 
normal older adults with high-resolution resting state fMRI to measure graph metrics of functional networks 
(i.e. local efficiency, modularity, and small worldness), and 18F-florbetapir PET to measure Aβ pathology.

We hypothesized that if functional networks provided a compensatory response to pathology, we would 
observe differences in network measures in Aβ+ compared to Aβ- older adults, which would also be related to 
better memory performance. Higher values of network measures in the Aβ+ group would suggest that these 
participants have an alteration of functional resources at rest compared to their Aβ− counterparts, which may 
differentially impact memory performance when these resources are later recruited, suggesting compensation. 
In contrast, if functional networks provide a resilience or cognitive reserve mechanism to emerging pathology, we 
would predict no Aβ-related differences in network measures, as this network structure would be pre-existing and 
not change in response to pathology. However, increased network measures would be related to better memory 
performance in Aβ+ older adults, providing a mechanism to overcome Aβ pathology.

Results
Demographics. Sixty-five cognitively normal older adults from the Biomarker Exploration in Cognition, 
Aging and Neurodegeneration (BEACoN) study at UC Irvine who received both resting state fMRI and 18F-flor-
betapir (FBP) PET were included in the present analysis. Participant demographics are presented in Table 1. 
Using a validated global FBP SUVR threshold to determine Aβ  status32, 21 participants (32%) were identified as 
Aβ+ . There were significantly more female participants in the Aβ+ group, and a trend for older age (see Table 1 
for group comparisons). As such, age and sex, as well as education, were included as covariates in all models.

There was no difference between Aβ+ and Aβ− older adults in memory performance (Table 1), assessed with 
word-list recall (see Methods). This indicates that even with high levels of Aβ pathology, Aβ+ participants are on 
average able to retain equivalent memory performance to older adults without Aβ pathology.

Characterization of functional networks with graph analysis. We focused on three established 
graph theoretical measures of functional networks (see Fig. 1C–E): (1) local efficiency, a measure of information 
transfer, calculated as the inverse shortest path length computed on the neighborhood of the  node13,14, with high 
local efficiency enabling robustness to a removed  node24 (Fig. 1C); (2) modularity, the ability of a network to be 
reduced into specialized modules, which exhibit strong connectivity within the module and sparse connectivity 
between  modules15 (Fig. 1D); and (3) small worldness, a measure indicating balance between segregation and 
integration within the network, which is characterized by high clustering coefficient and short path lengths 
between functionally related  regions16,17 (Fig. 1E).

Table 1.  Demographics of the sample. Aβ, amyloid-β,; MMSE, Mini Mental State Exam; RAVLT, Rey 
Auditory Verbal Learning Task; FBP, 18F-florbetapir-PET; SUVR, standardized uptake value ratio; M, mean; 
SD, standard deviation; N, number.

Total Sample Aβ- Aβ+ Aβ- vs. Aβ+ 

M ± SD or N (%) M ± SD or N (%) M ± SD or N (%) t or X2 p

Age 72.3 ± 6.2 71.3 ± 5.7 74.4 ± 6.8 -1.92 0.06

Sex (Female) 43 (66.2%) 18 (40.9%) 17 (81.0%) 8.91 0.003

Education (Years) 16.2 ± 2.3 16.3 ± 2.5 16.1 ± 2.0 0.36 0.72

Race (White) 52 (80%) 33 (75%) 19 (90.5%) 2.13 0.15

Ethnicity (Non-Hispanic) 63 (96.9%) 43 (97.7%) 20 (95.2%) 0.30 0.59

MMSE 28.3 ± 1.4 28.3 ± 1.4 28.5 ± 1.4 -0.55 0.59

RAVLT Immediate 12.7 ± 2.0 12.6 ± 2.2 13.0 ± 1.7 -0.67 0.51

FBP Mean SUVR 1.10 ± 0.18 1.00 ± 0.07 1.32 ± 0.15 -12.31  < 0.001

Aβ+ 21 (32.3%) – – – –
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To derive these measures, BOLD timeseries from resting state fMRI were extracted from 135 regions of inter-
est (ROIs) from the Brainnetome Atlas included within spatial coverage of the scan (Fig. 1A; see Supplementary 
Table 1 for detailed ROI information). Functional imaging was focused across the temporal lobe, including criti-
cal parts of the parietal, occipital, and frontal lobe, to enable higher spatial resolution to better obtain signal from 
distinctive ROIs however, we acknowledge that this partial coverage may influence graph metrics. ROI-to-ROI 
correlation matrices were generated for each participant, and binarized across a range of costs to vary the sparsity 
level of the network (Fig. 1B). Network sparsity was calculated from 5% cost (top 5% strongest connections in 
the network, highly sparse) to 35% cost (less sparse) in 5% step sizes (7 total costs). This cost range was selected 
a priori because it has been proposed to ideally characterize small-world characteristics of brain  networks19,24,33. 
Graph metrics were then calculated at each cost with the Brain Connectivity  Toolbox13. Figure 1C–E visualizes 
the distribution of graph values across costs. Analyses relating graph metrics to Aβ status and memory per-
formance were performed across all costs to further substantiate that results were not driven by arbitrary cost 
selection, with cost included as a repeated subjects measure, to test for consistency in the effects across cost.

