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Abstract
We present experiments and analysis of the nonlinear interactions of two incident internal
gravity wave beams of comparable amplitude. By using a wave maker consisting of a
flexible boundary to a tank, driven by an array of independent actuators, incident beams
of large amplitude several wavelengths in width are generated. Additional wave beams,
produced via triadic interactions, are observed emanating from where incident beams of
moderate amplitude cross. We decompose the fields, both temporally and spatially, in
order to identify the transfer of energy between the modes. A perturbation approach is
used to predict the the frequencies of the generated waves, which is in close agreement
with observations. Finally, in the related configuration where the two incident frequencies
are the same, wave breaking with the emission of other internal waves is observed when
a large amplitude wave reflects off an interface.

1 Introduction

Internal waves in the ocean and atmosphere are generated by a variety of mechanisms,
such as interaction with surface waves on the ocean produced by wind shear and flow
over topography (lee waves). Due to their ubiquity in the oceans, it is inevitable that two
such waves will intersect, which, if their amplitudes are sufficiently large, may lead to a
nonlinear interaction. This is important for modelling the transport of energy within the
oceans as well as for predicting where internal waves might break leading to the transfer
of energy from larger scales to smaller scales (see e.g. Staquet and Sommeria (2002)).

Many of the well-known interactions depend on the conditions of triadic interaction,

k1 + k2 + k3 = 0, (1)

ω1 + ω2 + ω3 = 0, (2)

for three waves with wavevectors ki and frequencies ωi of either sign, to produce an energy
exchange which occurs at second order. In the case of Boussinesq, linear internal waves,
this can only occur if all three disturbances also satisfy the dispersion relation,

ω = N cos Θ, (3)

where Θ is the angle the wavevector makes with the horizontal and

N =

√
− g

ρ0

dρh
dz

(4)

is the buoyancy frequency with reference density ρ0 and background density stratification
ρh (z). In the well-studied case of parametric subharmonic instability in a linear strat-
ification (uniform buoyancy frequency), only one wave is specified a priori, from which
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a pair of waves is emitted, such that all three waves together satisfy the triads (1) and
(2). Although several such pairs can exist for a given incident wave, the pair with the
fastest growth rate is observed (Bourget et al. (2013)). However, in this paper, two out
of the three nonlinearly interacting waves are specified in a linear stratification, so the
interaction conditions (1), (2) and (3) cannot necessarily be satisfied. Nonetheless, the
emission of additional waves by nonlinear interactions is still observed.

The structure of this paper is as follows. The experimental setup is described in section 2,
before describing a common observed regime in section 3. In section 4, weakly nonlinear
theory for the configuration is discussed and motivates further experiments in section 5.
Finally, the conclusions are presented in section 6.

2 Experimental Setup

Two-dimensional internal wave fields were produced using a wave maker (shown in fig-
ure 1) in the form of a 1 m long flexible boundary to the base of a tank. It consists of
a computer-controlled array of 100 horizontal rods actuated to move vertically with a
neoprene foam sheet attached across them. This allows the boundary to take any non-
overfolding shape, which can vary in time and include multiple frequencies simultaneously
along all or part of the wave maker. Unlike recent cam-driven wave generators, first de-
scribed by Gostiaux et al. (2007), no mechanical intervention is required to reconfigure the
output between experimental runs. The neoprene sheet has a significant bending stiffness
which acts to smooth the form of the boundary, resulting in clean, largely monochromatic
wave fields. This is further improved by having beams many wavelengths across due to
the large horizontal extent of the wave maker, minimising the edge effects of the wave
maker. In addition, by preventing flow around the rods, much larger amplitude waves
can be generated compared to those by oscillating bodies.

Neoprene foam sheet

Actuating rod

Figure 1: Wave maker viewed side-on. The tank walls (not present) are parallel to the page and flushed
with the ends of the rods.

