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Multidimensional spectroscopy with a single broadband phase-shaped
laser pulse

Rachel Glenn and Shaul Mukamel
Department of Chemistry, University of California, Irvine, California 92697-2025, USA

(Received 2 January 2014; accepted 17 March 2014; published online 9 April 2014)

We calculate the frequency-dispersed nonlinear transmission signal of a phase-shaped visible pulse
to fourth order in the field. Two phase profiles, a phase-step and phase-pulse, are considered. Two
dimensional signals obtained by varying the detected frequency and phase parameters are presented
for a three electronic band model system. We demonstrate how two-photon and stimulated Raman
resonances can be manipulated by the phase profile and sign, and selected quantum pathways can be
suppressed. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4869750]

I. INTRODUCTION

Coherent control techniques, which utilize optimally
shaped pulses to study the quantum interference and select
quantum pathways,1–4 have been widely used to manipulate
molecular structure,4–8 control chemical reactions,6, 9, 10 and
to infer the electronic and vibrational motions in molecules.
Pulse shaping techniques utilize the phase φ(ω) of the field

Ẽ(ω) = E(ω)eiφ(ω) (1)

to control the quantum pathways in matter. Typical choices for
the phase profile are an oscillating sinusoidal φ(ω) = αsin (ω
− ω)T, phase-step φ(ω) = θ (ω − ω0), or chirp φ(ω) = C(ω
− ω0)2.4, 11–14 Another pulse shaping technique, which con-
nects the time and frequency domain, is the use of a frequency
comb.15, 16 A frequency comb consists of a series of evenly
spaced pulses in the time domain and in the frequency do-
main the spectrum consists of sharp lines with well defined
frequencies.

Recent applications of controlling the phase in one-
dimensional spectroscopy have been reported. The spec-
tral phase has been used to suppress processes such as
two-photon absorption (TPA), by utilizing an asymmetric
phase function14, 17–20 with respect to the TPA transition
frequency. Shaped-pulses have been employed in Raman
spectroscopy.13, 18 A phase-step, in coherent anti-Stokes Ra-
man spectroscopy (CARS), can significantly improve the
resolution and reduce the non-resonant background.18, 21–25

By applying a non-abrupt phase-step, on the pump pulse in
CARS, Raman resonances are narrower than compared to
a transform limited pulse.26 This technique27 can be used
to extract the line-width of the vibrational transitions in a
molecule. Pulse-shaping utilizing a oscillating phase in CARS
allowed the Raman spectrum to be extracted with high reso-
lution and relatively small background.28 By applying a nar-
row phase-pulse, a π -gate, in single-beam CARS, the vibra-
tional energy levels were mapped in a single measurement.29

Note that Ref. 29 used an abrupt phase-pulse, whereas here
we study a non-abrupt phase-pulse.

Coherent control is carried out using an adaptive (closed
loop) pulse shaping scheme that employs genetic algorithm to

optimize many control parameters30–35 of the laser pulses.36

Here we use a few control parameters.
In this paper, we extend these applications to two-

dimensional spectroscopy by plotting the transmission spec-
trum of a broadband pulse as a function of the dispersed fre-
quency and the position of a phase-step or a phase-pulse.
A phase-step and phase-pulse have been widely used in
one-dimensional spectroscopy.18, 21–28, 31, 37 We investigate the
control of the quantum pathways in the transmission of a
single broadband pulse using the phase-pulse and phase-step
shown in Fig. 1. The two-dimensional transmission signals
for the phase-pulse and step show diagonal peaks correspond-
ing to two-photon absorption, Stokes processes, and Rayleigh
processes. The two-photon absorption and Stokes peaks are
sensitive to the sign of the phase.

II. THE QUARTIC TRANSMISSION SPECTRUM
OF A THREE-BAND MODEL

We consider a three band system (Fig. 2) with electronic
states |g〉, |e〉, |f〉 coupled to the radiation field and described
by the Hamiltonian

Ĥ = Ĥe + Ĥint , (2)

where

Ĥe =
∑

ν=gi , ei , fi

¯εν |ν〉〈ν| (3)

represents the system and ¯εν is the energy of the state ν.
The level scheme was chosen to highlight the resonances af-
fected by the phase. Ĥint is the field-matter dipole interac-
tion, with the dipole operator μ̂ = V̂ † + V̂ , where V † (V )
is the matter raising and (lowering) operator, so that V (t)
= ∑

e Vge(t)|g〉〈e| + ∑
f Vef (t)|e〉〈f | and Vij (t) is the dipole

matrix element in the interaction picture. The classical electric
field is E(t) = Ẽ(t) + Ẽ †(t). In the rotating wave approxima-
tion we have

Ĥint = −(Ẽ †(t)V (t) + Ẽ(t)V †(t)). (4)

0021-9606/2014/140(14)/144105/13/$30.00 © 2014 AIP Publishing LLC140, 144105-1
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FIG. 1. The spectral phase φ(ω) that we consider (dashed-black) is a phase
step, Eq. (15), with transition width 1/τ a = 2 cm−1; (thick-blue) a nar-
row phase-pulse, Eq. (18), with ωa = 11 995 cm−1, ωb = 12 005 cm−1,
τ = 0.5 cm; (thin-red) a wide phase-pulse, Eq. (18), ωa = 11 975 cm−1, ωb

= 12 025 cm−1, τ = 0.5 cm.

