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Abstract

Study of cognitive development on the balance scale task
has inspired a wide range of human and computational
work. The task requires that children predict the outcome of
placing a discrete number of weights at various distances
on either side of a fulcrum. The current project examined
the adequacy of the symbolic learning algorithm C4.5 as a
model of cognitive transition on this task. Based on a set
of novel assumptions, our C4.5 simulations were able to
exhibit regularities found in the human data including
orderly stage progression, U-shaped development, and the
torque difference effect. Unlike previous successful models
of the task, the current model used a single free parameter,
is not restricted in the size of the balance scale that it can
accommodate, and does not require the assumption of a
highly structured output representation or a training
environment biased towards weight or distance
information. The model makes a number of predictions
differing from those of previous computational efforts.

Introduction

The balance scale task consists of showing a child a balance
scale supported by blocks so that it stays in the balanced
position. Next, a discrete number of weights are placed
around one of a number of evenly spaced pegs on either side
of the fulcrum (see the left side of Figure 1), and it becomes
the child's task to predict which arm will go down, or
whether the scale will balance, once the supporting blocks
are removed.

The psychological task requires the integration of
information from the dimensions of weight and distance
through the course of development. Perfect performance on
this task can be achieved by computing torques for both the
left and right arms by multiplying weight by distance, and
the side with the largest torque goes down. If torques are
equal, then the scale will balance.

Siegler (1981) has partitioned the set of possible balance
scale problems into the six sets of distinct problem types
shown in Figure 1. Performance on the different problem
types is used to gage the level of expertise that children have
acquired and to gain insight into the types of information
that children use to solve balance scale problems.

The first three types of problems are referred to as simple
problems because the dimension of greater magnitude
determines which side of the scale will tip. The final three
problem types are referred to as conflict problems because
the cue of weight conflicts with the cue of distance, and
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there is no simple way of determining the outcome. The side
with the greater weight or distance drops respectively in
conflict-weight and conflict-distance problems, while the
scale balances for conflict-balance problems.

Siegler (1981) reported that children's performance on the
balance scale task progresses through four distinct stages. In
stage 1, children use only weight information to determine if
the scale will balance. In stage 2, children emphasize weight
information but use distance if weights on both sides of the
fulcrum are equal. In stage 3 both weight and distance
information is utilized for simple problems, but children
seem to respond indecisively to conflict problems. By stage
4, there is a correct integration of weight and distance
information resulting in the near flawless performance of the
task. Figure 1 presents the predicted percentages of correct
responses, broken down by problem type, for each of these
four stages.

While orderly stage progression constitutes a major
regularity of balance scale development, a second regularity
can be observed by examining the predicted pattern of errors
in Figure 1 for conflict-weight problems. In stages 1 and 2,
children answer these problems correctly because of their
early reliance on weight information. In stage 3 however,
when weight and distance cues are in conflict, children often
perform poorly on the same problems they had previously
answered cormrectly. This situation is rectified by stage 4
however, at which point correct answers reoccur. This trend
is referred to in the developmental literature as U-shaped
development, reflecting the pattern of the longitudinal plot
of performance.
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Figure 1. Predictions of percent problems correct for
children using different rules.
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A third major balance scale regularity was reported by
Ferretti and Buuerfield (1986). These researchers discovered
that the rule classifications of many children systematically
varied when assessed with different sets of testing problems
drawn from the theoretically equivalent problem types. It
was discovered that children's judgments about problems
with a greater absolute difference in the amount of torque
between the two arms (torque difference) were more often
correct than similar types of problems with smaller torque
differences. Therefore, Siegler's rule assessment procedure is
systematically sensitive to the magnitudes of problems
selected for use in stage diagnosis. This last phenomenon is
dubbed the torque difference effect (TDE).

A number of computational models of the balance scale
task exist. The most successful of these models, in terms of
capturing the major developmental regularities, have utilized
connectionist learning algorithms as mechanisms of
cognitive transition (McClelland,1989; Shultz, Mareschal,
& Schmidt, 1994; Shultz, Schmidt, Mareschal, &
Buckingham, 1995). The goal of the current project was to
investigate whether a popular symbolic learning algorithm
could act as a transition mechanism for a successful model,
in the hopes that the assumptions and predictions of such a
model might provide alternative insight into the origins of
the human data.

C4.5 - A Symbolic Classification System
Quinlan's (1993) C4.5 acted as a transition mechanism in
our model. Given a set of training examples which vary
along a set of attributes, C4.5 extracts rule-like regularity
from the examples and builds a decision tree that classifies
the examples with some degree of tolerated error. Like its
connectionist cousins, C4.5 is a supervised learning
algorithm.