The tank containing the wave maker is 11.4 m long and 255 mm in width and was
filled with a linear density stratification with an approximate buoyancy frequency N
of 1.5 rad s−1 to a depth of around 300 mm. In the experiments, due to salt diffusion and
evaporation of water from the top creating a mixed layer at the surface, the depth over
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which the tank was stratified was typically 50 mm less than this. Because the generated
flows are largely uniform across the tank, the technique of synthetic schlieren, as de-
scribed by Dalziel et al. (2000), was used to obtain quantitative images of the wave fields:
a camera placed in front of the tank films the distortions of a random black-and-white
dot pattern placed behind the tank due to variations in the refractive index caused by
variations in the density of the fluid; inverse ray tracing infers the density field within the
tank.

3 Initial Experimental Results

The left side of the wave maker was driven with a right-travelling sinusoid at one frequency
ω1 with the one in the same direction on the right hand side at a different frequency ω2.
In both cases, the forcing was 150 mm across horizontally plus a 30 mm linear taper on
each side, leaving a 640 mm stationary section between the waves. The amplitudes of
the oscillations were increased linearly from rest in order to attain larger waves with only
limited turbulence near the wave maker. A representative wave field is shown in figure
2 for ω2 = 2.2ω1: the first beam reflects off the interface at the top to then intersect
the second beam within the grey box. A nonlinear interaction generates a third beam
travelling diagonally up and to the right with amplitude constant in time, which shows
that this is not an instability. Other nonlinearities are also present in the image, including
the second harmonic from the left hand oscillations which undergoes a similar interaction
with the main beam from the left side.

Figure 2: Wave field (vertical gradient of density perturbation) produced for ω1 = 0.55 rad s−1 ≈ 0.37N
and ω2 = 2.2ω1 with vertical displacement amplitudes of 15 mm and 7.5 mm respectively and the same
horizontal phase speed of 10 mm s−1.

The image in figure 2 is one frame in a video from which the frequencies of each of
the oscillations can be extracted using dynamic mode decomposition (DMD), described
in Schmid (2010). This technique does not require any knowledge of the underlying
system, but assumes it can be approximated by some linear operator (here, not varying
in time) from one frame to the next and finds an eigendecomposition of this operator with
eigenvalues corresponding to the temporal frequencies and eigenvectors corresponding to
the spatial mode shapes. Some of the modes for this case are shown in figure 3, with
the three largest root-mean-square amplitudes corresponding to the first three images
(in order). The modes in images 3a and 3b are those of the incident beams, while the
third most significant (image 3c) contains the additional generated wave beam which it
shows to have a frequency equal to the difference between the first two. Furthermore, it
is clear that this third beam was not incident on the interaction zone from the bottom-
left, and has gained most of its energy from beam 2 (frequency 2.2ω1 from the right
hand side). The next four modes are at frequencies corresponding to second harmonics
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(a) ω = ω1 = 0.55 rad s−1 (b) ω = 2.2ω1 = 1.21 rad s−1

(c) ω = 1.2ω1 = 0.66 rad s−1 (d) ω = 3.2ω1 = 1.76 rad s−1

Figure 3: Real parts of four modes of dynamic mode decomposition of interaction between beams of
frequency ω1 and 2.2ω1. All are at the same scale as and the window corresponds to the grey box in
figure 2.

of the incident waves and their interactions, then figure 3d corresponds to the sum of
the incident frequencies. This signal is almost invisible at the same scale and does not
propagate outside the interaction zone primarily because its frequency is greater than
the buoyancy frequency. In addition, by performing the Hilbert transform (filtering to
retain only the Fourier modes with wavevectors in the quadrant of interest, which is
useful because the wavevector has the same horizontal but opposite vertical direction to
the group velocity for internal waves), it is observed that there is negligible backscatter
from the interaction zone, i.e. all of the transmitted energy flux in the three beams is to
the right (the same as the incident fluxes).