Network structure does not differ between Aβ groups. Our first aim was to test whether local effi-
ciency, modularity, and small worldness differed by Aβ status in cognitively normal older adults. To test this, we 
conducted a repeated measures ANCOVA analyses for each graph metric, including the value at each cost as the 
repeated measure (7 costs), Aβ status as the between subjects factor, and age, sex, and education as covariates. 
Our outcomes of interest were a main effect of Aβ status and an Aβ status by cost interaction, which would indi-
cate consistent versus specific effects of Aβ on each graph metric. There was no significant main effect of Aβ status 
or Aβ status by cost interaction for local efficiency (main effect: F(1) = 0.001, p = 0.98); interaction: F(1.86) = 0.12, 
p = 0.87; Fig. 2A), modularity (main effect: F(1) = 1.20, p = 0.28); interaction: F(1.42) = 0.97, p = 0.36; Fig. 2B), or 

Figure 1.  Overview of graph theoretical methods applied to resting state functional MRI. (A) 135 regions of 
interest (ROIs) from the Brainnetome Atlas were included within the partial field of view in all participants and 
used for graph theory analysis. (B) BOLD time series were extracted from each ROI and correlated across ROIs 
to obtain an 135 × 135 connectivity matrix for each participant. Correlation matrices were then binarized at 7 
cost levels, ranging from 5% cost (keeping the 5% strongest connections, most sparse) to 35% cost (keeping the 
35% strongest connections, less sparse) using 5% step sizes. The graph metrics of local efficiency (C), modularity 
(D), and small worldness (E) were calculated at each cost level.
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small worldness (main effect: F(1) = 0.11, p = 0.74); interaction: F(1.49) = 0.34, p = 0.65; Fig. 2C), indicating that 
these graph metrics did not vary by Aβ status. Figure 2 demonstrates a visualization of the group comparisons at 
each cost, as well as a closer examination of the distributions at specific costs.

Memory performance is associated with network structure in Aβ+ older adults. We next inves-
tigated whether memory performance, defined by free recall on a word list learning task (see Methods), was asso-
ciated with local efficiency, modularity, and small worldness regardless of pathological load. To test this, we con-
structed similar repeated measures ANCOVAs, but with memory performance as a continuous predictor, again 
focusing on a main effect of memory or a memory by cost interaction. Overall, better memory performance 
was associated with greater small worldness (main effect: F(1) = 6.52, p = 0.01), which did not significantly vary 
by cost (memory by cost interaction: F(1.49) = 1.11, p = 0.32). There was also a trend for memory performance 
being associated with overall higher local efficiency (main effect: F(1) = 3.93, p = 0.052; memory by cost interac-
tion: F(1.86) = 0.38, p = 0.67). There was no effect of modularity on memory (main effect: F(1) = 0.002, p = 0.97; 
memory by cost interaction: F(1) = 0.70, p = 0.41).

Our primary goal was to determine whether the relationship between memory performance and network 
structure was dependent on Aβ status. To test this, we included both memory and Aβ status in the repeated 
measures ANCOVA models, and focused on the interaction between memory and Aβ status as our outcome of 

Figure 2.  Graph metrics of functional brain networks are related to memory performance in Aβ+ older adults. 
(A–C) We tested for group differences in graph metrics between Aβ+ and Aβ- older adults at each cost level 
using repeated measures ANCOVA analysis, controlling for age, sex, and education. There was no significant 
main effect of Aβ group or Aβ group by cost interaction, indicating no differences in graph metrics between 
the groups. Left side plots demonstrate the group mean and standard error at each cost, with Aβ+ group in red, 
and the Aβ- group in navy. The right hand plot shows a closer look at this comparison at one cost, indicated 
by the shading, at either the strongest cost or at the mean of costs. (D–F) We tested for an interaction between 
Aβ status and memory performance at each cost to determine if the relationship between memory and graph 
metrics differ by Aβ status. This was performed using repeated measures ANCOVAs at each cost, with the Aβ 
status by memory interaction being our outcome of interest. We performed follow-up linear regressions at each 
cost, with the t-statistic (diamond shape) of the interaction between Aβ status and memory being plotted on the 
left side. The t-statistic crossed the p < 0.05 significance threshold (dashed yellow line) and p-FDR significance 
threshold (< 0.0071, dotted green line) for the majority of costs. The gray shaded cost levels are plotted on the 
right side panel, showing the scatter plot of the interaction. Higher local efficiency (D), modularity (E), and 
small worldness (F) was significantly associated with better memory performance in the Aβ group (red) but not 
the Aβ− group (navy). *p < 0.05; **p < 0.01; ***p < 0.001.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13953  | https://doi.org/10.1038/s41598-023-40092-x

www.nature.com/scientificreports/

interest to probe the impact of amyloid load as a function of memory performance on each graph metric. We 
found strong memory by Aβ status interactions in predicting local efficiency (F(1) = 7.84, p = 0.007), modular-
ity (F(1) = 4.37, p = 0.04), and small worldness (F(1) = 10.83, p = 0.002), indicating that the relationship between 
memory and graph metrics was highly dependent on Aβ status. The three-way interaction between memory, Aβ 
status, and cost was not significant, indicating that this effect was consistent across cost levels (local efficiency: 
F(1.86) = 1.00, p = 0.37; modularity: F(1.39) = 0.11, p = 0.83; small worldness: F(1.51) = 2.28, p = 0.12).

