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Pharming for Genes in Neurotransmission: Combining Chemical 
and Genetic Approaches in Caenorhabditis elegans

Stephen M. Blazie and Yishi Jin
Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La 
Jolla, California 92093, United States

Abstract

Synaptic transmission is central to nervous system function. Chemical and genetic screens are 

valuable approaches to probe synaptic mechanisms in living animals. The nematode 

Caenorhabditis elegans is a prime system to apply these methods to discover genes and dissect the 

cellular pathways underlying neurotransmission. Here, we review key approaches to understand 

neurotransmission and the action of psychiatric drugs in C. elegans. We start with early studies on 

cholinergic excitatory signaling at the neuromuscular junction, and move into mechanisms 

mediated by biogenic amines. Finally, we discuss emerging work toward understanding the 

mechanisms driving synaptic plasticity with a focus on regulation of protein translation.
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INTRODUCTION

Highly organized molecular and electrical events allow neurons to communicate to their 

targets across anatomically defined structures at cellular junctions known as chemical and 

electrical synapses. These mechanisms ensure speed, precision, and plasticity of 
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neurotransmission by varying the type, quantity, and frequency of neurotransmitter release, 

as well as the responsiveness of target cells. Disruptions of this process at multiple levels 

have a profound impact on the pathology of nearly all neurological disorders. Thus, research 

efforts at the cellular and molecular levels have focused on the following general questions: 

When and where are particular neuro-transmitters released? What are their effects on 

postsynaptic target cells? How does variation in this process direct behavioral outputs? A 

powerful way to address these questions has come from the use of neuroactive drugs that 

perturb synaptic transmission in model organisms that are amenable to genetics.

The free-living nematode Caenorhabditis elegans has been a valuable laboratory organism to 

study synaptic biology owing to its body transparency, defined neuronal anatomy, gene 

conservation to human, and amenability to genetic and pharmacological manipulations. 

Sydney Brenner pioneered the genetic studies of C. elegans, setting in motion decades of 

mechanistic investigation in developmental biology and neuro-biology.1 C. elegans 
reproduce primarily as self-fertilizing hermaphrodites, convenient for laboratory handling, 

yet males arise at low frequencies and are used to transfer genetic information. The utility of 

C. elegans as a prime experimental model in neuroscience was accelerated by the efforts of 

John White, Sydney Brenner, and colleagues when they determined the full circuitry of its 

302-cell nervous system at the electron microscopy level.2 Furthermore, Brenner isolated 

abundant mutants in his pioneering genetic screen based on visually detectable phenotypes. 

Among them is a large class of mutants exhibiting defective movement, under the general 

classification of uncoordinated (unc), studies of which have led to the discovery of numerous 

genes that encode conserved proteins mediating synaptic transmission. Brenner also made 

the first attempt to couple pharmacological approaches with genetic screens. Subsequent 

work from others then integrated the use of antipsychotic drugs to discover genetic pathways 

that likely mediate their clinical effects.

In this review, we focus on the major advances gained from pharmacological approaches in 

C. elegans. We begin with early screens focused on cholinergic transmission at the 

neuromuscular junction using the anthelmintic drugs levamisole and aldicarb. We follow 

with a discussion of drugs altering behaviors controlled by biogenic amine signaling, with a 

particular emphasis on recent work leveraging C. elegans genetics to identify side effects of 

psychotropic drugs. Finally, we highlight emerging work using protein translation inhibitors 

to study gene expression mechanisms that underlie synaptic plasticity in a number of 

experimental paradigms.

OVERVIEW OF PHARMACOLOGICAL METHODOLOGIES IN C. elegans

In the laboratory, C. elegans are normally cultured on agarcontaining Petri plates seeded 

with a thin layer of bacteria. In most studies, chemicals or drugs are added to agar media 

supplemented with proper solvents. The cuticle of C. elegans is largely impenetrable to 

small molecule compounds.3 How drugs get into C. elegans remains unclear, although drug 

uptake through the cuticle, gut, or amphid neurons have all been observed.3 Some chemicals 

can yield greater effect when C. elegans are cultured in liquid media composed of 

appropriate salts. While success of such approaches is widely reported, pharmacological 

screening still represents a gigantic effort, often with very small hit rates (below 5%).4–6 
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Further, inherent to pharmacology, many experiments can produce different results, even 

among compounds belonging to the same drug class. For example, the dihydropyridine 

analog nemadipine A was shown to target the calcium channel EGL-19, yet other FDA-

approved dihydropyridines fail to produce a phenotype.6 Thus, it is highly advisable to 

cautiously interpret observed effects or negative results; and effective concentrations of new 

compounds are always determined empirically. Nevertheless, as described below, drugs 

displaying specific effects are especially useful when coupling with additional genetic 

manipulation, such as forward mutagenesis screens or testing candidate genes for altered 

response to drug induced effects (Figure 1). Studies using penetrable drugs or using C. 
elegans mutants with leaky cuticles have revealed numerous signaling processes that mediate 

drug activity and their underlying genes. However, like many clinical neuroactive 

pharmaceuticals, many common chemical compounds are presumed to exert effects through 

off-target interactions. The advantage of C. elegans is that its defined neuronal circuit 

coupled with single-cell manipulation can help to tease apart direct and indirect 

contributions.