C4.5 constructs a decision (sub)tree by computing the
information gain ratio (IGR) for each of the possible
attributes that could potentially be used to partition the data.
The IGR is a heuristic method that evaluates an attribute's
ability to reduce randomness in unclassified examples. The
attribute with the greatest IGR is chosen as the root of a
subtree. This method of building subtrees is applied
recursively until the resulting tree fully classifies all of the
training examples.

C4.5 provides a user specified parameter, m, which during
decision tree construction, roughly controls the degree of
tolerated error. To implement the transition component of a
balance scale model, the number of cases (specified by m)
required to merit a subtree branching operation was decreased
with time. This manipulation resulted in the gradual
emergence of an increasingly discerning decision tree. By
assuming that what develops in children is an ability to
assimilate more information over time, a series of decision
trees can be constructed, each of which builds on its
predecessor. Applying C4.5 with a large m yields smaller,
less comprehensive decision trees because few attributes
qualify to act as decision nodes. As m decreases, more
attributes qualify to be split, more regularity in the training
set is captured, and deeper and more complex trees are built.

Early in development, children have limited mental
abilities. Their poor performance can be modeled with a
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large m value in C4.5. Performance and capacity
improvement can be modeled by the gradual decrease of the
m parameter. The following simulations demonstrate that
the order of attributes C4.5 picks up in a series of decision
trees with decreasing m coincides with the order of attributes
children utilize during development, thereby demonstrating
that C4.5 can provide a good model of developmental
transition.

Simulation 1 - The Basic Model

Early in development, children rely more heavily on
information derived from the weight dimension than the
distance dimension, even though equal information from
these dimensions is available. Any accurate model, therefore,
requires some set of assumptions such that the transition
mechanism relies more heavily on information from one
dimension over the other. In McClelland's (1989) back-
propagation model of this task, separate processing of the
weight and distance dimensions were enforced architecturally,
and the training environment gave the network more
experience with weight information. These assumptions
about cognitive architecture and the environment resulted in
a realistic progression of the model, with weight
information favored over distance information early in
development. The Shultz, Mareschal, & Schmidt (1994)
cascade-correlation model also required a strong
environmental bias favoring weight information, but did not
require the architectural assumption. The other successful
connectionist model of this task, the Shultz, Schmidt,
Mareschal, & Buckingham (1995) cascade-correlation model,
removed the requirement for both a biased training
environment and a modular separation of weight and distance
processing, by biasing initial network weights such that
early in development, weight but not distance information
was favorably processed.

A further architectural assumption is made by all
connectionist models of balance scale development, whereby
their output information is encoded in a highly structured
manner requiring algorithmic interpretation. Additionally,
the models by McClelland (1988) and Shultz et al. (1994)
required a further assumption regarding the level of training
exemplar variability.

To produce results comparable to the connectionist
simulations, we examined a five peg, five weight version of
the balance scale task. For purposes of leaming with C4.5,
the set of 625 possible five peg, five weight problems needs
to be represented in terms of a set of values on attributes
with an associated classification. The set of attributes that
yield a successful model provide at minimum, an existence
proof about the types of information sufficient for producing
the human data. Hence, attributes that yield a successful
model, make predictions about the types of information that
humans may use, or may be sensitive to, during
development.

Although we experimented with a number of attribute
sets, we found that few led to a successful model of the
human data. Experimentation led to presenting C4.5 with
seven attributes.

The first three attributes presented summary information
about each problem that can be immediately derived from the



visual input. Siegler's (1981) work suggested that children
reason with information about which side of the balance
scale has the greatest weight or distance, and whether the
sides of the balance scale are equivalent for a given
dimension. The first attribute concerned whether the problem
presents an equal number of weights at equal distances on
either side of the fulcrum, and ook values of yes or no. The
inclusion of this attribute was based on the perceptual
salience of simple balance problems, the only problems of
the set which are wholly symmetrical. The second and third
attributes concerned the side of the scale with greater weight
or distance respectively, and each took on one of three
values: left arm, neither arm, or right arm. Siegler's (1981)
rule models directly incorporated such information. Making
this information primitively available to the leamning
algorithm presents it with the opportunity to capitalize on
any informational value that such attributes may have for
predicting problem outcomes. Because weight and distance
information are equally predictive of problem outcomes, one
dimension (i.c., weight) can be primarily relied upon by
specifying it first. This order effect is equivalent to
assuming that childrens’ development internally relies on
information from one dimension over the other,

The remaining four attributes were the actual number of
weights and distances on either balance scale arm, and each
of these was declared to be a continuous attribute taking on
integer values ranging from 1 to 5. The inclusion of these
attributes, again reflected that humans have such information
readily accessible to them when confronted with balance
scale problems.

