
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title

A Study of the Expressive Power of Homomorphism Counts

Permalink

https://escholarship.org/uc/item/4647715d

Author

Wu, Wei-Lin

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4647715d
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

A STUDY OF THE EXPRESSIVE POWER OF HOMOMORPHISM
COUNTS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Wei-Lin Wu

December 2023

The Dissertation of Wei-Lin Wu
is approved:

Professor Phokion G. Kolaitis, Chair

Professor Seshadhri Comandur

Professor Albert Atserias

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Wei-Lin Wu

2023

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

Dedication viii

Acknowledgments ix

1 Introduction 1

2 Preliminaries 11
2.1 Fundamentals . 11
2.2 Graphs . 17
2.3 Structures . 29

3 Two Frameworks: Logic and Homomorphism Counts 37
3.1 Mathematical Logic . 37

3.1.1 First-Order Logic and Its Fragments 38
3.1.2 First-Order Logic Augmented with Counting and Its Fragments . . . 61

3.2 Homomorphism . 67
3.2.1 Basic Definitions and Properties . 67
3.2.2 Two Types of Homomorphism Counts 81

4 Graph Isomorphism and Its Relaxations 88
4.1 Characterizing Graph Isomorphism in Left Profile and in Right Profile . . . 90
4.2 Relaxations of Graph Isomorphism vs. Restricted Profiles over the Bag-Set

Semiring . 100
4.2.1 Two Introductory Examples . 100
4.2.2 Indistinguishability by Color Refinement 101
4.2.3 Indistinguishability by Weisfeiler-Leman Algorithm 109
4.2.4 Cospectrality . 116

iii

4.2.5 Chromatic Equivalence . 118
4.2.6 Equivalence in Some Fragments of First-Order Logic 125

4.3 Relaxations of Graph Isomorphism vs. Restricted Profiles over the Boolean
Semiring . 128
4.3.1 Homomorphic Equivalence . 128
4.3.2 Same Chromatic Number and Same Clique Number 132

4.4 Summary . 135

5 Query Algorithms 137
5.1 Basic Definitions and Examples . 137
5.2 Left Query Algorithms . 152

5.2.1 CSP Classes and Their Unions . 155
5.2.2 Homomorphic-Equivalence Classes and Their Unions 167
5.2.3 Two More Characterizations . 171

5.3 Right Query Algorithms . 172
5.3.1 CQ Classes and Their Boolean Combinations 173
5.3.2 Homomorphic-Equivalence Classes and Their Unions 183

5.4 Adaptive Homomorphism-Count Queries and Graph Isomorphism 187

6 Concluding Remarks 194

Bibliography 202

A The Definable H-Coloring Dichotomy Theorem 209

iv

List of Figures

4.1 Pseudocode for Color-Refinement. 104
4.2 Two graphs G (left) and H (right) that are indistinguishable by color refine-

ment. 105
4.3 Pseudocode for k-Weisfeiler-Leman. 111
4.4 Two cospectral graphs G (left) and H (right), copied from Figure 2 of [15]. 117
4.5 Two chromatically equivalent graphs G (left) and H (right). 120

5.1 Visualization of A⊗A⊗Ln, (A⊗A⊗Ln)/≡n, B0(A, n+1) and B1(A, n+1)
in the proof of Theorem 5.15. 161

5.2 Visualization of P and Q in the proof of Theorem 5.15. 162
5.3 Pseudocode for Graph-Isomorphism. 188
5.4 Pseudocode for Graph-Isomorphism-Revised. 190

v

List of Tables

4.1 Equivalence relations over graphs vs. indistinguishability by the profiles. . . 136

5.1 Finite classes vs. left query algorithms and right query algorithms. 147
5.2 Finite classes vs. left query algorithms and right query algorithms. 148

vi

Abstract

A Study of the Expressive Power of Homomorphism Counts

by

Wei-Lin Wu

The Lovász Theorem asserts that two graphs G and H are isomorphic if and only if

hom(F,G) = hom(F,H) for all graphs F, here hom(A,B) denotes the number of ho-

momorphisms from A to B. This characterization of graph isomorphism in terms of graph

homomorphism counts motivated a wealth of research that seeks to characterize different

relaxations of isomorphism – equivalence relations that are coarser than isomorphism –

in terms of the numbers of homomorphisms “from” certain graphs F. Symmetrically, the

Chaudhuri-Vardi Theorem says that two graphs G and H are isomorphic if and only if

hom(G,F) = hom(H,F) for all graphs F. While this dual characterization prompts to

characterize relaxations of isomorphism in terms of the numbers of homomorphisms “to”

certain graphs F, it received relatively little attention, and is investigated in depth in this

dissertation. The notions of isomorphism and homomorphism as well as these theorems

also apply to relational structures. A different view of these theorems is that they give

rise to query algorithms for testing membership in a class (in the case here the isomor-

phism type of a fixed graph or relational structure) that answer “yes” or “no” by making

a bounded number of homomorphism-count queries. A variant of such an algorithm makes

homomorphism-existence queries (whose values are 0 or 1) instead. An analysis is conducted

in this dissertation for various classes regarding certain variants of query algorithms.

vii

To my dear family and friends

viii

Acknowledgments

First and foremost I want to express my gratitude to my advisor, Professor Phokion G. Ko-

laitis for his encouragement, patience and support during the course of my Ph.D. degree

and for introducing me to the beautiful field of homomorphisms. This dissertation would

have been impossible without his guidance. My gratitude extends to Professors Seshadhri

Comandur and Albert Atserias for serving on the committee of my dissertation and provid-

ing helpful suggestions for revisions and future work. I also want to thank the coauthors

of my research papers, Professors Albert Atserias, Balder ten Cate and Vı́ctor Dalmau, in

addition to my advisor, from whom I learned so much in our collaboration.

A special thanks goes to Tim Seppelt, who brought to my attention an excellent

paper on query algorithms that motivated me to embark on an investigation of this topic,

and to Chih-Duo Hong, a long-time friend who read an early manuscript of this dissertation

and gave me valuable feedback.

Next, I would like to thank my lab members, Vishal Chakraborty, Zehui Cheng

and Akhil Dixit, as well as a friend, Andreas Gittis, for offering their help during my study

at UC Santa Cruz. I would also like to thank my housemates in an on-campus apartment,

Shishir Kapoor and Taisuke Kameda, with whom I have had a good time.

I am deeply indebted to my dear friends, Gloria Huang, Christine Pan and Ava

Tang, who always give me emotional support during my hard times, and especially to Jeffrey

Chang, who has always been there for me.

Last, but not least, I am very grateful to my dear family for encouraging me and

giving me strength all along.

ix

Chapter 1

Introduction

The decision problem GRAPH-ISOMORPHISM is the following: Given two graphs G

and H, is there an isomorphism from G to H? A bijective mapping π from the vertices of

G to the vertices of H is an isomorphism from G to H if for all vertices u, v in G, they

are adjacent in G if and only if their images π(u), π(v) are adjacent in H, and we say G is

isomorphic to H if such a mapping π exists (obviously, being isomorphic is an equivalence

relation over graphs).

This problem has found applications in various areas such as computer vision,

chemoinformatics and circuit design [32]. Despite important progress [4, 31], the exact

status of its computational complexity remains unknown today: While this problem ob-

viously belongs to NP, the class of all decision problems that admit a nondeterministic

polynomial-time algorithm, it is an important open question whether GRAPH-ISOMORPHISM

is NP-complete or admits a polynomial-time algorithm in general.

A wider decision problem is GRAPH-HOMOMORPHISM: Given two graphs G and H,

1

is there a homomorphism from G to H? A mapping (not necessarily bijective) from the

vertices of G to those of H is a homomorphism from G to H if for all vertices u, v in G,

the adjacency between them in G implies the adjacency between their images h(u), h(v) in

H. It is obvious that all instances of GRAPH-HOMOMORPHISM are in NP.

There are two special cases of GRAPH-HOMOMORPHISM that are common decision

problems themselves, derived by fixing either G or H. For example, when G is fixed to

the triangle (a complete graph of three vertices), then the problem amounts to asking,

given a graph H as input, whether it contains a triangle as a subgraph (since graphs are

loopless). Symmetrically, when H is fixed to the triangle, then the problem is the same as

the 3-COLORABILITY problem, well known to be NP-complete. The latter example indicates

that GRAPH-HOMOMORPHISM, in general, is NP-complete.

Clearly, an isomorphism from a graph to another is also a homomorphism, but the

converse may not be true. There is a deeper connection between the two notions, indeed.

In the following, we write hom(F,G) for the number of homomorphisms from F to G for

arbitrary graphs F and G. It turns out that two graphs G and H are isomorphic if and only

if hom(F,G) = hom(F,H) for all graphs F. Fix a graph G, the homomorphism counts

hom(F,G) for all graphs F collectively are called the (full) left profile of G. Stated oth-

erwise, the left profile of G reveals its complete structural information (i.e., isomorphism

type). This assertion is known as Lovász Theorem [40] (see Theorem 4.1). Clearly, by

restricting the graphs F in the left profiles of graphs to be drawn from a certain nonempty

class, a relaxation of isomorphism (i.e., an equivalence relation coarser than isomorphism)

arises from pairs of graphs G and H that share the same restricted left profile. This consid-

2

eration has inspired an extensive body of research investigating what interesting equivalence

relations over graphs are captured in this way.

For example, two graphs are said to be Ck-equivalent, where k ≥ 1, if they satisfy

the same Ck-sentences, i.e., first-order sentences with counting in at most k variables.

In [16], it is shown that two graphs are Ck-equivalent if and only if they share the same

restricted left profile where the graphs F all have treewidth at most k − 1. (This, together

with Lovász Theorem, strengthens and reproves a known fact that two graphs are isomorphic

if and only if they satisfy the same first-order sentences, with or without counting.)

As a second example, let us recall GRAPH-ISOMORPHISM stated earlier. While it

remains open today whether this problem can be solved in polynomial-time in general,

some heuristic polynomial-time algorithms have been devised for it. The k-dimensional

Weisfeiler-Leman algorithm [50], where k ≥ 1, is a well-known example of this; when k = 1,

it is also known as the color refinement algorithm. Let k be fixed. For a given graph

G, this algorithm initially assigns the default color to every k-tuple of vertices of G that

matches the isomorphism type of the subgraph of G induced by that k-tuple, and then

runs in iterations, assigning a new color to every k-tuple that matches its old color and the

number of adjacent k-tuples of each old color assigned in the previous iteration (or based

on their default colors if in the first iteration). It can be easily observed that, two k-tuples

that are assigned different colors in an iteration (or are assigned different default colors

prior to the first iteration) will never be assigned the same new color in a later iteration.

That is to say, during the execution of the algorithm, the groups of k-tuples of all colors

split into smaller and smaller groups in the iterations, until no more split is possible (the

3

total number of iterations is obviously bounded by the total number of k-tuples of vertices

of G), for which we say the coloring stabilizes. Intuitively, this algorithm computes local

structural information (i.e., the color) of each k-tuple in G, and returns the global coloring

of the entire graph G. Therefore, if two graphs are isomorphic, then they must share

the same global coloring. However, the converse may not be true: In case of k = 1, this

algorithm computes the same global coloring for nonisomorphic regular graphs of the same

degree that have the same number of vertices; in case of k > 1, it is known that there

are infinitely many pairs of nonisomorphic graphs that share the same global coloring [7].

In other words, this algorithm, while computationally efficient, is not a complete solution

for GRAPH-ISOMORPHISM. In [7], it is also shown that for k ≥ 1, two graphs are Ck+1-

equivalent if and only if they share the same global coloring computed by the k-dimensional

Weisfeiler-Leman algorithm. This, together with the previous example, implies that two

graphs indistinguishable by the k-dimensional Weisfeiler-Leman algorithm (in terms of the

global colorings they receive) if and only if they share the same restricted left profile in

which all graphs F have treewidth at most k.

As a third example, two graphs are said to be Ck-equivalent, where k ≥ 1, if they

satisfy the same Ck-sentences, the first-order sentences with counting whose quantifier rank

is most k. It is shown in [29] that two graphs are Ck-equivalent if and only if they share

the same left profile where the graphs F all have treedepth at most k.

Interestingly, there is a dual statement to the above Lovász Theorem, known as

Chaudhuri-Vardi Theorem [9] (see Theorem 4.2), which says that two graphs G and H

are isomorphic if and only if hom(G,F) = hom(H,F) for all graphs F. Fix a graph G,

4

the homomorphism counts hom(G,F) for all graphs F collectively are called the (full)

right profile of G. In a likewise manner, pairs of graphs G and H that share the same

right profile in which the graphs F come from a restricted nonempty class, also give rise

to an equivalence relation coarser than isomorphism. However, little attention was paid

in this regard, compared to that received by the consideration mentioned in the previous

paragraphs.

This dissertation gives an in-depth discussion of what interesting equivalence rela-

tions over graphs (coarser than isomorphism) can or cannot be captured by restricting the

left profile or by restricting the right profile in Chapter 4. It turns out that some equivalence

relations known to be captured by restricting one profile cannot be captured by restricting

the other profile. Besides tailor-made arguments for specific equivalence relations, a more

general condition of when an equivalence relation cannot be captured by restricting the

right profile is given (see Theorem 4.17). Furthermore, for k ≥ 1, both FOk-equivalence

and FOk-equivalence cannot be captured by restricting the left profile nor by restricting

the right profile (see Proposition 4.24), where FOk-equivalence and FOk-equivalence are

indistinguishability in terms of satisfaction of FOk-sentences (first-order sentences in at

most k variables) and FOk-sentences (first-order sentences of quantifier rank at most k),

respectively.

A different perspective on Lovász Theorem tells that the class of all graphs iso-

morphic to a fixed graph H shares the same left profile, thus the membership problem cor-

responding to this class can be solved by evaluating the homomorphism counts hom(F,G)

of an input graph G (for all graphs F) and checking these numbers against those in the

5

left profile of H. The astute reader might instantly notice an issue: The full left profile of

H involves infinitely many numbers, and it is not realistic to evaluate “all” homomorphism

counts hom(F,G) before concluding whether G is isomorphic to H. Indeed, an exami-

nation of the proof of Lovász Theorem shows that G is isomorphic to H if and only if

hom(F,G) = hom(F,H) for all graphs F having at most n vertices, provided that H has n

vertices (cf. Corollary 4.5). That is to say, it suffices to check a “finite” number of homo-

morphism counts to see if G is isomorphic to H. This leads to an algorithm for checking a

(structural) property that is based on the evaluation of the finitely many fixed queries that

are homomorphism counts, and in this case the property refers to a graph being isomorphic

to a fixed graph. Since an arbitrary (structural) property can be identified with the class

of all graphs having the property, the aforementioned algorithm is indeed one to decide

membership in a class. It is then natural to ask what interesting classes (equivalently, what

interesting properties) admit an algorithm that answers yes or no by making queries that

are homomorphism counts hom(F,G) for finitely many predetermined graphs F.

In [10, 11], it is shown that every Boolean combination of universal first-order

sentences admits such an algorithm and, particularly in [11], that some common classes,

including the class of graphs having an isolated vertex, the class of planar graphs and the

class of k-colorable graphs (k ≥ 2), do not admit this kind of algorithms.

In addition, a nontrivial enhanced version of Chaudhuri-Vardi Theorem is given

in [11] that says that G is isomorphic to H if and only if hom(G,F) = hom(H,F) for all

graphs F having at most m vertices, where m = max {2, n3}, provided that H has n vertices

(cf. Corollary 4.5). In other words, the class of graphs isomorphic to a fixed graph H admits

6

an algorithm for deciding membership based on the evaluation of the homomorphism-count

queries hom(G,F) against the input graph G for all graphs F of a bounded number of

vertices. Therefore, one can likewise ask what interesting classes admit an algorithm in this

way. In [11], there is essentially only one “positive” result in this regard, however: If there

is a bound on the number of edges in the graphs of a class, then the class admits such an

algorithm.

In that same paper, it is also shown that, by allowing the graphs F in the queries

to vary according to the values of the previously made queries but with a predetermined

construction (that is, the graphs F are adaptive), it suffices to make at most three queries

of the form hom(F,G) to determine whether the input graph G is isomorphic to the fixed

graph H; moreover, three adaptive queries are necessary in some cases and hence the result

is optimal in terms of the number of queries made. As a “negative” result, it is proved

that there is no algorithm that makes a bounded number of adaptive queries of the form

hom(G,F) for the same task.

For brevity, we call algorithms that make queries of the form hom(F,G) for input

G, with F fixed or adaptive, the left query algorithms (since the graphs F appear as the

left argument of hom(∗, ∗)) and, symmetrically, those that make queries of the dual form

hom(G,F) for input G, with F fixed or adaptive, the right query algorithms (since the

graphs F appear as the right argument of hom(∗, ∗)). The paper [11] mostly gives positive

results of left query algorithms and negative results of right query algorithms.

This dissertation gives some counterbalancing examples in Chapter 5: An im-

portant family of classes of graphs – those that correspond to a (nonuniform) constraint

7

satisfaction problem, while admitting a straightforward right query algorithm (of a fixed

query), do not admit any left query algorithm (of fixed queries) except for the trivial ones

(see Lemma 5.12). Moreover, if adaptive queries of either form hom(F,G) or hom(G,F)

are allowed for the input graph G, then there is a hybrid query algorithm that combines

the best feature of either form and requires at most two adaptive queries for determining

whether the input G is isomorphic to a fixed H (cf. Figure 5.4).

As a matter of fact, the aforementioned notions of isomorphism and homomor-

phism, as well as left and right profiles and the statements of Lovász and Chaudhuri-Vardi

Theorems, also apply to relational structures (which are essentially equivalent to relational

databases in database theory). Thus, the same questions whether a class admits a left or a

right query algorithm can be asked of relational structures, and these are also discussed in

Chapter 5, where homomorphism counts are evaluated over either the bag-set semiring N

(the actual numbers) or the Boolean semiring B (indicators of existence of homomorphisms,

0 or 1). We will call a left query algorithm in which the homomorphism counts are evalu-

ated over N a left query algorithm over N and one in which these counts are evaluated over

B a left query algorithm algorithm over B, analogously for a right query algorithm over N

and a right query algorithm over B. Intuitively, homomorphism counts over N carry more

information than those over B and, in general, query algorithms over N are more capable

in deciding membership in a class than are query algorithms over B (see Example 5.3).

Thus, whenever a class admits a left (or right) query algorithm over B, it must also admit

a left (or right, respectively) query algorithm over N (see Proposition 5.1). The classes of

relational structures that correspond to constraint satisfaction problems naturally admit

8

a right query algorithm over B and hence one over N, and they may or may not admit

a left query algorithm over B or over N. Surprisingly, however, such classes admit a left

query algorithm over B precisely when they admit one over N, and precisely when they are

definable in first-order logic (see Theorem 5.15), which means that left query algorithms

over N are not more capable than their counterparts over B when it comes to deciding

membership in such classes. This statement extends to unions of classes that correspond to

constraint satisfaction problems (see Theorem 5.16), which are closed under homomorphic

equivalence (i.e., for arbitrary relational structures A and B which admit a homomorphism

to each other, A is in a class D that is a union of such classes if and only if B is in D).

Furthermore, it is shown in [8] that in general this statement is valid for classes that are

closed under homomorphic equivalence.

The organization of this dissertation is as follows. In Chapter 2, we go over some

fundamental concepts and introduce the terms used throughout the dissertation, followed

by a separate section for graphs and relational structures each.1 In Chapter 3, we give a

brief introduction to mathematical logic, where first-order logic and its augmentation with

counting quantifiers (and their fragments) are covered, and then we study the basics of ho-

momorphisms and their counts over the semirings B and N. These are the two frameworks

to investigate various problems and they play a central role in this dissertation. In Chap-

ter 4, we present a simultaneous generalization of Lovász Theorem and Chaudhuri-Vardi

Theorem with a detailed proof, and then proceed to investigate the problems of character-

izing equivalence relations over graphs by restricted left or right profiles. In Chapter 5, we

1Although it is common practice to define graphs as relational structures, we view them as distinct
objects. This facilitates a clearer exposition of graph-theoretic notions concerning relational structures, and
it allows us to present the results in Chapters 4 and 5 in a more proper context.

9

turn our attention to query algorithms and study some characterizations of when a class (of

graphs or of relational structures) admits a left or a right query algorithm over B or over

N. Finally, we conclude this dissertation in Chapter 6.

10

Chapter 2

Preliminaries

This chapter serves to introduce and clarify the basic terms on which more sophis-

ticated notions are to be developed and to bring in some basic results that will be referred to

repeatedly in later chapters. We will go over some fundamental concepts including sets (and

classes), graphs and relational structures, and isomorphism. The reader should be advised

that the materials presented in this introductory chapter are by no means comprehensive

as each of these topics deserves a whole treatise.

2.1 Fundamentals

As a widely accepted foundation of mathematics, set theory provides a simple yet

flexible framework in which to build various mathematical theories. The most prominent

objects of study in set theory are of course sets, based on which other more involved objects

are defined. A class of objects is informally a collection of such things and may or may

not be a set itself. In this dissertation, however, we shall not concern ourselves with such

11

technical issues but rather treat classes as sets, using the two terms interchangeably. We

assume our sets to have been built on a standard system of axioms (e.g., ZFC) and common

objects such as functions (also known as mappings), sequences (also known as tuples) and

relations to have been defined as special sets. For the rest of this section, we clarify some

terms and notations of these objects that will be used throughout this dissertation.

Sets

The empty set, i.e., the set containing no elements, is denoted ∅. Let A and B be

sets. We write A ⊆ B if A is a subset of B. If U is the universe of objects of discourse (i.e.,

the context) and if A ⊆ U , then we write A for the complement of A in U . The difference

of A from B, denoted A \ B, is the set A ∩ B. We say A and B are disjoint if A ∩ B = ∅;

when this is the case, we sometimes write A] B, called the disjoint union of A and B,

for A ∪ B to emphasize that A and B are disjoint. The Cartesian product of A and B is

denoted A×B. For n ≥ 1, the n-th Cartesian power of A is the set An := A× · · ·×A︸ ︷︷ ︸
n-times

.

The three operations (complementation), ∩ (intersection) and ∪ (union) are

Boolean operations.

Let A1, . . . , An and A be sets. We say A is a Boolean combination of the sets

A1, . . . , An if A can be obtained by successively applying the Boolean operations, starting

from the sets A1, . . . , An.

The set of natural numbers 0, 1, 2, . . . is denoted N, and the set of positive integers

1, 2, 3, . . . is denoted Z+. Given m,n ∈ N, we let [m,n] denote the set {m, . . . , n} if m ≤ n

and the empty set ∅ otherwise; in particular, we let [n] abbreviate [1, n].

Let A be a set. The size (or cardinality) of A, denoted |A|, is the number of

12

elements in A. We say A is finite if |A| is a natural number and infinite otherwise.

Let n ≥ 2. We say a list of objects a1, . . . , an are pairwise distinct if i 6= j implies

ai 6= aj , for all i, j ∈ [n]. We say a list of sets A1, . . . , An are pairwise disjoint if i 6= j

implies Ai ∩Aj = ∅, for all i, j ∈ [n]; when this is the case, we sometimes write
⊎n
i=1Ai for⋃n

i=1Ai to emphasize that A1, . . . , An are pairwise disjoint.

Functions

Let f : A→ B be a function. For a ∈ A, we call f(a) the image of a under f . Let

S be a subset of A. The image of S under f is the set f(S) = {f(a) | a ∈ S}. We write f |S

for the restriction of f to S. We write a 7→ f(a) for the mapping rule of f , i.e., the set of

pairs {(a, f(a)) | a ∈ A}. We say

• f is injective if it is one-to-one,

• f is surjective if it is onto,

• f is bijective if it is one-to-one and onto.

If f is bijective, we sometimes say f is a one-to-one correspondence from A to B and we

write f−1 : B → A for its inverse. Abusing the notation f−1, for all b ∈ B we write f−1(b)

for the set {a ∈ A | f(a) = b} (regardless whether f is bijective or not), called the preimage

of b. For every function g : B → C, we write f ◦ g for the composition of f with g: For all

a ∈ A, we have (f ◦ g)(a) = f(g(a)).

For every statement S, we write I(S) for the indicator function of S, which takes

value 1 if S is true and 0 otherwise.

Let A and B be two sets. For every n ∈ Z+, we say f : An → B is an n-ary

13

function; if B = A, we say it is an n-ary operation on A. It is customary to write a binary

operator in between its operands. Let � be a binary operation on A. We say

• � is associative if (a � b) � c = a � (b � c) for all a, b, c ∈ A (and we write a � b � c

for (a� b) � c and equivalently for a� (b� c)),

• � is commutative if a� b = b� a for all a, b ∈ A.

If A ⊆ B, we write i : A→ B for the inclusion mapping : For all a ∈ A, we have i(a) = a.

Remark 2.1. Fix sets A, B and T , and let f : A→ B be a function.

(a) If B ⊆ T , then there is a unique function g : A→ T whose mapping rule coincides with

a 7→ f(a). Indeed, g = i ◦ f where i : B → T is the inclusion mapping.

(b) If f(A) ⊆ T ⊆ B, then there is a unique function g : A → T whose mapping rule

coincides with a 7→ f(a). In particular, there is a unique surjective function g : A →

f(A) whose mapping rule is a 7→ f(a).

Sequences (Tuples) and Relations

Let f : A→ B be a function. The sequence (f(a) | a ∈ A) is an alternative view of

f , in which the entries, f(a), are indexed by a ∈ A, and the size of this sequence is |A| (we

refrain from the more common term length to avoid ambiguity when we define the length

of a walk (as a sequence of vertices) in a graph later in Section 2.2).

Let n ∈ Z+. For objects a1, . . . , an (not necessarily pairwise distinct), we write

(a1, . . . , an) in place of (f(i) | i ∈ [n]) where f(i) = ai for all i ∈ [n]. For all i, j ∈ [n] with

i ≤ j, the sequence (ai, . . . , aj) is a subsequence of (a1, . . . , an). A sequence of size n is also

14

called an n-tuple. In particular, a 2-tuple is also called an (ordered) pair. When the size n

of an n-tuple (a1, . . . , an) is irrelevant or understood from the context, we often simply say

a tuple and let a abbreviate (a1, . . . , an).

Let A be a set, and let n ∈ Z+. The elements in An are n-tuples in A. A subset

R ⊆ An is an n-ary relation over A, whose arity is n. For every a ∈ An, every a ∈ A and

every i ∈ [n], we write a(i/a) for the n-tuple (a1, . . . , ai−1, a, ai+1, an) and write aa for the

(n+ 1)-tuple (a1, . . . , an, a).

Binary Relations and Equivalence

Let A be a set and P be a binary relation over A. Whenever possible, we write P

as a predicate as opposed to a set, i.e., we prefer the notation a P b to (a, b) ∈ P ; and we

write a 6P b if it is not true that a P b. We say P is

• reflexive if for all a ∈ A, it holds that a P a,

• symmetric if for all a, b ∈ A, it holds that a P b implies b P a,

• transitive if for all a, b, c ∈ A, it holds that a P b and b P c together imply a P c.

If P is symmetric, then a P b precisely when b P a; thus, we sometimes say “a and b

are P” alternatively to “a is P to b.” We say P is an equivalence relation over A if it is

reflexive, symmetric and transitive; in this case, we often say “a and b are P (equivalent)”

alternatively to “a is P (equivalent) to b,” by the symmetry.

Let A be a set and P and P ′ be equivalence relations over A. We say P is finer

than P ′ or, reciprocally, P ′ is coarser than P , if for all a, b ∈ A, it holds that a P b implies

a P ′ b; we also say P ′ is a relaxation of P in this case. We say P coincides with P ′ or,

15

equivalently, P and P ′ coincide when both P is finer than P ′ and P ′ is finer than P .

We often use the symbol ≡ when referring to an (arbitrary) equivalence relation

over a set and, if given a term T (such as first-order logic, see Subsection 3.1.1), the symbol

≡T when referring to the equivalence relation arising from being equal or indistinguishable

in (the sense of) T (the precise meaning of this statement will be made clear when T is

introduced). When a ≡T b, we say a is T -equivalent to b or a is indistinguishable from b in

(the sense of) T .

Let A be a set and ≡ be an equivalence relation over A.

• For a ∈ A, we write [a]≡ := {b ∈ A | a ≡ b} for the equivalence class of a induced by ≡,

and we assume that there is a distinguished member of [a]≡, called the representative.

• We say “up to the equivalence ≡” in a statement when the statement being made

is true within the exceptions due to the possible differences between a and b, for all

a, b ∈ A such that a ≡ b.

• Let T be a term, we say that ≡ is characterized by ≡T (over A) or ≡ is characterized

in T (over A) if ≡ coincides with ≡T over A.

• Let T be a term and a ∈ A.

– For every expression t in T , we say a is characterized by t (over A) if a can be

distinguished from other elements in A by t. We say a is characterized in T (over

A) if there is such an expression t,

– For every expression t in T , we say a is characterized by t up to ≡ (over A) if a

can be distinguished by t from all other elements b ∈ A such that a 6≡ b. We say

a is characterized in T up to ≡ (over A) if there is such an expression t.

16

• We say a set B ⊆ A is closed under ≡ if for all a and b in A such that a ≡ b, we have

a ∈ B implies b ∈ B; in this case, we have B =
⋃
b∈B[b]≡.

• We say an n-ary function f of domain A is invariant under ≡ if f(a1, . . . , an) =

f(b1, . . . , bn) for all a1, . . . , an, b1, . . . , bn ∈ A such that a1 ≡ b1, . . . , an ≡ bn.

• We say an n-ary relation R over A is invariant under ≡ if for all a1, . . . , an, b1, . . . , bn ∈

A such that a1 ≡ b1, . . . , an ≡ bn, it holds that (a1, . . . , an) ∈ R if and only if

(b1, . . . , bn) ∈ R.

Multisets and Placeholder

A multiset is a collection of objects in which the members can occur multiple

times. We use braces {} in boldface for the notation of multisets in contrast to {} for sets.

We adopt the wildcard symbol ∗ as a placeholder, usually within function or rela-

tion (predicate) symbols, in a statement to make the statement universally applicable for

everything that is appropriate where ∗ is.

2.2 Graphs

Definition 2.1. A graph is a pair G = (V (G),E (G)), where the vertex set V (G) of G

is a finite nonempty set of elements, called the vertices (or nodes) in G, and the edge set

E (G) of G is a set of subsets of V (G) of size 2, called the edges in G. The size of G refers

to |V (G)|.

Definition 2.2. Let G be a graph. The degree of a vertex v in G is

degG(v) := |{u ∈ V (G) | {u, v} ∈ E (G)}|,

17

and the degree of G is deg(G) := max {degG(v) | v ∈ V (G)}.

Let G be a graph. For every graph H, we say that G is a subgraph of H or H

contains G (as a subgraph) (written: G ⊆ H) if V (G) ⊆ V (H) and E (G) ⊆ E (H). For

every nonempty subset S ⊆ V (G), we write G[S] for the subgraph of G induced by S,

namely, the graph with S as its vertex set and {{u, v} ∈ E (G) | {u, v} ⊆ S} as its edge set.

Definition 2.3. Let G and H be graphs.

(a) The direct sum of G and H, denoted G⊕H, is the graph with

• vertex set V (G⊕H) := V (G)]V (H) and edge set E (G⊕H) := E (G)] E (H)

if V (G) and V (H) are disjoint, otherwise

• vertex set V (G ⊕ H) := {(v, 1) | v ∈ V (G)}] {(v, 2) | v ∈ V (H)} and edge set

E (G⊕H) := {{(u, 1), (v, 1)} | {u, v} ∈ E (G)}] {{(u, 2), (v, 2)} | {u, v} ∈ E (H)}.

(b) The direct product of G and H, denoted G⊗H, is the graph with vertex set V (G⊗H) :=

V (G)×V (H) and edge set

E (G⊗H) := {{(u1, v1), (u2, v2)} | {u1, u2} ∈ E (G) and {v1, v2} ∈ E (H)}.

Let F, G and H be arbitrary graphs. We have that G ⊕ H and H ⊕ G are

isomorphic (informally speaking, structurally identical, a notion to be formally introduced

later) and so are (F ⊕ G) ⊕ H and F ⊕ (G ⊕ H). That is to say, the binary operation

⊕ is commutative and associative in graphs up to isomorphism, which allows us to write⊕n
i=1 Gi or write

⊕
n G particularly when Gi = G for all i ∈ [n]. The above can be said

about ⊗ by analogy. Note that both ⊕ and ⊗ lack an identity element, and in particular

18

we may run into an issue with n = 0 in
⊕n

i=1 Gi in Subsection 4.2.5, for which we devise

an ad hoc identity element as a resolution.

Definition 2.4. Let G be a graph. A partition of V (G) is a set θ = {V1, . . . , Vn}, n ∈ Z+,

of pairwise disjoint nonempty subsets of V (G) such that

• e 6⊆ Vi for i ∈ [n] and for e ∈ E (G), and

•
⊎n
i=1 Vi = V (G).

The quotient of G by θ is the graph G/θ with vertex set V (G/θ) := θ and edge set

E (G/θ) := {{Vi, Vj} ⊆ V (G/θ) | {vi, vj} ∈ E (G) for some vi ∈ Vi and vj ∈ Vj}.

We say a partition θ is trivial if every set V ∈ θ has size 1; in this case, G/θ is

isomorphic to G and thus we set G/θ := G for brevity.

Let G be a graph.

• For u, v ∈ V (G), we say u is adjacent to v if {u, v} ∈ E (G).

• For v ∈ V (G), we say v is isolated if it is not adjacent to any vertex.

• Let n ≥ 1. A walk of length n in G is a sequence (v0, . . . , vn) of vertices v0, . . . , vn ∈

V (G) in which (vi, vi+1) ∈ E (G) for i ∈ [0, n− 1].1 A path of length n in G is a walk

of length n in G in which v0, . . . , vn are pairwise distinct.

• For n ≥ 2, a closed walk of length n in G is a walk (v0, . . . , vn) in G such that vn = v0.

• For n ≥ 3, a cycle of length n in G is a closed walk (v0, . . . , vn) in G in which

v0, . . . , vn−1 are pairwise distinct.

1Note that while the walk (v0, . . . , vn) has length n, it has size n+ 1 when viewed as a sequence.

19

When the length n is irrelevant or can be understood from the context, we often simply say

a (closed) walk, path or cycle.

• We say G is acyclic if it contains no cycles as a subgraph.

• For distinct u, v ∈ V (G), we say (v0, . . . , vn) is a walk (or path) from u to v in G if

(v0, . . . , vn) is a walk (or path, respectively) in G with v0 = u and vn = v.

• For u, v ∈ V (G), the distance between u and v (in G), denoted dG(u, v), is 0 if u = v,

is the minimum length of a path from u to v if u 6= v and such a path exists, and is

∞ otherwise.

• The diameter of G is δ(G) := max {dG(u, v) | u, v ∈ V (G)}.

• For u, v ∈ V (G), we say v is reachable from u (written: u ∼ v) if dG(u, v) < ∞.

(Note that ∼ is a reflexive, symmetric and transitive binary relation and hence is an

equivalence relation over V (G).)

• A connected component of G is a subgraph of G induced by a set of vertices in G that

is an equivalence class induced by ∼. (Note that if G has G1, . . . ,Gn as its connected

components, then G = G1 ⊕ · · · ⊕Gn.)

• We say G is connected if it is a (and hence the only) connected component of itself.

(Note that G is connected if and only if δ(G) <∞.)

The next is a useful property about closed walks of odd length and cycles of odd

length in a graph.

Proposition 2.1. Let G be a graph. If G contains a closed walk of odd length n ≥ 3, then

G contains a cycle of odd length m such that n ≥ m ≥ 3.

20

Note that Proposition 2.1 does not hold for closed walks and cycles of even lengths

in general. In fact, for the graph G with V (G) = {u, v} and E (G) = {{u, v}}, it is obvious

that (u, v, u) is a closed walk of length 2 in G but there is no cycle (hence no cycle of even

length) in G.

Special Graphs

Definition 2.5. Let n ∈ Z+.

(a) The independent set (or empty graph) of size n is denoted In and is the graph with

vertex set V (In) = {v1, . . . , vn} and edge set E (In) = ∅.

(b) The clique (or complete graph) of size n is denote Kn; K1 := I1 and for n ≥ 2, Kn is

the graph with vertex set V (Kn) = {v1, . . . , vn} and edge set

E (Kn) = {{vi, vj} | i, j ∈ [n] and i < j}.

(c) The path graph of size n is denoted Pn; P1 := I1 and for n ≥ 2, Pn is the graph2 with

vertex set V (Pn) = {v1, . . . , vn} and edge set E (Pn) = {{vi, vi+1} | i ∈ [n− 1]}.

(d) The cycle graph of size n is denoted Cn; C1 := K1, C2 := K2 and for n ≥ 3, Cn is the

graph3 with vertex set V (Cn) = {v1, . . . , vn} and edge set

E (Cn) = {{vi, vi+1} | i ∈ [n− 1]} ∪ {{vn, v1}}.

By definition, a graph G is acyclic if and only if G does not contain Cn as a

subgraph for any n ≥ 3. We say a graph is a forest when it is acyclic, and we say that it is

2Note that path graphs Pn are all paths themselves except for n = 1.
3Note that cycle graphs Cn are all cycles themselves except for n = 1 and n = 2.

21

a free tree4 if it is connected in addition.

The list below enumerates notations for some common classes of graphs. We

assume that all classes of graphs to be closed under isomorphism (to be explained next).

Notations. (a) The class of all graphs is denoted G.

(b) The class of all independent sets is denoted I.

(c) The class of all cliques is denoted K.

(d) The class of all path graphs is denoted P.

(e) The class of all cycle graphs is denoted C.

(f) The class of all free trees is denoted T .

Isomorphism: Structural Identity

In vector algebra, vectors in the Euclidean plane are often represented as arrows, in

which the additive inverse of a vector is simply the same arrow with the reversed direction

and addition of two vectors is done by joining the head of one to the tail of the other to

obtain a new straight arrow. An alternative representation of vectors in the Euclidean plain

is by pairs of coordinates (i.e., pairs of real numbers), in which the additive inverse of a

vector is the pair of real numbers that are the additive inverses of the respective coordinates

and addition of two vectors is done by coordinate-wise addition. It turns out that there is

a one-to-one correspondence between the set of arrows and the set of pairs of coordinates

4A rooted tree is the same as a free tree, except that it contains a distinguished node called the root,
and is often depicted in a top-down manner where the root is at the top and the child nodes of a given
node are below it. The nodes in a rooted tree that have no child nodes are leaves. A subtle difference in
the terminology of free trees and rooted trees is that, while nodes and vertices are used interchangeably for
free trees (since they are a special kind of graphs), it is often preferable to say nodes instead of vertices for
rooted trees (and to differentiate rooted trees from graphs).

22

under which “the individuals in one world behave in exactly the same way as those in the

other.” Hence, the system of arrows and the system of pairs of coordinates are “structurally

identical” and any difference between them is deemed superficial, which suggests that the

two systems should be treated as synonymous to each other, as long as vector algebra is

concerned.

This brings us to isomorphism, an important notion in mathematics, especially in

areas such as graph theory, database theory, mathematical logic and category theory.5 In

particular, GRAPH-ISOMORPHISM is a well-known decision problem in graph theory that asks

whether two given graphs are isomorphic. Its computational complexity is obviously NP,

and yet it remains unknown whether it is in P or is NP-complete, although it is believed

by many to be NP-intermediate (assuming P 6= NP). The notion of isomorphism among

graphs is of interest to us, and we formalize it as follows.

Definition 2.6. Let G and H be graphs. A function π : V (G)→ V (H) is an isomorphism

from G to H (written: π : G ∼= H) if π is a bijection and if for all u, v ∈ V (G), it is true

that {u, v} ∈ E (G) if and only if {π(u), π(v)} ∈ E (H). We say that G is isomorphic to H

(written: G ∼= H) if there is an isomorphism from G to H.

It is easy to see that ∼= is an equivalence relation over graphs:

Reflexivity. For G and the identify mapping ι : V (G) → V (G) (such that ι(v) = v for

all v ∈ V (G)), we have ι : G ∼= G.

5The spirit in which mathematicians regard isomorphic systems as one and the same while ignoring any
distinctions between them is perhaps best manifested by the famous quote by Henri Poincaré, translated
to English as “Mathematicians study not objects, but relations between objects; the replacement of these
objects by others is therefore indifferent to them, provided the relations do not change. The matter is for
them unimportant, the form alone interests them.”

23

Symmetry. For G and H, if π : G ∼= H, then π−1 : H ∼= G.

Transitivity. For F, G and H, if π1 : F ∼= G and π2 : G ∼= H, then (π2 ◦ π1) : F ∼= H.

The equivalence class of a graph G induced by ∼= is the class [G]∼= := {H ∈ G | G ∼= H},

called the isomorphism type of G. An isomorphism from a graph G to itself is called an

automorphism of G, and the number of automorphisms of G is denoted aut(G).

Remark 2.2. Every graph G with vertex set V (G) = {v1, . . . , vn} is completely described

by its adjacency matrix, an (n× n)-matrix MG whose entries are

MG
ij :=


1 if {vi, vj} ∈ E (G),

0 otherwise.

In terms of adjacency matrices, G is isomorphic to a graph H if and only if MH can be

obtained from MG by simultaneously permuting the rows and columns.

Throughout this dissertation, the focus of study is on structural properties (and

they are invariant under isomorphism). Therefore, most often we mean G ∼= H when we

write G = H, and we mean G is isomorphic to a subgraph of H when we write G ⊆ H.

Furthermore, we assume that classes of graphs are closed under isomorphism, i.e, for graphs

G and H and for classes D of graphs, if G ∈ D and if G ∼= H, then H ∈ D. The size of

a class D of graphs is the total number of distinct isomorphism types among the graphs in

D, and we say D is finite if its size is in N, otherwise we say D is infinite. If D is finite

with the isomorphism types [G1]∼=, . . . , [Gn]∼= among the graphs in it, then we often write

D = {G1, . . . ,Gn} in place of D = [G1]∼= ∪ · · · ∪ [Gn]∼= for brevity.

24

For classes D of graphs, we write

D/∼= := {G ∈ D | G is the representative of the isomorphism type [G]∼=}

for the set of graphs in D that are also the representatives of their respective isomorphism

types, which is needed in the condition of set descriptions, sequence descriptions, enumer-

ations or big operators such as
∑

or
⊎

, to avoid redundancy.

Graph Parameters

A graph parameter is a function f : G → R that is invariant under isomorphism,

i.e., f(G) = f(H) for all graphs G and H such that G ∼= H (see [41] for a thorough

reference). For example, the diameter δ(G) of a graph G introduced earlier is an example

of graph parameter.