4 Weakly Nonlinear Theory

Linear theory states that any incident waves should pass through each other with no
interaction, which is approximately true for small amplitudes. At larger amplitudes, a
perturbation approach is used. The governing equations for an inviscid, linearly stratified
fluid under the Boussinesq approximation are conservation of momentum (Navier-Stokes),

ρ0

(
∂u

∂t
+ u · ∇u

)
= −∇p− ρ′gez, (5)

mass,
∂ρ′

∂t
+ w

dρh
dz

+ u · ∇ρ′ = 0, (6)

and volume,
∇ · u = 0, (7)

where ρ0 is the reference density, u = (u,w) is the velocity, t is time, x = (x, z) is
the position, p is the pressure perturbation and ρ′ is the density perturbation to the
background density ρh. The quadratic nonlinear terms are u ·∇u in (5) and u ·∇ρ′ in (6),
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which a linear model would assume to be negligible. In fact, these terms are indeed zero
for a monochromatic wave of arbitrary amplitude, because the velocity u lies parallel to
the lines of constant phase. In beam 1, let

u = u1 =
1

2

(
û1e

i[k1·x−ω1t] + c.c.
)

(8)

and similarly for ρ′ and beam 2, where c.c. denotes the complex conjugate and the form
has been selected to ensure the quantities are real. Since the beams have finite width,
they in reality contain a spectrum of wavenumbers, all of which can interact to produce
a new spectrum; however, monochromatic waves are considered here for simplicity. The
quadratic terms in the interaction zone (where both incident waves are present) are of the
form

Aei[(k1+k2)·x−(ω1+ω2)t] +Bei[(k1−k2)·x−(ω1−ω2)t] + c.c. (9)

for some constants A, B. In other words, the quadratic terms provide a small source term
with wavevectors

k3± = k1 ± k2 (10)

and frequencies
ω3± = ω1 ± ω2. (11)

These are the triadic interaction conditions (1), (2) discussed in section 1, but in general
k3±, ω3± do not satisfy the dispersion relation (3). Instead, these force steady (non-
growing) oscillations with such wavevector and frequency only in the interaction zone.
These disturbances manifest themselves on the edge of the zone distorting the material
surfaces in a manner similar to the wave maker, generating internal waves of frequency ω3

which propagate away with a wavevector satisfying the dispersion relation. By necessity,
the wavevector will undergo a spatial transition to achieve this, as can be seen in the
wobble in figure 3c where the beam crosses the edge of beam 1 (figure 3a). Here, relatively
little adjustment is required, leading to a strong transfer of energy to this third wave, but
weaker interactions occur where this is less well-tuned. A particularly interesting case,
which is yet to be tested, is when the forced oscillations do satisfy the dispersion relation;
then one might expect persistent growth in amplitude of an internal wave - a condition
of resonance.

5 Further Experimental Observations

5.1 Sum of Frequencies less than Buoyancy Frequency

Having two sets of forced oscillations presents two opportunities for generated waves:
ω3 = ω2− ω1 and ω4 = ω2 + ω1 provided 0 < |ω3| , |ω4| < N . The wave with frequency ω3

is present in figures 2 and 3, but ω4 is absent because it is above the buoyancy frequency
so produces an evanescent disturbance outside the interaction zone. However, if ω2 is
reduced such that ω4 = 2.5ω1 ≈ 0.92N < N , a fourth wave of frequency ω4 is emitted
in addition to that with ω3, as shown in figure 4. The fourth wave appears fairly weak
because the vertical gradient of the density perturbation is shown but the gradient close
to horizontal. A plot of the horizontal gradient only for this mode (obtained from DMD),
shown in figure 5 at the same scale as figure 4, indeed confirms the presence of the mode
and shows that the produced wave initially propagates diagonally up and to the right
before reflecting off the top interface to produce the wave propagating down and to the
right, as labeled in figure 4.
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ω1

ω2 = 1.5ω1

ω3 =ω2 − ω1

=0.5ω1

ω4 = ω2 + ω1 = 2.5ω1

ω4 = ω2 + ω1 = 2.5ω1

Figure 4: Vertical gradient of density perturbation for ω1 = 0.55 rad s−1 ≈ 0.37N and ω2 = 1.5ω1 with
vertical displacement amplitudes of 15 mm and 7.5 mm respectively and the same horizontal phase speed
of 10 mm s−1.

