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Abstract

Star and Planet Formation Through Cosmic Time

by

Aaron Thomas Lee

Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Christopher F. McKee, Chair

The computational advances of the past several decades have allowed theoretical astro-
physics to proceed at a dramatic pace. Numerical simulations can now simulate the formation
of individual molecules all the way up to the evolution of the entire universe. Observational
astrophysics is producing data at a prodigious rate, and sophisticated analysis techniques
of large data sets continue to be developed. It is now possible for terabytes of data to be
effectively turned into stunning astrophysical results. This is especially true for the field of
star and planet formation. Theorists are now simulating the formation of individual planets
and stars, and observing facilities are finally capturing snapshots of these processes within
the Milky Way galaxy and other galaxies. While a coherent theory remains incomplete, great
strides have been made toward this goal.

This dissertation discusses several projects that develop models of star and planet forma-
tion. This work spans large spatial and temporal scales: from the AU-scale of protoplanetary
disks all the way up to the parsec-scale of star-forming clouds, and taking place in both con-
temporary environments like the Milky Way galaxy and primordial environments at redshifts
of z ∼ 20.

Particularly, I show that planet formation need not proceed in incremental stages, where
planets grow from millimeter-sized dust grains all the way up to planets, but instead can
proceed directly from small dust grains to large kilometer-sized boulders. The requirements
for this model to operate effectively are supported by observations. Additionally, I draw
suspicion toward one model for how you form high mass stars (stars with masses exceeding
∼ 8M�), which postulates that high-mass stars are built up from the gradual accretion
of mass from the cloud onto low-mass stars. I show that magnetic fields in star forming
clouds thwart this transfer of mass, and instead it is likely that high mass stars are created
from the gravitational collapse of large clouds. This work also provides a sub-grid model
for computational codes that employ sink particles accreting from magnetized gas. Finally,
I analyze the role that radiation plays in determining the final masses of the first stars to
ever form in the universe. These stars formed in starkly different environments than stars
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form in today, and the role of the direct radiation from these stars turns out to be a crucial
component of primordial star formation theory.

These projects use a variety of computational tools, including the use of spectral hydro-
dynamics codes, magneto-hydrodynamics grid codes that employ adaptive mesh refinement
techniques, and long characteristic ray tracing methods. I develop and describe a long
characteristic ray tracing method for modeling hydrogen-ionizing radiation from stars. Ad-
ditionally, I have developed Monte Carlo routines that convert hydrodynamic data used in
smoothed particle hydrodynamics codes for use in grid-based codes. Both of these advances
will find use beyond simulations of star and planet formation and benefit the astronomical
community at large.
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Chapter 1

Introduction

Somewhere, something incredible is waiting to be known.
– Carl Sagan

Now, my suspicion is that the universe is not only queerer than we
suppose, but queerer than we can suppose.
– J. B. S. Haldane, in Possible Worlds

We live in a miraculous universe. Expanding from a Big Bang state nearly 14 billion years
ago, a seemingly homogenous and isotropic universe has developed incredible complexity on
smaller scales. Matter has collected into galaxies clusters and individual galaxies. Stars have
formed in those galaxies, producing heavy elements that were recycled into later generations
of stars. One of these stars formed about 4.5 billion years ago in a galaxy called the Milky
Way. This star was born with a host of planets that formed in a flattened disk surrounding
it. One of these planets soon became covered with life that gradually evolved into ever
more complex forms. And today, the most advanced life-form on this planet, human beings,
can look back on this series of events and understand how the universe created conditions
suitable for their own existence.

Since pre-historic times, humans have gazed at the night sky and wondered about the
nature and origin of the light we see. The night sky is full of stars, and while we have made
considerable progress toward understanding the nature of these stars, many aspects about
their origin remain the subject of intense study today. Indeed, star formation is perhaps
one of the least understood phenomena in cosmic evolution, due to the complex physics
involved, as well as the wide range of spatial scales and temporal scales. It is also one of the
most important branches of astrophysics, because it is central to making progress on many
fundamental problems, including understanding how individual stars evolve, the structure
and evolution of galaxies, the energy balance and dynamics of the interstellar medium, and
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the formation of planetary systems. Today astronomy can utilize the entire electromagnetic
spectrum to study the stars, and the last two decades of observational advances, particularly
at radio and infrared wavelengths, have painted an increasingly detailed picture of the star
formation process (McKee & Ostriker 2007; Dunham et al. 2014). Our work is far from com-
plete, however, and further observations from current and future facilities like the Atacama
Large Millimeter-Submillimeter Array (Brown et al. 2004) and the James Webb Space Tele-
scope (Gardner et al. 2006) will continue to delve into the process by which light-year-sized
clouds of gas transform into compact shining stars.

As our observational methods develop in sophistication, it becomes more apparent that
star formation is a challenging problem. Unlocking the story of star formation has thus
required the use of new techniques and ever-more sophisticated theoretical models. That
said, the previous simple models still yielded incredible information and have played an
important role in the development of more complicated theories. The theory of star formation
has proceeded in three stages. First, order of magnitude estimates based on fundamental
physics yielded information regarding, for example, timescales and the necessity of certain
physical processes. These have led to the development of simple analytical models, which
have, along with linear perturbation analysis, offered a simplified look at the dynamics of star
forming regions (e.g., Jeans 1902; Mouschovias 1976; Shu 1977). Observations showed that
sometimes the approximations of these models were reasonable, but sometimes they were not.
Eventually there came a point where many of these analytical models could no longer grow
in sophistication. From here, star formation theorists have turned to numerical simulations.
The computational capabilities and techniques of numerical simulations themselves have also
developed over the past few decades (compare, e.g., Foster & Chevalier 1993; Myers et al.
2014), and there is little sign that this rate of development is slowing down (Klein et al. 2007;
Dale 2015). Today, numerical simulations continue to unveil to nature of stellar nurseries
across all of cosmic time.

This dissertation explores models of the star and planet formation process through the
use of numerical simulations. The next section briefly outlines the star and planet formation
process and identifies several unanswered questions of the field. The final section outlines the
remaining chapters of this thesis and how it will address these questions. Section 1.1 is not
meant as an exhaustive or pedagogical review; for that, the reader should seek out the many
excellent reviews and texts on the subject (e.g., Krumholz 2014; McKee & Ostriker 2007;
Klessen et al. 2011; Kennicutt & Evans 2012; Stahler & Palla 2005; Bodenheimer 2011).

1.1 Star and Planet Formation

1.1.1 Contemporary Environments

One could joke that the answer to almost every question in astrophysics is ‘gravity,’ but
this is indeed the case for star formation. In the Milky Way and local galaxies, stars form
via gravitational collapse in ∼ 1−100 pc-sized molecular clouds. These clouds are composed
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predominately of molecular hydrogen and range in mass from a paltry 102M� (e.g., Magnani
et al. 1985) all the way up to 107M� (e.g., Oka et al. 2001). Molecular clouds are located
primarily in the spiral arms of disk-like galaxies (e.g., the Milky Way; Blitz & Rosolowsky
2005), in starburst galaxies (e.g., M82), irregular galaxies (e.g., the Magellanic Clouds), and
merging or interacting galaxies (e.g., Antennae).

The nature of these clouds has been revealed through decades of observational work. Lo-
cal clouds exhibit broad linewidths, which is interpreted as evidence for supersonic turbulence
(Zuckerman & Evans 1974). Turbulence is a result of kinetic energy cascading from large
scales down to small scales, and its origin likely ties to the clouds’ formation process (Dobbs
et al. 2014). While the bulk of the energy remains at cloud-size scales, turbulence appears
to be dynamically important all the way down to the sub-parsec scales where individual star
formation is occurring (Larson 1981; Mac Low & Klessen 2004).

Observations using Zeeman splitting and the Chandrasekhar-Fermi effect also show that
these clouds are threaded by magnetic fields (Crutcher 1999; Troland & Crutcher 2008; Lai
et al. 2002) with strengths on order of a few tens of µG. These strengths make magnetic
fields potentially an important player in the star formation process, as measured by the ratio
of the thermal pressure to the magnetic pressure (β): clouds typically have β < 1 (Crutcher
1999). While magnetic pressures exceed thermal pressures, a virial analysis of local clouds
finds that clouds are typically magnetically supercritical, meaning that the mass of the cloud
exceeds the minimum mass necessary for gravitational collapse to occur in the presence of
opposing magnetic forces (Crutcher et al. 2003). Even so, as collapse proceeds and magnetic
flux is conserved, magnetic fields likely play an important role in how mass is transferred
from the cloud to the star.

Molecular cloud temperatures are determined by the balance between heating and cooling
mechanisms, both which depend on the chemical and dust content of clouds. Clouds are
observed to be ∼ 10 Kelvin at densities below ∼ 1011 cm−3, a result of heating from either
cosmic rays or photoelectric heating and cooling from line transitions (e.g., from CO, H2O,
CII, O) or thermal dust emission (e.g., Jijina et al. 1999; Evans 1999; Larson 2005). Above
this number density–reached near localized sites of star formation–the dust opacity increases
and the temperature rises rapidly.

The interplay of these turbulent, magnetic, and thermal components generate the ob-
served clumpy and often filamentary structure of molecular clouds (e.g., Ward-Thompson
et al. 2010). Inside these filaments live dense cores of gas with distribution of masses (e.g.,
André et al. 2010, for Aquila). Cores that eventually become gravitationally unstable collapse
into stars.

In particular, the larger cores are likely the formation sites for the massive OB stars
(& 8M�) seen in star clusters. Massive stars play a dominant role in terms of their incredible
mechanical and radiative feedback on their local environments. They also synthesize and
eventually disperse the heavier elements of the periodic table. Two theories of massive star
formation are under active study. The core accretion model extends the model of low-mass
stars, where individual or few-N multiples of stars form from the collapse of the molecular
core (Shu et al. 1987). The competitive accretion model (Bonnell et al. 2001) posits that
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low-mass stars form in these cores instead, but then accrete as they roam through the clumps
and the wider, non self-gravitating region. Competitive accretion models require that stars
can efficiently accrete gas from their surroundings. Further investigation is necessary to
assess whether or not this process is thwarted by the presence of magnetic fields.

During the collapse of molecular cores, conservation of angular momentum prevents all
the material from falling directly onto the star. Instead, it falls onto a surrounding flattened
disk (e.g., Terebey et al. 1984; Watson et al. 2007). The central star continues to accrete
material from this disk, but sufficiently heavy disks can further fragment into smaller proto-
stars or brown dwarfs (Toomre 1964; Dullemond et al. 2007). The remaining disk material
can eventually form a planetary system.

Early observations of stars emerging from their dense core cocoons revealed an excess of
near- and mid-infrared radiation, which was interpreted as the presence of a circumstellar
disk. Many circumstellar disks have also been spatially resolved (e.g., White et al. 2016),
seen in the infrared and radio from micron-sized dust emission. The process by which dust
becomes a planet occurs in three stages. First, collisions via Brownian motion and chemical
bonding gently builds centimeter- to meter-sized objects. These objects eventually become
planetesimals, self-gravitating objects that are typically kilometer in size. Planetesimals then
coalesce via gravitational focusing to form the rocky planets and gas gaint cores (Goldreich
et al. 2004a; Kokubo & Ida 1996). The most challenging step is the second one, when the
solids are ∼meters in size. Their surfaces are insufficiently sticky and their individual gravity
is too feeble to grow in size through collisions, and strong aerodynamic drag from the gas
causes radial drifts that are too quick to form planets (Chiang & Youdin 2010). The presence
of planets indicates that this challenge can be overcome, but the exact mechanism to do so
remains disputed.

1.1.2 Primordial Environments

The fact that star formation occurs suggests there was a point in time when the very
first stars formed. These first stars (so called Population III stars, or Pop III stars) marked
a fundamental transition in the history of the universe. Ending the so-called ‘cosmic dark
ages,’ when the universe contained no visible light, they lit up the universe at redshifts & 20
(Bromm & Larson 2004; Glover 2005; Bromm 2013). They initiated the transformation of
the homogeneous intergalactic medium (IGM) to one filled with the rich structure we observe
today (Barkana & Loeb 2001). Sufficiently massive Pop III stars carved out the first HII
regions (e.g., Kitayama et al. 2004; Alvarez et al. 2006; Johnson et al. 2007a), left behind
the first metal-enriched SN remnants (e.g., Mori et al. 2002; Bromm et al. 2002; Greif et al.
2010; Wise et al. 2012; Karlsson et al. 2008), or collapsed to some of the first gamma-ray
bursts (Woosley 1993; Stacy et al. 2011, 2013).

These stars are believed to have formed in the first gravitationally-bound dark matter
‘minihalos’ that developed from the cosmological large-scale structure. With virial masses
of Mvir ∼ 106M�, these halos pulled nearby baryonic gas into their gravitational potential
well. A gravitationally-bound core of pristine ∼ 103M� gas settled to the center of each
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halo, and this core provided the reservoir from which primordial protostars formed and grew.
Though initially too hot to collapse, and devoid of coolants made of elements heavier than
helium, these halos formed a sufficient abundance of H2 such that the energy release due
to rovibrational transitions cooled the halos down to ∼ 200 Kelvin, allowing for eventual
collapse (e.g., Haiman et al. 1997; Tegmark et al. 1997; Yoshida et al. 2003). The higher
temperatures result in a higher Jeans mass, and the higher Jeans mass implies that these
stars experienced high accretion rates (∼ 10−3M�/yr). These stars are believed to be much
more massive than typical stars today, perhaps hundreds of solar masses in size (Abel et al.
1997, 2002; Bromm et al. 2002).

Can the first stars be this large? Perhaps, but gravitational collapse does not proceed
unimpeded in these halos. While cosmological magnetic fields are too weak to be dynam-
ically relevant at these early stages (though dynamo fields may eventually develop, Turk
et al. 2012), the forming protostars radiate considerable energy back into their environ-
ments. Comparing the accretion timescale to the Kelvin-Helmholtz timescale for Pop III
stars, they are likely to undergo Kelvin-Helmholtz contraction above ∼ 10M� (Hosokawa
et al. 2010a). As these stars contract, their surface temperatures increase so to produce con-
siderable hydrogen-ionizing radiation (energies exceeding 13.6 eV). Ionization raises the local
temperature of the gas to ∼ 104 Kelvin, and this highly pressured region will begin to drive
gas from the halo once it can escape from the nearby star(s). Tan & McKee (2004) considers
a 1D model of one of these stars forming in isolation. Once the star’s mass exceeds ∼ 40M�
it will begin to develop an HII region that reduces and eventually shuts off accretion above
and below its accretion disk. Within a few ×104 years, this star will grow beyond 100M�, at
which point the radiative feedback will begin photoevaporating the accretion disk (Hollen-
bach et al. 1994), further reducing the accretion rate. McKee & Tan (2008) extend the 1D
model of Tan & McKee (2004) and show that accretion is effectively shut off once the star
exceeds ∼ 150M�, though this value depends on several assumptions about the host cloud.
The 2D simulations of Hosokawa et al. (2011) and the 3D simulations of Stacy et al. (2012)
have confirmed this simple picture, at least for the early times of the star’s growth. However,
their stars reached a final mass that was tens of solar masses compared to hundreds, which
may have been due to poor resolution near the protostars. The work of Hosokawa et al.
(2011) was extended by Hirano et al. (2014), which simulated a large variety of primordial
environments. They found that Pop III stars can range in mass from 10M� to 103M�, and
the final stellar masses and multiplicity not only depended on the radiative feedback, but
also depended sensitively on the thermal evolution of the cloud during the initial collapse
phase. Additional simulations are needed to assess the role that ionizing radiative feedback
plays in the Pop III star formation process.

1.2 Outline
I explore the formation of stars and planets in several chapters. Chapters 2 and 3 explores

how micron-sized dust accumulates into km-sized planetesimals. These chapters show that
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where the individual fails the collective succeeds: finer mm-sized particles can settle to the
midplane of the protoplanetary disk so that their collective gravity can draw them together,
forming planetesimals. This mechanism skips the centimeter- to meter-sized regime entirely,
avoiding the concern of rapid radial drift due to aerodynamic drag. However, this mechanism
requires that the thin dust sub-layer remains stable as the dust settles, as velocity gradients
off the disk midplane can trigger Kelvin-Helmholtz instabilities. This was studied through
shearing box simulations employing spectral methods (Barranco 2009). In early stages of
settling, vertical perturbations are transformed into radial perturbations through the Coriolis
force, which are then sheared away by disk’s radial velocity gradient. As the dust settles
and the vertical shear increases in strength, the dust withstands if either (1) there is locally
more dust compared to gas, which can occur globally, through radial pileups, or gas photo-
evaporation; or (2) planet formation is not 100% efficient and the total disk mass is at least
a few times the minimum mass required to form the Solar System. Support for our model
comes from observations: low-mass stars with exoplanets tend to be metal (dust)-rich, and
high-mass stars likely host more massive disks (Johnson et al. 2010).

