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Building CRISPR Gene Therapies for the Central Nervous System
A Review
Sally E. Salomonsson, PhD; Claire D. Clelland, PhD, MD

G ene therapies based on clustered regularly interspaced
short palindromic repeats (CRISPR) hold great promise for
curing not only diseases caused by genetic variants but also

acquired viral, bacterial, and oncological diseases. Most CRISPR-
based gene editing uses CRISPR-associated protein 9 (Cas9), a pro-
tein derived from the bacterial adaptive immune system, to cut
DNA.1,2 What makes the CRISPR system so powerful is that pairing
Cas9 with a single guide RNA (gRNA) homes the endonuclease to a
specific genomic site with single-nucleotide fidelity.2

Although CRISPR gene therapies have been in clinical trials since
2016 for cancer, blood disorders, and liver disorders,3-6 no clinical
trials, to our knowledge, are currently recruiting or ongoing for cen-
tral nervous system (CNS) disorders because of the unique and sig-
nificant challenges involved. These challenges include delivering
CRISPR reagents across the protective blood-brain barrier (BBB),
achieving proper distribution in the brain parenchyma, and avoid-
ing neurotoxic effects due to the CRISPR cargo or its packaging,
alongside uncertainties around best practices for the preclinical as-
sessment of the risk for off-target genome editing in vivo. The tra-
ditional pipeline to bring novel therapies from conception through
cell and animal studies to human trials is depicted in Figure 1.

Herein, we review the state of progress of in vivo CRISPR thera-
peutics and lay out a map of roadblocks and milestones for their suc-

cessful development for neurologic diseases. Furthermore, we de-
lineate the methodology and limitations of classic CRISPR (herein
defined as the canonical ribonucleoprotein complex of Cas9 and
gRNA) in the clinical setting and contrast it with newer program-
mable CRISPR approaches, such as base and prime editing. Our
goal is to outline the clinical relevance of the rapidly evolving scien-
tific landscape, previewing the roadmap for successful CNS CRISPR
therapeutics.

The New Landscape of In Vivo Gene
Editing Strategies
CRISPR-based editing strategies have largely replaced their gene ed-
iting predecessors, such as transcription activator–like effector nucle-
ases and zinc fingers, because they are more efficient, less costly,
and easier to redesign and deploy against novel targets.7 CRISPR ed-
iting also builds on advances in transient gene disruption or silenc-
ing approaches, such as small interfering RNAs and antisense oligo-
nucleotides, which provide important proof-of-concept data that
genetic targeting can treat disease8,9 but typically require redosing
and may increase the risk of immune response and chemical men-
ingitis over a lifetime of therapy. CRISPR-based strategies are dis-

IMPORTANCE Gene editing using clustered regularly interspaced short palindromic repeats
(CRISPR) holds the promise to arrest or cure monogenic disease if it can be determined which
genetic change to create without inducing unintended cellular dysfunction and how to deliver
this technology to the target organ reliably and safely. Clinical trials for blood and liver
disorders, for which delivery of CRISPR is not limiting, show promise, yet no trials have begun
for central nervous system (CNS) indications.

OBSERVATIONS The CNS is arguably the most challenging target given its innate exclusion
of large molecules and its defenses against bacterial invasion (from which CRISPR originates).
Herein, the types of CRISPR editing (DNA cutting, base editing, and templated repair) and
how these are applied to different genetic variants are summarized. The challenges of
delivering genome editors to the CNS, including the viral and nonviral delivery vehicles that
may ultimately circumvent these challenges, are discussed. Also, ways to minimize the
potential in vivo genotoxic effects of genome editors through delivery vehicle design and
preclinical off-target testing are considered. The ethical considerations of germline editing,
a potential off-target outcome of any gene editing therapy, are explored. The unique
regulatory challenges of a human-specific therapy that cannot be derisked solely in animal
models are also discussed.

CONCLUSIONS AND RELEVANCE An understanding of both the potential benefits and
challenges of CRISPR gene therapy better informs the scientific, clinical, regulatory, and
timeline considerations of developing CRISPR gene therapy for neurologic diseases.
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tinct in that they hold promise as a long-term and curative therapy
after a single dose.

