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Abstract
The idea of a “cognitive map” was originally developed to ex-
plain planning and generalization in spatial domains through
a representation of inferred relationships between experiences.
Recently, new research has suggested similar principles may
also govern the representation of more abstract, conceptual
knowledge in the brain. We test whether the search for rewards
in conceptual spaces follows similar computational principles
as in spatial environments. Using a within-subject design, par-
ticipants searched for both spatially and conceptually corre-
lated rewards in multi-armed bandit tasks. We use a Gaussian
Process model combining generalization with an optimistic
sampling strategy to capture human search decisions and judg-
ments in both domains, and to simulate human-level perfor-
mance when specified with participant parameter estimates. In
line with the notion of a domain-general generalization mecha-
nism, parameter estimates correlate across spatial and concep-
tual search, yet some differences also emerged, with partici-
pants generalizing less and exploiting more in the conceptual
domain.

Keywords: Generalization; Cognitive maps; Exploration-
exploitation; Multi-armed bandits; Gaussian Processes; Search

Introduction
The ability to search for rewards comes in many shapes. We
can wander through a foreign city in search of new and deli-
cious foods, or search through an online store to find a laptop
with the features that we like. We can even skim over parts
of a paper to find sections more interesting than the introduc-
tion. While these tasks differ in a number of ways, all of them
require the exploration of possibilities and the use of gener-
alization to predict outcomes of unexplored options. Here,
we ask if generalization and search in different domains can
employ common computational mechanisms.

Breaking from the classical stimulus-response school of re-
inforcement learning, Tolman (1948) argued that both rats
and humans extract a cognitive representation from experi-
ence, described as a “cognitive map” of the environment.
Rather than merely representing stimulus-response associa-
tions, cognitive maps also encode inferred relationships be-
tween experiences or options, such as the distances between
locations in space, thereby facilitating planning ahead and
generalization. While cognitive maps were first identified
as representations of physical spaces, Tolman also hypoth-
esized that similar principles may underlie the organization
of knowledge more broadly (Tolman, 1948).

The idea of a cognitive map has been widely adopted
in research on brain signals underlying spatial navigation
(O’Keefe & Nadel, 1978). In a similar vein, studies on re-
inforcement learning have emphasized that relations between

states may also be encoded as a cognitive map (Schuck, Cai,
Wilson, & Niv, 2016; Sutton & Barto, 1998). Most recently,
a number of studies suggest that the same neural representa-
tions may underlie the organization of spatial and non-spatial
relational information in the brain (Constantinescu, O’Reilly,
& Behrens, 2016; Garvert, Dolan, & Behrens, 2017; Kaplan,
Schuck, & Doeller, 2017). This is consistent with behavioral
evidence for generalized cognitive search processes (Hills,
Todd, & Goldstone, 2008). Whereas the capacity to gener-
alize from past experiences to unobserved states and actions
has been studied for decades (Shepard, 1987), the link be-
tween our ability to generalize in a wide range of tasks and
the encoding of experiences in a cognitive map-like format
has not yet been explored.

To assess this link, we investigate how people search for
rewards in both spatially and conceptually correlated multi-
armed bandit tasks (Stojic, Analytis, & Speekenbrink, 2015;
Wu, Schulz, Speekenbrink, Nelson, & Meder, 2017). In one
task, the spatial correlation of rewards can be used to guide
generalization based on the spatial similarity between op-
tions. In the other task, participants can use feature-based
similarity to navigate conceptual space in the search for re-
wards. In both tasks, search takes place in state spaces larger
than the available search horizon and with noisy rewards,
thereby inducing an exploration-exploitation dilemma. Gen-
eralization is constrained by the level of environmental corre-
lation, which we vary between participants.