Chapter 4 investigates how massive stars may get their mass. If stars grow through
the competitive accretion scenario, stars should be able to effectively accrete gas from their
(magnetized) surroundings. Additionally, low mass stars may also accrete from the molecular
cloud after they have formed, albeit at a much lower rate. How stars accrete from a non
self-gravitating magnetized gas was studied using the adaptive mesh refinement (AMR) code
RAMSES (Teyssier 2002). Placing a stationary sink particle at the center of the box, initially
uniform magnetized gas was allowed to flow past the particle at some sonic Mach number
M. A range of magnetic field strengths are considered, as well as flow speeds ranging from
stationary to highly supersonic. ForM∼ 1 and β ∼0.04, the magnetic accretion rate to the
hydrodynamic rate is ∼1/10. This ratio decreases for lowerM and β. Competitive accretion
models therefore underestimate the timescale required for making massive stars.

Finally, Chapter 5 investigates how the star formation process occurred for the first gen-
eration of stars. This chapter describes the preliminary work done to improve our knowledge
on the Pop III mass function. Using the adaptive mesh refinement hydrodynamic code
ORION2 (Li et al. 2012), we simulate the formation of Pop III stars in a dark matter mini-
halo. This simulation is the first ORION2 simulation to incorporate the hydrogen-ionizing
radiative feedback from the forming stars (Appendix C). Initial conditions are drawn from
the spherical cloud models of Tan & McKee (2004) and McKee & Tan (2008) and monitor
the growth of the HII region once the star exceeds ∼ 200M�. Future work will draw from
the cosmological smoothed particle hydrodynamics (SPH) simulations of Stacy & Bromm
(2013). As of this writing, we have already developed a Monte Carlo routine that transforms
SPH data into AMR data; we describe this routine in Appendix D. This routine conserves
all fluid quantities to better than 0.01%, whereas previous routines written to convert SPH
to AMR artificially conserved mass by applying a uniform correction factor to each particle
(inconsistent with its non-uniform smoothing kernel).
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Chapter 2

Forming Planetesimals by Gravitational
Instability: I. The Role of the
Richardson Number in Triggering the
Kelvin-Helmholtz Instability

1 Gravitational instability (GI) of a dust-rich layer at the midplane of a gaseous circum-
stellar disk is one proposed mechanism to form planetesimals, the building blocks of rocky
planets and gas giant cores. Self-gravity competes against the Kelvin-Helmholtz instability
(KHI): gradients in dust content drive a vertical shear which risks overturning the dusty
subdisk and forestalling GI. To understand the conditions under which the disk can resist
the KHI, we perform three-dimensional simulations of stratified subdisks in the limit that
dust particles are small and aerodynamically well coupled to gas, thereby screening out the
streaming instability and isolating the KHI. Each subdisk is assumed to have a vertical
density profile given by a spatially constant Richardson number Ri. We vary Ri and the
midplane dust-to-gas ratio µ0 and find that the critical Richardson number dividing KH-
unstable from KH-stable flows is not unique; rather Ricrit grows nearly linearly with µ0 for
µ0 = 0.3–10. Plausibly a linear dependence arises for µ0 � 1 because in this regime the
radial Kepler shear replaces vertical buoyancy as the dominant stabilizing influence. Why
this dependence should persist at µ0 > 1 is a new puzzle. The bulk (height-integrated)
metallicity is uniquely determined by Ri and µ0. Only for disks of bulk solar metallicity
is Ricrit ≈ 0.2, close to the classical value. Our empirical stability boundary is such that
a dusty sublayer can gravitationally fragment and presumably spawn planetesimals if em-
bedded within a solar metallicity gas disk ∼4× more massive than the minimum-mass solar
nebula; or a minimum-mass disk having ∼3× solar metallicity; or some intermediate combi-
nation of these two possibilities. Gravitational instability seems possible without resorting

1Large portions of this chapter have been previously published as Lee, A. T., Chiang, E., Asay-Davis,
X., Barranco, J. 2010. Forming Planetesimals by Gravitational Instability. I. The Role of the Richardson
Number in Triggering the Kelvin-Helmholtz Instability. ApJ, 718, 1367.
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to the streaming instability or to turbulent concentration of particles.

2.1 Introduction
In the most venerable scenario for forming planetesimals, dust particles in circumstellar

gas disks are imagined to settle vertically into thin sublayers (“subdisks”) sufficiently dense
to undergo gravitational instability (Safronov 1969; Goldreich & Ward 1973; for a review of
this and other ways in which planetesimals may form, see Chiang & Youdin 2010, hereafter
CY10). Along with this longstanding hope comes a longstanding fear that dust remains lofted
up by turbulence. Even if we suppose that certain regions of the disk are devoid of magnetized
turbulence because they are too poorly ionized to sustain magnetic activity (Gammie 1996;
Bai & Goodman 2009), the dusty sublayer is susceptible to a Kelvin-Helmholtz shearing
instability (KHI; Weidenschilling 1980).2

2.1.1 Basic Estimates

The KHI arises because dust-rich gas at the midplane rotates at a different speed from
dust-poor gas at altitude. The background radial pressure gradient ∂P/∂r causes dust-free
gas at disk radius r to rotate at the slightly non-Keplerian rate

ΩF = ΩK(1− η) (2.1)

where ΩK is the Kepler angular frequency,

η =
−(1/ρg)∂P/∂r

2Ω2
Kr

≈ 8× 10−4
( r

AU

)4/7

(2.2)

is a dimensionless measure of centrifugal support by pressure, and ρg is the density of gas
(e.g., Nakagawa et al. 1986; Cuzzi et al. 1993). The numerical evaluation is based on the
minimum-mass solar nebula derived by CY10. Unlike dust-free gas, dust-rich gas is loaded
by the extra inertia of solids and must rotate at more nearly the full Keplerian rate to remain
in centrifugal balance. Variations in the dust-to-gas ratio ρd/ρg with height z result in a
vertical shear ∂vφ/∂z from which free energy is available to overturn the dust layer.

The shearing rate across a layer of thickness ∆z is given to order of magnitude by∣∣∣∣∂vφ∂z
∣∣∣∣ ∼ ∆vφ

∆z
=

1

∆z

µ0

1 + µ0

ηΩKr

≈ 25

∆z

µ0

1 + µ0

( r

AU

)1/14

m s−1 (2.3)

where ρd/ρg = µ0 at the midplane and ρd/ρg � 1 at altitude (for more details see CY10, or
§§2.2.1–2.2.2 of this chapter). For µ0 � 1 the velocity difference ∆vφ saturates at a speed

2Goldreich & Ward (1973) also recognized that the sublayer would be shear-unstable, but unlike Weiden-
schilling (1980), overlooked the possibility that the KHI may forestall gravitational instability.
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ηΩKr ∼ 25(r/AU)1/14 m s−1, well below the gas sound speed cs ∼ 1 km s−1. That the flow is
highly subsonic motivates what simulation methods we employ in our study.

We might expect the flow to be stabilized if the Brunt-Väisälä frequency

ωBrunt =

(
−g
ρ

∂ρ

∂z

)1/2

∼
(

µ0

1 + µ0

)1/2

ΩK (2.4)

of buoyant vertical oscillations is much larger than the vertical shearing rate. For the order-
of-magnitude evaluation in (2.4) we approximate the vertical gravitational acceleration g as
the vertical component of stellar gravity −Ω2

K∆z (no self-gravity), and the density gradient
ρ−1∂ρ/∂z ∼ (ρd + ρg)−1∆(ρd + ρg)/∆z ∼ (ρd + ρg)−1∆ρd/∆z. The last approximation relies
in part on the dust density ρd changing over a lengthscale ∆z much shorter than the gas
scale height. Both |∂vφ/∂z| and ωBrunt shrink as µ0 decreases.3

For two-dimensional, heterogeneous, unmagnetized flow, a necessary but not sufficient
condition for instability is given by the Richardson number:

Ri ≡ −(g/ρ)(dρ/dz)

(dvφ/dz)2
< 1/4 is necessary for instability (2.5)

(Miles 1961; see the textbook by Drazin & Reid 2004). The Richardson number is simply
the square of the ratio of the stabilizing Brunt frequency (2.4) to the destabilizing vertical
shearing frequency (2.3). The critical value of 1/4 arises formally but can also be derived
heuristically by energy arguments (e.g., Chandrasekhar 1981). The Richardson criterion does
not formally apply to our dusty subdisk, which represents a three-dimensional flow: the KHI
couples vertical motions to azimuthal motions, while the Coriolis force couples azimuthal
motions to radial motions. (For how the Richardson criterion may not apply to magnetized
flows, see Lecoanet et al. 2010.) Nevertheless we may hope the Richardson number is useful
as a guide, as previous works have assumed (Sekiya 1998; Youdin & Shu 2002; Youdin &
Chiang 2004).

In this spirit let us use the Richardson criterion to estimate the thickness of a marginally
KH-unstable dust layer. Substitution of (2.3) and (2.4) into (2.5) reveals that4

∆z ≈
(

µ0

1 + µ0

)1/2

Ri1/2ηr . (2.6)

3But not indefinitely. In the limit µ0 → 0, the vertical shearing and Brunt frequencies reach minima set
by pressure and temperature gradients in gas (see, e.g., Knobloch & Spruit 1985). The limit µ0 → 0 is not
relevant for our study and not captured by either (2.3) or (2.4).

4This order-of-magnitude expression for the dust layer thickness, and the related equation (2.3) which
approximates the vertical shear, are each smaller than their counterparts given by Youdin & Shu (2002, page
499, first full paragraph) by a factor of (1 + µ). This is because Youdin & Shu (2002) evaluate quantities
deep inside the layer, within a density cusp at the midplane, whereas we are interested in quantities averaged
across the entire layer. The difference does not change either our conclusions or theirs.
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Since the gas scale height Hg = cs/ΩK and η ∼ (Hg/r)
2, equation (2.6) indicates that for

µ0 > 1 the marginally unstable dust sublayer is ∼Ri1/2Hg/r ∼ 0.02Ri1/2 times as thin as the
gas disk in which it is immersed. Those KH-unstable modes that disrupt the layer should
have azimuthal wavelengths—and by extension radial wavelengths, because the Kepler shear
turns azimuthal modes into radial ones—that are comparable to ∆z. Shorter wavelength
modes cannot overturn the layer, while longer wavelength modes grow too slowly (Gómez &
Ostriker 2005).

How does disk rotation affect the development of the KHI? In a linear analysis, Ishitsu &
Sekiya (2003) highlight the role played by the Keplerian shear, characterized by the strain
rate ∣∣∣∣ ∂ΩK

∂ ln r

∣∣∣∣ =
3ΩK

2
, (2.7)

in limiting the growth of KH-unstable modes. The radial shear is implicated because az-
imuthal motions excited by the KHI are converted to radial motions by the Coriolis force;
moreover, the non-axisymmetric pattern excited by the KHI is wound up, i.e., stretched
azimuthally by the radial shear. The Kepler rate |∂ΩK/∂ ln r| is at least as large as ωBrunt,
and can dominate the latter when µ0 is small. This suggests that Ri does not capture all
the relevant dynamics—a concern already clear on formal grounds. In this chapter we ad-
dress this concern head-on, using fully 3D numerical simulations to assess the role of the
Richardson number in governing the stability of the dust layer.

2.1.2 Our Study in Relation to Previous Numerical Simulations

Three-dimensional shearing box simulations of the KHI in dusty subdisks, performed in
the limits that dust is perfectly coupled to gas and disk self-gravity is negligible, demon-
strate the importance of the Kepler shear. Compared to rigidly rotating disks (Gómez &
Ostriker 2005; Johansen et al. 2006), radially shearing disks are far more stable (Chiang
2008; Barranco 2009). The relevance of Ri, or lack thereof, may be assessed by simulating
flows with initially spatially constant Ri (Sekiya 1998; Youdin & Shu 2002), and varying Ri
from run to run to see whether dust layers turn over. Chiang (2008, hereafter C08) found
that when µ0 > 1, dust layers for which Ri < 0.1 overturn, while those for which Ri > 0.1
do not. In retrospect, we might have anticipated this result, that the critical value Ricrit

dividing stable from unstable runs lies near the canonical value of 1/4, at least for µ0 > 1,
because in this regime of parameter space all the frequencies of the problem are comparable
to each other: |∂vφ/∂z| ∼ ωBrunt ∼ |∂ΩK/∂ ln r| ∼ ΩK when µ0 > 1 and Ri ≈ 0.1–1. But
other simulations of C08 also make clear that Ri does not alone determine stability under all
circumstances. For µ0 ≈ 0.2–0.4, Ricrit was discovered to drop substantially to ∼0.02 (see
his runs S9–S12). Chiang (2008) speculated that the baroclinic nature of the flow may be
responsible (Knobloch & Spruit 1985, 1986), but no details were given.

In addition to being left unexplained, the findings of C08 require verification. Param-
eter space was too sparsely sampled to discern trends with confidence. Concerns about
numerics—e.g., biases introduced by box sizes that were too small, resolutions too coarse,
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and runs terminated too early—also linger. At least one numerical artifact marred the simu-
lations of C08: the KHI manifested first at the “co-rotation” radius where the mean azimuthal
flow speed was zero (see his figure 8). But in a shearing box, by Galilean invariance, there
should be no special radius. It was suspected, but not confirmed, that errors of interpolation
associated with the grid-based advection scheme used by C08 artificially suppressed the KHI
away from co-rotation.

For the problem at hand, the spectral code developed by Barranco & Marcus (2006)
and modified by Barranco (2009, hereafter B09) to treat mixtures of dust and gas is a
superior tool to the grid-based ZEUS code utilized by C08. Working in Fourier space rather
than configuration space, the simulations of the KHI by B09 did not betray the co-rotation
artifact mentioned above. Spectral methods, often used to model local (WKB) dynamics,
are appropriate here because the structures of interest in the subdisk have dimensions tiny
compared to the disk radius (by at least a factor Ri1/2η according to equation 2.6) and
even the gas scale height. At the same computational expense, spectral algorithms typically
achieve greater effective spatial resolution than their grid-based counterparts (Barranco &
Marcus 2006). Another advantage enjoyed by the B09 code is that it employs the anelastic
approximation, which is designed to treat subsonic flows such as ours. Having filtered away
sound waves, anelastic codes are free to take timesteps set by how long it takes fluid to
advect across a grid cell (which themselves move at the local orbital velocity in a shearing
coordinate system). By contrast, codes such as ZEUS take mincing steps limited by the time
for sound waves to cross a grid cell. The latter constraint is the usual Courant condition for
numerically solving problems in compressible fluid dynamics. It was unnecessarily applied
by C08 to a practically incompressible flow.

In this chapter we bring all the advantages of the spectral, anelastic, shearing box code
of B09 to bear on the problems originally addressed by C08. We assess numerically the
stability of flows characterized by constant Richardson number Ri, systematically mapping
out the stability boundary in the parameter space of Ri, midplane dust-to-gas ratio µ0, and
bulk metallicity Σd/Σg (the height-integrated surface density ratio of dust to gas). Though
our simulations may still be underresolved, we rule out box size as a major influence on our
results. We offer some new insight into why Ri is not a sufficient predictor of stability. And
in the restricted context of our constant Ri flows, we assess the conditions necessary for the
midplane to become dense enough to trigger gravitational instability on a dynamical time.

2.1.3 The Perfect Coupling Approximation vs. The Streaming In-
stability vs. Turbulent Concentration Between Eddies

Following C08 and B09, we continue to work in the limit that dust is perfectly cou-
pled to gas, i.e., in the limit that particles are small enough that their frictional stopping
times tstop in gas can be neglected in comparison to the dynamical time Ω−1

K . The perfect
coupling approximation allows us to screen out the streaming instability which relies on a
finite stopping time and which is most powerful when particles are marginally coupled, i.e.,
when τs ≡ ΩKtstop ∼ 0.1–1 (Youdin & Goodman 2005). Numerical simulations have shown
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that when an order-unity fraction of the disk’s solids is in particles having τs = 0.1–1, the
streaming instability clumps them strongly and paves the way for gravitational instability
(e.g., Johansen et al. 2007, 2009). The particle sizes corresponding to τs = 1 depend on the
properties of the background gas disk, as well as on the particle’s shape and internal density;
under typical assumptions, marginally coupled particles are decimeter to meter-sized.