We closely examined the memory by Aβ status interaction for each graph metric across costs when our inter-
action of interest reached significance, depicted in Fig. 2D–F. For each cost, we conducted follow-up linear regres-
sion models including the Aβ status by memory interaction and covariates including age, sex, and education. 
The interaction between Aβ status and memory was significant across the majority of costs for each graph metric 
(ps < 0.05; Fig. 2D–F), replicating the results of the ANCOVA. Then, to determine which Aβ group was driving 
the interactions, we tested the correlations between memory and each graph measure within each Aβ group 
separately, controlling for age, sex, and education. In the Aβ+ group, better memory performance was associated 
with higher local efficiency (e.g., cost 35: r = 0.63; p = 0.005; Fig. 2D), higher modularity (e.g., cost 25: r = 0.54, 
p = 0.02; Fig. 2E), and greater small worldness (e.g., cost 25: r = 0.71, p < 0.001; Fig. 2F). In the Aβ- group, there 
were no significant relationships between memory and local efficiency (e.g., cost 35: r = 0.10, p = 0.52; Fig. 2D), 
modularity (e.g., cost 35: r = − 0.05, p = 0.75; Fig. 2E), or small worldness (e.g., cost 25: r = 0.19, p = 0.25; Fig. 2F) 
at any cost (all ps > 0.05). Additionally, comparing the strength of correlations between Aβ+ and Aβ− groups 
with Fisher’s r to z transformations indicated that the association between memory and graph metrics were 
significantly stronger in the Aβ+ group compared to the Aβ− group (ps < 0.05 for all costs). These results sug-
gest that the association between better memory performance and graph metrics of functional networks occurs 
specifically within participants with high levels of Aβ burden.

Default mode network local efficiency is related to memory performance in Aβ+ older 
adults. Because local efficiency is calculated on the level of the node (see Methods), we next asked whether 
the local efficiency of specific subnetworks and regions varied by Aβ status and had Aβ-specific associations 
with memory as a secondary goal. We chose to investigate local efficiency of the default mode network (DMN), 
as this network overlaps spatially with regions that first accumulate Aβ  pathology34 and contributes to memory 
 processing35.

We first investigated Aβ-related changes to DMN local efficiency, constructing similar repeated measures 
ANCOVA as in the whole network models but including DMN local efficiency at each cost as the repeated 
measures factor. Consistent with the whole brain local efficiency analysis, there was no significant main effect 
of Aβ status (F(1) = 0.05, p = 0.83) or Aβ status by cost interaction (F(1.48) = 0.19, p = 0.76), depicted in Fig. 3A.

We next tested main effects of memory and memory by Aβ status interactions in predicting DMN local effi-
ciency. While there was no significant main effect of memory (F(1) = 2.37, p = 0.13) or memory by cost interaction 
(F(1.50) = 1.70, p = 0.20), we again found a strong memory by Aβ status interaction (F(1) = 14.79, p < 0.001) that 
did not significantly vary by cost (F(1.5) = 2.60, p = 0.10), indicating that the Aβ groups differed in their relation-
ship between memory and local efficiency (Fig. 3B). Testing this interaction at each cost provided consistent 
results with the whole brain local efficiency measure—Aβ+ older adults had a strong relationship between better 
memory performance and higher DMN local efficiency (e.g., mean of costs: r = 0.70; p = 0.001; Fig. 3B) while the 
Aβ- group did not demonstrate a relationship (e.g., mean of costs: r = 0.006; p = 0.97).

We next tested the specificity of the association between memory and local efficiency within the DMN to 
determine if this was a particular effect related to the DMN, or just captured a common theme of local efficiency 
found in any network. We identified the visual network as an appropriate control for the DMN—this network 
was sampled at a similar rate to the DMN (61.76% vs. 61.11% of ROIs included, respectively), yet is not a network 
particularly prone to the development of Aβ pathology or as involved memory processing. Repeating the above 
analyses using local efficiency of the visual network resulted in non-significant associations with Aβ status, main 
effects of memory, or memory by Aβ status interactions (all ps > 0.10, see Supplementary Table 2 for all statistics). 
This control analysis indicates that local efficiency specifically within the DMN contributes to memory processing 
in Aβ+ participants, rather than this being a brain-wide phenomenon.