Definition 2.7. Let G be a graph.

(a) For n ∈ Z+, a function f : V (G) → {0, . . . , n− 1} is an n-coloring of G, with the n

integers 0, . . . , n − 1 as colors, if for every two distinct vertices u, v ∈ V (G), we have

that {u, v} ∈ E (G) implies f(u) 6= f(v). The graph G is n-colorable if there is an

n-coloring of G.

(b) The chromatic number of G, denoted χ(G), is the minimum n ∈ Z+ such that G is

n-colorable.

Example 2.1. Let n ∈ Z+ and let G be a graph.

(a) If |V (G)| = n, then G is n-colorable: Assume V (G) = {0, . . . , n− 1}, then the identity

function f : {0, . . . , n− 1} → {0, . . . , n− 1}, (i.e., f(k) = k), is an n-coloring of G.

Hence, the notion of chromatic number of a graph is well-defined.

25

(b) If G is n-colorable and if m ∈ Z+ such that m > n, then it is m-colorable. In

fact, if f : V (G) → {0, . . . , n− 1} is an n-coloring of G, then the function g :

V (G) → {0, . . . ,m− 1} with the same mapping rule as f is an m-coloring of G (see

Remark 2.1(a)).

The next proposition is immediate from Definition 2.1.

Proposition 2.2. Let n ∈ Z+, and let G be a graph.

(a) If G is n-colorable, then every subgraph H of G is also n-colorable.

(b) Let G1, . . . ,Gk be the connected components of G for some k ∈ Z+. Then, G is

n-colorable if and only if Gi is n-colorable for all i ∈ [k].

For n ∈ Z+, the decision problem of n-COLORABILITY asks whether a given graph

is n-colorable. While 3-COLORABILITY is obviously in NP (the class of decision problems

that admit a nondeterministic polynomial-time algorithm) and indeed is known to be NP-

complete, 2-COLORABILITY, in contrast, is a member of P (the class of decision problems

that admit a deterministic polynomial-time algorithm).

Proposition 2.3. For every connected graph G that is 2-colorable, the number of 2-

colorings of G is 2.

Proposition 2.4. For every graph G, we have that G is 2-colorable if and only if G

contains no cycle of odd length ≥ 3.

The next lemma, known as (a variant of) the Sparse Incomparability Lemma due

to P. Erdős in graph theory, asserts the existence of a graph that has a specific chromatic

26

number and an arbitrarily large girth (see Corollary 3.13 in [33] for reference). The relevant

definitions are as follows.

Definition 2.8. Let G be a graph.

(a) The girth of G, denoted γ(G), is the minimum n ≥ 3 such that Cn is contained in G

as a subgraph if any, and is ∞ otherwise.

(b) The odd girth of G, denoted γodd(G), is the minimum odd integer n ≥ 3 such that Cn

is contained in G as a subgraph if any, and is ∞ otherwise.

Lemma 2.5 (Sparse Incomparability Lemma). [21] For all m,n ∈ Z+, there exists a graph

G with χ(G) = m and γ(G) ≥ n.

Variants of Graphs

There are numerous different variants of graphs in graph theory, and the graphs

introduced previously are of the simplest type. We shall introduce two variants subsequently.

Definition 2.9. A labeled bipartite multigraph is a triple G = (V1(G),V2(G),E (G)),

where

• the first vertex set V1(G) of G is a finite nonempty set,

• the second vertex set V2(G) of G is a finite nonempty set,

for which V1(G) ∩ V2(G) = ∅, and the elements in V1(G)] V2(G) are called the vertices

in G, and

• the edge set E (G) of G is a finite subset of

{({u, v}, n) | u ∈ V1(G), v ∈ V2(G) and n ∈ Z+},

27

in which n in ({u, v}, n) ∈ E (G) is called a label, and the elements in E (G) are called the

(labeled) edges in G.

We say that two vertices u and v are adjacent (or u is adjacent to v) in a labeled

bipartite multigraph G if ({u, v}, n) ∈ E (G) for some label n. Note that if u, v ∈ V1(G) or

if u, v ∈ V2(G), then u and v cannot be adjacent. The notions of isolated vertices, walks,

paths, closed walks, cycles, acyclicity, reachability from one vertex to another, connected

components and connectedness, respectively, can all be said by analogy to those of graphs.

One thing to note, however, is that now closed walks and cycles all have even lengths ≥ 2

and, in particular, the shortest length possible for cycles is 2.

If we change the definition of graphs so that edges are no longer 2-vertex sets but

rather pairs of two (not necessarily distinct) vertices, then the resulting objects are called

directed graphs. It is customary in graph theory to refer to these pairs of vertices in digraphs

as arcs rather than edges.

Definition 2.10. A directed graph (or digraph for short) is a pair G = (V (G),E (G)),

where the vertex set V (G) of G is a finite nonempty set of elements, called the vertices (or

nodes) in G, and the arc set E (G) of G is a set of pairs of vertices in V (G), called the

arcs in G.

The graphs introduced in Definition 2.1 are occasionally referred to as undirected

graphs to distinguish them from directed graphs. Note that a digraph may contain (u, v)

but not (v, u) as an arc, and may contain (v, v) as an arc (also called a loop). A digraph is

called symmetric if (v, u) is contained as an arc whenever (u, v) is, and is called irreflexive

if it contains no loops.

28

Remark 2.3. In fact, digraphs are legitimate structures, a type of objects to be intro-

duced in the next section, while graphs are not. Nevertheless, there is a one-to-one corre-

spondence between all graphs and all irreflexive and symmetric digraphs: For every graph

G = (V (G),E (G)), the corresponding irreflexive and symmetric digraph

Gσ(G) = (V (Gσ(G)),E (Gσ(G)))

is defined so that

• V (Gσ(G)) := V (G),

• E (Gσ(G)) := {(u, v) ∈ V (Gσ(G))×V (Gσ(G)) | {u, v} ∈ E (G)}.

This one-to-one correspondence G 7→ Gσ(G) allows us to study (undirected) graphs in the

framework of mathematical logic and the symbol σ(G) will be named the vocabulary for

graph theory, more details in the next section.

2.3 Structures

The notion of structures is prevalent in areas such as mathematical logic, abstract

algebra and database theory.

Recall that in the previous section, we mentioned that digraphs are an example of

structures. Informally, a structure is a nonempty set that may be endowed with functions

and relations over this set in which some elements may be distinguished (called constants).

Examples of structures include (Q,≤Q) and (R,≤R), which are the set Q of rational numbers

and the set R of real numbers endowed with the (ordering) relations ≤Q and ≤R over Q

and R, respectively. The symbol ≤ is the “name” shared by both relations. A relational

29

structure is one that can only be endowed with relations (no functions and constants).

Note that (Q,≤Q) and (R,≤R) are both relational structures. We say a structure is finite

if the underlying set (i.e., the domain, see Definition 2.12) is finite, and we say it is infinite

otherwise.

Proviso 1. Throughout this dissertation, we only ever study relational structures and so

we shall omit the qualifier “relational” altogether and simply say “structures.” Moreover,

we mean “finite structures” whenever we say “structures” (without the qualifiers “finite”

or “infinite”), i.e., we tacitly assume that structures are by default the finite ones, unless

the qualifier “infinite” is stated explicitly.

We now formalize the relevant notions as follows.

Definition 2.11. A vocabulary (or signature) is a finite set of relation symbols, each of

which has an associated positive integer called its arity.

Throughout this section, unless stated otherwise, we assume a fixed vocabulary

σ = {R1, . . . , Rm}, and let ri denote the arity of the relation symbol Ri.

Definition 2.12. A σ-structure (or structure of the vocabulary σ), finite or infinite, is a

tuple A = (dom(A), RA
1 , . . . , R

A
m), where dom(A) is a nonempty set called the domain (or

universe) of A and each RA
i is an ri-ary relation over dom(A). The elements in the domain

dom(A) are called the elements of A. The size of A refers to |dom(A)|.

In the literature of database theory, a vocabulary σ is more commonly referred to

as a relational schema, and a σ-structure as a relational database (instance) of σ.

30

As in Section 2.2, we will assume that classes of σ-structures are closed under

isomorphism, and we ask the reader to bear with us mentioning these terms informally

until we introduce them later on.

Notation. The class of all σ-structures is denoted A[σ].

Example 2.2. The vocabulary of graph theory is σ(G) = {E}, where E is a binary relation

symbol (that is, a relation symbol of arity 2). As noted in Remark 2.3, digraphs are

structures, and in fact they only differ in notations: Every digraph G = (V (G),E (G))

is a σ(G)-structure A = (dom(A), EA), and vice versa, where dom(A) = V (G) and EA =

E (G). The class A[σ(G)] of all σ(G)-structures then is indeed the class of all digraphs. For

coherence, we shall henceforth say σ(G)-structures in place of digraphs.

Let A and B be σ-structures. We say that A is a substructure of B or that B

contains A (as a substructure) (written: A ⊆ B) when dom(A) ⊆ dom(B) and RA
i ⊆ RB

i

for all i ∈ [m].

Let A be a σ-structure and S be a nonempty subset of dom(A). The substructure

of A induced by S is the σ-structure A′ ⊆ A such that dom(A′) = S and RA′
i = RA

i ∩ Sri

for all i ∈ [m], which is denoted A[S].

Definition 2.13. Let A and B be σ-structures.

(a) The direct sum of A and B, denoted A⊕B, is the σ-structure with

• domain dom(A ⊕B) := dom(A)] dom(B) and relations RA⊕B
i := RA

i] RB
i for

all i ∈ [m] if dom(A) and dom(B) are disjoint, otherwise

31

• domain dom(A⊕B) := {(a, 1) | a ∈ dom(A)}∪{(b, 2) | b ∈ dom(B)} and relations

RA⊕B
i := {((a1, 1), . . . , (ari , 1)) | (a1, . . . , ari) ∈ RA

i } ∪

{(b1, 2), . . . , (bri , 2) | (b1, . . . , bri) ∈ RB
i }

for all i ∈ [m].

(b) The direct product of A and B, denoted A⊗B, is the σ-structure with domain dom(A⊗

B) := dom(A)×dom(B) and relations

RA⊗B
i := {((a1, b1), . . . , (ari , bri)) | (a1, . . . , ari) ∈ RA

i and (b1, . . . , bri) ∈ RB
i }

for all i ∈ [m].

(c) The A-th power of B (or the exponential of B to A), denoted B ↑A, is the σ-structure

with domain dom(B ↑A) := {f | f : dom(A)→ dom(B) is a function} and relations

RB↑A
i := {(f1, . . . , fri) | (a1, . . . , ari) ∈ RA

i implies (f1(a1), . . . , fri(ari)) ∈ RB
i

for all a1, . . . , ari ∈ dom(A)}

for all i ∈ [m].

Recall the one-to-one correspondence in Remark 2.3, and note that (G⊕H)σ(G) =

Gσ(G)⊕Hσ(G) for all graphs G and H; this explains why we use ⊕ uniformly for graphs and

for σ-structures. As is for graphs, the binary operation ⊕ for σ-structures is commutative

and associative up to isomorphism (the notion of isomorphism for σ-structures is to be

introduced later), which allows us to write
⊕n

i=1 Ai or write
⊕

n A particularly when Ai =

A for all i ∈ [n]. The above can be repeated for ⊗.

Definition 2.14. Let A be a σ-structure. A partition of dom(A) is a set θ = {A1, . . . , An},

n ∈ Z+, of pairwise disjoint nonempty subsets of dom(A) such that
⊎n
i=1Ai = dom(A).

32

The quotient of A by θ is the σ-structure A/θ with domain dom(A/θ) := θ and relations

R
A/θ
i := {(Aj1 , . . . , Ajri) | (aj1 , . . . , ajri) ∈ R

A
i for some aj1 ∈ Aj1 , . . . , ajri ∈ Ajri}

for all i ∈ [m].

As in Section 2.2, we say a partition θ is trivial if every set A ∈ θ has size 1; in

this case, A/θ is isomorphic to A and thus we set A/θ := A for brevity.

Graph-Theoretic Properties

The following definition allows us to study (some aspects of) σ-structures in the

framework of graph theory, specifically from the viewpoint of labeled bipartite multigraphs

(see Definition 2.9).

Definition 2.15. Let A be a σ-structure. The incidence multigraph of A is the labeled

bipartite multigraph Inc(A) = (V1(Inc(A)),V2(Inc(A)),E (Inc(A))) with first vertex set

V1(Inc(A)) := dom(A), second vertex set V2(Inc(A)) := {(Ri, t) | i ∈ [m] and t ∈ RA
i },

and edge set

E (Inc(A)) := {({a, (Ri, t)}, j) | a ∈ V1(Inc(A)) and (Ri, t) ∈ V2(Inc(A))

and a is the j-th entry of t}.

With the mapping A 7→ Inc(A) for all σ-structures, the notions of adjacency be-

tween two elements in dom(A), isolated element in dom(A), walks, paths, closed walks,

cycles, acyclicity, distance between two elements, diameter of A, reachability from one el-

ement to another in dom(A), connected components and connectedness, respectively, can

all be said of A in view of the corresponding incidence multigraph Inc(A). In particular,

33

we say a sequence w = (a0, . . . , an) of elements a0, . . . , an ∈ dom(A) = V1(Inc(A)) is a

walk (or path, closed walk, cycle) in A if w′ = (a0, b0, . . . , an−1, bn−1, an) is a walk (or path,

closed walk, cycle, respectively) in Inc(A) for some b0, . . . , bn−1 ∈ V2(Inc(A)), and we say

the length of the walk (or path, closed walk, cycle, respectively) w in A is n, while the length

of w′ in Inc(A) is 2n. Moreover, if (a, b, a) is a closed walk in Inc(A) with a ∈ V1(Inc(A))

and b ∈ V2(Inc(A)), then we say that (a, a) is a closed walk and also a cycle, both of length

1, in A.

The next example justifies our choice not to identify (undirected) graphs with ir-

reflexive and symmetric σ(G)-structures, due to the incompatibility of some graph-theoretic

properties.

Example 2.3. Consider the graph K2, with V (K2) = {v1, v2} and E (K2) = {{v1, v2}},

and its corresponding σ(G)-structure, K
σ(G)
2 , with dom(K

σ(G)
2) = {v1, v2} and EK

σ(G)
2 =

{(v1, v2), (v2, v1)}. Note that K2 is acyclic while K
σ(G)
2 contains a cycle of length 2, i.e.,

(v1, v2, v1).

Isomorphism

In Section 2.2, we discussed isomorphism among graphs and graph parameters,

which are structural properties and hence invariant under isomorphism. The notion of

isomorphism can likewise be extended to σ-structures.

Definition 2.16. Let A and B be σ-structures, finite or infinite. A function π : dom(A)→

dom(B) is an isomorphism from A to B (written: π : A ∼= B) if π is a bijection and if for

all i ∈ [m], and for all elements a1, . . . , ari ∈ dom(A), it is true that (a1, . . . , ari) ∈ RA
i if

34

and only if (π(a1), . . . , π(ari)) ∈ RB
i . We say that A is isomorphic to B (written: A ∼= B)

if there is an isomorphism from A to B.

As in Section 2.2, ∼= is an equivalence relation among structures of the same

vocabulary. For all structures A, the definitions of the isomorphism type [A]∼= of A and

an automorphism π : A ∼= A of A as well as the notation aut(A) for the number of

automorphisms of A, and for all classes D of structures, the definitions of the size of D and

finiteness of D as well as the notation D = {A1, . . . ,An}, can all be repeated by analogy.

Throughout this dissertation, most often we mean A ∼= B when we write A = B, and we

mean A is isomorphic to a substructure of B when we write A ⊆ B. We also assume that

classes of structures are closed under isomorphism and, likewise, for classes D of structures

we write

D/∼= := {A ∈ D | A is the representative of the isomorphism type [A]∼=}

for the set of structures in D that are the representatives of their respective isomorphism

types, for the same purpose of avoiding redundancy in set descriptions, enumerations, etc.

Remark 2.4. For every two graphs G and H, and for every function f : V (G)→ V (H),

which indeed is also f : dom(Gσ(G)) → dom(Hσ(G)), we have f : G ∼= H if and only if

f : Gσ(G) ∼= Hσ(G). This is useful when translating results concerning isomorphism among

irreflexive and symmetric σ(G)-structures to graphs.

Due to the fact that two distinct types of objects, namely graphs and structures,

are studied in this dissertation, it is hard to give a perfectly uniform discourse for both types

of objects in terms of statements that convey essentially the same meaning (see Chapters 3,

35

4 and 5). We overcome this difficulty by resorting to a versatile symbol, U , for the universal

class of the objects of the respective type.

Proviso 2. Throughout this dissertation, we let U denote the class G or A[σ] for some

vocabulary σ (or A when σ is understood from the context) on various occasions to signify

that the statement being made applies (inherently) equally to both graphs and structures.

36

Chapter 3

Two Frameworks: Logic and

Homomorphism Counts

In this chapter, we will introduce the two frameworks, mathematical logic and

homomorphism (counts), in which to study graphs and structures. While the investigation

of graphs and finite structures through the lens of mathematical logic has been a standard

part of a well-established field known as finite model theory, the research on them via

homomorphism counts is relatively new. The theme of this dissertation is mostly about the

latter and about the relation between the two frameworks.

3.1 Mathematical Logic

Recall in Section 2.3 that a vocabulary σ is a finite nonempty set of relation

symbols, which are the names of the relations in a σ-structure. The language of a logic

consists of common logical symbols and is parameterized by a specific vocabulary.

37

Throughout this section, we assume a fixed vocabulary σ = {R1, . . . , Rm} for some

m ∈ Z+, unless otherwise specified.

3.1.1 First-Order Logic and Its Fragments

We shall give a brief introduction to first-order logic, arguably the most common

and well-studied logic in mathematics, computer science, philosophy, and so on.

As with any computer programming language, first-order logic is a formalism that

comprises syntax and semantics. The syntax refers to the grammar of the language, while

the semantics gives meanings to grammatical strings of the language.

Syntax

In automata theory and the theory of formal languages, a string is a finite sequence

of characters from a fixed finite nonempty set called an alphabet. We adopt these terms

that suit well our purpose of introducing the syntax of first-order logic.

The alphabet for first-order logic parameterized by the vocabulary σ consists of,

in addition to the relation symbols from σ, the following list of symbols:

• (formal) variables: z0, z1, z2, . . .

• (formal) equality : =

• negation: ¬

• conjunction: ∧

• disjunction: ∨

• implication: →

38

• bi-implication: ↔

• universal quantifier : ∀

• existential quantifier : ∃

and the auxiliary symbols

• parentheses:), (

to optionally form enclosing parentheses to avoid ambiguity. The symbols z0, z1, z2, . . .

are called (formal) variables because they are part of first-order logic. In contrast, we

use the so-called meta variables such as x, y, z, . . . (for formal variables), ϕ,ψ, χ, . . . (for

(first-order) σ-formulas, to be defined below), u, v, w, . . . (for vertices in a graph) and

i, j, k,m, n, p, q, r, s, . . . (for numbers) as placeholders in statements made in English. The

grammar of a logic formalism (first-order logic or its extensions) consists of a finite number

of formation rules that either define strings of a particular form,

ϕ

or generate new strings from old ones,

ϕ

ψ

or
ϕ,ψ

χ

.

Definition 3.1. The formalism of first-order logic (parameterized by σ), denoted FO[σ], is

the set of strings, called first-order σ-formulas, over the alphabet

σ ∪ {z0, z1, z2, . . . ,=,¬,∧,∨,→,↔,∀,∃,), (}

39

whose grammar consists of the formation rules:

zi = zj

where i, j ∈ N;

Ri(zj1 , . . . , zjri)

where i ∈ [m] and j1, . . . , jri ∈ N;

ϕ

¬ϕ
;

ϕ,ψ

ϕ ∧ ψ
;

ϕ,ψ

ϕ ∨ ψ
;

ϕ,ψ

ϕ→ ψ

;
ϕ,ψ

ϕ↔ ψ

;

ϕ

∀ziϕ
where i ∈ N;

ϕ

∃ziϕ
where i ∈ N.

In the above definition, the formation rules in the first row give rise to equational

formulas (on the left) and relational formulas (on the right), which are collectively called

atomic formulas (or atoms). The formation rules in the second row are for connectives

(i.e., ¬,∧,∨,→,↔). The first-order σ-formula ¬ϕ is called the negation of ϕ, while the

first-order σ-formulas ϕ ∧ ψ and ϕ ∨ ψ are called the conjunction and the disjunction of ϕ

and ψ, respectively, and ϕ→ ψ is called the implication of ψ from ϕ, while ϕ↔ ψ is called

the bi-implication of ϕ and ψ. Finally, the formation rules in the third row involve the two

quantifiers ∀, ∃, and the first-order σ-formulas ∀ziϕ and ∃ziϕ are the universal quantification

and the existential quantification of ϕ in zi, respectively.

Occasionally, we write x for the sequence of meta variables x1, . . . , xn and z for

the sequence of formal variables z1, . . . , zn when the length n is understood or irrelevant;

we also write ∀xϕ for ∀x1 · · · ∀xnϕ and ∃zψ for ∃z1 · · · ∃znψ, etc.

We let FO[σ]-formulas abbreviate “first-order σ-formulas” and let FO abbreviate

“first-order logic” for succinctness. Moreover, when the underlying vocabulary σ is under-

stood or irrelevant, we often drop the reference to σ in the terminology; in other words, we

40

will often use the terms or notations such as structures, A, first-order formulas, FO-formulas

and FO in place of “σ-structures”, “A[σ]”, “first-order σ-formulas”, “FO[σ]-formulas” and

“FO[σ]”, respectively. Moreover, when the underlying logic is known to be first-order logic,

we often simply say formulas.

Oftentimes concepts defined for a logic formalism and the proofs of theorems about

it are given by induction that reflects its grammar, and first-order logic is no exception. An

example is given in the definition below. An occurrence of a variable x in a formula ϕ is

bound if it is quantified by an occurrence of “∃x” or “∀x” in ϕ, and is free otherwise; x is

a free variable in ϕ if it has a free occurrence in ϕ, and is a bound variable in ϕ otherwise.

Definition 3.2. The set of free variables in a FO-formula ϕ, denoted free(ϕ), is defined

inductively as follows:

free(x = y) := {x, y},

free(Ri(x1, . . . , xri)) := {x1, . . . , xri},

free(¬ϕ) := free(ϕ),

free(ϕ ∧ ψ) := free(ϕ) ∪ free(ψ),

free(ϕ ∨ ψ) := free(ϕ) ∪ free(ψ),

free(ϕ→ ψ) := free(ϕ) ∪ free(ψ),

free(ϕ↔ ψ) := free(ϕ) ∪ free(ψ),

free(∀xϕ) := free(ϕ) \ {x},

free(∃xϕ) := free(ϕ) \ {x}.

We say ϕ is a (FO-)sentence if free(ϕ) = ∅.

Example 3.1. The following two are first-order σ(G)-sentences known as the axioms of

41

graph theory :

ϕirreflx := ∀x¬E(x, x),

ϕsym := ∀x∀y(E(x, y)→ E(y, x)).

Semantics

Let A be a structure. A (variable) assignment for A is a function

α : {z0, z1, z2, . . .} → dom(A).

Given an element a ∈ dom(A), the assignment

α(zi/a) : {z0, z1, z2, . . .} → dom(A)

satisfies (α(zi/a))(zi) = a and otherwise agrees with α.

Now we are ready to state formally one of the most important notions in mathemat-

ical logic, the concept of truth in a structure. For a pair (A, α) in which A is a σ-structure

and α is an assignment for A, and for a first-order σ-formula ϕ, it can be determined by

induction on ϕ whether ϕ is a truth in (A, α). This is known as Tarski semantics.

Definition 3.3. Let A be a σ-structure, and let α be an assignment for A. For all first-

order σ-formulas, the notion that ϕ is true in (A, α) or that (A, α) satisfies ϕ or that (A, α)

is a model of ϕ, denoted (A, α) |= ϕ, is defined inductively on ϕ as follows:

42

(A, α) |= x = y :if α(x) = α(y),

(A, α) |= Ri(x1, . . . , xri) :if (α(x1), . . . , α(xri)) ∈ RA
i ,

(A, α) |= ¬ϕ :if not (A, α) |= ϕ,

(A, α) |= (ϕ ∨ ψ) :if (A, α) |= ϕ or (A, α) |= ψ,

(A, α) |= (ϕ ∧ ψ) :if (A, α) |= ϕ and (A, α) |= ψ,

(A, α) |= (ϕ→ ψ) :if (A, α) |= ψ when (A, α) |= ϕ,

(A, α) |= (ϕ↔ ψ) :if (A, α) |= ψ precisely when (A, α) |= ϕ,

(A, α) |= ∀xϕ :if (A, α(x/a)) |= ϕ for every element a ∈ dom(A),

(A, α) |= ∃xϕ :if (A, α(x/a)) |= ϕ for some element a ∈ dom(A).

We say that two formulas ϕ and ψ are logically equivalent when it holds that

(A, α) |= ϕ if and only if (A, α) |= ψ (or, equivalently, (A, α) |= (ϕ ↔ ψ)) for every

structure A and every assignment α for A. In fact, we have the following list of pairs of

logically equivalent formulas:

(1) ϕ ∧ ψ and ¬(¬ϕ ∨ ¬ψ), for all formulas ϕ and ψ,

(2) ϕ ∨ ψ and ¬(¬ϕ ∧ ¬ψ), for all formulas ϕ and ψ,

(3) ϕ→ ψ and ¬ϕ ∨ ψ, for all formulas ϕ and ψ,

(4) ϕ↔ ψ and ¬(¬(¬ϕ ∨ ψ) ∨ ¬(¬ψ ∨ ϕ)), for all formulas ϕ and ψ,

(5) ∀xϕ and ¬∃x¬ϕ, for all formulas ϕ,

(6) ∃xϕ and ¬∀x¬ϕ, for all formulas ϕ.

The above (1) and (2) are known as De Morgan’s Laws. Due to (1), (3), (4) and (5),

we shall view ϕ ∧ ψ, ϕ → ψ, ϕ ↔ ψ and ∀xϕ as abbreviations for ¬(¬ϕ ∨ ¬ψ), ¬ϕ ∨ ψ,

43

¬(¬(¬ϕ∨ψ)∨¬(¬ψ∨ϕ)) and ¬∃x¬ϕ, respectively, and regard the respective formation rules

as redundant ones when proving properties of all formulas by induction on the formation

rules, because it results in a more succinct proof.

Lemma 3.1 (Coincidence Lemma). For every set V of variables, every first-order formula

ϕ with free(ϕ) ⊆ V , every structure A and every two assignments α1 and α2 for A that agree

on their values of the variables in V , we have (A, α1) |= ϕ if and only if (A, α2) |= ϕ.

This lemma is also known as Relevance Lemma and has a straightforward induc-

tion proof on ϕ (omitted), and it can be generalized to any reasonable logic formalism

developed in the area of mathematical logic. Due to this lemma, it is customary to write

ϕ(x1, . . . , xn) for ϕ when free(ϕ) ⊆ {x1, . . . , xn} to emphasize that the variables x1, . . . , xn

behave as parameters in the satisfaction relation |=. Thus, for variables y1, . . . , yn, we write

ϕ(y1, . . . , yn) for the formula obtained from ϕ by substituting the occurrences of yi for the

free occurrences of xi, for all i ∈ [n] (formally introduced in Definition 3.4). The formula

ϕ(y1, . . . , yn) asserts for y1, . . . , yn what ϕ(x1, . . . , xn) asserts for x1, . . . , xn.

For all formulas ϕ = ϕ(x1, . . . , xn), all structures A and all elements a1, . . . , an ∈

dom(A), we shall write A |= ϕ(a1, . . . , an) to mean (A, α) |= ϕ for an arbitrary assignment

α for A such that α(x1) = a1, . . . , α(xn) = an. In particular, if ϕ is a sentence, i.e., if

free(ϕ) = ∅, then we can omit the reference to any assigned values entirely.

Notation. Let A be a σ-structure and ϕ be a first-order σ-sentence. We write A |= ϕ if

(A, α) |= ϕ for an arbitrary assignment α for A.

Next, we delve deeper into the issue of free variables as parameters in a formula. As

stated previously, we can substitute the occurrences of a variable y for the free occurrences

44

of a variable x in a formula ϕ to obtain another formula ψ so that ψ asserts about y what

ϕ asserts about x. However, we need to exercise caution in some situations, detailed below.

Definition 3.4. Let ϕ be a FO[σ]-formula, and let x and y refer to formal variables. The

substitution of y for x in ϕ, denoted ϕ(x/y), is a formula defined in two cases below:

(a) If x /∈ free(ϕ) or if y and x refer to the same formal variable, then ϕ(x/y) := ϕ.

(b) Otherwise, ϕ(x/y) is defined inductively:

(x1 = x2)(x/y) := (y1 = y2), where yj and y refer to the same formal vari-

able if xj and x do, otherwise yj and xj refer to the same

formal variable,

(Ri(x1, . . . , xri))(x/y) := Ri(y1, . . . , yri), where yj and y refer to the same formal

variable if xj and x do, otherwise yj and xj refer to the

same formal variable,

(¬ϕ)(x/y) := ¬(ϕ(x/y)),

(ϕ ∨ ψ)(x/y) := (ϕ(x/y)) ∨ (ψ(x/y)),

(∃zϕ)(x/y) := ∃u(ψ(x/y)), where u refers to the first formal variable

among z0, z1, . . . that does not appear in ∃zϕ, and ψ :=

ϕ(z/u), if y and z refer to the same formal variable,

otherwise u and z refer to the same formal variable, and

ψ := ϕ.

Example 3.2. In Example 2.2, we have seen clearly that digraphs are exactly the σ(G)-

structures. Moreover, for the two FO[σ(G)]-sentences ϕirreflx and ϕsym (axioms of graph

theory) introduced in Example 3.1, we have, for every σ(G)-structure A, that

45

• A |= ϕirreflx if and only if A is irreflexive,

• A |= ϕsym if and only if A is symmetric.

Therefore, for every σ(G)-structure A, it holds that A satisfies the axioms of graph theory

precisely when A corresponds to a graph in the one-to-one correspondence G 7→ Gσ(G)

introduced in Remark 2.3.

Although we distinguish between a graph G and its corresponding σ(G)-structure

Gσ(G) due to a compatibility issue with graph-theoretic properties (see Example 2.3), it is

standard to identify G with Gσ(G) when defining the satisfaction relation |= for graphs.

Definition 3.5. Let G be a graph. A (variable) assignment for G is a function α :

{z0, z1, z2, . . .} → V (G), which is also a (variable) assignment for Gσ(G), and for every

first-order σ(G)-formula ϕ, we write (G, α) |= ϕ if (Gσ(G), α) |= ϕ.

The Coincidence Lemma 3.1 also holds for graphs with the one-to-one correspon-

dence G 7→ Gσ(G). Hence, it justifies the simpler notations G |= ϕ(v1, . . . , vn) and G |= ϕ.

Definition 3.6. Let G be a graph and let ϕ be a first-order σ(G)-formula.

(a) If free(ϕ) ⊆ {x1, . . . , xn} and if α is an assignment for G with α(x1) = v1, . . . , α(xn) =

vn, then we write G |= ϕ(v1, . . . , vn) for (G, α) |= ϕ.

(b) If free(ϕ) = ∅, then we write G |= ϕ for (G, α) |= ϕ where α is an arbitrary assignment

for G.

46

Characterizing Isomorphism in First-Order Logic

One of the central topics in finite model theory is the issue of identifying an equiv-

alence relation ≡ with the indistinguishability by the sentences in a logic formalism (namely

the equivalence relation among graphs or among structures that arises from satisfying the

same sentences in a logic formalism), for which we say to characterize ≡ in a logic formalism.

Recall the versatile symbol U introduced in Proviso 2 for the class G of graphs or

the class A of structures.

Definition 3.7. Let A,B ∈ U . We say A is first-order equivalent to B or A is indistin-

guishable from B in first-order logic (written: A ≡FO B) if for every first-order sentence ϕ,

it holds that A |= ϕ if and only B |= ϕ.

The above definition of first-order equivalence extends straightforwardly to infinite

structures, and it is also known as elementary equivalence in the literature of mathematical

logic. It turns out that first-order equivalence is coarser than isomorphism.

Lemma 3.2 (Isomorphism Lemma). For all structures A and B, finite or infinite, if A ∼=

B, then A ≡FO B.

This lemma follows from a straightforward induction proof on formulas (omitted)

for given isomorphic structures and a given variable assignment, and it can be generalized

to any reasonable logic formalism developed in the area of mathematical logic.

An immediate consequence of Lemma 3.2 is that for σ(G)-structures A and B, if A

satisfies the axioms of graph theory (see Example 3.1) and if A ∼= B, then B also satisfies the

axioms of graph theory. Thus, for every graph G, we have [Gσ(G)]∼= = {Hσ(G) | H ∈ [G]∼=},

47

a fact already implicit in Remark 2.4 which, in view of Definitions 3.5 and 3.6, implies the

corresponding version of Isomorphism Lemma 3.2 for graphs.

Corollary 3.3. For all graphs G and H, if G ∼= H, then G ≡FO H.

Remark 3.1. Lemma 3.2 can be recast as that satisfaction of first-order sentences by

structures (or by graphs) is invariant under isomorphism and hence depends only on the

isomorphism type of structures (or graphs, respectively) rather than the individual ones

themselves.

For graphs or finite structures, it turns out that first-order equivalence is also finer

than isomorphism, i.e., the converse of Lemma 3.2 also holds, as stated formally below.

Proposition 3.4 (Characterization of Isomorphism in First-Order Logic). For all A and

B in U , we have A ∼= B if and only if A ≡FO B.

In other words, isomorphism coincides with first-order equivalence among graphs

or among finite structures. This proposition is a direct consequence of the next, which

says that for every graph or finite structure A, there is a first-order sentence of which A

is the only model up to isomorphism or, more concisely, graphs or finite structures are

characterized in first-order logic up to isomorphism.

Proposition 3.5 (Characterization of Graphs or Finite Structures in First-Order Logic Up

to Isomorphism). For every A in U , there is a first-order sentence χA such that for every

B in U , we have A ∼= B if and only if B |= χA.

Proof. We first consider U = A. Let A be a structure whose domain is dom(A) =

{a1, . . . , an}. We let χA formalize how a structure B isomorphic to A should look like:

48

There are elements b1, . . . , bn in the domain, b1, . . . , bn are related or unrelated (i.e., pair-

wise distinct and whether or not in a relation) as a1, . . . , an are in A, and b1, . . . , bn are the

only elements in the domain, i.e., for every element bn+1, it must be among b1, . . . , bn. It is

clear that for every structure B, it satisfies this description precisely when it is isomorphic to

A. In the formalization, let the variables z1, . . . , zn play the role of b1, . . . , bn, respectively:

χA := ∃z1 · · · ∃zn(∧
{ϕ(z1, . . . , zn) | ϕ is atomic and A |= ϕ(a1, . . . , an)}∧∧
{¬ϕ(z1, . . . , zn) | ϕ is atomic and not A |= ϕ(a1, . . . , an)}∧

∀zn+1
∨

1≤i≤n
zn+1 = zi).

Now, for U = G and for every graph A, we apply the version of this proposition for σ(G)-

structures to Aσ(G) to obtain χAσ(G)
and set χA := χAσ(G)

. By Remark 2.4, the version of

this proposition for graphs immediately follows.

One thing to note is that, as opposed to finite structures, while Isomorphism

Lemma 3.2 holds also in infinite structures, its converse in general does not; for example,

(Q,≤Q) and (R,≤R) are first-order equivalent but not isomorphic. This fact is known to

be a consequence of Löwenheim-Skolem-Tarski Theorem, which in turn is a consequence of

Compactness Theorem (for first-order logic).

Remark 3.2. Using the notation of indicator function (see Section 2.1 for its definition),

every graph or finite structure A gives rise to the bit-sequence (i.e., a sequence whose entries

are 0 or 1):

FO(A) := (I(A |= ϕ) | ϕ is a first-order sentence).

49

We can then restate Proposition 3.4: For all A and B in U , we have A ∼= B if and only if

FO(A) = FO(B).

If we enumerate the isomorphism types [A1]∼=, [A2]∼=, . . . of graphs or of finite struc-

tures vertically and first-order sentences ϕ1, ϕ2, . . . horizontally in the following visualization

of the mapping I(∗ |= ∗) as a 2-dimensional infinite matrix

I(∗ |= ∗) ϕ1 ϕ2 · · · ϕj · · ·

[A1]∼= I(A1 |= ϕ1) I(A1 |= ϕ2) · · · I(A1 |= ϕj) · · ·

[A2]∼= I(A2 |= ϕ1) I(A2 |= ϕ2) · · · I(A2 |= ϕj) · · ·

...
...

...
. . .

...
. . .

[Ai]∼= I(Ai |= ϕ1) I(Ai |= ϕ2) · · · I(Ai |= ϕj) · · ·

...
...

...
. . .

...
. . .

then the above restatement of Proposition 3.4 says that every row in the matrix is unique.

Defining Classes of Graphs or of Structures in First-Order Logic

Another central topic in finite model theory is the issue of defining a class of graphs

or of structures in terms of the satisfaction of a sentence in a logic formalism. Recall the

class U from Proviso 2.

Definition 3.8. (a) For every first-order sentence ϕ, the model class of ϕ is the class

Mod(ϕ) := {A ∈ U | A |= ϕ}.

(b) Let D ⊆ U be a class. We say that D is definable by a first-order sentence ϕ if

D = Mod(ϕ), and that D is definable in first-order logic (or FO-definable for short) if

such a sentence exists.

50

By Proposition 3.5, it holds that the (equivalence) class [A]∼= is definable in first-

order logic since [A]∼= = Mod(χA), for every graph or structure A. Moreover, as the

following example shows, the class of all graphs or all structures of a bounded size or a

given size is definable in first-order logic. The sentences in the example are derived in a

similar way as the one derived in the proof of Proposition 3.5.

Example 3.3. Let n ∈ Z+. The class {A ∈ U | |dom(A)| ≤ n} is equal to Mod(ϕ≤n),

where

ϕ≤n := ∃z1 · · · ∃zn∀zn+1

∨
1≤i≤n

zn+1 = zi.

Moreover, the class {A ∈ U | |dom(A)| = n} is equal to Mod(ϕ=n), where

ϕ=n := ∃z1 · · · ∃zn((
∧

1≤i<j≤n
¬zi = zj) ∧ ∀zn+1

∨
1≤i≤n

zn+1 = zi).

Note that ϕ=1 coincides with ϕ≤1 (since the vertex set of a graph or the domain of a

structure is nonempty), which is logically equivalent to ∀z1∀z2 z1 = z2 and that for n ≥ 2,

we have that ϕ=n is logically equivalent to (ϕ≤n ∧ ¬ϕ≤n−1).

Next, we consider examples of graphs, referring to the one-to-one correspondence

between graphs and irreflexive and symmetric σ(G)-structures in Remark 2.3. The examples

below illustrate that the class of graphs containing a specific graph as a subgraph are

definable in first-order logic.

Example 3.4. For every graph G, the binary relation EG in Gσ(G) is symmetric. Thus,

to assert that G contains the triangle K3 as a subgraph, it suffices to formalize it as ϕ∆ :=

∃z0∃z1∃z2(E(z0, z1) ∧ E(z1, z2) ∧ E(z2, z0)). Therefore, {G ∈ G | K3 ⊆ G} = Mod(ϕ∆).

51

Example 3.5. The class I of independent sets introduced in Section 2.2 consists of graphs

that do not contain K2 as a subgraph. By a direct formalization, this class is definable by

the first-order sentence ¬∃z0∃z1E(z0, z1).

Ehrenfeucht-Fräıssé Games and Fragments of First-Order Logic

The model-checking problem for first-order logic is the decision problem: Given a

structure A and a first-order sentence ϕ, does A satisfy ϕ? Typically, it is assumed that

ϕ is in prenex normal form, in which all quantifications, universal or existential, altogether

appear nested at the front of ϕ, collectively called the prefix, while the remaining (quantifier-

free) part of ϕ is sometimes called the matrix of ϕ.

As one can imagine, an intuitive algorithm for such a problem checks the matrix

against all suitable variable assignments (and runs in loops, say). Of course, only the frac-

tion of an assignment that is relevant to the variables in ϕ is considered, by Coincidence

Lemma 3.1. However, if there are a total of n nested quantifiers, equivalently, if the prefix

contains n (not necessarily distinct) variables, then the total number of all suitable variable

assignments is O(|dom(A)|n). These nested quantifiers and variables take up computa-

tional resources – time and space, respectively (e.g., the time required for such an intuitive

algorithm grows exponentially in n).

This brings up an optimization issue: Is it possible to reduce the number of (nested)

quantifiers or variables in ϕ? More precisely, is there a first-order sentence ψ logically

equivalent to ϕ with a fewer number of (nested) quantifiers or variables? Regrettably, the

answer is “no” in general, although in some special cases of ϕ such a ψ exists and more

efficient algorithms can be devised.

52

Definition 3.9. The quantifier rank of a first-order σ-formula ϕ, denoted qr(ϕ), is defined

inductively as follows:

qr(x = y) := 0,

qr(Ri(x1, . . . , xri)) := 0,

qr(¬ϕ) := qr(ϕ),

qr(ϕ ∨ ψ) := max {qr(ϕ), qr(ψ)},

qr(∃xϕ) := qr(ϕ) + 1.

Definition 3.10. Let n ∈ Z+. The fragment of FO that consists of σ-formulas ϕ for which

qr(ϕ) ≤ n is denoted FOn[σ], or FOn when the vocabulary σ is understood from the context.

The sentence χA given in the proof of Proposition 3.5 characterizes A up to iso-

morphism. When |dom(A)| = n, we have χA ∈ FOn+1 (although it is not in prenex normal

form due to the position of the universal quantifier “∀”). We will argue that this sentence

is in general optimal in terms of the number of nested quantifiers in it.

Definition 3.11. Let L be a logic formalism, and let ϕ be an L-formula. For every graph

G and every assignment α for G, we write (G, α) |= ϕ if (Gσ(G), α) |= ϕ. In particular,

when ϕ is an L-sentence, then we write G |= ϕ if Gσ(G) |= ϕ.

The expressive power of a logic formalism L refers to its ability for us to formalize

in it a concept or notion in English as an L-sentence ϕ such that for every structure A, the

given description in English fits A if and only if A |= ϕ. In fact, we have already done a

formalization in the proof of Proposition 3.5 and in Example 3.4.

The measure of the expressive power of a logic formalism and the comparison of

logic formalisms in terms of expressive power is one central topic in a subarea of mathe-

53

matical logic known as (classical) model theory and also in finite model theory. There have

been tools developed for this purpose in the former – e.g., Compactness Theorem and the

method of ultraproducts – and while they found important applications predominantly in

axiomatizability of classes of general structures (mainly infinite ones) there, they do not

turn out to be as successful in the latter, where the focus is primarily on finite structures.