For in vivo gene editing, a critical concern is to make a desired
change at the genomic target (on-target editing) without inducing
changes at other genomic loci (off-target editing). In this regard, clas-
sic CRISPR editing has inherent limitations that raise safety con-
cerns and reduce its effectiveness in postmitotic cells. First, classic
CRISPR hinges on the presence of a 2- to 6-nucleotide sequence (pro-
tospacer adjacent motif) immediately adjacent to the gRNA’s tar-
get sequence for the DNA to be cut at the desired site.2 Many de-
sirable editing sites do not have an adjacent protospacer adjacent
motif. This restricts the number of candidate cut sites within a tar-
get gene, in some cases leaving only suboptimal sites that have a high
risk of off-target editing or are located far from the nucleotide(s) to
edit. Second, classic CRISPR relies on the cell’s DNA repair path-
ways to reseal the DNA after a Cas9-induced cut. Although the cut
itself is highly controlled, the repair is not. Repair can involve a va-
riety of mechanisms (eg, nonhomologous end joining, homology-
directed repair, or microhomology-mediated end joining),10 lead-
ing sometimes to the desired outcomes (for instance, the inactivation
of a disease-causing allele) and other times to deleterious events (for
instance, chromosomal rearrangements).11-13 Last, repair mecha-
nisms vary across cell types. For example, postmitotic cells, such as
neurons, are unlikely to carry out the more accurate homology-

directed repair.14,15 Recent advances using modifications to the
Cas9-gRNA complex may overcome these limitations of classic
CRISPR (Figure 2).

Base editing and templated CRISPR approaches opened the pos-
sibility of correcting genes rather than just silencing or removing
them. Importantly, base editing and some forms of templated CRISPR
do not make double-stranded DNA breaks like classic CRISPR does
but instead nick 1 strand, in theory increasing the editing precision
as off-target single-stranded breaks are repaired with high fidelity.16-19

Base editing allows single–base-pair conversions.18 Templated forms
of CRISPR, namely prime editing,16 twin prime editing,19 and pro-
grammable addition via site-specific targeting elements,17 allow
insertions and deletions with higher precision than classic CRISPR,
in part because they use a DNA template to instruct the cell how to
repair the cleaved DNA. The template is produced by a reverse tran-
scriptase integrated into the gRNA. Some forms of templated re-
pair can facilitate very large insertions (up to 36 000 base pairs to
date).17

Still, both base editors and templated CRISPR strategies have
problems that limit their clinical utility. Base editors are relatively pro-
miscuous and can cause off-target editing throughout the
genome.20-22 Prime editing has been prone to undesired insertion-
deletion formation across the genome.23 Both can induce conver-
sions from single-stranded DNA breaks to double-stranded breaks,19

Figure 1. Overview of the Development Pipeline for In Vivo Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Therapeutics
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The candidate therapeutic for preclinical studies contains the selected CRISPR
gene editing cargo, packaged in a particle with suitable properties for safe and
efficient delivery to the target organ. Both the cargo and the particle undergo
thorough testing and optimization before the preclinical phase. In classic
CRISPR editing, CRISPR-associated protein 9 (Cas9) is directed to a specific
genomic site by a guide RNA (gRNA) binding to a unique sequence in the target
gene, where it makes a double-stranded DNA break. This type of editing poses
the risk of unintended insertions or deletions at other genomic loci with
similarity to the target sequence. Since such off-target editing may cause cancer
or other abnormalities, safety concerns are addressed at all stages of
development. First, candidate gRNAs ought to be validated for minimal

off-target events by 2 independent genome-wide sequencing methods.
Second, the delivery particle should ideally be broken down through
endogenous mechanisms after editing has occurred to avoid integration
and continuous expression of the gene editing complex. Moreover, the
immunogenicity of the particle is a particular concern with virus particles
or viruslike particles (VLPs). Beyond the safety aspect, editing and delivery
efficiencies are considerable obstacles at all stages of development.
AAV indicates adeno-associated virus; iPSCs, induced pluripotent stem cells;
LNP, lipid nanoparticle; PAM, protospacer adjacent motif; PNP, polymeric
nanoparticle; SNC, silica nanocapsule.
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which may lead to no more precise outcomes than classic CRISPR
and potential genotoxic effects. Moreover, the complex required for
templated CRISPR is too large for the available in vivo delivery
systems.24 Last but not least, neither base editing nor templated
CRISPR has so far proven more efficient than classic CRISPR in post-
mitotic cells.

The target genes also present their own challenges. In particu-
lar, many diseases are caused by different variants at different lo-
cations within the same genetic locus. A strategy that aims to cor-
rect these variants would require different gRNAs for different
patients, a costly proposition as each gRNA needs to be thoroughly
tested before clinical use.