Hippocampal local efficiency is higher and supports memory performance in Aβ+ older 
adults. We next examined local efficiency within the hippocampus because this region is critical to memory 
performance and is hyperactive in the presence of Aβ 36. We first tested for group differences in hippocampal 
local efficiency as a function of Aβ status. Using repeated measures ANCOVA models predicting to hippocampal 
local efficiency across costs as the repeated measure, we found a significant main effect of Aβ status (F(1) = 6.08, 
p = 0.017) as well as a significant Aβ status by cost interaction (F(1.69) = 4.79, p = 0.014). We examined these 
effects further by conducting planned follow-up pairwise comparisons (independent t-tests) between Aβ+ and 
Aβ- groups on hippocampal local efficiency at each cost level. The Aβ+ demonstrated significantly higher hip-
pocampal local efficiency at 5 of 7 costs (Fig. 3C), with the strongest difference occurring at cost 30 (t(63) = 2.56, 
p = 0.01). This group difference indicates that Aβ+ participants had a specific increase in local efficiency in the 
hippocampus that was not observed at the whole-brain or DMN-network level.

We then tested both main effects of memory and memory by Aβ status interactions in predicting hippocampal 
local efficiency. Again, we found no main effect of memory (F(1) = 0.13, p = 0.72) or memory by cost interaction 
(F(1.62) = 0.14, p = 0.83) in predicting hippocampal local efficiency. However, the interaction between memory 
and Aβ status (F(1) = 7.38, p = 0.009) and the three-way interaction of memory, Aβ, and cost (F(1.73) = 3.58, 
p = 0.04) were significant, indicating the Aβ groups differed in their relationship between memory and hippocam-
pal local efficiency (Fig. 3D). Exploring this interaction further at each cost level indicated that this interaction 
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was similarly driven by a strong correlation between better memory performance and higher hippocampal 
local efficiency in the Aβ+ group (e.g., cost 25: r = 0.70; p = 0.001; Fig. 3D), but no significant association in the 
Aβ− group (e.g., cost 25: r = 0.004; p = 0.98).

For a parallel control analysis, we examined local efficiency in the superior temporal gyrus, a lateral temporal 
lobe region that is not a particular site of Aβ-related hyperactivity. There was no significant effect of Aβ status 
or an Aβ status by memory interaction (ps > 0.69; see Supplementary Table 2 for full statistics), however, we did 
observe a main effect of memory on superior temporal gyrus local efficiency (F(1) = 6.14, p = 0.014), suggest-
ing a general role for the superior temporal gyrus in memory processing that was not dependent on Aβ status.

Hippocampal volume is not related to network structure. Finally, we investigated whether the rela-
tionship between Aβ status, memory, and network structure was related to factors further along the cascade 
of decline such as neurodegeneration. We measured hippocampal volume, corrected by total intracranial vol-
ume, as a proxy of neurodegenerative processes. Hippocampal volume was significantly reduced (t(62) = 3.55, 
p < 0.001) and related to memory (r = -0.32, p = 0.047) in Aβ+ older adults, though was not significantly related 
to memory performance within the full sample (r = -0.11, p = 0.41).

We conducted similar repeated measures ANCOVA analyses predicting to each graph metric across costs, 
including hippocampal volume as our variable of interest, and age, sex, and education as covariates. There was no 
significant main effect of hippocampal volume (ps > 0.29) or hippocampal volume by cost interaction (ps > 0.63) 
for any of the graph metrics (see Supplementary Table 3 for detailed statistics), indicating that hippocampal 
volume was not closely related to whole brain functional network structure.

We next included the interaction between hippocampal volume and memory performance in these models 
to test whether participants with lower hippocampal volume may have associations between memory and net-
work structure, to parallel our findings of an Aβ status by memory interaction. Again, there were no memory 
by hippocampal volume interactions (ps > 0.29) or three-way interactions with cost (ps > 0.55) in predicting any 
graph metric (see Supplementary Table 3 for detailed statistics). These null results indicate that the relationship 

Figure 3.  Local efficiency of the default mode network (DMN) and hippocampus are related to memory 
performance in Aβ+ older adults. (A) There was no significant difference in local efficiency in the DMN between 
the Aβ+ (red) and Aβ− (navy) groups. Left side plots demonstrate the group mean and standard error at each 
cost, and the right hand plot shows a closer look at this comparison at the mean cost, indicated by gray shading. 
(C) The Aβ+ group had significantly higher hippocampal local efficiency compared to the Aβ− group at 5 out 
of 7 costs. This effect is plotted for the mean of costs on the right side panel, indicated by the gray shading. 
(B/D) We tested for an interaction between Aβ status and memory performance to DMN local efficiency (B) 
and hippocampal local efficiency (D) at each cost to determine if the relationship between memory and local 
efficiency differs by Aβ status. We performed follow-up linear regressions at each cost, with the t-statistic 
(diamond shape) of the interaction between Aβ status and memory being plotted on the left side. The t-statistic 
crossed the p < 0.05 significance threshold (dashed yellow line) and p-FDR significance threshold (< 0.0071, 
dotted green line) for the majority of costs. The gray shaded cost levels are plotted on the right side panel, 
showing the scatter plot of the interaction. Higher DMN local efficiency (B), and hippocampal local efficiency 
(D) were significantly associated with better memory performance in the Aβ group (red) but not the Aβ- group 
(navy). Control analyses using local efficiency of the visual network in place of the DMN and the superior 
temporal gyrus in place of the hippocampus did not produce significant group differences or Aβ x memory 
interactions, highlighting the specificity of these findings to local efficiency of the DMN and hippocampus. 
*p < 0.05; **p < 0.01; ***p < 0.001.
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between these metrics of functional network structure and memory are specifically related to Aβ pathology in 
the cognitively normal stage.