We shall calculate the frequency dispersed transmitted
signal38

S(ω) = − 2

¯
I

[
Ẽ †(ω)

∫ ∞

−∞
dt〈VL(t)e− i

¯

∫ ∞
−∞ Hint−(T )dT 〉eiωt

]
,

(5)

where IA(ω) denotes the imaginary part of A(ω) and Ẽ †(ω) is
the Fourier transform: Ẽ †(ω) = ∫ ∞

−∞ dtE†(t)e−iωt . We use the
superoperator formalism.39 The superoperator Hint− is defined
as Hint− = Hint L − Hint R. The two superoperators Hint L and
Hint R are defined by their actions Hint LX = HintX and Hint RX
= XHint.39 The field is represented by its amplitude E(ω) and
phase φ(ω), Eq. (1).

The linear absorption spectrum is obtained by expanding
Eq. (5) to first-order in Hint−,

S(ω) = −|Ẽ(ω)|2I χ (1)(ω), (6)

where the linear susceptibility is

χ (1)(ω) =
∑
e1

− 1

¯
|μe1g1 |2Ge1g1 (ω), (7)

the Green’s function is Ge1g1 (ω) = (ω − ωe1g1 + iγ )−1, and γ

is the dephasing rate. We use a Gaussian electric field

E(ω; �1, σ1) = e−(ω−�1)2/(2σ 2
1 ), (8)

FIG. 2. The model level scheme, the corresponding energy levels are
g1 = 0 cm−1, g2 = 75 cm−1, e1 = 12 025 cm−1, e2 = 12 050 cm−1, f1
= 24 125 cm−1, f2 = 24 150 cm−1. The dephasing rates were all chosen to
be the same, γ = 10 cm−1.

FIG. 3. (a) The linear absorption, Eq. (6), of the model system of Fig. 2. (b)
The frequency dispersed transmission signal S0(ω), Eq. (14). (c) The pulse
power spectrum, |Ẽ(ω)|2, from Eq. (1). We used a Gaussian pulse, Eq. (8),
with φ = 0 for the field, Eq. (1), σ = 252 cm−1 and �1 = 12 100 cm−1.

with center frequency �1 and standard deviation σ 1. The
pulse power spectrum, |Ẽ(ω)|2, Eq. (1) with a Gaussian pulse,
Eq. (8), is shown in Fig. 3(c). Equation (6) is plotted in
Fig. 3(a), with the dipole moments and ¯ set to one. The
two peaks in Fig. 3(a) correspond to the transition frequen-
cies ωe1g1 and ωe2g1 .

The ladder diagram expansion of Eq. (5) to third-order in
Hint is shown in Fig. 4. The transmission signal38 is given as

S(ω) = −2

¯
I

∫ ∞

−∞

∫ ∞

−∞
dω1dω2Ẽ∗(ω)Ẽ(ω1)Ẽ∗(ω2)

× Ẽ(ω−ω1+ω2)2πχ (3)(−ω; −ω2, ω1, ω−ω1+ω2).

(9)

The third-order susceptibility is

χ (3)(−ω; −ω2, ω1, ω − ω1 + ω2)

= χ
(3)
I (−ω; −ω2, ω1, ω − ω1 + ω2)

+χ
(3)
II (−ω; −ω2, ω1, ω − ω1 + ω2)

+χ
(3)
III (−ω; −ω2, ω1, ω − ω1 + ω2), (10)
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FIG. 4. Ladder diagrams for the frequency dispersed transmitted signal signal, Eq. (5), expanded to third-order in Hint from a single pulse. The frequencies ω1
and ω2 correspond to the variables ω1, ω2 in the susceptibility, Eq. (10).

where the three terms correspond to diagrams (I), (II), and
(III) in Fig. 4:

χ
(3)
I (−ω; −ω2, ω1, ω − ω1 + ω2)

=
( −1

2π¯

)3 ∑
e1,e2,g2,f1

Vg1e2V
∗
g1e1

V ∗
e2g2

Ve1g2Ge2g1 (ω2)

×Ge1e2 (ω1 − ω2)Ge1g2 (ω)

+Vg1e2V
∗
e2g2

V ∗
g1e1

Ve1g2Ge2g1 (ω2)Gg1g2 (ω1 − ω2)Ge1g2 (ω)

−Vg1e2V
∗
g1e1

V ∗
e1f1

Vf1e2Ge2g1 (ω2)Ge1e2 (ω1 − ω2)Gf1e2 (ω),

(11)

χ
(3)
II (−ω; ω1,−ω2, ω − ω1 + ω2)

=
( −1

2π¯

)3 ∑
e1,e2,g2,f1

V ∗
g1e1

Vg1e2V
∗
e2g2

Ve1g2Ge1g1 (ω1)

×Ge1e2 (ω1 − ω2)Ge1g2 (ω)

+V ∗
g1e1

Ve1g2V
∗
g1e2

Ve2g1Ge1g1 (ω1)Gg1g2 (ω1 − ω2)Ge2g1 (ω)

−V ∗
g1e1

Vg1e2V
∗
e1f1

Vf1e2Ge1g1 (ω1)Ge1e2 (ω1 − ω2)Gf1e2 (ω),

(12)

χ
(3)
III (−ω; ω1, ω − ω1 + ω2,−ω2)

=
( −1

2π¯

)3 ∑
e1,e2,g2,f1

V ∗
g1e1

V ∗
e1f1

Vf1e2Ve2g1Ge1g1 (ω1)

×Gf1g1 (ω + ω2)Ge2g1 (ω)

−V ∗
g1e1

V ∗
e1f1

Vg1e2Vf1e2Ge1g1 (ω1)Gf1g1 (ω + ω2)Gf1e2 (ω).