Our results show that participants are able to learn and
generalize in both tasks, with performance correlated across
spatial and conceptual domains. Surprisingly, performing
the spatial task first boosted performance in the conceptual
task, but not vice versa. We apply computational model-
ing to understand how spatial and conceptual environments
may lead to differences in how people generalize about un-
observed rewards and how they approach the exploration-
exploitation dilemma. Using a computational model based on
Gaussian Processes (GP) combined with Upper Confidence
Bound (UCB) sampling, we predict participant choices and
judgments in both search domains, and achieve human-level
performance using participant parameter estimates. We find
that participant parameter estimates describing the level of
generalization and exploration were correlated across spatial
and conceptual domains, but that participants tended to gen-
eralize less and exploit more in the conceptual domain.
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Experiment
Participants searched for rewards in two successive multi-
armed bandit tasks with correlated rewards (Fig. 1). In one
task, rewards were spatially correlated (Spatial task), mean-
ing options with similar spatial locations yielded similar re-
wards. In the other task, rewards were conceptually corre-
lated (Conceptual task), such that options with similar fea-
tures (i.e., the number of leaves ∈ [1,5] and berries ∈ [1,5])
yielded similar rewards. Figure 1c,d shows examples of fully
revealed environments representing the same underlying re-
ward function, but mapped to either spatial or conceptual fea-
tures. In both tasks, the search space was represented by a
5×5 two-dimensional grid, where each of the 25 options rep-
resented a different arm of the bandit, which could be clicked
to obtain (noisy) rewards. Each tile of the grid contained one
of 25 unique conceptual stimuli, which were randomly shuf-
fled between rounds and always visible. Thus, we presented
information about both spatial and conceptual features in both
search tasks, but only one of them was relevant for generaliza-
tion and predicting rewards. At the beginning of each round
only a single randomly chosen option was revealed (i.e., dis-
played the numerical reward and corresponding color aid),
whereby subjects had a limited horizon of 10 actions in each
round (40% of the total search space; similar to Wu et al.,
2017), thereby inducing an exploration-exploitation trade-off.

Methods
Participants and Design. 72 participants were recruited
through Amazon Mechanical Turk (requiring 95% approval
rate and 100 previously approved HITs) for a two part experi-
ment, where only those who completed part one were invited
for part two. In total, 64 participants completed both parts of
the experiment and were included in the analyses (26 Female;
mean age=34, SD=11). Participants were paid $1.25 for each
part of the experiment, with those completing both parts be-
ing paid an additional performance-contingent bonus of up to
$3.00. Participants earned $4.94 ± 0.29 and spent 26 ± 13
minutes completing both parts. There was an average gap of
5.6 ± 4.7 hours between the two parts of the experiment.

Task order varied between subjects, with participants com-
pleting the Spatial and Conceptual task in counterbalanced
order in separate sessions. We also varied between subjects
the extent of reward correlations in the search space by ran-
domly assigning participants to one of two different classes
of environments (Smooth vs. Rough), with smooth environ-
ments corresponding to stronger correlations, and the same
environment class used for both tasks.

Materials and Procedure. Each search task comprised 20
rounds (i.e., grids), with a different reward function sampled
without replacement from the set of assigned environments.
The reward function specified how rewards mapped onto ei-
ther the spatial or conceptual features. Between rounds, the
locations of each stick stimuli were randomly shuffled. In
each round, participants had a limited search horizon of 10
available actions (i.e., clicks), which could be used to either
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Figure 1: Experiment. a) Searching for spatially or conceptually
correlated rewards in a two part multi-armed bandit experiment,
where task order was counter-balanced across subjects. b) Illus-
tration of conceptual space, with four edge cases shown. c, d) Two
fully revealed environments (representing the same underlying re-
ward function), represented as a 5×5 grid, where participants could
click on the tiles to obtain rewards, revealing a numeric payoff value
and a corresponding color aid (larger rewards are darker; unexplored
tiles are initially white). c: Spatial search task, where rewards are
spatially correlated, with nearby tiles yielding similar rewards. d:
Conceptual search task, where options with high feature similarity
(i.e., number of leaves and number of berries) had similar rewards.

explore unrevealed options or to exploit known options. Par-
ticipants were instructed to accumulate as many points as pos-
sible, which were later converted into monetary payoffs.