It remains debatable whether a substantial fraction of a disk’s solid mass is in marginally
coupled particles at the time of planetesimal formation, as current proposals relying on the
streaming instability assume. Particle size and shape distributions are not well constrained
by observations (though see, e.g., Wilner et al. 2005, who showed that centimeter-wavelength
fluxes from a few T Tauri stars are consistent with having been emitted by predominantly
centimeter-sized particles). Measuring τs in disks also requires knowing the gas density, but
direct measurements of the gas density at disk midplanes do not exist. Marginally coupled
particles—sometimes referred to as “meter-sized boulders”—also face the longstanding prob-
lem that they drift onto the central star too quickly, within hundreds of years from distances
of a few AU in a minimum-mass disk. Johansen et al. (2007) claimed to solve this problem
by agglomerating all the boulders into Ceres-mass planetesimals via the streaming instability
before they drifted inward. Their simulation presumed, however, that all of the disk’s solids
began boulder-sized. The concern we have is that even if particle-particle sticking could grow
boulders (and sticking is expected to stall at centimeter sizes; Blum & Wurm 2008; CY10),
the disk’s solids may not be transformed into boulders all at once. Rather, marginally cou-
pled bodies may initially comprise a minority population on the extreme tail of the particle
size distribution. Unless they can transform themselves from a minority to a majority within
the radial drift timescale, they would be lost from the nebula by aerodynamic drag.

By focussing on the dynamics of the smallest, most well entrained particles having τs � 1,
our work complements that which relies on the streaming instability. We would argue further
that the well coupled limit is potentially more relevant for planet formation. If even the
smallest particles having sizes � cm can undergo gravitational collapse to form kilometer-
sized or larger planetesimals, nature will have leapfrogged over the marginally coupled regime,
bypassing the complications and uncertainties described above.

Particle clumping is not restricted to marginally coupled particles via the streaming insta-
bility. Small τs particles also clump within the interstices of turbulent, high vorticity eddies
(Maxey 1987; Eaton & Fessler 1994; Cuzzi et al. 2008, and references therein; for a review, see
CY10). This particle concentration mechanism presumes some gas turbulence, which may be
present in the marginally KH-unstable state to which dust settles. Our simulations cannot
capture this phenomenon. However, on the scales of interest to us, turbulent clumping might
only be of minor significance. Particles of given tstop are concentrated preferentially by eddies
that turn over on the same timescale. Thus the degree of concentration depends sensitively
on particle size and the turbulent spectrum. At least in Kolmogorov turbulence, the small-
est eddies concentrate particles most strongly because they have the greatest vorticity. The
smallest eddies at the inner scale of Kolmogorov turbulence have sizes `i ∼ ν3/4t

1/4
o /δv

1/2
o ,

where ν is the molecular kinematic viscosity, and to and δvo are the turnover time and velocity
of the largest, outer scale eddy. Given δvo ∼ ηΩKr ∼ 25(r/AU)1/14 m/s, to ∼ Ω−1

K , and values
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of ν based on the nebular model of CY10, we estimate that `i ∼ 103(r/AU)127/56 cm. This is
far smaller than the sublayer thicknesses ∆z ∼ 0.02Ri1/2Hg ∼ 2 × 109(Ri/0.1)1/2(r/AU)9/7

cm considered in this chapter. Moreover, the lifetimes of the particle clumps on a given eddy
length scale should roughly equal the eddy turnover times, which for the smallest eddies are
of order ti ∼

√
νto/δvo ∼ 102(r/AU)55/28 s. We do not expect such rapid fluctuations in

particle density, occurring on such small length scales, to affect significantly the evolution of
the slower, larger scale KHI. Turbulent clumping may only serve as a source of noise on tiny
scales. The possibility that turbulent clumping could still be significant on larger scales is
still being investigated (Hogan & Cuzzi 2007; Cuzzi et al. 2008).

The perfect coupling approximation prevents us from studying how particles sediment
out of gas into dusty sublayers, but it does not stop us from identifying what kinds of
sublayers are dynamically stable to the KHI. A subdisk with a given density profile is either
dynamically stable or it is not, and we can run the B09 code for many dynamical times
(typically 60 or more) to decide the answer. In the next chapter we will combine the B09
code with a settling algorithm that will permit us to study how dust settles from arbitrary
initial conditions, freeing us from the assumption that the density profile derives from a
constant Richardson number.

2.1.4 Organization of this Chapter

Our numerical methods, including our rationale for choosing box sizes and resolutions,
are described in §2.2. Results are presented in §2.3 and discussed in §2.4.

2.2 Methods
The equations solved by the B09 code are rederived in §2.2.1. Initial conditions for our

simulations are given in §2.2.2. The code itself is briefly described in §2.2.3. Our choices for
box size and resolution are explained in §2.2.4.

2.2.1 Equations

The equations we solve are identical to equations (12a–e) of B09. We outline their
derivation here, filling in steps skipped by B09, adjusting the notation, and providing some
clarifications. This section may be skimmed on a first reading.

We begin with the equations for an ideal gas perfectly coupled to pressureless dust in an
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inertial frame:

dv

dt
= −∇Φ− ∇P

ρd + ρg
, (2.8)

dρg

dt
= −ρg∇ · v, (2.9)

d(ρd/ρg)

dt
= 0, (2.10)

ρgCV
dT

dt
= −P∇ · v, (2.11)

P = <ρgT, (2.12)

where d/dt is the convective derivative, ρg(d) is the density of gas (dust), P is the gas pressure,
and T is the gas temperature. Under the assumption that they are perfectly coupled, gas and
dust share the same velocity v, and the dust-to-gas ratio is conserved in a Lagrangian sense.
The background potential is provided by the central star of mass M : Φ = −GM/

√
r2 + z2,

where r is the cylindrical radius and z is the vertical distance above the disk midplane.
There are five equations for the five flow variables v, ρg, ρd, P , and T . The thermodynamic
constants include the specific heat CV = </(γ−1) at constant volume, the ideal gas constant
< = CP − CV, the specific heat CP at constant pressure, and γ = CP/CV. Equation (2.11)
is equivalent to the condition that the flow be isentropic [d(Pρ−γg )/dt = 0]. The code
which solves the fluid equations actually employs an artificial hyperviscosity to damp away
the smallest scale perturbations (§2.2.3); in writing down equations (2.8)–(2.12), we have
omitted the hyperviscosity terms for simplicity.

We move to a frame co-rotating with dust-free gas at some fiducial radius r = R. This
frame has angular frequency ΩF given by (2.1) with ΩK = (GM/R3)1/2. We define a velocity
vmax using the pressure support parameter η, as given by (2.2):

vmax ≡ η|r=R ΩKR. (2.13)

The velocity vmax is the difference in azimuthal velocity between a strictly Keplerian flow and
dust-free gas; it is the maximum possible difference in velocity, attained at large µ0, between
gas at the midplane and gas at altitude. The quantities vmax, η, and the background radial
pressure gradient are equivalent; specifying one specifies the other two. Our numerical models
are labeled by vmax.

In addition to moving into a rotating frame, we also replace the usual cylindrical coordi-
nates (r, φ, z) with local Cartesian coordinates x = r−R, y = (φ−ΩFt)R, and z.5 Keeping
terms to first order in |x| ∼ |z| ∼ ηR (see the discussion surrounding equation 2.6) and
dropping curvature terms, the momentum equation (2.8) reads

dv

dt
= −2ΩKẑ× v + 3Ω2

Kxx̂− Ω2
Kzẑ−

1

ρd + ρg

∇P − 2Ω2
KηRx̂ (2.14)

5Throughout this chapter we alternate freely between subscripts (x, y, z) and (r, φ, z).
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where d/dt = ∂/∂t + vi∂/∂xi (i = x, y, z). On the right-hand side, the first term is the
Coriolis acceleration, the second combines centrifugal and radial gravitational accelerations,
the third represents the vertical gravitational acceleration from the star, and the last term
arises from the centrifugal acceleration in a frame rotating at ΩF 6= ΩK. The remaining
fluid equations appear the same as (2.9)–(2.12), except that v is now measured in a (rigidly)
rotating frame.

We measure all flow variables relative to a time-independent reference state (subscripted
“ref”):

v = vref + ṽ = ṽ

P = Pref + P̃

ρg = ρg,ref + ρ̃g

T = Tref + T̃

ρd = ρd,ref + ρ̃d = ρ̃d .

The reference state is defined as follows. It is dust-free (ρd,ref = 0) and has constant gas
temperature Tref . The gas in the reference state does not shear, either in the radial or vertical
directions, but rotates with a fixed angular frequency ΩF in the inertial frame (hence vref = 0
in the rotating frame). In the reference state there exists a radial pressure gradient directed
outward

− 1

ρg,ref

∂Pref

∂r
= 2Ω2

KηR = 2ΩKvmax (2.15)

and a vertical pressure gradient balanced by vertical tidal gravity

− 1

ρg,ref

∂Pref

∂z
= Ω2

Kz . (2.16)

Equation (2.16) together with equation (2.12) and the assumption of constant Tref implies
that the reference gas density ρg,ref and pressure Pref have Gaussian vertical distributions in
z with scale height Hg =

√
<Tref/ΩK. For simplicity we neglect the radial density gradient

(∂ρg,ref/∂r = 0), as did B09. This reference state should not be confused with our equilibrium
states of interest (§2.2.2), which do shear and which do contain dust. The reference state
merely serves as a fiducial.

The flows of interest are subsonic. Mach numbers ε ≡ ṽ/cs peak at vmax/cs ∼ cs/(ΩKR) ∼
0.02 for gas sound speeds cs ∼ 1 km/s at R ∼ 1 AU. Such flow is nearly incompressible:
|ρ̃g|/ρg,ref ∼ |P̃ |/Pref ∼ |T̃ |/Tref ∼ ε2. Invoking the anelastic approximation, we keep only
terms leading in ε in any given equation. Equations (2.9), (2.10), and (2.12) reduce to:

dρg

dt
+ ρg∇ · v =

∂ρg

∂t
+∇ · (ρgv) ≈ ∇ · (ρg,refv) = 0 (2.17)

d(ρd/ρg)

dt
≈ d(ρ̃d/ρg,ref)

dt
≡ dµ

dt
= 0 (2.18)

P̃

ρg,ref

≡ h̃ =
ρ̃g

ρg,ref

<Tref + <T̃ (2.19)
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where we define µ ≡ ρ̃d/ρg,ref = ρd/ρg,ref and the pressure-like enthalpy h̃ ≡ P̃ /ρg,ref , and
henceforth for convenience drop all tildes on ρd, µ, and v (but not the other variables
related to gas). The rightmost equalities of (2.17), (2.18), and (2.19) match equations (12b),
(12c), and (12e) of B09. The anelastic approximation has been employed in the study of
atmospheric convection (Ogura & Phillips 1962; Gough 1969), stars (Gilman & Glatzmaier
1981), and vortices in protoplanetary disks (Barranco & Marcus 2000, 2005, 2006). By
eliminating the time derivative in the continuity equation (2.17), we effectively “sound-proof”
the fluid. The simulation timestep is not limited by the sound-crossing time but rather by
the longer advection time.

We rewrite our energy equation (2.11) as follows: replace −∇ · v with d ln ρg/dt =
−d lnT/dt+ d lnP/dt to find that

CP
dT̃

dt
=

1

ρg

dP

dt

≈ 1

ρg,ref

v · ∇Pref

≈ −v ·
(
2Ω2

KηRx̂ + Ω2
Kzẑ

)
(2.20)

where for the second line we dropped dP̃ /dt in comparison to v · ∇Pref , and for the third
line we replaced ρ−1

g,ref∇Pref using (2.15) and (2.16). Equation (2.20) matches (12d) of B09
except that for the right-hand side he has a coefficient equal to 1 + T̃ /Tref , which we have
set to unity.

Finally, to recover the form of the momentum equation (12a) of B09, first consider the
pressure acceleration and isolate the contribution from dust-free gas (−ρ−1

g ∇P ):

− 1

ρd + ρg

∇P = −
(

1

ρd + ρg

− 1

ρg

)
∇P − 1

ρg

∇P

≈ µ

µ+ 1

(
1

ρg

∇P
)
− 1

ρg

∇P . (2.21)

Now expand

1

ρg
∇P ≈ 1

ρg,ref

∇Pref +
1

ρg,ref

∇P̃ − ρ̃g

ρ2
g,ref

∇Pref

≈ 1

ρg,ref

∇Pref +∇h̃+
T̃

Tref

(
∇Pref

ρg,ref

)
≈ −

(
1 +

T̃

Tref

)
(2Ω2

KηRx̂ + Ω2
Kzẑ) +∇h̃ (2.22)

where for the last line we used (2.15) and (2.16). Insertion of (2.21) and (2.22) into (2.14)
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yields the anelastic momentum equation (12a) of B09:

dv

dt
= −2ΩKẑ× v + 3Ω2

Kxx̂ +
T̃

Tref

(2Ω2
KηRx̂ + Ω2

Kzẑ)−∇h̃

− µ

µ+ 1

[(
1 +

T̃

Tref

)
(2Ω2

KηRx̂ + Ω2
Kzẑ)−∇h̃

]
. (2.23)

which isolates the driving term due to dust.

2.2.2 Initial Conditions

Equilibrium initial conditions (superscripted “†”) are specified by five functions: µ = µ†,
T̃ = T̃ †, h̃ = h̃†, ρ̃g = ρ̃g

†, and v = v†. For µ†, we use flows characterized by a globally
constant Richardson number (Sekiya 1998; Youdin & Shu 2002; Chiang 2008). The conditions
Ri = constant, ∂ρg/∂z � ∂ρd/∂z, and g = −Ω2

Kz (no self-gravity) yield

µ†(z) =

[
1

1/(1 + µ0)2 + (z/zd)2

]1/2

− 1, (2.24)

where µ0 is the initial midplane dust-to-gas ratio and

zd ≡
Ri1/2 vmax

ΩK

(2.25)

is a characteristic dust height. The dust density peaks at the midplane and decreases to zero
at

z = ±zmax = ±
√
µ0(2 + µ0)

1 + µ0

zd (2.26)

which is consistent with our order-of-magnitude expression (2.6). Neither equation (2.24)
nor the code accounts for self-gravity and therefore we are restricted to modeling flows whose
densities are less than that required for the Toomre parameter of the subdisk to equal unity
(CY10; see also §2.4). For the minimum-mass disk of CY10, this restriction is equivalent to
µ ∼< 30. Input model parameters include µ0, Ri, and vmax.

For the gas, we assume
T̃ † = 0 (2.27)

(initially isothermal) and solve vertical hydrostatic equilibrium for h̃† (the z-component of
equation 2.23):

∂h̃†

∂z
= −µ†Ω2

Kz . (2.28)

The functional form for h̃†(z) is not especially revealing and so we do not write it out here.
For simplicity we assume that h̃† does not depend on x. From h̃† and T̃ † = 0 it follows from
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(2.19) that

ρ̃g
† =

ρg,ref h̃
†

<Tref

. (2.29)

The fractional deviations ρ̃g
†/ρg,ref and P̃ †/Pref from the reference state are very small, of

order µ†(vmax/cs)
2Ri.

It remains to specify v†. Using the conditions on h̃† stated above, we solve for the
equilibrium (steady-state) solution to equation (2.23):

v†x = v†z = 0

v†y = −3

2
ΩKx+

[
µ†(z)

µ†(z) + 1

]
vmax . (2.30)

In our reference frame rotating with the velocity of dust-free gas at R, the first term on the
right side of (2.30) accounts for the standard Kepler shear, while the second term describes
how dust, which adds to inertia but not pressure, speeds up the gas.

To µ† we add random perturbations

∆µ(x, y, z) = A(x, y)µ†(z)[cos(πz/2zd) + sin(πz/2zd)] . (2.31)

The amplitude A(x, y) is constructed in Fourier space so that each Fourier mode has a
random phase and an amplitude inversely proportional to the horizontal wavenumber: Â ∝
k−1
⊥ = (k2

x + k2
y)
−1/2. Because our box sizes are scaled to zmax, our Fourier noise amplitudes

are largest on scales comparable to the dust layer thickness. Thus those modes which are
most likely to overturn the layer are given the greatest initial power. The perturbations are
also chosen to be antisymmetric about the x-axis so that no extra energy is injected into the
system. We take the root-mean-squared amplitude Arms ≡ 〈A2〉1/2 of the perturbations to
be 10−4 or 10−3.

In summary, three input parameters µ0, Ri, and vmax determine our isothermal equilib-
rium initial conditions (equations 2.24, 2.28, and 2.30).6 The equilibrium solution for µ(z)
is then perturbed (equation 2.31) by a root-mean-squared fractional amount Arms. The pa-
rameters of primary interest are µ0 and Ri. For the remaining parameters vmax and Arms we
consider three possible combinations: (vmax, Arms) = (0.025cs, 10−4) for our standard runs;
(0.025cs, 10−3) to probe larger initial perturbations; and (0.05cs, 10−4) to assess the effect of
a stronger radial pressure gradient.