(13)

An alternative form for the susceptibility derived using the
loop diagrams is given in Appendix A. They represent the
wavefunction in Hilbert-space, instead of the density matrix,
so that γ in Hilbert space represents the inverse lifetime.
Equations (A2)–(A5) contain fewer terms to integrate com-
pared to the Liouville-space. However, it is easier to perform
the numerical integration in Eq. (9), using Mathematica in
Liouville-space than in Hilbert-space. For this reason, we use
the Liouville-space representation.

The total transmission spectrum of an unshaped trans-
form limited pulse with φ = 0,

S0(ω) = S(ω, φ(ω) = 0), (14)

is shown in Fig. 3(b). The transition frequencies are marked,
based on the energy level diagram, Fig. 2. The two absorp-
tion peaks at ω = ωe1g1 , ωe2g1 in Figs. 3(b) correspond to the
Rayleigh process, whereas, ωe1g2 , ωe2g2 represent the Stokes
process. ωe1g1 , ωe2g1 are the most pronounced; they are also
seen in the linear signal in Fig. 3(a). The four emission peaks
at ω = ωf1e1 , ωf2e1 , ωf1e2 , and ωf2e2 in Fig. 3(b) correspond
to two-photon absorption. The ωf1e2 peak is difficult to distin-
guish due to the transition from an absorption to an emission
near that wavelength. In Appendix B, we separate S0(ω) into
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three components SI
0 (ω), SII

0 (ω), SIII
0 (ω), corresponding to

χ
(3)
I , χ

(3)
II , χ

(3)
III . These are plotted in Fig. 13.

III. TWO DIMENSIONAL NONLINEAR TRANSMISSION
SIGNAL WITH A PHASE-STEP

We first consider a π -phase-step phase

φ1(ω) = arctan[τa(ω − ωa)], (15)

which has finite transition τ a, and position ωa, as marked
in Fig. 1. The phase-step in Fig. 1 has a transition width
1/τ a = 2 cm−1.

The integrals in Eq. (9) were calculated numerically, with
Gaussian pulses, Eq. (8), σ 1 = 252 cm−1, �1 = 12 100 cm−1

and the dipole moments set to one.
The two-dimensional frequency dispersed transmission

signal

�Sstep(ω; ωa) = S(ω; φ1(ω,ωa, τa)) − S0(ω) (16)

is plotted in Fig. 5(a) for a positive phase-step τ a = 0.5 cm.
The vertical black-dashed lines mark the positions of the tran-
sition peaks. The spectra contain diagonal peaks that extend
above and below the diagonal line at ω = ωa. The main diago-
nal peaks are at ω = ωe1g1 , ωe2g1 , ωf1e1 and ωe1g2 < ω < ωe2g2 .
These peaks correspond to the peaks in Fig. 3(b). The phase-
step changes the Rayleigh and Stokes peaks from absorp-
tion to emission, and the TPA peaks change from emission to
absorption.

As seen in Fig. 3(b), the Stokes peaks appear weaker than
the other transition peaks in the spectra. These peaks appear
above the diagonal line. They originate from the ladder dia-
grams (I) (a) and (b) and (II) (a) in Fig. 4. Diagrams (I) (b)
and (II) (a) have the time sequence of arrows which alter-
nate in directions and diagram (I) (a) has the time sequence of
two successive arrows with the same direction. The ω = ωe1g1

peak extends above the diagonal line, while the ω = ωe2g1

extends below the diagonal line. The main contribution for
the ω = ωe1g1 peak comes from ladder diagrams (I) (a) and
(b) and (II) (a) and (b) in Fig. 4. The dominant contribu-
tion is from diagrams (II) (a) and (b) which have alternating
time-ordering of the arrows direction. The main contribution
to ω = ωe2g1 peak is from the diagram (III) (b), which has
two successive arrows in the same direction. The ω = ωf2e1 ,
ωf1e2 ,ωf1e1 peaks appear below the diagonal line. These peaks
can be traced back to diagrams (I) (c), (II) (c), (III) (a) in
Fig. 4, all of which have a time sequence of two successive
arrows in the same direction. Overall, the peaks that extend
below the diagonal line have a dominant contribution from
the diagrams which contain time ordering of two successive
arrows with the same direction and peaks that extend above
the diagonal line have a dominate contribution from the time
sequence of arrows which alternate in direction.

In Fig. 14 of Appendix B, we separate the transmis-
sion signal, Fig. 5, into the components SI(ω, ωa), SII(ω,
ωa), and SIII(ω, ωa), corresponding to χ

(3)
I , χ

(3)
II , and χ

(3)
III in

Eq. (10). The signal components show off-diagonal peaks,
which appear when ωa coincides with the transition frequen-
cies. These peaks are small compared to the diagonal peaks.
From Fig. 14, it can be seen that the transmission signal with

FIG. 5. The two-dimensional frequency dispersed transmission signal
�Sstep(ω, ωa), Eq. (16), with phase φ1(ω, ωa) is plotted; (a) τ a = 0.5 cm;
(b) τ a = −0.5 cm. (c) The difference between (a) and (b), �S̃step(ω,ωa),
Eq. (17). The vertical dashed-black lines mark the transition frequencies. The
insets show the shape of the phase-step.

a phase-step is mostly composed of the SII(ω, ωa) and SIII(ω,
ωa) components.