Instead, most researchers aim for broader strategies. For ex-
ample, for dominant genetic variants leading to toxic gain of func-
tion, a small cut that knocks out the allelic variant but leaves the other
allele intact might be made. Loss-of-function variants, on the other
hand, may benefit from a strategy that upregulates a compensa-
tory gene or the normal allele if the variation is heterozygous or that
turns on a silenced gene (CRISPR activation).25,26 A notable ex-
ample of such a broadly applicable CRISPR editing strategy is reac-
tivation of fetal hemoglobin for the treatment of both sickle cell dis-
ease (caused by 1 specific variation in the adult hemoglobin gene)

and β-thalassemia (caused by several variants in the adult gene).27

Reactivation of the fetal gene is achieved by silencing its repressor
(BCL11A) via CRISPR.6

Challenges and Solutions for CNS Delivery
Challenge 1: Crossing the BBB and Achieving
Brain Biodistribution
After selecting the CRISPR editing strategy, the next step is to pair
the optimal Cas9 and gRNA combination with a suitable delivery par-
ticle. The particle must shuttle the CRISPR cargo to the target or-
gan effectively and protect it from premature degradation. Achiev-
ing sufficient CRISPR cargo biodistribution in the CNS is arguably the
greatest present hurdle toward applying CRISPR gene editors for
neurologic diseases. Of all possible routes of administration, trans-
dermal, enteric, and intramuscular are unlikely to allow enough
particles to reach the CNS. Injection into brain tissue is invasive,
risks surgical adverse effects, and does not guarantee effective
biodistribution.28 Delivery into the cerebrospinal fluid would achieve
high cargo concentration but currently has limited distribution within
the CNS29,30 and would increase the cost of CRISPR therapy. Intra-

Figure 2. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Editing Strategies
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Several notable advancements have improved the gene editing efficiency and
fidelity of CRISPR. Base editing allows correction of disease-causing point
mutations or therapeutic modulation of gene expression. The templated forms
of CRISPR can be used for precise deletions (prime editing [PE], twin prime
editing [twinPE], and programmable addition via site-specific targeting
elements [PASTE]), large insertions (twinPE and PASTE), and single-base
conversions (PE, twinPE, and PASTE). Importantly, base editing and templated
CRISPR strategies do not cause double-stranded DNA breaks, thus potentially
reducing the risk of unintended edits and DNA damage compared with classic
CRISPR. Templated CRISPR can be used to inactivate an allele carrying a

dominant gain-of-function variant, correct a point mutation, replace a defective
part of a gene, or upregulate a compensatory gene. ALS indicates amyotrophic
lateral sclerosis; BD, Batten disease; bp, base pair; Cas9, CRISPR-associated
protein 9; EPM1, progressive myotonic epilepsy type 1; FA, Friedrich ataxia;
FTD, frontotemporal dementia; gRNA, guide RNA; HD, Huntington disease;
HDR, homology-directed repair; HITI, homology-independent targeted
insertion; nCas9, CRISPR-associated protein nickase; NHEJ, nonhomologous
end joining; PAM, protospacer adjacent motif; PD, Parkinson disease;
pegRNA, prime-editing guide RNA; SMA, spinal muscular atrophy.
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venous administration is attractive because it is inexpensive and
accessible worldwide. However, particles must pass the BBB.

To become a BBB-crossing therapeutic, a particle must fulfill sev-
eral criteria. First, the particle must be small enough (approxi-
mately �60 nm)31-33 to cross the BBB, be distributed within the brain
parenchyma, and reach remote CNS structures. Second, it must avoid
rapid sequestration by the liver.34 Third, it must escape degrada-
tion on its journey through the blood, the endothelial-pericyte-
astrocyte system, the brain parenchyma, and the target cells’ en-
dolysosomal system so that it enters the cell’s nucleus with its CRISPR
cargo functionally intact.