Note that specifying µ0 and Ri (and vmax, though this last variable is fixed for all of
our standard runs) specifies the entire dust and gas vertical profiles, ρd(z) and ρg(z), and by
extension the bulk height-integrated metallicity, Σd/Σg ≡

∫
ρddz/

∫
ρgdz. We do not give an

explicit expression for Σd/Σg because it is cumbersome and not particularly revealing. The
bulk metallicity is in some sense the most natural independent variable because its value is

6While our initial conditions are isothermal, the temperature of the flow can change because of adia-
batic compression/expansion and because our artificial hyperviscosity dissipates the highest wavenumber
disturbances. These temperature changes are fractionally tiny because the flow is highly subsonic.
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given by the background disk (for ways in which the bulk metallicity may change, e.g., by
radial particle drifts, see CY10). We will plot our results in the space of µ0, Ri, and Σd/Σg,
keeping in mind that only two of these three variables are independent.

2.2.3 Code

We use the spectral, anelastic, shearing box code developed by Barranco & Marcus
(2006) and modified by B09 to simulate well-coupled gas and dust. The code employs
shearing periodic boundary conditions in r, periodic boundary conditions in φ, and closed
lid boundaries in z; the vertical velocity vz is required to vanish at the top and bottom of
the box (z = ±Lz/2).

Spectral methods approximate the solution to the fluid equations as a linear combination
of basis functions. The basis functions describe how the flow varies in space, and the coeffi-
cients of the functions are determined at every timestep. For each of the periodic dimensions,
a standard Fourier basis is used, while for the vertical direction, Chebyshev polynomials are
employed. Whereas in r and φ grid points are evenly spaced, the use of Chebyshev polynomi-
als in z has the effect that vertical grid points are unevenly spaced; points are concentrated
towards the top and bottom boundaries of the box, away from the midplane where the dust
layer resides. Thus to resolve the dust layer vertically, we need to increase the number of
vertical grid points Nz by an amount disproportionately large compared to the numbers of
radial and azimuthal grid points Nr and Nφ. See §2.2.4 for further discussion.

Spectral codes have no inherent grid dissipation; energy is allowed to cascade down to the
smallest resolved length scales through nonlinear interactions. To avoid an energy “pile-up”
at the highest wavenumbers, we dissipate energy using an artificial hyperviscosity, given in
§3.3.3 of Barranco & Marcus (2006).

Simulations satisfy the Courant-Friedrichs-Lewy (CFL) condition which states that the
CFL number, defined as the code timestep divided by the shortest advection time across
a grid cell, be small. In the shearing coordinates in which the code works, that advection
time is the cell dimension divided by the local velocity over and above the Keplerian shear,
i.e., orbital velocities are subtracted off before evaluating the CFL number. All simulations
reported in this chapter are characterized by CFL numbers less than about 0.1.

2.2.4 Box Size and Numerical Resolution

Our standard box dimensions are (Lr, Lφ, Lz) = (6.4, 12.8, 8)zmax and the corresponding
numbers of grid points are (Nr, Nφ, Nz) = (32, 64, 128). By scaling our box lengths Li to zmax

and fixing the numbers of grid points Ni, we ensure that each standard simulation enjoys
the same resolution (measured in grid points per physical length) regardless of Ri, µ0, and
vmax. The vertical extent of the dust layer between z = ±zmax is resolved by 22 grid points
(this is less than [128/(8zmax)]× 2zmax = 32 because the Chebyshev-based vertical grid only
sparsely samples the midplane). The radial and azimuthal directions are resolved by 10 grid
points per 2zmax length. We choose our resolution in the vertical direction to be greater
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than that of the horizontal directions because the dust layer has finer scale structure in z:
the dust layer becomes increasingly cuspy at the midplane as µ0 increases. We prescribe the
same resolution in the radial and azimuthal directions (Lφ/Nφ = Lr/Nr); experiments with
different resolutions in r and φ generated spurious results.

Too small a box size can artificially affect the stability of the dust layer, because a given
box can only support modes having integer numbers of wavelengths inside it. Small boxes
may be missing modes that in reality overturn the layer. We verify that for all runs in which
the dust layer overturns, the KH mode that most visibly disrupts the layer spans more than
one azimuthal wavelength. Typically 3–5 wavelengths are discerned across the box.

To more thoroughly test our standard choices for Li, we study how systematic variations
in box length affect how the instability develops. For this test, we adopt a fixed set of
physical input parameters, (Ri, µ0, vmax) = (0.1, 10, 0.025cs), which should lead to instability
(Chiang 2008). Our diagnostic is the time evolution of the vertical kinetic energy at the
midplane: 〈µ(t)v2

z(t)〉/2, where the average is over all r and φ at fixed z = 0 and time t. We
vary Li and Ni in tandem to maintain the same resolution from run to run, thereby isolating
the effect of box size. Figure 2.1 shows how doubling one of the box dimensions while fixing
the other two alters the time history of 〈µv2

z〉/2. Panel (a) demonstrates that our standard
choice for Lz = 8zmax is sufficiently large because the curves for Lz = 8zmax and Lz = 16zmax

practically overlap. Panels (b) and (c) show that our standard choices for Lφ = 12.8zmax and
Lr = 16zmax are somewhat less adequate. The peak of the curve for (Lφ, Nφ) = (12.8zmax, 64)
is delayed by two orbits compared to that for (Lφ, Nφ) = (25.6zmax, 128), and the curve
for (Lr, Nr) = (6.4zmax, 32) peaks an orbit earlier than that for (Lr, Nr) = (12.8zmax, 64).
Nevertheless these time differences are small compared to the total time to instability, about
10 orbits. Moreover, the errors point in opposite directions. Thus we expect our choices for
Lφ and Lr to partially compensate for each other so that any error due to our box size in
calculating the time to instability will be less than ∼1 orbit.

We test how robust our results are to numerical resolution by re-running a few simulations
at twice the normal resolution (doubling Ni while fixing Li). Results at high resolution are
given in §2.3.3. Every simulation is run for at least ten orbits. A typical run performed at
our standard resolution takes approximately 2.5 wall-clock hours using 56 processors on the
Purdue Steele cluster. A high-resolution run takes about 32 wall-clock hours.

2.3 Results
In our standard simulations, we fix vmax and Arms while systematically varying Ri and µ0

from run to run. Our systematic variations of Ri and µ0 correspond to systematic variations
in Σd/Σg; recall that only two of the three parameters Ri, µ0, and Σd/Σg are independent.
For each µ0 ∈ {0.3, 1, 3, 10} we adjust Ri until the threshold value Ricrit dividing stable from
unstable runs is determined to within 0.1 dex.

Deciding by numerical simulation whether a given dust layer is stable or not is unavoid-
ably subject to the finite duration of the simulation. We define our criteria for deciding
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Figure 2.1 : Testing box sizes at fixed numerical resolution. For our standard box, (Lr, Lφ, Lz) =

(6.4, 12.8, 8)zmax and (Nr, Nφ, Nz) = (32, 64, 128). In each panel we vary one box dimension while
keeping the other two dimensions fixed at their standard values. In the top panel we vary Lz
at fixed resolution Nz/Lz. In the middle and bottom panels, Lφ and Lr are varied in turn. All
simulations in this figure have µ0 = 10, Ri = 0.1, vmax = 0.025cs, Arms = 10−4, and use code units
ρg,ref(z = 0) = ΩK = Hg = 1. Doubling the box dimensions from our standard values changes when
the average vertical kinetic energy peaks by only a few orbits at most. The average 〈〉 is performed
over all r and φ at fixed z = 0.
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stability in §2.3.1. Results are given in §2.3.2 and tested for robustness in §2.3.3.

2.3.1 Criteria for Stability

Stability is assessed by two quantities: the midplane vertical kinetic energy

〈µv2
z〉/2 as a function of t

where the average is performed over r and φ at fixed z = 0 and t, and the dust density profile

〈µ〉 as a function of z and t

where the average is performed over r and φ at fixed z and t. By definition, in an “unstable”
run, 〈µv2

z〉/2 grows exponentially over several orbital periods, and 〈µ〉 deviates from its initial
value 〈µ†〉 by more than 15%. “Stable” simulations satisfy neither criterion. Some runs are
“marginally unstable” in that they satisfy the first but not the second criterion. At the end
of the standard ten-orbit duration of a marginally unstable run, we find the kinetic energy
continues to rise, suggesting that were the run to be extended for longer than ten orbits,
the dust layer would eventually overturn. In every instance where we extend the duration
of a marginally unstable run, we verify that this is the case. Thus “marginally unstable” is
practically synonymous with “unstable.”

Examples of unstable and stable runs are shown in Figure 2.2. In the unstable simulation,
after t ≈ 6 orbits, the kinetic energy rises exponentially. At t ≈ 9 orbits, the dust layer
overturns and the midplane dust-to-gas ratio falls by more than 60%. By contrast, in the
stable simulation, after an initial adjustment period lasting ∼3 orbits during which the
midplane value of 〈µ〉 decreases by 10%, the kinetic energy drops by orders of magnitude to
a nearly constant value and shows no evidence of further growth.

Figure 2.3 shows the evolution of |vi(z)| (i = r, φ, z) and 〈µ(z)〉 for the same unstable
run of Figure 2.2. The velocity data are sampled at a single (x, y) position at the center
of our simulation box. The radial and vertical velocities |vr| and |vz|, initially zero, grow
to become comparable with the shearing velocity |vφ|. Figure 2.4 displays corresponding
snapshots of µ(y, z), taken at a single radius x near the center of our box. Though the
data in Figures 2.3 and 2.4 are sampled at particular radial locations in our box, we verify
that the instability develops similarly at all locations—as it should—unlike the ZEUS-based
simulations of Chiang (2008).

2.3.2 Stability as a Function of Ri, µ0, and Σd/Σg

Figure 2.5 maps the stable and unstable regions in (Ri, µ0) space, for fixed vmax = 0.025cs

and Arms = 10−4. Figures 2.6 and 2.7 portray the same data using alternate but equivalent
projections of parameter space: (Ri,Σd/Σg) and (µ0,Σd/Σg), respectively.

These plots demonstrate that there is no unique value of Ricrit. Rather Ricrit is a function
of µ0, or equivalently a function of Σd/Σg. For bulk metallicities Σd/Σg near the solar value,
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Ricrit is found to be close to the classical value of 1/4. But as Σd/Σg decreases below the
solar value, Ricrit shrinks to ∼0.01 or even lower. A least-squares fit to the four midpoints
(evaluated in log space) in Figure 2.5 dividing neighboring stable points (in black) and
unstable points (in red or red outlined with black) yields Ricrit ∝ µ1.0

0 . This same fit,
projected into metallicity space, is shown in Figures 2.6 and 2.7; in metallicity space the
stability boundary is not a power law.

As Figure 2.7 attests, dust-to-gas ratios µ0 as high as ∼8 can be attained in disks of
solar metallicity without triggering a shear instability: see the intersection between the
dashed curve fitted to our standard resolution data, and the dotted line representing solar
metallicity. This intersection occurs at µ0 ≈ 7. Were we to re-fit the dashed curve using the
higher resolution data represented by triangles, the intersection with solar metallicity would
occur at µ0 closer to 8.

A dust-to-gas ratio of µ0 ≈ 8 is within a factor of ∼4 of the Toomre threshold for
gravitational fragmentation in a minimum-mass disk (CY10; §2.4). We can achieve the
Toomre threshold by simply allowing for a gas disk that is ∼4× more massive than the
minimum-mass nebula. Alternatively we can enrich the disk in metals to increase Σd/Σg.
Extrapolating the boundary of stability (dashed curve) in Figure 2.7 to higher Σd/Σg suggests
that the Toomre threshold µ0 ≈ 30 could be achieved for minimum-mass disks having ∼3×
the solar metallicity. The sensitivity to metallicity is also exemplified by Figure 2.2. For the
same µ0 = 10, the dust layer based on a near-solar metallicity of Σd/Σg = 0.013 overturns,
whereas one derived from a supersolar metallicity of Σd/Σg = 0.030 remains stable.

2.3.3 Tests at Higher Resolution, Higher Arms, and Higher vmax

We test how robust our determination of Ricrit is to numerical resolution by redoing our
simulations for µ0 = 0.3 and 10 with double the number of grid points in each dimension. The
results are overlaid as blue triangles in Figures 2.5, 2.6, and 2.7. At µ0 = 0.3, increasing the
resolution does not change Ricrit from its value of 0.009. At µ0 = 10, Ricrit shifts downward
from 0.3 to 0.2. Although we have not strictly demonstrated convergence of our results with
resolution, and although high resolution data at other values of µ0 are missing, it seems safe
to conclude that the slope of the stability boundary in Ri-µ0 space is close to, but decidedly
shallower than, linear.

We also test the sensitivity of our results to Arms. Increasing Arms by an order of mag-
nitude to 10−3 shifts Ricrit upward by ∼< 0.2 dex at µ0 < 1, but leaves Ricrit unchanged at
larger µ0 (Figure 2.8). B09 also reported some sensitivity to Arms.

Tests where vmax was doubled to 0.05cs reveal no change in Ricrit (data not shown).

2.4 Summary and Discussion
Where a protoplanetary disk is devoid of turbulence intrinsic to gas, dust particles settle

toward the midplane, accumulating in a sublayer so thin and so dense that the dust-gas
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Figure 2.2 : Sample unstable (top) and stable (bottom) dust layers. In the unstable case, the layer
overturns and mixes dust-rich gas with dust-poor gas, causing the dust-to-gas ratio at the midplane
to drop by a factor of ∼3 after 10 orbits (top left). As the instability unfolds, the vertical kinetic
energy amplifies exponentially from t ≈ 5–10 orbits (top right). At fixed µ0, the layer is stabilized
by increasing the Richardson number or equivalently the height-integrated metallicity Σd/Σg. In
the stable run, the dust profile changes by less than 15% (bottom left) while the kinetic energy,
after dropping precipitously, shows no indication of growing (bottom right). The two runs shown
use vmax = 0.025cs and Arms = 10−4.
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Figure 2.3 : Snapshots of absolute values of the three velocity components (top panels) and hori-
zontally averaged dust-to-gas ratio (bottom panels), both as functions of height, at three instants in
time. For this unstable run, (Ri, µ0, vmax, Arms) = (0.1, 10, 0.025cs, 10−4). Velocities are taken from
a grid point near the middle of the box. The vertical shear ∂vφ/∂z inside the dust layer weakens
with time as dust is more uniformly mixed with gas, and as the radial and vertical velocities grow
at the expense of the azimuthal velocity.
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Figure 2.4 : Snapshots of µ(y, z), sampled at r = R (x = 0; the central slice of the simulation
box) for the same unstable run shown in Figure 2.3. The box size parameters are (Lr, Lφ, Lz) =

(0.05, 0.1, 0.063)Hg, larger than what is shown in the figure, which zooms in for more detail.
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Figure 2.5 : Mapping the boundary of stability in the space of initial Ri and µ0. Red points
correspond to unstable dust layers, whose dust-to-gas ratios 〈µ〉 change by more than 15%, and
whose vertical kinetic energies grow exponentially, within the 10-orbit duration of the simulation.
Black points mark stable dust layers satisfying neither criterion. Red points outlined in black signify
marginally unstable layers, whose kinetic energies rise but whose dust-to-gas ratios change by less
than 15%; these are essentially equivalent to red points without outlines, because every marginally
unstable run that we extend beyond 10 orbits eventually becomes fully unstable. Runs performed
at twice the standard resolution appear as triangles. Downward pointing triangles symbolize stable
runs, upward triangles are unstable, and upward pointing triangles in black outline are marginally
unstable. All simulations use Arms = 10−4 and vmax = 0.025cs. There is no unique value for the
critical Richardson number separating stable from unstable dust layers. Rather, a least-squares fit
to the data from our standard resolution runs yields Ricrit ∝ µ1.0, shown as a dashed line. The
classical boundary Ricrit = 0.25 is plotted as a dotted line.
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Figure 2.6 : Mapping the boundary of stability in the space of initial Ri and bulk (height-integrated)
dust-to-gas ratio Σd/Σg. The data are identical to those in Figure 2.5. The labeling convention
is also the same, except that the triangles representing high-resolution runs have adjusted their
orientation so that they point towards the stability boundary. The same least-squares fit from
Figure 2.5 is projected here as a dashed curve. Solar metallicity Σd/Σg = 0.015 (Lodders 2003) is
indicated by a dotted line. The critical value Ricrit dividing stable from unstable dusty subdisks
trends with metallicity. This trend was only hinted at in the data of C08.
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Figure 2.7 : Mapping the boundary of stability in the space of midplane dust-to-gas ratio µ0 and
bulk (height-integrated) dust-to-gas ratio Σd/Σg. The data are identical to those in Figure 2.5.
The labeling convention is also the same, except that the triangles representing high-resolution runs
have adjusted their orientation so that they point towards the stability boundary. The same least-
squares fit from Figure 2.5 is projected here as a dashed curve. Solar metallicity Σd/Σg = 0.015

(Lodders 2003) is indicated by a dotted line. A minimum-mass solar nebula requires µ0 ≈ 30 for
gravitational instability to ensue on a dynamical time (CY10). Extrapolating the boundary of sta-
bility to µ0 ≈ 30 suggests that metallicities roughly ∼3 times solar would be required for dynamical
gravitational instability in a minimum-mass disk. The required degree of metal enrichment would
be proportionately less in more massive disks.
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Figure 2.8 : How the stability boundary changes with stronger initial perturbations. This figure
is the same as Figure 2.5, except that all data correspond to Arms = 10−3. For comparison with
Arms = 10−4, the same best-fit line of Figure 2.5 is reproduced here. Not much changes, except
that Ricrit shifts upward by 0.2 dex at µ0 = 0.3.
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mixture becomes unstable. If the first instability to manifest is self-gravitational, dust par-
ticles are drawn further together, possibly spawning planetesimals. If instead the layer is
first rendered unstable by a Kelvin-Helmholtz-type shearing instability (KHI), the resultant
turbulence prevents dust from settling further, pre-empting gravitational collapse. In this
chapter we investigated the conditions which trigger the KHI, hoping to find a region of
parameter space where the KHI might be held at bay so that planetesimals can form by
self-gravity.