The transmission signal with a negative phase-step τ a

= −0.5 cm, Eq. (16), is shown in Fig. 5(b). The diagonal
ω = ωe1g2 , ωe2g2 peaks are much weaker, compared to the
positive phase-step. However, the diagonal ω = ωf1e1 , ωf1e2 ,
ωf2e1 peaks appear stronger, than with the positive phase-step.
These peaks originate from diagrams (I) (c), (II) (c), and (III)
(a) in Fig. 4. This shows that the negative going phase-step
enhances the TPA diagonal peaks stronger, whereas a positive
going phase-step enhances the ω = ωe1g2 , ωe2g2 peaks better.
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FIG. 6. The transmission signal, Eq. (9), using a phase-step, φ1(ω, ωa). (Top row) Positive-step, τ a = 0.5 cm, (a) ωa = 11 905 cm−1, (b) ωa = ωe1g2 , and
(c) ωa = ωf1e2 . (Bottom row) Negative phase-step, τ a = −0.5 cm, (d) ωa = 11 905 cm−1, (e) ωa = ωe1g2 , and (f) ωa = ωf1e2 . The red arrows mark the
position of the phase-step. The insets show the shape of the phase-step.

The difference of the transmission signal with a negative
and positive phase-step

�S̃step(ω; ωa) = S(ω; φ1(ω,ωa,−τa)) − S(ω; φ1(ω,ωa, τa))
(17)

is plotted in Fig. 5(c). It shows peaks along the diago-
nal line. The spectral phase function can be written as
the sum of an even and odd function, exp(i arctan(±x))
= (1 ± x)/

√
1 + x2. The difference in the transmission signal

with a positive and negative phase-step gives the amplification
by the odd part of the spectral phase function-2x/

√
1 + x2.

Figure 5(c) confirms that the positive going phase-step en-
hances the ω = ωe1g2 , ωe2g2 peaks better than the negative
going, while the negative going phase-step enhances the
ω = ωf1e1 , ωf1e2 , ωf2e1 peaks better than the positive. This
effect is more clearly seen in the one-dimensional transmis-
sion spectra S(ω; φ1(ω, ωa)), Eq. (9), in Fig. 6. Positive
step spectra are shown in the top row of Fig. 6 for three
phase-step positions. The off-resonant phase-step position ωa

= 11 905 cm−1 in (a) shows that the background is amplified.
When the phase-step coincides with a transition frequency
ωa = ωe1g2 in (b) the peak becomes amplified and the resolu-
tion is increased. This is because the Greens functions, Gβ(ω)
= (ω − ωβ + iγ )−1, in Eqs. (11)–(13) invert the phase over
a width γ about the resonance frequency ω = ωβ . The ap-
plication of the phase-step at ωa = ωβ inverts the phase again
over a width 1/τ a, enhancing the peak. This was demonstrated
by Oron et al.26 in a CARS experiment. Fig. 6(c) shows the
enhancement of the TPA at ωf1e2 . The negative phase-step
is plotted in the bottom row of Fig. 6 for three values of
the phase-step position. For the phase-step off resonant, ωa

= 11 905 cm−1, (d) there is little amplification of the back-
ground. When ωa = ωe1g2 in (e), the enhancement becomes
clear. The negative step enhances the TPA ωf1e2 , in (f), better
than the Stokes peak. Fig. 6(b) shows that the positive step
narrows and amplifies the Stokes peak at ωa = ωe1g2 better
than the negative (e). However, the negative step in (f) en-
hances the TPA at ωa = ωf1e2 better than the positive and this

peak is enhanced downward whereas the ωs = ωe1g2 peak is
enhanced upward.

In this study, we only considered homogeneous broad-
ening. Inhomogeneous broadening changes the line-shapes
of the peaks from diagrams (I) in Fig. 4 from symmetric to
asymmetric.38 The line-shapes from diagrams (II) and (III) in
Fig. 4 remain symmetric with inhomogeneous broadening.38

The transmission signal with the phase-step is dominated by
the transition peaks from diagrams (II) and (III) in Fig. 4, so
we expect inhomogeneous broadening to have little effect on
the phase-step.

IV. TWO DIMENSIONAL TRANSMISSION SIGNAL
WITH A PHASE-PULSE

We next present simulations which use a π -phase-pulse
spectral phase

φ2(ω,ωa, ωb) = arctan[τ (ω − ωa)] − arctan[τ (ω − ωb)].
(18)

The pulse lies between ωa and ωb, with transition steepness τ .
We first consider that a narrow phase-pulse, with width close
to the transition width of the step, see Fig. 1, does not give a
full π -inversion. A full π -inversion is achieved with a wider
phase-pulse, ωa − ωb = 50 cm−1 thin-red line in Fig. 1.