For both tasks, the first round was an interactive tutorial
and the last round was a “bonus round” (Fig. 1a). In the tuto-
rial round, participants were shown instructions for the given
task alongside an interactive grid, which functioned identi-
cally to subsequent rounds. Participants were told that op-
tions with either similar spatial features (Spatial task) or sim-
ilar conceptual features (Conceptual task) would yield similar
rewards. Three comprehension questions (different for spatial
and conceptual tasks) were used to ensure full understanding
of the task (specifically whether spatial or conceptual features
predicted reward) before participants were allowed to con-
tinue. In the bonus round, participants made explicit judg-
ments about the expected rewards and their estimated uncer-
tainty of five unrevealed tiles in the middle of the round (i.e.,
after five clicks), in order to tap into beliefs supported by gen-
eralization. All behavioral and computational modeling anal-
yses exclude the first and last rounds, except for the analysis
of the bonus round judgments.
Spatial and Conceptual Search Tasks. At the beginning
of each round, one random tile was revealed (i.e., showing
numerical payoff and color aid) and participants could click
any of the 25 tiles in the grid until the search horizon of
ten clicks was exhausted, including re-clicking previously re-
vealed tiles. Clicking an unrevealed tile displayed the nu-
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merical value of the reward along with a corresponding color
aid, where darker colors indicated higher point values. Pre-
viously revealed tiles could also be re-clicked, although there
were variations in the observed value due to noise. Each ob-
servation included normally distributed noise, ε ∼ N (0,1),
where the rewards for each round were scaled to a uniformly
sampled maximum value in the range of 35 to 45, so that the
value of the global optima could not be easily guessed. For
repeat clicks, the most recent observation was displayed nu-
merically, while hovering over the tile would display the en-
tire history of observations. The color of the tile corresponded
to the mean of all previous observations.

Participants were awarded up to five stars based on their
performance at the end of each round (e.g., 4.4 out of 5),
based on the ratio of their average reward to the global max-
imum. The performance bonus (up to $3.00) was calculated
based on the average number of stars earned in each round,
excluding the tutorial round.

Judgments. In both tasks the last round was a “bonus
round”, which solicited judgments about the expected reward
and estimated uncertainty of five unrevealed options. Par-
ticipants were informed that the goal of the task remained
the same (maximize cumulative rewards), but that after five
clicks, they would be asked to provide judgments about five
randomly selected options, which had not yet been explored
(sampled uniformly from unexplored options). Judgments
about expected rewards were elicited using a slider, which
changed the displayed value and color of the selected tile
from 0 to 50 (in increments of 1). Judgments about uncer-
tainty were elicited using a slider from 0 to 10 (in increments
of 1), with the endpoints labeled ‘Not at all’ and ‘Highly con-
fident’. After providing the five judgments, participants were
asked to choose one of the five selected options to reveal, and
subsequently completed the round like all others.

Environments. All environments were sampled from a GP
prior parameterized with a radial basis function (RBF) kernel
(see below for details), where the length-scale parameter (λ)
determines the rate at which the correlations of rewards decay
over (spatial or conceptual) distance. Higher λ-values corre-
spond to stronger correlations. We generated 40 samples of
each type of environments, using λSmooth = 2 and λRough = 1,
which were sampled without replacement and used as the un-
derlying reward function in each task.

Modeling Generalization and Exploration

We use a combination of a learning model with a decision
strategy to make predictions about each individual partici-
pant’s search decision. The learning model forms beliefs
about the expectations of rewards µ(x) and the associated
uncertainty σ(x) for each option x, which are then used by
the decision strategy to make probabilistic predictions about
search decisions. We apply leave-one-round-out cross vali-
dation to estimate the free parameters of our models and use
out-of-sample model predictions to compare models for pre-

dicting human search behavior. Additionally, we compare
predictions of the learning models to judgments made by par-
ticipants about the expected reward and estimated uncertainty
of five unrevealed options.