That being said, one tool survives in both theories – the method of Ehrenfeucht-Fräıssé

games – and we introduce it next.

Let n ∈ Z+, and let A and B be structures. The Ehrenfeucht-Fräıssé game

Gn(A,B) of n moves parameterized by A and B consists of:

• a “chessboard” with the structures A and B on it called the board,

• infinitely many pairs of “pebbles” α0, β0, α1, β1, . . . (although, obviously, finitely many

pairs of pebbles will be used during every round of the game since the number of moves

is limited to n for each player),

and is played by two players, the spoiler and the duplicator. The pebbles α0, α1, . . . are to

be placed on elements in A, and similarly the pebbles β0, β1, . . . on elements in B. Initially,

the pebbles are all off the board. During a round of the game, multiple pebbles can be put

on the same elements. The two players take turn in making moves, the spoiler first. In the

k-th move, the spoiler chooses a structure A or B, then picks a pebble αj or βj (on or off

the board) that matches the structure chosen, and places it onto an element; the duplicator

responds by picking the other pebble βj or αj (on or off the board), respectively, and places

it onto an element of the opposite structure. After the k-th move, let a1, . . . , ap be the

elements in A (not necessarily distinct) and b1, . . . , bp be the elements in B (not necessarily

54

distinct) on which a pebble is placed such that αj is placed on ai if and only if βj is placed

on bi. If the mapping π : {a1, . . . , ap} → {b1, . . . , bp} with π(ai) = π(bi) for i ∈ [p] is an

isomorphism π : A[{a1, . . . , ap}] ∼= B[{b1, . . . , bp}] and

• if k < n, then the players proceed to make their (k + 1)-st moves;

• if k = n, then the duplicator wins the round and the game finishes.

Otherwise, π is not an isomorphism, the spoiler wins the round and the game finishes

(possibly prematurely, with k < n).

Several things to note in the following.

(a) The game has no tie: Either the spoiler or the duplicator wins a round.

(b) Both players are eager to win: If there is a chance to win, then they surely will win.

(c) The game is of complete information: Either the spoiler or the duplicator has a winning

strategy to ensure winning “every” round.

Intuitively, the duplicator’s objective is to maintain the structural similitude be-

tween A and B by preserving an isomorphism from the substructure of A to the substructure

of B both of which are induced by the elements where a pebble is placed (to duplicate),

whereas the spoiler’s objective is to reveal the structural distinction between A and B by

destroying such an isomorphism (to spoil), which, in the game Gn(A,B), amounts to finding

a FOn-sentence that distinguishes A from B in terms of satisfaction.

All the above can be said and defined with graphs in place of structures, in view

of Remark 2.4 and Definitions 3.5 and 3.6. There is an important link between the indistin-

guishability of two structures (or graphs) A and B in FOn and the existence of a winning

55

strategy of the duplicator for the game Gn(A,B). We first introduce the general notion of

indistinguishability in a logic formalism. Recall the class U from Proviso 2.

Definition 3.12. Let L be a logic formalism. For all A and B in U , we say A is L-equivalent

to B or A is indistinguishable from B in L (written: A ≡L B) if for every L-sentence ϕ, it

holds that A |= ϕ if and only B |= ϕ.

Theorem 3.6. [20, 25] Let n ∈ Z+. For all A and B in U , the duplicator has a winning

strategy for Gn(A,B) if and only if A is FOn-equivalent to B.

The next example demonstrates that the number of (nested) quantifiers used in a

sentence characterizing a structure (or a graph) A up to isomorphism like χA cannot be

reduced.

Example 3.6. Let us consider two independent sets I3 and I4. By Proposition 3.5, I3 can be

characterized up to isomorphism by a FO4[σ(G)]-sentence χI3 . However, by Theorem 3.6, I3

and I4 are FO3[σ(G)]-equivalent since there is a simple winning strategy of the duplicator for

the game G3(I3, I4): In the first move, any arbitrary element in the corresponding structure

will do. In the second or third move, if a pebble with index j has just been placed by the

spoiler on an element of a structure where a pebble with a different index k was already

there, then place the other pebble with index j on the element of the opposite structure

where the pebble of index k is; otherwise, the pebble with index j placed by the spoiler does

not share the element with other pebbles, and the duplicator is free to choose any arbitrary

element in the opposite structure where there is no pebble placed and place the pebble with

index j on it (such an element is guaranteed to exist due to the sizes of I3 and I4). The

above discussion applies to K3 and K4 as well.

56

Remark 3.3. Let n ∈ Z+. Note that FOn+1-equivalence implies FOn-equivalence, but

the converse does not hold. The former statement is trivially true because a FOn-sentence

is also a FOn+1-sentence. The latter statement can be verified by considering the game

Gn(In, In+1), for which the duplicator has a winning strategy (cf. Example 3.6), and the

game Gn+1(In, In+1), for which there is a simple winning strategy for the spoiler: In each

move place a new pebble on a different element of In+1. Therefore, In ≡FOn In+1 while

In 6≡FOn+1 In+1. The same can be said with Kn and Kn+1 in place of In and In+1,

respectively. By induction, it follows that for all m > n, we have FOm-equivalence implies

FOn-equivalence, but not vice versa.

Next, we turn our attention to the issue of the number of variables in a first-order

sentence.

Definition 3.13. Let n ∈ Z+. The fragment of FO that consists of σ-formulas ϕ such that

the variables, free or bound, appearing in ϕ are among z0, . . . , zn−1 is denoted FOn[σ], or

FOn when the vocabulary σ is understood from the context.

There is also an important link analogous to Theorem 3.6, this time connecting

the FOn-indistinguishability between two structures (or two graphs) A and B and the

existence of a winning strategy of the duplicator for a variant of the Ehrenfeucht-Fräıssé

game Gn(A,B) called a pebble game, which we introduce next.

Let n ∈ Z+, and let A and B be structures. The pebble game Gn(A,B) of n

pebbles parameterized by A and B is the same as Gn(A,B) except that now

• there are only n pairs of pebbles α0, β0, . . . , αn−1, βn−1, and

57

• the spoiler starts the game by announcing an m ∈ Z+ to be the maximum number of

moves to be made by each player, before proceeding to make the first move.

All the rest including the conditions of winning a round and the notion of a winning strategy

are the same and we do not repeat them here.

The duplicator’s objective is to maintain an isomorphism between the substruc-

tures induced by the elements in either structures where a pebble is placed, as before, and

the spoiler’s objective is to find a FOn-sentence that would distinguish A from B in terms

of satisfaction.

Likewise, all the above can be said and defined for graphs in place of structures,

in view of Remark 2.4 and Definitions 3.5 and 3.6.

Theorem 3.7. [34] Let n ∈ Z+. For all A and B in U , the duplicator has a winning

strategy for Gn(A,B) if and only if A is FOn-equivalent to B.

Remark 3.4. As a matter of fact, N. Immerman discusses in [34], for all m and n in Z+,

• the fragment FOn
m := (FOn ∩ FOm) of formulas of quantifier rank at most m whose

variables are among z0, . . . , zn−1, and

• the variant game Gn
m that differs from Gn in that the maximum number of moves

announced by the spoiler is (fixed to) the given m,

and shows that

(1) for all m and n in Z+ and all structures A and B, the duplicator has a winning strategy

for the game Gn
m(A,B) if and only if A is FOn

m-equivalent to B.

For n ∈ Z+, it is clear that

58

(2) FOn =
⋃

m∈Z+

FOn
m, and

(3) the spoiler has a winning strategy for the game Gn(A,B) if and only if the spoiler has a

winning strategy for the game Gn
m(A,B) for some m ∈ Z+ (cf. Exercise XII.4.3 in [19]).

We claim that Theorem 3.7 immediately follows from these considerations for the case

U = A: For all structures A and B,

the spoiler has a winning strategy for the game Gn(A,B)

iff the spoiler has a winning strategy for the game Gn
m(A,B) for some m ∈ Z+ (by (3))

iff A is not FOn
m-equivalent to B for some m ∈ Z+ (by (1))

iff A is not FOn-equivalent to B (by (2)).

The case U = G immediately follows by considering Aσ(G) and Bσ(G) for graphs A and B,

in view of Remark 2.4 and Definitions 3.5 and 3.6.

Example 3.7. In Example 3.6, the FO4-sentence χI3 characterizing I3 up to isomorphism is

also a FO4-sentence. However, I3 is FO3[σ(G)]-equivalent to I4 by Theorem 3.7: A winning

strategy of the game G3(I3, I4) for the duplicator can be easily adapted from the one in

Example 3.6 (hence omitted). The above discussion applies to K3 and K4 as well.

Remark 3.5. Let n ∈ Z+. Obviously, every FOn-sentence is also a FOn+1-sentence.

Moreover, the duplicator has a winning strategy for the game Gn(In, In+1), while the spoiler

has a winning strategy for the game Gn+1(In, In+1) (see Example 3.7). Hence, In ≡FOn In+1

while In 6≡FOn+1 In+1. The same can be said with Kn and Kn+1 in place of In and In+1,

respectively. As in Remark 3.3, therefore, it holds that FOn+1-equivalence implies FOn-

equivalence, but the converse does not hold. Furthermore, by induction it immediately

follows that for all m > n, we have FOm-equivalence implies FOn-equivalence.

59

Example 3.8. For every graph G and every subset S ⊆ V (G) of size |S| = 1, the induced

subgraph G[S] is isomorphic to I1. Thus, for all graphs G and H, the duplicator has a

straightforward winning strategy for the games G1(G,H) and G1(G,H). Therefore, all

graphs are FO1-equivalent and FO1-equivalent.

We have seen in Theorems 3.6 and 3.7 the characterizations of indistinguishability

in the two fragments of first-order logic, namely FOn and FOn. We conclude this subsection

with a related issue: definability of a class of structures (or of graphs) in FOn or FOn.

Definition 3.14. Let L be a logic formalism.

(a) For every L-sentence ϕ, the model class of ϕ is the class Mod(ϕ) := {A ∈ U | A |= ϕ}.

(b) Let D ⊆ U be a class. We say that D is definable by an L-sentence ϕ if D = Mod(ϕ),

and that D is definable in L (or L-definable for short) if such a sentence exists.

Example 3.9. The class I of independent sets introduced in Section 2.2 is both FO2[σ(G)]-

definable and FO2[σ(G)]-definable, because I = Mod(ϕ) for ϕ := ∀x∀y¬E(x, y).

Observe that

FO =
⋃
n∈Z+

FOn =
⋃
n∈Z+

FOn.

Hence, a class D is first-order definable if and only if D = Mod(ϕ) for some n ∈ Z+ and

some formula ϕ in FOn or FOn.

Example 3.10. Let n ≥ 2 and consider the two graphs C2n ⊕ C2n and C2n+1 . It is

straightforward to formalize as a FO3[σ(G)]-sentence the statement “for all distinct vertices

u and v, there is a walk of length at most n+ 1 from u to v” (cf. Example 3.3.1(b) in [18]).

60

Thus, these two graphs are not FO3[σ(G)]-equivalent. However, there is a winning strategy

of the duplicator for the game Gn(C2n ⊕C2n ,C2n+1) (cf. Example 2.3.8 in [18]).

Therefore, it holds for every n ≥ 2 that the duplicator has a winning strategy for

the game Gn(C2n ⊕C2n ,C2n+1) and hence C2n ⊕C2n and C2n+1 are indistinguishable in

FOn[σ(G)], by Theorem 3.6. As a result, the class of connected graphs is not FO-definable

(also see Proposition 2.3.28 in [27]).

By Remarks 3.3 and 3.5, we have for every n ∈ Z+ that the class of graphs of size

at most n is not definable in FOn or FOn. The reader is on the right track if speculating

that the inadequate expressive power of FOn and FOn in these situations is due to their

lack of ability for counting. This brings us to the next topic – enhancing these fragments

with the ability to count.

3.1.2 First-Order Logic Augmented with Counting and Its Fragments

To conclude this section, we consider the extension of first-order logic by a mech-

anism of counting and its fragments.

Syntax

Definition 3.15. The formalism of first-order logic with counting or simply counting logic

(parameterized by σ), denoted C[σ], is the set of strings, called first-order σ-formulas with

counting, over the alphabet

σ ∪ {z0, z1, z2, . . . ,=,¬,∧,∨,→, ∀, ∃,∃≥1, ∃≥2, ∃≥3, . . . ,), (}

61

whose grammar consists of the formation rule in addition to those in Definition 3.1:

ϕ

∃≥nziϕ
where n ∈ Z+ and i ∈ N.

The new symbols ∃≥n are called counting quantifiers. By analogy, we adopt the

abbreviation C[σ]-formulas for “first-order σ-formulas with counting” and, when the un-

derlying vocabulary σ is irrelevant or can be understood from the context, omit the explicit

reference to σ in all our terms concerning C, and further omit “C” or “counting” when it

is known the underlying logic is counting logic.

Definition 3.16. The set of free variables in a C-formula ϕ, denoted free(ϕ), is defined

inductively with those cases in Definition 3.2 and the case:

free(∃≥nxϕ) := free(ϕ) \ {x}, for all n ∈ Z+.

Semantics

Definition 3.17. Let A be a σ-structure, and let α be an assignment for A. For all

C[σ]-formulas, the notion that ϕ is true in (A, α) or that (A, α) satisfies ϕ or that (A, α)

is a model of ϕ, denoted (A, α) |= ϕ, is defined inductively on ϕ with the clauses from

Definition 3.3 and the one below:

(A, α) |= ∃≥nxϕ :if (A, α(x/a)) |= ϕ for at least n distinct elements a ∈ dom(A).

The Coincidence Lemma 3.1 also holds for counting logic. As a result, we let

the convention of writing ϕ(x1, . . . , xn) for ϕ when free(ϕ) ⊆ {x1, . . . , xn} and the term

sentence extends to counting logic; the notation A |= ϕ(a1, . . . , an) is analogous. When

ϕ is a sentence, we also write A |= ϕ to mean (A, α) |= ϕ for an arbitrary assignment α

62

for A. The convention of defining notations involving |= for graphs G in terms of Gσ(G)

is also analogous (e.g., G |= ϕ means Gσ(G) |= ϕ). The notion of logical equivalence reads

the same for counting logic. We have, in addition to the list following Definition 3.3, the

subsequent pair of logically equivalent formulas:

(7) ∃xϕ and ∃≥1xϕ, for all formulas ϕ.

Abbreviation. For n ∈ Z+ and for ϕ ∈ C, let ∃=nxϕ abbreviate ∃≥nxϕ ∧ ¬∃≥n+1xϕ.

Example 3.11. For every s ∈ Z+ and every structure A, we have that A satisfies ∃=sxx =

x if and only if |dom(A)| = s.

Remark 3.6. Note that first-order logic is itself a fragment of counting logic by nature

of the syntax and semantics. However, every C-formula of the form ∃≥nxϕ is logically

equivalent to the FO-formula

∃x1 · · · ∃xn(
∧

1≤i≤n
ϕ(x/xi) ∧

∧
1≤i<j≤n

¬xi = xj).

Hence, C has the same expressive power as FO and it turns out that augmenting FO with

counting quantifiers does not help us significantly in any aspect, except for the number of

variables and quantifier ranks. Furthermore, C-equivalence coincides with FO-equivalence

(cf. Definition 3.12) and consequently the Isomorphism Lemma 3.2 holds for C as well.

Expressive Power of Fragments of Counting Logic

In the preceding remark, we saw that no extra expressive power was gained by

enhancing first-order logic with the mechanism of counting. That said, things can change

if we limit the number of variables used in a formula.

63

Definition 3.18. Let n ∈ Z+. The fragment of C that consists of σ-formulas ϕ such that

the variables, free or bound, appearing in ϕ are among z0, . . . , zn−1 is denoted Cn[σ], or Cn

when the vocabulary σ is understood from the context.

Example 3.12. In Example 3.7, we saw that I3 and I4 are FO3-equivalent. However, now

that we are equipped with counting ability in the new logic formalism C, the graph I3 can

even be characterized up to isomorphism in C2 by ∃=3z0 z0 = z0 ∧ ∀z0∀z1¬E(z0, z1), which

asserts that there are exactly three vertices each of which has degree 0.

Remark 3.7. Fix an s ∈ Z+.

(a) We saw in Example 3.11 that for all structures A, it holds that A is a model of the

C1-sentence ∃=sxx = x if and only if |dom(A)| = s. Moreover, for every graph G,

the adjacency relation EGσ(G)
of Gσ(G) is irreflexive (see Remark 2.3), i.e., Gσ(G) |=

∀x¬E(x, x). Using a variant of Ehrenfeucht-Fräıssé game for counting logic (see, e.g.,

[18, 35, 44]), it can be proved that for all graphs G and H, they are C1-equivalent if

and only if they have the same size. Consequently, for every graph G, the sentence

∃=|V (G)|xx = x characterizes G up to C1-equivalence, i.e., for every graph H, it is a

model of this sentence if and only if G ≡C1 H.

(b) There are finitely many isomorphism types of structures of size s and hence, for every

n ∈ Z+, there are finitely many equivalence classes, say, D1, . . . ,Dk, induced by Cn-

equivalence among all structures of size s. Let A1, . . . ,Ak be the representatives of

the respective equivalence classes and, for distinct i, j ∈ [k], let ϕi,j be a Cn-sentence

such that Ai |= ϕi,j while Aj |= ¬ϕi,j . By part (a), it follows that for every i ∈ [k],

the Cn-sentence χAi
Cn := (∃=sxx = x ∧ ϕi,j) characterizes Ai up to Cn-equivalence, i.e.,

64

for every structure A, it is a model of χAi
Cn if and only if A ≡Cn Ai. Hence, for every

structure A and every n ∈ Z+, there is a Cn-sentence χA
Cn that characterizes A up to

Cn-equivalence. (This statement is mentioned in [28] as Fact 3.4.17, and the argument

provided here is adapted from the proof of Lemma 1.33 for part (i) in [44].)

Example 3.13. The two graphs Cn⊕Cn and C2n are C2-equivalent. A proof for this can

be obtained by adapting the discussion in Example 12.19 of [35].

Let n ∈ Z+. Since every Cn-sentence is also a Cn+1-sentence, we have Cn+1-

equivalence implies Cn-equivalence, but the converse does not holds. The latter statement

is proved in [7].

Augmenting Counting Logic with Infinite (Conjunctions and) Disjunctions

The infinitary logic with counting, denoted C∞ω, enhances C by allowing the “for-

mation rule” besides Definition 3.15 in its syntax,

∨
Φ

where Φ is a set of formulas,

and by adding, for every structure A, every assignment α for A, and every set Φ of C∞ω-

formulas, the following clause to Definition 3.17 in its semantics,

(A, α) |=
∨

Φ :if (A, α) |= ϕ for some ϕ ∈ Φ.

That is to say, in C∞ω we allow disjunctions over a set of arbitrarily many – even infinitely

many – formulas, hence infinitary in its name. As a result, a “C∞ω-formula” is not neces-

sarily a finite string, and properties about these formulas may require transfinite induction

in the proofs. We shall not address the technical issues here, and we note that the notions of

the set of free variables in an C∞ω-formula, C∞ω-sentences, and logically equivalent C∞ω-

65

formulas can all be extended in a straightforward manner. In particular, a C∞ω-formula

can have infinitely many free variables, the conjunction
∧

Φ over a set Φ of C∞ω-formulas is

taken as an abbreviation for ¬
∨
{¬ϕ | ϕ ∈ Φ}, and ϕ∨ψ is logically equivalent to

∨
{ϕ,ψ}.

However, the logic C∞ω has too strong expressive power to produce any insightful

results when it comes to finite structures, e.g., for every class D of finite structures there is a

C∞ω-sentence ϕ such that D = Mod(ϕ). In fact, the fragment L∞ω of C∞ω that consists of

formulas without counting quantifiers already possesses such expressive power (see [18,27]).

Remark 3.8. Let n ∈ Z+. The fragment of C∞ω that consists of formulas ϕ such that

the variables, free or bound, appearing in ϕ are among z0, . . . , zn−1 is denoted Cn
∞ω. The

fragment Cn
∞ω, in contrast to C∞ω, has some interesting aspects in finite model theory:

(a) It can be proved by induction on ϕ that for all structures A and B, and for all

Cn
∞ω-formulas ϕ(x), there is a Cn-formula ψ(x) with free(ψ) ⊆ free(ϕ) such that

A |= ∀x(ϕ(x)↔ ψ(x)) and B |= ∀x(ϕ(x)↔ ψ(x)). Thus, for all structures A and B, it

holds that A ≡Cn B if and only if A ≡Cn∞ω B (the “if” direction is trivial). (Arguments

for these can be obtained by adapting the ones for Proposition 3.2.2 and Corollary 3.3.3

in [18]. Moreover, the latter result immediately follows from Corollary 2.4 in [44].)

(b) Let D be a class of structures. It holds that D is definable in Cn
∞ω if and only if for

all structures A and B, we have that A ∈ D and A ≡Cn B imply B ∈ D. For the “if”

direction, consider the Cn-sentence χA
Cn in Remark 3.7(b) that characterizes a given

structure A up to Cn-equivalence, and as a consequence we have D = Mod(ϕ) for the

Cn
∞ω-sentence ϕ :=

∨
{χA

Cn | A ∈ (D/∼=)}, where D/∼= is the set of representatives of

the isomorphism types of structures in D (see Section 2.3). The “only if” direction

66

follows immediately from the above part (a).

Remark 3.9. The various logic formalisms L considered in Section 3.1 are closed under

the connectives ¬, ∨ and ∧. Thus, we have that Mod(ϕ) = Mod(¬ϕ) for all L-sentences ϕ

and that Mod(ϕ) ∪Mod(ψ) = Mod(ϕ ∨ ψ) and Mod(ϕ) ∩Mod(ψ) = Mod(ϕ ∧ ψ) for all L-

sentences ϕ and ψ. Moreover, it is clear that Mod(ϕ) ⊆ Mod(ψ) if and only if A |= (ϕ→ ψ)

for all structures A.

3.2 Homomorphism

The notion of homomorphism captures the idea that, when comparing two graphs

or two structures, some structural properties are preserved (similar or even the same) in

both. As the reader may have guessed, isomorphism is among those structural properties.

Furthermore, homomorphism is also a notion prevalent in various areas such as graph theory,

database theory, abstract algebra, mathematical logic and category theory.

Throughout this section, we will often use the versatile symbol U to represent the

class G of graphs or the class A of structures (see Proviso 2) to make a uniform statement.

3.2.1 Basic Definitions and Properties

Definition 3.19. (a) Let G and H be graphs. A function h : V (G)→ V (H) is a homo-

morphism from G to H (written: h : G → H) if for all u, v ∈ V (G), it is true that

{u, v} ∈ E (G) implies {h(u), h(v)} ∈ E (H). We say that G is homomorphic to H

(written: G→ H) if there is a homomorphism from G to H.

(b) Let A and B be σ-structures of some vocabulary σ. A function h : dom(A)→ dom(B)

67

is a homomorphism from A to B (written: h : A → B) if for all n ∈ Z+, all n-

ary relation symbols R ∈ σ and all elements a1, . . . , an ∈ dom(A), it is true that

(a1, . . . , an) ∈ RA implies (h(a1), . . . , h(an)) ∈ RB. We say that A is homomorphic to

B (written: A→ B) if there is a homomorphism from A to B.

Example 3.14. Consider the cycle graph C6 and the path graph P3, where V (C6) =

{u1, u2, u3, u4, u5, u6} and E (C6) = {(u1, u2), (u2, u3), (u3, u4), (u4, u5), (u5, u6), (u6, u1)},

V (P3) = {v1, v2, v3} and E (P3) = {(v1, v2), (v2, v3)}. We have h : C6 → P3 with

h(u1) = h(u3) = h(u5) = v1, h(u2) = h(u4) = h(u6) = v2.

Remark 3.10. (a) By definition, an isomorphism is also a homomorphism.

(b) The binary relation → is reflexive since for all A in U , we have A → A. It is also

transitive because for all A, B and C in U , if h1 : A → B and h2 : B → C, then

(h2 ◦ h1) : A → C. Therefore, → is a preorder over U . In the case of U = G, the

independent sets I1, I2, . . . are the →-minimals; when restricted to the class of graphs

of size at most n, the graphs I1, . . . , In are the→-minimals while Kn is the→-maximal.

Remark 3.11. Similar to Remark 2.4, for all graphs G and H and all functions f : V (G)→

V (H), it holds that f : G → H is a homomorphism if and only if f : Gσ(G) → Hσ(G) is a

homomorphism.

Homomorphism and Subgraphs or Substructures

Definition 3.20. (a) Let G and H be graphs, and let h : G → H be a homomor-

phism. For every subgraph F ⊆ G, the homomorphic image of F under h is the

68

subgraph h(F) ⊆ H with vertex set V (h(F)) := h(V (F)) and edge set E (h(F)) :=

{{h(u), h(v)} | {u, v} ∈ E (F)}.

(b) Let A and B be σ-structures for some vocabulary σ, and let h : A → B be a ho-

momorphism. For every substructure C ⊆ A, the homomorphic image of C under h

is the substructure h(C) ⊆ B with domain dom(h(C)) := h(dom(C)) and relations

Rh(C) := {(h(a1), . . . , h(an)) | (a1, . . . , an) ∈ RC} for all n ∈ Z+ and all n-ary relation

symbols R ∈ σ.

The above definition of the image of a substructure C ⊆ A under a homomorphism

h : A → B implies that h(C) is a substructure of B: If (a1, . . . , an) ∈ RC ⊆ RA, then

(h(a1), . . . , h(an)) ∈ RB. Likewise for the definition of the image of a subgraph under a

homomorphism (in view of Remark 3.11).

Remark 3.12. Let A,B,C ∈ U . By Remark 2.1(a), if A→ B and B ⊆ C, then A→ C.

Homomorphism Counts and a Decomposition Equation

Notation. For all A and B in U , let hom(A,B) denote the number of homomorphisms

from A to B.

Example 3.15. Consider the independent set I1 with V (I1) = {v1} and E (I1) = ∅. For all

graphs G, we have I1 → G (see Remark 3.10(b)) and, in fact, hom(I1,G) = |V (G)| because

every function h : V (I1) → V (G) is a homomorphism h : I1 → G. In general, for every

n ∈ Z+, the independent set In has n vertices and no edges, and we have hom(In,G) =

|V (G)|n.

69

Example 3.16. Consider the clique K2 with V (K2) = {v1, v2} and E (K2) = {(v1, v2)}.

For all graphs G, every function h : V (K2) → V (G) is a homomorphism h : K2 → G

precisely when {h(v1), h(v2)} ∈ E (G), and every function g : V (K2) → V (G) such that

g(v1) = f(v2) and g(v2) = f(v1) is a homomorphism g : K2 → G precisely when f is a

homomorphism. Thus, hom(K2,G) = 2× |E (G)|.

Example 3.17. Let n ∈ Z+. Assume that the clique Kn has vertex set V (Kn) =

{0, . . . , n− 1} and edge set E (Kn) = {{i, j} | i, j ∈ [0, n− 1] and i 6= j}.

Let G be a graph. It is n-colorable (see Definition 2.7) when there is an n-coloring

of G, and a function h : V (G) → {0, . . . , n− 1} is an n-coloring of G exactly when it is

true that for all distinct vertices u, v ∈ V (G), if {u, v} ∈ E (G), then h(u) 6= h(v), i.e.,

{h(u), h(v)} ∈ E (Kn). Therefore, a function h : V (G)→ {0, . . . , n− 1} is an n-coloring of

G if and only if it is a homomorphism h : G → Kn. Hence, hom(G,Kn) is the number of

n-colorings of G and, furthermore, G is n-colorable if and only if hom(G,Kn) > 0.

Example 3.18. (a) Let J1 be a σ-structure with |dom(J1)| = 1 and RJ1 = ∅ for all r-ary

relation symbols R ∈ σ, that is, J1 is an empty σ-structure of size 1. For all σ-structures

A, we have J1 → A and, indeed, hom(J1,A) = |dom(A)| because every function h :

dom(J1)→ dom(A) is a homomorphism h : J1 → A. In general, for every σ-structure

Jn of size n ∈ Z+ that is empty (i.e., RJn = ∅), we have hom(Jn,A) = |dom(A)|n.

(b) Let S2 be a σ-structure with |dom(S2)| = 2 and RS2 = dom(S2)r for all r-ary relation

symbols R ∈ σ, that is, S2 is a complete σ-structure of size 2. For all σ-structures

A, we have A → S2 and, indeed, hom(A,S2) = 2|dom(A)| because every function h :

dom(A)→ dom(S2) is a homomorphism h : A→ S2. In general, for every σ-structure

70

Sn of size n ∈ Z+ that is complete (i.e., RSn = dom(Sn)r), we have hom(A,Sn) =

n|dom(A)|.

Remark 3.13. As noted in Remark 3.1, satisfaction of first-order sentences in structures or

in graphs is invariant under isomorphism. Indeed, homomorphism counts are also invariant

under isomorphism: For all A, B, C and D in U with π1 : A ∼= C and π2 : B ∼= D, if

h : A→ B, then we have (π2 ◦ (h ◦ π−1
1)) : C→ D. Thus, the homomorphisms from A to

B can be put into a one-to-one correspondence with the homomorphisms from C to D via

the mapping h 7→ (π2 ◦ (h ◦ π−1
1)).

Next, we shall derive a useful equation that is a decomposition of homomorphism

counts involving surjective homomorphism counts, injective homomorphism counts and au-

tomorphism counts in Proposition 3.8. Let us start with relevant definitions.

Definition 3.21. Let A,B ∈ U .

(a) A homomorphism h : A→ B is injective if the underlying mapping h is injective. The

set of injective homomorphisms from A to B is denoted Inj(A,B), with inj(A,B) :=

|Inj(A,B)|.

(b) A homomorphism h : A → B is surjective if h(A) = B. The set of surjective homo-

morphisms from A to B is denoted Sur(A,B), with sur(A,B) := |Sur(A,B)|.

Notations. Let A,B ∈ U . The set of homomorphisms from A to B is denoted Hom(A,B),

and the set of isomorphisms from A to B is denoted Iso(A,B), with iso(A,B) := |Iso(A,B)|.

Remark 3.14. Let A be a structure (or a graph, the following applies as well with “graph”

in place of “structure” and with “vertex set, V ” in place of “domain, dom” accordingly).

71

(a) If A ⊆ B for some structure B, then there is an injective homomorphism i : A → B

such that the underlying mapping i : dom(A)→ dom(B) is the inclusion mapping (see

Section 2.1), i.e., i(a) = a for all a ∈ dom(A).

(b) If θ is a partition of dom(A), then there is a surjective homomorphism s : A → A/θ

from A to the quotient A/θ, in which the underlying mapping s : dom(A) → θ maps

every a ∈ dom(A) to the set A ∈ θ such that a ∈ A.

(c) For all structures B, if h : A→ B is a homomorphism, then h′ : A→ h(A) is a surjec-

tive homomorphism where h′ : dom(A) → h(dom(A)) is the surjective function with

the same mapping rule as h : dom(A)→ dom(B) (see Remark 2.1(b)); in particular, if

h is an injective homomorphism, then h′ : A ∼= h(A) is an isomorphism.

Remark 3.15. (a) Immediate by definition, the binary relation→ over U restricted to the

existence of injective or of surjective homomorphisms is transitive: For all A, B and C

in U , if f : A → B and g : B → C are both injective (or surjective) homomorphisms,

then (g ◦ f) : A→ C is also an injective (or surjective, respectively) homomorphism.

(b) Let A and B be both σ-structures (or both graphs, the following applies with “graph” in

place of “σ-structure” and accordingly, with “vertex set V ” in place of “domain, dom”

and with “edge set, E” in place of “relation, R” for all R ∈ σ, respectively), and let

f : dom(A)→ dom(B) be a function. If f ∈ Inj(A,B), then by Remark 3.14(c), we have

|dom(A)| = |dom(h(A))| ≤ |dom(B)| and |RA| = |Rh(A)| ≤ |RB| for all R ∈ σ, and the

equalities hold in both “≤” precisely when f ∈ Sur(A,B), i.e., when f ∈ Iso(A,B). If

f ∈ Sur(A,B), then by Remark 3.14(c), we have |dom(B)| = |h(dom(A))| ≤ |dom(A)|

72

and |RB| = |Rh(A)| ≤ |RA| for all R ∈ σ, and the equalities hold in both “≤” precisely

when f ∈ Inj(A,B), i.e., when f ∈ Iso(A,B).

The subsequent result is often informally alluded to in the research of (graph)

homomorphisms, and yet, to my best knowledge, has not been formally derived, although

relevant discussion and exercises are given in [33] for σ(G)-structures (i.e., directed graphs)

and can immediately be generalized to arbitrary vocabularies σ. For classes F ⊆ U , we will

use the symbol F/∼= introduced in Sections 2.2 and 2.3 for the set of the representatives of

the respective isomorphism types of the members in F .

Proposition 3.8. For all A and B in U ,

hom(A,B) =
∑

C∈ (U/∼=)

sur(A,C)× inj(C,B)/aut(C).

Before proving Proposition 3.8, we give the following discussion that elaborates on

that given in Section 1.5 of [33].

Remark 3.16. Let A be a structure (or a graph, the following applies as well with “graph”

in place of “structure” and accordingly “vertex set, V ” in place of “domain, dom”).

(a) By Remark 3.15(b), for all structures B, we have Iso(A,B) = Inj(A,B) ∩ Sur(A,B).

(b) Let f : dom(A) → dom(A) be a function. By Remark 3.15(b), f is an injective

homomorphism if and only if f is a surjective homomorphism, and if and only if f is

an isomorphism. Thus, inj(A,A) = sur(A,A) = iso(A,A) = aut(A) > 0.

(c) By the same argument based on functional composition presented in Remark 3.13, we

have that inj(∗, ∗), sur(∗, ∗), iso(∗, ∗) and hence aut(∗) are all invariant under isomor-

phism, as is hom(∗, ∗).

73

Proof of Proposition 3.8. We will mainly concern ourselves with the case for U = A. In the

following discussion, we consider arbitrary structures A and B in A.

Let h : A→ B be a homomorphism. Note that h can be associated with

• a natural partition θ induced by the equivalence relation ∼ over dom(A) for which

a ∼ b if and only if h(a) = h(b) (i.e., θ = {[a]∼ | a ∈ dom(A)}), such that h is the

composition i ◦ sθ in which sθ : A → (A/θ) is the surjective homomorphism that

maps a ∈ dom(A) to [a]∼ (see Remark 3.14(b)) and i : (A/θ) → B is the injective

homomorphism that maps [a]∼ to h(a) for all a ∈ dom(A), and

• a natural substructure of B, namely the image h(A) of A under h, such that h is

the composition ih(A) ◦ s in which s : A → h(A) is the surjective homomorphism

whose underlying mapping has the same mapping rule as h and ih(A) : h(A) → B is

the injective homomorphism whose underlying mapping is the inclusion mapping (see

Remark 3.14(a)).

An important observation to make is that there is an isomorphism π from A/θ to h(A)

and, furthermore, the underlying mapping of h is the composition ih(A) ◦ (π ◦sθ). Thus, h is

uniquely determined by the following items (note that the items in a row depend on those

in the previous row),

• an isomorphism type [C]∼=,

• a partition θ of dom(A) such that (A/θ) ∈ [C]∼= as well as a substructure B′ of B

such that B′ ∈ [C]∼= (the respective choices of θ and B′ are mutually independent),

• an isomorphism π : (A/θ) ∼= B′

74

in such a way that h = iB′ ◦ (π ◦ sθ), where sθ : A→ (A/θ) is uniquely determined by the

choice of θ (hence its subscript) and iB′ : B′ → B is uniquely determined by the choice of

B′ (hence its subscript). If h is injective, then θ is the trivial partition and hence h = iB′ ◦π

with π : A ∼= B′ (recall the line below Definition 2.14 that we set A/θ := A in such case).

If h is surjective, then B′ = B and hence h = π ◦ sθ.

Therefore, we have

Hom(A,B)

= {h | h : A→ B}

=
⊎

C∈ (A/∼=)

⊎
θ a partition of dom(A):

(A/θ)∈[C]∼=

⊎
B′⊆B:B′∈[C]∼=

{iB′ ◦ (π ◦ sθ) | π : (A/θ) ∼= B′}

(in fact, the second
⊎

and the third
⊎

can switch their positions as they are mutually

independent) and

Inj(A,B) =
⊎

B′⊆B:B′∈[A]∼=

{iB′ ◦ π | π : A ∼= B′},

Sur(A,B) =
⊎

θ a partition of dom(A):
(A/θ)∈[B]∼=

{π ◦ sθ | π : (A/θ) ∼= B}.

Since dom(A) and dom(B) are both finite, all the above
⊎

are indeed disjoint

75

unions of finitely many members that are finite and nonempty. It follows that

hom(A,B)

=
∑

C∈ (A/∼=)

∑
θ a partition of dom(A):

(A/θ)∈[C]∼=

∑
B′⊆B:B′∈[C]∼=

|{iB′ ◦ (π ◦ sθ) | π : (A/θ) ∼= B′}|

=
∑

C∈ (A/∼=)

∑
θ a partition of dom(A):

(A/θ)∈[C]∼=

∑
B′⊆B:B′∈[C]∼=

iso(A/θ,B′)

=
∑

C∈ (A/∼=)

∑
θ a partition of dom(A):

(A/θ)∈[C]∼=

∑
B′⊆B:B′∈[C]∼=

iso(C,C)

=
∑

C∈ (A/∼=)

∑
θ a partition of dom(A):(A/θ)∈[C]∼=

∑
B′⊆B:B′∈[C]∼=

aut(C)

=
∑

C∈ (A/∼=)

aut(C)× |{θ a partition of dom(A) | (A/θ) ∈ [C]∼=}| × |{B′ ⊆ B | B′ ∈ [C]∼=}|

and

inj(A,B)

=
∑

B′⊆B:B′∈[A]∼=

|{iB′ ◦ π | π : A ∼= B′}|

=
∑

B′⊆B:B′∈[A]∼=

iso(A,B′)

=
∑

B′⊆B:B′∈[A]∼=

iso(A,A)

=
∑

B′⊆B:B′∈[A]∼=

aut(A)

= aut(A)× |{B′ ⊆ B | B′ ∈ [A]∼=}|

76

and

sur(A,B)

=
∑

θ a partition of dom(A):
(A/θ)∈[B]∼=

|{π ◦ sθ | π : (A/θ) ∼= B}|

=
∑

θ a partition of dom(A):
(A/θ)∈[B]∼=

iso(A/θ,B)

=
∑

θ a partition of dom(A):
(A/θ)∈[B]∼=

iso(B,B)

=
∑

θ a partition of dom(A):
(A/θ)∈[B]∼=

aut(B)

= aut(B)× |{θ a partition of dom(A) | (A/θ) ∈ [B]∼=}|,

where, in each respective group of equalities for hom(A,B), inj(A,B), sur(A,B), the second

equality follows because every homomorphism is uniquely determined by [C]∼=, θ,B
′, π (in

which π is allowed to vary given a combination of fixed [C]∼=, θ,B
′), the third follows by

part (c) and the fourth by part (b) of Remark 3.16.

Since A and B are arbitrary, we have, for arbitrary structures C, that

inj(C,B) = aut(C)× |{B′ ⊆ B | B′ ∈ [C]∼=}|,

sur(A,C) = aut(C)× |{θ a partition of dom(A) | (A/θ) ∈ [C]∼=}|.

Substituting the last two equations into the last identity concerning hom(A,B), we conclude

hom(A,B) =
∑

C∈ (A/∼=)

sur(A,C)× inj(C,B)/aut(C),

as aut(C) > 0 (by Remark 3.16(b)).

As for the case of U = G, the above can be repeated with graphs in place of

structures (V in place of dom, accordingly) and G in place of A. Alternatively, consider

arbitrary graphs A and B, and note that hom(A,B) = hom(Aσ(G),Bσ(G)), sur(A,B) =

77

sur(Aσ(G),Bσ(G)), inj(A,B) = inj(Aσ(G),Bσ(G)) and aut(A) = aut(Aσ(G)), by Remarks 2.4

and 3.11. Thus,

hom(A,B)

= hom(Aσ(G),Bσ(G))

=
∑

C′ ∈ (A[σ(G)]/∼=)

sur(Aσ(G),C′)× inj(C′,Bσ(G))/aut(C′)

=
∑

C′ ∈ (A[σ(G)]/∼=):

C′ is irreflexive and symmetric

sur(Aσ(G),C′)× inj(C′,Bσ(G))/aut(C′)

=
∑

C∈ (G/∼=)

sur(Aσ(G),Cσ(G))× inj(Cσ(G),Bσ(G))/aut(Cσ(G))

=
∑

C∈ (G/∼=)

sur(A,C)× inj(C,B)/aut(C)

in which the third identity follows because sur(Aσ(G),C′) = 0 if C′ is not symmetric (i.e.,

(a, b) ∈ EC′ and (b, a) /∈ EC′ for some distinct a, b ∈ dom(C′)) and inj(C′,Bσ(G)) = 0 if

C′ is not irreflexive (i.e., (a, a) ∈ EC′ for some a ∈ dom(C′)) and the fourth because of

the one-to-one correspondence given in Remark 2.3 (assuming C ∈ (G/∼=) if and only if

Gσ(G) ∈ (A[σ(G)]/∼=) for all C ∈ G).

Homomorphism and Graph-Theoretic Properties

We first look at some properties concerning homomorphisms and graphs. The

proposition below is immediate by definition and so we omit a proof.

Proposition 3.9. Let G and H be graphs. If G contains a subgraph G′ ∼= Kn for some

n ∈ Z+, then for every homomorphism h : G→ H, we have h(G′) ∼= Kn.

Recall Definition 2.7 that the chromatic number χ(G) of a graph G is the smallest

integer n ∈ Z+ for which G is n-colorable or, equivalently, for which hom(G,Kn) > 0, by

78

Example 3.17.

Proposition 3.10. Let G and H be graphs. If G→ H, then χ(G) ≤ χ(H).

Proof. Let G and H be two graphs such that G → H. Since → is transitive (see Re-

mark 3.10(b)), we have that for all n ∈ Z+, if H → Kn, then G → Kn; in other words, if

hom(H,Kn) > 0, then hom(G,Kn) > 0.

Next, we look at properties concerning homomorphisms and graphs or structures

in general. Recall that a walk in a graph or a structure is a sequence w = (a0, . . . , an) in

which each pair of consecutive entries are adjacent.