USE OF LEVAMISOLE AT THE NEUROMUSCULAR JUNCTION: 

UNDERSTANDING POSTSYNAPTIC ACETYLCHOLINE RECEPTOR 

BIOLOGY

The C. elegans locomotory circuit is an expedient system to reveal the genetic effectors of 

synaptic transmission at the neuromuscular junction (NMJ). Locomotory behavior relies on 

coordinated synaptic innervation from excitatory cholinergic neurons that stimulate body 

muscle contraction while simultaneously activating inhibitory GABAergic neurons, which 

relax muscle cells on the opposing side of the worm. Disruption in this circuit causes a 

variety of movement defects nicknamed coiler, kinker, fainter, twitcher, or shrinker, with 

their gene names generally under the category of unc. The simple anatomy of this circuit, 

coupled with sensitive read-out provided by these phenotypes, makes it an especially 

tractable platform to probe cholinergic neurotransmission.

In his seminal 1974 paper,1 Sydney Brenner recognized the potential of C. elegans for 

systematically identifying genes that underlie synaptic transmission by screening for 

mutants resistant to the insecticides methomyl, a cholinesterase inhibitor, and levamisole, an 

acetylcholine receptor agonist. Both drugs evoke muscle hypercontraction resulting from 

either decreased breakdown of acetylcholine at the synaptic cleft (methomyl) or the addition 

of an exogenous acetylcholine receptor agonist (levamisole) and eventually paralyze the 

animal. Hence, mutants resistant to these drugs are defective in genes that function in 

synaptic transmission (Figure 2).

The pharmacokinetics of levamisole was thoroughly examined in dissected worms.7 Early 

reports suggested that the drug was a cholinergic agonist, since its effect on muscle was 

similar to nicotine, and that it was blocked by antagonists like mecamylamine.7 Levamisole 

appears to act directly on postsynaptic muscles, as its induced effects persist even in 

conjunction with anesthetic treatments that block endogenous neurotransmitter release. 

Reasoning that resistant mutants would likely bear mutations in genes encoding its target 
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receptors, their biosynthesis, or factors required for their assembly, an expansion of 

Brenner’s early levamisole screens was carried out.8 The first such screen yielded 11 genetic 

loci, nicknamed “lev-Unc”7 (Table 1A). An important observation was that lev-unc mutants 

are not completely deficient in motor activity,7 suggesting levamisole only acts on a subclass 

of cholinergic receptors. Additionally, studies of mutants that conferred variable levamisole 

resistance pointed to their possible cellular functions. For example, it was suspected that 

mutants conferring strong resistance were defective in cholinergic receptors, while mutants 

showing weak resistance may likely have defects downstream of receptor signaling.8 

Remarkably, subsequent molecular cloning of five levamisole resistant genes revealed that 

they encode proteins belonging to the family of ionotropic pentameric acetylcholine 

receptors.9 Based on the Cys-Loop classification, three of the five lev-unc genes, unc-63, 

unc-38, and lev-8 encode ligand-binding α subunits and unc-29 and lev-1 encode non-α 
subunits. All five subunits showed predominant expression in the body muscle where they 

likely form a postsynaptic receptor complex (Figure 2).10

A technological breakthrough in characterizing the physiology of these receptors came from 

electrophysiology recording at the NMJ.11 These studies identified two acetylcholine 

receptors (AChRs) expressed in muscles of C. elegans, a levamisole sensitive channel 

requiring unc-29 and unc-38, and another that responds to nicotine and requires acr-16 
receptor.11b Electrophysiological recording on body muscle showed that levamisole evoked 

current amplitude was significantly reduced in lev-1 or unc-63 loss-of-function mutants.10 

Interestingly, lev-8 or lev-1 null mutants are not completely levamisole resistant, suggesting 

that they encode nonessential subunits or alternatively, each is expressed in different muscle 

AChR.12 The former hypothesis is supported by single-channel recording experiments in 

cultured primary muscle cells derived from receptor mutants, which showed that while 

unc-29, unc-38, and unc-63 are required for ACh receptor activity, lev-1 is dispensable.13

Other levamisole resistant mutations were later determined to affect genes essential for 

levamisole receptor assembly, transport, and ultimately their function at the synapse (Figure 

2). lev-10 encodes a conserved CUB-domain containing transmembrane protein, and lev-9 
encodes an extracellular protein containing a conserved SUSHI domain. Together, these two 

proteins regulate levamisole receptor clustering at the NMJ.14,15 unc-50 encodes a 

transmembrane Golgi protein that mediates proper trafficking of assembled receptor 

subunits to the plasma membrane,16 and unc-74 encodes a conserved thioredoxin protein 

that makes disulfide bonds during protein folding in the ER.17,18 A third assembly factor, 

ric-3, was not identified from initial levamisole resistance screens but was instead isolated 

by its resistance to the cholinesterase inhibitor aldicarb.19 The clue for ric-3 function came 

from a genetic suppression screen for neuronal degeneration caused by an AChR mutant 

called deg-3(u662), which carries a missense mutation in the pore forming domain that 

produces a non-desensitizing channel.20 All ric-3(lf) mutants isolated from this screen 

exhibited DEG-3 receptor mislocalization within cell bodies instead of to cell processes.20 

ric-3 belongs to a conserved family of genes important for acetylcholine (ACh) 

neurotransmission.21 Subsequent studies have demonstrated its role in the maturation of 

multiple AChRs, including levamisole receptors. Among the lev-unc mutants, only one gene, 

lev-11, does not directly participate in channel activity; lev-11 encodes a muscle expressed 

tropomyosin gene that may regulate tissue structure needed for optimal AChR activity.22
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With the channel subunits and assembly factors in hand, the next tour de force experiment 

was reconstitution of channel activity in Xenopus oocytes. When eight components were 

expressed in the proper molar ratio, electrophysiology experiments demonstrated a 

functional receptor with specific levamisole sensitivity.17 Importantly, unc-50, unc-74, and 

ric-3 are required for reconstitution,17 underscoring the importance of the assembly factors 

in expressing functional receptor complexes and their indirect yet crucial role in synaptic 

transmission.