Unlike many previous computational attempts, our model
did not need to assume an explicit environmental bias
favoring one input dimension. It did however, assume that
simple balance problems (equal number of weights occur at
equal distances on either side of the fulcrum) are particularly
salient for the purposes of children's learning. This
assumption was reflected in the choice of the first attribute,
and by including three times as many simple balance
problems as naturally occurs within the problem set, thereby
giving C4.5 extra balance experience.

The C4.5 program was run, incrementally decreasing the
m parameter which systematically resulted in the leaming of
increasingly complex decision trees. The gradual decrease in
m corresponded to an assumption that the child's cognitive

capacity increases in a gradual fashion yielding a processing
structure in which successors build upon predecessors.
Structures generated at each level of m were taken to
represent the processing structures present for a discrete era
of development.

Each era, the decision tree induced was used to classify the
425 examples which corresponded to the complete set of
problems that could be classified into Siegler's six problem
types. The responses to 24 problems (four from each of the
six problem types), identical to those used to evaluate
models by McClelland (1989) and Shulez et al. (1995) were
then used in subsequent analyses to assess the model's
SUCCESS.

Results and Discussion

Figure 2 presents the stage classifications for each era of
training, as diagnosed by using a procedure identical to that
used with human children (Siegler, 1981). From the figure,
it is apparent that the C4.5 model has captured the
requirement of orderly stage progression.

Figure 3 presents the mean longitudinal performance of
the simulation on the entire set of conflict-weight and
conflict-distance problems. The model clearly exhibits U-
shaped development on conflict-weight problems. By
comparing the time of occurrence of this performance with
the stage classification of the same simulation from Figure
2, it can be seen that the U-shaped developmental trend
corresponds precisely with the period in which the
simulation is classified at stage 3 (from approximately era
40 through era 80). The early reliance on weight information
by C4.5 was interfered with during this period by the gradual
integration and use of distance information on conflict
problems. This can be verified by examining the
longitudinal performance of the simulation on conflict-
distance problems during stage 3 (Figure 3). At precisely the
beginning of the decline in conflict-weight performance,
distance information began to be assimilated. From Figure
3, it appears that there is a gentle vacillation between the
learning algorithm's incorporation of weight and distance
information with the inclusion of information from one of
these dimensions conflicting with performance on the other.
A negative correlation between conflict-weight and conflict-
distance performance (r=-0.86; r2=0.73) over the first 80
eras, confirms this discovery.
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Figure 2, Longitudinal stage progression of Simulation 1 (left scale), and corresponding values of m (right scale).
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Figure 3. Performance on conflict-weight and conflict distance problems.

The final major effect characteristic of balance scale
development, the TDE, was evaluated in the current
simulation by classifying the model's performance using
four different sets of testing patterns whose problems were
drawn from four different ranges of torque difference. The
TDE requires that the same set of simulation responses be
classified at different stage levels depending upon the torque
difference level of the testing problems used for stage
evaluation. To correspond with the human data, testing sets
with problems from larger torque difference levels should
result in classifications at higher stages than testing sets
with small torque difference problems.

Each testing set had the same balance and conflict-balance
testing problems since the torque difference for these types
of problems is always zero. The torque difference level for
the other testing sets varied. Torque difference level 1 had
problems with a torque difference of 1. Levels 2, 3 and 4
consisted of problems with torque differences in the range of
2-5, 6-9 and 10-20 respectively.

Only at stage 3, did stage classifications vary in
accordance with the predictions of the TDE. Hence, the
simulation was not capturing the TDE at all points in
development.

An examination of the rule sets derived by C4.5 revealed
that multiple rule sets mapped onto many of the stages.
Stage 1 was achieved as the result of two distinct sets of
rules while a single set of rules (identical to those derived by
Siegler, 1981) mapped onto stage 2 performance. Stage 3
was accomplished through a set of five distinct rule systems,
and two distinct decision trees resulted in stage 4
performance. No explicit computation and comparison of
torques occurred. After the initial decision tree, each
subsequent tree expanded upon previously derived structures.

Simulation 2 - The Expanded Model
In order to exhibit the TDE, a model must discriminate, and
answer differently, problems from Siegler's theoretically
equivalent problem types. If contingencies in the training
data exist which distinguish problems based on information
other than that used by Siegler (1981), then the TDE could
arise if the leaming algorithm were to pick up on such
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contingencies. Siegler's rule models, and our first
simulation’s stage 1 and 2 rules, all failed to distinguish
problems with different input magnitudes. Instead, the
induced rules considered only the side of the balance scale
with greater weight or distance. Our model's stage 3 rules
distinguished problems on the basis of their graded input
levels, and its stage classifications did vary with torque
difference levels.