Learning models
Function Learning. We use Gaussian Process (GP) regres-
sion (Rasmussen & Williams, 2006; Schulz, Speekenbrink,
& Krause, 2017) as a Function Learning model for induc-
ing an underlying value function mapping the features of the
search task onto rewards, as a method for generalization. A
GP defines a distribution P( f ) over possible functions f (x)
that map inputs x to output y. In our case, either the spatial
features (i.e., x- and y-coordinates on the grid) or conceptual
features (i.e., number of leaves and berries) of each option
serve as inputs x to predict reward y. Crucially, learning a
value function by using either spatial or conceptual similar-
ity allows for predictive generalization of unobserved options
(see Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018).

A GP is completely defined by a mean function m(x) and
a kernel function, k(x,x′):

m(x) = E [ f (x)] (1)

k(x,x′) = E
[
( f (x)−µ(x))( f (x′)−µ(x′))

]
(2)

We fix the prior mean to the median value of payoffs,
m(x) = 25, while the kernel function k(x,x′) encodes prior
assumptions (or inductive biases) about the underlying func-
tion. Here, we use the radial basis function (RBF) kernel:

kRBF(x,x′) = exp
(
−||x−x′||2

λ

)
(3)

The RBF kernel models similarity by assuming correlations
between two options x and x′ decay as an exponential func-
tion of their (spatial or conceptual) distance. The length-
scale parameter λ determines how far correlations extend,
with larger values of λ assuming stronger correlations over
longer distances, whereas λ→ 0+ assumes complete inde-
pendence of options. We use recovered parameter estimates
of λ to learn about the extent to which participants generalize
about unobserved rewards.

Option Learning. The Option Learning model uses a
Bayesian Mean Tracker (BMT) and is an associative learning
model (Speekenbrink & Konstantinidis, 2015). In contrast to
the GP Function Learning model, the Option Learning model
learns the rewards of each option independently by comput-
ing independent posterior distributions for the mean µ j for
each option j:

p(µ j,t |Dt−1) = N (m j,t ,v j,t) (4)

The rewards of each option j are learned independently, with
the posterior mean m j,t and variance v j,t only updated when
selected at trial t, based on the observed reward yt :

m j,t = m j,t−1 +δ j,tG j,t [yt −m j,t−1] (5)
v j,t = [1−δ j,tG j,t ]v j,t−1 (6)
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where δ j,t = 1 if option j was chosen on trial t, and 0 other-
wise. Additionally, the learning factor G j,t is defined as:

G j,t =
v j,t−1

v j,t−1 +θ2
ε

(7)

where θ2
ε is the error variance, which is estimated as a free pa-

rameter. Intuitively, the estimated mean of the chosen option
m j,t is updated based on the prediction error yt−m j,t−1, mul-
tiplied by the learning factor G j,t . At the same time, the esti-
mated variance v j,t is reduced by a factor of 1−G j,t , which
is in the range [0,1]. The error variance θ2

ε can be interpreted
as an inverse sensitivity, where smaller values result in more
substantial updates to the mean m j,t , and larger reductions of
uncertainty v j,t . We set the prior mean to the median value of
payoffs m j,0 = 25 and the prior variance v j,0 = 250.

Decision Strategy
Both Function Learning and Option learning models generate
normally distributed predictions about the expected reward
µ(x) and estimated uncertainty σ(x) for each option. These
estimates are used by the decision strategy for evaluating the
quality q(x) of each option and making a prediction about
where to sample next. We use Upper Confidence Bound sam-
pling (UCB) to compute a weighted sum of the expected re-
ward µ(x) and the estimated uncertainty σ(x):

qUCB(x) = µ(x)+βσ(x) (8)

where the exploration factor β determines how the reduction
of uncertainty trades off against exploiting high expected re-
wards; a strategy that has been found to predict search behav-
ior in a variety of contexts (Wu et al., 2018; Schulz, Konstan-
tinidis, & Speekenbrink, 2017).