CRISPR delivery approaches to the CNS have so far focused on
viral particles and nanoparticle encapsulation strategies (Figure 3).
While viral particles, such as adeno-associated virus (AAV), have been
used in clinical trials for gene replacement, recent safety concerns
have dampened enthusiasm for their use. The most widely used clini-
cal-grade nanoparticles are lipid nanoparticles, such as those used
for the SARS-CoV-2 messenger RNA vaccines.35-37 Lipid nanopar-
ticles have proven to be safe and effective at delivering CRISPR ma-
chinery in clinical trials targeting the liver5 but have not yet been suc-
cessfully engineered to cross the BBB, in part because of their larger
size (approximately 100 nm). This large size may nevertheless be
one of their main advantages, as it allows for larger cargo. Their other
advantage is that they are readily degraded by the body after cargo
release,38 which limits the risk of off-target edits and immune re-
sponse to the bacterial Cas9. Other forms of nanoparticles have been
manufactured that pass the BBB in animal studies thanks to their
small size, their positive charge, or their decoration with ligands en-
gineered for receptor uptake.39,40 The efficacy and safety of novel
viral particles and nanoparticles, both in vitro and in vivo, are ongo-
ing and promising avenues of research.

Challenge 2: Risks of Toxic Effects With CRISPR
and Delivery Particles
While AAV is the gene therapy vehicle most used in the clinic, it poses
significant risks. At least 13 deaths have been reported from 1999
to 2023 due to high-dose AAV for diseases such as ornithine trans-
carbamylase deficiency, SOD1-associated amyotrophic lateral scle-
rosis, myotubular myopathy, and Duchenne muscular dystrophy.41-43

Recently, nonfatal liver damage, kidney failure, and cardiopulmo-
nary failure were attributed to AAV vector toxic effects in clinical trials
for Duchenne muscular dystrophy and spinal muscular atrophy.44

The risk increases at higher doses,44 which is particularly galling for
CNS targets since they require high systemic doses to achieve ad-
equate local dose. With AAV delivery of CRISPR to the CNS, a big
concern is the persistent expression of the CRISPR-associated (Cas)
enzyme off the AAV vector after cell entry.45,46 Persistence of the
Cas enzyme could lead to the accumulation of off-target genomic
editing over time,47 leading to cell death or increasing cancer risk.

Synthetic particles, such as lipid nanoparticles or polymer par-
ticles, may prove safer and tolerable at higher, more effective doses
than AAV particles. In addition, in such particles, the Cas enzyme is
delivered as protein or RNA, which readily degrades within cells
within days, in contrast to viral DNA, which is expected to persist
for years.48-50 Such transient delivery is attractive as the Cas en-
zyme is present only long enough to make the desired edit. How-
ever, nanoparticles are much larger than AAV (Figure 3), which in-
hibits their BBB penetrance and brain distribution. While there is
significant enthusiasm for engineering smaller nanoparticle tech-
nologies, they are not yet ready for CNS clinical trials.

Another impetus for transient Cas delivery is to limit the im-
mune response to expression of a bacterial protein. Approximately
80% of people appear to have antibodies against the common bac-

Figure 3. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cargo Formats and Potential Modes of Delivery to the Nervous System
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The CRISPR machinery can be packaged as plasmid DNA, messenger RNA
(mRNA), or preassembled CRISPR-associated protein 9 (Cas9)–guide RNA
(gRNA) ribonucleoprotein (RNP). RNPs can be delivered naked, but other cargo
formats rely on a delivery particle to enter target cells. The size and biophysical
properties of a potential delivery particle determine what types of cargo it can
hold (arrows). Potential delivery particles for CRISPR therapeutics belong to
2 broad classes: (1) virus or viruslike particles and (2) engineered nanoparticles.
Adeno-associated virus (AAV) is one of the most well-researched viral delivery
particles and has been used in gene therapy clinical trials, eg, for spinal muscular
atrophy. However, AAVs have a relatively small cargo capacity and a propensity

to integrate and cause immunogenicity. Viruslike particles bypass some of these
limitations, although more preclinical research is needed. Lipid nanoparticles
have been successfully used for delivery of SARS-CoV-2 mRNA vaccines and
show a relatively good safety profile due to degradation after cargo release.
Nanoparticles, including lipid nanoparticles and silica nanocapsules, share the
potential for surface modification with targeting ligands or stealth coatings,
which can facilitate blood-brain barrier passage or alter circulation time and
biodistribution. Polymeric nanoparticles can be made of a range of cationic
nanomaterials, including poly-L-lysine, poly-L-ornithine, chitosan, and gelatin.
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teria Staphylococcus aureus and Streptococcus pyogenes, from which
the most common Cas variants are derived, and T cells against the
2 most common Cas variants have recently been detected in hu-
man donor serum samples.51 An immune response neutralizing Cas
is more likely to render the treatment inactive than to cause overt
toxic effects, although an immune response to a cell harboring the
Cas protein could lead to the killing of the very cells targeted for
therapy.52 To date, data from clinical trials and from animal models
suggest that transient Cas delivery is well tolerated without appre-
ciable immune response.5,53,54 Still, screening for a Cas-induced im-
mune response prior to CRISPR therapeutic treatment may iden-
tify individuals at risk for an adverse event.