Definition 3.22. Let A,B ∈ U , let h : A → B be a homomorphism, and let w =

(a0, . . . , an) be a walk in A. The image of w under h is h(w) := (h(a0), . . . , h(an)).

Proposition 3.11. [33] Let A,B ∈ U and h : A→ B be a homomorphism.

(a) For every n ∈ Z+, if w is a walk of length n in A, then h(w) is a walk of length n in

h(A); in particular, if w is a closed walk of length n in A, then h(w) is a closed walk

of length n in h(A).

(b) If A is connected, then h(A) is also connected.

Proof. We will only prove for the case U = A, since the case U = G is entirely analogous.

For part (a), let w = (a0, . . . , an) be a walk of length n in A, in which every

pair of consecutive entries are adjacent. Then every pair of consecutive entries in the

image h(w) = (h(a0), . . . , h(an)) are also adjacent, by the premise that h : A → B is a

homomorphism. It follows that h(w) = (h(a0), . . . , h(an)) is a walk of length n in h(A).

79

Note that if w is a closed walk, i.e., if a0 = an, then h(a0) = h(an) and hence h(w) is a

closed walk.

For part (b), let A be connected. For distinct elements c, d ∈ dom(h(A)), choose

a ∈ h−1(c) and b ∈ h−1(d) (here h−1 means preimage, see Section 2.1), which must be

distinct. Since A is connected, b is reachable from a, i.e., there is a walk w = (a0, . . . , an)

in A such that a0 = a and an = b. The image h(w) = (h(a0), . . . , h(an)) is a walk in h(A),

by part (a). Since h(a0) = h(a) = c and h(an) = h(b) = d, we have that d is reachable from

c in h(A). Therefore, h(A) is also connected.

Remark 3.17. (a) For graphs, the image of a path under a homomorphism is a walk but

may not be a path, and the image of a cycle under a homomorphism is a closed walk

but may not be a cycle. The same holds for structures.

(b) There is a subtle difference between the image of a cycle under a homomorphism for

graphs and for structures, however. The image of a cycle in a graph may be acyclic,

e.g., consider the homomorphisms from C4 to K2. In contrast, the image of a cycle

in a structure must contain a cycle (as a subsequence) in it, due to the definition of

homomorphism; in fact, if A and B are two structures for which there is a homomor-

phism h : A→ B, then h gives rise to a natural mapping h′ : V (Inc(A))→ V (Inc(B))

(a homomorphism indeed) that preserves the labels in the edges in E (Inc(A)) and it is

easy to see that the image of a cycle in Inc(A) under h′ contains a cycle.

Corollary 3.12. (a) Let G and H be graphs such that G → H. If G contains a cycle of

odd length n ≥ 3, then H contains a cycle of odd length m such that n ≥ m ≥ 3.

80

(b) Let A and B be structures such that A → B. If A contains a cycle of odd length

n ∈ Z+, then B contains a cycle of odd length m such that n ≥ m.

Proof. For part (a), let h : G → H and let w be a cycle in G of odd length n ≥ 3. Then,

the image h(w) is a closed walk in h(G) of the same length n, by Proposition 3.11(a). It

follows from Proposition 2.1 that h(G) and hence H contain a cycle of odd length m such

that n ≥ m ≥ 3.

For part (b), note that an analogue of Proposition 2.1 holds for structures (with

suitable adaptations, of course, since cycles in structures have lengths ≥ 1). Then, argue

as in part (a).

Corollary 3.13. (a) Let A,B ∈ U such that A → B. If γodd(A) < ∞, then γodd(A) ≥

γodd(B).

(b) Let A and B be structures such that A→ B. If γ(A) <∞, then γ(A) ≥ γ(B).

Proof. Part (a) immediately follows from Corollary 3.12. Part (b) follows from Proposi-

tion 3.11(a) and Remark 3.17(b).

3.2.2 Two Types of Homomorphism Counts

As the title of this dissertation suggests, homomorphism counts will play the cen-

tral role. However, there are actually two different notions of homomorphism counts: The

actual number of homomorphisms and the indicator for the existence of homomorphisms (0

or 1). The first notion, hom(A,B), was introduced in Subsection 3.2.1.

81

Homomorphism Counts over Two Different Semirings

Stated in a more general (and hence more abstract) sense, hom(A,B) is the homo-

morphism count from A to B over N, where N = (N,+, ·, 0, 1) is called the bag-set semiring.

Note that a nonempty set S with two elements 0, 1 ∈ S and two binary operations +, · on

S is a semiring if

• for all a, b, c ∈ S: (a+ b) + c = a+ (b+ c),

• for all a ∈ S: 0 + a = a = a+ 0,

• for all a, b ∈ S: a+ b = b+ a,

• for all a, b, c ∈ S: (a · b) · c = a · (b · c),

• for all a ∈ S: a · 1 = a = 1 · a,

• for all a, b, c ∈ S: a · (b+ c) = (a · b) + (a · c),

• for all a, b, c ∈ S: (a+ b) · c = (a · c) + (b · c),

• for all a ∈ S: 0 · a = 0 = a · 0.

It is easy to see that B = (B,+, ·, 0, 1) is a semiring with B := {0, 1} and the two binary

operations +, · on B defined by

a+ b = max(a, b),

a · b = min(a, b),

for all a, b ∈ B, and B is called the Boolean semiring. This prompts the second notion of

homomorphism counts.

Notation. For all A and B in U , let homB(A,B) be the notation to indicate the existence of

a homomorphism from A to B, i.e., homB(A,B) = 1 if A→ B, otherwise homB(A,B) = 0.

82

This second notion of homomorphism counts is then called, in contrast, the ho-

momorphism count from A to B over B. In view of this, we sometimes write homN(A,B)

for hom(A,B) to emphasize that the former notion of homomorphism counts is over the

semiring N.

Remark 3.18. We saw in Remark 3.13 that homN(∗, ∗) = hom(∗, ∗) is invariant under

isomorphism. Since homB(∗, ∗) = sgn(homN(∗, ∗)) (see Proposition 3.14(a)), we have that

homB(∗, ∗) is invariant under isomorphism as well. These imply that further notions de-

veloped based on homomorphism counts over B or over N, such as the (restricted) left and

right profiles introduced in Chapter 4, are also invariant under isomorphism.

The next two propositions have a straightforward proof (omitted) using the rule

of sum and the rule of product. The operations ⊕ (direct sum) and ⊗ (direct product) for

both graphs and structures were given in Definitions 2.3 and 2.13, while ↑ (exponentiation)

is specifically for structures and was given in Definition 2.13.

Proposition 3.14. Let A,B ∈ U , and let K be the semiring B or N.

(a) homB(A,B) = sgn(homN(A,B)), where sgn : N→ B, sgn(n) =


0 if n = 0,

1 otherwise.

(b) (Additivity for ⊕) If B =
n⊕
j=1

Bj (B1, . . . ,Bn are not necessarily the connected compo-

nents of B), then homK(A,B) ≥
n∑
j=1

homK(A,Bj); the equality holds if A is connected.

(c) (Multiplicativity for ⊕) If A =

m⊕
i=1

Ai (A1, . . . ,Am are not necessarily the connected

components of A), then homK(A,B) =

m∏
i=1

homK(Ai,B).

83

(d) If A =

m⊗
i=1

Ai, then homB(A,Ai) = 1 for all i ∈ [m].

(e) (Multiplicativity for ⊗) If B =

n⊗
j=1

Bj, then homK(A,B) =

n∏
j=1

homK(A,Bj).

Proposition 3.15. [33] Let K be the semiring B or N. For all structures A, B and C,

we have homK(A⊗C,B) = homK(C,B ↑A).

Corollary 3.16. If G is a 2-colorable graph with n connected components where n ∈ Z+,

then the number of 2-colorings of G is 2n.

Proof. If G is 2-colorable with connected components G1, . . . ,Gn, then the number of 2-

colorings of each Gi is 2 by Proposition 2.3, and hence hom(Gi,K2) = 2 by Example 3.17.

By Proposition 3.14(c), it follows that the number of 2-colorings of G is hom(G,K2) =

hom(G1,K2)× · · · × hom(Gn,K2) = 2n.

Remark 3.19. By Example 3.17 and Proposition 3.14(a), it follows that for every n ∈ Z+

and every graph G, we have G is n-colorable if and only if homB(G,Kn) = 1. Recall

Example 2.1(b) that for all m,n ∈ Z+ with m > n and for all graphs G, if G is n-colorable,

then G is also m-colorable. This also follows from the previous statement, in view of

Remark 3.12.

From the preceding remark it turns out that the decision problem n-COLORABILITY

coincides with the problem: Given a graph G, is homB(G,Kn) = 1? The time is ripe for

us to look at a more general category of decision problems.

The (uniform) constraint satisfaction problem CSP(A,B) is a decision problem

that is parameterized by the two structures A and B, in which the scope of the constraints

is delineated by the relations in A and other part of the constraints by the relations in

84

B, and that asks whether there exists an assignment of the elements of A to the elements

of B such that the assignment satisfies all the constraints (see Chapter 6 of [27] for more

details). This definition applies to graphs as well, with “vertices” and “edges” in place

of “elements” and “relations”, respectively. As the reader may have noticed, CSP(A,B)

simply asks: Given A and B, is there a homomorphism from A to B or, in symbols, is

homB(A,B) = 1?

Constraint satisfaction problems are a big family of decision problems in computer

science and provide a general framework in which to formulate and study various decision

problems. There are two variants of nonuniform constraint satisfaction problem: fixing A

or fixing B in CSP(A,B).

We shall consider the corresponding class of the yes-instances of either variant of

nonuniform constraint satisfaction problem so that, conversely, the nonuniform constraint

satisfaction problem becomes the membership problem for the corresponding class.

Notations. Let A ∈ U .

(a) CQ(A) := {B ∈ U | homB(A,B) = 1}.

(b) CSP(A) := {B ∈ U | homB(B,A) = 1}.

Remark 3.20. The notation CQ stems from (Boolean) conjunctive query in the terminol-

ogy of database theory, which is also known as a primitive positive sentence, a first-order

sentence that has a special syntax (see Definition 5.2 and also Remark 5.2). For every A

that is a nonempty structure (i.e., contains at least one tuple in a relation) or a nonempty

graph (i.e., is not an independent set), the class {B ∈ U | homB(A,B) = 1} coincides with

Mod(ϕ) for some primitive positive sentence ϕ related to A (see Proposition 5.9(b) and

85

Remark 5.3), and this explains our choice of CQ(A) for the class.

As can be inferred from the previous discussion, in general the computational

complexity of the membership problem for CSP(A), also known as expression complexity,

is NP-complete, since the membership problem for CSP(K3) is indeed the well-known NP-

complete problem 3-COLORABILITY (recall Section 2.2). In contrast, the computational

complexity of the membership problem for CQ(A), also known as data complexity, is in P:

Given an input B, an intuitive algorithm tests, for every mapping h : dom(A)→ dom(B),

whether h is a homomorphism; the total number of such mappings is O(|dom(B)||dom(A)|).

Homomorphic Equivalence

We saw in Remark 3.10 that the binary relation → over U is a preorder, namely,

→ is reflexive and transitive. In general, however, it is not symmetric. For example, in the

case U = G, we have I1 → K2 but K2 6→ I1, by Proposition 3.9.

Notation. For all A and B, we let A↔ B denote the statement “A→ B and B→ A.”

It turns out that↔ is also binary relation over U and, on top of that, it is reflexive

and transitive (by the reflexivity and transitivity of →), and moreover symmetric (due to

the symmetry imposed by the statement for↔). That is to say,↔ is an equivalence relation

over U , called homomorphic equivalence.

Definition 3.23. Let A,B ∈ U . We say that A is homomorphically equivalent to B if

A↔ B.

Notation. For A ∈ U , the homomorphic-equivalence class of A is denoted [A]↔ :=

{B ∈ U | A↔ B}.

86

Note that for all A ∈ U , we have [A]↔ = CQ(A) ∩ CSP(A).

Example 3.19. The two graphs C3 and C3 ⊕C3 are homomorphically equivalent.

This example reveals a general property about homomorphic equivalence and di-

rect sums of graphs or of structures. We summarize some trivial properties below without

proofs (as they are straightforward).

Proposition 3.17. Let A ∈ U . For all m,n ∈ Z+, we have that
⊕

m A and
⊕

n A are

homomorphically equivalent.

Proposition 3.18. For all A,B ∈ U , the following are equivalent:

(i) A↔ B.

(ii) For all C ∈ U , we have C→ A if and only if C→ B.

(iii) For all C ∈ U , we have A→ C if and only if B→ C.

(iv) CQ(A) = CQ(B).

(v) CSP(A) = CSP(B).

87

Chapter 4

Graph Isomorphism and Its

Relaxations

We will delve deeper into homomorphism counts (over B or over N) and investigate

their expressive power in this chapter and the next. Certain homomorphism counts from

or to a graph or a structure present an ensemble that reveals some interesting structural

information about that graph or structure, and they will be the main objects of study next:

the left profiles and the right profiles.

Recall the symbol U in Proviso 2 for G or A[σ] for some vocabulary σ and the set

F/∼= corresponding to a subclass F ⊆ U , both of which were introduced in Chapter 2.

Definition 4.1. Let A ∈ U , and let K be the semiring B or N.

(a) The left profile of A over K is lpfK(A) := (homK(F,A) | F ∈ U/∼=), and the right

profile of A over K is rpfK(A) := (homK(A,F) | F ∈ U/∼=).

(b) For every nonempty subclass F ⊆ U , the left profile of A restricted to F over K is

88

lpfFK(A) := (homK(F,A) | F ∈ F/∼=), and the right profile of A restricted to F over

K is rpfFK(A) := (homK(A,F) | F ∈ F/∼=).

Note that, by notations, we have lpfK(A) = lpfUK(A) and rpfK(A) = rpfUK(A),

for every A ∈ U . Since sequences are an alternative view of functions (cf. Section 2.1),

the left and right profiles of an A ∈ U restricted to a class F over a semiring K ∈ {B,N}

are indeed the mappings B 7→ homK(B,A) and B 7→ homK(A,B), respectively, for every

B ∈ F .

As already mentioned in Remark 3.18, homomorphism counts, over either semiring

B or N, are invariant under isomorphism. Hence, so are the left profiles and the right profiles:

For all A and B in U , if A ∼= B then lpfFK(A) = lpfFK(B) and rpfFK(A) = rpfFK(B).

Notations. When the underlying semiring is the bag-set semiring N, for brevity we of-

ten omit its occurrence as the subscript in the notations lpfFN , rpfFN , lpfN, rpfN and write

lpfF , rpfF , lpf, rpf instead.

Example 4.1. By Examples 3.15 and 3.17, for every graph G, the left profile lpfI(G) of G

restricted to the class I of independent sets is the sequence |V (G)|, |V (G)|2, |V (G)|3, . . .

and the right profile rpfK(G) of G restricted to the class K of cliques is the sequence

of numbers of n-colorings of G for n ∈ Z+ (assuming that the graphs in I or in K are

enumerated in increasing size).

By Remark 3.19, the right profile rpfKB(G) of G restricted to K over the Boolean

semiring B is a bit-sequence in which the n-th entry is I(G is n-colorable) for n ∈ Z+ (see

Section 2.1 for the definition of indicator function).

In this chapter, we will focus on graphs and investigate the expressive power of

89

homomorphism counts in characterizing various equivalence relations among graphs that

are coarser than isomorphism, in the form of restricted left or right profiles. Much of the

material is from [3].

4.1 Characterizing Graph Isomorphism in Left Profile and

in Right Profile

As noted in Remark 3.10(a), an isomorphism is also a homomorphism (but not

vice versa). In fact, there is a deeper connection between the two. The following theorem,

due to L. Lovász, is a seminal result that has encouraged the study on characterizing various

equivalence relations that are coarser than isomorphism in left profiles restricted to certain

classes.

Theorem 4.1 (Lovász Theorem). [40] For all A and B in U , we have A ∼= B if and only

if lpf(A) = lpf(B).

The above theorem gives a characterization of isomorphism in left profile: Iso-

morphism coincides with the equality of left profile. Symmetrically, the next theorem, due

to S. Chaudhuri and M. Vardi, gives a characterization of isomorphism in right profile:

Isomorphism coincides with the equality of right profile.

Theorem 4.2 (Chaudhuri-Vardi Theorem). [9] For all A and B in U , we have A ∼= B if

and only if rpf(A) = rpf(B).

Remark 4.1. (a) Note the resemblance of the restatement of Proposition 3.4 given in

Remark 3.2 to Theorems 4.1 and 4.2. Thus, if we enumerate the isomorphism types

90

of graphs or of structures [A1]∼=, [A2]∼=, . . . and visualize the mapping hom(∗, ∗) as a

2-dimensional infinite matrix

hom(∗, ∗) [A1]∼= [A2]∼= · · · [Aj]∼= · · ·

[A1]∼= hom(A1,A1) hom(A1,A2) · · · hom(A1,Aj) · · ·

[A2]∼= hom(A2,A1) hom(A2,A2) · · · hom(A2,Aj) · · ·

...
...

...
. . .

...
. . .

[Ai]∼= hom(Ai,A1) hom(Ai,A2) · · · hom(Ai,Aj) · · ·

...
...

...
. . .

...
. . .

then Theorems 4.1 and 4.2 say that every column in the matrix is unique and every

row in the matrix is unique, respectively.

(b) Theorems 4.1 and 4.2 are no longer valid if lpf and rpf are replaced by lpfB and rpfB:

For every A ∈ U , we have lpfB(A) = lpfB(A ⊕ A) and rpfB(A) = rpfB(A ⊕ A), a

consequence of A and A⊕A being homomorphic equivalent (by Proposition 3.17) but

obviously A and A⊕A are not isomorphic.

In view of Definition 3.12, C-equivalence (≡C) is the equivalence relation over U

that arises from satisfying the same C-sentences. By Remark 3.6, however, C-equivalence co-

incides with FO-equivalence, which in turn coincides with isomorphism, by Proposition 3.4.

Corollary 4.3. For all A and B in U , the following are equivalent:

(i) A ∼= B.

(ii) A ≡FO B.

(iii) A ≡C B.

91

(iv) lpfU (A) = lpfU (B).

(v) rpfU (A) = rpfU (B).

We will state and prove a result that is simultaneously more general than Theo-

rems 4.1 and 4.2 for U = G, adopting, for arbitrary classes F of graphs, the notations

Inj(F) := {G ∈ G | inj(G,F) > 0 for some F ∈ F},

Sur(F) := {G ∈ G | sur(F,G) > 0 for some F ∈ F},

Ext(F) := Inj(F) ∩ Sur(F).

In other words, Inj(F) consists of graphs isomorphic to the subgraphs of all graphs in F

(see Remark 3.14(a)), whereas Sur(F) consists of graphs isomorphic to the homomorphic

images of all graphs in F . Thus, it is obvious that F ⊆ Inj(F) and F ⊆ Sur(F) and, as a

result, that F ⊆ Ext(F). Furthermore, it is immediate by definition and Remark 3.15(a)

that Sur(Sur(F)) = Sur(F) and Inj(Inj(F)) = Inj(F).

Theorem 4.4. Let F ⊆ G be nonempty. For all G and H in F , the following are equivalent:

(i) G ∼= H.

(ii) lpfExt(F)(G) = lpfExt(F)(H).

(iii) rpfExt(F)(G) = rpfExt(F)(H).

Proof. We assume a linear order < over the set G/∼= of graphs that is in increasing number

of vertices and, among graphs having the same number of vertices, is in increasing number

of edges, for which G < H means that G precedes H in this linear order.

Let F be a nonempty class of graphs, and let G,H ∈ F . Note that the directions

from (i) to (ii) and from (i) to (iii) are both trivial because lpf and rpf are invariant under

isomorphism (see Remark 3.18).

92

To prove (ii) implies (i), assume that lpfExt(F)(G) = lpfExt(F)(H). It suffices to

argue that inj(G,H) > 0 and inj(H,G) > 0: Then, by Remark 3.15(b), |V (G)| = |V (H)|

and |E (G)| = |E (H)|, hence an injective homomorphism i : G → H (there exists one by

inj(G,H) > 0) is also an isomorphism i : G ∼= H. For this goal, we will prove

for every F ∈ Ext(F), it holds that inj(F,G) = inj(F,H). (+)

Then, since G and H are both in F ⊆ Ext(F), by setting F = G and setting F =

H, respectively, we have inj(G,H) = inj(G,G) > 0 and inj(H,G) = inj(H,H) > 0 by

Remark 3.16(b). Let F ∈ Ext(F), by Proposition 3.8 we have

hom(F,G) =
∑

E∈G/∼=

sur(F,E)× inj(E,G)/aut(E)

=
∑

E∈Ext(F)/∼=

sur(F,E)× inj(E,G)/aut(E)

=
∑

E∈Ext(F)/∼=:E < F or E ∼= F

sur(F,E)× inj(E,G)/aut(E)

= inj(F,G) +
∑

E∈Ext(F)/∼=:E<F

sur(F,E)× inj(E,G)/aut(E),

in which the second identity follows by considering those E in G/∼= for which inj(E,G) > 0

and sur(F,E) > 0 (inj(E,G) > 0 and G ∈ F imply E ∈ Inj(F), and sur(F,E) > 0

and F ∈ Ext(F) ⊆ Sur(F) imply E ∈ Sur(Sur(F)) = Sur(F), hence altogether we have

E ∈ Ext(F)), the third by noting that if sur(F,E) > 0 then it must be either E < F or

E ∼= F because |V (E)| ≤ |V (F)| and |E (E)| ≤ |E (F)| by Remark 3.15(b), and the fourth

by Remark 3.16(b) and (c). Thus,

inj(F,G) = hom(F,G)−
∑

E∈Ext(F)/∼=:E<F

sur(F,E)× inj(E,G)/aut(E),

93

and likewise,

inj(F,H) = hom(F,H)−
∑

E∈Ext(F)/∼=:E<F

sur(F,E)× inj(E,H)/aut(E),

by which (+) can be easily proved by (strong) induction on the position of the representative

of [F]∼= in the linear order < restricted to Ext(F)/∼= (and by Remark 3.16(c)), given that

lpfExt(F)(G) = lpfExt(F)(H).

Finally, the argument for the direction from (iii) to (i) will be dual to the pre-

vious one, with inj and sur (as well as Inj and Sur) switching their roles. Assume that

rpfExt(F)(G) = rpfExt(F)(H). It suffices to show that sur(G,H) > 0 and sur(H,G) > 0 be-

cause then, by Remark 3.15(b), |V (G)| = |V (H)| and |E (G)| = |E (H)|, which implies that

a surjective homomorphism s : G → H (whose existence is guaranteed by sur(G,H) > 0)

is also an isomorphism s : G ∼= H. Similarly, for this goal, we will prove

for every F ∈ Ext(F), it holds that sur(G,F) = sur(H,F). (∗)

It will follow, as G and H are both in F ⊆ Ext(F), by respectively taking F = H and F = G,

that sur(G,H) = sur(H,H) > 0 and sur(H,G) = sur(G,G) > 0 by Remark 3.16(b). For

F ∈ Ext(F), it is true by Proposition 3.8 that

hom(G,F) =
∑

E∈G/∼=

sur(G,E)× inj(E,F)/aut(E)

=
∑

E∈Ext(F)/∼=

sur(G,E)× inj(E,F)/aut(E)

=
∑

E∈Ext(F)/∼=:E < F or E ∼= F

sur(G,E)× inj(E,F)/aut(E)

= sur(G,F) +
∑

E∈Ext(F)/∼=:E<F

sur(G,E)× inj(E,F)/aut(E),

where the second equality is obtained by similar considerations that inj(E,F) > 0 and

sur(G,E) > 0 (inj(E,F) > 0 and F ∈ Ext(F) ⊆ Inj(F) imply E ∈ Inj(Inj(F)) = Inj(F),

94

and sur(G,E) > 0 and G ∈ F imply E ∈ Sur(F), which together imply E ∈ Ext(F)),

the third follows by observing inj(E,F) > 0 implies that either E < F or E ∼= F because

|V (E)| ≤ |V (F)| and |E (E)| ≤ |E (F)| by Remark 3.15(b), and the fourth likewise by

Remark 3.16(b) and (c). Therefore,

sur(G,F) = hom(G,F)−
∑

E∈Ext(F)/∼=:E<F

sur(G,E)× inj(E,F)/aut(E),

and similarly,

sur(H,F) = hom(H,F)−
∑

E∈Ext(F)/∼=:E<F

sur(H,E)× inj(E,F)/aut(E),

and with these equations we can easily prove (∗) by (strong) induction on the position

of the representative of [F]∼= in the linear order < restricted to Ext(F)/∼= (in view of

Remark 3.16(c)), given the condition that rpfExt(F)(G) = rpfExt(F)(H).

This theorem is indeed a simultaneous generalization of Theorems 4.1 and 4.2

because it is clear that Ext(F) = F for the case F = G (here lpf = lpfG and rpf = rpfG are

the full left profile and the full right profile, respectively). As an immediate consequence

of Theorem 4.4, in general, we have for every nonempty class F of graphs, if Ext(F) = F ,

then isomorphism over F is characterized by the equality of lpfF and by the equality of rpfF .

Remark 4.2. We present some common classes F for which Ext(F) = F holds.

(a) If Inj(F) ⊆ F or Sur(F) ⊆ F holds, then Ext(F) = F holds as well because Ext(F) =

Inj(F) ∩ Sur(F). In fact, Inj(F) = F holds for the following two cases:

• F is the class of all n-colorable graphs, for a fixed n ∈ Z+ (by Proposition 2.2(a))

• F is the class of all graphs of degree ≤ n, for a fixed n ∈ Z+,

95

and Sur(F) = F holds for the following two cases:

• F is the class of all connected graphs (by Proposition 3.11(b))

• F is the class K of all cliques (by Proposition 3.9).

(b) Two other cases for classes F of connected graphs for which Ext(F) = F are:

• F is the class P of all path graphs,

• F is the class T of all free trees.

We shall only argue that Ext(P) = P, the case for T being analogous. Since P ⊆

Ext(P), it suffices to show Ext(P) ⊆ P. First, observe that graphs in P are all connected

and hence so are their homomorphic images, by Proposition 3.11(b). In other words,

the graphs in Sur(P) are connected. Next, Inj(P) contains all graphs isomorphic to

the subgraphs of path graphs. Therefore, every graph in Ext(P) = Inj(P) ∩ Sur(P) is

isomorphic to a connected subgraph of a graph in P, and must be a path graph itself.

It follows that Ext(P) ⊆ P.

Although we only proved Theorem 4.4 for graphs (i.e., for U = G), it can be

stated and proved analogously for structures (i.e., for U = A), e.g., with Inj(F), Sur(F)

and Ext(F) defined analogously for classes of structures F ⊆ A, etc.

Note that the left profile in Theorem 4.1 and the right profile in 4.2 both in-

volve “infinitely many” homomorphism counts. The next two corollaries, however, imply

that “finitely many” homomorphism counts in the left profile or the right profile suffice to

determine the isomorphism type of a graph or of a structure, respectively.

96

Corollary 4.5. [11] For all graphs G and H, let n := min {|V (G)|, |V (H)|}. The following

are equivalent:

(i) G ∼= H.

(ii) lpfF (G) = lpfF (H), where F := {F ∈ G | |V (F)| ≤ n}.

(iii) rpfF (G) = rpfF (H), where F := {F ∈ G | |V (F)| ≤ m} and m := max {2, n3}.

Proof. Let G and H be given, and let n := min {|V (G)|, |V (H)|}. It suffices to show that

(ii) implies (i) and (iii) implies (i).

For the direction from (ii) to (i), assume that (ii) holds. Since |V (I1)| = 1 ≤ n,

(ii) implies that |V (G)| = |V (H)| = n, by Example 3.15. Then, it follows from the proof

of Theorem 4.4 for the direction from (ii) to (i) that G ∼= H, that is, (i) also holds.

For the direction from (iii) to (i), we restate Lemma 9.7 from [11] in an equivalent

form for our purpose here: For all k ≥ 2, there are no graphs G and H such that |V (G)| ≤ k,

|V (H)| > k and hom(G,F) = hom(H,F) for all graphs F with |V (F)| ≤ k3. Then, we

prove not (i) implies not (iii) by assuming that G 6∼= H. We distinguish two cases.

Case 1. |V (G)| = 1 or |V (H)| = 1. Obviously, hom(G, I2) 6= hom(H, I2) and

|V (I2)| = 2 = max {2, n3}.

Case 2. |V (G)| ≥ 2 and |V (H)| ≥ 2. The restatement of Lemma 9.7 in [11] given

previously implies the existence of a graph F with |V (F)| ≤ n3 = max {2, n3} such that

hom(G,F) 6= hom(H,F).

Corollary 4.6. For all structures A and B, let n := min {|dom(A)|, |dom(B)|}. The

following are equivalent:

97

(i) A ∼= B

(ii) lpfF (A) = lpfF (B), where F := {C ∈ A | |dom(C)| ≤ n}

(iii) rpfF (A) = rpfF (B), where F := {C ∈ A | |dom(C)| ≤ m} and m := max {2, n}.

Proof. It suffices to note that the empty structure J1 considered in Example 3.18(a) and the

complete structure S2 considered in Example 3.18(b) both reveal the size of a structure via

hom(J1, ∗) and hom(∗,S2), respectively. Thus, for all arbitrarily given structures A and B,

with n := min {|dom(A)|, |dom(B)|}, if (ii) or (iii) holds, then |dom(A)| = |dom(B)| = n,

with which it immediately follows from a proof of the analogous version of Theorem 4.4 for

structures that A ∼= B, that is, (i) also holds.

To conclude this section, let us take a closer look at Theorems 4.1 and 4.2 from

two different perspectives that have inspired me for relevant study.

First, as Theorem 4.1 tells, isomorphism over G is characterized by the equality

of lpfG . Thus, for a nonempty subclass F ⊆ G, the equality of lpfF induces a relaxation

of isomorphism over G, i.e., an equivalence relation ≡ over G coarser than isomorphism. A

natural question then arises: What interesting equivalence relations can be characterized

by ≡ induced this way? An extensive body of research has been motivated to address this

question for various equivalence relations (see, for example, [15] and [16]). Symmetrically,

Theorem 4.2 says that isomorphism over G is characterized by the equality of rpfG , hence

the same can be said and asked of equivalence relations ≡ induced by the equality of rpfF

for nonempty subclasses F ⊆ G. The paper [3] has a focus in this regard. These topics and

their variants will be the theme of the remainder of this chapter.

Second, as Theorem 4.1 implies, given a fixed graph G, the (equivalence) class

98

[G]∼= can be defined in terms of lpfG : For every graph H, we have H ∈ [G]∼= if and only if

lpfG(H) ∈ {lpfG(G)}. Note the issue with lpfG , that is, the full left profile involves “infinitely

many” entries. By Corollary 4.5, however, it suffices to check “finitely many” entries to

determine whether H ∈ [G]∼=: For every graph H, we have H ∈ [G]∼= if and only if lpfF (H) ∈

{lpfF (G)}, where F := {F ∈ G | |V (F)| ≤ |V (G)|}. In view of Theorem 4.2, we have the

same issue with rpfG when determining whether H ∈ [G]∼=. By Corollary 4.5, likewise, we

can check “finitely many” entries of rpfG for this: For every graph H, we have H ∈ [G]∼=

if and only if rpfF
′
(H) ∈ {rpfF

′
(G)}, where F ′ := {F ∈ G | |V (F)| ≤ max {2, |V (G)|3}}.

That is to say, the class [G]∼=, viewed as a decision problem for membership, admits an

algorithm based on evaluating the finitely many certain homomorphism counts in the left

profile or the right profile of the input graph H. In an abstract form: The membership

problem for a class D ⊆ G admits an algorithm that decides, for a graph H, whether H ∈ D

by checking whether lpfF (H) ∈ X (or dually whether rpfF (H) ∈ X), for some fixed F ⊆ G

of a finite size k ∈ Z+ and X ⊆ Nk. As for structures, recall the corresponding statements in

Theorems 4.1 and 4.2 and Corollary 4.6, and the above discussion also applies. This raises a

second question: What interesting classes of graphs or of structures admit an algorithm for

the corresponding membership problem based on examining finitely many certain entries

in a left profile or a right profile? We will explore these topics in the next chapter.

99

4.2 Relaxations of Graph Isomorphism vs. Restricted Pro-

files over the Bag-Set Semiring

As noted at the end of the previous section, we will study what equivalence re-

lations coarser than isomorphism over graphs are characterized in restricted left or right

profiles. Throughout this section, the homomorphism counts in the profiles are over the

bag-set semiring N, and we omit the reference to it in the notations hom, lpf and rpf.

4.2.1 Two Introductory Examples

We have seen in Example 3.15 that for every n ∈ Z+ and every graph G, it holds

that hom(In,G) = |V (G)|n. This indicates that the equivalence among graphs arising from

having the same number of vertices coincides with C1-equivalence, and both are characterized

by the equality of lpfI (see Remark 3.7(a) and Example 4.1). In fact, this statement remains

true even when I is replaced by any nonempty subset of I.

In contrast, however, this equivalence is not characterized in any rpfF . To see this,

consider I3 and K3, and observe that for every arbitrary graph F, we have hom(I3,F) >

hom(K3,F): If |V (F)| < 3, then hom(I3,F) = |V (F)|3 > 0 = hom(K3,F) (the last equality

by Proposition 3.9); if |V (F)| ≥ 3, then hom(I3,F) = |V (F)|3 >
(|V (F)|

3

)
×3! = hom(K3,F).

Furthermore, Example 3.16 shows that left profile restricted to the singleton class

{K2} reveals the number of edges in a graph (indeed, due to Proposition 3.14(c), every

nonempty class whose members are of the form
⊕

n K2 will do). Thus, the equivalence that

arises from having the same number of edges is characterized by the equality of lpf{K2}.

Nevertheless, it is does not coincide with the equality of rpfF for any nonempty

100

class F of graphs. If F contains a graph F of size ≥ 2, then consider the two independent

sets I1 and I2, both of which have no edges, but rpfF (I1) 6= rpfF (I2), since hom(I1,F) =

|V (F)| < 2 × |V (F)| ≤ |V (F)|2 = hom(I2,F). If F only contains graphs of size < 2,

namely, F = {I1}, then consider the two cliques K2 and K3, which have different numbers

of edges, however, rpf{I1}(K2) = (0) = rpf{I1}(K3).

4.2.2 Indistinguishability by Color Refinement

There are numerous problems in theoretical computer science whose computa-

tional complexity is yet to be determined, and GRAPH-ISOMORPHISM is a famous one among

them. This problem asks (cf. Section 2.2): Given two graphs G and H, are they isomor-

phic? Despite the currently unknown status of its computational complexity, a bunch of

polynomial-time algorithms have been devised based on heuristics.

We will discuss two polynomial-time heuristic algorithms in this subsection and

the next that are invariant under isomorphism: If two graphs are isomorphic, then the

algorithm makes this conclusion; contrapositively, this means that the two graphs are really

nonisomorphic if the algorithm says so. This is known as the important aspect of soundness.

However, they do not possess another important aspect, known as completeness. That is

to say, if the algorithm does not distinguish them, then they might still be nonisomorphic,

it is just that the algorithm cannot detect this. The presentation of these algorithms here

are adapted from [15].

This induces an equivalence relation that is a relaxation of isomorphism. A con-

nection of this equivalence with the indistinguishability from different aspects (logic, ho-

momorphism counts) for either algorithm has been established by other research. We will

101

mention these connections and study its relation to right profiles.

We start in this subsection with a simple polynomial-time heuristic algorithm

known as color refinement. The reader should be aware that color refinement and its

enhanced variant introduced in the next subsection are both sound but incomplete.

We explain color refinement in words. Given a graph G, we will compute a coloring

of the vertices in G, which is a function on the vertices, based on local information. Note

that this is similar to the n-coloring introduced in Section 2.2 but it differs in two ways:

(1) The colors are not drawn from the set {0, . . . , n− 1} but rather are more complicated

objects.

(2) Two adjacent vertices may have the same color.

The procedure runs in iterations. Initially, every vertex has the same default color, and the

coloring is color0
G; the total number of distinct colors is 1. Iteratively, we refine the colors

by computing the new color, colori+1
G (v), of each vertex v based on its old color coloriG(v)

and on the number of occurrences of each combination of

• the adjacency of v to w and

• the old color, coloriG(w), of w,

with w ranging over V (G); if the total number of distinct colors increases, then proceed to

the next iteration, otherwise stop (for which we say the refinement stabilizes) and return

the multiset of the colors of the vertices computed from the previous iteration.

To be more specific about the colors, for every tuple v = (v1, . . . , vn) of n vertices

in G, we write atp(v) for the atomic type of the induced subgraph G[{v1, . . . , vn}] (similar

102

to the notion of adjacency matrix, see Remark 2.2), defined as the (n×n)-matrix M whose

entries are

Mij :=



2 if i = j,

1 if {vi, vj} ∈ E (G),

0 otherwise.

Now, for every v ∈ V (G), we let its initial color, color0
G(v), be 2 (inspired by Mii = 2 for

i ∈ [n]), and recursively let its new color, colori+1
G (v), be defined as the pair of its old color,

coloriG(v), and the multiset,

{(atp(v, w), coloriG(w)) | w ∈ V (G)}.

Note that for each w ∈ V (G), the pair (atp(v, w), coloriG(w)) embodies the combination of

the adjacency of v to w (in atp(v, w)) and the old color, coloriG(w), of w. The multiset itself

counts the number of occurrences of each possible combination. The algorithm is presented

as pseudocode in Figure 4.1.

As regards implementing this algorithm as a computer program, e.g., in Python,

coloriG can be realized as a dict (dictionary, hash map) for all i ∈ N, whereas atp(v) as a

list and colori+1
G (v) as a tuple (whose second element is a Multiset in which the elements

are all tuples).

During the execution, vertices of the same old color may be assigned different new

colors due to an update of information. However, vertices of different old colors will surely

be assigned different new colors. In other words, all vertices are initially in the same group

(with the same default color), and they iteratively split into smaller groups according to

their new colors, until no more split happens.

103

Figure 4.1: Pseudocode for Color-Refinement.

Color-Refinement(G)

1 for v ∈ V (G)

2 color0
G(v) = 2

3 i = 0 // i is the number of iterations in the subsequent repeat-until loop

4 repeat

5 number -of -colors = (number of distinct colors in coloriG)

6 for v ∈ V (G)

7 colori+1
G (v) = (coloriG(v),{(atp(v, w), coloriG(w)) | w ∈ V (G)})

8 new -number -of -colors = (number of distinct colors in colori+1
G)

9 i = i+ 1

10 until new -number -of -colors == number -of -colors

11 return {colori−1
G (v) | v ∈ V (G)}

A graph is regular if every vertex has the same degree (cf. Definition 2.2). Let

G and H be two graphs. Obviously, if G is isomorphic to H, then color refinement does

not distinguish them, since it computes the coloring of a graph based on its structural

information. By an analysis of the algorithm, however, one will find that color refinement

cannot even distinguish G and H when both are regular and have the same size and same

degree; in this situation, the algorithm stops right after the first iteration. That is to say,

G and H are indistinguishable by this algorithm.

104

u1

u2

u3 v3

v2

v1v1 u1

u2

u3 v3

v2

v1

Figure 4.2: Two graphs G (left) and H (right) that are indistinguishable by color refinement.

Example 4.2. The graphs G and H depicted in Figure 4.2 are regular and, moreover,

|V (G)| = |V (H)| and deg(G) = deg(H). Therefore, they cannot be distinguished by color

refinement.

The indistinguishability by color refinement yields an equivalence relation among

graphs that is, by the previous discussion, a relaxation of isomorphism.

There is a characterization of this equivalence in logic. Recall that C2 is first-order

logic augmented with counting where the variables used in a formula are among z0, z1 (see

Subsection 3.1.2).

Theorem 4.7. [7] For all graphs G and H, we have G and H are indistinguishable by

color refinement if and only if G ≡C2 H.

A different characterization of the indistinguishability by color refinement involves

restricted left profiles. Recall that T denotes the class of all free trees (see Section 2.2).

Theorem 4.8. [16] For all graphs G and H, we have G ≡C2 H if and only if lpfT (G) =

lpfT (H).

From the preceding two theorems we immediately obtain the following character-

ization (a direct proof is given in [15]).

105

Corollary 4.9. For all graphs G and H, we have G and H are indistinguishable by color

refinement if and only if lpfT (G) = lpfT (H).

We point out a key feature shared by all three mutually equivalent conditions in the

three previous results: counting. Now we give an intuitive account for them based on that

provided in [15]. Let G be a graph of n vertices. During the execution of color refinement on

G, an exploration starts out from every vertex and propagates to all vertices (including the

one from which the exploration starts out), from each of which the propagation continues

spreading in at most n− 1 iterations until no new information (when the algorithm reaches

stabilization), then these explorations are reported as a result. Indeed, an exploration

starting out from the vertex v computes a rooted tree with v as the root node, whose

child nodes are all vertices (including v) in G and are unordered among the siblings and,

recursively, a rooted tree (as a subtree) is computed at each child node. The overall rooted

tree of a vertex has height at most n− 1, and the overall rooted trees computed at all the

vertices of G comprise the returned colors. With the ability to count, and by reusing two

variables (for v and u) in quantifications, these rooted trees can be collectively described

in C2 as “there are a total of n vertices v, and there are exactly n1 vertices v of which the

rooted tree has exactly n′1 child nodes u adjacent to v in G of which the rooted tree. . . ,

and has exactly n′2 child nodes u not adjacent to v in G of which the rooted tree. . . , and

there are exactly n2 vertices v of which the rooted trees. . . ,” which indeed is a C2-sentence

logically equivalent to χGσ(G)

C2 that characterizes Gσ(G) (and hence G) up to C2-sentence (see

Remark 3.7(b)). Moreover, the information of the number of vertices in G whose rooted

tree is of each different type is captured by the counts hom(T,G) for all free trees T, and

106

is collected in lpfT (G).

It turns out that, however, the indistinguishability by color refinement is not char-

acterized by the equality of right profile restricted to any class.

Theorem 4.10. There is no nonempty class F ⊆ G such that for all graphs G and H, we

have G and H are indistinguishable by color refinement if and only if rpfF (G) = rpfF (H).

Proof. Let F be a nonempty class of graphs. We distinguish two cases as follows.

Case 1. F is a subclass of I. Observe that K2 6≡C1 K3 since they differ in size (by

Remark 3.7(a)), and hence K2 6≡C2 K3 since C1 is a fragment of C2. By Theorem 4.7, they

are distinguished by color refinement. However, for every n ∈ Z+, we have hom(K2, In) =

hom(K3, In) = 0 by Proposition 3.9, which implies that rpfF (K2) = rpfF (K3), whose

entries are all 0.