We then examined whether local efficiency in the hippocampus was related to hippocampal volume. We 
did not observe a significant main effect of hippocampal volume (p = 0.93) or memory by hippocampal volume 
interaction (p = 0.89) in predicting hippocampal local efficiency across costs (see Supplementary Table 3 for 
detailed statistics), suggesting the changes to hippocampal local efficiency are independent of volume within 
the hippocampus.

Discussion
We demonstrate that the structure of functional brain networks, characterized with graph theoretical metrics, 
support episodic memory in cognitively normal older adults with high levels of Aβ pathology. Better episodic 
memory performance in Aβ+ participants was associated with higher local efficiency, representing greater effi-
ciency of information transfer through the network, higher modularity, representing a greater degree of spe-
cialized functional subdivisions within the network, and higher small worldness, representing an ideal balance 
between segregation and integration. These local efficiency effects were further specific to the DMN and the 
hippocampus, which are highly involved in memory and known to be impacted by Aβ pathology, compared to 
control regions. We found no relationship between episodic memory and graph metrics in cognitively normal 
older adults without Aβ pathology, or between graph metrics and hippocampal volume. Our results suggest 
that a modular and efficient functional network structure may provide resilience to early accumulation of Aβ 
pathology to help maintain normal memory function.

Because we did not find Aβ-related group differences in graph metrics at the full-network level, but did 
observe strong associations between higher graph metrics and better memory performance specifically in 
Aβ+ older adults, our pattern of results better support a resilience or reserve mechanism for functional brain 
networks than a compensatory  mechanism4,5. In combination with previous literature, our findings may suggest 
that older adults who happen to have higher values of these graph metrics, perhaps due to lifetime factors such 
as education or socioeconomic  status5,7,37 which have previously been shown to provide cognitive reserve, may 
fare better in the face of emerging Aβ pathology.

Our finding of higher modularity being associated with better memory in Aβ+ older adults extend findings 
from a recent study by Ewers and colleagues demonstrating that higher system segregation, a measure closely 
related to modularity, is related to better cognition in patients with autosomal dominant and sporadic AD, 
which was interpreted to reflect resilience to AD  pathology31. The current work suggests that this effect also 
occurs in older adults before the onset of overt clinical impairment and may provide a mechanism to preserve 
normal levels of cognitive ability in the presence of AD pathology. A previous study in cognitively normal older 
adults found that lower segregation between anterior temporal and posterior medial networks at baseline was 
associated with worse episodic memory over  time23. While this association was not dependent on pathological 
load, it also suggests that higher segregation of networks, similar to modularity, may have a beneficial effect on 
memory in cognitively normal populations. Further, our finding that higher modularity is associated with better 
memory is also consistent with research demonstrating that higher baseline modularity predicts greater gains in 
cognitive training during interventional  trials38,39, suggesting that modularity could be a compelling biomarker 
for intervention success in older adults reflecting cognitive plasticity.

In addition to modularity, we also show a novel role for small worldness in resilience to Aβ pathology. Small 
worldness has previously been found to decrease with  age26, cognitive  impairment21, and in AD  patients29. We 
extend these findings by demonstrating that higher small worldness, indicating balance between segregation 
and integration, also supports memory performance within our full sample of cognitively normal older adults. 
Further, while positive associations with small worldness occurred in both Aβ+ and Aβ− groups, this effect was 
significantly stronger in Aβ+ participants, suggesting small worldness provides a mechanism for resilience in 
addition to general benefits of memory performance.

Finally, we demonstrate that higher local efficiency, both at the network level and within memory-specific 
subnetworks (i.e. DMN) and regions (i.e. hippocampus), supports memory performance in Aβ+ older adults. 
Local efficiency has previously been shown to decrease with  aging24,27. Higher local efficiency may provide more 
fault-tolerance to disruptions within a  network24, as the additional redundant connections between nodes may 
allow for preserved communication in the face of a dysfunctional node. In the case of aging and preclinical AD, 
this redundancy may be an important mechanism allowing for preserved communication even when some nodes 
are impacted by pathology and may not be able to efficiently process or send information themselves. This fault 
tolerance may be particularly critical within the DMN. The DMN is known to be especially vulnerable to the 
development of Aβ34, and previous studies have observed a breakdown of normal DMN connectivity  patterns40–44 
and also decreased graph metrics such as local  efficiency27 and clustering  coefficient21, a measure related to 
local efficiency, within the DMN. Within the hippocampus, we found higher local efficiency in Aβ+ compared 
to Aβ- older adults, which was associated with better memory performance in Aβ+ , indicating a possible local 
compensatory effect. However, as Aβ is known to promote hyperexcitability and hyperconnectivity of networks 
and  circuits45–47, including the  hippocampus36,48, this higher hippocampal local efficiency could also be a response 
to pathology.