It is worth noting that all three accessory proteins are broadly expressed and that the Lev-R 

subunits are also expressed in non-overlapping subsets of neurons, in addition to muscles.10 

Indeed, additional studies revealed that three subunits, UNC-38, UNC-63, and ACR-12, can 

form another heteromeric ACh receptor complex with ACR-2 and ACR-3 in the motor 

neurons.23 Morever, reconstitution studies suggest that these neuronal AChR are not 

levamisole sensitive.23

Other screens have isolated mutants with partial levamisole resistance. Studies of these 

mutants revealed additional factors regulating levamisole AChR assembly and function, such 

as the secreted IG domain protein OIG-4, which associates with LEV-9 and LEV-10 to 

mediate receptor clustering,24 and an assembly factor called EMC-6, which stabilizes 

protein folding of nascent receptors.25 A notable finding derived from these screens is the 

only known levamisole AChR auxiliary factor, called MOLO-1, which directly associates 

with these receptors and regulates channel gating activity when reconstituted in Xenopus 
oocytes.26

In summary, the genetic and subsequent molecular studies on genes displaying selective 

sensitivity to levamisole demonstrate the power of saturation genetic screens in defining 

biological signaling events at NMJ postsynaptic sites, as well as the specificity of drug 

action.

POWERFUL USE OF ACETYLCHOLINESTERASE INHIBITOR ALDICARB: 

DISCOVERY OF PRESYNAPTIC RELEASE COMPONENTS

Acetylcholinesterase (AChE) breaks down acetylcholine in the synaptic cleft, thereby 

terminating neurotransmitter action. Various AChE inhibitors cause ACh accumulation in 

the synaptic cleft and induce time-dependent muscle paralysis, making them particularly 

useful to assay presynaptic function. Animals with increased presynaptic ACh release are 

highly sensitive to these drugs, whereas mutants with defective ACh signaling are 

comparatively resistant. Therefore, the dose-response analysis can be used to assay 

presynaptic changes that alter release kinetics, such as those impacting the synaptic vesicle 

cycle (Figure 2). Mutants resistant to such drugs are usually defective in genes that induce 

cholinergic neurotransmission while hypersensitive mutants are often compromised in genes 

that regulate presynaptic ACh release.

Aldicarb has been the primary AChE inhibitor used to probe synaptic transmission in C. 
elegans. Early genetic screens isolated few mutants resistant to aldicarb induced paralysis.
27–31 A large-scale aldicarb resistance screen carried out by the Rand laboratory19,32 yielded 
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165 mutants of 21 genes named ric (resistant to inhibitors of cholinesterase), some of which 

are previously known unc genes (Table 1B).19 Importantly, these screens used transposon-

induced mutagenesis, facilitating rapid cloning of genes affected. The timely molecular 

identification of the first set of ric genes revealed key components of calcium-triggered 

synaptic vesicle exocytosis (Figure 2). For example, loss of function mutants of 

synaptotagmin (snt-1), the calcium sensor for fast neurotransmitter release,33 were strongly 

aldicarb resistant. The identification of acetylcholine vesicular transporter (unc-17) led to the 

discovery of the VAChT vesicular transporter family. Molecular cloning of unc-13, unc-18, 

unc-64, and unc-10, all played pivotal roles in our understanding of the conserved synaptic 

protein family for Munc13, Munc18, Syntaxin, and Rim in vesicle exocytosis. Additionally, 

several genes including unc-11/AP180,34 unc-57/endophilin,35 and unc-26/synaptojanin36 

were shown to define genes involved in vesicle endocytosis.

With the technological advancement in dsRNAi mediated gene knockdown, genome-wide 

high-throughput screening became feasible. A large number of genes were tested for 

sensitivity to aldicarb,37 which identified 132 additional genes with broad function in 

synaptic transmission and neuronal circuit development and modulation. A benefit of RNAi-

based approaches is the identification of genes that instead confer hypersensitivity to 

aldicarb (hic). hic mutants typically have increased cholinergic synaptic transmission, and 

aldicarb induces paralysis much faster than in wild-type animals. Not surprisingly therefore, 

hic genes are often involved in pathways regulating ACh release.

An interesting example has been the discovery of competing pathways downstream of G-

protein-coupled receptors, which modulate ACh release by regulating vesicle exocytosis at 

presynaptic termini.38 Serotonin signaling pathway activates G-protein α subunit GOA-1, 

which negatively regulates synaptic vesicle exocytosis by restricting the vesicle priming 

factor UNC-13 away from the presynaptic terminal, thereby reducing ACh release.38a 

Mutants deficient in the serotonin biosynthesis factor cat-4 block this inhibitory pathway and 

are hic.38a Likewise, mutants deficient in goa-1 or its downstream effector dgk-1 are also 

hic.38a,b Interestingly, a parallel yet opposing pathway operating through another G-protein 

α subunit, EGL-30, instead stimulates ACh neurotransmission by inducing synthesis of 

diacylglycerol (DAG), which actively recruits UNC-13 to release sites.38c Gain-of-function 

mutations in egl-30 therefore also confer hypersensitivity to aldicarb.

Two other highly conserved genes, complexin cpx-1 and tomosyn tom-1, negatively regulate 

vesicle release. The complexins interact with the SNARE complex.39 In the C. elegans 
motor circuit, cpx-1 opposes stochastic synaptic vesicle release yet supports evoked release 

by maintaining a sufficient pool of primed vesicles at the synaptic terminal.40,40b Tomosyn, 

TOM-1, antagonizes the active zone protein UNC-13 to restrict the size of the primed 

vesicle pool.41,41b Both cpx-1 and tom-1 mutants are hic and exhibit unfettered vesicle 

release.