Genotoxic events are a serious concern with CRISPR editing.
These events include small changes at off-target genomic loci or even
large gene rearrangements or rare chromosomal breakage.11-13 They
could alter normal cellular function or even cause cell death if DNA
damage exceeds the cell’s repair capacity. The bigger concern is that
rare off-target editing at a proto-oncogene or tumor-suppressor gene
could trigger a cancer or that DNA damage induced by CRISPR would
hasten a cancer in cells predisposed to it (such as those lacking
tumor protein p53).55 An unresolved question in the field is how
off-target editing risk should be measured at the preclinical stage.
Animals have traditionally been used to derisk new therapies be-
fore clinical trials. However, preclinical animal models cannot accu-
rately predict off-target events in human patients because of se-
quence differences between human and animal genomes. Instead,
bioinformatic and in vitro assays in human cells have been devel-
oped to quantify the risk of off-target events56-60 and new quanti-
fication tools are rapidly evolving, although there is no consensus
over best practices.

Despite the risks inherent to CRISPR gene editing and delivery,
CNS CRISPR therapeutics are currently being developed for the most
debilitating, chronic, and fatal diseases, and the field is rapidly evolv-
ing new models and tools to measure and mitigate known and theo-
retical risks. Thus, once a therapeutic passes preclinical biosafety as-
sessments, the benefits may outweigh the risks for patients eligible
for clinical trial participation.

Clinical Trials: Promise of CRISPR Therapies
for Blood and Liver Disorders
Currently, to our knowledge, no CRISPR-based therapeutics have
reached approval by the US Food and Drug Administration (FDA) and
no CNS-targeting CRISPR-based clinical trials have been an-
nounced. However, promising clinical trials for cancer, blood disor-
ders, and liver disorders demonstrate the safety and efficacy of
CRISPR.5,6,61,62 Most CRISPR clinical trials to date target cancers
and blood disorders because these diseases are relatively com-
mon, severe, and suitable for ex vivo CRISPR editing, which by-
passes the delivery challenges. More recent in vivo trials are target-
ing chronic diseases in organs accessible by lipid nanoparticles,
such as the liver. Until recently, all CRISPR clinical trials had used
classic CRISPR, but 3 new clinical trials use base editing: 2 ex vivo
trials for sickle cell disease63 and leukemia,61 and 1 in vivo trial
for familial hypercholesterolemia.64 Despite promising preclinical
animal studies,17,65-67 no trials for templated CRISPR have been
announced.

The curative potential of CRISPR-based therapies for genetic
disease was demonstrated recently in a successful clinical trial com-
menced in 2018 by Vertex Pharmaceuticals and CRISPR Therapeu-
tics for sickle cell disease and β-thalassemia.6 The ex vivo CRISPR/
Cas9 therapy exagamglogene autotemcel (exa-cel) led to clinically
significant improvements in most participants and a stable propor-
tion of edited target cells over a 12-month period. No signs of off-
target editing have been detected so far. Exa-cel was approved by
the FDA for the treatment of sickle cell disease in December 2023,
a historic first for CRISPR gene therapy.68 A milestone was also
reached regarding the in vivo safety of CRISPR therapeutics when
Intellia Therapeutics and Regeneron Pharmaceuticals shared prom-
ising interim results of the NTLA-2001 clinical trial for transthyretin
amyloidosis.5,50,69,70 More recently commenced trials of CRISPR to
target HIV71 and as a novel antibiotic72,73 demonstrate the phenom-
enal potential for diverse applications of single-dose curative CRISPR
therapies and the cascade of treatment possibilities that may fol-
low once the first effective and safe CRISPR strategies and delivery
particles have been approved for the clinic. Although no direct CNS
editing has yet been achieved, the clinical trials for sickle cell dis-
ease and transthyretin amyloidosis, which can both result in signifi-
cant neurologic disease burden, demonstrate the promise of CRISPR
for neurologic diseases.