The transmission spectrum for a narrow phase-pulse

�Spulse(ω; ω̃)

= S

(
ω; φ2

(
ω, ω̃ − �ω

2
, ω̃ + �ω

2
, τ

))
− S0(ω), (19)

with width �ω = 10 cm−1 and position ω̃ is displayed in
Fig. 7(a) for a positive going pulse, τ = 0.5 cm. The vertical
dashed-black lines mark the position of the transition peaks.
The positive going pulse in Fig. 7(a) has three vertically
spread peaks at ω = ωe2g2 , ωe1g1 , ωf1e1 , corresponding to
the three well pronounced peaks in Fig. 3(b). The effect of
the phase-step changed the absorption peaks in Fig. 3(b) to
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FIG. 7. The two-dimensional frequency dispersed transmission signal,
Eq. (19), is plotted with a narrow phase-pulse, φ2(ω, ω̃), width �ω

= 10 cm−1; (a) τ a = 0.5 cm and (b) τ a = −0.5 cm. (c) The difference be-
tween (a) and (b), Eq. (20). The insets show the shape of the phase-pulse.

emission peaks and vise versa. The effect of the phase-pulse
gives the same affect. The data in Fig. 7 are plotted on a
scale, which gives the best visibility for peaks in the trans-
mission spectrum. The main contribution to the transmission
signal can be traced back to the diagrams (I) in Fig. 4 (see
Fig. 15 in Appendix B for the individual �SI

pulse(ω),
�SII

pulse(ω) and �SIII
pulse(ω) components). Signal component

�SII
pulse(ω,ωa) in Fig. 15 contributes two diagonal peaks

near ω = ωe2g1 , ωf1e1 and �SIII
pulse(ω,ωa) contribution is not

noticeable.
The negative going phase-pulse τ = −0.5 cm, Eq. (19),

is shown in Fig. 7(b). The spectra are dominated by
the contributions from diagrams (I) in Fig. 4. The sig-

nal �SII
pulse(ω,ωa) contributes two diagonal peaks at

ω = ωe1g1 , ωf1e1 and �SIII
pulse(ω,ωa) contribution is not no-

ticeable. This shows that the positive or negative narrow
phase-pulse can be used to suppress the contributions from
diagrams (II) and (III) in the transmission spectra. Note
that with inhomogeneous broadening included the signal
with a phase-pulse should be significantly affected, since it
is dominated by the diagrams (I). The negative pulse en-
hances the diagonal peak near ω = ωf1e1 better than the
positive pulse. It appears that the positive pulse enhances
the ω = ωe1g2 , ωe2g2 better than the negative.

The difference in the transmission signal for a negative
and positive pulse,

�S̃pulse(ω; ω̃) = S

(
ω; φ2

(
ω, ω̃ − �ω

2
, ω̃ + �ω

2
,−τ

))

− S

(
ω; φ2

(
ω, ω̃ − �ω

2
, ω̃ + �ω

2
, τ

))

(20)

is plotted in Fig. 7(c). The spectra are composed of a diag-
onal peak near ω = ωf1e1 and two small diagonal peaks at
ω = ωe2g2 , ωe1g2 . The two-dimensional spectra mostly resem-
bles Fig. 15(f) from diagrams (II).

We have explored if a variable pulse width φ2(ω, ωa, ωb)
with a negative-step located at ωb = ωe2g1 could better en-
hance the peaks. The ω = ωe2g1 peak appeared strong for a
positive/negative narrow-phase-pulse or step and always re-
mained above the diagonal line. It is interesting to see if there
is any sensitivity to the phase-step position. The transmission
spectrum

�Spulse(ω; ωa) = S(ω; φ2(ω,ωa, ωb, τ )) − S0(ω) (21)

with a variable pulse width is shown in Fig. 8(a). This cre-
ates a negative-going pulse for ωa < ωe2g1 and positive-going
pulse for ωa > ωe2g1 . The horizontal line at ωa = ωb is
where both phase-steps coincide and their effect vanishes.
The ω = ωe2g1 peak is well pronounced away from the di-
agonal line, for any value of the pulse width. Notice that the
ω = ωf1e2 , ωf2e2 peaks become strongly enhanced when the
pulse changes from a negative to a positive going pulse. Com-
pared to the narrow-pulse, Fig. 7, the variable width enhances
the ω = ωf1e2 , ωf2e2 diagonal peaks stronger. This is because
the pulse is composed of a negative step located at ωa.

The phase-pulse has been used to enhance the TPA peaks
ωfiej

in the spectrum, involving an intermediate resonant
state.40 Two opposite phase-steps located at the two transition
frequencies, ωej g1 and ωfiej

, involved in the TPA transition
ωfig1 were used. If the intermediate state is located at ωfig1/2,
the phase-pulse would have zero width. When the intermedi-
ate resonant state is de-tuned from ωfig1/2 the phase-pulse
has finite width and can be employed to enhance the TPA
peak. We searched for a particular width that would selec-
tively enhance the TPA peak ωf1e2 in the transmission spec-
trum. The two-dimensional spectra, Eq. (9), with phase φ2(ω,
ωa, ωb), are plotted in Fig. 8(b) as a function of ωa and ωb,
for ω = ωf1e2 . The diagonal line at ωa = ωb is where width
of the phase-pulse is zero. The phase-pulse is positive going
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FIG. 8. (a) The two-dimensional transmission signal, Eq. (21), is plotted for
φ2(ω,ωa, ωe2g1 ) with τ = −0.5 cm. (b) The 2D transmission spectrum with
phase φ2(ω, ωa, ωb), Eq. (9), vs phase-step positions ωa and ωb, is plotted
for τ = −0.5 cm and ω = ωf2e1 .

for ωb > ωa and negative going for ωa > ωb. The diagonal
peak at ωa = ωb = ωf1e2 shows that ω = ωf1e2 is optimized
by employing a narrow negative pulse. There is one horizon-
tal line for ωb > ωa and ωa = ωf1e2 . This is a wide pulse with
the negative going step at ωa = ωf1e2 . There is a vertical line
for ωa > ωb and ωb = ωf1e2 , which is again a wide pulse with
a negative step located at ωb = ωf1e2 . Recall that in Fig. 5(b)
the transition peak ωf1e2 was well enhanced using a negative
step rather than a positive. There are several regions where
the background becomes pronounced: the bottom right and
left corners. For ω > ωf1e2 , the background is minimal. Over-
all, the spectra do not show any favorable width for a wide
pulse.