Case 2. F is not a subclass of I. Then some graph F ∈ F contains an edge. We

first consider the infinitely many pairs of graphs Gn and Hn for n ≥ 3, where

V (Gn) = V (Hn) := {u1, . . . , un} ∪ {v1, . . . , vn}

and

E (Gn) := {{ui, uj} | 1 ≤ i < j ≤ n} ∪ {{vi, vj} | 1 ≤ i < j ≤ n},

E (Hn) := (E (G) \ {{u1, un}, {v1, vn}}) ∪ {{u1, v1}, {un, vn}}.

The graphs G3 and H3 are drawn as G and H, respectively, in Figure 4.2. It is clear for

n ≥ 3 that Gn and Hn are both regular and have the same size and same degree; by an

earlier discussion, Gn is indistinguishable from Hn by color refinement.

Next, we argue that the following hold for every n ≥ 3 and for every graph E:

(1) hom(Gn,E) > 0 if and only if E contains a subgraph isomorphic to Kn.

107

(2) hom(Hn,E) > 0 if and only if E contains a subgraph isomorphic to Kn−1.

For (1), the “if” direction follows by taking the homomorphism h : G → D in which

h(ui) = h(vi) = wi for all i ∈ [n], where D is a subgraph of E isomorphic to Kn with vertex

set V (D) = {w1, . . . , wn}; the “only if” direction follows by Proposition 3.9, noting that

the subgraph G[{u1, . . . , un}] is isomorphic to Kn. Similarly, for (2), let D be a subgraph

of E isomorphic to Kn−1 with vertex set V (D) = {w1, . . . , wn−1}, then the “if” direction

follows by taking the homomorphism h : H → D in which h(un) = w1, h(v1) = wn−1

and h(ui) = h(vi+1) = wi for all i ∈ [n− 1]; conversely, the “only if” direction follows by

Proposition 3.9, noting that the subgraph H[{u1, . . . , un−1}] is isomorphic to Kn−1.

Finally, take the graph F ∈ F which contains an edge. We will argue that

(3) rpfF (Gn) = rpfF (Hn) for all n ≥ 3

cannot be true for otherwise it leads to a contradiction: F contains a subgraph isomorphic

to Kn−1 for all n ≥ 3 (note that V (F) is finite). Assuming (3) to be true, we prove this

statement by induction on n. The base case n = 3 holds because F contains an edge. By

the induction hypothesis, F contains a subgraph isomorphic to Kn−1, where n ≥ 3. By (2),

we have hom(Hn,F) > 0. By the assumption that (3) is true and the fact that F ∈ F , we

then have hom(Gn,F) = hom(Hn,F) and hence hom(Gn,F) > 0. By (1), it follows that

F contains a subgraph isomorphic to Kn.

The next corollary follows as an immediate consequence of Theorems 4.7 and 4.10.

Corollary 4.11. There is no nonempty class F ⊆ G such that for all graphs G and H, we

have G ≡C2 H if and only if rpfF (G) = rpfF (H).

108

4.2.3 Indistinguishability by Weisfeiler-Leman Algorithm

Recall the last subsection that during the execution of color refinement on a graph,

the vertices are initially assigned the same default color and are iteratively assigned a refined

color until the stabilization of the refinement. The coloring is done on the single vertices.

This algorithm can be enhanced by coloring not the single vertices but rather the

tuples of k vertices, which results in the k-dimensional Weisfeiler-Leman algorithm [50] (or

k-WL algorithm for short) as an isomorphism test, which is the theme of this subsection.

It turns out that color refinement is the special case k = 1, i.e., 1-WL algorithm. We will

concern ourselves with k ≥ 2 here. The presentation of this algorithm (parameterized by

k) here is adapted from [15].

Fix an integer k ≥ 2, we introduce this algorithm in words. Let G be an input

graph. Initially, the default color that every k-tuple v of vertices is assigned, colork,0G (v), is

atp(v), where atp(v) is a (k × k)-matrix introduced in the previous subsection. Note that

this is different from color refinement in that now the k-tuples may not share the same

initial color (in fact, atp(v) = 2 for every single vertex v ∈ V (G), that is why in color

refinement we assign 2 to every vertex as the uniform initial color). Iteratively, we refine

the colors by computing a new color colork,i+1
G (v) of each k-tuple v based on its old color

colork,iG (v) and on the number of occurrences of each combination of

• the collective atomic type atp(vw) of v with w and

• the old colors, colork,iG (u), of all the k-tuples u obtained by substituting w for an entry

in v,

with w ranging over V (G). As in color refinement, if the total number of colors increases,

109

then proceed to the next iteration, otherwise stop (because the refinement stabilizes) and

return the multiset of colors of the k-tuples computed from the previous iteration.

To be more precise about the new color of the k-tuple v, let colork,iG (v) be the old

color computed previously. We set colork,i+1
G (v), the new color of v, to be the pair of its old

color, colork,iG (v), and the multiset

{(atp(vw), colork,iG (v(1/w)), . . . , colork,iG (v(k/w))) | w ∈ V (G)}.

Likewise, for every w ∈ V (G), the sequence (atp(vw), colork,iG (v(1/w)), . . . , colork,iG (v(k/w)))

embodies the combination stated above. The multiset itself counts the number of occur-

rences of each possible combination. The algorithm is given as pseudocode in Figure 4.3.

As in color refinement, during the execution of k-WL algorithm, k-tuples of ver-

tices having the same old color may be assigned different new colors because of an update

of information, and those of different old colors will always be assigned different new colors.

One aspect in which it differs from color refinement is that the k-tuples may have differ-

ent initial colors (which are their respective atomic types). The k-tuples of vertices then

iteratively split into smaller groups depending on the new colors they get, until no more

splits.

Note that the algorithm is also invariant under isomorphism since the computation

is again based on structural information. That is to say, if G and H are isomorphic graphs,

then they are not distinguished by the algorithm (for any k ≥ 1). As noted at the beginning

of this subsection, however, this algorithm is never a complete isomorphism test. We have

seen examples of nonisomorphic G and H that are indistinguishable when k = 1 previously.

For k ≥ 2, examples of such G and H can be found in [7]. Naturally, the indistinguishability

110

Figure 4.3: Pseudocode for k-Weisfeiler-Leman.

k-Weisfeiler-Leman(G)

1 for v ∈ V (G)k

2 colork,0G (v) = atp(v)

3 i = 0 // i is the number of iterations in the subsequent repeat-until loop

4 repeat

5 number -of -colors = (number of distinct colors in colork,iG)

6 for v ∈ V (G)k

7 colork,i+1
G (v) =

(colork,iG (v),{(atp(vw), colork,iG (v(1/w)), . . . , colork,iG (v(k/w))) | w ∈ V (G)})

8 new -number -of -colors = (number of distinct colors in colork,i+1
G)

9 i = i+ 1

10 until new -number -of -colors == number -of -colors

11 return {colork,i−1
G (v) | v ∈ V (G)k}

by the k-dimensional Weisfeiler-Leman algorithm gives rise to an equivalence relation over

graphs and, by the discussion above, is a relaxation of isomorphism.

Now we give an insight of k-dimensional Weisfeiler-Leman algorithm based on [15]

similar to the one we gave of color refinement. Let G be a graph of n vertices. During

the execution of k-WL on G, an exploration starts out from every k-tuple v of vertices and

propagates to all k-tuples u of vertices which differ from v in at most one entry, and the

propagation continues spreading (there are at most nk − 1 iterations of propagation since

111

the total number of k-tuples is nk) until no new information is obtained, i.e., when the

algorithm stabilizes, and then the explorations are reported. Similar to color refinement, an

exploration starting out from a k-tuple v computes a rooted tree with v as the root node,

and its child nodes are those k-tuples u that differ from v in at most one entry and are also

unordered among the siblings; recursively, a rooted tree as a subtree is computed at each

child node. The overall rooted tree of v thus has height at most nk − 1. The overall rooted

trees computed at all k-tuples of vertices of G constitute the returned coloring. One thing to

note is that now the nodes of rooted trees themselves are no longer single vertices but rather

k-tuples of vertices. These overall rooted trees can be described, by the technique of reusing

variables, as a Ck+1-sentence logically equivalent to χGσ(G)

Ck+1 that characterizes Gσ(G) (and

hence G) up to Ck+1-equivalence (cf. Remark 3.7(b)). As regards homomorphism counts,

the information of the number of k-tuples of vertices in G whose rooted tree is of each

different type is now captured by the number of homomorphisms from F to G that respect

certain structural information of the tree decompositions T of F, which in turn are captured

by the counts hom(F,G), for all graphs F of treewidth at most k, where we introduce these

new notions as follows.

Definition 4.2. Let G be a graph.

(a) A tree decomposition of G is a free tree T in which each vertex t is associated with a

bag, a nonempty subset Bt ⊆ V (G), such that

• for every vertex v ∈ V (G), we have v ∈ Bt for some vertex t and the subgraph of

T induced by the set {t ∈ V (T) | v ∈ Bt} of vertices is a subtree of T, and

• for every edge {u, v} ∈ E (G), there is a vertex t such that u, v ∈ Bt.

112

(b) The width of a tree decomposition T of G is defined to be max {|Bt| | t ∈ V (T)} − 1.

The treewidth of G is defined to be min {width of T | T is a tree decomposition of G}.

By definition, the independent sets I1, I2, . . . all have treewidth 0, the bipartite

graphs (i.e., 2-colorable graphs) that contain an edge all have treewidth 1; the latter in-

cludes the forests and hence the free trees that contain an edge, as well as the path graphs

P2,P3, Furthermore, the cycle graphs C3,C4, . . . all have treewidth 2. Finally, for

n ∈ Z+, the clique Kn has treewidth n− 1.

Notation. For k ∈ N, the class of all graphs of treewidth at most k is denoted T k.

Now we state a general version of Theorem 4.7 that connects indistinguishability

by k-WL to Ck+1-equivalence and a general version of Theorem 4.8 that connects Ck+1-

equivalence to the equality of left profile restricted to T k. As in Theorems 4.7 and 4.8,

counting is a key feature shared by all three mutually equivalent conditions.

Theorem 4.12. [7] Let k ∈ Z+. For all graphs G and H, we have G and H are indistin-

guishable by the k-dimensional Weisfeiler-Leman algorithm if and only if G ≡Ck+1 H.

Theorem 4.13. [16] Let k ∈ Z+. For all graphs G and H, we have G ≡Ck+1 H if and

only if lpfT
k
(G) = lpfT

k
(H).

We immediately obtain the next characterization from the preceding two theorems

(a direct proof is given in [15]).

Corollary 4.14. Let k ∈ Z+. For all graphs G and H, we have G and H are indis-

tinguishable by the k-dimensional Weisfeiler-Leman algorithm if and only if lpfT
k
(G) =

lpfT
k
(H).

113

Note that Theorem 4.8 and Corollary 4.9 are indeed the special case with k = 1

of Theorem 4.13 and Corollary 4.14, respectively: The class T 1 consists of all forests,

including free trees, and, by Proposition 3.14(c), it follows that for all graphs G and H, we

have lpfT
1
(G) = lpfT

1
(H) if and only if lpfT (G) = lpfT (H). Interestingly, Theorem 4.13

remains valid even when k = 0, because G ≡C1 H if and only if |V (G)| = |V (H)| (see

Remark 3.7(a)), and if and only if lpfI(G) = lpfI(H) (see the first example given in

Subsection 4.2.1), since T 0 = I by a previous discussion.

Remark 4.3. Let k ∈ N. For F = T k, it holds that Inj(F) = F . Hence, by Remark 4.2(a),

isomorphism over T k is characterized by the equality of lpfT
k
. In other words, for all graphs

G and H of treewidth at most k, they are isomorphic if and only if lpfT
k
(G) = lpfT

k
(H).

This, together with Theorem 4.13, implies that isomorphism over T k is characterized by

Ck+1-equivalence, which reproves and strengthens a result of M. Grohe and J. Mariño [30]

(see Theorem 4 in that paper).

However, for all k ∈ Z+, the Ck-equivalence is not characterized by the equality of

right profile restricted to any class F of graphs, seen in the next theorem (which generalizes

Corollary 4.11).

Theorem 4.15. For every k ∈ Z+, there is no nonempty class F ⊆ G such that for all

graphs G and H, we have G ≡Ck H if and only if rpfF (G) = rpfF (H).

The next corollary immediately follows from Theorems 4.12 and 4.15.

Corollary 4.16. For every k ∈ Z+, there is no nonempty class F ⊆ G such that for all

graphs G and H, we have G and H are indistinguishable by the k-dimensional Weisfeiler-

Leman algorithm if and only if rpfF (G) = rpfF (H).

114

Theorem 4.15 immediately follows from Theorem 4.17, which is presented and

proved next. The logic formalism Cn
∞ω was briefly discussed in Remark 3.8. Put

Cω
∞ω :=

⋃
n∈Z+

Cn
∞ω.

Therefore, if a class is not definable in Cω
∞ω, then it is not definable in Cn

∞ω for any n ∈ Z+.

Theorem 4.17. If ≡ is an equivalence relation over G that is finer than ≡C1 and coarser

than ≡Ck for some k ≥ 2, then there is no nonempty class F ⊆ G such that for all graphs

G and H, we have G ≡ H if and only if rpfF (G) = rpfF (H).

Proof. Let ≡ be an equivalence relation over graphs that is finer than C1-equivalence and

coarser than Ck-equivalence for some k ≥ 2, and let F be a nonempty class of graphs. We

distinguish two cases as follows.

Case 1. Every graph F ∈ F is 2-colorable. Obviously, K3 6≡C1 K4 since they differ

in size (see Remark 3.7(a)), thus we have K3 6≡ K4 because ≡ is finer than ≡C1 . However,

χ(K3) = 3 and χ(K4) = 4, both of which are greater than χ(F), hence hom(K3,F) = 0 =

hom(K4,F), for every F ∈ F , which implies that rpfF (K3) = rpfF (K4).

Case 2. Some graph F ∈ F is not 2-colorable. Then, by the Definable H-Coloring

Dichotomy Theorem A.1, we have CSP(F) 6= Mod(ψ) for any Cω
∞ω-sentence ψ. In par-

ticular, CSP(F) 6= Mod(ϕ) for any Ck
∞ω-sentence ϕ. By Remark 3.8(b), there are graphs

G ∈ CSP(F) and H /∈ CSP(F) such that G ≡Ck H. It follows that G ≡ H since ≡ is coarser

than ≡Ck , and that rpfF (G) 6= rpfF (H) since hom(G,F) > 0 while hom(H,F) = 0.

Remark 4.4. Let k ∈ Z+. The fragment of the counting logic C that consists of formulas

ϕ for which the quantifier rank qr(ϕ) is at most k is denoted Ck, and Ck-equivalence over

115

graphs is the equivalence arising from satisfying the same Ck-sentences. It was shown in [29]

that for all graphs G and H, they are Ck-equivalent if and only if lpfTk(G) = lpfTk(H),

where Tk denotes the class of all graphs of treedepth at most k.

(a) It can shown that every Ck-sentence is logically equivalent to a Ck-sentence (indeed,

this follows from a more general statement involving formulas that requires an inductive

proof). Thus, Ck-equivalence implies Ck-equivalence.

(b) For all s ∈ Z+, the C1-sentence ∃=sxx = x is also a C1-sentence. Hence, C1-equivalence

implies C1-equivalence (see Remark 3.7(a)), and vice versa (by the above part (a)).

Since C1 is a fragment of Ck, we have that Ck-equivalence is finer than C1-equivalence.

Put all these together, it follows that for all k ∈ Z+, the Ck-equivalence is finer than C1-

equivalence and coarser than Ck+1-equivalence and hence is not characterized in right profile

restricted to any nonempty class F of graphs (by Theorem 4.17).

4.2.4 Cospectrality

For every graph G of size n, the characteristic polynomial of G in the variable x

is p(G, x) := det(xIn −MG), where det denotes the determinant of a square matrix, MG

is the adjacency matrix of G (see Remark 2.2) and In is the n-dimensional identity matrix.

The solutions, with multiplicities, to the equation p(G, x) = 0 are the eigenvalues of the

matrix MG.

We say two graphs G and H are cospectral if they have the same characteris-

tic polynomial or, equivalently, if their adjacency matrices MG and MH have the same

eigenvalues with multiplicities.

116

v1

v2

v3

v4

v5 v1

v2

v3

v4

v5

Figure 4.4: Two cospectral graphs G (left) and H (right), copied from Figure 2 of [15].

Example 4.3. The graphs G and H depicted in Figure 4.4 are cospectral.

In [15], H. Dell, M. Grohe and G. Rattan proved that cospectrality is characterized

in left profile restricted to the class C of cycle graphs (see Proposition 9 in that paper,

attributed to [49]).

Theorem 4.18. [15] For all graphs G and H, we have G and H are cospectral if and only

if lpfC(G) = lpfC(H).

It turns out that cospectrality cannot be characterized in any restricted right

profiles, seen next.

Theorem 4.19. There is no nonempty class F ⊆ G such that for all graphs G and H, we

have G and H are cospectral if and only if rpfF (G) = rpfF (H).

Proof. First, note that C ⊆ T 2 because Cn has treewidth at most 2 for all n ∈ Z+ (indeed,

C (T 2 since I2 ∈ T 2 but I2 /∈ C). Hence, for all graphs G and H, we have

G and H are C3-equivalent

iff lpfT
2
(G) = lpfT

2
(H) (by Theorem 4.13)

then lpfC(G) = lpfC(H) (since C ⊆ T 2)

iff G and H are cospectral (by Theorem 4.18).

Therefore, cospectrality is coarser than C3-equivalence (also see Theorem 2.1 in [14]).

117

Next, we have I1 = C1 ∈ C. Hence, for all graphs G and H, we have

G and H are cospectral

iff lpfC(G) = lpfC(H) (by Theorem 4.18).

then hom(I1,G) = hom(I1,H) (since I1 ∈ C)

iff |V (G)| = |V (H)| (see Example 3.15)

iff G and H are C1-equivalent (see Remark 3.7(a)).

Thus, cospectrality is finer than C1-equivalence.

We conclude by Theorem 4.17 with k = 3.

4.2.5 Chromatic Equivalence

So far we have seen various relaxations of isomorphism among graphs that are

characterized by the equality of some restricted left profile but not by the equality of any

restricted right profile, and the reader may have the (false) impression that restricted left

profiles always have more expressive power than their right counterparts in characterizing

a relaxation of isomorphism. We will see a reverse situation in this subsection.

Let G be a graph. The chromatic polynomial of G in the variable x, denoted

χ(G, x), is the polynomial that gives the information of the number of n-colorings of G for

all n ∈ Z+ (see Definition 2.7). More precisely, χ(G, n) is equal to the number of n-colorings

for all n ∈ Z+.

Example 4.4. We have the following chromatic polynomials of some common graphs:

χ(In, x) = xn, for n ∈ Z+;

χ(Cn, x) = (x− 1)n + (−1)n(x− 1), for n ≥ 3;

χ(Kn, x) = x(x− 1) · · · (x− n+ 1), for n ∈ Z+.

118

Moreover, it is easy to see that

χ(T, x) = x(x− 1)n−1, for every free tree T of size n ∈ Z+.

In particular,

χ(Pn, x) = x(x− 1)n−1, for n ∈ Z+,

since Pn is also a free tree of size n.

We provide two useful techniques to derive the chromatic polynomial χ(G, x) for

an arbitrary graph G as follows.

Technique 1. Multiplicativity. If G = G1 ⊕G2, i.e., if G is the direct sum of two

graphs G1 and G2, then

χ(G, x) = χ(G1, x) · χ(G2, x).

See Proposition 3.14(c).

Technique 2. Addition-Contraction Recursion. The base cases are for the cliques:

χ(Kn, x) = x(x− 1) · · · (x− n+ 1), for all n ∈ Z+,

seen in Example 4.4. The recursive cases are for graphs G such that {u, v} /∈ E (G) for

some distinct u, v ∈ V (G):

χ(G, x) = χ(G1, x) + χ(G2, x),

where G1 is the graph with V (G1) = V (G) and E (G1) = E (G) ∪ {{u, v}}, and G2 is the

graph with

V (G2) = (V (G) \ {u, v}) ∪ {w},

119

v1 v2

v3v4

v1 v2

v3v4

Figure 4.5: Two chromatically equivalent graphs G (left) and H (right).

in which w /∈ V (G) is a fresh new vertex, and

E (G2) = {{u′, v′} ∈ E (G) | u′ 6= u and v′ 6= v} ∪

{{w,w′} | {u,w′} ∈ E (G) or {v, w′} ∈ E (G)}.

To see this, note that for n ∈ Z+, the n-colorings of G can be split into two groups: the first

group in which u and v are colored differently, which are exactly the n-colorings of G1, and

the second group in which u and v are colored the same, which are exactly the n-colorings

of G2 (with w in place of u and v).

Note that χ(G, x) has degree n and the leading coefficient (namely, the coefficient

of the term xn) is 1, for every graph G of size n.

We say two graphs G and H are chromatically equivalent if χ(G, x) = χ(H, x) or,

equivalently, if they have the same number of n-colorings for every n ∈ Z+.

Example 4.5. Consider the graphs G and H depicted in Figure 4.5, which are isomorphic

to I1⊕P3 and K2⊕K2, respectively. Obviously, they are both 2-colorable. Moreover, they

are chromatically equivalent since χ(G, x) = x2(x− 1)2 = χ(H, x).

In Example 3.17 we concluded that for n ∈ Z+ and every graph G, the number of

n-colorings of G is equal to hom(G,Kn). This immediately implies the characterization of

chromatic equivalence in restricted right profile as follows.

120

Proposition 4.20. For all graphs G and H, we have G and H are chromatically equivalent

if and only if rpfK(G) = rpfK(H).

However, as opposed to the results in previous subsections, here we have a re-

verse situation, which shows that it is not always the case that restricted left profile has

more expressive power than restricted right profile in terms of characterizing an equivalence

relation.

Theorem 4.21. There is no nonempty class F ⊆ G such that for all graphs G and H, we

have G and H are chromatically equivalent if and only if lpfF (G) = lpfF (H).

We will prove this theorem in the remainder of this subsection. We first state and

prove the two subsequent lemmas.

Lemma 4.22. For every graph F, if F is 2-colorable and connected and has size ≥ 3, then

sur(F,P3) > 0.

Proof. Recall Definition 2.5 that V (K2) = {v1, v2}, E (K2) = {{v1, v2}}, V (P3) = {v1, v2, v3}

and E (P3) = {{v1, v2}, {v2, v3}}. Hence, K2 is a subgraph of P3.

In the following, we assume that F is an arbitrary graph that is 2-colorable and

connected and has size ≥ 3.

Since F is 2-colorable, we have hom(F,K2) > 0 by Example 3.17. Moreover, since

F is connected, we have E (F) 6= ∅, which implies that F contains a subgraph isomorphic

to K2. By Proposition 3.9, it follows that every homomorphism from F to K2 is surjective.

Thus, sur(F,K2) = hom(F,K2) > 0.

Now, take an arbitrary surjective homomorphism h : F→ K2. Since |V (F)| ≥ 3,

at least one of the two sets h−1(v1) and h−1(v2) has size at least 2 (here h−1 means preimage,

121

see Section 2.1). Without loss of generality, we can assume that |h−1(v1)| ≥ 2; indeed,

if |h−1(v1)| < 2, then take the automorphism π : K2
∼= K2 such that π(v1) = v2 and

π(v2) = v1, and consider the surjective homomorphism (π ◦ h) : F → K2 in place of h in

what follows. Thus, there are distinct vertices u1, u2 ∈ V (F) such that h(u1) = h(u2) = v1.

As F is connected, there are (not necessarily distinct) vertices u3, u4 ∈ V (F) such that

{u1, u3}, {u2, u4} ∈ E (F); note that h(u3) = h(u4) = v2. It follows that the function

h′ : V (F)→ V (P3) with

h′(u) :=


v3 if u = u2,

h(u) otherwise

is a surjective homomorphism from F to P3.

Observe that ⊕ is a binary operation over G that is associative and commutative

but that lacks an identity element. To facilitate a succinct form involving direct sums of

graphs in the next lemma and later on in the proof of Theorem 4.21, we introduce an ad

hoc graph (solely for this purpose), the null graph, denoted ∅, with vertex set V (∅) := ∅ and

edge set E (∅) := ∅. Note that ⊕ in Definition 2.3 can be consistently extended to include

the null graph ∅. Moreover, we have

F⊕ ∅ = ∅ ⊕ F = F

for all graphs F ∈ (G ∪ {∅}), which suggests that the null graph ∅ be the identity for the

binary operation ⊕ on G ∪{∅}. We set
⊕

0 F := ∅ for all graphs F ∈ G, and set I0 := ∅, the

independent set of size 0.

Next, recall the two chromatically equivalent graphs I1 ⊕ P3 and K2 ⊕ K2 in

Example 4.5. We delineate in the subsequent lemma exactly which graphs F do and do not

122

distinguish them in terms of hom(F, ∗).

Lemma 4.23. For every graph F, we have hom(F, I1 ⊕P3) ≥ hom(F,K2 ⊕K2), and the

equality holds if and only if F is not 2-colorable or F is isomorphic to (Im ⊕
⊕

n K2) for

some m,n ∈ N such that m+ n ≥ 1.

Proof. For brevity, we let G := (I1 ⊕P3) and H := (K2 ⊕K2) throughout this proof. We

distinguish two cases depending on whether F is connected as follows.

Case 1. F is connected. We further divide into three cases as follows.

Case 1-1. F is not 2-colorable. Then, by Proposition 3.10, we have hom(F,G) =

0 = hom(F,H), because both G and H are 2-colorable.

Case 1-2. F is isomorphic to I1 or K2. Then, by Examples 3.15 and 3.16, respec-

tively, we have hom(F,G) = 4 = hom(F,H).

Case 1-3. F is 2-colorable but is not isomorphic to I1 or K2. Since F is connected,

it has size ≥ 3 and hence contains an edge (i.e., contains a subgraph isomorphic to K2).

Hence, every homomorphic image of F is a connected graph (by Proposition 3.11(b)) and

contains a subgraph isomorphic to K2 (by Proposition 3.9). Thus, for every homomorphism

h : F→ G or h : F→ H, the image h(F) is isomorphic to P2 or P3. Therefore,

hom(F,G)

= 2× sur(F,P2) + sur(F,P3) (by Proposition 3.8)

> 2× sur(F,P2) (by Lemma 4.22)

= hom(F,H) (by Proposition 3.8).

To summarize, if F is connected, then hom(F,G) ≥ hom(F,H), and the equality

holds if and only if F is not 2-colorable or F is isomorphic to I1 or K2.

123

Case 2. F is not connected. We can assume F has k connected components

F1, . . . ,Fk (i.e., F =
⊕k

i=1 Fi) for some k ∈ Z+. It follows that

hom(F,G)

=
∏k
i=1 hom(Fi,G) (by Proposition 3.14(c))

≥
∏k
i=1 hom(Fi,H) (by Case 1.)

= hom(F,H) (by Proposition 3.14(c)).

Moreover, as G and H both contain a subgraph isomorphic to K2 and are 2-colorable, by

Proposition 3.10 we have, for every i ∈ [k], that hom(Fi,G) = 0 if and only if hom(Fi,H) =

0, and if and only if Fi is not 2-colorable. Therefore,

the equality holds in the above inequality

iff hom(Fi,G) = 0 (= hom(Fi,H)) for some i ∈ [k]

or hom(Fi,G) = hom(Fi,H) > 0 for all i ∈ [k]

iff Fi is not 2-colorable for some i ∈ [k] (by the above discussion)

or Fi is isomorphic to I1 or K2 for all i ∈ [k] (by Case 1. and the above discussion)

iff F is not 2-colorable (by Proposition 2.2(b))

or F is isomorphic to (Im ⊕
⊕

n K2) for some m,n ∈ N with m+ n = k.

Proof of Theorem 4.21. Let F be an arbitrary nonempty class of graphs, we argue that there

are graphs G and H that are either chromatically equivalent while lpfF (G) 6= lpfF (H) or

not chromatically equivalent while lpfF (G) = lpfF (H). We distinguish two cases as follows.

Case 1. Some graph F ∈ F is 2-colorable but is not isomorphic to (Im ⊕
⊕

n K2)

for any m,n ∈ N such that m + n ≥ 1. Take G := (I1 ⊕P3) and H := (K2 ⊕K2). Then,

hom(F,G) > hom(F,H) by Lemma 4.23, hence lpfF (G) 6= lpfF (H). However, G and H

are chromatically equivalent, by Example 4.5.

124

Case 2. Every graph F ∈ F either is not 2-colorable or is isomorphic to (Im ⊕⊕
n K2) for some m,n ∈ N such that m+n ≥ 1. Take G := C8 and H := (C4⊕C4). Then,

G and H are not chromatically equivalent since they have different chromatic polynomials:

χ(G, x) = (x − 1)8 + (x − 1) and χ(H, x) = ((x − 1)4 + (x − 1))2. However, no graph

F ∈ F distinguishes G and H via hom(F,G) and hom(F,H): If F is not 2-colorable,

then hom(F,G) = 0 = hom(F,H) as both G and H are 2-colorable (by Proposition 3.10).

Besides, if F is isomorphic to (Im ⊕
⊕

n K2) for some m,n ∈ N such that m+ n ≥ 1, then

hom(F,G) = 8m × 16n = hom(F,H).

4.2.6 Equivalence in Some Fragments of First-Order Logic

We have seen in Subsections 4.2.2 and 4.2.3 that for k ∈ Z+, the Ck+1-equivalence

coincides with indistinguishability by k-dimensional Weisfeiler-Leman algorithm, and is

characterized in lpfT
k
, the left profile restricted to the class T k of graphs of treewidth at

most k. It is natural to ask: Are the FOk-equivalence and FOk-equivalence able to be

characterized in restricted left or right profiles, for any k ∈ Z+?

Fix a k ∈ Z+. Recall that FOk is the fragment of first-order logic that consists

of formulas whose variables (free or bound) are among z0, . . . , zk−1, and that FOk is the

fragment of first-order logic that consists of formulas whose quantifier rank is at most k.

Furthermore, for graphs G and H, they are FOk-equivalent (or FOk-equivalent) precisely

when they satisfy the same FOk-sentences (or FOk-sentences, respectively).

As the next proposition shows, for every k ∈ Z+, neither FOk-equivalence nor

FOk-equivalence is characterized in the left profile or in the right profile restricted to any

nonempty class F of graphs.

125

Proposition 4.24. Let k ∈ Z+, and let ≡ be FOk-equivalence or FOk-equivalence. The

following hold:

(a) There is no nonempty class F ⊆ G such that for all graphs G and H, we have G ≡ H

if and only if lpfF (G) = lpfF (H).

(b) There is no nonempty class F ⊆ G such that for all graphs G and H, we have G ≡ H

if and only if rpfF (G) = rpfF (H).

Proof. Let k ∈ Z+ and let ≡ be FOk-equivalence or FOk-equivalence, We distinguish two

cases depending on k.

Case 1. k = 1. We saw in Example 3.8 that all graphs are equivalent in the sense

of ≡.1 That is to say, ≡ is the coarsest equivalence relation over graphs. However, let F be

an arbitrary graph. Then,

hom(F,F) < 2× hom(F,F) ≤ hom(F,F⊕ F)

by the fact that hom(F,F) > 0 and by Proposition 3.14(b). This implies part (a). Next, if

F has size n ∈ Z+, then

hom(I1,F) = n 6= 0 = hom(Kn+1,F)

by Example 3.15 and Proposition 3.9. This implies part (b).

Case 2. k ≥ 2. Assume that F is an arbitrary nonempty class of graphs. We will

give a construction of graphs G and H such that

• G ≡ H and lpfF (G) 6= lpfF (H) in part (a), and

1Obviously, both FO1-equivalence and FO1-equivalence would be characterized in lpfF and in rpfF if
F = ∅ were allowed in the definition of restricted left and right profiles.

126

• either G 6≡ H and rpfF (G) = rpfF (H), or G ≡ H and rpfF (G) 6= rpfF (H), in part

(b).

For part (a), let F be an arbitrary graph in F of size n ∈ Z+. Take m := max {k, n}

and consider the two graphs Km and Km+1. We let ≡′ denote ≡FOm (or ≡FOm) if ≡

stands for ≡FOk (or ≡FOk , respectively). By Remark 3.5, we have Km ≡′ Km+1 and

hence Km ≡ Km+1. We have F is m-colorable by Example 2.1, and hom(F,Km) > 0 by

Example 3.17. Take an arbitrary homomorphism h : F → Km, by Example 2.1(b) and

in view of Example 3.17, the function h′ : V (F) → V (Km+1) with the same mapping

rule as h is also a homomorphism h′ : F → Km+1. This implies a bijection between

homomorphisms h : F → Km and h′ : F → Km+1 such that h′(V (F)) ⊆ V (Km). In

addition, let r be the smallest index i ∈ [m] such that vi is in the range h(V (F)), i.e., r :=

min {i ∈ [m] | vi ∈ h(V (F))}. It is easy to see that the mapping h′′ : V (F) → V (Km+1)

with

h′′(v) :=


vm+1 if h(v) = vr,

h(v) otherwise

is a homomorphism h′′ : F → Km+1 but is not one from F to Km. Thus, hom(F,Km) <

hom(F,Km+1) and so lpfF (Km) 6= lpfF (Km+1). Take G := Km and H := Km+1, and we

are done with this part.

Finally, for part (b), we further distinguish two cases below.

Case 2(b)-1. F = {I1}. Consider the two graphs I1 and I2. Since for ϕ :=

∀x∀y x = y (note that ϕ is a FOk-sentence and also a FOk-sentence, because k ≥ 2), I1 |= ϕ

while not I2 |= ϕ, we have that I1 6≡ I2. However, hom(I1, I1) = 1 = hom(I2, I1), which

127

implies that rpfF (I1) = rpfF (I2). It suffices to take G := I1 and H := I2.

Case 2(b)-2. F 6= {I1}. Since F is nonempty, there is a graph F ∈ F of size

n ≥ 2. Take m := max {k, n} ≥ 2 and consider the graphs Im and Im+1. As in part (a),

we let ≡′ denote ≡FOm (or ≡FOm) if ≡ stands for ≡FOk (or ≡FOk , respectively). It follows

that Im ≡′ Im+1, by Remark 3.5 if ≡′ stands for ≡FOm , and by Remark 3.3 if ≡′ stands for

≡FOm . Hence, Im ≡ Im+1. However, hom(Im,F) = nm < 2× nm ≤ nm+1 = hom(Im+1,F)

and it follows that rpfF (Km) 6= rpfF (Km+1). We are done by taking G := Km and

H := Km+1.

4.3 Relaxations of Graph Isomorphism vs. Restricted Pro-

files over the Boolean Semiring

In the previous section, we investigated several relaxations of isomorphism over

graphs in regard to the existence of a characterization by the equality of restricted left profile

or of restricted right profile over N, the bag-set semiring. As we will see shortly, most of

them do not admit such a characterization over B, the Boolean semiring. In contrast, we

explore next three relaxations of isomorphism that admit a characterization in restricted

left or right profile over B.

4.3.1 Homomorphic Equivalence

Recall Definition 3.23 that for all A and B in U , we say A and B are homomor-

phically equivalent (denoted A ↔ B) when A → B and B → A or, equivalently, when

homB(A,B) > 0 and homB(B,A) > 0.

128

The proposition below is a simultaneous dual to Theorems 4.1 and 4.2 in terms

of the underlying semiring of the left and right profiles, and it immediately follows from

Proposition 3.18 (specifically the equivalence between (i), (ii) and (iii)).

Proposition 4.25. For all A and B in U , the following are equivalent:

(i) A↔ B.

(ii) lpfUB(A) = lpfUB(B).

(iii) rpfUB(A) = rpfUB(B).

However, homomorphic equivalence over G is not characterized in any restricted

left or right profile over N, as shown by the next result.

Proposition 4.26. (a) There is no nonempty class F ⊆ G such that for all graphs G and

H, we have G↔ H if and only if lpfFN(G) = lpfFN(H).

(b) There is no nonempty class F ⊆ G such that for all graphs G and H, we have G↔ H

if and only if rpfFN(G) = rpfFN(H).

Proof. Let F be an arbitrary graph. As seen in the proof of Proposition 4.24,

hom(F,F) < hom(F,F⊕ F),

although F and F⊕F are homomorphically equivalent (by Proposition 3.17). This implies

part (a).

Next, if F is isomorphic to I1, then, by Proposition 3.9,

hom(K2,F) = 0 = hom(K3,F)

129

while K2 and K3 are not homomorphically equivalent; otherwise, F has n ≥ 2 vertices, and

hom(I1,F) = n < 2n ≤ n2 = hom(I2,F),

although I1 and I2 are homomorphically equivalent (by Proposition 3.17). This implies part

(b).

The two graphs C3 and C3⊕C3 in Example 3.19 are homomorphically equivalent.

From Proposition 4.25, it follows that for every nonempty class F of graphs, lpfFB (C3) =

lpfFB (C3 ⊕ C3) and rpfFB (C3) = rpfFB (C3 ⊕ C3); in other words, the two graphs are not

distinguished by means of restricted left or right profile over B. However, they are not

equivalent in the sense of any equivalence relations listed below, which implies that none of

these equivalence relations is characterized in restricted left or right profile over B:

(1) isomorphism, FO-equivalence and C-equivalence,

(2) equivalence arising from having the same number of vertices, C1-equivalence and C1-

equivalence,

(3) equivalence arising from having the same number of edges,

(4) Ck-equivalence and indistinguishability by (k − 1)-dimensional Weisfeiler-Leman algo-

rithm, where k ≥ 2,

(5) Ck-equivalence, where k ∈ Z+,

(6) cospectrality,

(7) chromatic equivalence,

(8) FOk-equivalence, where k ≥ 2,

130

(9) FOk-equivalence, where k ≥ 2.

For (5), note that Ck-equivalence implies C1-equivalence because C1 is a fragment of Ck.

For (8) and (9), the spoiler has a simple winning strategy for the game Gk(C3,C3 ⊕ C3)

and the game Gk(C3,C3⊕C3): Place a pebble on a vertex in one copy of C3 in C3⊕C3 in

the first move, and place a different pebble on a vertex in the other copy of C3 in C3 ⊕C3

in the second move.

Furthermore, the independent sets are the →-minimals for the preorder → (see

Remark 3.10(b)), and this means that homB(In,G) = 1 for all n ∈ Z+ and all graphs G.

Besides this, we saw in Example 3.8 that all graphs are FO1-equivalent and FO1-equivalent.

Recall that I denotes the class of all independent sets.

Proposition 4.27. Let G and H be graphs. The following hold:

(a) G ≡FO1 H.

(b) G ≡FO1 H.

(c) For all nonempty classes F ⊆ I, we have lpfFB (G) = lpfFB (H).

For every graph F, it is obvious that F → F and, if it has size n ∈ Z+, then

Kn+1 6→ F (by Proposition 3.9); this shows that there are graphs G and H such that

homB(G,F) = 1 6= 0 = hom(H,F) (by setting G := F and H := Kn+1).

Proposition 4.28. (a) There is no nonempty class F ⊆ G such that for all graphs G and

H, we have G ≡FO1 H if and only if rpfFB (G) = rpfFB (H),

(b) There is no nonempty class F ⊆ G such that for all graphs G and H, we have G ≡FO1 H

if and only if rpfFB (G) = rpfFB (H).

131

4.3.2 Same Chromatic Number and Same Clique Number

We will investigate two more relaxations of graph isomorphism, which are coarser

than homomorphic equivalence: the equivalence arising from having the same chromatic

number (see Definition 2.7(b)) and the equivalence arising from having the same clique

number. The relevant definition is as follows.

Definition 4.3. Let G be a graph. The clique number of G, denoted ω(G), is the maximum

n ∈ Z+ such that Kn is a subgraph of G.

Interestingly, the chromatic number and the clique number of a graph G are dual in

form when expressed as homomorphism counts: χ(G) = min {n ∈ Z+ | G→ Kn} or, equiv-

alently, χ(G) = min {n ∈ Z+ | homB(G,Kn) = 1} and ω(G) = max {n ∈ Z+ | Kn → G}

or, equivalently, ω(G) = max {n ∈ Z+ | homB(Kn,G) = 1}. Some examples are below.

• χ(In) = ω(In) = 1 for n ∈ Z+.

• χ(Kn) = ω(Kn) = n for n ∈ Z+.

• χ(P1) = ω(P1) = 1 and χ(Pn) = ω(Pn) = 2 for n ≥ 2.

• χ(Cn) = ω(Cn) = n for n ≤ 3, χ(Cn) =


2 if n is even

3 otherwise

and ω(Cn) = 2 for n ≥ 4.

• χ(T) = ω(T) for free trees T of size ≥ 2.

In particular, χ(C3) = χ(C5) but C3 and C5 are not homomorphically equivalent

(by Proposition 3.9 and the fact that C3 = K3); ω(C2) = ω(C5) but C2 and C5 are

not homomorphically equivalent (since χ(C2) = 2 < 3 = χ(C5) and by Proposition 3.10).

Therefore, the indistinguishability by chromatic number and by clique number are (strictly)

132

coarser than homomorphic equivalence,2 as shown by the following characterizations that

are immediate from definitions (together with Proposition 4.25). Recall that K denotes the

class of all cliques.

Proposition 4.29. For all graphs G and H, the following hold:

(a) χ(G) = χ(H) if and only if rpfKB(G) = rpfKB(H).

(b) ω(G) = ω(H) if and only if lpfKB(G) = lpfKB(H).

The next two propositions are dual to the preceding one, asserting that the in-

distinguishability by chromatic number and by clique number are not characterized by the

equality of any restricted left profile and any restricted right profile, respectively.

Proposition 4.30. There is no nonempty class F ⊆ G such that for all graphs G and H,

we have χ(G) = χ(H) if and only if lpfFB (G) = lpfFB (H).

Proof. Assume, for the sake of contradiction, that there exists such a nonempty class F .

From the previous discussion, for all n ∈ Z+, we have χ(C2n) = 2 < 3 = χ(C2n+1),

hence lpfFB (C2n) 6= lpfFB (C2n+1) by the assumption. In particular, for all m,n ∈ Z+,

lpfFB (C2m+1) = lpfFB (C2n+1). In the sequel, we show, instead, that for all n ∈ Z+,

lpfFB (C2n) = lpfFB (C2n+1), which contradicts a previous statement. For this purpose, fix an

n ∈ Z+ and we show, for all F ∈ F , that homB(F,C2n) = homB(F,C2n+1). We distinguish

two cases below depending on whether F is 2-colorable.

Case 1. F is 2-colorable. Then, homB(F,K2) = 1 by Remark 3.19, and hence

homB(F,C2n) = 1 = homB(F,C2n+1) by Remark 3.12.