While increases in graph metrics representing stronger connectivity (e.g. higher local efficiency) may be ben-
eficial in the early stages of AD, these effects may also ultimately contribute to the spread of pathology. Greater 
connectivity strength and greater redundancy of connections may facilitate the spread of tau pathology, which 
has been shown to spread in accordance with patterns of strong functional and structural  connectivity49–51. 
Compensatory increases in network measures, such as our finding of higher hippocampal local efficiency, may 
ultimately result in more pathological spread and progression towards AD. For example, globally connected 
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hub regions have been shown to be facilitate the spread of tau pathology, increasing progression towards  AD52. 
As the hippocampus is an early site of tau  deposition1, and is known to be hyperexcitable in the presence of AD 
 pathology47, compensatory increases in hippocampal local efficiency may promote tau seeding to downstream 
regions connected to  hippocampus53,54. Using longitudinal data to test whether our observed group differences 
in hippocampal local efficiency is dynamically increased at a certain stage of pathological development, or is 
elevated across the lifespan in these subjects, is an important open question to explore.

We did not find a relationship between decreased hippocampal volume, graph metrics, and memory, sug-
gesting that our findings may represent an early effect of Aβ accumulation prior to the detrimental effects of 
hippocampal atrophy. Functional activation has previously been shown to modulate the relationship between 
hippocampal volume and memory in a sample spanning cognitively normal and MCI patients, suggesting higher 
activation provided resilience to low hippocampal  volume55. It is possible that network effects relating to hip-
pocampal volume may emerge as participants begin to demonstrate overt memory deficits, rather than when 
they are still normal for their age group. While we found no relationships with hippocampal volume, we did find 
strong relationships between memory and hippocampal local efficiency, which substantiates previous findings 
suggesting changes to hippocampal function precede hippocampal neurodegeneration in the cascade leading 
to AD.

Limitations of the current study include the partial coverage of the high-resolution scan, which limited our 
ability to sample the entire brain. However, the coverage was consistent across all participants and included the 
full extent of the temporal lobe, which is a critical region for memory processing. Therefore, this spatial cover-
age was appropriate for our investigation into memory function. Associations between Aβ and resting state 
networks such as the DMN may have been stronger if the full extent of regions such as the parietal lobe were 
sampled. However, subnetwork analyses were a secondary goal to provide greater mechanistic insight and should 
be considered exploratory. Future studies with whole brain coverage should further replicate and expand on the 
current findings, as the specific regions contained within our scan field of view may have influenced our results. 
Additionally, while we defined graph metrics based on resting state networks, which provides a task-invariant 
assessment of functional networks, research investigating how graph metrics computed during task-based fMRI 
are related to performance will further speak to the potential compensatory reconfiguration of networks to sup-
port specific task demands.

Next, our sample of Aβ+ older adults was relatively small, limiting our power. However, Aβ+ participants 
represented 32% off our sample, consistent with incidence reported  previously3, and the strength of associations 
found within this sample speak to the robustness of the findings. Further, our use of free recall during word list 
learning as our primary memory outcome measure may not fully capture non-dominant hemisphere function, 
and may be influenced by executive function strategies supported by the frontal lobe. Future work using mul-
tiple memory measures summarized together as a composite score may reflect memory processes invariant to 
the specific memory assessment chosen. Finally, in the current study, we were unable to examine lifetime and 
environmental factors that may provide cognitive reserve, as our sample has high levels and low variability in 
potential protective factors such as education and socioeconomic status. Future research in samples more accu-
rately reflecting the diversity of the aging population would be better suited to answer the important question 
of which factors contribute to or detract from cognitive reserve.

In summary, we provide evidence that characteristics of functional brain networks reflecting high levels 
of efficiency and optimal organization may provide resilience to the accumulation of Aβ pathology, enabling 
preserved levels of memory. Future research using longitudinal data will better elucidate the temporal relation-
ship between Aβ accumulation and functional network structure to better establish how resilience and/or com-
pensatory mechanisms occur. Graph metrics such as modularity and local efficiency derived from resting state 
fMRI may be compelling targets for intervention and provide a potentially modifiable link between pathology 
development and cognitive decline.