A fundamental assumption underlying our work is that turbulence intrinsic to gas can, in
some regions of the disk, be neglected. There is some consensus that near disk midplanes, in
a zone extending from ∼1 to at least ∼10 AUs from the parent star, gas may be too poorly
ionized to sustain magnetohydrodynamic turbulence (Ilgner & Nelson 2006; Bai & Goodman
2009; Turner et al. 2010a). Presumably if the magnetorotational instability (e.g., Balbus
2009) cannot operate at the midplane, disk gas there is laminar—pending the uncertain
ability of magnetically active surface layers to stir the disk interior (e.g., Turner et al. 2010a),
or the discovery of a purely hydrodynamic form of turbulence (Lithwick 2009). To get a sense
of how laminar disk gas must be to permit dust sublayers to form, Chiang & Youdin (2010)
compared the height to which dust particles are stirred in an “alpha”-turbulent disk to the
thickness of the sublayer (2.6). They estimated that the former is smaller than the latter
when the dimensionless turbulent diffusivity α ∼< 3 × 10−4ΩKtstop(r/AU)4/7 for tstop < Ω−1

K .
To place this requirement in context, α values for magnetically active zones are typically
quoted to be greater than ∼10−3. Whether magnetically dead zones are sufficiently passive
for dust to settle into sublayers remains an outstanding question.

Modulo this concern, we studied the stability of dust layers characterized by spatially
constant Richardson numbers Ri using a three-dimensional, spectral, anelastic, shearing box
code (Barranco & Marcus 2006) that models gas and dust as two perfectly coupled fluids
(Barranco 2009). We found that stability is not characterized by a single critical Richardson
number. Rather the value of Ricrit distinguishing layers that overturn from those that do
not is a nearly linear function of the midplane dust-to-gas ratio µ0 (Figure 2.5). Dust-rich
sublayers having µ0 ≈ 10 have Ricrit ≈ 0.2—near the canonical value of 1/4—while dust-poor
sublayers having µ0 ≈ 0.3 (still orders of magnitude dustier than well-mixed gas and dust at
solar abundances) have Ricrit as low as 0.009.

Previous studies (e.g., Sekiya 1998; Youdin & Shu 2002; Youdin & Chiang 2004) assumed
a universal critical Richardson number of 1/4. This popular assumption seems correct only
for dust-rich layers having µ0 so large they are on the verge of gravitational instability.
For less dusty midplanes, the assumption appears to be incorrect. Our numerical results are
roughly consistent with those of Chiang (2008), who also found evidence that Ricrit decreases
with decreasing µ0. Comparing his Table 2 with our Figure 2.5 shows that his constraints on
Ricrit are, for the most part, compatible with those presented here, for the range µ0 ≈ 0.3–10
where our respective data overlap. Our findings supersede those of Chiang (2008) insofar
as we have explored parameter space more finely and systematically, at greater and more
uniform resolution, with numerical methods better suited for subsonic flows.

Our results turn out to be consistent with the classical Richardson criterion—which states
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only that Ri < 1/4 is necessary, not sufficient, for instability—even though the criterion as
derived by Miles (1961) applies only to two-dimensional flows, which our dust layers are
not. Our simulations demonstrate that the criterion can still serve as a useful guide for
assessing stability in disks having bulk metallicities ranging from subsolar to slightly super-
solar values—with the proviso that the actual Richardson number dividing KH-stable from
KH-unstable flows, while < 1/4, is generally not equal to 1/4.

Why isn’t the Richardson criterion for instability sufficient in rotating dust disks? The
criterion considers the competition between the destabilizing vertical shear and the stabi-
lizing influence of buoyancy, which causes fluid parcels to oscillate about their equilibrium
positions at the Brunt-Väisälä frequency. However, there exists another stabilizing influ-
ence, ignored by the Richardson number, provided by the radial Kepler shear (Ishitsu &
Sekiya 2003). In the limit µ0 � 1, the Brunt frequency (2.4) becomes negligible relative to
the Kepler shearing frequency (2.7), suggesting stability now depends on the competition
between the destabilizing vertical shear and stabilizing radial Kepler shear. We expect the
flow to be stable as long as the Kepler shear can wind up unstable eigenmodes to higher
radial wavenumbers before their amplitudes grow large enough to trigger nonlinear effects.
This suggests that we replace the Richardson number with a “shearing number,” defined by
analogy as the square of the ratio of the Kepler shearing frequency to the vertical shearing
frequency:

Sh ≡ |∂Ω/∂ ln r|2

(∂vφ/∂z)2
∝
(

∆z

∆vφ

)2

∝ Ri
1 + µ0

µ0

(2.32)

where we have used (2.3) and (2.6). By assuming Sh is constant for marginally stable dust
profiles, we arrive at the relation

Ricrit ∝ µ0 for µ0 � 1 . (2.33)

What is surprising is that this trend, although expected to hold only for µ0 � 1, appears to
hold approximately for all µ0, according to our simulation results in Figure 2.5. For µ0 ∼> 1,
we would have expected from (2.32) that Ricrit asymptote to a constant; but it does not.
Our higher resolution runs do suggest the stability curve slightly flattens at µ0 ≈ 10, but
such deviations seem too small to be fully explained using arguments relying purely on the
shearing number.

To explain the observed trend, we might co-opt the methods of Ishitsu & Sekiya (2003),
who linearized and numerically integrated the 3D equations of motion for the dust layer. For
their particular choice of background vertical density profile, they solved for the maximum
growth factors for the most unstable KH modes (see also Knobloch & Spruit 1985 who
considered the axisymmetric problem). We would need to replace their assumed profile with
our profiles having spatially constant Ri. Perhaps our numerically determined stability curve
Ricrit(Σd/Σg) corresponds to a locus of fixed maximum growth factor.

Gravitational instability occurs on a dynamical time when the dust layer’s Toomre Q ≈
M/[2πr3ρg(1 + µ0)] reaches unity (Toomre 1964; Goldreich & Lynden-Bell 1965). For ρg

given by the minimum-mass solar nebula, this occurs when µ0 ≈ 30, fairly independently of r



2.4. SUMMARY AND DISCUSSION 33

(Chiang & Youdin 2010). Of course in more massive gas disks (greater ρg), the requirement
on µ0 is proportionately lower. Figure 2.7 shows that for disks having bulk metallicities
Σd/Σg equal to the solar value of 0.015, the dusty sublayer can achieve µ0 ≈ 8 before it
becomes KH unstable. Taken at face value, such a marginally KH-stable subdisk, embedded
in a gas disk having 30/8 ≈ 4 times the mass of the minimum-mass solar nebula, would
undergo gravitational instability on the fastest timescale imaginable, the dynamical time.
The case that planets form from disks several times more massive than the minimum-mass
solar nebula is plausible (e.g., Goldreich et al. 2004b; Lissauer et al. 2009).

An alternate way of crossing the Toomre threshold is to allow the bulk metallicity Σd/Σg

to increase above the solar value of 0.015. Extrapolating the boundary of stability in Figure
2.7 to µ0 ≈ 30 suggests that metallicities roughly ∼3 times solar would be required for
dynamical gravitational instability in a minimum-mass disk. There are several proposed
ways to achieve supersolar metallicities in some portions of the disk, among them radial
pileups (Youdin & Shu 2002) or dissipative gravitational instability (Ward 1976; Coradini
et al. 1981; Ward 2000; Youdin 2005a; Youdin 2005b; see also the introduction of Goodman
& Pindor 2000).

None of the ways we have outlined for achieving gravitational instability rely on the
streaming instability or turbulent concentration of particles, mechanisms that we have criti-
cized in §2.1.3. Nevertheless our scenarios may be too optimistic because all our dust profiles
are predicated on the assumption of a spatially constant Ri. This assumption tends to gen-
erate strong density cusps at the midplane that might not be present in reality. In the next
chapter we will relax the assumption of spatially constant Ri and measure the maximum µ0

attainable, as a function of metalllicity Σd/Σg, by simulating explicitly the settling of dust
towards the midplane.
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Chapter 3

Forming Planetesimals by Gravitational
Instability: II. How Dust Settles to its
Marginally Stable State

1 Dust at the midplane of a circumstellar disk can become gravitationally unstable and
fragment into planetesimals if the local dust-to-gas ratio µ0 ≡ ρd/ρg is sufficiently high. We
simulate how dust settles in passive disks and ask how high µ0 can become. We implement
a hybrid scheme that alternates between a 1D code to settle dust and a 3D shearing box
code to test for dynamical stability. This scheme allows us to explore the behavior of small
particles having arbitrarily short stopping times in gas: tstop � Ω−1

K , where ΩK is the Kepler
orbital frequency. Dust settles until instabilities at the top and bottom faces of the dust
layer threaten to overturn the entire layer. In this state of marginal stability, µ0 = 2.9 for
a disk whose bulk (height-integrated) metallicity Σd/Σg is solar—thus µ0 increases by more
than two orders of magnitude from its well-mixed initial value of µ0,init = Σd/Σg = 0.015.
For a disk whose bulk metallicity is 4× solar (µ0,init = Σd/Σg = 0.06), the marginally stable
state has µ0 = 26.4. These maximum values of µ0, which depend on the background radial
pressure gradient, are so large that gravitational instability of small particles is viable in disks
whose bulk metallicities are just a few (∼< 4) times solar, without recourse to the streaming
instability which relies on large particles having tstop ∼> 0.1Ω−1

K . Our result supports earlier
studies that assumed that dust settles until the Richardson number Ri is spatially constant.
Our simulations are free of this assumption but provide evidence for it within the boundaries
of the dust layer, with the proviso that Ri increases with Σd/Σg in the same way that we
found in the previous chapter. Because increasing the dust content decreases the vertical
shear and increases stability, the midplane µ0 increases with Σd/Σg in a faster than linear
way, so fast that modest enhancements in Σd/Σg can spawn planetesimals directly from
small particles.

1Large portions of this chapter have been previously published as Lee, A. T., Chiang, E., Asay-Davis, X.,
Barranco, J. 2010. Forming Planetesimals by Gravitational Instability. II. How Dust Settles to its Marginally
Stable State. ApJ, 725, 1938.



3.1. INTRODUCTION 35

3.1 Introduction
Dust can settle quickly in gaseous protoplanetary disks. In a passive (non-turbulent)

nebula, a particle’s vertical height z above the midplane obeys

z̈ = −ż/tstop − Ω2
Kz (3.1)

where the first term on the right-hand side accounts for gas drag, and the second term
accounts for stellar gravity when z � r, the cylindrical radius. Here ΩK is the Keplerian
orbital frequency and

tstop ≡
mvrel

FD

(3.2)

is the momentum stopping time of a particle of mass m moving at speed vrel relative to gas.
Expressions for the drag force FD can be found in Adachi et al. (1976) and Weidenschilling
(1977). We are interested in small, well-coupled particles having stopping times much smaller
than the dynamical time: τs ≡ ΩKtstop � 1. Spherical particles of radius s and internal
density ρs that experience Epstein drag (FD ∝ vrel so that tstop is a constant) settle to the
midplane at terminal velocity −Ω2

Kztstop in a time

tsettle ∼
1

ΩKτs

∼ 103

(
0.1 cm

s

)(
1 g cm−3

ρs

)(
F

1

)
yr . (3.3)

For this and all other numerical evaluations in this chapter, we use a background disk that is
F times more massive than the minimum-mass nebula of Chiang & Youdin (2010, hereafter
CY10; see Appendix A). For such a disk tsettle is nearly independent of stellocentric distance.
The assumption that particles are spherical may not be too bad, given that fractal aggregates
of grains are expected to compactify as they collide with one another (Dominik & Tielens
1997; Dullemond & Dominik 2005; Ormel et al. 2007).

For millimeter-sized particles, the settling time tsettle is much shorter than the disk life-
time, measured in Myr (Hillenbrand 2005; Hernández et al. 2008). By comparison, micron-
sized and smaller particles stay suspended at least one scale height above the midplane as
long as the gas disk is present. To the extent that collections of particles of different sizes
tend to place their mass at the upper end of the size distribution and their surface area
at the lower end, we can expect most of the solid mass in disks to sediment out into a
thin sublayer, leaving behind the smallest of grains to absorb incident starlight in a flared
disk atmosphere. On the whole this picture is consistent with observed disk spectral energy
distributions of T Tauri stars, although some models hint that large grains might remain
lofted up in a disk two gas scale heights thick (D’Alessio et al. 2006). Settling can only
proceed when and where disk turbulence dies, in regions where gas is insufficiently dense to
sustain gravitoturbulence (Gammie 2001) and too poorly ionized to be magnetorotationally
unstable (Gammie 1996). Our current understanding of disk turbulence easily admits such
passive regions. Turner et al. (2010b) found in numerical simulations that even when their
disk surface layers were magnetorotationally unstable, grains at the midplane settled much
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as they would in a laminar flow. Recently Perez-Becker & Chiang (2010) estimated that
practically the entire disk would be immune to the magnetorotational instability, in part
because polycyclic aromatic hydrocarbons quench the ion density.

In passive disk regions, how far down do dust particles settle? When particles are small
enough not to be affected by aerodynamic streaming instabilities (e.g., Bai & Stone 2010a),
we expect them to settle until the dust density gradient ∂ρd/∂z becomes so large, and the
consequent vertical shear in orbital velocity ∂vφ/∂z so strong, that the sublayer is on the
verge of overturning by a Kelvin-Helmholtz-type instability (KHI; Weidenschilling 1980).
An order-of-magnitude estimate of the minimum layer thickness can be derived using the
Richardson number

Ri ≡ −(g/ρ)(dρ/dz)

(dvφ/dz)2
, (3.4)

which if less than some critical value Ricrit may signal that the layer is KH unstable (e.g.,
Drazin & Reid 2004). Here g is the vertical gravitational acceleration and ρ = ρd + ρg is
the total density of dust plus gas. In Lee et al. (2010, hereafter Paper I, also Chapter
2), we found that Ricrit increases with Σd/Σg, the ratio of dust to gas surface densities,
a.k.a. the bulk metallicity. For disks of bulk solar metallicity, we determined empirically
that Ricrit ≈ 0.2.