Other hic genes are required in pathways that support GABA inhibitory neurotransmission. 

Mutants defective in the GABA transporter unc-47, for example, are aldicarb hypersensitive.
42 An RNAi screen targeting genes with predicted synaptic roles identified over 70 hic 
genes,43 including genes required for GABAergic neuron development, such as TGF-β and 
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Wnt signaling, and the MAP kinase signaling pathways that regulate GABA 

neurotransmission.43 Thus, aldicarb hypersensitivity can also be an effective phenotype 

leveraged to study inhibitory neurotransmission.

In summary, aldicarb sensitivity mutants identified from both forward and reverse genetic 

approaches are enriched in presynaptic genes, consistent with the reliance of effects of 

aldicarb on presynaptic ACh release (Table 1B). All have either reflected on known models 

of synaptic transmission in other species or uncovered previously unknown components and 

pathways. For example, the conserved gene ric-8 was described as a novel regulator of 

neurotransmitter release through a G-protein-coupled receptor pathway through regulation 

of DAG levels. Many aldicarb resistance mutants remain poorly understood, and further 

studies will expand the gene network and advance our knowledge of synapse regulation.

BIOGENIC-AMINE SIGNALING: ACTIONS OF PSYCHIATRIC DRUGS ON 

CIRCUIT MODULATION

Psychoactive drugs of various classes are commonplace for the treatment of brain disorders. 

While generally effective as mood suppressors, a major downside is their variable and 

unpredictable clinical efficacy and wide ranging side effects.44 Although designed to 

mitigate biogenic amine signaling at multiple levels, their clinical side effects are postulated 

to stem from largely unknown secondary targets and extraneous pathways. A critical interest 

has therefore focused on identifying the corresponding molecular pathways leading to these 

undesired effects.

The well-defined neural circuitry and powerful genetics of C. elegans sparked a surge of 

research tailored to address these knowledge gaps in psychiatric pharmacology. As with 

anthelmintics, C. elegans responds to many psychotropic drugs, allowing genetic screens to 

identify mutants with altered drug response.

In C. elegans, serotonin (5-HT) and dopamine were first identified by use of formaldehyde-

induced fluorescence (FIF) staining,45 revealing their presence in the head, ventral nerve 

cord, and tail neurons.45b This led to the finding that these neurotransmitters play an 

important modulatory role in C. elegans, affecting egg-laying, foraging behavior, and other 

activities. Below, we will discuss selective studies addressing cellular targets of 

antidepressants.

Mapping Antidepressant Side Effects: Serotonin Reuptake Inhibitors.

Serotonin reuptake inhibitors (SSRIs), including imipramine (Tofranil), clomipramine 

(Anafranil), and fluoxetine (Prozac) are a common class of clinical antidepressants. 

Analogous to the action of AChEs at the neuromuscular junction, these drugs inhibit 

serotonin reuptake transporters (SERTs) that reabsorb 5-HT at the synaptic cleft, causing its 

accumulation and stimulating serotonin receptor signaling. In clinical practice, these drugs 

induce a range of side effects,46 with poorly understood cellular mechanisms.

Early studies of egg-laying behavior in C. elegans provided the first evidence for serotonin-

independent effects of SSRIs and offered an experimental direction to dissect their cellular 
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pathways. FIF staining revealed serotonin expressing neurons near the vulva tissues required 

for egg-laying.45a Vulva muscles are coordinately innervated by cholinergic motor neurons 

and hermaphrodite specific motor neurons (HSNs).47 Rate of egg-laying depends on both 

serotonin and acetylcholine neurotransmitters, since laser ablation of the HSN neurons 

causes an egg-laying defective (egl) phenotype independent of serotonin48 and exogenously 

supplied serotonin does not stimulate egg-laying in ACh neurotransmission deficient 

mutants.49 To much surprise, the SSRIs imipramine and clomipramine never-the-less 

stimulate egg-laying in mutants deficient in serotonin biosynthesis enzyme and lacking 

HSNs.49 Also supporting independent pathways for imipramine and clomipramine, mutants 

that completely lack serotonin were found to exhibit even greater sensitivity to low doses of 

these drugs.49

Do serotonin independent effects of SSRIs involve SERT targeting? Answers to this 

question came from experiments using mutants defective in MOD-5, the C. elegans 
serotonin reuptake transporter.50 The SSRI fluoxetine (Prozac) stimulates egg-laying and 

contraction of nose muscles even in mod-5 null mutants, suggesting SERT independent 

pathways mediated by this drug.50 The effects of SSRIs on SERTs are likely distinct, since 

mod-5 mutants remain sensitive to fluoxetine induced egg-laying but inhibit the egg-laying 

induction by imipramine.50,51 Importantly, while SSRIs would be expected to accumulate 

serotonin in the synaptic cleft, SERTs also import exogenous serotonin to neurons lacking 

serotonin biosynthesis. Fluoxetine eliminates serotonin from these neurons, likely by 

blocking MOD-5.52 Therefore, SSRIs may exert their effects through 1) stimulating 

serotonergic signaling by promoting its accumulation in the synaptic cleft, 2) depletion of 

serotonin from neurons deficient in serotonin biosynthesis, or 3) SERT-independent 

pathways.