We then use a softmax function to convert the value of an
option q(x) into a choice probability:

P(x) =
exp(q(x)/τ)

∑
N
j=1 exp(q(x j)/τ)

(9)

where τ is the temperature parameter. Whereas β encodes
exploration directed towards uncertain options, τ encodes
undirected (noisy) exploration as a distinct (Wilson, Geana,
White, Ludvig, & Cohen, 2014) and separately recoverable
(Wu et al., 2018) phenomenon. As τ→ 0 the highest-value
arm is chosen with a probability of 1 (i.e., argmax); when
τ→ ∞, predictions converge to random choice.

Results
Behavioral Results
Performance was highly correlated between the two tasks
(Pearson’s r = .74, p < .001; Fig. 2a). with rewards being
slightly lower in the conceptual task (t(63) =−3.7, p < .001,
d =−0.34), although Figure 2b shows how this is largely due
to the influence of task order. There were no performance dif-
ferences between the two tasks when the spatial task was per-
formed first (t(34) = 0.6, p = .55, d = 0.07). However, in the
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Figure 2: Behavioral results. a) Performance in the spatial and the
conceptual tasks were correlated, where each point is a single par-
ticipant, with the dashed line indicating y = x. b) Comparing perfor-
mance across the counter-balanced task order, we found performing
the spatial task first boosted performance on the conceptual task.
c) Learning curves over trials with comparison to a random base-
line (10k replications), showing the mean (line) and standard error
(ribbon) aggregated over rounds. d) Proportion of choices based on
the distance between clicks with a comparison to a random baseline
(10k replications). “Stay” indicates repeat clicks, “Near” indicates a
neighboring tile (measured in either spatial or conceptual distance),
and “Far” indicates all other possibilities. e) Relationship between
the value of the previous reward and the Euclidean distance to the
next selected option (left: spatial distance; right: conceptual dis-
tance), showing mean (line) and standard error (ribbon).

reverse order (conceptual first), mean rewards in the concep-
tual task were worse than in the spatial task (t(28) = −5.6,
p < .001, d =−0.68). Thus, searching first for spatially cor-
related rewards improved performance in the conceptual do-
main (t(62) = 2.6, p = .01, d = 0.66), but not vice versa.

The learning curves in Figure 2c show that participants sys-
tematically found higher rewards over subsequent trials (r =
.51, p< .001), performed better in smooth than in rough envi-
ronments (t(62)= 4.4, p< .001, d = 1.1), and that the perfor-
mance gap between spatial and conceptual performance was
larger in smooth environments. Looking only at participants
assigned to smooth environments, performance was better
in the spatial task than in the conceptual task (t(27) = 3.2,
p = .003, d = 0.59), consistent with the larger gap between
learning curves in Figure 2c. We did not find systematic im-
provements over rounds (r = .02, p = .42).

Search Distance Figure 2d shows the proportion of differ-
ent types of search decisions, where stay corresponds to a
repeat click (xt = xt−1), near corresponds to searching one
of the neighboring options in either spatial or in conceptual
distance (i.e., ±1 leaf and/or ±1 berry in feature space), and
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far corresponds to all other possible distances. Participants in
the conceptual task tended to make more repeat clicks (stay;
t(63) = 2.4, p = .02, d = 0.21), whereas participants in the
spatial task were more likely to search neighboring options
(near; t(63) = 3.4, p = .001, d = 0.33). In both contexts, par-
ticipants clearly behaved differently than the random baseline
model. Looking at the relationship between the value of a re-
ward and the distance searched on the subsequent trial (Fig.
2e), we see that participants responded appropriately, with a
stronger influence of reward value on spatial distance in the
spatial task, and a stronger influence of reward on conceptual
distance in the conceptual task. This suggests that partici-
pants used information from the relevant dimension (spatial
or conceptual) to make their decisions.