To translate the Richardson number (3.4) into a critical dust layer thickness, first recog-
nize that the orbital velocity vφ depends on the local dust-to-gas ratio µ ≡ ρd/ρg according
to

vφ = ΩKr

(
1− η

µ+ 1

)
(3.5)

in the inertial frame, where

η ≡ −(1/ρg)∂P/∂r

2Ω2
Kr

≈ 1

2

(
cs

ΩKr

)2

≈ 1

2

(
Hg

r

)2

≈ 8× 10−4
( r

AU

)4/7

(3.6)

is a dimensionless measure of the strength of the background radial pressure gradient ∂P/∂r,
with gas scale height Hg and sound speed cs (e.g., Nakagawa et al. 1986). When ∂P/∂r < 0,
pressure provides extra support against radial stellar gravity and so drives the gas to move on
slower than Keplerian orbits. The orbital velocity depends on µ as in (3.5) because dust-laden
gas, weighed down by the extra inertia of solids, is accelerated less by the radial pressure
gradient than is dust-free gas, and so must hew more closely to Keplerian rotation. Call the
critical layer height ∆zRi for which Ri = Ricrit, and assume the midplane gas-to-dust ratio
µ0 ∼> 1 (above the layer µ � 1). Then evaluating equation (3.4) with the approximations
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g ≈ −Ω2
K∆zRi (no self-gravity), ρ−1∂ρ/∂z ∼ −1/∆zRi, and ∂vφ/∂z ∼ −ηΩKr/∆zRi, we find

∆zRi ∼ Ri
1/2
critηr

∼ 1

2
Ri

1/2
crit

Hg

r
Hg

∼ 5× 10−3

(
Ricrit

0.2

)1/2 ( r

AU

)2/7

Hg . (3.7)

Equation (3.7) indicates the dust layer could be quite thin, subtending on the order of
1% of the gas scale height. Is this thin enough for the dust to self-gravitate and hopefully
fragment into planetesimals? One can compare the midplane density to the “Toomre density”
required for the disk to undergo gravitational instability on the dynamical time Ω−1

K (Safronov
1969; Goldreich & Ward 1973). As reviewed by CY10, the Toomre density is2

ρToomre ≈
M∗

2πr3
≈ 10−7

( r

AU

)−3

g cm−3 (3.8)

where the numerical evaluation is for a central stellar mass M∗ equal to 1M�. Now the
actual midplane (subscript 0) density is

ρ0 = ρg0 + ρd0 = 2.7× 10−9F (1 + µ0)
( r

AU

)−39/14

g cm−3 (3.9)

which means the midplane dust-to-gas ratio must be

µ0,Toomre ≈ 34

(
1

F

)(
M∗
M�

)( r

AU

)−3/14

(3.10)

for the midplane density to match the Toomre density. By comparison, in our crude model of
a dust sublayer whose height above the midplane cannot be smaller than ∆zRi, the midplane
dust-to-gas ratio cannot exceed

µ0,Ri ∼
Σd/(2∆zRi)

ρg0

∼ 1

(
Σd/Σg

0.015

)(
0.2

Ricrit

)1/2 ( r

AU

)−4/7

(3.11)

which is nominally smaller than µ0,Toomre by more than an order of magnitude. Here the
bulk (height-integrated) metallicity Σd/Σg is normalized to solar abundance (Lodders 2003),
assuming all metals have condensed into grains.

For many years the fact that µ0,Ri falls short of µ0,Toomre was believed to rule out the
formation of planetesimals by collective effects, self-gravitational or otherwise (e.g., Wei-
denschilling & Cuzzi 1993). But there are more ways to achieve the Toomre density than

2Strictly speaking, the Toomre criterion for gravitational instability is derived for two-dimensional disks
characterized by surface densities, not volume densities (Toomre 1964; Goldreich & Lynden-Bell 1965). To
derive our Toomre volume density, we assign a half-thickness to the disk equal to c/ΩK, where c is the
velocity dispersion of the dust + gas mixture. This assignment is not rigorous; see CY10.
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vertical settling. A dissipative form of gravitational instability can, in principle, collect par-
ticles radially into overdense rings even when self-gravity is weaker than stellar tidal forces
(Ward 1976; Ward 2000; Coradini et al. 1981; Youdin 2005a; for a simple explanation of the
instability, see the introduction of Goodman & Pindor 2000). It is not clear whether this
instability, which operates over lengthscales and timescales longer than those characterizing
the Toomre instability by at least a factor of (µ0,Toomre/µ0)2, can compete with other effects
that seek to rearrange dust and gas (e.g., Youdin 2005a).

Another alternative is to invoke larger dust particles that are more weakly coupled to gas;
these can clump by the aerodynamic streaming instability (SI; Youdin & Goodman 2005;
Johansen et al. 2009; Bai & Stone 2010a; Bai & Stone 2010c). In their 3D numerical simula-
tions, Johansen et al. (2009) reported that particles having τs = 0.1–0.4—corresponding to
sizes of a few centimeters at r = 5 AU if F = 1, and larger sizes if F > 1—concentrated so
strongly by aerodynamic effects that planetesimals effectively hundreds of kilometers across
coalesced within just a few orbits. To obtain this result, Johansen et al. (2009) initialized
their simulations by placing the bulk of the disk’s solid mass in particles approaching decime-
ters in size. Bai & Stone (2010a) greatly expanded the range of τs modeled and found similar
results for their 3D simulations: in the highly turbulent states driven by the SI, instantaneous
densities exceeded the Roche density3 when the disk’s solids were all composed of particles
having τs = 0.1–1 and the bulk height-integrated metallicity was about twice solar; see run
R10Z3-3D in their Figure 5. For this same run, the time-averaged dust-to-gas ratio at the
midplane was ∼12, a factor of a few less than the Toomre threshold; see their Figure 4 and
compare with our equation (3.10). By contrast, when half or more of the disk’s solid mass
had τs < 0.1, or when disks had smaller metallicities, their simulated densities fell short of
the Roche and Toomre densities by more than an order of magnitude. Note that we are
quoting from the 3D simulations of Bai & Stone (2010a).

Given how sensitive the SI is to the existence of marginally coupled particles (centimeter
to meter sized for taus ∼ 0.1–1, r ∼ 1–30 AU, and order unity F ), whether enough such par-
ticles actually exist in protoplanetary disks for the SI to play a dominant role in planetesimal
formation remains an open and delicate issue. Appeal is often made to observed spectral
energy distributions and images of T Tauri disks at centimeter wavelengths; these suggest
that much of the solid mass is in millimeter to centimeter sized particles (e.g., D’Alessio
et al. 2001; Wilner et al. 2005). Larger sized particles are plausibly also present but are not
inferred for want of data probing the disk at longer wavelengths. One problem concerns how
quickly τs ∼> 0.1 particles can be grown, and how they can survive orbital decay by gas drag.
In the 3D simulations of Bai & Stone (2010a), the SI clumped particles strongly enough for
self-gravity to be significant when τs ∼> 0.1 particles comprised more than half of the disk’s
solid mass. It is unclear whether particle-particle sticking can build up such a population
before it is lost to the star by gas drag. This concern is ameliorated by enhancements in
particle density (pileups) that may occur as particles drift radially inward (Youdin & Shu
2002; Youdin & Chiang 2004), and by the reduction of drift speeds brought about by multiple

3The Roche density is that required for a fluid satellite to be gravitationally bound against tidal forces
exerted by a central body. It is greater than the Toomre density by a factor of ∼7π.
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particle sizes (Bai & Stone 2010a; see their Figure 8).
Regardless of which scenario nature prefers—particle concentration by the streaming

instability; dissipative gravitation into rings; or dynamical collapse of a vertically settled
sublayer, which is the subject of this chapter—all the proposed ways of forming planetesimals
depend on knowing how far down dust settles and what maximum dust-to-gas ratios µ0 can
be attained at the midplane. Our order-of-magnitude estimate in equation (3.11) requires
testing. Among the most realistic studies of particle settling are those by Johansen et al.
(2009) and Bai & Stone (2010a), both of which concentrated on the SI. Johansen et al. (2009)
reported that super-centimeter sized particles settled into sublayers in which the midplane-
averaged µ0 ranged from 0.6 to 9.0 as the bulk metallicity ranged from 1 to 3× solar. Bai &
Stone (2010a) found that the highest τs particles settled the most, driving turbulence that
lofted smaller τs particles to greater heights. They argued that in their simulations, all of
which were characterized by max τs ≥ 0.1, particles were so strongly stirred by the SI that
the KHI never manifested.

To complement these studies, we would like to understand the settled equilibrium states of
disks composed entirely of small particles, well but not perfectly coupled to gas (max τs � 1),
isolated from the complicating effects of the streaming instability but not other instabilities
like the KHI. Previous attempts in this regard relied on assumed forms for the density profile
of settled dust. Barranco (2009) presumed the dust density profile was Gaussian in shape,
and did not seek to determine the maximum value of µ0 per se. Chiang (2008) and Paper I,
following Sekiya (1998) and Youdin & Shu (2002), assumed the dust density profile had a
spatially constant Richardson number. We found in Paper I that under this assumption, in
a disk of bulk solar metallicity (Σd/Σg = 0.015), the sublayer could remain KH stable for µ0

as high as 8—a value that is nearly an order of magnitude higher than our crude estimate in
(3.11), and as such lowers the hurdle to forming planetesimals by gravitational instability.
Nevertheless the true density profile to which small dust grains relax, in the limit of small
but non-zero stopping time τs, remains only guessed at.

This work makes some headway towards finding the fabled marginally stable state, using
an approach that is free of the popular but untested assumption that dust settles until the
Richardson number equals a constant everywhere. We allow dust grains to fall until they are
stopped by whatever instabilities they self-generate. In the calculations presented here we
assume that dust begins well mixed with gas in a Gaussian density profile, and then follow
the dust into whatever non-Gaussian distribution it seeks to relax. Although we try only a
Gaussian initial profile, our method accommodates arbitrary initial conditions.

At the heart of our approach lie two codes. The first code is in one dimension (z) and
computes the vertical drift of dust grains at their terminal velocities. Though incapable
of deciding whether the density profiles it generates are prone to the KHI (or any other
instability), the 1D code can evolve dust profiles for the entire settling time tsettle, which can
be arbitrarily long for arbitrarily small grains. The task of assessing stability is reserved for
the second code: the spectral, anelastic, shearing box code of Barranco (2009) which treats
gas and dust in the perfectly coupled τs = 0 limit. Though incapable of allowing dust to
settle out of gas, the 3D code accounts for the complicated interplay of vertical shearing



3.2. METHOD 40

and rotational effects to decide whether a given dust layer overturns from the KHI (or some
other instability). It tests dynamical stability by running for dozens of dynamical times
tdyn = Ω−1

K . Our procedure involves alternating between these two codes: allowing dust
to settle over some fraction of the settling timescale tsettle using the 1D code; passing the
results of the 1D code to the 3D code and allowing the dust profile to relax dynamically
over timescales tdyn; passing the results of the 3D code back to the 1D code for further
sedimentation on the settling timescale; and so on, back and forth, until the midplane dust-
to-gas ratio stops increasing, at which point the marginally stable state is identified.

In §3.2 we describe our method in full. Results are presented in §3.3, extended in §3.4,
and summarized and discussed in §3.5.

3.2 Method
As sketched in §3.1, to find the marginally stable state to which small dust grains relax,

we alternate between two codes: a 1D code that tracks how dust drifts toward the midplane
on the settling timescale tsettle, and a 3D shearing box code developed by Barranco (2009)
that allows dusty gas to stabilize on the dynamical timescale tdyn � tsettle. The 3D code
integrates the anelastic fluid equations for perfectly coupled dust and gas using a spectral
method. It includes a background radial pressure gradient to drive a vertical shear. Details
about the 3D code are in Barranco & Marcus (2006), Barranco (2009), and Paper I.

Dust and gas are initially well mixed with a spatially constant density ratio: [ρd(z)/ρg(z)]init ≡
µinit = constant. We set µinit equal to either solar metallicity (µinit = 0.015; Lodders 2003) or
four times solar metallicity (µinit = 0.06). To determine the initial form of the dust density
profile ρd(z), we solve the equation for vertical hydrostatic equilibrium where gas is assumed
to be initially isothermal:

c2
s

ρg + ρd

∂ρg

∂z
= −Ω2

Kz , (3.12)

whence
ρd = µinitρg0 exp

[
−(1 + µinit)z

2

2H2
g

]
(3.13)

for constants µinit, a characteristic initial height Hg ≡ cs/ΩK, and the midplane gas density
ρg0.

Equation (3.13) defines the initial dust profile used by the 1D code, whose grid extends
from z = 0 to z = 3Hg. The 1D Lagrangian code uses particles to track the motion of dust
mass. Each particle represents the same amount of dust mass. Any dust density profile ρd(z)
can be converted into particle positions and back again. The closer particles are spaced, the
greater is ρd.

Starting with equation (3.13), we proceed as follows:

1) 1D code: Initialize positions of dust particles and establish hydrostatic
equilibrium for the gas.
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Given ρd(z), calculate the positions of∼60,000 particles in the 1D code. Also determine
the hydrostatic gas density ρg(z) at each particle’s position by solving equation (3.12).4

2) 1D code: Settle dust particles by one timestep ∆t.
By equating the vertical
gravitational force ∝ z to the Epstein drag force FD ∝ ρgvrel (e.g., Weidenschilling
1977), assign terminal velocities

vrel ∝
z

ρg

(3.14)

to each particle. Advect each particle vertically downward by a distance vrel∆t, where
∆t is chosen small enough that particles do not overtake one another. Note that
the coefficient of proportionality on the right hand side of (3.14), which depends on
quantities such as the disk mass parameter F and grain properties s and ρs, does not
affect the shapes of the density profiles generated so long as it is the same for all
particles.

Bin particle positions and recalculate ρd(z).

3) 1D code: Repeat (1) + (2) until the midplane dust density ρd(0) rises by
30%.

4) 1D → 3D code: Insert results of the 1D code into the 3D code and run the
3D code for ten orbits. Let zmax be the position of the highest particle in the 1D
code, and set the dimensions of the shearing box in the 3D code to be (Lr, Lφ, Lz) =
(1.455, 2.91, 4)zmax, resolved by (Nr, Nφ, Nz) = (32, 64, 128) gridpoints.5 Initialize the
3D code by assigning µ(z), as calculated by the 1D code, to each horizontal gridpoint
(r, φ).6 The 3D code initializes the remaining variables—velocity, gas density, temper-
ature, and enthalpy—to ensure dynamical equilibrium; see section 2.2 of Paper I.

The background radial pressure gradient is parameterized by the variable vmax:

− 1

ρg

∂P

∂r
= 2ΩKvmax . (3.15)

4Actually the calculation of ρg(z) can be neglected to good approximation, as the hydrostatic gas density
deviates only slightly from a Gaussian throughout the evolution. Even when µ � 1 near the midplane,
∆ρg/ρg ∼ (z/Hg)2µ, which for our parameters remains much less than unity. In fact, the gas density is
practically constant once the dust falls to z ∼< 0.1Hg.

5These choices imply that every zmax length in the r and φ directions is resolved by 22 grid points. In
the z direction we need Nz = 128 points to achieve comparable resolution because the vertical grid differs
from the horizontal grid (see section 2.4 of Paper I). As discussed in §3.4.1, we test the robustness of our
results to box size by using bigger boxes as the marginally stable state is approached.

6The transfer of µ(z) from the 1D code to the 3D code involved some smoothing because the vertical grid
for the 3D code is ∼10× coarser than that of the 1D code. We captured all features of the 1D dust profile
ρd(z) to within ∼10% for z ∼< 0.8zmax. Fractional errors generally increased away from the midplane and
were largest at zmax where the dust content goes to zero.
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We fix vmax = 0.025cs for all simulations.7 Physically, vmax ∼ c2
s/(ΩKr) represents the

difference in azimuthal velocity between pressure-supported dust-free gas and a strictly
Keplerian flow.

Before running the 3D code, perturb µ(r, φ, z) by an amount

∆µ(r, φ, z) = A(r, φ)µ(z)[cos(πz/2zmax) + sin(πz/2zmax)], (3.16)

where A(r, φ) is a random variable constructed in Fourier space (see the discussion
following equation 31 of Paper I). Fix the root-mean-square of the perturbations to be
Arms ≡ 〈A2〉1/2 = 10−3.

Run the 3D code for ten orbits.

5) 3D code: Assess stability. Extend simulations beyond ten orbits as necessary
to make this assessment. Label the dust profile “KH-unstable" if the horizontally
averaged dust-to-gas ratio at the midplane

〈µ(z = 0)〉 as a function of t

decreases by more than 15%. Otherwise, monitor the horizontally averaged vertical
kinetic energy at the midplane:

〈µv2
z(z = 0)〉/2 as a function of t.

If 〈µv2
z〉/2 monotonically decreases or levels off, label the dust profile “KH-stable.” If

〈µv2
z〉/2 is increasing towards the end of the simulation, extend the integration an

additional ten orbits and re-assess stability. Repeat step (5) as necessary.

6) If “KH-unstable,” stop. Identify the last KH-stable dust profile, generated in the it-
eration just previous to that of the KH-unstable simulation, as the “marginally stable
state.”8

7) If “KH-stable,” pass results of the 3D code back to the 1D code and return
to step (1). Fit a polynomial µpoly(z) to the final, horizontally averaged dust-to-gas
ratio 〈µ(z)〉 as calculated by the 3D code. Adjust the order of the polynomial to capture
all features of the profile. If one polynomial is insufficient, use two to create a piecewise
function. Convert µpoly(z) to ρd(z) by assuming the gas profile to be Gaussian (see
footnote 4): ρd(z) = µpoly(z) · ρg0 exp[−z2/(2H2

g )]. Using this ρd(z), return to step (1)
for the next iteration.

7This value of vmax coincides with the standard value from Paper I. Technically the minimum-mass disk
model in Appendix A gives vmax/cs = 0.036. See §3.5.2 and Appendix A.1 for how our results might depend
on vmax.