Identification of serotonin receptors in HSN neurons permitted targeted genetic experiments 

that clarified potential receptor targets mediating SSRI-induced egg-laying.51 Importantly, 

these studies showed that imipramine and fluoxetine act through two SERT and 5-HT 

independent receptor pathways (Figure 3). While 5-HT stimulates egg-laying through the 

ser-1 receptor on vulva muscle, fluoxetine acts independently of either ser-1 or 5-HT. 

However, both require the downstream G-protein α subunit egl-30, indicating a parallel 

pathway whereby 5-HT and fluoxetine stimulate egg-laying converging on egl-30.51 The 

fluoxetine receptor upstream of egl-30 remains unknown, however signaling likely involves 

the HSN, since ablation of this cell prevents fluoxetine induced egg-laying.53 Although 

imipramine also requires this neuron,53 it regulates egg-laying through a pathway 

independent of ser-1 and egl-30 and instead requires the ser-4 receptor expressed in head 

neurons.51 These distinct receptor pathways for both drugs could explain their different 

clinical side effects.

Fluoxetine may also affect neurotransmitter signaling outside of serotonin as it causes 

muscle paralysis concurrent with reduction in ACh expression in the cholinergic motor 

neurons, dependent on the AMPA-type glutamate receptor (glr-1).52 This action also trends 

with serotonin receptor activity, as paralysis is partially dependent on ser-7 and appears to be 

opposed by ser-5 receptor signaling as ser-5 null animals are fluoxetine hypersensitive.52 

Together, these studies demonstrate that multifaceted mechanisms mediate fluoxetine 
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phenotypes and are not restricted to SERT inhibition. Future work will probe its effects 

among different neural circuits and thoroughly delineate its molecular targets in each 

receptor signaling pathway.

Forward genetic screens for fluoxetine-resistant mutants have led to the identification of 

novel molecular components of fluoxetine action.54 These mutants were devoid of the 

serotonin-independent rapid nose muscle contraction phenotype caused by fluoxetine54 and 

affected seven different genes, generally named nose resistant to fluoxetine (nrf). Double 

mutant analysis suggests that these genes likely act in the same pathway.54 Interestingly, 

these mutants also exhibit a pale-egg (peg) phenotype resulting from failure to accumulate 

yolk, suggesting that fluoxetine may alter lipid function. nrf-5 is shown to be homologous to 

a family of lipid-binding proteins.54 Other genes may act synchronously as lipid proteins 

required for fluoxetine intercellular transport. Alternatively, lipid modifications by these 

genes could change their membrane properties and alter neuronal excitability.54 peg genes 

appear to be required in the intestine to mediate the nrf phenotype.55 Therefore, the peg and 

non-peg genes likely constitute distinct pathways mediating fluoxetine resistance. Further 

experiments will need to address how each pathway mediates fluoxetine side effects and 

their mutual roles.

Linking Neurotransmission to Aging: Unexpected Roles of Antidepressants.

An intriguing side-effect mediated by certain antidepressants in C. elegans is that of lifespan 

extension (LE). The short development time scale of C. elegans makes lifespan assays 

feasible in large screens that allow the systematic delineation of LE determinant pathways. 

These pathways, such as those mediating the positive effect of dietary restriction on lifespan,
56 are often highly conserved in mammals.

The initial observation that antidepressants alter C. elegans lifespan came from a large-scale 

chemical screen of 88 000 known compounds,4,57 revealing 20–30% LE from each of the 

serotonin receptor antagonists mianserin, methiothepin, mirtazapin, and cyproheptadine.4 

Interestingly, only low doses of mianserin support LE, which also requires the G-protein-

coupled serotonin receptor ser-4, and the octopamine receptor ser-3.57

How could mianserin’s antagonistic effect on serotonin improve lifespan? At least part of 

the mechanism involves the well described caloric restriction LE pathways since restricting 

C. elegans diet did not enhance mianserin induced LE.57 Since serotonin signals the 

presence of food, antagonizing this process with mianserin could virtualize starvation, 

thereby mimicking dietary restriction. Another part of mianserin’s mechanism likely 

protects worms from oxidative stress by activating superoxide dismutases.58 

Neurotransmission mutants snt-1 and snb-1 are not resistant to oxidative stress in the 

presence of mianserin, suggesting that this protection requires neuroactivity. A model 

therefore postulates that mianserin activates an oxidation protective stress response by 

promoting neurotransmission.58

Genomic level insights on the mianserin LE mechanism came from an age-progression 

transcriptome study, finding misregulated mRNA stoichiometry correlated with worm age 

caused by a phenomenon named transcriptional drift. This phenomenon, in which genes 
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belonging to the same functional category change their expression in opposing directions,59 

is significantly reduced in mianserin treated worms and linked to the superoxide 

detoxification pathway.59 Interestingly, this effect requires ser-5, but not ser-3 or ser-4, 

which were formerly shown to mediate mianserin LE. Evidence of this phenomenon in 

humans and mice suggests this mechanism is conserved.59

Subsequent work discovered overlap between genes that change in expression in response to 

mianserin and genes enriched in clinical depression from genome-wide association studies 

(GWASs).59 One of these was the Ankyrin ortholog unc-44, which increases in expression 

through age, where its eventual high expression in older animals is detrimental.59 Mianserin 

is thought to extend lifespan by maintaining youthful low levels of Ankyrin to 

counterbalance oxidative stress.59 Extending this to human GWASs located an allele of 

ANK3 linked to individuals with depression and is associated with longer lifespan in males.
59 Other genes from this study will be interesting to examine the full spectrum of mianserin 

induced LE mechanisms.

Target Spectra of Other Antipsychotic Drugs.