Modeling Results

We first compared models based on their ability to predict
participants’ behavior using leave-one-round-out cross vali-
dation (Fig. 3a), where the Conceptual GP and the Spatial
GP utilize either conceptual or spatial features, respectively.
In the spatial task, the Spatial GP performed better than
both the Conceptual GP (i.e., using leaf and berry features;
t(63) = 8.5, p < .001, d = 0.61) and the BMT (t(63) = 4.6,
p < .001, d = 0.36) replicating previous findings reported in
Wu et al. (2018). Surprisingly, all models performed equally
well in the conceptual task (F(2,189) = 0.27, p = .76).

The correspondence between participants’ judgments from
the bonus round and model predictions are shown in Fig-
ure 3b, where the corresponding GP had lower error than the
BMT in the spatial task (t(63) = −2.2, p = .03, d = −0.2),
but there was no difference in the conceptual task (t(63) =
−0.9, p = .35, d = −0.05). GP predictions were also cor-
related with participant judgments about expected reward in
both the spatial task (r = .38, p < .001) and the concep-
tual task (r = .21, p < .001), whereas the BMT invariably
predicted both a mean and variance of 25, making correla-
tions undefined. GP predictions about perceived uncertainty
were weakly rank-correlated with participants’ judgments in
the conceptual task (Kendall’s rank correlation; rτ = .12,
p = .003), but not in the spatial task (rτ =−.01, p = .75).

Importantly, we simulated model performance on the task
over 10,000 replications, where model parameters were sam-
pled from the cross-validated participant estimates. Looking
at the simulated learning curves (Fig. 3c), the GP parameter
estimates produced human-like performance for both tasks,
whereas the BMT performed only marginally better than a
random sampling model. Thus, even though the BMT model
produces decent predictions, it is not able to produce human-
like learning curves. Thus, the simulated learning behavior
falsifies the BMT model as a plausible account of human be-
havior (see Palminteri, Wyart, & Koechlin, 2017).

Parameter Estimates Looking at the parameter estimates
of the GP for the two different tasks, we find that λ (extent of
generalization) and β (exploration bonus) were strongly rank-
correlated within participants (Fig. 3d), whereas the softmax

a b

c Conceptual Spatial

0 2 4 6 8 10 0 2 4 6 8 10
25

30

35

40

Trial

Av
er

ag
e 

R
ew

ar
d Model

Random
Conceptual GP
Spatial GP
BMT
Human

d

0.0

0.1

0.2

0.3

0.4

Conceptual Task Spatial Task

Pr
ed

ic
tiv

e 
Ac

cu
ra

cy

Conceptual GP Spatial GP BMT Conceptual Spatial

GP BMT GP BMT

4

8

12

16

M
ea

n 
Ab

so
lu

te
 E

rro
r

rτ = .38   p < .001

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
Conceptual λ

Sp
at

ia
l λ

Extent of generalization Exploration bonus Softmax tempeature

rτ = .42   p < .001

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8
Conceptual β

Sp
at

ia
lβ

rτ = .10  p = .26

0.00

0.05

0.10

0.00 0.05 0.10
Conceptual τ

Sp
at

ia
lτ

Rough
Smooth

Figure 3: Modeling results. a) Predictive accuracy of models on
out-of-sample predictions, where 0 corresponds to random chance
and 1 is a theoretically perfect model. Bars show mean across par-
ticipants with error bars indicating standard error. b) Mean Abso-
lute Error (MAE) on the judgment task, where lines connect each
individual participant (dots) and show the difference in prediction
error between the two models. Boxplots show the median and 1.5
IQR. Dashed line shows theoretical MAE of random guesses. c)
Simulated learning curves (10k replications; aggregated over en-
vironments) using models specified with parameters sampled from
participant estimates. We include comparison to a random model
(black line) and human performance (pink). d) Median GP parame-
ters from the spatial (y-axis) and the conceptual tasks (x-axis), where
each point is a single participant and the dotted line shows a linear
regression. Outliers are excluded from the plot but not from the rank
correlations and boxplots (showing median and 1.5 IQR range).