It would appear that in order to get the TDE at all stages
of development, C4.5 would be required to build rules which
discriminated between problems with different levels of
inputs. For our second simulation we augmented our model
by changing only the representational format of the attribute
specifying which side of the balance scale had greater weight
or distance. Instead of classifications of left arm, right arm,
or neither arm, these attributes took on values in the range
of -4<x<4 (determined by subtracting the right side value
from the left side value for each of the weight and distance
dimensions). By doing this, we have prevented C4.5 from
being able to consider the side of the balance scale with
larger weight or distance information in an all or none
fashion, and instead have forced it to consider the attribute in
terms of a graded representation. No other conditions of the
model were altered, and training and assessment were carried
out as before.

Results and Discussion

An examination of the model's performance revealed that as
in Simulation 1, every stage was classifiable, and orderly
stage progression ensued. Longitudinal conflict-weight
performance showed the characteristic U-shaped regression in
performance that coincides with stage 3, however conflict-
weight performance at the very earliest stage of development
was slightly poorer. Nonetheless, the simulation exhibited
the first two regularities required by a successful model.

To examine the model for the presence of the TDE, each
era was independently assessed with four different sets of
testing problems drawn from the four different torque
difference intervals outlined earlier. Stage classifications
varied on each of the first 77 eras. Beyond era 77, the
simulation reached a saturation point, and all of the problem
sets were classified at a stage 4 level of performance.



Performance on the entire set of problems in the four torque
difference ranges was also examined by calculating the
percentage of correct responses at the median era of each
stage. This amounted to evaluating the model at eras 3, 25,
43 and 79 for stages 1, 2, 3 and 4 respectively. The mean
increase in performance between torque difference levels at
each of these points in development was 4%, 8%, 8%, and
4%. As dictated by the TDE, the model demonstrated
superior performance on problems from larger torque
difference intervals. From the results of these analyses for
the TDE, it is clear that the model exhibits all of the
regularities of the human data.

General Discussion

The C4.5 symbolic model was successful at capturing the
three characteristic developmental findings of the balance
scale task: orderly stage progression, U-shaped leaming, and
the TDE. The model assumed that balance problems are
especially salient to children, and that the majority of
children are intenally biased towards processing the weight
dimension over the distance dimension. In addition the
model implicitly assumed that children have access to, and
reason with, information about which side of the balance
scale is larger for a given dimension. By implementing these
assumptions and applying the C4.5 learning algorithm,
these simulations provide an alternative developmental
model, capable of successfully capturing many aspects of the
human data.

The success of C4.5 in producing an accurate model of
development demonstrates that a symbolic supervised
learning algorithm can act as a mechanism for simulating
cognitive transition. Like its connectionist cousins, graded
representations seem 1o be a critical feature of the success of
C4.5, as does the incrementality of the processing structures
that it derives.

In contrast to the fragility of pilot work with the
competing connectionist models regarding the size of the
balance scale problems undertaken, the model that we report
appears to be robust in this regard. The C4.5 model worked
as well for smaller (4 peg, 4 weight) and larger (6 peg, 6
weight) balance scale simulations as it did for the five peg,
five weight version. It is still an open empirical question
whether balance scale data of other sizes can be easily
accommodated using connectionist techniques.

C4.5 was also robust with respect to the format of its
output encoding. While connectionist models' success
hinges on the architectural assumption underlying the
inclusion of a distributed encoding of two outputs
(McClelland, 1989; Shultz et al, 1994; 1995), with the
C4.5 model, alternative methods of representing the
response yields identical results. Finally, in contrast to the
vast space of possible connectionist implementations, which
possess a large number of degrees of freedom and require the
setting of a large number of free parameters, the C4.5 model
varied only m. The C4.5 model makes a number of
predictions that are different than, or opposed lo, those made
by previous approaches. First, while many connectionist
accounts assume an cnvironment strongly biased towards
presenting information about the weight dimension
(McClelland, 1989; Shultz et al., 1994), the C4.5 model
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predicts that the weight and distance dimensions are equally
and symmetrically present in the natural world. Like Shultz
et al. (1995), the current approach internalizes the early
preference for information from a single dimension. If this
characterization is correct, then these models suggest that
despite sharing a common environment, there will be
individual differences in the input dimension that children
find most salient. Some support for this notion comes from
related tasks requiring the integration of information from
two dimensions, in which variability in the favored
dimension exists (Siegler, 1981).

A second prediction of the C4.5 model is that simple
balance problems are particularly salient and important in
childrens' leaming. Third, the model predicts that reasoning
with primitive information derived from the initial
presentation of the balance scale problem being solved is an
important component of childrens' cognition. Fourth, the
model predicts that stage 3 classifications of human
performers masks a vacillation between relying more
strongly on one dimension at the expense of integrating
information from the other (see Figure 3).

It is our hope that the predictions derived from this
alternative account will inspire further study of human
development on the balance scale and related tasks, with an
aim of determining the reasonableness of the assumptions
that various models are based upon.
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