Methods
Participants. Participants were cognitively normal older adults aged ≥ 60 years from the Biomarker Explo-
ration in Aging, Cognition, and Neurodegeneration (BEACoN: NIA R01AG053555, PI: Yassa) study. Inclu-
sion criteria for BEACoN includes age ≥ 60 years, performance on cognitive assessments within age-adjusted 
normal range (within 1.5 standard deviations), no major health problems (e.g. uncontrolled diabetes mellitus, 
uncontrolled hypertension), co-morbid neurological disease (e.g. brain cyst, tumor, aneurysm), or significant 
psychiatric disorders (e.g. major depressive disorder or attention-deficit hyperactivity disorder), no use of medi-
cation for anxiety or depression or illicit drugs, and no MRI or PET contraindications. All participants provided 
written informed consent. All experimental protocols were approved by the Institutional Review Board (IRB) 
of the University of California, Irvine, and all methods were carried out in accordance with relevant guidelines 
and regulations of the IRB.

Seventy-nine participants had both 18F-florbetapir (FBP) PET and high-resolution resting state fMRI and 
were selected for the present analysis. A total of 14 participants were excluded due to poor resting state fMRI 
quality (i.e. poor field of view, n = 4; motion; n = 10; see below for details of criteria). Data from 65 participants 
were included in the final analyses.

Neuropsychological assessment. Participants received standard neuropsychological assessment, 
including the Rey Auditory Verbal Learning Test (RAVLT)56 and the Mini Mental State  Examination57. As our 
primary outcome measure of memory performance, we used RAVLT immediate free recall score after the last 
learning trial.
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MRI acquisition. Participants received structural and resting state functional MRI at the Campus Center 
for Neuroimaging (CCNI) at UC Irvine on a 3T Prisma scanner (Siemens Medical System, Munich, Germany) 
equipped with a 32-channel head coil. A whole brain, high resolution T1-weighetd volumetric magnetization 
prepared rapid gradient echo images (MPRAGE) was acquired for structural analyses (voxel size = 0.8  mm3 
resolution, TR/TE/TI = 2300/2.38/902 ms, flip angle = 8°, 240 slices acquired sagittally). High resolution T2*-
weighted echo planar images (EPI) were acquired to assess FC (voxel size = 1.8  mm3, TR/TE = 2500/26 ms, flip 
angle = 70°, 39 slices, R >  > L phase encode, partial acquisition covering temporal lobe, 84 volumes). During 
acquisition, participants were instructed to remain awake and focus on a fixation cross on the screen. High 
resolution 3D T2-weighted turbo spin echo (TSE) images were acquired in oblique coronal orientation (voxel 
size = 0.4 × 0.4 mm in-plane resolution, slice thickness = 2 mm, TR/TE = 5000/84 ms, 23 slices) were also acquired 
to estimate hippocampal volume.

Structural MRI processing. T1 images were processed with Statistical Parametric Mapping (SPM, ver-
sion 12, Wellcome Trust Center) and segmented into gray, white, and CSF compartments. T1 images were then 
warped to MNI152 2 mm standard space using SPM and a study specific DARTEL template. T1 images were also 
processed with FreeSurfer v.6.058 to obtain a native space regions of interest for FBP quantification.

To obtain a measure of hippocampal volume, T1 and T2 structural images were processed using Automated 
Segmentation of Hippocampal Subfield (ASHS)  software59. Volumes of the bilateral DG, CA3, CA2, CA1, and 
subiculum were added and normalized by the total intracranial volume to estimate hippocampal volume.

Resting state functional MRI processing. rsfMRI data was preprocessed with SPM12 using a standard 
pipeline including slice time correction, realignment, and coregistration to the T1 structural image. No spatial 
smoothing was performed to maintain the high resolution of the images and enable more accurate quantification 
of signal within spatially adjacent ROIs. Functional images were warped to MNI152 2 mm space using estimates 
derived from the T1 warping.

Resting state fMRI data were denoised using the CONN  toolbox60 (version 20) implemented in Matlab ver-
sion 2019b (The MathWorks, Inc, Natick, MA). Outlier volumes were detected using Artifact Detection Tools 
(ART) implemented within CONN using conservative threshold of motion > 0.5 mm/TR and a global intensity 
z-score of 3. Ten subjects were flagged for > 20% volumes detected as outliers and were removed from further 
 analyses48,50,61. Denoising included the six realignment parameters and their first-order derivatives (translations 
and rotations), spike regressors generated from outlier  detection62,63, anatomical  CompCor64 (first five compo-
nents of time series signal from white matter and CSF), bandpass filtering [0.008–0.1 Hz], and linear detrending 
applied to the residual time series.

To determine ROI inclusion, we first created an explicit mask of common coverage across the partial field of 
view of the rsfMRI scan. Four participants were excluded prior to mask creation due to their field of view not 
including critical medial temporal lobe structures such as the hippocampus. We next applied this explicit mask 
to the Brainnetome  Atlas65 to determine which ROIs had sufficient coverage. We excluded any ROIs with < 50% 
retention within the bounds of our explicit mask, resulting in 135 ROIs that were sufficiently included within 
the field of view for all participants (see Supplementary Table 1 for a list of ROIs included, and Fig. 1A for a 
visualization).