8This marginally stable state will be superseded by the marginally stable state identified under an im-
proved scheme in §3.4.2.
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3.3 Results
To orient the reader, in Figure 3.1 we show results obtained from the 1D code only. The

dust is initially well mixed with gas at solar metallicity (µinit = 0.015). As dust settles
and the midplane dust-to-gas ratio µ0 increases, sharp cusps appear at the edge of the dust
layer where particles pile up vertically. Pileups occur because particle speeds |vrel| ∝ z/ρg

decrease with decreasing height. The slowdown is greatest at large height where the gas
density gradient is steepest.

Unlike us, Garaud & Lin (2004) did not find vertical pileups because they chose their
initial dust profile to have a scale height equal to 0.1Hg. Thus where their dust was located,
the gas density gradient was too low to produce pileups. We verified this by inserting their
initial profile into our 1D code.

The shapes of the settled dust profiles µ(z) and their relative spacing in time are inde-
pendent of the dust internal density ρs, dust particle size s, and the scaling parameter F
for disk mass. Changing these parameters only alters the absolute physical time elapsed
(equation 3.3). Relative time is tracked by the dimensionless parameter f ≡ t/tsettle, labeled
on this and many subsequent figures.

Below we compare these 1D-only results to those that include the full 3D dynamics. The
solar metallicity case is described in §3.3.1. The metal-rich case (µinit = 0.06) is presented
in §3.3.2.

3.3.1 Solar Metallicity

Figure 3.2 traces the evolution of dust that starts well mixed with gas at solar metallic-
ity. Plotted are several KH-stable curves from the 3D code resulting from step (5) of our
procedure. For ease of comparison with the purely 1D results, the relative timestamps in
Figure 3.2, measured by f , coincide with those in Figure 3.1. The leftmost curve at f = 1.0
represents the marginally stable state identified using our standard procedure. This state
achieves a midplane dust-to-gas ratio of µ0 = 2.45, about an order of magnitude below the
value required for gravitational instability (equation 3.10). In §3.4 we extend our procedure
to see if we might achieve still higher dust-to-gas ratios.

Comparing Figures 3.1 and 3.2, we see that the pileups at the edges of the dust layer do
not survive in the dynamical 3D code. By f ≈ 0.44, the pileups are nearly gone. At this
point, the vertical extent of the dust layer zmax has shrunk to ∼0.1Hg, and local gradients
in ρg are too small for appreciable pileups to re-form.

The instability that eliminates the pileups is likely related to the Rayleigh-Taylor insta-
bility (RTI), triggered by heavy fluid lying on top of lighter fluid, and we will refer to it
henceforth as such. The RTI originates locally at the edges of the dust layer. By contrast,
the midplane is relatively stable (at least until the marginally stable state is reached). An-
other way of seeing this is to note that midplane dust-to-gas ratios µ0 in Figures 3.1 and 3.2
agree to within 25%. Closer examination reveals that those in Figure 3.2 are consistently
higher. This suggests that the RTI transfers some of the dust in the pileups to the midplane.
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Figure 3.3 confirms this transfer mechanism. The top middle panel shows that over the
course of a 20-orbit-long 3D simulation (iteration #6, occurring at a time f = 0.31, out of
a total of 19 iterations), dust is redistributed from the layer’s edges to the midplane, raising
µ0 by about 20%. Note that the effect of the RTI has been to transport dust toward the
midplane, not to higher altitudes. The RTI is confined to where dust is unstably stratified
(increasing total density in the direction opposite to gravity).

Compare this behavior with that in the top row of Figure 3.4, which documents a later
iteration, #16. The top middle panel shows that an instability has occurred near the edges
of the dust layer. Dust is redistributed to higher, not lower, altitudes. The midplane is
not affected. The instability at this relatively late stage of settling is probably driven by
the vertical shear associated with strong density gradients at the edges of the layer, and we
will refer to it henceforth as the Kelvin-Helmholtz instability (KHI). As a result of the KHI,
gradients in density and velocity are reduced.

The marginally stable state identified using our standard procedure is displayed in Figure
3.5. The bottom panels show that during the last iteration #19, the usual 30% increase in
the midplane µ0 (left bottom) results in a KH-unstable profile (middle bottom). In the
top panels, we re-do iteration #19, this time incrementing µ0 by only 10% (left top). The
resultant profile is KH stable (middle and right top panels), and has 〈µ0〉 = 2.45. In §3.4.2,
we modify our standard procedure and extend it to later times to achieve still higher dust-
to-gas ratios in stable flows.

The µ-profiles in Figures 3.2–3.5 betray oscillations just inside the edges of the dust layer.
We believe these ripples are artificial because when each first appears, it spans only a few
grid points of the 3D code: see the f = 0.054 profile of Figure 3.2, which shows two nascent
ripples. The features probably arise because the truncated Chebyshev series used to model
the flow in z has too few terms to adequately capture the steep vertical density gradient
(Gibbs 1898). Originating in the 3D code, the ripples are then amplified as mini-pileups in
the 1D code. We could have tried to smooth away these oscillations by reducing the order
of our polynomial fit (step 7 of our procedure), but chose instead to retain all features of
the dust profile generated by both codes to minimize bias. In any case the oscillations are
eventually erased by instabilities during the later stages of settling (Figure 3.2). In and
of themselves the oscillations do not appear to introduce instabilities, which as discussed
above are triggered instead by smooth density gradients—realistically computed—at the
boundaries of the layer (top rows of Figures 3.3 and 3.4).

3.3.2 Metal-Rich Case: 4 × Solar Metallicity

Figure 3.6 follows the evolution of dust that is initially well mixed with gas at 4× solar
metallicity. It shares the same timeline as Figures 3.1 and 3.2. Thus the last profile marked
f = 1.1 in Figure 3.6 is attained at a time 10% later than that marked f = 1.0 in the
other figures. This last profile is the marginally stable state identified using our standard
procedure, for the case of supersolar metallicity. It achieves a midplane dust-to-gas ratio of
µ0 = 20.3—large enough to exceed the Toomre threshold in a disk that has twice the gas
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content of the minimum-mass solar nebula (F = 2 in equation 3.10).
The evolution of the metal-rich disk over the course of a total of 21 iterations—some of

which are sampled in Figures 3.7–3.9—is similar to that of the solar metallicity disk, with
two notable differences. When the unstably stratified pileups of dust collapse (iteration #4,
shown in the top row of Figure 3.7), enough dust is transferred to the midplane that µ attains
an appreciable maximum there. This bump contrasts with the nearly flat profile seen for the
solar metallicity run (Figure 3.3), and persists at least through iteration #16 (Figure 3.8). A
second difference is that in every KH-stable simulation following iteration #13, the vertical
kinetic energy, although it eventually levels off, ends orders of magnitude higher than where
it began (Figure 3.8, and top row of Figure 3.9). Some currents and/or turbulence appear
to be sustained as the state of marginal stability is approached.

Related to this second point, we should acknowledge that our standard procedure ignores
whatever velocities are present at the end of a given 3D simulation when initializing the
velocities of the subsequent 3D simulation. That is, with every iteration, velocities are set
anew according to equation (3.5), with vertical and radial velocities reset to zero. The
assumption we make in our standard procedure is that whatever velocities are maintained in
a KH-stable layer do not stop dust from settling at the local terminal velocity vrel. A crude
attempt at relaxing this assumption is made in §3.4.2.

3.4 Extensions
In §3.4.1 we test the robustness of our results against the size of our simulation box.

In §3.4.2 we modify the procedure of §3.2, pushing to still higher dust-to-gas ratios at the
midplane and revising our identification of marginally stable states.

3.4.1 Bigger Box Runs

Box size can artificially affect stability because a given box can only support modes
having an integer number of azimuthal wavelengths inside it. Thus too small a box may be
missing modes that would otherwise destabilize the layer. To assess whether our box size
is too small, we redo the 3D simulations of our standard marginally stable states (iteration
#19 of the solar metallicity case and iteration #21 of the metal-rich case), quadrupling
simultaneously the azimuthal box size Lφ and the number of grid points Nφ. By increasing
both in tandem, we maintain the same resolution Nφ/Lφ as that of our standard runs. The
results are plotted as dotted lines in the top panels of Figures 3.5 and 3.9. For both the
solar metallicity and metal-rich cases, the bigger box runs still yield stable layers, just as the
standard box runs do. We conclude that our standard box sizes are probably adequate.

This conclusion is a bit surprising when we compare our standard box size to our findings
in Paper I. We found in Paper I that those KH modes that most visibly disrupted the dust
layer had azimuthal wavelengths between 2.6zmax and 4.3zmax. Our standard choice here for
azimuthal box size is Lφ = 2.91zmax, which at face value means that we are only resolving one
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Figure 3.1 : Snapshots of settling dust computed with the 1D code only. Plotted is the dust-to-gas
ratio as a function of height at various instants of time. Relative timestamps are assigned by the
non-dimensional parameter f ; see the inset equation for the absolute elapsed time, which assumes
ρs = 1 g/cm3 and F = 1 (equation 3.3). Note that the shapes of these profiles and their relative
spacing in time are independent of the absolute elapsed time, and thus independent of ρs, F , and
s. At f = 0, dust begins well mixed at solar metallicity (µ = 0.015; Lodders 2003). By f = 0.054,
a pileup has formed at the dust layer’s edge. The pileup forms because particle speeds ∝ z/ρg

decrease with decreasing height, and the gradient of ρg is steepest at the edge.
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Figure 3.2 : Snapshots of settling dust computed using the standard procedure of §3.2 which com-
bines the 1D and 3D codes, for the case of bulk solar metallicity. Elapsed time is marked by f ;
plotted values coincide with those in Figure 3.1. The shapes of the profiles and their relative spacing
in time do not depend on the absolute elapsed time; they are independent of ρs, F , and s. Dust
begins well mixed with gas at µ = 0.015 and ends in the marginally stable state with midplane
µ0 = 2.45. Vertical gridpoints from the 3D code are plotted as dots. In comparison to the purely
1D results of Figure 3.1, the pileup at the layer’s edge is smoothed away, probably by the Rayleigh-
Taylor instability, between f = 0.22 and f = 0.65. Except for transferring some dust at altitude to
the midplane, the instability leaves the midplane relatively unaffected, which until f = 1.0 evolves
much as it does in Figure 3.1.
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Figure 3.3 : Two successive iterations of our procedure of §3.2, for the case of bulk solar metallicity.
From left to right, the panels show a starting dust profile (black curve) settled by the 1D code until
its midplane µ0 increases by 30% (red dot-dashed curve). This settled curve is then passed to the 3D
code and evolved (blue curve) until it stabilizes (rightmost panel showing how the vertical kinetic
energy at the midplane eventually levels off). Top panels show iteration #6 of 19 (equivalently
f = 0.33 on the timeline of Figure 3.2). The unstably stratified pileups collapse around t ∼ 11

orbits, increasing the midplane dust content by ∼20% (top middle). Bottom panels show iteration
#7 (f = 0.38) which begins where iteration #6 leaves off—except that the kinetic energy of the
flow is reset to a low value (bottom right versus top right panels), and the slight asymmetry in 〈µ〉
about z = 0 (top middle panel, blue curve) is dropped upon fitting a polynomial only to z ≥ 0

(bottom left, black curve). The oscillations in the µ-profiles are artifacts of having too few basis
functions in z. They did not seem to introduce instability, which always occurred instead at the
edges of the dust layer where gradients were steepest and realistically computed.
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Figure 3.4 : Similar to Figure 3.3 but showing iterations #16 (top) and #17 (bottom) out of a total
of 19, for the case of bulk solar metallicity. In iteration #16, dusty gas at the layer’s edges mixes
with dust-poor gas at higher altitudes (top middle), probably by the KHI. The subsequent evolution
during iteration #17 shows no sign of instability after 10 orbits.
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Figure 3.5 : Similar to Figures 3.3 and 3.4 but showing the last couple iterations (#19a and #19b)
which provisionally identify the marginally stable state for the case of bulk solar metallicity. Increas-
ing the midplane dust content from iteration #18 by 30% (bottom panels) leads to a KH-unstable
profile, while an increase of 10% preserves KH stability (top panels). Quadrupling Lφ and Nφ

simultaneously (dotted lines) does not change our answer. The marginally stable state in the top
panels is refined according to a modified procedure in §3.4.2.
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Figure 3.6 : Snapshots of settling dust computed with the full procedure of §3.2 which combines
the 1D and 3D codes, for the case of 4× bulk solar metallicity. Elapsed time is marked by f ,
measured on the same timeline characterizing Figures 3.1 and 3.2. The shapes of the profiles and
their relative spacing in time do not depend on the absolute elapsed time; in this sense the evolution
is not sensitive to ρs, F , and s. Vertical gridpoints from the 3D code are plotted as dots. Dust begins
well mixed with gas at µ = 0.06 and ends in the marginally stable state with midplane µ0 = 20.3.
The midplane density in this last state already exceeds the threshold for Toomre instability in a
disk with twice the gas content of the minimum mass solar nebula (equation 3.10 with F = 2).
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Figure 3.7 : Two successive iterations of our procedure outlined in §3.2, for the case of 4× solar
metallicity. From left to right, the panels show a starting dust profile (black curve) settled by the
1D code until its midplane µ0 increases by 30% (red dot-dashed curve). This settled profile is then
passed to the 3D code and evolved (blue curve) until it stabilizes (rightmost panel showing how the
vertical kinetic energy at the midplane eventually levels off). Top panels show iteration #4 of 21
(equivalently f = 0.22 on the timeline of Figure 3.6). When the unstably stratified pileups collapse,
they increase the dust content of the midplane by ∼35% (top middle panel). The resultant dust
profile, settled further in iteration #5 (bottom panels), remains free of instabilities after 10 orbits.
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Figure 3.8 : Similar to Figure 3.7 but showing iterations #15 and #16 out of a total of 21 for the
case of 4× solar metallicity. Shown are two examples of KH-stable profiles whose midplane vertical
kinetic energies end orders of magnitude above their starting values. Every 3D simulation starting
with iteration #13 in the metal-rich case shows this kind of sustained motion even though the
density profiles may be KH stable according to our criterion.
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Figure 3.9 : Similar to Figures 3.7 and 3.8 but showing iteration #21 in the top panels, in which the
marginally stable state is found for the case of 4× solar metallicity according to our standard proce-
dure. The midplane 〈µ0〉 = 20.3, corresponding to a midplane density that exceeds that required for
gravitational instability in a disk having twice the gas content of the minimum mass solar nebula.
The same dust profile inserted into a shearing box four times as wide in the azimuthal direction
as our standard box and having four times as many azimuthal grid points yields qualitatively the
same result (dotted line). Settling still further according to our standard procedure results in KH
instability (bottom panels), but in §3.4.2 we experiment with a modified procedure that tries to
hold off KH instability for a while longer.
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wavelength at best of an important mode. However, this simple comparison may not be fair.
In Paper I we studied dust layers characterized by a spatially constant Richardson number.
The vertical density profiles there differ somewhat from those derived here. In particular the
profiles in Paper I have steep density gradients everywhere, whereas here density gradients
are steep only at the edges of the layer. When a layer in Paper I became KH unstable, it
seemed to do so everywhere at once, whereas here instability always originates at the edges.
We have verified that this is true even for the final iterations leading to our identification of
the marginally stable state. Obviously these edges have vertical thicknesses that are smaller
than that of the layer as a whole. Since the most unstable azimuthal wavelength of the KHI
is expected to be of order the vertical thickness of the shearing layer (e.g., Chandrasekhar
1981), it seems that our standard box sizes here, though small compared to our box sizes in
Paper I, permit us to resolve several azimuthal wavelengths of those modes that are most
able to disrupt the thin edges.

3.4.2 Refining the Marginally Stable State Using a Modified Set-
tling Procedure

Using our standard procedure of §3.2, we can only provisionally identify marginally stable
dust profiles. The identification is provisional because by settling all dust particles at their
local terminal velocities vrel, we wind up with edges so unstable that they also destabilize
the midplane. In reality, dust particles at the edge may stop settling because they attain a
state of marginal stability first, remaining lofted up by the gas motions they stir up locally,
and leaving dust particles near the midplane free to keep settling. In other words, marginal
stability may be reached sequentially, starting from the edges and ending at the midplane.
Our standard procedure does not allow for this kind of gradual evolution because the 1D
code settles all dust particles at their local terminal speeds regardless of their location. In
this sense our standard procedure is too blunt because it does not allow for slower settling
at the stirred-up edges and faster settling at the quiescent midplane. True marginally stable
states should have midplane dust-to-gas ratios even higher than the maximum ones displayed
in Figures 3.2, 3.5, 3.6, and 3.9.9

To remedy this shortcoming, we modify our procedure by applying a weighting function
W (z) to each dust particle’s settling velocity. Starting with a KH-stable state near the end
of our standard sequence of iterations, we continue to let dust particles drift to the midplane
in the 1D code, not at vrel(z) but at the weighted velocityW (z)vrel(z). We use either a Fermi
function

W (z) =
1

1 + exp[(z − z50)/zw]
, (3.17)

described by two parameters z50 and zw, or a Gaussian

W (z) = exp(−z2/2z2
w), (3.18)

9Another reason our dust profiles underestimate actual dust-to-gas ratios is because we neglect vertical
self-gravity, which enhances stability by increasing the Brunt frequency (Sekiya 1998; Youdin & Shu 2002).
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described by a single parameter zw. The choice of weighting function is somewhat arbitrary;
it depends on the shape of the dust profile to be settled and is made case-by-case according
to considerations outlined below.