We next chose, the width of the phase-pulse to coincide
with the transition frequencies involved in the TPA transition
ωf1g1 , with a phase-pulse centered at ωf1g1/2 (see the inset of
Fig. 9). The transmission signal Spulse(ω), Eq. (9), is plotted
with a positive phase-pulse (blue-thick) and a negative phase-
pulse (thin-red). Overall, the positive phase-pulse amplifies
the TPA better than the negative phase-pulse. This is because
the positive phase-pulse is composed of a negative step at
ωb = ωf1e2 , while the negative phase-pulse is composed of a
positive step at ωb = ωf1e2 .

FIG. 9. The transmission signal, Eq. (9), φ2(ω,ωe1g1 , ωf1e2 ) is plotted for a
(thick-blue) positive phase-pulse, τ = 0.5 cm and a (thin-red) negative phase-
pulse τ = −0.5 cm. The width and position of the pulse used are shown in
the inset.

In Fig. 10, we compare all three profiles for selec-
tively enhancing the peak ωf1e2 . The thick-blue line in
Fig. 10 is the transmission signal, Eq. (9) with negative
phase-step, φ1(ω,ωf1e2 ). The thin-red line corresponds to the
transmission signal, Eq. (9) with a negative narrow-phase-
pulse φ2(ω,ωf1e2 − 1

2�ω,ωf1e2 + 1
2�ω), with width �ω

= 10 cm−1. The dashed-black line in the transmission signal
is a positive wide-phase pulse φ2(ω,ωe1g1 , ωf1e2 ), shown in
the inset of Fig. 9. Figure 10 shows that the phase-step gives
the best enhancement. The phase-step centered at the reso-
nant frequency inverts the phase to compensate for the phase
inversion of the Green’s function and enhances the peak.26

The wide and narrow phase-pulses provide comparable
enhancement.

V. OFF-RESONANT STIMULATED RAMAN SIGNALS

We now set the carrier frequency of the pulse to be
off-resonant at �1 = 8000 cm−1. The transmission signal,
Eq. (9), with a positive phase-step is shown in Fig. 11(a) for
three values of ωa. The black dashed line is the transmission
signal, Eq. (14), without pulse shaping, φ = 0. With the phase-
step, the transmission spectra show a peak at ω = ωa with a
width close to ωg2g1 .

The transmission signal with a negative phase-step,
Eq. (9), with τ a = −0.5, is shown in Fig. 11(b) for three val-
ues of ωa. The spectra show a peak at ω = ωa with width
close ωg2g1 . The difference between the negative and positive-
step, Eq. (17), shows a peak at ω = ωa and a Stokes peak at

FIG. 10. Three profiles for amplifying the peak ωf1e2 in the transmission
spectrum, Eq. (9), are compared; (thick-blue) phase-step, φ1(ω,ωf1e2 ); (thin-
red) narrow-phase-step φ2(ω, ωf1e2 − 1

2 �ω, ωf1e2 + 1
2 �ω), with width �ω

= 10 cm−1; and (dashed-black) wide-phase-pulse φ2(ω, ωe1g1 , ωf1e2 ).
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FIG. 11. (Top row) The off-resonant transmission signal, Eq. (9), with phase-step, φ1(ω, ωa), for three values of ωa: (dashed-green) ωa = 7925 cm−1, (thick-
blue) ωa = �1, and (thin-red) ωa = 8060 cm−1. (a) τ a = 0.5 cm; (b) τ a = −0.5 cm; and (c) difference between (a) and (b), Eq. (17). (Bottom row) The
transmission signal with a phase-pulse φ2(ω, ω̃ − �ω

2 , ω̃ + �ω
2 ) with width �ω = 10 cm−1 and three values of pulse position ω̃: (dashed-green) ω̃ = 7825 cm−1,

(thick-blue) ω̃ = �1, and (thin-red) ω̃ = 8150 cm−1. (d) τ = 0.5 cm; (e) τ = −0.5 cm; and (f) difference between (d) and (e), Eq. (20). The dashed-black line
is the transmission spectrum with no phase φ = 0. The red arrows mark the position of the phase-step. The insets show the shape of the phase-step or pulse.