Anti-psychotic drugs, thought to act as dopamine antagonists by blocking the D2 receptor, 

are effective in the treatment of mental illnesses such as schizophrenia and bipolar disorder.
60 Like SSRIs, these drugs are also promiscuous through poorly understood pathways60 that 

produce widespread developmental abnormalities, particularly in neonatal infants and young 

children.61,62 The tissue-level nature of these effects is reflected by their cytotoxicity in 

human neuronal cell lines.63 Rats exposed to antipsychotics in utero also develop with fewer 

proliferating neurons.64

First generation antipsychotics, which preferentially antagonize dopamine receptors, also 

interfere with C. elegans larval development, producing a dose-dependent reduction in body 

length.65 However, most second-generation drugs with the exception of clozapine, have 

minimal impact.65 Importantly, this effect was not rescued by adding dopamine or serotonin 

together with the drugs, suggesting they may target pathways independent of these 

neurotransmitters.65

Many of these antipsychotics, including calmidazolium, trifluoperazine, and chlorpromazine 

are likely inhibitors of calmodulin, a neuronal Ca2+ binding protein.65 Worms exposed to the 

drugs or calmodulin inhibitors developed at the same slow rate, suggesting that calmodulin 

inhibition pathways may in part be responsible for the developmental defects caused by 

antipsychotics.65 Both drugs also interfere with mechanosensory neuron development, 

leading to abnormal axonal extension,66 also independent of serotonin or dopamine.

The clinical benefits of antipsychotics may not derive solely from pathway inhibition but 

could also restore the activity of aberrant signaling pathways. An example of this has been 

with the second-generation antipsychotic clozapine, which induces an early larval arrest 

phenotype that is dependent on the highly conserved insulin (Akt) signaling pathway.67 The 

Akt signaling cascade leads to the phosphorylation of the FOXO transcription factor 

DAF-16, restricting its localization to the cytoplasm and reducing its nuclear transcription 

transactivation activity.68 Clozapine-induced larval arrest is suppressed in mutants deficient 
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in multiple components of the insulin-signaling (Akt) pathway, including phosphatidyl 

inositol 3-kinase (age-1) and insulin receptor (daf-2).67 An important downstream effect of 

clozapine treatment was shown to be unrestrained Akt signaling resulting in the 

mislocalization of DAF-16.67

Soon after, it was realized that nearly all major antipsychotics increase signaling through the 

insulin pathway, with a clear downstream effect of cytoplasmic DAF-12 accumulation. This 

results in phenotypes like dauer formation and shortened lifespan, that are well documented 

consequences of enhanced AKT signaling and require both the AKT-1 and insulin receptor 

(DAF-2).69 Although the protein phosphatase calcineurin is a target of calmodulin that 

regulates DAF-16 activity and is inhibited by several antipsychotics, calcineurin mutants did 

not restore DAF-16 translocation to the nucleus.69 Therefore, future work will need to 

address if the activation of Akt signaling is related to calmodulin inhibition or if each 

represents two independent secondary effects of antipsychotics that affect animal 

development.

Clozapine typically has a broader range of therapeutic applications and is often considered 

the first line of defense for correcting forms of mental illness.70 An interesting convergence 

between Akt signaling and the varying clinical efficacy between antipsychotics has also been 

established. The downstream insulin signaling factor β-arrestin, which activates SGK-1 to 

ultimately restrict DAF-12 localization, is uniquely required for clozapine effects driven 

through this pathway.71 However, it is not clear how clozapine promotes SGK-1 activation 

through β-arrestin, especially since SGK-1 mRNA expression remains unchanged after 

treatment.71 These studies suggest that there may be multiple different pathways induced by 

antipsychotics that somehow converge on deactivating DAF-12. These insights are 

significant, since low-levels of Akt signaling are observed in untreated schizophrenics, 

implying that antipsychotics may exert their benefits through restoring pathway activity.72,73

Powerful RNAi screening approaches have isolated suppressors of clozapine-induced larval 

arrest (scla), identifying 40 genes that may be involved in clozapine’s mechanism. One of 

these was the nicotinic acetylcholine receptor subunit acr-7,74 which is likely stimulated by 

clozapine since both inhibit pumping of the pharynx muscle used for foraging. Another scla 
gene called sms-1 encodes a sphingomyelin synthetase that is highly expressed in the 

pharynx and is also required for the clozapine-induced pumping defect. Further experiments 

provided evidence that clozapine activates sms-1, which boosts glucosylceramide levels 

which in turn reduce cellular protein aggregates by inducing autophagy.75

Analysis of a null mutation in the cation-selective transient potential receptor channel gtl-2 
that suppresses larval arrest provided evidence for multiple tissues involved in clozapine 

action, as restoring gtl-2 expression only in the excretory canal cell is sufficient to rescue 

suppression.76 Although still unclear, suppression appears to be mediated through regulation 

of Mg2+ homeostasis specifically in this cell.76 This result points to mechanisms underlying 

not only clozapine action, but also mental illnesses, since TRPM channels are widely 

expressed in mammalian brains and implicated in bipolar disorders.77,78 It will be interesting 

to further address the function of scla genes in the apparently many divergent pathways of 

clozapine action. Similar genetics approaches will be a powerful means to dissect target 
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repertoires of antipsychotic drugs to build on current models and to provide a blueprint for 

pharmaceuticals with greater clinical efficacy.