BOLD time series were extracted after denoising from the 135 Brainnetome ROIs, and used to perform 
ROI-to-ROI first-level analyses in CONN. This resulted in a 135 × 135 functional connectivity matrix for each 
participant, which reflected Fisher’s r-to-z transformed correlation coefficients for each ROI pair.

Graph analyses. The Brain Connectivity Toolbox (BCT), implemented in Matlab 2019b, was used for graph 
analyses. ROI-to-ROI functional connectivity matrices were first optimized for analyses by symmetrizing the 
matrix and ensuring the diagonals were set to zero. Adjacency matrices were created by binarizing across costs 
ranging from 5% of the top connections in the network (most sparse) to the top 35% of the network (less sparse) 
in step sizes of 5%, resulting in seven total costs (see Fig. 1B). This range was selected due to small-world network 
characteristics occurring at low-to-medium cost levels, up to approximately 30–35%  sparsity19,24,33, and values 
stabilizing around this level (see Fig. 1D). We conducted analyses across seven total costs to provide statistical 
evidence that our results are robust to an arbitrary cost selection, indicated by the lack of a significant main effect 
of cost in the repeated measures ANCOVA analyses. We focused on three main graph theoretical measures: local 
efficiency, modularity, and small worldness.

Local efficiency. Local efficiency was calculated with the “efficiency_bin” BCT function, resulting in one value 
per ROI. For primary analyses, local efficiency was averaged across all ROIs to get one value representing the 
network. We also averaged local efficiency over Brainnetome ROIs included in the default mode network (DMN) 
and visual network separately as defined by Yeo and  colleagues66. Finally, we averaged local efficiency over the 
four Brainnetome ROIs representing the hippocampus (rostral and caudal hippocampal ROIs, left and right) for 
a whole-hippocampal measure of local efficiency, as well as averaging across bilateral superior temporal gyrus 
ROIs (A22c left and right) as a control region.

Modularity. Modularity was calculated with the “community_louvain” BCT function. Parameters included the 
default “modularity” setting, with a gamma value of 1.0. The modularity variable “Q” was estimated for the full 
network of included ROIs and used in analyses as the outcome measure.
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Small worldness. Small worldness is calculated by normalizing the clustering coefficient and path length of the 
observed network to a random network, and then taking the ratio of the normalized clustering coefficient to 
the normalized path  length21,26. First, to calculate the observed clustering coefficient (C) and path length (L), we 
calculated the average C and L of all ROIs in the network for each participant at each cost with the BCT. Second, 
we constructed a random network that had the same number of edges as our observed networks but with all 
connections rewired using the “randomizer_bin_und” BCT function. We then calculated the average clustering 
coefficient and path length for this random network. This process was iterated 10,000 times to generate a distri-
bution of null clustering coefficient and path length values, and the average null clustering coefficient  (C0) and 
path length  (L0) was calculated at each cost. Finally, for each participant and cost, we calculated small worldness 
of the network with the following formula: σ = (C/C0)/(L/L0).

Aβ PET. Participants received 18F-florbetapir PET (FBP) at the CCNI with an ECAT High Resolution 
Research Tomograph (HRRT, CTI/Siemens, Knoxville, TN, USA). Ten mCi of tracer was injected, and four 
five-minute frames were collected between 50 and 70  min post-injection. FBP data was reconstructed with 
attenuation correction, scatter correction, and 2  mm3 Gaussian smoothing. Frames were realigned, averaged, 
coregistered to the T1 MRI, and normalized by a whole cerebellum reference region to compute SUVR images. 
Additional 6   mm3 smoothing was then applied to achieve an effective resolution of 8  mm3. We calculated a 
global measure of FBP SUVR across a previously validated cortical composite  region32. Aβ+ status was deter-
mined using a threshold of > 1.11 global FBP  SUVR32.

Statistical analysis. Statistical analyses were performed using jamovi v1.6 (https:// www. jamovi. org) and 
RStudio v1.4. Demographics and memory performance between Aβ groups were compared with independ-
ent samples t-tests. Repeated-measures ANCOVA models were constructed to test associations for each graph 
metric, separately. The graph metric at each cost (7 costs) was included as a repeated within-subjects factor, Aβ 
status was included as a between-subjects factor, memory or hippocampal volume as the variable of interest, 
and age, sex, and education as covariates of no interest. In cases where the assumption of sphericity was violated 
(Maulchy’s W p < 0.05), Greenhouse-Geisser corrections were applied. Main effects and interactions were con-
sidered significant at p < 0.05.

When interactions crossed this significance threshold, we conducted planned follow-up analyses to further 
isolate the effects. In the case of interactions involving Aβ status, we conducted follow-up interactions using 
linear regression models at each cost to test the specificity of the effect, including the interaction of interest and 
age, sex, and education as covariates. To further test which group was driving each interaction, we conducted 
partial correlations covarying for age, sex, and education within each Aβ group separately. To test if the correla-
tion between memory and each graph metric was significantly different in each Aβ group, correlation strengths 
(Fisher’s r to z transformation) were compared with the “cocor”  package67 in RStudio.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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