2In fact, the indistinguishability by chromatic number is also strictly coarser than chromatic equivalence,
which was considered in Subsection 4.2.5.

133

Case 2. F is not 2-colorable. Then, χ(F) > 2 and, by Proposition 2.4, F contains

C2k+1 as a subgraph for some k ∈ Z+. Therefore, homB(F,C2n) = 0 by Proposition 3.10.

Let m ∈ Z+ such that m > k. Then, homB(F,C2m+1) = 0 by Corollary 3.12(a). Since

lpfFB (C2m+1) = lpfFB (C2n+1), we have homB(F,C2n+1) = 0 as well.

Proposition 4.31. There is no nonempty class F ⊆ G such that for all graphs G and H,

we have ω(G) = ω(H) if and only if rpfFB (G) = rpfFB (H).

Proof. Let F be an arbitrary nonempty class of graphs, we will show that there are graphs

G and H such that either ω(G) 6= ω(H) and rpfFB (G) = rpfFB (H), or ω(G) = ω(H) and

rpfFB (G) 6= rpfFB (H). We distinguish two cases below, depending on whether F is a subclass

of I, the class of all independent sets.

Case 1. F is a subclass of I. We have ω(K2) = 2 < 3 = ω(K3) by a previous

discussion. However, homB(K2, In) = 0 = homB(K3, In) for all n ∈ Z+ by Proposition 3.9,

which implies rpfFB (K2) = rpfFB (K3). We are done by taking G := K2 and H := K3.

Case 2. F is not a subclass of I. Then, there is a graph F ∈ F that contains K2

as a subgraph. By Theorem 2.5, there is a graph G with χ(G) = χ(F) + 1 and γ(G) ≥ 4;

note that G contains K2 as a subgraph and so ω(G) = 2, and clearly homB(G,F) = 0

by Proposition 3.10. By a previous discussion, however, we have ω(K2) = 2. Moreover,

homB(K2,F) = 1, by Remark 3.12. Setting H := K2, we get ω(G) = ω(H) and rpfFB (G) 6=

rpfFB (H).

The indistinguishability by chromatic number and by clique number are not even

characterized in restricted left or right profile over N. A proof for the result below can be

134

obtained by adapting the one for Proposition 4.26 (changing ↔ to the corresponding ≡),

noting that

χ(
⊕

m F) = χ(
⊕

n F) and ω(
⊕

m F) = ω(
⊕

n F)

for all m,n ∈ Z+ and all graphs F.

Proposition 4.32. Let ≡ be the equivalence relation over G such that

(1) G ≡ H if and only if χ(G) = χ(H), for all graphs G and H, or

(2) G ≡ H if and only if ω(G) = ω(H), for all graphs G and H.

The following hold:

(a) There is no nonempty class F ⊆ G such that for all graphs G and H, we have G ≡ H

if and only if lpfFN(G) = lpfFN(H).

(b) There is no nonempty class F ⊆ G such that for all graphs G and H, we have G ≡ H

if and only if rpfFN(G) = rpfFN(H).

4.4 Summary

The various relaxations of graph isomorphism studied in this chapter in terms of

the existence of a characterization by the equality of left or right profile, over N or over B,

restricted to a nonempty class F of graphs are summarized in Table 4.1.

135

Table 4.1: Equivalence relations over graphs vs. indistinguishability by the profiles.

equivalence lpfFN rpfFN lpfFB rpfFB

isomorphism,
FO-equivalence,
C-equivalence

F = G F = G none none

same number of vertices,
C1-equivalence,
C1-equivalence

F ⊆ I none none none

same number of edges F ⊆ {
⊕
nK2 | n ∈ Z+} none none none

C2-equivalence,
indistinguishability by
color refinement

F = T none none none

Ck-equivalence,
indistinguishability by
(k − 1)-dimensional Weisfeiler-
Leman algorithm, where k ≥ 2

F = T k−1 none none none

Ck-equivalence, where k ∈ Z+ F = Tk none none none

cospectrality F = C none none none

chromatic equivalence none F = K none none

FO1-equivalence,
FO1-equivalence

none
(unless F = ∅ allowed)

none
(unless F = ∅ allowed) F ⊆ I none

FOk-equivalence, where k ≥ 2 none none none none

FOk-equivalence, where k ≥ 2 none none none none

homomorphic equivalence none none F = G F = G
same chromatic number none none none F = K
same clique number none none F = K none

136

Chapter 5

Query Algorithms

The characterizations of isomorphism among graphs or structures given by The-

orems 4.1 and 4.2 not only bring up questions about characterizing equivalence relations

(over graphs) that are relaxations of isomorphism in restricted left or right profile, but also

raise the issues of determining the membership of a graph or structure in a given class via

queries of the form of homomorphism counts. Many results in this chapter are applicable

for both graphs and structures (and are from [8, 51]), as opposed to the previous chapter

where the focus was mainly on graphs. That said, most examples presented in this chapter

are about graphs due to their simplicity. As before, we use the symbol U for the class G or

the class A of structures (see Proviso 2).

5.1 Basic Definitions and Examples

Consider the scenario: Given a graph G, is |V (G)| ≤ 5? By Example 4.1,

hom(I1,G) = |V (G)| and this homomorphism count reveals the information about the

137

number of vertices in a graph G. We can turn this observation into a decision algorithm for

the above problem that involves queries made in the framework of homomorphism counts:

Given an input graph G, answer “yes” as output if hom(I1,G) ≤ 5 and “no” otherwise.

This scenario motivates the theme of this chapter, namely, the notion of query

algorithms, in which the queries are in the form of homomorphism counts. It was introduced

in [10], which was followed up by [8]. The formal definition of various query algorithms is

as follows.

Definition 5.1. Let D ⊆ U be a class, and let K be the semiring B or N.

(a) For every n ∈ Z+, every class F ⊆ U of size n, and every set X of n-tuples over the

underlying set of K, we say that (F , X) is a left n-query algorithm for D over K if for

every A ∈ U , we have that A ∈ D if and only if lpfFK(A) ∈ X, and similarly, we say

that (F , X) is a right n-query algorithm for D over K if for every A ∈ U , we have that

A ∈ D if and only if rpfFK(A) ∈ X.

(b) For every n ∈ Z+, we say that D admits a left n-query algorithm over K if there is a left

n-query algorithm for D over K, and similarly, we say that D admits a right n-query

algorithm over K if there is a right n-query algorithm for D over K.

(c) We say that D admits a left query algorithm over K if there is a left n-query algorithm

for D over K for some n ∈ Z+, and similarly, we say that D admits a right query

algorithm over K if there is a right n-query algorithm for D over K for some n ∈ Z+.

In case ofK = N, the above Definition 5.1(a) becomes more of an abstract notion of

“algorithm” because the set X of n-tuples over the underlying set N of N can be undecidable.

138

Through the end of this section, we present a number of examples to illustrate the

above definition, and we state and prove some simple results that will be useful in later

sections.

Example 5.1. Fix an arbitrary graph G. We have that ({G},B) is both a left 1-query

algorithm and a right 1-query algorithm over B for G; changing B to N, we obtain a left

1-query algorithm and a right 1-query algorithm over N for this class. (B = {0, 1} and B

is the Boolean semiring, while N is the bag-set semiring, see Subsection 3.2.2.) Moreover,

({G}, ∅) is both a left 1-query algorithm and a right 1-query algorithm over B for the empty

class ∅; it is also a left 1-query algorithm and a right 1-query algorithm over N for this class.

The independent sets are the graphs that contain no edges and are precisely the

minimals for the preorder→ over graphs (see Remark 3.10(b)). They are exactly those that

have a homomorphism to I1.

Example 5.2. The class I of independent sets admits both a left 1-query algorithm

({K2}, {0}) and a right 1-query algorithm ({I1}, {1}) over B. Note that ({K2}, {0}) is

also a left 1-query algorithm over N for I. Moreover, this class admits a right 1-query

algorithm over N as well, namely ({I1},Z+).

In the preceding examples, we see that if a class admits a left (or right) k-query

algorithm over B, then it admits one over N. Indeed, this is true in general, and an intuitive

explanation is that homN reveal more information than homB, as evidenced by the upcoming

proposition.

Proposition 5.1. Let D ⊆ U be a class, and let n ∈ Z+. In the following, for every set

139

X ⊆ Bn, we let X ′ :=
⋃
t∈X Xt, where

Xt := {(t′1, . . . , t′n) ∈ Nn | t′i = 0 if and only if ti = 0 for all i ∈ [n]}

for every n-tuple t = (t1, . . . , tn) ∈ Bn.

(a) If D admits a left n-query algorithm (F , X) over B for some set X ⊆ Bn, then it admits

a left n-query algorithm (F , X ′) over N for the set X ′.

(b) If D admits a right n-query algorithm (F , X) over B for some set X ⊆ Bn, then it

admits a right n-query algorithm (F , X ′) over N for the set X ′.

Proof. We only prove part (a), as part (b) is entirely analogous. With the conditions and

definitions stated in the proposition, it is straightforward that for every A ∈ U ,

A ∈ D

iff lpfFB (A) ∈ X

iff there is a t ∈ X such that lpfFB (A) = t

iff there is a t ∈ X such that lpfFN(A) ∈ Xt

iff lpfFN(A) ∈ X ′.

Remark 5.1. Let D ⊆ U be a class. The following are immediate by Definition 5.1 (also

see [10]).

(a) For every nonempty class F ⊆ U , we have that D admits a left query algorithm over K

of the form (F , X) if and only if for all A and B in U , we have that lpfFK(A) = lpfFK(B)

and A ∈ D together imply B ∈ D.

(b) For every nonempty class F ⊆ U , we have that D admits a right query algorithm over K

of the form (F , X) if and only if for all A and B in U , we have that rpfFK(A) = rpfFK(B)

140

and A ∈ D together imply B ∈ D.

In fact, for the “if” direction, it suffices to take X := {lpfFK(A) | A ∈ D} and X :=

{rpfFK(A) | A ∈ D}, respectively. We restate the above in an equivalent form that will

be useful.

(c) A class D ⊆ U does not admit any left query algorithm over K if and only if for every

finite nonempty class F ⊆ U , there are A ∈ D and B /∈ D such that lpfFK(A) = lpfFK(B).

(d) A class D ⊆ U does not admit any right query algorithm over K if and only if for

every finite nonempty class F ⊆ U , there are A ∈ D and B /∈ D such that rpfFK(A) =

rpfFK(B).

A clique is a graph in which every two distinct vertices are connected by an edge:

For all n ∈ Z+, the clique Kn of size n has
(
n
2

)
= n(n−1)/2 edges in it, and it has chromatic

number χ(Kn) = n. Propositions 3.9 and 3.10 together imply that for every graph G, if

Kn → G then G has chromatic number χ(G) ≥ n.

Example 5.3. The class K of cliques admits a left 2-query algorithm

({I1,K2}, {(k, k(k − 1)) | k ∈ Z+})

over N. However, it does not admit any right query algorithm over N (hence not over B

either, by Proposition 5.1(b)). To see this, for an arbitrary class F of n graphs (n ∈ Z+),

let s be greater than the maximum size of the graphs in F . Then, by Remark 5.1, the

two graphs Ks ∈ K and (Ks ⊕ I1) /∈ K witness the assertion, because the graphs in F

each have chromatic number < s and hence rpfFN(Ks) = (0, . . . , 0︸ ︷︷ ︸
n-times

) = rpfFN(Ks ⊕ I1) by

141

Proposition 3.10. (Note that Ks is connected while Ks ⊕ I1 is not, and this will be useful

later in Example 5.8.) The same technique is employed in [10] to show that the class of

graphs containing an isolated vertex does not admit any right query algorithm over N.

By Remark 5.1, the class K does not admit any left query algorithm over B,

either: Consider the two graphs K2 ∈ K and (K2 ⊕ K2) /∈ K. Observe that they are

homomorphically equivalent, i.e., K2 ↔ (K2⊕K2). By Proposition 3.18, we have G→ K2

if and only if G→ (K2 ⊕K2), for every graph G. Hence, lpfFB (K2) = lpfFB (K2 ⊕K2).

The bipartite graphs are precisely the 2-colorable graphs or, equivalently, the

acyclic graphs, which are exactly the forests (see Section 2.2). By Corollary 3.16, the

number of 2-colorings of every bipartite graph of n connected components is exactly 2n. In

contrast, if a graph is not bipartite then it has no 2-coloring.

Example 5.4. The classDbip of bipartite graphs admits a right 1-query algorithm ({K2}, {1})

over B. By Proposition 5.1, it admits a right 1-query algorithm ({K2},Z+) over N. In fact,

for every set X ⊆ Z+, we have that ({Kn}, X) is a right 1-query algorithm over N for Dbip

if and only if X contains {2n | n ∈ Z+} as a subset.

However, this class does not admit any left query algorithm over N (hence nor

over B by Proposition 5.1). To see this, consider an arbitrary finite nonempty class F of

graphs as a candidate. Let n ≥ 3 be an odd integer greater than the maximum size of the

graphs in F . Then, take the two graphs C2n ∈ Dbip and (Cn ⊕Cn) /∈ Dbip. (In fact, we

also have that C2n is connected while Cn ⊕Cn is not, which will turn out to be useful in

Example 5.5). Therefore, lpfFN(C2n) = lpfFN(Cn⊕Cn) by Proposition 5.2 (presented next),

and we conclude by Remark 5.1.

142

Proposition 5.2. Let n ≥ 3 be an integer. For every graph G of size < n, we have

homN(G,C2n) = homN(G,Cn ⊕Cn).

Proof. Fix an integer n ≥ 3, and let G be a graph of size < n. We distinguish two cases

below.

Case 1. G is connected. We first argue that C2n and Cn⊕Cn are indistinguishable

by the number of injective homomorphisms from connected graphs of size < n:

For all connected graphs H of size < n, we have inj(H,C2n) = inj(H,Cn ⊕Cn). (∗)

The argument of (∗) is split into three cases.

Case (∗)-1. H contains a cycle of length ≥ 3. Then H has girth γ(H) < n. Since

C2n and Cn ⊕Cn both have girth ≥ n, we have inj(H,C2n) = 0 = inj(H,Cn ⊕Cn).

Case (∗)-2. H contains no cycles of length ≥ 3 and has degree > 2. Then we

immediately have inj(H,C2n) = 0 = inj(H,Cn⊕Cn) because C2n and Cn⊕Cn both have

degree 2.

Case (∗)-3. H contains no cycles of length ≥ 3 and has degree ≤ 2. Then H is a

path graph Pk for some k < n. If k = 1, then we have inj(H,C2n) = 2n = inj(H,Cn⊕Cn).

If k > 1, then we have inj(H,C2n) = 4n = inj(H,Cn ⊕Cn).

Next, since G is a connected graph of size < n, its homomorphic image must also

be a connected graph (by Proposition 3.11(b)) of size < n. By Proposition 3.8, we have

homN(G,C2n) =
∑

H is connected and has size < n

sur(G,H) · inj(H,C2n)/aut(H)

and

homN(G,Cn ⊕Cn) =
∑

H is connected and has size < n

sur(G,H) · inj(H,Cn ⊕Cn)/aut(H),

143

and it follows by (∗) that homN(G,C2n) = homN(G,Cn ⊕Cn).

Case 2. G is not connected. We can assume for some k ≥ 2 that G consists of

the connected components G1, . . . ,Gk (i.e., G =
⊕k

i=1 Gi). Then the above Case 1 yields

homN(G1,C2n) = homN(G1,Cn ⊕ Cn), . . . ,homN(Gk,C2n) = homN(Gk,Cn ⊕ Cn) and

hence homN(G,C2n) = homN(G,Cn ⊕Cn) by Proposition 3.14(c).

Example 5.5. The class Dbip−conn of bipartite connected graphs admits a right 1-query

algorithm ({K2}, {2}) over N but no left query algorithm over N (hence nor over B by

Proposition 5.1). One can argue as in Example 5.4 to see that Dbip−conn does not admit

any left query algorithm over N (note that n can be chosen to be an even integer ≥ 2 in

this case).

Moreover, Dbip−conn does not admit any right query algorithm over B: Take the

two graphs K2 and K2 ⊕K2 considered in Example 5.3. Note that K2 ∈ Dbip−conn while

(K2 ⊕ K2) /∈ Dbip−conn but the fact that they are homomorphically equivalent (that is,

K2 ↔ (K2 ⊕K2)) implies that K2 → G if and only if (K2 ⊕K2)→ G, for every graph G

(by Proposition 3.18). Therefore, rpfFB (K2) = rpfFB (K2 ⊕K2).

We say that a class D ⊆ U is closed under homomorphic equivalence if for all

A and B in U such that A ↔ B, we have A ∈ D implies B ∈ D. Examples of classes

closed under homomorphic equivalence include, for every A ∈ U , the two classes CQ(A) =

{B ∈ U | A→ B} and CSP(A) = {B ∈ U | B→ A}.

Example 5.6. The class CQ(K3) consists of all graphs that contain K3 as a subgraph, and

admits a left 1-query algorithm ({K3}, {1}) over B and, by Proposition 5.1, a left 1-query

algorithm ({K3},Z+) over N.

144

However, it does not admit any right query algorithm over N (and not over B,

either, by Proposition 5.1): Suppose that (F , X) is a candidate right n-query algorithm

over N for CQ(K3). Let s ≥ 3 be greater than the maximum chromatic number of the

graphs in F (note that F 6= ∅). Then Ks ∈ CQ(K3) and rpfFN(Ks) = (0, . . . , 0︸ ︷︷ ︸
n-times

). By

Lemma 2.5, there is a graph G with chromatic number χ(G) = s and girth γ(G) ≥ 4, for

which G /∈ CQ(K3) and rpfFN(G) = (0, . . . , 0︸ ︷︷ ︸
n-times

). It follows from Remark 5.1 that (F , X) is

not a right n-query algorithm over N for CQ(K3). (A stronger result is proven in [10].)

Example 5.7. The class CSP(K3) consists of all graphs that are 3-colorable, namely those

that have chromatic numbers ≤ 3. Note that it is symmetric to CQ(K3) in the previous

example in terms of the side of→ (seen as a binary relation). Thus, it is not surprising that

CSP(K3) admits a right 1-query algorithm ({K3}, {1}) over B and, by Proposition 5.1, a

right 1-query ({K3},Z+) over N.

Analogously to CQ(K3), the class CSP(K3) admits no left query algorithm over

B or over N (also see [10]). It is, however, technically more involved to prove this latter

assertion, which will be done in the next section (see Lemma 5.12).

The classes of graphs considered in Examples 5.3 and 5.5 are not closed under

homomorphic equivalence, and we argued that they do not admit a left nor a right query

algorithm over B by presenting a pair of graphs G and H which are homomorphically

equivalent and of which exactly one is in the class. The argument follows from a more

general result.

Proposition 5.3. Let D ⊆ U be a class. If D admits a left query algorithm or a right query

algorithm over B, then it is closed under homomorphic equivalence.

145

Proof. The case for right query algorithms over B is omitted since it can be proved analo-

gously. Assume that D admits a left query algorithm (F , X) over B. For all A and B, if

A↔ B, then,

A ∈ D

iff lpfFB (A) ∈ X

iff lpfFB (B) ∈ X (by Proposition 4.25)

iff B ∈ D.

Assume that D ⊆ U is a finite class. If D = ∅, then it admits both a left and a

right query algorithm over B, by Example 5.1. However, if D 6= ∅, then for some A ∈ D

and some n ∈ Z+, we have
⊕

n A /∈ D because D is finite, although it is homomorphically

equivalent to A. The next corollary follows from Proposition 5.3.

Corollary 5.4. Let D ⊆ U be a finite class. If D is nonempty, then it admits no left query

algorithm and no right query algorithm over B.

Recall the scenario at the beginning of this section: Given a graph G, is |V (G)| ≤

5? There we saw an (informal version of the) left 1-query algorithm ({I1}, {1, 2, 3, 4, 5})

over N for the class of graphs that are yes-instances. What may seem less trivial is that

this class also admits a right query algorithm over N.

Proposition 5.5. [10] Every finite class D ⊆ U admits both a left query algorithm and a

right query algorithm over N.

Proof. Let D ⊆ U be a finite class. We distinguish two cases below.

Case 1. D is empty. Then ({C}, ∅), where C ∈ U is arbitrarily chosen, is simul-

taneously a left 1-query algorithm and a right 1-query algorithm over N (cf. Example 5.1).

146

Table 5.1: Finite classes vs. left query algorithms and right query algorithms.

finite classes D ⊆ U left query algorithm right query algorithm
D = ∅ over both B and N over both B and N
D 6= ∅ over N only over N only

Case 2. D is nonempty. Then let n be the maximum size of the members in D.

Take F for this specific n, as in Corollary 4.5(ii) or 4.6(ii), depending on whether U = G

or U = A, and take the set X := {lpfFN(C) | C ∈ D}. It follows that (F , X) is a left query

algorithm over N for D because for all A ∈ U , we have

A ∈ D

iff there is a C ∈ D such that A ∼= C (classes are assumed to be closed under ∼=)

iff there is a C ∈ D such that lpfFN(A) = lpfFN(C) (by Corollary 4.5 or 4.6)

iff lpfFN(A) ∈ X.

As for a right query algorithm over N for D, take F ′ for the value m that is a function of

this specific n, as in Corollary 4.5(iii) or 4.6(iii), depending on whether U = G or U = A,

and take X ′ := {rpfF
′

N (C) | C ∈ D}. Then, we can argue that (F ′, X ′) is a right query

algorithm over N for D analogously.

A quick summary of when a finite class admits a left or a right query algorithm

over B or over N is provided in Table 5.1.

As opposed to finite classes, the situation is more complicated for infinite classes.

By Proposition 5.1, there are three cases in terms of the semirings B or N over which an

infinite class admits a left query algorithm, and likewise for right query algorithm: (1) both

B and N, (2) only N, and (3) neither B nor N.

For left query algorithms for infinite classes of graphs, we have seen case (1) in

147

Table 5.2: Finite classes vs. left query algorithms and right query algorithms.

infinite classes ⊆ G left query algorithm right query algorithm
G (Example 5.1) over both B and N over both B and N
I (Example 5.2) over both B and N over both B and N
K (Example 5.3) over N only not over B nor over N

Dbip (Example 5.4) not over B nor over N over both B and N

Dbip−conn (Example 5.5) not over B nor over N over N only
CQ(K3) (Example 5.6) over both B and N not over B nor over N

CSP(K3) (Example 5.7) not over B nor over N over both B and N
Dconn (Example 5.8) not over B nor over N not over B nor over N

Examples 5.1, 5.2 and 5.6, case (2) in Example 5.3 and case (3) in Examples 5.4, 5.5 and

5.7. As to right query algorithms for infinite classes, case (1) is illustrated in Examples 5.1,

5.2, 5.4 and 5.7, case (2) in Example 5.5, and case (3) in Examples 5.3 and 5.6.

There is indeed a common infinite class of graphs that admits neither left nor right

algorithm over B or N, as seen in the next example.

Example 5.8. The class Dconn of connected graphs admits no left query algorithm over

N, by the argument in the second paragraph of Example 5.4 (also cf. Example 5.5), nor

does it admit any right query algorithm over N, by the argument in the first paragraph of

Example 5.3. By Proposition 5.1, these exclude the possibility that Dconn might admit a

left or a right query algorithm over B.

Therefore, case (3) holds for both left query algorithms and right query algorithms

for the class Dconn. All these are summarized in Table 5.2.

Let us reconsider the scenario introduced at the beginning: Given a graph G, is

|V (G)| ≤ 5? By Corollary 5.4 and Proposition 5.5, the class of yes-instances admits both a

left and a right query algorithm over N but neither a left nor a right query algorithm over

B. In fact, the same holds for the class of no-instances, i.e., its complement. In general, the

collection of classes admitting a left (or right) query algorithm over a fixed semiring B or

148

N is closed under the Boolean operations on classes.

Proposition 5.6. [8, 10] Let K be the semiring B or N in the following:

(a) If a class D ⊆ U admits a left (or right) query algorithm over K, then so does its

complement D = U \ D.

(b) If both the classes D1,D2 ⊆ U admit a left (or right) query algorithm over K, then so

do their union D1 ∪ D2 and their intersection D1 ∩ D2.

Proof. For simplicity, we will only consider K = N, since the case K = B is analogous.

For part (a), suppose that (F , X) is a left n-query algorithm for the class D for

some n ∈ Z+, some class F ⊆ U of size n and some set X ⊆ Nn. Then (F ,Nn \X) is a left

n-query algorithm for D because for all A ∈ U , we have

A ∈ D

iff A /∈ D

iff lpfFN(A) /∈ X

iff lpfFN(A) ∈ (Nn \X).

Right query algorithms are similar and hence are omitted.

For part (b), we recall the viewpoint in Section 2.1 that a sequence is a function.

More precisely, for finite nonempty F ⊆ U and for A ∈ U , the left profile lpfFN(A) is a

function lpfFN(A) : F → N that maps every C to homN(C,A) and, for every left query

algorithm (F , X) over N, a tuple t ∈ X is a function t : F → N that maps C to a natural

number. (Likewise for right profiles and right query algorithms.)

For every left query algorithm (F , X) and every class F ′ ⊇ F , we write

XF
′

:= {t′ : F ′ → N | t′|F = t for some t ∈ X},

149

where t′|F denotes the restriction of the function t′ to the domain F . It should be clear

that the two left query algorithms (F , X) and (F ′, XF ′) determine the membership in the

same class.

Now, given left query algorithms (F1, X1) and (F2, X2) for the classes D1 and D2,

respectively, take F := F1 ∪ F2. It follows that (F , XF1 ∪XF2) is a left query algorithm for

their union D1 ∪ D2 because for all A ∈ U ,

A ∈ (D1 ∪ D2)

iff A ∈ D1 or A ∈ D2

iff lpfF1
N (A) ∈ X1 or lpfF2

N (A) ∈ X2

iff lpfFN(A) ∈ XF1 or lpfFN(A) ∈ XF2

iff lpfFN(A) ∈ (XF1 ∪XF2).

Likewise, (F , XF1 ∩ XF2) is a left query algorithm for D1 ∩ D2. The case for right query

algorithms is similar and hence omitted.

Note that while Dbip admits a right query algorithm over N (cf. Example 5.4) and

Dconn of connected graphs does not (cf. Example 5.8), their intersection (Dbip ∩ Dconn) =

Dbip−conn does admit one (cf. Example 5.5).

We close this section with a simple characterization of when a class admits a left

query algorithm over B and of when a class admits a right query algorithm over B.

Proposition 5.7. Let D ⊆ U be a class. The following hold:

(a) D admits a left query algorithm over B if and only if it is a Boolean combination of CQ

classes.

(b) D admits a right query algorithm over B if and only if it is a Boolean combination of

150

CSP classes.

Proof. We only prove part (a), as part (b) is entirely analogous. We distinguish two cases

as follows.

Case 1. D is empty. The “if” part is trivial (cf. Example 5.1), as is the “only if”

part: Take CQ(A) ∩ CQ(A) for an arbitrary A ∈ U .

Case 2. D is nonempty. For the “if” direction, assume that D is a Boolean

combination of the classes CQ(A1), . . . ,CQ(An) which is, without loss of generality, in the

particular disjunctive normal form:

D =
m⋃
i=1

n⋂
j=1

Dij ,

where m ∈ [2n] and Dij = CQ(Aj) or Dij = CQ(Aj) (the complement of CQ(Aj)) for all

j ∈ [n]. Take F := {A1, . . . ,An}. For all i ∈ [m], let ti = (ti1, . . . , tin) be the n-tuple over

B such that for all j ∈ [n],

tij =


1 if Dij = CQ(Aj),

0 otherwise.

Take X := {t1, . . . , tm}. It is straightforward to verify that (F , X) is a left query algorithm

for D over B.

Conversely, for the “only if” direction, assume that (F , X) is a left query algorithm

for D over B, where F = {A1, . . . ,An} and X ⊆ Bn is nonempty (since D 6= ∅). For each

n-tuple t = (t1, . . . , tn) ∈ X, define the class

Dt :=

n⋂
k=1

Dtk

151

in which

Dtk :=


CQ(Ak) if tk = 1,

CQ(Ak) otherwise,

for all k ∈ [n]. It is easy to verify that D =
⋃
t∈X Dt.

5.2 Left Query Algorithms

It is obvious that CQ classes admit a left query algorithm over B and over N (cf.

Example 5.6). In this section, we will give characterizations for certain classes to have a

left query algorithm over B or over N. The proposition below is straightforward yet useful

in simplifying proofs.

Proposition 5.8. Let K be the semiring B or N. For every class D ⊆ U , we have D admits

a left query algorithm over K if and only if D admits a left query algorithm over K of the

form (F , X) where every A ∈ F is connected.

Proof. The “if” direction is trivial. For the “only if” direction, assume that (F ′, X ′) is a

left query algorithm for D over K. Let A1, . . . ,An be the connected components of the

members in F ′. Take F := {A1, . . . ,An} and X := {lpfFK(A) | A ∈ D}. Note that for all

A and B in U , if lpfFK(A) = lpfFK(B), then lpfF
′

K (A) = lpfF
′

K (B) by Proposition 3.14(c),

hence

A ∈ D

iff lpfF
′

K (A) ∈ X ′

iff lpfF
′

K (B) ∈ X ′

iff B ∈ D.

By Remark 5.1(a), it follows that (F , X) is a left query algorithm for D over K.

152

Definition 5.2. Let σ be a vocabulary.

(a) A primitive positive σ-formula is a first-order σ-formula of the form ∃x1 · · · ∃xm
n∧
i=1

ϕi

in which m,n ∈ Z+ and ϕi is an (atomic) relational formula for i ∈ [n].

(b) Let ϕ = ∃x1 · · · ∃xm
n∧
i=1

ϕi be a primitive positive σ-sentence. The canonical structure

of ϕ is the σ-structure Aϕ with domain dom(Aϕ) := {x1, . . . , xm} and relations

RAϕ
:= {(xj1 , . . . , xjr) | ϕi = R(xj1 , . . . , xjr) for some i ∈ [n]}

for all r-ary relation symbols R ∈ σ.

(c) Let A be a σ-structure with domain dom(A) = {a1, . . . , am} such that RA 6= ∅ for

some relation symbol R ∈ σ. The canonical sentence of A is the primitive positive

σ-sentence

ϕA := ∃x1 · · · ∃xm
∧
{R(xj1 , . . . , xjr) | R ∈ σ is r-ary and (aj1 , . . . , ajr) ∈ RA}

Notation. The fragment of FO[σ] consisting of all primitive positive σ-formulas is denoted

PP[σ].

The next proposition is immediate from definition.

Proposition 5.9. Let σ be a vocabulary.

(a) For all σ-structures B and all PP[σ]-sentences ϕ, we have that B |= ϕ if and only if

Aϕ → B (i.e., Mod(ϕ) = CQ(Aϕ)).

(b) For all σ-structures A and B such that RA 6= ∅ for some R ∈ σ, we have that A→ B

if and only if B |= ϕA (i.e., CQ(A) = Mod(ϕA)).

153

Remark 5.2. In the terminology of database theory, a primitive positive sentence is known

as a (Boolean) conjunctive query, a canonical structure as a canonical database (instance)

and a canonical sentence as a canonical query.

It turns out that for every σ-structure A, the class CQ(A) is definable not only

in first-order logic but indeed also by a Boolean combination of PP-sentences: If RA 6= ∅

for some R ∈ σ, then this holds by Proposition 5.9(b); otherwise, the class CQ(A) = A is

equal to Mod(ϕB ∨ ¬ϕB) for any σ-structure B such that RB 6= ∅ for some R ∈ σ.

Remark 5.3. Via the one-to-one correspondence G 7→ Gσ(G) from graphs to digraphs

(i.e., σ(G)-structures for which E is irreflexive and symmetric), Definition 5.2 can be

adapted to graphs. There are two modifications to be made, however. In part (a), we

disallow relational formulas ϕi to take the form E(x, x). In part (b), we let EAϕ
:=

{(x1, x2) | ϕi = E(x1, x2) or ϕi = E(x2, x1) for some i ∈ [n]} in the canonical structure Aϕ.

Part (c) remains unchanged. It follows that Proposition 5.9 extends to graphs, with

σ = σ(G), σ-structures (containing a tuple or not) changed to graphs (containing an edge or

not, respectively) and canonical structures changed to their corresponding graphs, through-

out the statements.

Proposition 5.10. For every class D ⊆ U , we have that D is a Boolean combination of

CQ classes if and only if D is definable by a Boolean combination of PP-sentences.

Proof. In view of Remark 5.3, we only prove for U = A. Let σ be the underlying vocabulary.

By Remark 3.9 and Proposition 5.6, it suffices to argue that

(1) for every structure A, the class CQ(A) is definable by a Boolean combination ϕ of

PP-sentences, and

154

(2) for every PP-sentence ϕ, there is a structure A such that Mod(ϕ) = CQ(A).

Indeed, (2) immediately follows from Proposition 5.9(a). For (1), we distinguish

two cases.

Case 1. RA = ∅ for every R ∈ σ. Then CQ(A) = A and by Proposition 5.9(b),

we can take ϕ := (ϕB ∨ ¬ϕB).

Case 2. RA 6= ∅ for some R ∈ σ. It immediately follows from Proposition 5.9(b)

by taking ϕ := ϕA.

Proposition 5.11. For every class D ⊆ A, if D admits a left query algorithm over B, then

D is FO-definable and closed under homomorphic equivalence.

Proof. It immediately follows from Propositions 5.3, 5.7(a) and 5.10.

5.2.1 CSP Classes and Their Unions

Straight from definition we have for every graph G that CSP(G) admits the right

1-query algorithm ({G}, {1}) over B and the right 1-query algorithm ({G},Z+) over N.

However, it is not yet clear when CSP(G) admits a left query algorithm over B or over N.

In this subsection, we will first present a characterization of CSP classes of graphs

that admit a left query algorithm over B or over N, then we move on to show that the

characterization also holds for CSP classes of structures, finally we conclude with further

characterizations of unions of CSP classes of structures that admit a left query algorithm

over these semirings.

In Example 5.7 we asserted that CSP(K3) admits no left query algorithm over B

or over N. This assertion is a consequence of the next lemma.

155

Lemma 5.12. Let G be a graph. The following are equivalent:

(i) G is 1-colorable

(ii) CSP(G) admits the left 1-query algorithm ({K2}, {0}) over B

(iii) CSP(G) admits the left 1-query algorithm ({K2}, {0}) over N

(iv) CSP(G) admits a left query algorithm over B

(v) CSP(G) admits a left query algorithm over N.

Proof. For the direction from (i) to (ii), note that if G is 1-colorable, i.e., if G is an

independent set, then CSP(G) = I, the class of independent sets, which was shown to

admit the left 1-query algorithm ({K2}, {0}) over B in Example 5.2. The implications from

(ii) to (iv) and from (iii) to (v) are obvious, and the implications from (ii) to (iii) and (iv) to

(v) are by Proposition 5.1. So we only prove not (i) implies not (v). If G is not 1-colorable,

then it has chromatic number χ(G) ≥ 2. We distinguish two cases as follows.

Case 1. G has chromatic number χ(G) = 2. Then CSP(G) consists of exactly

the 2-colorable graphs, that is, CSP(G) = Dbip, the class introduced in Example 5.4 and

shown to not admit any left query algorithm over N there.

Case 2. G has chromatic number χ(G) ≥ 3. Let F be an arbitrary finite nonempty

class of graphs, and let n ≥ 2 be an integer greater than the maximum treewidth of the

graphs in F . Since G is not 2-colorable, the class CSP(G) is not definable in the logic Cω
∞ω

by Theorem A.1. It follows that there are two graphs H1 ∈ CSP(G) and H2 /∈ CSP(G)

such that H1 ≡Cn H2 (by Remark 3.8(b)) and hence lpfT
n−1

(H1) = lpfT
n−1

(H2) (by The-

orem 4.13), which implies that lpfFN(H1) = lpfFN(H2) since F ⊆ T n−1. By Remark 5.1(a),

CSP(G) does not admit any left query algorithm over N.

156

As an immediate consequence of Lemma 5.12, we have that deciding whether

CSP(G) admits a left query algorithm over B is in P because deciding whether G is 1-

colorable, which amounts to deciding whether G ∈ CQ(K2), can obviously be carried out

in polynomial time.

An analysis of the condition that G is 1-colorable in Lemma 5.12 leads to our main

characterization of CSP classes of graphs that admit a left query algorithm over B or N.

Theorem 5.13. Let G be a graph. The following are equivalent:

(i) CSP(G) is FO-definable.

(ii) CSP(G) admits a left query algorithm over B.

(iii) CSP(G) admits a left query algorithm over N.

Proof. By Lemma 5.12, it suffices to argue for the FO-definability of CSP(G) in the three

cases below.

Case 1. G has chromatic number χ(G) = 1. Then, CSP(G) = I = Mod(ϕ),

where ϕ = ∀x∀y ¬E(x, y).

Case 2. G has chromatic number χ(G) = 2. Then, CSP(G) = Dbip. The

construction of the two graphs witnessing that CSP(G) admits no left query algorithm over

N in Example 5.4 also witnesses that CSP(G) is not FO-definable (see Example 3.10).

Case 3. G has chromatic number χ(G) ≥ 3. Then, CSP(G) is not Cω
∞ω-definable

by Theorem A.1 and hence not FO-definable, since FO is a fragment of Cω
∞ω.

The next dichotomy directly follows from the proof of Theorem 5.13.

157

Corollary 5.14. Let G be a graph. If G is an independent set, then CSP(G) = Mod(ϕ)

for the FO-sentence ϕ = ∀x∀y¬E(x, y). Otherwise, CSP(G) is not FO-definable.

Next, we turn our attention to CSP classes of structures. It turns out that the

characterization in Theorem 5.13 holds for CSP classes of structures as well.

Theorem 5.15. Let A be a structure. The following are equivalent:

(i) CSP(A) is FO-definable.

(ii) CSP(A) admits a left query algorithm over B.

(iii) CSP(A) admits a left query algorithm over N.

Before proving this theorem, we mention the following definition that will be

needed.

Definition 5.3. Let F and E be finite classes of structures. The pair (F , E) is a finite

homomorphism duality if for all structures A, it holds that homB(F,A) = 0 for all F ∈ F

if and only if homB(A,D) 6= 0 for some D ∈ E .

Proof of Theorem 5.15. First, note that the direction from (ii) to (iii) immediately follows

from Proposition 5.1, so we will prove the directions from (i) to (ii) and from (iii) to (i).

Next, for the direction from (i) to (ii), we note a result from [1] that for all

structures A, it holds that CSP(A) is FO-definable if and only if (F , {A}) is a finite ho-

momorphism duality for some finite class F of structures. Now, assume that CSP(A) is

FO-definable. If CSP(A) = A (cf. Example 3.18(b) for an example of such A), which

is equal to Mod(∃xx = x), then obviously it admits a left query algorithm over B, say

({A},B) (cf. Example 5.1). Otherwise, CSP(A) 6= A, then there is a finite F such that

158

(F , {A}) is a finite homomorphism duality by the aforementioned characterization given

in [1]. Clearly, F is nonempty, and by taking the set X := {(0, . . . , 0︸ ︷︷ ︸
n-times

)} where n := |F|, we

have that (F , X) is a left query algorithm over B for CSP(A).

Finally, for the direction from (iii) to (i), we will prove contrapositively that not

(i) implies not (iii). For this purpose, let A be a structure for which CSP(A) is not FO-

definable, and let σ be the underlying vocabulary. Our goal is to shown that for every

finite nonempty F of structures, there are two structures P ∈ CSP(A) and Q /∈ CSP(A)

such that lpfF (P) = lpfF (Q), for which we assume that all F ∈ F are connected due to

Proposition 5.8.

Let F be such a class, and let n ≥ 2 be greater than the maximum size of the

structures in F . Moreover, let Dconn
δ<n denote the class of all connected structures C of

diameter δ(C) < n. Note that F ⊆ Dconn
δ<n .

We introduce relevant definitions and constructions from [38] as follows.

(1) For every equivalence relation ≡ over dom(A), the quotient of A by ≡, denoted A/≡

is the quotient of A by the partition {[a]≡ | a ∈ dom(A)} (cf. Definition 2.14 for the

quotient of A by a partition θ of dom(A)).

Let n ∈ Z+.

(2) The structure Ln has domain dom(Ln) := {0, . . . , n} and relationRLn :=
⋃n−1
i=0 {i, i+ 1}r

for every r-ary relation symbol R ∈ σ.

(3) Let ≡n be the equivalence relation over the domain of the product structure A⊗A⊗Ln

such that for all (a1, a2, b), (a
′
1, a
′
2, b
′) ∈ dom(A ⊗ A ⊗ Ln), we have (a1, a2, b) ≡n

(a′1, a
′
2, b
′) if

159

• a1 = a′1 and b = b′ = 0, or

• a2 = a′2 and b = b′ = n, or

• a1 = a′1, a2 = a′2 and b = b′.

Let B0(A, n) and B1(A, n) be the substructure of (A ⊗A ⊗ Ln)/≡n induced by the

sets

{[(a1, a2, b)]≡n | a1, a2 ∈ dom(A) and b ∈ [0, n− 1]}

and

{[(a1, a2, b)]≡n | a1, a2 ∈ dom(A) and b ∈ [n]},

respectively. That is, B0(A, n) is induced by removing the elements whose third co-

ordinate is n and B1(A, n) by removing the elements whose third coordinate is 0, in

(A⊗A⊗ Ln)/≡n.

For convenience, let us call the substructure of A⊗A⊗Ln induced by the elements

whose third coordinate is in [i, j] the layer(s) i-j of A⊗A⊗Ln, and call layer i for layer(s)

i-i; likewise for (A⊗A⊗ Ln)/≡n. Thus, B0(A, n) is the layer(s) 0-(n− 1) of A⊗A⊗ Ln

and B1(A, n) is the layer(s) 1-n of A⊗A⊗ Ln.

Remark 5.4. Note that the elements in a tuple of a relation only span across two consec-

utive layers of A⊗A⊗ Ln, and likewise for (A⊗A⊗ Ln)/≡n.

A visualization for the four structures A⊗A⊗Ln, (A⊗A⊗Ln)/≡n, B0(A, n+1)

and B1(A, n + 1) is given in Figure 5.1. (Layer 0 and layer n, i.e., the bottom layer and

the top layer, from (A⊗A⊗Ln)/≡n, are marked with a down arrow ↓ and an up arrow ↑,

respectively.)