INHIBITORS OF PROTEIN TRANSLATION: UNDERSTANDING SYNAPTIC 

PLASTICITY

Modulation of neurotransmission driven by relative increases (potentiation) or decreases 

(depression) in synaptic strength allows nervous systems to store and process information, 

such as that needed for learning and memory. Regulating gene expression at multiple levels 

is an essential component of this process and tight dosage of protein levels via translation 

control has long been appreciated for its key role in the potentiation and depression of 

synapses (for a review, see ref 79). Drugs that interfere with various steps of protein 

synthesis disrupt long-term memory in many experimental models80,81 and have been useful 

for defining the temporal requirements of translation during memory. Cycloheximide is a 

widely used drug for these studies, since its effect on neuronal electrical activity is 

detectably inert compared to other inhibitors.82 While its precise mechanism is still poorly 

understood, cycloheximide is thought to block the elongation step of translation,83 which 

early experiments showed produces an amnesic effect in rats due to changes of neurons in 

the cerebrum without affecting neuron morphology.84 The intracellular changes to synapses 

influencing memory are yet to be completely understood but represent a growing area of 

inquiry.

C. elegans responds to an array of transcription and translation inhibitors, offering a 

powerful platform to investigate mechanisms that couple control of gene expression with 

synaptic changes driving memory processes. Several key experiments have recently 

highlighted both transcription and translation as integral components of C. elegans long-term 

associative memory (LTAM) using dedicated assays for the ability to relate chemoattractants 

with food availability (Figure 4). A key demonstration of this approach is that following a 

seven-interval assay using the odorant butanone, associative memory was retained for 16 h.
85 LTAM was blocked in worms treated with the translation inhibitor cycloheximide or 

transcription inhibitor actinomycin-D, demonstrating that gene expression at both levels is 

required.85 LTAM requires the CREB transcription factor85 and declines as worms age. 

Consistently, LTAM is improved in daf-2 mutants, which exhibit extended lifespan via 

defective insulin-signaling. The expression level of CREB seems to be an indicator of LTAM 

performance as its expression increases during training sessions and declines with age.85 

These observations are likely to be general to all associative learning processes as aversive 

olfactory association assays corroborate these results.86,87 In a variation of these 

experiments, it was shown that C. elegans can also learn to avoid a chemoattractant (1-

propanol) when simultaneously provided with an aversive odorant. This learned behavior 

also requires transcription, translation, and the CREB transcription factor.86,87

How does CREB-induced transcription support associative memory? A recent study 

provided some answers to this question through transcriptome profiling of naive (pre-

training) and memory-conditioned (post-training) animals in wild-type and CREB null 

backgrounds.88 These experiments identified a developmental requirement for basal CREB 
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transcription in non-neuronal tissues. However, memory conditioning activates specialized 

neuronal CREB transcription that alters over 1000 genes related to memory conditioning.88 

This gene set consists of synaptic components including vesicle docking genes, ion 

channels, seven-pass transmembrane receptors, kinases, and neuropeptide signaling genes.88 

It will be interesting to further address how differential regulation of these genes induces 

synaptic changes. Together, these studies have helped reveal LTAM genes and a correlation 

between aging, CREB transcriptional activity, and memory loss.

Variations of the associative learning assay have been employed to study short-term (STAM) 

and intermediate-term associative memory (ITAM). In these cases, worms are trained for 1 h 

with butanol, and attraction is tested immediately after exposure (for STAM) or 1 h after 

training (for ITAM).89 In contrast to LTAM, short-term memory does not rely on 

transcription or translation, as worms achieve STAM even when exposed to either 

actinomycin D or cycloheximide during the training period.89 However, cycloheximide 

reduces ITAM indicating that translation is important for retaining memory for slightly 

longer periods.89 Remarkably, treating worms with cycloheximide after the training period 

increased the length of the attraction period, seeming to decelerate memory loss and 

suggesting that “forgetting” is an active process requiring the translation of new proteins.89 

Additional molecular insights on this model came from the revelation that the conserved 

musashi RNA-binding protein (msi-1) regulates forgetting through a pathway involving 

actin-cytoskeletal rearrangements.90 msi-1(lf) animals are strongly impaired in forgetting, 

which is rescued by wild-type msi-1 expressed solely in the AVA interneuron responsible for 

C. elegans memory.90 Immunoprecipitation and sequencing of MSI-1 bound RNA revealed 

that MSI-1 binds and represses the translation of three Arp2/3 protein complex transcripts 

that induce actin branching. Cycloheximide mimics the effects of msi-1 and can substitute 

its activity in msi-1(lf) mutants by blocking Arp2/3 translation. This translational repression 

directed by msi-1 is specific to the forgetting process, whereas cycloheximide may also 

interfere with memory formation if applied during conditioning.90 GFP-tagged glutamate 

receptor (GLR-1) that labels synapses at AVA was dramatically increased following training. 

This increase was reduced in an actin-remodeling dependent manner, coinciding with MSI-1 

activity after the training period.90 These results showed that the forgetting process is likely 

due to a refractory period where enlarged post-learning synapses are gradually reduced to 

their pre-learning size through actin remodeling.90 Additional experiments are needed to 

address how the dynamics of actin skeleton remodeling, which are apparently regulated by 

translation, regulates memory at different stages of learning.

These studies from C. elegans reinforce those from other organisms that protein synthesis is 

an essential part of the memory dynamics, promoting memory along long and intermediate-

terms as well as the active process of memory loss. Future work will focus on the specific 

genes targeted for translation during memory formation, specific components of the 

translation machinery that are engaged, and their effect at the synapse. To do so, it will be 

important to develop new tools with improved resolution that allow quantification of 

individual translation events. Methods like SUN-Tag91–93,91b and the TRICK assay94 have 

already shown promise in other systems for visualizing translation in real-time. Luminescent 

proteins95 and low half-life fluorescent reporters96 should allow visualization of protein 

dynamics. Integrating these techniques with C. elegans genetics, pharmacology, and imaging 
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tools will continue to bring major prospects to our understanding of translation regulation 

schemes in the nervous system.