Ethical Considerations: Germline Editing
In late 2022, the FDA placed a clinical hold on the VERVE-101 in vivo
base editing trial for familial hypercholesterolemia due to theoreti-
cal safety concerns, including the concern for germline editing.74 The
risk of germline editing is perhaps of greater concern to promiscu-
ous base editors but is not unique to base editing. Rather, it is an in-
herent risk of most in vivo CRISPR-based therapeutics, even CNS
therapies, as wayward editors could potentially edit ova or sperm.75

Most researchers agree that germline editing, which could persist
in subsequent generations, requires special consideration.76 So far,
calls for a moratorium on germline editing have been respected, save
1 clinical experiment in 2018, which resulted in international con-
demnation and incarceration of the lead scientist.77,78

The question arises as to how to address possible germline ed-
iting as an unintended consequence of somatic cell targeting. It
should be noted that germline mutagenesis, which spurred the cur-
rent FDA hold on VERVE-101, is a known and accepted risk of other
therapeutics, such as platinum-based chemotherapies and radia-
tion therapy for cancer.79,80 It is possible that fatal neurologic dis-
eases, such as genetic amyotrophic lateral sclerosis, frontotempo-
ral dementia, and Huntington disease, will engender ethical
consideration similar to that for fatal cancers. We argue that a pu-
tative curative CRISPR therapeutic should not be delayed because
of unknown germline editing risk alone. However, steps should
be taken to quantify and mitigate germline editing and its impact.
This mitigation can include family planning counseling and offering
ova and sperm freezing prior to a CRISPR treatment. Given that in
vivo CRISPR clinical trials are now commencing and proceeding
around the world, spurred by the urgency of curing life-threatening
diseases, data on actual germline editing rates and outcomes will
likely be released eventually and preclinical reports are so far
encouraging.81 Such data will allow development of safer in vivo
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CRISPR therapeutics and inform future clinical practice and appro-
priate applications of such therapeutics.

Unique Challenges of Derisking In Vivo
CRISPR Therapeutics
Beyond the risk of unintended germline editing, off-target ge-
nomic editing remains one of the most serious concerns in vivo, both
within and outside the target organ. In the brain, off-target ge-
nomic editing could, in theory, nucleate glioblastoma or cause death
of the cell the CRISPR therapeutic was attempting to save. Since 1938,
FDA regulations had required preclinical biosafety testing in ani-
mals prior to clinical trial, although this was recently lifted.82 Ani-
mal testing is poorly equipped to derisk human off-target genomic
editing owing to the differences between genomes. That is, gRNAs
are species specific. How, then, do we derisk cutting-edge, species-
specific biologics such as CRISPR in the modern age?

As far as predicting off-target CRISPR edits, cell-based, bio-
chemical, and in silico human models not only are feasible but also
appear more reliable than animal models.56-60,83 Such prediction
methods are already integrated in the CRISPR therapeutic develop-
ment pipeline, at both the strategy development and preclinical
stages. On the other hand, animals remain good models to evalu-
ate particle delivery and Cas enzyme expression in nontargeted or-
gans. Such evaluations routinely determine dosing, biodistribu-
tion, and toxicity parameters for both small molecules and biologics

alike. Animal models of disease may also provide insight on the ef-
ficacy of the editing strategy, although many variants and diseases
lack an animal model.

Our hope is that as preclinical and clinical trials demonstrate the
safety of individual CRISPR and delivery particle components, we
may be able to mix and match the components without derisking
each new combination through the entire preclinical and clinical
trial pipeline, which is slow and expensive. For example, if a CNS-
targeting delivery particle and the Cas enzyme have been thor-
oughly tested through clinical trial, it may be possible to safely com-
bine them with a novel gRNA whose editing efficacy and off-target
data were obtained in human cells and functional efficacy data were
obtained in an animal model, without repeating years-long dose-
finding, toxicity, and biodistribution studies. Such an approach may
adequately evaluate risk while also accelerating the clinical testing
of potentially life-saving therapies.

Conclusions
The time is right for CNS gene therapy. Promising results from on-
going clinical trials demonstrate the safety and efficacy of CRISPR
for clinical use. Delivering this technology to the CNS remains the
biggest barrier, with nonviral delivery approaches holding the great-
est potential to meet clinical criteria for a successful CNS CRISPR
therapeutic. Regulation will also need to evolve to ensure the safety
of these human-specific novel therapies.
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