Figure 5: Horizontal gradient of density perturbation of mode ω4 = ω1+ω2 for ω1 = 0.55 rad s−1 ≈ 0.37N
and ω2 = 1.5ω1.

5.2 Wave Breaking on Reflection

As a third configuration, shown in figure 6, the second incident wave was driven at double
the frequency of the first (ω1 = 0.65 rad s−1 ≈ 0.43N , ω2 = 2ω1), but with the same
horizontal wavenumber k1 = k2 = 0.065 rad mm−1. This time, only a weak triadic inter-
action occurred where the beams crossed, because the theoretical horizontal wavenumber
of the forced oscillations is zero, resulting in little attenuation of the second incident beam
prior to reaching the interface at the top of the tank. As predicted by linear theory, the
wave reflected off the interface to proceed down and to the right. Near the interface, one
might expect a triadic interaction between the incident and reflected waves, but this is
not possible since ω3 = 0 and ω4 > N . Furthermore, because of the large amplitude
of these incident and reflected waves combined at the same location, a wave breaking
event occurred just below the interface. Patches of apparently saturated signal within
the interaction region are attributed to turbulence locally destroying the coherence of the
optical signal used in calculating density perturbations. Moreover, a new wave beam was
emitted down and to the left from this region.
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Figure 6: Vertical gradient of density perturbation for ω1 = 0.65 rad s−1 ≈ 0.44N and ω2 = 2.0ω1 with
vertical amplitude of 7 mm. Wave breaking occurs in the top-centre of the image.

The four most significant modes of the dynamic mode decomposition are shown in figure
7. Figure 7a shows the usual third wave is still present, albeit weaker, while the strong
zero mode in figure 7c is indicative of mass displaced by the wave breaking. Because
of the strong nonlinearities in the flow, the linear operator approximation used in DMD
was unable to completely resolve the modes, causing notable leakage between the modes.
Nonetheless, figure 7d provides a reasonable estimate of 0.51 rad s−1 for the frequency of
the generated wave propagating down and to the left, which is confirmed by considering
its angle to the vertical and the dispersion relation (3). By using the Hilbert transform,
it can be seen that this wave originates in the breaking zone with waves departing in all
four directions, like a St. Andrew’s Cross for an oscillating body. Also, the next mode
in the decomposition has frequency 0.76 ≈ 1.3 − 0.51 rad s−1 suggesting another triadic
interaction. Since these frequencies are not directly excited by the wave maker, and that
all the disturbances were growing substantially faster than the rate at which the amplitude
of the forcing was increasing, this suggests further instabilities just below the interface in
addition to those discussed here.

(a) ω = 1.30 rad s−1 (b) ω = 0.65 rad s−1

(c) ω = 0.00 rad s−1 (d) ω = 0.51 rad s−1

Figure 7: Most significant modes of dynamic mode decomposition of figure 6, ordered by root-mean-square
amplitude.
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6 Conclusions

Two distinct nonlinear regimes have been observed for the intersection of two internal
waves. First of all, two moderately large-amplitude incident waves can drive two sets
of forced oscillations within a confined region, one with wavevector and frequency equal
to the difference between those of the incident waves, the other at the difference. If the
parameters are sufficiently well-tuned and the frequencies of the generated oscillations
lie below the buoyancy frequency, then this region emits strong internal waves with the
generated frequency and a wavevector adjusted to be consistent with the dispersion re-
lation. This behaviour occurs for a broad range of parameters and appears to be stable,
although is theoretically unstable if the forced oscillations satisfy the dispersion relation
for internal waves - a resonant interaction condition. Secondly, if the two incident waves
have the same frequency which is greater than half the buoyancy frequency, as occurs near
a reflective boundary, the waves may break, leading not only to a patch of turbulence,
but the emission of other internal waves at frequencies which are not directly related to
the input frequency.
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