ωa + ωg2g1 . We assume that the molecule is initially in the g1

state, meaning that the anti-Stokes processes are not possible.
The transmission signal for a narrow positive phase-

pulse Eq. (9) S(ω; φ2(ω, ω̃ − �ω
2 , ω̃ + �ω

2 )) with τ = 0.5 cm
is shown in Fig. 11(d) for three values of ω̃. The black-
dashed line corresponds to the transmission spectrum,
Eq. (14), with φ = 0. The spectrum for ω̃ = 7825 cm−1 shows
two peaks at �1 and ω̃ with width close to ωg2g1 . The same
two peaks appear for ω̃ = 8150 cm−1. When ω̃ = �1, there
are two peaks at ω = �1, �1 + ωg2g1 . For a negative phase-
pulse, Fig. 11(e), τ = −0.5 cm−1, we see the same peaks, with
slightly different line-shapes.

The difference between the positive and negative phase-
pulse, Eq. (20), is shown in Fig. 11(f). For ω̃ = 7825 cm−1,
there are four peaks, ω = ω̃, ω̃ + ωg2g1 , �1, �1 + ωg2g1 .
The same peaks occur for ω̃ = 8150 cm−1. For ω̃ = �1 only
two peaks occur ω = �1, �1 + ωg2g1 . The Raman peaks
at ω = �1 + ωg2g1 , ω̃ + ωg2g1 contain both absorption and
emission features. Note that there are some wiggles on the
signal in Figs. 11(d) and 11(e). The numerical value of the
integrations calculated in Eq. (9) is of the order 10−5, which
is relatively small. The accuracy of the numerical integration
was set to 10−8.

VI. DISCUSSION

We have simulated the nonlinear transmission signal of
a broadband pulse with a phase-step and phase-pulse with
finite-transition width. Two dimensional plots of the trans-
mission signal vs the transmitted frequency and the position
of a π -step or pulse show diagonal peaks spread above and
below the diagonal line. The transmission spectra show that
the phase-step or narrow-pulse can suppress certain quantum
pathways. The diagonal peaks in the transmission spectra are

sensitive to the phase sign. The TPA peaks are enhanced bet-
ter for a negative step or narrow-pulse rather than for a pos-
itive. The peaks from the Stokes process are enhanced more
for a positive step or narrow-pulse compared to a negative.
We found that the sign of the pulse or step becomes relevant
when the position of the step or pulse is close to the transition
peak frequencies. A positive or negative phase-pulse selects
particular peaks. The narrow phase-pulse suppressed the con-
tributions from the diagrams (II) and (III) in Fig. 4, while the
transmission spectra for the phase-step was dominated by the
diagrams (II) and (III) in Fig. 4.

The difference between a positive and negative phase-
step or phase-pulse shows peaks along the diagonal line. The
arctan phase can be expanded as the sum of an even and odd
functions. Subtracting the transmission signal with a positive
and negative phase-step or pulses gives the spectra which are
enhanced by the odd-spectral phase.

We compared two protocols for enhancing the TPA peaks
in the transmission spectrum. Reference 40 employed a wide
pulse with the two phase-steps located at the two transi-
tion frequencies involved in the TPA. We plotted the two-
dimensional transmission spectra for a variable pulse width
in Fig. 8(b). However, the spectra showed that the TPA is
enhanced either for a narrow-phase-pulse or with a negative
going phase-step. The spectra did not show any peaks corre-
sponding to a wide pulse with two phase-steps located at the
two transition frequencies involved in the TPA. We compared
this protocol to the phase-step and a narrow phase-pulse and
showed that the step gave the best amplification of the pulse.
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FIG. 12. Loop diagrams for the frequency dispersed transmitted signal signal, Eq. (5), expanded to third-order in Hint. The frequencies ω1 and ω2 correspond
to the frequencies ω1 and ω2 in Eq. (A1).
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APPENDIX A: LOOP DIAGRAM EXPANSION IN χ (3)

The susceptibility equation (10) can be written in Hilbert
space, corresponding the loop diagrams in Fig. 12, as

χ (3)(−ω; ω1,−ω2, ω − ω1 + ω2)

= χ
(3)
i (−ω; ω1,−ω2, ω − ω1 + ω2)

+χ
(3)
ii (−ω; ω1,−ω2, ω − ω1 + ω2)

+χ
(3)
iii (−ω; ω1,−ω2, ω − ω1 + ω2)

+χ
(3)
iv (−ω; ω1,−ω2, ω − ω1 + ω2), (A1)

where

χ
(3)
i (−ω; ω1,−ω2, ω − ω1 + ω2)

=
( −1

2π¯

)3 ∑
gi ,ei ,fi

Vg1e2Ve2g2Vg2e1Ve1g1

×G†
e2

(ω2)G†
g2

(−ω + ω1)Ge1 (ω1), (A2)

χ
(3)
ii (−ω; ω1,−ω2, ω − ω1 + ω2)

=
( −1

2π¯

)3 ∑
gi ,ei ,fi

Vg1e2Ve2f1Vf1e1Ve1g1

×G†
e2

(ω2)Gf1 (ω + ω2)Ge1 (ω1), (A3)

χ
(3)
iii (−ω; ω1,−ω2, ω − ω1 + ω2)

=
( −1

2π¯

)3 ∑
gi ,ei ,fi

Vg1e2Ve2g2Vg2e1Ve1g1

×Gg2 (ω1 − ω2)Ge2 (ω)Ge1 (ω1), (A4)

χ
(3)
iv (−ω; ω1,−ω2, ω − ω1 + ω2)

=
( −1

2π¯

)3 ∑
gi ,ei ,fi

Vg1e2Ve2f1Vf1e1Ve1g1

×Ge2 (ω)Gf1 (ω + ω2)Ge1 (ω1). (A5)