temperature τ was not correlated and also did not differ be-
tween tasks (Z = 1.1, p = .13, r = .14). Interestingly, al-
though λ-values were correlated across the two tasks, they
were significantly smaller in the conceptual task than in the
spatial task (Wilcoxon signed rank test; Z =−5.1, p < .001,
r = .64), meaning participants generalized over smaller con-
ceptual distances than over spatial distances. We also found
that larger lambdas were correlated with higher performance
across both tasks (rτ = .45, p < .001). Estimates for the
exploration factor β did not differ between tasks (Z = 1.1,
p = .86, r = .14). Thus, participants who generalized more
or displayed more directed exploration in one task, also did
so in the other, connecting both spatial and conceptual search.

General Discussion and Conclusion
Humans search for rewards across a multitude of different
domains, using effective generalization and clever explo-
ration to great success. Historic psychological findings ex-
plained adaptive generalization in spatial domains by evok-
ing the concept of a cognitive map, whereas more recent neu-
roscientific evidence suggests cognitive maps can be found
in both spatial and conceptual domains. We investigated
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whether the search for spatially or conceptually correlated
rewards can be connected via common principles of gen-
eralization. Our results showed that participants performed
well in both domains, with highly correlated performance
across the two tasks. Using a Gaussian Process regression
framework as a model of generalization and postulating Up-
per Confidence Bound sampling as an optimistic approach to
the exploration-exploitation dilemma, we made progress to-
wards understanding the computational mechanisms of gen-
eralization and search across spatial and conceptual domains.
Our model produced good out-of-sample predictions in both
tasks, made predictions of unobserved rewards that corre-
lated with participants’ judgments, and produced human-like
learning curves based on meaningful parameter estimates that
showed levels of generalization and directed exploration that
correlated across the two domains.

Nevertheless, the GP was not able to predict participant
choices better than a non-generalizing option learning model
in the conceptual domain, even though the behavioral data in-
dicates successful generalization (see Fig. 2c,e). This could
be explained by two different—not mutually exclusive—
reasons. One explanation is that the conceptual task was
simply more difficult, which led participants to generalize
less and sample more locally. Another explanation could be
that conceptual stimuli induce different priors over features
than in the spatial domain. For example, participants may
have strongly linear priors for conceptual features (e.g., more
berries will lead to higher rewards) or that they have assump-
tions about the importance of different features (e.g., berries
are more important for rewards than leaves). To overcome
these problems of prior assumptions, we could directly as-
sess participant priors over different stimuli and specify our
models using the resulting empirical priors. To overcome the
problem of differentially perceived feature importance, we
could assess the performance of kernels with direct relevance
determination (Gershman & Daw, 2017), which similar to at-
tentional weights (see Niv et al., 2015), could also be used to
predict participant choices.

We explored whether the same model of generalization can
be used to explain how people search for rewards in either
spatial or conceptual domains. Our results showed that some
aspects of human behavior can indeed be explained by shared
computational principles, such as the ability to generalize
about unobserved outcomes and a tendency to explore uncer-
tain outcomes. Nonetheless, some clear differences emerged,
with participants generalizing less and exploiting more in the
conceptual domain, and with transfer only occurring unidi-
rectionally from the spatial to the conceptual task (see also
Hills et al., 2008). However, the intra-subject consistency of
model parameters across the two domains offers an exciting
opportunity in the future to use neural imaging to study if
there is indeed a common neural basis for how people gen-
eralize and explore both spatial and conceptual spaces. We
believe that further study into the general principles under-
lying human generalization and exploration will continue to

provide important insights into adaptive behavior in complex
and uncertain environments.
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