160

Figure 5.1: Visualization of A⊗A⊗Ln, (A⊗A⊗Ln)/≡n, B0(A, n+ 1) and B1(A, n+ 1)
in the proof of Theorem 5.15.

layer n
layer (n− 1)

...
layer 1
layer 0

A⊗A⊗ Ln

layer n ↑
layer (n− 1)

...
layer 1
layer 0 ↓
(A⊗A⊗ Ln)/≡n

layer n
layer (n− 1)

...
layer 1
layer 0 ↓

B0(A, n+ 1)

layer n ↑
layer (n− 1)

...
layer 1
layer 0

B1(A, n+ 1)

Remark 5.5. For all n ∈ Z+, i ∈ [0, n− 1], j ∈ [0, n− i− 1], k ∈ [0, n− i− j] and

l ∈ [0, n− i− j + 1], the following are straight from definition.

(a) Layer(s) 0-i of (A⊗A⊗Ln)/≡n is isomorphic to layer(s) 0-i of (A⊗A⊗Ln+1)/≡n+1,

and layer(s) (n− i)-n of (A⊗A⊗Ln)/≡n is isomorphic to layer(s) (n− i+ 1)-(n+ 1)

of (A⊗A⊗ Ln+1)/≡n+1.

(b) Layer(s) (i + 1)-(i + j + 1) of (A ⊗ A ⊗ Ln+1)/≡n+1, layer(s) (i + k)-(i + j + k) of

A⊗A⊗ Ln and layer(s) (i+ l)-(i+ j + l) of A⊗A⊗ Ln+1 are mutually isomorphic.

Now, let P := (B0(A, n + 1) ⊕ B1(A, n + 1)) and Q := (((A ⊗A ⊗ Ln)/≡n) ⊕

(A⊗A⊗ Ln)). Then, we refer to the two results from [38].

(a) For every n ∈ Z+, we have B0(A, n)→ A and B1(A, n)→ A.

(b) CSP(A) is FO-definable if and only if ((A⊗A⊗ Ln)/≡n)→ A for some n ∈ Z+.

By Proposition 3.14(c), it follows that P ∈ CSP(A) while Q /∈ CSP(A).

Next, we will show that hom(C,P) = hom(C,Q) for all structures C ∈ Dconn
δ<n ,

i.e., lpfD
conn
δ<n (P) = lpfD

conn
δ<n (Q). Then, it will immediately follow that lpfF (P) = lpfF (Q)

since F ⊆ Dconn
δ<n .

Without loss of generality, assume that in terms of the third coordinate, the

161

Figure 5.2: Visualization of P and Q in the proof of Theorem 5.15.

layer (2n+ 1) ↑
layer 2n

...
layer (n+ 2)
layer (n+ 1)

layer n
layer (n− 1)

...
layer 1
layer 0 ↓

P

layer (2n+ 1)
layer 2n

...
layer (n+ 2)
layer (n+ 1)

layer n ↑
layer (n− 1)

...
layer 1
layer 0 ↓

Q

B0(A, n+ 1)-portion precedes the B1(A, n+ 1)-portion in P, and the ((A⊗A⊗Ln)/≡n)-

portion precedes the (A⊗A⊗ Ln)-portion in Q. More precisely, let

dom(P) := {(a1, a2, b) | (a1, a2, b) ∈ dom(B0(A, n+ 1))}]

{(a1, a2, b+ n+ 1) | (a1, a2, b) ∈ dom(B1(A, n+ 1))},

dom(Q) := {(a1, a2, b) | (a1, a2, b) ∈ dom((A⊗A⊗ Ln)/≡n)}]

{(a1, a2, b+ n+ 1) | (a1, a2, b+ n+ 1) ∈ dom(A⊗A⊗ Ln)}.

We adopt the same naming scheme concerning layer(s) i-j as earlier. A visualization for

the two structures P and Q are given in Figure 5.2.

Let

• P1 and Q1 be the direction sum of layers 0-(n− 1) and layers (n+ 1)-2n of P and Q,

respectively,

• P2 and Q2 be the layers 1-n of P and Q, respectively, and

• P3 and Q3 be the layers (n+ 2)-(2n+ 1), respectively.

By Remark 5.5, there are three isomorphisms π1 : P1
∼= Q1, π2 : P2

∼= Q3 and π3 : P3
∼= Q2.

162

Let C′ ∈ Dconn
δ<n be an arbitrary structure, it is easy to establish a bijection f from

the set Inj(C′,P) to the set Inj(C′,Q) of injective homomorphisms: For every injective

homomorphism i : C′ → P, the image i(C′) is contained as a substructure in either P1,

P2 or P3 because C′ is connected and has diameter δ(C′) < n (and by Remark 5.4), and

likewise for every injective homomorphism i′ : C′ → Q. Thus, let

f(h) :=



π1 ◦ i if i(C′) ⊆ P1,

π2 ◦ i if i(C′) ⊆ P2,

π3 ◦ i if i(C′) ⊆ P3,

i.e., i(C′) ⊆ P1 if and only if (π1 ◦ i)(C′) ⊆ Q1, i(C′) ⊆ P2 if and only if (π1 ◦ i)(C′) ⊆ Q3,

and i(C′) ⊆ P3 if and only if (π1 ◦ i)(C′) ⊆ Q2.

Hence,

inj(C′,P) = inj(C′,Q) for all C′ ∈ Dconn
δ<n . (∗)

Let C ∈ Dconn
δ<n be an arbitrary structure. Then, for homomorphisms (not neces-

sarily injective) h : C→ P and h′ : C→ Q, the images h(C) and h′(C) are both in Dconn
δ<n ,

163

by Proposition 3.11. We conclude

hom(C,P)

=
∑

C′∈(A/∼=)

sur(C,C′)× inj(C′,P)/aut(C′) (by Proposition 3.8)

=
∑

C′∈((A/∼=)∩Dconn
δ<n)

sur(C,C′)× inj(C′,P)/aut(C′) (by the above discussion)

=
∑

C′∈((A/∼=)∩Dconn
δ<n)

sur(C,C′)× inj(C′,Q)/aut(C′) (by (∗))

=
∑

C′∈(A/∼=)

sur(C,C′)× inj(C′,Q)/aut(C′) (by the above discussion)

= hom(C,Q) (by Proposition 3.8),

as desired.

It follows that deciding whether CSP(A) admits a left query algorithm over B

is NP-complete because deciding whether CSP(A) is FO-definable is NP-complete [38].

(Compare this to CSP(G) for a graph G, for which the corresponding decision problem

is in P, as seen earlier.1) In fact, this statement as well as the characterization given in

Theorem 5.15 generalizes to unions of CSP classes of structures, as can be seen next.

Theorem 5.16. Let A1, . . . ,An be structures. The following are equivalent:

(i)
⋃n
i=1 CSP(Ai) is FO-definable.

(ii)
⋃n
i=1 CSP(Ai) admits a left query algorithm over B.

(iii)
⋃n
i=1 CSP(Ai) admits a left query algorithm over N.

1Interestingly, it is known that CSP(C3) is NP-complete because the membership problem is the same
as 3-COLORABILITY. In contrast, however, it is also known that deciding whether a digraph (i.e., a σ(G)-
structure) admits a homomorphism to a directed 3-cycle is in polynomial time (see [33]).

164

Proof. It is shown in [5] that for all structures A1, . . . ,An, the class
⋃n
i=1 CSP(Ai) is FO-

definable if and only if CSP(Ai) is FO-definable for all i ∈ [n]. This theorem then follows

from Theorem 5.15 and Theorem 5.17 presented next.

Let A1, . . . ,An be structures. We say that A1, . . . ,An are pairwise incomparable

(in terms of the preorder →, see Remark 3.10(b)) if for all distinct i, j ∈ [n], it holds that

Ai 6→ Aj . Note that if Ai → Aj , then CSP(Ai) ⊆ CSP(Aj) and hence removing CSP(Ai)

from the union
⋃n
i=1 CSP(Ai) results in the same class. The next theorem implies that

deciding whether
⋃n
i=1 CSP(Ai) admits a left query algorithm over B is NP-complete.

Theorem 5.17. Let K be the semiring B or N. For all pairwise incomparable structures

A1, . . . ,An, the union
⋃n
i=1 CSP(Ai) admits a left query algorithm over K if and only if

CSP(Ai) admits a left query algorithm over K for all i ∈ [n].

Proof. Fix a semiring K. The statement becomes trivial for n = 1, so we assume n ≥ 2 in

what follows. The “if” direction follows from Proposition 5.6(b). For the “only if” direction,

we will prove its contraposition as follows. Assume that there is some i ∈ [n] such that

CSP(Ai) does not admit any left query algorithm over K and, without loss of generality,

that i = 1.

Let F be an arbitrary finite nonempty class of connected structures. Then, it

follows from the preceding assumption and Remark 5.1(a) that there are two structures P′

and Q′ such that

(1) P′ ∈ CSP(A1),

(2) Q′ /∈ CSP(A1),

165

(3) lpfF (P′) = lpfF (Q′).

In view of Proposition 5.8, it suffices to present two structures P ∈
⋃n
i=1 CSP(Ai) and

Q /∈
⋃n
i=1 CSP(Ai) such that lpfF (P) = lpfF (Q).

For this purpose, observe

(4) A1 ∈ (CSP(A1) \
⋃n
i=2 CSP(Ai)),

by the premise that A1, . . . ,An are pairwise incomparable.

Take P := P′ ⊕ A1 and Q := Q′ ⊕ A1. By Proposition 3.14(b), it follows that

for every F ∈ F , hom(F,P) = hom(F,P′) + hom(F,A1) = hom(F,Q′) + hom(F,A1) =

hom(F,Q), where the first and the third equalities follow from the fact that F is connected.

Thus, lpfF (P) = lpfF (Q).

Moreover, by (1) and (4) we have that P ∈ CSP(A1) ⊆
⋃n
i=1 CSP(Ai). In addi-

tion, by (2) we have that Q /∈ CSP(A1) and, by (4), that Q /∈ CSP(Ai) for any i ∈ [2, n]

by (4). Therefore, Q /∈
⋃n
i=1 CSP(Ai).

By Proposition 5.6(a), the complexity result and the characterization carries over

to the complements of CSP classes, CSP(A), i.e., we have that deciding whether CSP(A)

admits a left query algorithm over B is NP-complete and, by Remark 3.9, that the charac-

terization in Theorem 5.15 holds for CSP(A).

By Proposition 3.14(e), the complexity result and the characterization hold for in-

tersections of CSP classes,
⋂n
i=1 CSP(Ai), i.e., we have that deciding whether

⋂n
i=1 CSP(Ai)

admits a left query algorithm over B is NP-complete and that the characterization in The-

orem 5.15 extends to
⋂n
i=1 CSP(Ai).

166

5.2.2 Homomorphic-Equivalence Classes and Their Unions

In this subsection, we turn our attention from CSP classes to homomorphic-

equivalence classes of structures, in view of the characterization in Theorem 5.15. Recall

that for all structures A,

[A]↔ := {B ∈ A | A↔ B}.

It is immediate that [A]↔ = CQ(A) ∩ CSP(A) (see Subsection 3.2.2).

Lemma 5.18. Let K be the semiring B or N. For every structure A, we have [A]↔ admits

a left query algorithm over K if and only if CSP(A) admits a left query algorithm over K.

Proof. Fix a semiring K. For the “if” part, observe that

[A]↔ = CQ(A) ∩ CSP(A).

It is obvious that CQ(A) admits a left query algorithm over K. The claim follows by

Proposition 5.6(b).

For the “only if” part. Assume that CSP(A) does not admit any left query algo-

rithm over K. Let F be an arbitrary finite nonempty set of structures, which without loss

of generality we may assume to be all connected, by Proposition 5.8. Then, there are two

structures P ∈ CSP(A) and Q /∈ CSP(A) such that lpfFK(P) = lpfFK(Q).

Take P′ := P ⊕A and Q′ := Q ⊕A. By Proposition 3.14(c), we have P′ → A

since P → A, and we have Q′ 6→ A since Q 6→ A. Hence, P′ ∈ [A]↔ while Q′ /∈ [A]↔.

However, for every structure F ∈ F (which is assumed to be connected),

homK(F,P′) = homK(F,P) + homK(F,A) = homK(F,Q) + homK(F,A) = homK(F,Q′),

167

for which the first and the third equalities follow from Proposition 3.14(b), and the second

one from the fact lpfFK(P) = lpfFK(Q). Thus, lpfFK(P′) = lpfFK(Q′), and as a result we have

that [A]↔ does not admit any left query algorithm over K (by Proposition 5.8 in view of

Remark 5.1).

Theorem 5.19. For every structure A, we have [A]↔ admits a left query algorithm over

B if and only if [A]↔ admits a left query algorithm over N.

Proof. It immediate follows from Theorem 5.15 and Lemma 5.18.

As a result, by Lemma 5.18 we have that deciding whether [A]↔ admits a left

query algorithm over B is NP-complete because it is equivalent to deciding whether CSP(A)

admits one, which was seen to be NP-complete in the previous subsection. This statement as

well as the characterization in Theorem 5.19 extends to unions of homomorphic-equivalence

classes.

Theorem 5.20. For all structures A1, . . . ,An, the union
⋃n
i=1[Ai]↔ admits a left query

algorithm over B if and only if
⋃n
i=1[Ai]↔ admits a left query algorithm over N.

Proof. It immediately follows from Theorem 5.19 and the next theorem.

Let A1, . . . ,An be structures. As remarked previously, for each i ∈ [n], deciding

whether [Ai]↔ admits a left query algorithm over B is NP-complete. This, together with

Theorem 5.21 below, implies that deciding whether
⋃n
i=1[Ai]↔ admits a left query algorithm

over B is NP-complete.

168

Theorem 5.21. Let K be the semiring B or N. For all structures A1, . . . ,An, the union⋃n
i=1[Ai]↔ admits a left query algorithm over K if and only if [Ai]↔ admits a left query

algorithm over K for all i ∈ [n].

Proof. Fix a semiring K. The “if” part immediately follows from Proposition 5.6(b). For

the “only if” part, we prove by induction on n. The base case n = 1 is trivial since the

statement is the same on either side.

For the inductive case n ≥ 2, note that, without loss of generality, we can assume

that [A1]↔, . . . , [An]↔ are pairwise disjoint: If [Ai]↔ = [Aj]↔ for some distinct i, j ∈ [n],

then we can remove, say, [Aj]↔ from the union and the resulting union class will remain

unchanged.

We will prove the contraposition: If [Ai]↔ does not admit any left query algorithm

over K for some i ∈ [n], then neither does
⋃n
i=1[Ai]↔. Observe that → is a preorder

among A1, . . . ,An (cf. Remark 3.10(b)) and hence there is a maximal which is, without

loss of generality, assumed to be An: For all i ∈ [n− 1], we have An 6→ Ai. Next, we

distinguish two cases.

Case 1. [An]↔ admits a left query algorithm over K. Then, there is an i ∈

[n− 1] such that [Ai]↔ does not admit any left query algorithm over K. By the induction

hypothesis, we have
⋃n−1
i=1 [Ai]↔ does not admit any left query algorithm over K. By

Proposition 5.6, it follows that
⋃n
i=1[Ai]↔ does not admit any left query algorithm over K

either, because
⋃n−1
i=1 [Ai]↔ = (

⋃n
i=1[Ai]↔) ∩ [An]↔.

Case 2. [An]↔ does not admit any left query algorithm over K. By Lemma 5.18,

we have that CSP(An) does not admit any left query algorithm over K either. Now, let F

169

be an arbitrary finite nonempty class of connected structures (in view of Proposition 5.8).

Then, there are two structures P ∈ CSP(An) and Q /∈ CSP(An) such that lpfFK(P) =

lpfFK(Q), by Remark 5.1. Our goal then is to present two structures P′ ∈
⋃n
i=1[Ai]↔ and

Q′ /∈
⋃n
i=1[Ai]↔ such that lpfFK(P′) = lpfFK(Q′).

Take P′ := P ⊕ An and Q′ := Q ⊕ An. It follows that P′ ∈ [An]↔ since P ∈

CSP(An). Hence, P′ ∈
⋃n
i=1[Ai]↔. Moreover, we have Q′ /∈ [An]↔ since Q /∈ CSP(An),

and for all i ∈ [n− 1], we have Q′ /∈ [Ai]↔ since An 6→ Ai. Hence, Q′ /∈
⋃n
i=1[Ai]↔.

However, for every structure F ∈ F , which is connected, we have

homK(F,P′)

= homK(F,P) + homK(F,An) (by Proposition 3.14(b))

= homK(F,Q) + homK(F,An) (since lpfFK(P) = lpfFK(Q))

= homK(F,Q′) (by Proposition 3.14(b)).

Thus, lpfFK(P′) = lpfFK(Q′), and we conclude that
⋃n
i=1[Ai]↔ does not admit any left query

algorithm over K either (by Proposition 5.8 and Remark 5.1).

By Proposition 5.6(a), we have that the characterization in Theorem 5.19 also

holds for the complements of homomorphic-equivalence classes, [A]↔, and that deciding

whether [A]↔ admits a left query algorithm over B is NP-complete.

Furthermore, the complexity result and the characterization extend to intersec-

tions of homomorphic-equivalence classes,
⋂n
i=1[Ai]↔. In fact, for all distinct i, j ∈ [n],

either [Ai]↔ = [Aj]↔ or [Ai]↔ ∩ [Aj]↔ = ∅; in other words, either
⋂n
i=1[Ai]↔ collapses

to some [Ai]↔ or
⋂n
i=1[Ai]↔ = ∅. Therefore, deciding whether

⋂n
i=1[Ai]↔ admits a left

query algorithm over B is NP-complete and the characterization in Theorem 5.19 holds for

170

⋂n
i=1[Ai]↔.

It is not yet clear whether the full characterization involving FO-definability in

Theorem 5.16 holds for homomorphic-equivalence classes of structures and their unions,

complements and intersections. We will see that the answer is “yes” in the next subsection.

5.2.3 Two More Characterizations

In this subsection, we give two more characterizations about admitting a left query

algorithm (over B or over N), one in Theorem 5.22 and the other in Corollary 5.25. These

characterizations, as well as other results mentioned here, are from [8].

At the beginning of Section 5.2, we saw that if a class D admits a left query

algorithm over B, then it is FO-definable and closed under homomorphic equivalence (cf.

Proposition 5.11). It turns out that the converse is also true.

Theorem 5.22. Let D be a class of structures. The following are equivalent:

(i) D admits a left query algorithm over B.

(ii) D is a Boolean combination of CQ classes.

(iii) D is definable by a Boolean combination of PP-sentences.

(iv) D is FO-definable and closed under homomorphic equivalence.

The preceding theorem immediately implies the corollary below, by which we have

a full characterization as in Theorem 5.16 for homomorphic-equivalence classes and their

complements, intersections and unions, as remarked at the end of the previous subsection.

Corollary 5.23. For every class D of structures closed under homomorphic equivalence,

we have D admits a left query algorithm over B if and only if D is FO-definable.

171

A more general characterization than Theorem 5.15 is given in Corollary 5.25,

which is a direct consequence of Theorem 5.24 next.

Theorem 5.24. Let D be a class of structures closed under homomorphic equivalence.

For every finite nonempty class F of connected structures, we have D admits a left query

algorithm over B of the form (F , X) if and only if D admits a left query algorithm over N

of the form (F , X ′).

Corollary 5.25. Let D be a class of structures closed under homomorphic equivalence. The

following are equivalent:

(i) D is FO-definable.

(ii) D admits a left query algorithm over B.

(iii) D admits a left query algorithm over N.

In particular, for every class D of structures that is a Boolean combination of CSP

classes or of homomorphic-equivalence classes, it is closed under homomorphic equivalence;

hence, it is FO-definable if and only if it admits a left query algorithm over B, and if and

only if it admits a left query algorithm over N.

5.3 Right Query Algorithms

A prominent example of a class admitting a right query algorithm over B is a CSP

(cf. Example 5.7). In this section, we derive characterizations for certain classes to admit a

right query algorithm over B (and over N in some limited cases).

172

5.3.1 CQ Classes and Their Boolean Combinations

For every graph G, we have, by definition, that CQ(G) admits the left 1-query

algorithm ({G}, {1}) over B and the left 1-query algorithm ({G},Z+) over N (by Propo-

sition 5.1) and, by Remark 5.2, that CQ(G) is FO-definable. However, it is not yet clear

when CQ(G) admits a right query algorithm over B or over N.

Analogous to Subsection 5.2.1, in this subsection we investigate CQ classes in

terms of right query algorithms (mainly over B). We will first give a characterization of

CQ classes of graphs that admit a right query algorithm over B (and also over N), then we

proceed to show that a similar characterization can be obtained for CQ classes of structures,

and finally we conclude with a more general characterization that will imply one for Boolean

combinations of CQ classes of structures that admit a right query algorithm over B.

Lemma 5.26. Let G be a graph. The following are equivalent:

(i) G is 2-colorable.

(ii) CQ(G) admits the right 1-query algorithm ({I1},B) or the right 1-query algorithm

({I1}, {0})) over B.

(iii) CQ(G) admits the right 1-query algorithm ({I1},N) or the right 1-query algorithm

({I1}, {0})) over N.

(iv) CQ(G) admits a right query algorithm over B.

(v) CQ(G) admits a right query algorithm over N.

Proof. The directions from (ii) to (iv) and from (iii) to (v) are trivial, while those from (ii)

to (iii) and from (iv) to (v) are by Proposition 5.1.

173

For the direction from (i) to (ii), we consider the two cases below.

Case 1. G has chromatic number χ(G) = 1. Then, G is an independent set, which

means that CQ(G) = G. By Example 5.1, we have ({I1},B) as a right 1-query algorithm

over B for CQ(G).

Case 2. G has chromatic number χ(G) = 2. Then, CQ(G) = CQ(K2) because G

is homomorphically equivalent to K2, which implies for every graph H that H ∈ CQ(G)

if and only if H /∈ I, the class of independent sets. By Example 5.2 and (the proof of)

Proposition 5.6(a), CQ(G) admits the right 1-query algorithm ({I1}, {0}) over B.

Finally, we argue that not (i) implies not (v). If G is not 2-colorable, then it must

contain Cn as a subgraph where n ≥ 3 is an odd integer, by Proposition 2.4. Note that G

has odd girth γodd(G) ≤ n.

Assume that F is an arbitrary class of k graphs, where k ∈ Z+. Take Kp where p is

greater than the size of G as well as the maximum size of the graphs in F . By Theorem 2.5,

there exists a graph H with girth γ(H) ≥ n+ 1 and chromatic number χ(H) greater than

the maximum chromatic number of the graphs in F . Hence, γodd(H) ≥ n + 1 because

γodd(H) ≥ γ(H). It follows that Kp ∈ CQ(G) while H /∈ CQ(G) (by Corollary 3.13(a)),

but rpfFN(Kp) = (0, . . . , 0︸ ︷︷ ︸
k-times

) = rpfFN(H). The result follows from Remark 5.1.

In the context for graphs, that is, when U = G, we say that a PP[σ(G)]-sentence

ϕ is acyclic if the graph corresponding to its canonical structure Aϕ is acyclic.

An analysis of the condition that G is 2-colorable in Lemma 5.26 leads to a further

characterization of when CQ(G) admits a right query algorithm over B and over N, in

analogy to Theorem 5.13.

174

Theorem 5.27. Let G be a graph. The following are equivalent:

(i) CQ(G) is definable by a Boolean combination of acyclic PP-sentences.

(ii) CQ(G) admits a right query algorithm over B.

(iii) CQ(G) admits a right query algorithm over N.

Proof. By Theorem 5.26, it suffices to show that for every graph G, it is 2-colorable if

and only if CQ(G) is definable by a Boolean combination of acyclic PP-sentences. We

distinguish two cases as follows.

Case 1. G is 2-colorable. By the proof of Theorem 5.26, if G has chromatic number

χ(G) = 1, then CQ(G) = G and hence we can choose ϕ := (∃x∃y E(x, y)∨¬∃x∃y E(x, y)).

Otherwise, χ(G) = 2, hence CQ(G) = CQ(K2) and it suffices to take ϕ := ∃x∃y E(x, y).

Obviously, in both situations, CQ(G) = Mod(ϕ) and ϕ is a Boolean combination of acyclic

PP-sentences.

Case 2. G is not 2-colorable. Then, G contains a cycle of odd length ≥ 3, by

Proposition 2.4. That is, γodd(G) <∞. Suppose, for the contrary, that CQ(G) = Mod(ϕ),

where ϕ is a Boolean combination of the acyclic PP[σ(G)]-sentences ϕ1, . . . , ϕn, where

n ∈ Z+. We have G |= ϕ since G ∈ CQ(G). Let F1, . . . ,Fn be the graphs corresponding

to the canonical structures Aϕ1 , . . . ,Aϕn ; note that Fi is acyclic and E (Fi) 6= ∅ for all

i ∈ [n]. Without loss of generality, we assume that ϕ is in disjunctive normal form such

that for every i ∈ [n], each disjunct of ϕ contains either ϕi or ¬ϕi in its conjunction and,

in addition, we assume for some k ∈ [0, n] that ϕ1, . . . , ϕk are those among ϕ1, . . . , ϕn that

hold in G. We further distinguish two cases.

Case 2-1. k = 0. Then, G |= (¬ϕ1∧· · ·∧¬ϕn) and hence Mod(¬ϕ1∧· · ·∧¬ϕn) ⊆

175

Mod(ϕ). For all i ∈ [n], as E (Fi) 6= ∅, we have Fi 6→ I1 and hence I1 |= ¬ϕi (by

Proposition 5.9(a) in view of Remark 5.3). Therefore, I1 |= (¬ϕ1 ∧ · · · ∧ ¬ϕn). It follows

that I1 ∈ Mod(ϕ) = CQ(G), a contradiction because G is not 2-colorable.

Case 2-2. k > 0. Then, G |= (
∧k
i=1 ϕi ∧

∧n
i=k+1 ¬ϕi) and hence Mod(

∧k
i=1 ϕi ∧∧n

i=k+1 ¬ϕi) ⊆ Mod(ϕ). For all i ∈ [n], we have Fi → G if and only if i ∈ [k], by

Proposition 5.9(a) in view of Remark 5.3. Take H = F1 ⊕ · · · ⊕ Fk. Then, H is an acyclic

graph (thus, γodd(H) = ∞) and H → G (by Proposition 3.14(c)). In fact, for all i ∈ [n],

we have Fi → H if and only if i ∈ [k]:

• If i ∈ [k], then obviously Fi → H as Fi ⊆ H.

• If i /∈ [k], then Fi 6→ H since H→ G and Fi 6→ G.

By Proposition 5.9(a) in view of Remark 5.3 again, we have H |= (
∧k
i=1 ϕi ∧

∧n
i=k+1 ¬ϕi).

It follows that H ∈ Mod(ϕ) = CQ(G), a contradiction to Corollary 3.13(a).

From the proof of Lemma 5.26, we can extract a trichotomy for CQ classes that

is analogous to Corollary 5.14 for CSP classes.

Corollary 5.28. Let G be a graph, and consider the acyclic PP-sentence ϕ = ∃x∃y E(x, y).

If G is an independent set, then CQ(G) = Mod(ϕ∨¬ϕ). If G is a bipartite graph containing

an edge, then CQ(G) = Mod(ϕ). Otherwise, CQ(G) is not definable by any Boolean

combination of acyclic PP-sentences.

In the context of structures, i.e., when U = A, we say that a PP-sentence ϕ is

acyclic if the canonical structure Aϕ is acyclic. For A ∈ U , we say that the class CQ(A) is

acyclic if A is acyclic.

176

A proof for the next proposition can be done analogously to the one for Proposi-

tion 5.10 and hence is omitted.

Proposition 5.29. For every class D ⊆ U , we have that D is a Boolean combination

of acyclic CQ classes if and only if D is definable by a Boolean combination of acyclic

PP-sentences.

Next, we will turn attention to CQ classes of structures in view of the character-

ization in Theorem 5.27. Many of the results presented next as well as their proofs are

from [8].

We have for CQ classes of structures a similar characterization to Theorem 5.27

for CQ classes of graphs, and it is an instance of Corollary 5.34 presented later on. Indeed,

such a characterization holds for Boolean combinations of CQ classes of structures, and we

will see it after Corollary 5.34.

Theorem 5.30. Let A be a structure. The following are equivalent:

(i) CQ(A) admits a right query algorithm over B.

(ii) CQ(A) is definable by a Boolean combination of acyclic PP-sentences.

(iii) CQ(A) is a Boolean combination of FO-definable CSP classes.

We saw in Example 5.6 that the class CQ(K3) of graphs does not admit any right

query algorithm over B (nor over N).

Similarly, if we consider a counterpart to K3 that is a structure, namely, the

σ(G)-structure A for which dom(A) := {a1, a2, a3} and EA := {(a1, a2), (a2, a3), (a3, a1)},

then the class CQ(A) of σ(G)-structures does not admit any right query algorithm over B,

177

either. In fact, A has girth γ(A) = 3, and the statement that CQ(A) does not admit such

an algorithm follows from the theorem presented next known as the Sparse Incomparability

Lemma for structures (cf. Lemma 2.5). More precisely, for every finite nonempty class F of

σ(G)-structures, we let n be the maximum size of the σ(G)-structures in F . The theorem

then guarantees the existence of a structure B of girth γ(B) ≥ 4 for which homB(A,C) =

homB(B,C) for all σ(G)-structures C of size ≤ n, hence lpfFB (A) = lpfFB (B). Obviously,

we have A ∈ CQ(A). However, B /∈ CQ(A) by Corollary 3.13(b).

Theorem 5.31. [37] Let m,n ∈ Z+. For every structure A, there is a structure B of

girth γ(B) ≥ m such that for all structures C of size ≤ n, we have A → C if and only if

B→ C.

We see that the above class CQ(A) is FO-definable and closed under homomorphic

equivalence, and it admits a left query algorithm over B (by the discussions in Sections 5.1

and 5.2). Nevertheless, we also see that it does not admit any right query algorithm B,

just earlier. It is natural to ask: What is a characterization of classes being FO-definable

and closed under homomorphic equivalence and admitting a right query algorithm over B

at the same time? Equivalently (by Theorem 5.22), what is a characterization of classes

admitting both a left query algorithm and a right query algorithm over B? We have an

answer as follows.

Theorem 5.32. Let D be a class of structures. The following are equivalent:

(i) D admits both a left query algorithm and a right query algorithm over B.

(ii) D admits a left query algorithm over N and a right query algorithm over B.

178

(iii) D is definable by a Boolean combination of acyclic PP-sentences.

(iv) D is a Boolean combination of acyclic CQ classes.

(v) D is a Boolean combination of FO-definable CSP classes.

To prove this theorem, we will need the following result. The reader is reminded

of Definition 5.3 for a finite homomorphism duality.

Theorem 5.33. [24] Let A be a structure. The following are equivalent:

(i) A is homomorphically equivalent to an acyclic structure.

(ii) There exists a finite homomorphism duality of the form ({A}, E).

(iii) There exists a finite homomorphism duality of the form ({A}, E) for which CSP(E) is

FO-definable for every structure E ∈ E.

Proof of Theorem 5.32. The equivalence between (i) and (ii) follows from Corollary 5.25

in view of Proposition 5.3, and the equivalence between (iii) and (iv) is given in Proposi-

tion 5.29. The direction from (v) to (i) follows by Proposition 5.3, Proposition 5.7(b) and

Theorem 5.22.

For the direction from (iv) to (v), assume that D is a Boolean combination of the

classes CQ(A1), . . . ,CQ(An), where A1, . . . ,An are all acyclic structures. For all i ∈ [n],

since Ai ↔ Ai and Ai is acyclic, by Theorem 5.33 we have that CQ(Ai) =
⋂

E∈E CSP(E),

where CSP(E) is FO-definable for every structure E ∈ E . It follows that D is a Boolean

combination of FO-definable CSP classes.

Finally, for the direction from (i) to (iii), assume that D admits a right query

algorithm (F , X) over B and a left query algorithm over B, which, by Theorem 5.22, implies

179

that D is definable by a Boolean combination ϕ of ϕ1, . . . , ϕk that are PP-sentences, where

k ∈ Z+. In other words, D = Mod(ϕ). Let m ∈ Z+ be greater than the maximum size

among Aϕ1 , . . . ,Aϕi .

For all i ∈ [k], let A(i,1), . . . ,A(i,ji) enumerate the acyclic homomorphic images of

Aϕi , where ji ∈ N, and let

ϕ′i :=


ϕCi ∧ ¬ϕCi if ji = 0,

∨ji
r=1 ϕ

A(i,r) otherwise,

where Ci is an arbitrarily chosen acyclic structure. Then, it follows that Mod(ϕ′i) admits a

right query algorithm over B:

• If ji = 0, then Mod(ϕ′i) = ∅ and hence admits a trivial right query algorithm over B

(cf. Example 5.1).

• Otherwise, for all r ∈ [ji], we have that A(i,r) ↔ A(i,r) and, since A(i,r) is acyclic,

that CQ(A(i,r)) is equal to a Boolean combination of (indeed, an intersection of the

respective complements of) CSP classes by Theorem 5.33, and hence it admits a right

query algorithm over B, by Proposition 5.7(b). Thus, Mod(ϕA(i,r)) admits a right

query algorithm over B because CQ(A(i,r)) = Mod(ϕA(i,r)), by Proposition 5.9(b).

Consequently, Mod(ϕ′i) admits a right query algorithm over B, by Proposition 5.6(b)

in view of Remark 3.9.

Let ϕ′ be obtained from ϕ by replacing ϕi with ϕ′i for all i ∈ [k], then it follows,

from the previous discussion, and by Proposition 5.6 in view of Remark 3.9, that Mod(ϕ′)

admits a right query algorithm over B, say (F ′, X ′). Let n be the maximum size of the

structures occurring in F ∪ F ′.

180

By construction, ϕ′ is a Boolean combination of acyclic PP-sentences. We are

done after we show that Mod(ϕ′) = Mod(ϕ) (recall D = Mod(ϕ)).

For this purpose, let A be an arbitrary structure. With the integers m and n

chosen above, Theorem 5.31 guarantees the existence of a structure B of girth γ(B) ≥ m

such that for all structures C of size ≤ n, we have A → C if and only if B → C, which

implies that

(1) rpfFB (A) = rpfFB (B),

(2) rpfF
′

B (A) = rpfF
′

B (B).

Next, we argue that for all i ∈ [k], it holds that B ∈ Mod(ϕi) if and only if

B ∈ Mod(ϕ′i). We distinguish two cases.

Case 1. Aϕi has no acyclic homomorphic images. In particular, Aϕi contains a

cycle (thus has a finite girth) and Aϕi 6→ B by Corollary 3.13(b) and the fact that B has

girth γ(B) ≥ m. Thus, B /∈ Mod(ϕi) by Proposition 5.9(a), and B /∈ ∅ = Mod(ϕCi ∧

¬ϕCi) = Mod(ϕ′i).

Case 2. Aϕi has acyclic homomorphic images. Assume that these images are

A(i,1), . . . ,A(i,ji). Then, Aϕi → A(i,1), . . . ,A
ϕi → A(i,ji). If A(i,r) → B for some r ∈ [ji],

then Aϕi → B. Conversely, if Aϕi → B, then A(i,r) ⊆ B and hence A(i,r) → B for some

r ∈ [ji], because B has girth γ(B) ≥ m, which is greater than the size of Aϕi . That is,

Aϕi → B if and only if A(i,r) → B for some r ∈ [ji]. By Proposition 5.9(a) in view of

Remark 3.9, we have B ∈ Mod(ϕi) if and only if B ∈ Mod(
∨ji
r=1 ϕ

A(i,r)) = Mod(ϕ′i).

Hence,

(3) B ∈ Mod(ϕ) if and only if B ∈ Mod(ϕ′).

181

Putting all things together, we have

A ∈ Mod(ϕ)

iff rpfFB (A) ∈ X

iff rpfFB (B) ∈ X (by (1))

iff B ∈ Mod(ϕ)

iff B ∈ Mod(ϕ′) (by (3))

iff rpfF
′

B (B) ∈ X ′

iff rpfF
′

B (A) ∈ X ′ (by (2))

iff A ∈ Mod(ϕ′),

as desired.

Since for every class D, it is FO-definable and closed under homomorphic equiva-

lence if and only if it admits a left query algorithm over B (by Theorem 5.22), as a conse-

quence of Theorem 5.32, we have the following characterization similar to Corollary 5.25.

Corollary 5.34. Let D be a FO-definable class of structures closed under homomorphic

equivalence. The following are equivalent:

(i) D admits a right query algorithm over B.

(ii) D is definable by a Boolean combination of acyclic PP-sentences.

(iii) D is a Boolean combination of FO-definable CSP classes.

In particular, all Boolean combinations of CQ classes of structures admit a left

query algorithm over B and hence are FO-definable and closed under homomorphic equiv-

alence (by the discussions in Sections 5.1 and 5.2). As a consequence of Corollary 5.34,

they admit a right query algorithm over B if and only if they are definable by a Boolean

182

combination ϕ of acyclic PP-sentences, and if and only if they are a Boolean combination

of FO-definable CSP classes.

5.3.2 Homomorphic-Equivalence Classes and Their Unions

We turn to homomorphic-equivalence classes of structures and a characterization

of when a union of such classes admits a right query algorithm over B or over N. Many of

the results presented in this subsection as well as their proofs are from [8]. We start with

an analogue for CQ classes of structures to Lemma 5.18.

Lemma 5.35. Let K be the semiring B or N. For every structure A, we have that [A]↔

admits a right query algorithm over K if and only if CQ(A) admits a right query algorithm

over K.

Proof. Fix a semiring K. For the “if” part, observe that

[A]↔ = CQ(A) ∩ CSP(A).

It is obvious that CSP(A) admits a right query algorithm over K. The claim follows by

Proposition 5.6(b).

For the “only if” part. Assume that CQ(A) does not admit any right query

algorithm over K. Let F be an arbitrary finite nonempty set of structures. For the class

F ′ := {F ↑A | F ∈ F}, there are two structures P ∈ CQ(A) and Q /∈ CQ(A) such that

rpfF
′

K (P) = rpfF
′

K (Q), by Remark 5.1, which implies rpfFK(A ⊗ P) = rpfFK(A ⊗ Q), by

Proposition 3.15. Our goal is to present two structures P′ ∈ [A]↔ and Q′ /∈ [A]↔ such that

rpfFK(P′) = rpfFK(Q′).

183

Take P′ := A ⊗ P and Q′ := A ⊗ Q. Then, it is immediate that rpfFK(P′) =

rpfFK(Q′). By parts (d) and (e) of Proposition 3.14, we have P′ ∈ [A]↔ since A→ P, and

we have Q′ /∈ [A]↔ since A 6→ Q. Thus, by Remark 5.1, [A]↔ does not admit any right

query algorithm over K.

Theorem 5.36. Let A be a structure. The following are equivalent:

(i) [A]↔ admits a right query algorithm over B.

(ii) CQ(A) admits a right query algorithm over B.

(iii) A is homomorphically equivalent to an acyclic structure.

Proof. The equivalence between (i) and (ii) immediately follows from Lemma 5.35.

For the direction from (iii) to (i), assume that A is homomorphically equivalent to

an acyclic structure. Then, by Theorem 5.33, there is a finite homomorphism duality of the

form ({A}, E). Therefore, CQ(A) =
⋂

E∈E CSP(E), which, by Proposition 5.7(b), admits a

right query algorithm over B. Moreover, CSP(A) obviously admits a right query algorithm

over B. Since [A]↔ = CQ(A)∩CSP(A), it follows by Proposition 5.6(b) that [A]↔ admits

a right query algorithm over B.

Finally, for the direction from (ii) to (iii), we will argue as in the proof for the

direction from (i) to (iii) of Theorem 5.32. Assume that CQ(A) has a right query algorithm

(F , X) over B. Then, A must have acyclic homomorphic images: If all homomorphic

images of A contain a cycle, then in particular, A contains a cycle and hence has a finite

girth. Let m > |dom(A)| ≥ γ(A) and let n be the maximum size of the structures in

F , then Theorem 5.31 implies the existence of a structure B with γ(B) ≥ m such that

184

for all structures C of size ≤ n, it holds that A → C if and only if B → C. Thus,

rpfFB (A) = rpfFB (B) and we have A ∈ CQ(A) if and only if B ∈ CQ(A), a contradiction

because A 6→ B (by Corollary 3.13).

Therefore, A has acyclic homomorphic images A1, . . . ,As. Take ϕ′ :=
∨s
r=1 ϕ

Ar ,

and argue as in the proof in Theorem 5.32 (for the direction from (i) to (iii)), we have that

Mod(ϕ′) has a right query algorithm (F ′, X ′) over B. Let n be the maximum size of the

structures in F∪F ′, and let m > |dom(A)| ≥ γ(A). We can likewise argue that Mod(ϕA) =

Mod(ϕ′), with ϕA in the role of ϕ in the proof there (note that CQ(A) = Mod(ϕA) by

Proposition 5.9(b)). Since A ∈ CQ(A) = Mod(ϕA) = Mod(ϕ′), we have A ∈ Mod(ϕAr)

and hence Ar → A (by Proposition 5.9(b)) for some r ∈ [s]. Besides, we have A → Ar,

since Ar is a homomorphic image of A. Therefore, A is homomorphically equivalent to Ar,

an acyclic structure.

Thus, from Theorem 5.36 it holds that deciding whether A is homomorphically

equivalent to an acyclic structure is NP-complete: Testing whether A is homomorphically

equivalent to an acyclic structure amounts to testing whether the core of A is acyclic, a

task that is in NP and whose NP-hardness follows from [12]. Thus, it follows that both

deciding whether CQ(A) admits a right query algorithm over B is NP-complete and that

deciding whether [A]↔ admits a right query algorithm over B is NP-complete.

Finally, we present an analogue of Theorem 5.21 for right query algorithms over B

or over N, from which it will follow that deciding whether
⋃n
i=1[Ai]↔ admits a right query

algorithm over B is NP-complete.

Theorem 5.37. Let K be the semiring B or N. For all structures A1, . . . ,An, the union

185

⋃n
i=1[Ai]↔ admits a right query algorithm over K if and only if [Ai]↔ admits a right query

algorithm over K for all i ∈ [n].

Proof. Fix a semiring K. The “if” part immediately follows from Proposition 5.6(b). For

the “only if” part, we prove by induction on n. The base case n = 1 is trivial since the

statement is the same on either side.

For the inductive case n ≥ 2, note that, without loss of generality, we can assume

that [A1]↔, . . . , [An]↔ are pairwise disjoint: If [Ai]↔ = [Aj]↔ for some distinct i, j ∈ [n],

then we can remove, say, [Aj]↔ from the union and the resulting union class will remain

unchanged.

We will prove the contraposition: If [Ai]↔ does not admit any right query algorithm

over K for some i ∈ [n], then neither does
⋃n
i=1[Ai]↔. Observe that→ is a preorder among

A1, . . . ,An (cf. Remark 3.10(b)) and hence there is a minimal which is, without loss of

generality, assumed to be An: For all i ∈ [n− 1], we have Ai 6→ An. Next, we distinguish

two cases.