CONCLUDING REMARKS

As the only metazoan to-date with anatomically defined neural circuitry and virtually 

complete expression maps for neuronal receptors and other molecules, C. elegans offers 

great advantages in current research. Confluent with these features, chemical screens in this 

model have made it possible to link gene function to neurotransmission and 

neurotransmission to circuit level activity within a living organism. Of note, the mechanisms 

discovered via these approaches are exceptionally conserved in mammals, making not only 

the genes but the function of their underlying pathways a foundation to understand the 

generally larger, more complicated mammalian nervous systems. While productive, lessons 

from the past 40 years indicate that we have really only scratched the surface leveraging the 

unique capabilities of this model, and there are likely many more surprises in store.
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Figure 1. 
Pharmacology screens in C. elegans. The germ cells of preadult worms are mutagenized 

with chemicals or radiation on agar plates. After culturing for two generations to allow 

recessive phenotypes to arise, worms are treated with a chosen neuroactive drug on agar 

plates or in liquid. Drug-resistant animals are then isolated and cultured, and their mutations 

are mapped to genes conferring drug-resistance.
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Figure 2. 
Genes operating in post- and presynaptic cells of the neuromuscular junction identified in 

levamisole and aldicarb resistance screens. Levamisole resistance mutations primarily affect 

genes operating in the postsynaptic muscle, including subunits of the levamisole sensitive 

pentameric ACh receptor, their assembly factors in the endoplasmic reticulum (ER), 

vesicular transporters, and receptor clustering proteins. A major class of genes identified in 

aldicarb resistance (ric) screens are synaptic vesicle cycle factors located in the presynaptic 

terminal.
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Figure 3. 
Distinct pathways of fluoxetine and imipramine induced egg-laying. The imipramine 

pathway (blue) requires the SER-4 receptor in the head neurons and the HSN neuron to 

stimulate egg-laying in the vulva muscle, but its intermediate effectors and interneuron 

linking signals from the head neurons have not been determined. The fluoxetine pathway 

(red) also requires the HSN neuron and signals parallel to the 5-HT receptor SER-1, 

converging on EGL-30, through unknown receptor(s). In addition, both drugs inhibit the C. 
elegans SERT homologue MOD-5.
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Figure 4. 
Long-term associative memory (LTAM) assay scheme. In these experiments, worms are 

“trained” by alternating exposure to a chemoattractant in the presence of food and starvation 

over a number of intervals. The trained worms are cultured on plates with food lacking the 

chemoattractant for a long period and subsequently assayed for improved taxis toward the 

chemoattractant.
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Table 1.

List of Synaptic Transmission Genes Identified in Levamisole and Aldicarb Resistance Screens
a

A. Major Levamisole-Resistance Genes

molecular function C. elegans gene identity/homology Selected reference

postsynaptic nAChR receptor subunits   lev-1 non-α-nAChR subunits   9

  unc-29   9

  unc-63 α-nAChR subunits   10

  unc-38   9

  lev-8   12

nAChR assembly, transport, and regulation   lev-9 SUSHI domain containing protein   15

  lev-10 CUB domain containing protein   14

  lev-11 tropomyosin homologue   22

  unc-50 golgi membrane protein   16a

  unc-74 thioredoxin   17

  ric-3 transmembrane and coiled-coil domain protein   20

  oig-4 secreted single IG-domain protein   24

  emc-6 endoplasmic membrane protein complex subunit 6   25

  molo-1 levamisole AChR auxiliary factor   26

regulation of muscle contraction   unc-22 Titin homologue   97

B. Select Aldicarb Sensitive Genes

molecular function C. elegans gene homologues Selected reference

synaptic vesicle cycle   unc-13 synaptic priming factor (mUNC13)   98

  snt-1 synaptotagmin 1 (SYT1)   31

  unc-18 syntaxin binding protein 1 (STXBP1)   99

  unc-11 Adaptor protein (AP180)   34

  ric-4 synaptosome associated protein 25 (SNAP25)   100

  unc-104 kinesin 1A (KIF1A)   101

  unc-10 Rab3 interacting molecule (RIM)   102

  aex-3 rab-3 guanine exchange factor   103

  unc-64 syntaxin 1A (STX1A)   104

  unc-26 synaptojanin 1 (SYNJ1)   36

  unc-31 calcium-dependent secretion activator (CAPS)   105

  unc-41 stonin 2 (STN2)   106

mRNA splicing factor   unc-75 CUGBP Elav-like family member (CELF)   107

Ach biosynthesis and transport   unc-17 vesicle acetylcholine transporter (VAChT)   28

  cha-1 choline O-acetyltransferase (CHAT)   108

regulation of Ach transmission   egl-10 regulator of G protein signaling 7 (RGS7)   109

  egl-30 G protein subunit alpha q (GNAQ)   110

  unc-2 calcium voltage-gated channel subunit(CACNA1A)   111

  ric-8 guanine nucleotide exchange factor (RIC8A)   112

  ric-1 MFSD6   113

  cpx-1 complexin   40a
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A. Major Levamisole-Resistance Genes

molecular function C. elegans gene identity/homology Selected reference

  tom-1 tomosyn   41a

a
unc = uncoordinated, lev = levamisole resistant, ric = resistant to aldicarb, nAChR = nicotinic acetylcholine receptor, emc = endoplasmic 

membrane protein complex, oig = one IG domain, molo = modulator of levamisole-sensitive receptor, snt = synaptotagmin, aex = Aboc EXpulsion 
defective, cha = choline O-acetyltransferase, egl = egg-laying defective, cpx = complexin, tom = tomosyn.
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