FIG. 13. (a) The frequency dispersed transmission signal S0(ω), Eq. (14),
using a Gaussian pulse, Eq. (8), for φ = 0,σ = 252 cm−1, and �1
= 12 100 cm−1. The components of S0(ω) (b) SI

0 (ω), (c) SII
0 (ω), and

(d) SIII
0 (ω) corresponding to the susceptibility components, Eq. (10).
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FIG. 14. The two-dimensional frequency dispersed difference-transmission signal with phase φ1(ω, ωa), vs phase-step position, ωa. (Left column) Positive
step, �Si

step(ω,ωa), Eq. (B1), with τ a = 0.5 cm; (Middle column) negative step, �Si
step(ω,ωa), Eq. (B1), with τ a = −0.5 cm; and (Right column) difference

between a positive and negative step, �S̃i
step(ω,ωa), Eq. (B2). (First row) SI

step; (Second row) SII
step; (Third row) SIII

step ; (Fourth row) the total transmission signal,
(j) and (k) Eq. (B3); (l) Eq. (B4). The vertical dashed-black lines mark the transition frequencies.
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FIG. 15. The two-dimensional frequency dispersed difference-transmission signal vs the phase-pulse, φ2(ω, ω̃ − �ω
2 , ω̃ + �ω

2 ), position ω̃, with width
�ω = 10 cm−1. (Left column) Positive pulse, �Si

pulse(ω, ω̃), Eq. (B5), with τ = 0.5 cm; (Middle column) negative pulse, �Si
pulse(ω, ω̃), Eq. (B5), with τ

= −0.5 cm; (Right column) difference between a positive and negative pulse, �S̃i
pulse(ω, ω̃), Eq. (B6). (First row) SI

pulse; (Second row) SII
pulse; (Third row)

SIII
pulse; (Fourth row) the total transmission signal, (j) and (k) Eq. (B7); (l) Eq. (B8). The vertical dashed-black lines mark the transition frequencies.
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Equation (10) is similar to Eq. (A1), with the dephasing rates
γ replaced with the inverse lifetimes.

APPENDIX B: TRANSMISSION SPECTRA

The transmission spectrum S0(ω) without pulse shaping
is shown in Fig. 13(a). The three components SI

0 (ω), SII
0 (ω),

and SIII
0 (ω) of S0(ω) are shown in Figs. 13(b)–13(d), respec-

tively. These components correspond to the signal from dia-
grams (I), (II), (III) in Fig. 4.

The two-dimensional frequency dispersed transmission
signal,

�Si
step(ω; ωa) = Si(ω; φ1(ω,ωa, τa)) − Si

0(ω) (B1)

is plotted in the first two columns of Fig. 14. The index
i = I, II, III represents the signal from diagrams (I), (II), (III)
in Fig. 4, respectively. The first column corresponds to a pos-
itive phase-step τ a = 0.5 cm and the second column to a neg-
ative phase-step τ a = −0.5 cm. The difference transmission
signal with a negative and positive phase-step,

�S̃i
step(ω; ωa) = S(ω; φ1(ω,ωa,−τa)) − S(ω; φ1(ω,ωa, τa))

(B2)
is plotted in the third column of Fig. 14. The vertical black-
dashed lines mark the positions of the transition peaks. The
first three rows correspond to the transmission signal com-
ponents from the ladder diagrams (I), (II), and (III) in Fig. 4,
respectively. The fourth row corresponds to the total transmis-
sion signal. The sum

�Sstep(ω; ωa)

= �SI
step(ω; ωa) + �SII

step(ω; ωa) + �SIII
step (ω; ωa) (B3)

is plotted Figs. 14(j) and 14(k), for a positive and negative
step, respectively. The difference between (j) and (k), or the
sum

�S̃step(ω; ωa)

= �S̃I
step(ω; ωa) + �S̃II

step(ω; ωa) + �S̃III
step (ω; ωa) (B4)

is plotted in Fig. 14(l).
The difference transmission spectrum for a narrow phase-

pulse with width �ω = 10 cm−1 is plotted in Fig. 15. The
difference

�Si
pulse(ω; ω̃)

= Si

(
ω; φ2

(
ω, ω̃ = �ω

2
, ω̃ + �ω

2
, τ

))
− Si

0(ω) (B5)

is displayed in the first two columns of Fig. 15, where the
index i can be I, II, or III. The first and second columns corre-
spond to a positive and negative pulse, respectively. The dif-
ference in the transmission signal with a negative and positive
pulse,

�S̃i
pulse(ω; ω̃) = Si

(
ω; φ2

(
ω, ω̃ − �ω

2
, ω̃ + �ω

2
,−τ

))

− Si

(
ω; φ2

(
ω, ω̃ − �ω

2
, ω̃ + �ω

2
, τ

))

(B6)

is plotted in the third column of Fig. 15. The sum

�Spulse(ω; ωa)

= �SI
pulse(ω; ωa) + �SII

pulse(ω; ωa) + �SIII
pulse(ω; ωa)

(B7)

is plotted in Figs. 15(j) and 15(k), for a positive and negative
step, respectively. The difference between (j) and (k), or the
sum

�S̃pulse(ω; ωa)

= �S̃I
pulse(ω; ωa) + �S̃II

pulse(ω; ωa) + �S̃III
pulse(ω; ωa)

(B8)

is plotted in Fig. 15(l).
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