Case 1. [An]↔ admits a right query algorithm over K. Then, there is an i ∈ [n− 1]

such that [Ai]↔ does not admit any right query algorithm over K. By the induction

hypothesis, we have
⋃n−1
i=1 [Ai]↔ does not admit any right query algorithm over K. By

Proposition 5.6, it follows that
⋃n
i=1[Ai]↔ does not admit any right query algorithm over

K either, because
⋃n−1
i=1 [Ai]↔ = (

⋃n
i=1[Ai]↔) ∩ [An]↔.

Case 2. [An]↔ does not admit any right query algorithm over K. By Lemma 5.35,

we have that CQ(An) does not admit any right query algorithm overK either. Now, let F be

an arbitrary finite nonempty class of structures. Then, for the class F ′ := {F ↑An | F ∈ F},

186

there are two structures P ∈ CQ(An) and Q /∈ CQ(An) such that rpfF
′

K (P) = rpfF
′

K (Q),

by Remark 5.1, which implies rpfFK(An ⊗ P) = rpfFK(An ⊗Q), by Proposition 3.15. Our

goal then is to present two structures P′ ∈
⋃n
i=1[Ai]↔ and Q′ /∈

⋃n
i=1[Ai]↔ such that

rpfFK(P′) = lpfFK(Q′).

Take P′ := An ⊗P and Q′ := An ⊗Q. By parts (d) and (e) of Proposition 3.14,

we have

• P′ ∈ [An]↔ since P ∈ CQ(An),

• Q′ /∈ [An]↔ since Q /∈ CQ(An),

• for all i ∈ [n− 1], Q′ /∈ [Ai]↔ since Ai 6→ An.

Therefore, P′ ∈
⋃n
i=1[Ai]↔ and Q′ /∈

⋃n
i=1[Ai]↔. It follows from Remark 5.1 that

⋃n
i=1[Ai]↔

does not admit any right query algorithm over K either.

5.4 Adaptive Homomorphism-Count Queries and Graph Iso-

morphism

In [10], Y. Chen, J. Flum, M. Liu, and Z. Xun show that there is a construction

of two graphs E1 = E1(n) and E2 = E2(n) as functions of n ∈ N+ such that for all graphs

G and H each of size n, they are isomorphic if and only if hom(E1,G) = hom(E1,H)

and hom(E2,G) = hom(E2,H). This results in a procedure shown in Figure 5.3 for the

decision problem GRAPH-ISOMORPHISM (see Section 2.2 for more details), with access to an

oracle that computes homomorphism counts over N. Recall that hom(I1,G) = |V (G)| for

all graphs G.

187

Figure 5.3: Pseudocode for Graph-Isomorphism.

Graph-Isomorphism(G,H)

1 n = hom(I1,G)

2 n′ = hom(I1,H)

3 if n 6= n′

4 return “no”

5 else

6 construct E1 = E1(n)

7 n1 = hom(E1,G)

8 n′1 = hom(E1,H)

9 if n1 6= n′1

10 return “no”

11 else

12 construct E2 = E2(n)

13 n2 = hom(E2,G)

14 n′2 = hom(E2,H)

15 if n2 6= n′2

16 return “no”

17 else

18 return “yes”

188

They also show that it is, in general, optimal in terms of the number of queries

made to the oracle – at most three for each input graph – for a procedure of the problem

GRAPH-ISOMORPHISM in which all the queries take the form hom(D, ∗), where D is a graph

that depends on the values of the previous queries (i.e., the queries hom(D, ∗) are adaptive)

and has a predetermined construction. Furthermore, they show that no procedure that

makes a bounded number of adaptive queries of the dual form hom(∗,D) in which D has a

predetermined construction is a match in regard to GRAPH-ISOMORPHISM.

However, if we allow a mix of queries of either form in a procedure, then we obtain

one that makes at most two adaptive queries to the oracle for each input graph. In the

following, we state and prove a result from [51].

Theorem 5.38. There is a construction of a graph F = F(n) as a function of n ∈ Z+

such that for all graphs G and H of size n, they are isomorphic if and only if hom(G,F) =

hom(H,F).

This gives rise to a procedure shown in Figure 5.4 for GRAPH-ISOMORPHISM that is

already optimal in terms of the number of queries made to the oracle for each input graph.

Remark 5.6. The devil is in the details: The constructions of E1(n) and E2(n) collectively

and of F(n) in the two aforementioned procedures both have a super-exponential size in n

on the one hand, and computing homomorphism counts over N is #P-complete in general

[17] on the other. Therefore, they do not, by any means, settle the complexity status of

GRAPH-ISOMORPHISM, which is only known to be in NP.

Proof of Theorem 5.38. Recall that, for n ∈ Z+, we write
⊕

n G for the direct sum of n

isomorphic copies of the graph G.

189

Figure 5.4: Pseudocode for Graph-Isomorphism-Revised.

Graph-Isomorphism-Revised(G,H)

1 n = hom(I1,G)

2 n′ = hom(I1,H)

3 if n 6= n′

4 return “no”

5 else

6 construct F = F(n)

7 m = hom(G,F)

8 m′ = hom(H,F)

9 if m 6= m′

10 return “no”

11 else

12 return “yes”

First, observe that given D ∈ Z+, every sequence (a0, . . . , at) of fixed size t+ 1 in

which ai ∈ {0, . . . , D − 1} can be encoded by a unique integer a0 ×D0 + · · ·+ at ×Dt.

Now, let n ∈ Z+ be given, and let F1, . . . ,Fs enumerate the respective represen-

tatives of the isomorphism types of all graphs of size at most n. Our goal is to construct F

such that, for a suitable D ∈ Z+, certain digits in the D-ary representation of hom(G,F)

are hom(G,F1), . . . ,hom(G,Fs), for all graphs G of size n. By the proof of Theorem 4.4

(for the direction from (iii) to (i)), the counts hom(G,F1), . . . ,hom(G,Fs) are sufficient to

190

determine the isomorphism type of G among all graphs of size n.

For this purpose, put

F :=
s⊕
j=1

(⊕
Dej

Fj

)
,

where e1, . . . , es, D ∈ Z+ will be determined later. We write E+
≤n for the set of all integers

that are the sum of at most n (not necessarily distinct) integers from {e1, . . . , es}. By

Proposition 3.14(b) and (c), it follows that if G = G1 ⊕ · · · ⊕Gr is an arbitrary graph of

size n with the r connected components G1, . . . ,Gr, where r ∈ [n], then

hom(G,F)

=
r∏
i=1

hom(Gi,F)

=
r∏
i=1

s∑
j=1

hom(Gi,Fj)×Dej

=
∑
e∈E+≤n

 ∑
j1, . . . , jr ∈ [s] with

ej1
+···+ejr=e

(hom(G1,Fj1)× · · · × hom(Gr,Fjr))

×De.

(+)

The two properties will be desirable:

(1) The outer summation on the last line of (+) is the D-ary representation of hom(G,F).

(2) For all j ∈ [s], the digit for the Drej -place in this D-ary representation of hom(G,F) is

hom(G1,Fj)× · · · × hom(Gr,Fj) = hom(G,Fj).

In what follows, we determine the values of e1, . . . , es and D to achieve the two

desirable properties, based on the (arbitrary) graph G = G1⊕· · ·⊕Gr of size n mentioned

previously.

191

Choose

e1 := 1,

ej+1 := nj + nj−1 + · · ·+ 1 for all j ∈ [s− 1].

It follows that ej+1 > nej for all j ∈ [s − 1] and that e1, . . . , es is a strictly increasing

sequence. Hence, it is easy to show that every integer e ∈ E+
≤n can be expressed as a

unique summation of at most n (not necessarily distinct) integers from {e1, . . . , es} up to

permutation of the summands.2 In particular, for every j ∈ [s], we have rej ∈ E+
≤n and the

only such summation for rej is ej + · · ·+ ej︸ ︷︷ ︸
r-times

. Thus, property (2) holds when property (1)

also holds, that is, when D is sufficiently large.

To determine the value of D, we derive an upper bound on the inner summation

on the last line of (+) for arbitrary e ∈ E+
≤n:

∑
j1, . . . , jr ∈ [s] with

ej1
+···+ejr=e

(hom(G1,Fj1)× · · · × hom(Gr,Fjr))

≤
∑

j1, . . . , jr ∈ [s] with
ej1

+···+ejr=e

(hom(G1,Kn)× · · · × hom(Gr,Kn))

=
∑

j1, . . . , jr ∈ [s] with
ej1

+···+ejr=e

hom(G,Kn)

≤
∑

j1, . . . , jr ∈ [s] with
ej1

+···+ejr=e

nn ≤ r!× nn ≤ n!nn,

where the second last inequality follows from the aforementioned fact about unique sum-

mation up to permutation of summands. Set D := n!nn + 1, then property (1) holds.

Finally, it remains to argue that, given two arbitrary graphs G and H of size n,

they are isomorphic if and only if hom(G,F) = hom(H,F). The “only if” direction is

2For example, the two summations 1 + 2 + 2 + 3 + 3 + 3 and 2 + 1 + 3 + 3 + 2 + 3 are the same up to
permutation of the summands.

192

trivial. Before we deal with the “if” direction, let us notice that hom(G,F) > 0 because

hom(G,G) > 0 and G is among F1, . . . ,Fs, which are subgraphs of F; moreover, the

exponents of D for the nonzero digits in the D-ary representation of hom(G,F) indicate

the number of connected components there are in G, by property (1) and the aforementioned

fact about unique summation up to permutation of summands (see the last line of (+)). The

same also holds for H. Now, for the “if” direction, assume that hom(G,F) = hom(H,F),

then they are identical when expressed in D-ary representation and hence agree on all

digits. In particular, they have the same number of connected components. Furthermore,

by property (2), we have hom(G,Fj) = hom(H,Fj) for all j ∈ [s]. Thus, by an earlier

discussion, G and H are isomorphic.

193

Chapter 6

Concluding Remarks

Logic and homomorphism counts each provide a framework to study various com-

putational problems. The investigation of the expressive power of the framework provided

by different sorts of logic formalisms began as early as in the early 20th century, and that in

the scope of finite structures, as some researchers suggested (see, e.g., [39]), was initiated in

1950 due to the seminal theorem by B. Trakhtenbrot [48] that the set of first-order sentences

satisfied by some finite structure is not decidable or, equivalently, that the set of first-order

sentences satisfied by all finite structures is not recursively enumerable. These researchers

maintain that Trakhtenbrot’s Theorem marked the inception of the now full-fledged field

known as finite model theory. It is noteworthy that Fagin’s Theorem [22] is a landmark

result, which states that the decision problems in NP correspond exactly to the classes

Mod(ϕ) where ϕ is a sentence of existential second-order logic – a logic formalism that ex-

tends first-order logic with relation variables (for relations over the domain of a structure or

over the vertex set of a graph) which, when used in a sentence, must be existentially quan-

194

tified and precede all quantifications of the (ordinary) variables in the prenex normal form

of that sentence – in the vocabulary of the input structures of the corresponding decision

problem; in other words, “NP coincides with existential second-order logic.” In contrast, the

investigation of the expressive power of the framework provided by homomorphism counts

has only begun in recent decades.

In this dissertation, we consider both frameworks and focus on the latter, carrying

out an investigation of its expressive power in (1) capturing various equivalence relations

over graphs that are relaxations of isomorphism in Chapter 4, and (2) query algorithms

over two common semirings for testing properties of graphs or structures in Chapter 5.

A different aspect in which to investigate the expressive power of homomorphism

counts is graph parameter. Recall in Chapter 2 that a graph parameter is a function

that maps a graph to a (real) number and that is invariant under isomorphism, and in

Chapter 3 we saw that the number of n-colorings (obviously a graph parameter) of a graph

G coincides with the homomorphism count hom(G,Kn) (see Example 3.17). In [26], a

necessary and sufficient condition is given of when a graph parameter f : G → R can be

expressed in the form hom(∗,H) for a fixed weighted graph H, i.e., for every graph G, we

have f(G) = hom(G,H). It is natural to ask a dual question.

Future Work 1. Find a necessary and sufficient condition for when a graph parameter

f : G → R can be expressed in the form hom(H, ∗) for some fixed (weighted) graph H, i.e.,

for every graph G, we have f(G) = hom(H,G).

Undoubtedly, it will require a great amount of knowledge and a combination of

mathematical tools developed in various fields to achieve these goals, as exemplified in [41].

195

In Chapter 4, we saw that many results concerning the (non)existence of a charac-

terization in restricted profile of various relaxations of graph isomorphism are obtained by

a tailor-made argument, while only a few – Ck-equivalence, Ck-equivalence, cospectrality,

to be precise – follow from a higher-level metatheorem (Theorem 4.17), which, amounts to

giving a necessary condition for the existence of a characterization of a relaxation of graph

isomorphism in restricted right profile over N.

More recently, a necessary condition for L-equivalence over graphs able to be

characterized in restricted left profile over N for certain logics L is given in [47]. Inspired

by this and Theorem 4.17, we propose the following.

Future Work 2. Find a necessary and sufficient condition for when a relaxation of graph

isomorphism can be characterized in restricted left profile, or in restricted right profile, over

a semiring B or N.

We saw in Chapter 5 (cf. Proposition 5.9) that for every structure (or graph) A,

the class CQ(A) of structures (or graphs, respectively) that admit a homomorphism to A

coincides with the model class Mod(ϕA), where ϕA is the canonical sentence for A, a PP-

sentence that describes A in a “positive” way, i.e., with (existentially quantified) variables

representing the elements in the domain of A the sentence ϕA asserts the presence of the

tuples in the relations in A but not the absence of the tuples not in them; conversely, for

every PP-sentence ϕ, the model class Mod(ϕ) coincides with the class CQ(Aϕ) of structures

(or graphs, respectively) that admit a homomorphism to A.

It is natural to ask whether there exists a logic formalism L such that

(1) for every structure (or graph) A, there exists an L-sentence ψA that depends on A

196

such that CSP(A) coincides with Mod(ψA), and

(2) for every L-sentence ψ, there exists a structure (or graph, respectively) Aψ that depends

on ψ such that Mod(ψ) coincides with CSP(Aψ).

For simplicity, we assume A is a structure in the rest of this paragraph. Intuitively, to

derive such an L we would use set variables (for relations over the domain of a structure)

and let ψA describe A in a “negative” way, i.e., with (existentially quantified) set variables

representing the elements in the domain of A the L-sentence ψA asserts the absence of the

tuples in the relations in A but not the presence of the tuples in them: The idea is that, for

all structures B, a function h : dom(B)→ dom(A) is a homomorphism if and only if for all

r-ary relation symbols R and all elements a1, . . . , ar ∈ dom(A) with (a1, . . . , ar) /∈ RA, there

are no b1 ∈ h−1(a1), . . . , br ∈ h−1(ar) such that (b1, . . . , br) ∈ RB. By extending first-order

logic with set variables which, when used in a sentence, must be existentially quantified

and precede all quantifications of the (ordinary) variables in the prenex normal form of

that sentence, we obtain monadic existential second-order logic, where monadic refers to

the fact that in this logic all relation variables have arity 1 (thus are set variables since

sets are unary relations). Recall Fagin’s Theorem earlier that NP coincides with existential

second-order logic, T. Feder and M. Vardi introduced in [23] the logic monotone monadic

strict NP without inequalities (abbreviated as MMSNP), a fragment of existential second-

order logic (NP), in the quest of a large syntactically defined subclass of NP that exhibits

a dichotomy – every decision problem in this subclass either is in P or is NP-complete, in

view of Schaefer’s Theorem [46]. It turns out that for L = MMSNP, the above (1) holds.

However, it is known that (2) does not necessarily hold [23, 43]. In [42], F. Madelaine and

197

I. Stewart give a characterization of when (2) holds.

We studied in Chapter 5 classes of graphs or of structures as to whether they

admit a query algorithm, left or right, over the two common semirings, B and N. In [11],

Y. Chen, J. Flum, M. Liu, and Z. Xun examine this for classes of graphs and over N, and

they give several sufficient conditions of when a class (of graphs) of a particular type admit

a left or a right query algorithm (over N) and present some concrete examples of classes that

do not. In contrast, we have a characterization (i.e., a sufficient and necessary condition)

of when a class of structures admits a left query algorithm over B in Theorem 5.22; in

particular, a class admits such a query algorithm if and only if it is definable by a Boolean

combination of PP-sentences (equivalence between (i) and (iii)), if and only if it is FO-

definable and closed under homomorphic equivalence (equivalence between (i) and (iv)). It

is yet unknown, however, what an analogous characterization would be for the remaining

cases, and we propose the following future direction of research.

Future Work 3. Find a characterization of when a class of structures admits a left query

algorithm over N and a characterization of when a class of graphs admits a left query

algorithm over B or over N.

Since a (left) query algorithm over N differs from one over B in such a way that the

homomorphism-count queries are evaluated for the actual number, rather than the existence,

of homomorphisms, it is conceivable that a characterization of classes of structures admitting

a left query algorithm over N in a form analogous to Theorem 5.22 might be obtained by

conducting similar arguments, considering

198

• a generalization CQS of CQ classes parameterized by subsets S ⊆ N such that

CQS(A) := {B | hom(A,B) ∈ S}

to establish the corresponding equivalence between (i) and (ii), and

• a suitable fragment of the counting logic C that extends PP with the counting mech-

anism to establish the corresponding equivalence between (ii) and (iii),

where the corresponding statement (iv) becomes irrelevant in this regard. As for classes of

graphs, a key step in deriving an analogous characterization of classes of graphs admitting

a left query algorithm over B would be to examine whether the relevant results in [45] hold

in the context of graphs as well, whereas an analogous characterization of classes of graphs

admitting a left query algorithm over N may be obtained following similar considerations

as the above for classes of graphs.

While we expanded the characterization in Proposition 5.7(a) to one in Theo-

rem 5.22, we did not expand its counterpart in Proposition 5.7(b) in any way, nor did we

consider characterizations of classes of graphs or of structures as to whether they admit a

right query algorithm over N. Acknowledging this, we propose the next future direction of

research.

Future Work 4. Expand the characterization of classes of graphs or of structures admitting

a right query algorithm over B. Find a characterization of classes of graphs or of structures

admitting a right query algorithm over N.

In particular, we saw in Proposition 5.9 that CQ classes of structures correspond

to model classes of PP-sentences (except for structures whose relations are all empty) and

199

in Theorem 5.22 that CQ classes are involved in Boolean combinations for those classes

that admit a left query algorithm over B (equivalence between (i) and (ii)). Moreover, in

a previous discussion, we saw, symmetrically, that CSP classes correspond to model classes

of certain MMSNP-sentences. Therefore, an equivalence analogous to that between (i) and

(iii) in Theorem 5.22 can be immediately obtained. Besides, it is reasonable to assume, for

some logic L based on MMSNP, that a class of structures admits a right query algorithm

over B if and only if it is L-definable and closed under homomorphic equivalence, in an

analogous form to (iv) in Theorem 5.22. As for characterizations concerning right query

algorithms over N, it is plausible by considering, analogously,

• a generalization CSPS of CSP classes parameterized by subsets S ⊆ N such that

CSPS(A) := {B | hom(B,A) ∈ S}

for equivalence analogous to that between (i) and (ii) in Theorem 5.22, and

• a suitable variant of the logic MMSNP that incorporates certain counting mechanism

for equivalence analogous to that between (ii) and (iii) in Theorem 5.22.

Finally, we saw in Theorem 5.24 (and Corollary 5.25) that homomorphism counts

over N, while carrying more information than their counterparts over B, do not have more

advantages when it comes to left query algorithms for classes of structures that are closed

under homomorphic equivalence. It is natural to ask a dual question for right query algo-

rithms (for classes of structures).

Future Work 5. Determine whether for every class D of structures closed under homo-

morphic equivalence, it admits a right query algorithm over B of the form (F , X) if and

200

only if it admits a right query algorithm over N of the form (F ′, X ′).

We saw an abundance of evidence in Chapters 4 and 5 that left profiles and right

profiles behave very differently, although they both give a characterization of isomorphism

(Theorems 4.1 and 4.2). It is for certain that a clearer picture can be obtained by resolving

the above open problems.

It is my sincere hope that this dissertation will help foster the appreciation of finite

model theory and homomorphism counts and invite more contributions to the development

of these beautiful fields.

201

Bibliography

[1] Albert Atserias. On digraph coloring problems and treewidth duality. European Journal

of Combinatorics, 29(4):796–820, 2008.

[2] Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. Affine systems of equations and

counting infinitary logic. Theoretical Computer Science, 410(18):1666–1683, 2009.

[3] Albert Atserias, Phokion G. Kolaitis, and Wei-Lin Wu. On the expressive power of

homomorphism counts. In 2021 36th Annual ACM/IEEE Symposium on Logic in

Computer Science (LICS), pages 1–13. IEEE, 2021.

[4] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the

forty-eighth annual ACM symposium on Theory of Computing, pages 684–697, 2016.

[5] Meghyn Bienvenu, Balder Ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based

data access: A study through disjunctive datalog, csp, and mmsnp. ACM Transactions

on Database Systems (TODS), 39(4):1–44, 2014.

[6] Andrei A. Bulatov. H-coloring dichotomy revisited. Theoretical Computer Science,

349(1):31–39, 2005.

202

[7] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number

of variables for graph identification. Combinatorica, 12(4):389–410, 1992.

[8] Balder ten Cate, Vı́ctor Dalmau, Phokion G. Kolaitis, and Wei-Lin Wu. When do

homomorphism counts help in query algorithms? arXiv preprint arXiv:2304.06294,

2023.

[9] Surajit Chaudhuri and Moshe Y. Vardi. Optimization of Real conjunctive queries.

In Catriel Beeri, editor, Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, May 25-28, 1993, Washington, DC,

USA, pages 59–70. ACM Press, 1993.

[10] Yijia Chen, Jörg Flum, Mingjun Liu, and Zhiyang Xun. On queries determined by a

constant number of homomorphism counts. arXiv preprint arXiv:2111.13269, 2021.

[11] Yijia Chen, Jörg Flum, Mingjun Liu, and Zhiyang Xun. On algorithms based on

finitely many homomorphism counts. In 47th International Symposium on Mathemati-

cal Foundations of Computer Science (MFCS 2022). Schloss Dagstuhl-Leibniz-Zentrum

für Informatik, 2022.

[12] Vı́ctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint satisfaction,

bounded treewidth, and finite-variable logics. In International Conference on Principles

and Practice of Constraint Programming, pages 310–326. Springer, 2002.

[13] Anuj Dawar. A restricted second order logic for finite structures. Information and

Computation, 143(2):154–174, 1998.

203

[14] Anuj Dawar, Simone Severini, and Octavio Zapata. Pebble games and cospectral

graphs. Electronic Notes in Discrete Mathematics, 61:323–329, 2017.

[15] Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász meets Weisfeiler and Leman.

In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella,

editors, 45th International Colloquium on Automata, Languages, and Programming,

ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages

40:1–40:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[16] Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of

Graph Theory, 64(4):330–342, 2010.

[17] Martin Dyer and Catherine Greenhill. The complexity of counting graph homomor-

phisms. Random Structures & Algorithms, 17(3-4):260–289, 2000.

[18] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Springer Monographs

in Mathematics. Springer-Verlag, Berlin, 2006.

[19] Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical Logic.

Springer, 2nd edition, 1995.

[20] Andrzej Ehrenfeucht. An application of games to the completeness problem for for-

malized theories. Fundamenta Mathematicae, 49:129–141, 1961.

[21] Paul Erdős. Graph theory and probability. Canadian Journal of Mathematics, 11:34–

38, 1959.

204

[22] Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets.

Complexity of computation, 7:43–73, 1974.

[23] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone nonadic

snp and constraint satisfaction: A study through datalog and group theory. SIAM

Journal on Computing, 28(1):57–104, 1998.

[24] Jan Foniok, Jaroslav Nešetřil, and Claude Tardif. Generalised dualities and maximal

finite antichains in the homomorphism order of relational structures. European Journal

of Combinatorics, 29(4):881–899, 2008.

[25] Roland Fräıssé. Sur quelques classifications des systèmes de relations. Publications

Scientifiques de l’Université d’Alger, Series A, 1:35–182, 1954.

[26] Michael Freedman, László Lovász, and Alexander Schrijver. Reflection positivity, rank

connectivity, and homomorphism of graphs. Journal of the American Mathematical

Society, 20(1):37–51, 2007.

[27] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer,

Moshe Y. Vardi, Yde Venema, and Scott Weinstein. Finite Model Theory and Its

Applications. Texts in Theoretical Computer Science. An EATCS Series. Springer,

2007.

[28] Martin Grohe. Descriptive complexity, canonisation, and definable graph structure

theory, volume 47. Cambridge University Press, 2017.

[29] Martin Grohe. Counting bounded tree depth homomorphisms. In Holger Hermanns,

Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual

205

ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July

8-11, 2020, pages 507–520. ACM, 2020.

[30] Martin Grohe and Julian Mariño. Definability and descriptive complexity on databases

of bounded tree-width. In Catriel Beeri and Peter Buneman, editors, Database Theory

- ICDT ’99, 7th International Conference, Jerusalem, Israel, January 10-12, 1999,

Proceedings, volume 1540 of Lecture Notes in Computer Science, pages 70–82. Springer,

1999.

[31] Martin Grohe and Daniel Neuen. Recent advances on the graph isomorphism problem.

arXiv preprint arXiv:2011.01366, 2020.

[32] Martin Grohe and Pascal Schweitzer. The graph isomorphism problem. Communica-

tions of the ACM, 63(11):128–134, 2020.

[33] Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms, volume 28 of Oxford

Lecture Series in Mathematics and its Applications. Oxford University Press, 2004.

[34] Neil Immerman. Upper and lower bounds for first order expressibility. Journal of

Computer and System Sciences, 25:76–98, 1982.

[35] Neil Immerman. Descriptive complexity. Springer Science & Business Media, 2012.

[36] Phokion G Kolaitis and Moshe Y Vardi. Conjunctive-query containment and constraint

satisfaction. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART sym-

posium on Principles of database systems, pages 205–213, 1998.

206

[37] Gábor Kun. Constraints, mmsnp and expander relational structures. Combinatorica,

33(3):335–347, 2013.

[38] Benoit Larose, Cynthia Loten, and Claude Tardif. A characterisation of first-order

constraint satisfaction problems. Logical Methods in Computer Science, 3, 2007.

[39] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer

Science. An EATCS Series. Springer, 2004.

[40] László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum

Hungarica, 18(3-4):321–328, 1967.

[41] László Lovász. Large Networks and Graph Limits, volume 60 of Colloquium Publica-

tions. American Mathematical Society, 2012.

[42] Florent Madelaine and Iain A Stewart. Constraint satisfaction, logic and forbidden

patterns. SIAM Journal on Computing, 37(1):132–163, 2007.

[43] Florent R. Madelaine and Iain A. Stewart. Some problems not definable using structure

homomorphisms. Ars Combinatoria, 67:153–160, 2003.

[44] Martin Otto. Bounded Variable Logics and Counting: A Study in Finite Models, vol-

ume 9 of Lecture Notes in Logic. Cambridge University Press, 2017.

[45] Benjamin Rossman. Homomorphism preservation theorems. Journal of the ACM

(JACM), 55(3):1–53, 2008.

[46] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the

tenth annual ACM symposium on Theory of computing, pages 216–226, 1978.

207

[47] Tim Seppelt. Logical equivalences, homomorphism indistinguishability, and forbidden

minors. arXiv preprint arXiv:2302.11290, 2023.

[48] Boris A. Trakhtenbrot. The impossibility of an algorithm for the decision problem for

finite domains (russian). Doklady Akademii Nauk SSSR, 70:569–572, 1950.

[49] Edwin R Van Dam and Willem H Haemers. Which graphs are determined by their

spectrum? Linear Algebra and its Applications, 373:241–272, 2003.

[50] Boris Weisfeiler. On construction and identification of graphs, volume 558. Springer,

2006.

[51] Wei-Lin Wu. Query algorithms based on homomorphism counts. In Structure Meets

Power Workshop (Contributed Talks), page 24, 2022.

208

Appendix A

The Definable H-Coloring

Dichotomy Theorem

The logic programming language Datalog allows us to write recursive queries and,

when viewed as a logic formalism, is denoted DL. We will not go into the details of DL, and

an interested reader can consult any reference on finite model theory, e.g., [18, 27,35,39].

Definition A.1. Let σ be a vocabulary and let n ∈ Z+. The fragment of Datalog σ-

formulas ϕ such that the variables, free or bound, appearing in ϕ are among z0, . . . , zn−1 is

denoted DLn[σ], or DLn when the vocabulary σ is understood from the context.

Our goal in this appendix is to prove the following theorem (Theorem 11 from [3]).

Recall the logic formalism Cn
∞ω (where n ∈ Z+) mentioned in Remark 3.8, and we let

Cω
∞ω :=

⋃
n∈Z+

Cn
∞ω.

209

Theorem A.1 (Definable H-Coloring Dichotomy Theorem). Let H be a graph. If H is

2-colorable, then CSP(H) = Mod(¬ϕ) for some DL4-sentence ϕ. Otherwise, CSP(H) 6=

Mod(ψ) for any Cω
∞ω-sentence ψ.

The discussion in the sequel through the end of this appendix will lead to a proof

of Theorem A.1.

Let H be an arbitrary graph. We distinguish three cases below.

Case 1. H has chromatic number χ(H) = 1. Then, H ∈ I is an independent set.

Clearly, CSP(H) = I = Mod(¬ϕ), where ϕ ∈ DL2 is obtained from a Datalog program that

contains exactly one clause in which the head is a 0-ary predicate and the body is E(x, y).

Case 2. H has chromatic number χ(H) = 2. Then, H contains an edge and

is 2-colorable. Thus, CSP(H) is the class of 2-colorable graphs, which are exactly those

graphs that contain no cycle of odd length ≥ 3 (by Proposition 2.4). The existence of a

cycle of odd length ≥ 3 can be expressed as a Datalog program (see, e.g., Example 2.6.20

in [27]) that uses 4 variables. Let ϕ be the corresponding DL4-sentence, then it follows that

CSP(H) = Mod(¬ϕ).

Case 3. H is not 2-colorable. We need to show that CSP(H) is not Cω
∞ω-definable.

This requires significantly more work, which we do in the subsequent steps.

Step 1: Transition from CSP Classes of Graphs to CSP Classes of the Corre-

sponding σ(G)-Structures

First note that for every graph G, we have {Fσ(G) | F ∈ CSP(G)} ⊆ CSP(Gσ(G))

and that the equality holds if and only if G is an independent set.

210

Example A.1. Consider K2. The σ(G)-structures in CSP(K
σ(G)
2) all satisfy the axioms

of graph theory (see Example 3.1):

ϕirreflx := ∀x¬E(x, x),

ϕsym := ∀x∀y(E(x, y)→ E(y, x)).

However, for the σ(G)-structure K with domain dom(K) = {v1, v2} and relation EK =

{(v1, v2)}, we have K 6|= ϕsym but K ∈ CSP(K
σ(G)
2).

Nevertheless, as we will see shortly, for every graph G, it holds that CSP(G) is

Cω
∞ω-definable if and only if CSP(Gσ(G)) is Cω

∞ω-definable. That is to say, Cω
∞ω-definability

is preserved for transition from CSP classes of graphs to CSP classes of the corresponding

σ(G)-structures (and back).

Definition A.2. Let G be a graph. For every σ(G)-structure A, we say that A is an

orientation of G if

• dom(A) = dom(Gσ(G)), and

• for all a, b ∈ dom(A), we have (a, b) ∈ EA or (b, a) ∈ EA if and only if (a, b) ∈ EGσ(G)
.

Note that in particular, for every graph G, the corresponding σ(G)-structure Gσ(G)

is an orientation of G. Moreover, the σ(G)-structure K considered in Example A.1 is an

orientation of K2. We restate Remark 3.11 as the next lemma.

Lemma A.2. Let G be a graph. For every graph F, we have that F ∈ CSP(G) if and only

if Fσ(G) ∈ CSP(Gσ(G)).

Definition A.3. (a) For every C∞ω[σ(G)]-formula ϕ, the C∞ω[σ(G)]-formula ϕ+ is de-

fined inductively as follows:

211

(x = y)+ := x = y,

(E(x, y))+ := (E(x, y) ∨ E(y, x)),

(¬ϕ)+ := ¬ϕ+,

(ϕ ∨ ψ)+ := (ϕ+ ∨ ψ+),

(∃xϕ)+ := ∃xϕ+,

(∃≥nxϕ)+ := ∃≥nxϕ+,

(
∨

Φ)+ :=
∨
{ϕ+ | ϕ ∈ Φ}.

(b) For every C∞ω[σ(G)]-formula ϕ, let ϕ∗ := (ϕirreflx ∧ ϕ+).

Obviously, if ϕ is an Cω
∞ω[σ(G)]-formula, then so are ϕ+ and ϕ∗. The next lemma

summarizes simple yet useful properties of the C∞ω[σ(G)]-formulas ϕ+.

Lemma A.3. Let F be a graph, and let ϕ be an C∞ω[σ(G)]-sentence. The following hold:

(a) F |= ϕ if and only if F |= ϕ+.

(b) For every orientation A of F, we have F |= ϕ+ if and only if A |= ϕ+.

Proof. For both parts, prove by induction on ϕ the more general statement for C∞ω[σ(G)]-

formulas ϕ together with variable assignments for F.

Theorem A.4. For every graph G, we have that CSP(G) is Cω
∞ω-definable if and only if

CSP(Gσ(G)) is Cω
∞ω-definable.

Proof. For the “if” direction, let ϕ be an Cω
∞ω[σ(G)]-sentence such that CSP(Gσ(G)) =

Mod(ϕ). Then, for every graph F, we have

212

F ∈ CSP(G)

iff Fσ(G) ∈ CSP(Gσ(G)) (by Lemma A.2)

iff Fσ(G) |= ϕ (by assumption)

iff F |= ϕ (by Definition 3.11).

It follows that CSP(G) = Mod(ϕ).

For the “only if” direction, let ψ be an Cω
∞ω[σ(G)]-sentence such that CSP(G) =

Mod(ψ). Then, for every σ(G)-structure A, we have

A ∈ CSP(Gσ(G))

iff there is a graph F such that A is an orientation of F and Fσ(G) ∈ CSP(Gσ(G))

iff there is a graph F such that A is an orientation of F and F ∈ CSP(G)

(by Lemma A.2)

iff there is a graph F such that A is an orientation of F and F |= ψ

(by assumption)

iff there is a graph F such that A is an orientation of F and F |= ψ+

(by Lemma A.3(a))

iff there is a graph F such that A is an orientation of F and A |= ψ+

(by Lemma A.3(b))

iff A |= ϕirreflx and A |= ψ+

iff A |= ψ∗ (by definition)

It follows that CSP(Gσ(G)) = Mod(ψ∗)

It is known that the class CSP(K3) of 3-colorable graphs is not Cω
∞ω-definable

(see Theorem 4.11 and Remark 4.12 in [13]). By Theorem A.4, it follows that the class

CSP(K
σ(G)
3) of σ(G)-structures is not Cω

∞ω-definable.

213

For the next step, we need to bring in a partial ordering ≤DL among classes of

structures called Datalog-reducibility from Definition 1 in [2] (denoted ≤datalog there). By

the paragraph below Definition 1 in [2], Cω
∞ω-definability is preserved downwards by ≤DL,

i.e., for all classes D and F of structures such that D ≤DL F , if F is Cω
∞ω-definable, then

so is D (indeed, for every DLn-sentence, there is a logically equivalent Cn
∞ω-sentence, see

Theorem 4.1 of [36]).

Our goal in the next step is to show that CSP(K
σ(G)
3) ≤DL CSP(Hσ(G)), which,

together with the earlier statement that the class CSP(K
σ(G)
3) of σ(G)-structures is not

Cω
∞ω-definable, implies that CSP(Hσ(G)) is not Cω

∞ω-definable. Then, it will follow that

CSP(H) is not Cω
∞ω-definable, either, by Theorem A.4.

Step 2: Prove CSP(K
σ(G)
3) ≤DL CSP(Hσ(G))

The subsequent presentation will follow closely Subsection IV.B in [3], and the

terms and results apply to arbitrary vocabularies σ.

Recall the definitions of an induced substructure A[S] of a structure A by a

nonempty set S ⊆ dom(A) and the quotient A/θ by a partition θ of dom(A) in Sec-

tion 2.3. Note that there is a one-to-one correspondence between an equivalence relation ≡

over dom(A) and a partition θ of dom(A). In the sequel, we will identify an equivalence

with the corresponding partition when taking the quotient of a structure by that equivalence

relation.

Definition A.4. Let σ be a vocabulary.

(a) Let A be a σ-structure A. For a ∈ dom(A), let Pa be a new unary relation symbol.

214

The singleton-expansion of A, denoted A, is the (σ∪{Pa | a ∈ dom(A)})-structure with

domain dom(A) := dom(A) and relations RA := RA for all R ∈ σ and PA
a := {a} for

all a ∈ dom(A).

(b) A primitive positive σ-formula with equality allowed (abbreviated: PPE[σ]-formula) is

a first-order σ-formula of the form ∃x1 · · · ∃xm
n∧
i=1

ϕi in which m,n ∈ Z+ and ϕi is an

atomic (equational or relational) formula for i ∈ [n].

Definition A.5. Let σ be a vocabulary and let A be a σ-structure. For every r-ary relation

T over dom(A), we say that T is PPE-definable in A if there is a PPE-formula ϕ(x1, . . . , xr)

such that T = {(a1, . . . , ar) ∈ dom(A)r | A |= ϕ(a1, . . . , ar)}.

Recall from Chapter 2 that for all A and B in U , we write A ⊆ B to mean that

A is a subgraph of B (if U = G) or A is a substructure of B (if U = A).

Definition A.6. Let A ∈ U .

(a) For every B ⊆ A, we say B is a core of A if

• there is a homomorphism h : A → B where h|dom(B) is the identity mapping on

dom(B), and

• for every C ⊆ B, if the statement (1) holds for C in place of B, then B = C.

(b) We say A is a core if it is a core of itself.

In fact, it can be shown that a core of a graph or a structure is unique up to

isomorphism (see [33]), henceforth we shall say the core of a graph or a structure.

Obviously, for every graph G, if G′ is the core of G, then CSP(G) = CSP(G′).

215

Hence, without loss of generality, we may assume that our non-2-colorable graph H is a

core.

Theorem A.5. [6] If G is a non-2-colorable core graph, then there are a subset S ⊆ V (G)

and an equivalence relation ≡ over S such that

(1) S is PPE-definable in Gσ(G),

(2) ≡ is PPE-definable in Gσ(G)[S],

(3) (Gσ(G)[S])/≡ is isomorphic to K
σ(G)
3 .

Remark A.1. This theorem follows from the implication from not (b) to not (c) in Theo-

rem 1 of [6]. Moreover, condition (2) in Theorem A.5 is implied by the proof of Theorem 1

there and is stronger than the condition that ≡ is PPE-definable in Gσ(G) in that theorem.

Theorem A.6. [2] Let A be a structure with |dom(A)| ≥ 2, let S be a subset of dom(A)

and let ≡ be an equivalence relation over dom(A). The following hold:

(a) CSP(A) ≤DL CSP(A).

(b) If ≡ is PPE-definable in A, then CSP(A/≡) ≤DL CSP(A).

(c) If S is PPE-definable in A, then CSP(A[S]) ≤DL CSP(A).

(d) If A is a core, then CSP(A) ≤DL CSP(A).

Remark A.2. Statement (a) of this theorem follows from a special case of Lemma 11 in [2],

statements (b) and (c) are special cases of Theorem 18 in that paper, and statement (d)

follows from the second part of Lemma 19 there.

216

Thus, for our non-2-colorable core graph H, we apply Theorem A.5 to get the

subset S and the equivalence relation ≡. Let σ1 be the vocabulary of Hσ(G)[S] and σ2 be

the vocabulary of Hσ(G)[S]. Note that σ1 = σ2∪{Pa | a /∈ S} and that for every σ1-structure

A, we have A ∈ CSP(Hσ(G)[S]) if and only if

• PA
a = ∅ for all a /∈ S, and

• A′ ∈ CSP(Hσ(G)[S]) for the σ2-structure A′ obtained from A by removing PA
a for all

a /∈ S.

Thus, if CSP(Hσ(G)[S]) is definable by an Cω
∞ω[σ1]-sentence ϕ, then CSP(Hσ(G)[S]) is

definable by the Cω
∞ω[σ2]-sentence obtained from ϕ by replacing, for all a /∈ S, the atomic

formulas Pa(x) with ¬x = x. Then, we consider Hσ(G) and apply Theorem A.6, so that

CSP(Hσ(G))

≥DL CSP(Hσ(G)) (by Theorem A.6(d))

≥DL CSP(Hσ(G)[S]) (by Theorem A.6(c))

≥DL CSP(Hσ(G)[S]) (by the above discussion)

≥DL CSP(Hσ(G)[S]) (by Theorem A.6(a))

≥DL CSP((Hσ(G)[S])/≡) (by Theorem A.6(b))

= CSP(K
σ(G)
3) (by condition (3) in Theorem A.5),

as desired.

217

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Preliminaries
	Fundamentals
	Graphs
	Structures

	Two Frameworks: Logic and Homomorphism Counts
	Mathematical Logic
	First-Order Logic and Its Fragments
	First-Order Logic Augmented with Counting and Its Fragments

	Homomorphism
	Basic Definitions and Properties
	Two Types of Homomorphism Counts

	Graph Isomorphism and Its Relaxations
	Characterizing Graph Isomorphism in Left Profile and in Right Profile
	Relaxations of Graph Isomorphism vs. Restricted Profiles over the Bag-Set Semiring
	Two Introductory Examples
	Indistinguishability by Color Refinement
	Indistinguishability by Weisfeiler-Leman Algorithm
	Cospectrality
	Chromatic Equivalence
	Equivalence in Some Fragments of First-Order Logic

	Relaxations of Graph Isomorphism vs. Restricted Profiles over the Boolean Semiring
	Homomorphic Equivalence
	Same Chromatic Number and Same Clique Number

	Summary

	Query Algorithms
	Basic Definitions and Examples
	Left Query Algorithms
	CSP Classes and Their Unions
	Homomorphic-Equivalence Classes and Their Unions
	Two More Characterizations

	Right Query Algorithms
	CQ Classes and Their Boolean Combinations
	Homomorphic-Equivalence Classes and Their Unions

	Adaptive Homomorphism-Count Queries and Graph Isomorphism

	Concluding Remarks
	Bibliography
	The Definable H-Coloring Dichotomy Theorem