We start with the KH-stable profile in iteration #18 of our solar metallicity sequence
(black solid curve in top left panel of Figure 3.10). The dust layer is characterized by a “core”
from z = 0 to z ≈ 0.5zmax over which 〈µ〉 is fairly constant, and an “edge” from z ≈ 0.5zmax to
z = zmax over which the dust content drops to zero. Because the instabilities that threaten
to disrupt the layer originate in the edge and not the core, we seek a weighting function
W (z) that slows the downward drift of dust in the edge but not in the core. At the same
timeW (z) should not be so strongly weighted toward the midplane that the core disconnects
from the edge and opens a local gap in dust content. We find upon experimentation that
a Gaussian does not have enough flexibility to meet these requirements for this particular
iteration. However a Fermi function with z50 = 0.005Hg—corresponding approximately to
the boundary of the core—and zw = 0.05z50 seems to work well (blue dashed curve in top
left panel of Figure 3.10). We use this weighting function to settle the dust profile until its
midplane µ0 increases by 30% to a value of 2.9 (red dot-dashed curve). This settled layer
remains KH stable (top middle and right panels of Figure 3.10)—unlike the layer settled
without the weighting function (bottom panels of Figure 3.5).

In the new profile settled with our modified procedure, the distinction between the core
and the edge is no longer so sharp. Thus to settle this new profile even further, a simple
Gaussian for the weighting function seems to suffice. Choosing zw = 0.0025Hg ≈ 0.25zmax,
we attempt to increase the midplane µ0 yet again by 30%, but find the resultant profile to
be KH unstable (bottom panels of Figure 3.10).

Similar results are obtained for the metal-rich case (Figure 3.11). Using Gaussian weight-
ing functions we are able to push the midplane dust-to-gas ratio µ0 to a new record of 26.4,
which is 30% greater than the value attained using our unweighted standard procedure.

3.5 Summary and Discussion
To form rocky planets and gas giant cores, dust must amass in a circumstellar disk. In the

classic scenario for forming planetesimals, dust settles vertically toward the midplane into
an ever thinner and denser layer that eventually becomes gravitationally unstable (Safronov
1969; Goldreich & Ward 1973). Toomre’s criterion for gravitational instability on a dy-
namical time is satisfied for midplane dust-to-gas ratios (ρd/ρg)0 ≡ µ0 ∼> µ0,Toomre, where
µ0,Toomre ≈ 34 for a minimum-mass nebula orbiting a solar-mass star (equation 3.10; note
that µ0,Toomre is nearly independent of disk radius). For comparison, in a disk of well-mixed
dust and gas at solar abundance, µ0 ≈ 0.015 (Lodders 2003). Whether dust can accumulate
until its density increases by more than three orders of magnitude depends on how turbulent
the ambient gas is. Even supposing that gas in certain regions of the disk is not intrinsically
turbulent (e.g., because it is too weakly ionized to support the magnetorotational insta-
bility), the dust itself may excite turbulence in gas by a Kelvin-Helmholtz-type shearing



3.5. SUMMARY AND DISCUSSION 57

Figure 3.10 : Extended settling simulations using the modified procedure of §3.4.2, for the case of
bulk solar metallicity. We start with iteration #18 from our standard procedure (black curve, top
left). A Fermi weighting function with z50 = 0.005Hg and zw = 0.05z50 (equation 3.17, labeled
’W ’ at top left) allows dust near the midplane to settle more than dust at higher altitude. The
settled profile attains a midplane 〈µ0〉 = 2.9 and is KH stable (top middle and right panels). Further
settling, this time using a Gaussian weighting function with zw = 0.0025Hg, results in KH instability
(bottom panels). Although the modified procedure enables us to settle beyond the last stable state
identified using our standard procedure, the gains are not large enough to reach the Toomre density
in solar metallicity disks.
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Figure 3.11 : Extended settling simulations using the modified procedure of §3.4.2, for the case of 4×
bulk solar metallicity. We start with iteration #21 from our standard procedure (black curve, top
left). A Gaussian weighting function with zw = 0.00132Hg = zmax/12 is used to settle preferentially
the innermost layers, which achieve a maximum 〈µ0〉 = 26.4 and remain KH stable (top middle and
right panels). Although further gains in µ0 did not materialize (bottom panels, using a Gaussian of
zw = 0.00127Hg), µ0 is already high enough that gravitational instability is viable in a disk having
∼1–2 times the gas content of the minimum-mass solar nebula.
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instability (KHI). The KHI is triggered when the velocity gradient between dust-rich gas at
the midplane and dust-poor gas at altitude becomes too large. Barring gravitational insta-
bility, dust should settle to a state that is marginally stable against the KHI. The question
of whether gravitational instability is viable translates into the question of whether the state
that is marginally stable to the KHI has µ ∼> µ0,Toomre.

In this chapter, we sought out such marginally stable states by numerical simulation.
Starting with dust well mixed with gas at either bulk solar or supersolar metallicity, we
allowed dust to settle vertically until dynamical instabilities prevented the midplane density
from increasing further. We tracked the approach to the marginally stable state using a
combination of a 1D settling code and a 3D shearing box code, working in the limit that
particles are small enough not to excite streaming instabilities. All the instabilities that
afflicted our dust layer originated at the layer’s edges, where dust density gradients were
steepest. We found evidence for two kinds of instabilities: the usual KHI driven by vertical
shear, and the Rayleigh-Taylor instability (RTI) driven by the weight of piled-up dust. These
instabilities were mostly confined to the dust layer’s top and bottom surfaces, leaving dust
near the midplane free to settle but occasionally speeding up the accumulation of solids by
transferring dust from pile-ups downward. The midplane density stopped increasing when
the dust layer became so thin that instabilities at the edges threatened to overturn the entire
layer.

Using our standard procedure of §3.2, we attained maximum dust-to-gas ratios of µ0 ≈
2.45 and 20.3 for the cases of solar and 4× solar bulk metallicity, respectively (Figures 3.5
and 3.9). These values are lower limits because in our standard procedure dust particles at
the layer’s top and bottom faces keep settling until they excite instabilities so vigorous that
dust at the midplane is stirred up. In reality, dust at the layer’s edges may reach a state
of marginal stability and stop settling, leaving dust near the midplane free to settle further.
We modified our procedure in §3.4.2 to try to account for this effect, reaching µ0 ≈ 2.9 and
26.4 for the two metallicity cases (Figures 3.10 and 3.11). These values are still lower limits
because our simulations omit self-gravity. But the correction for self-gravity should be small
for the solar metallicity disk, on the order of 10% (∼ 2.9/34). For our supersolar metallicity
disk, the correction for self-gravity might be on the order of unity (∼ 26.4/34)—although it
might also be much higher, as Sekiya (1998) and Youdin & Shu (2002) showed that vertical
self-gravity can yield a singularity in µ0.

We conclude that a minimum-mass disk of bulk (height-integrated) solar metallicity or-
biting a solar-mass star cannot form planetesimals by self-gravity alone: even neglecting
turbulence intrinsic to gas, the KHI would force the midplane dust density to fall short of
the Toomre density by about an order of magnitude. Our results make clear what changes
to the circumstellar environment would be needed for self-gravity to prevail. To attain the
Toomre density in a minimum-mass gas disk, the bulk metallicity would need to be enhanced
over solar by a factor of a few ∼< 4. Naturally, the required degree of metal enrichment would
be lower in a disk whose total mass (gas plus dust) were greater than that of the minimum-
mass solar nebula.
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3.5.1 How Spatially Constant is the Richardson Number?

In Paper I, as in previous works (Sekiya 1998; Youdin & Shu 2002; Youdin & Chiang
2004), all dust profiles were assumed to have spatially constant Richardson numbers Ri. The
dust profiles we have computed are free of this assumption, whose validity we can now test.

We calculate Ri(z) for our marginally stable states, derived under both standard (§3.2)
and modified (§3.4.2) procedures. To compute the numerator (Brunt frequency) of Ri in
equation (3.4), we use the horizontally averaged dust-to-gas ratio 〈µ(z)〉, computing deriva-
tives using centered differences and assuming the gas to obey a Gaussian density profile (see
footnote 4). To compute the denominator (vertical shearing rate) of Ri, we also use 〈µ(z)〉,
inserting it into equation (3.5) and computing therefrom the velocity derivative. Of course
we could also compute the denominator more directly by using the simulation output itself
for vφ—this alternative approach turns out to give identical results for the solar metallicity
disk, but for the metal-rich disk the Ri(z) so generated varies much more erratically. As
noted in §3.3.2, the metal-rich disk sustains gas motions well above those we put in as seed
noise. These motions are not strong enough to overturn the dust layer but they are large
enough to render Ri highly variable, both in time and space. By not using the simulation
data for vφ(z) and relying instead on the better behaved 〈µ(z)〉, we effectively average Ri in
time and space.

Results for the solar metallicity runs are shown in Figure 3.12. We plot Ri only where
〈µ〉-gradients are large enough to be computed reliably—thus we avoid regions closest to
the midplane. Although we find that Ri is not a strict constant, it varies only between 0.1
and 0.3 within a large fraction of the edges of the dust layer—precisely where instabilities,
presumably shear-driven, have rearranged dust. This result compares favorably with Paper I,
where we found that a solar metallicity disk has a critical Richardson number of Ricrit ≈ 0.2.

Evidence for a constantRi within the edges of the dust layer is even stronger for the metal-
rich disk, as shown in Figure 3.13. Here Ri hovers near 0.5 over much of the edges—again
consistent with Paper I. See Figure 6 of that paper; admittedly the curve for Ricrit(Σd/Σg) in
Paper I needs to be extrapolated to the supersolar metallicity considered here, Σd/Σg = 0.06.

The Ri(z) profiles in Figures 3.12 and 3.13 differ from those in Figure 3 of Bai & Stone
(2010a); see the dashed curves corresponding to their 3D simulations, all of which include
marginally aerodynamically coupled particles. These differences support their arguments
that their simulations were not afflicted by the KHI.

In summary, the assumption made in other studies that well coupled particles settle into
a profile for which Ri is spatially constant does not appear too bad. The caveat is that
we have not tested this assumption for those regions closest to the midplane, as they could
not relax by our method before being disrupted by instabilities at the edges. This is an
area where more work can be done; see §3.5.3. Another caveat, supported independently by
Paper I, is that the critical value of Ri to which dust relaxes is not unique, but increases
with bulk metallicity Σd/Σg. For a solar metallicity disk, Ricrit ≈ 0.2, but for one having
4× solar metallicity, Ricrit ≈ 0.5. This trend has not yet been explained.
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3.5.2 The Super-Linear Relation Between Maximum Dust-to-Gas
Ratio µ0 and Bulk Metallicity Σd/Σg

The degree to which Ri is constant is related to the scaling between the maximum mid-
plane dust-to-gas ratio µ0 and bulk metallicity Σd/Σg. Naively it might be expected that µ0

scales linearly with Σd/Σg—a greater total amount of metals simply yields a proportionately
dustier midplane—and indeed a linear relation is implied by our order-of-magnitude estimate
in equation (3.11). But we did not find a linear trend in our simulations. We find instead
that the relation is super-linear: a factor of 4 increase in Σd/Σg results in a factor of 9.1
increase in maximum µ0 (26.4 versus 2.9).

A super-linear trend is predicted by theories assuming a constant Richardson number
(Sekiya 1998; Youdin & Shu 2002). The large gain in midplane density afforded by a com-
paratively modest increase in bulk metallicity is partly what makes planetesimal formation
by gravitational instability so attractive. Increasing Σd/Σg does more than just increase the
total amount of metals in the disk—it also helps to stabilize it, by decreasing the vertical
shear ∂vφ/∂z. In the limit µ0 ∼ (Σd/Σg)Hg/∆z � 1, where ∆z is the dust layer thickness,
we have from equation (3.5):

∂vφ
∂z
∼ ηΩKr/µ0

∆z
∼ ηΩKr

Hg

1

Σd/Σg

which decreases with increasing Σd/Σg. By comparison the Brunt frequency [(g/ρ)∂ρ/∂z]1/2 ∼
[(Ω2

K∆z/µ)µ/∆z]1/2 ∼ ΩK hardly changes with Σd/Σg. Thus the Richardson number in-
creases as Σd/Σg increases; the enhanced stability allows ∆z to decrease; and thus µ0 ∝
Σd/∆z scales super-linearly with Σd.

The above order-of-magnitude relations show qualitatively how a super-linear trend fol-
lows from the decrease in vertical shear, and the consequent increase in stability, brought
about by an increase in bulk metallicity. However, these simple relations are not enough to
quantify the super-linear trend because ∆z appears to have cancelled out of both ∂vφ/∂z
and the Brunt frequency. This difficulty is avoided in a more formal derivation of the re-
lation between µ0 and Σd/Σg, made under the assumption of constant Ri, as described in
Appendix A.1.

We note further that µ0 scales with the inverse of the radial pressure gradient parameter
vmax/cs (equivalently η) in the same super-linear way as for Σd/Σg. The smaller is vmax/cs,
the greater is the maximum µ0 attainable; the relation between these quantities is derived
under the assumption of constant Ri in Appendix A.1. Thus we expect our numerical results
for maxµ0 (2.9, 26.4) to depend sensitively on our assumed value of vmax/cs = 0.025. (Bai &
Stone (2010c) also reported that the degree of clumping caused by the streaming instability
increased strongly with decreasing vmax/cs.)
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3.5.3 Future Directions

With each iteration of our standard procedure we allowed dust particles to settle at their
full terminal velocities, regardless of gas motions evinced in previous iterations. We tried
to account for these gas motions in a modified procedure by reducing settling velocities at
altitude where dust may have already attained marginal stability. Settling velocities were
reduced by weighting functions chosen by eye. This modified procedure enabled us to extend
the settling sequence by one iteration but no more. Other weighting functions might allow
the sequence to be extended further. Introducing weighting functions earlier in the sequence
(rather than at the end of our standard procedure, as we have done), and increasing the
midplane density by a smaller increment with each iteration (less than the 30% increment
that we have adopted), would allow for a more gradual evolution and possibly permit the
midplane to reach still greater densities.

Such a program would be straightforward to pursue but would be subject to arbitrariness
in the forms of the weighting functions. A more direct approach would be to abandon our
hybrid 1D+3D scheme and upgrade the 3D code to allow for a non-zero aerodynamic stopping
time tstop for dust. Then both settling and stability could be tracked within a single 3D code.
Similar codes have been written (e.g., Johansen et al. 2009; Bai & Stone 2010b), but their
application has been focussed on the streaming instability, on particles having ΩKtstop ∼> 0.1
and (model-dependent) sizes upwards of decimeters. By contrast, we are interested in the
possibility that even the smallest particles, for which 0 < ΩKtstop � 1, undergo gravitational
instability. The problem of settling small particles may be coupled to the problem of settling
big ones. Even if marginally coupled particles comprise only a minority of the disk’s solid
mass, the turbulence they induce by the streaming instability may prevent smaller particles
from settling into the thin layers required for gravitational instability (Bai & Stone 2010a).
Quantifying what is meant by “minority” remains a forefront issue. An efficient scheme for
numerically simulating this problem would combine the anelastic methods we have adopted
(so that the code timestep is not limited by the sound-crossing time) with an implicit particle
integrator like the kind devised by Bai & Stone (2010b) (so that the code timestep is not
limited by tstop).

Adding self-gravity would be another improvement. As noted at the beginning of §3.5,
vertical self-gravity is expected to increase the maximum dust-to-gas ratio by of order 10%
for the case of bulk solar metallicity. For the case of a few × supersolar metallicity, the
magnitude of the correction is uncertain. It is probably at least of order unity, but might
be much more, given the appearance of an infinite density cusp in those solutions of Sekiya
(1998) and Youdin & Shu (2002) that account for vertical self-gravity. At the same time,
self-gravity might actually limit maximum dust-to-gas ratios if the fluid becomes gravito-
turbulent without producing collapsed objects (Gammie 2001).
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3.5.4 Connection to Observations and The Need For Supersolar
Metallicity

Observations have unveiled several trends between stellar properties and the likelihood
of planet occurrence. Among the most well-known is the positive correlation between the
occurrence rate of giant planets and the host star metallicity [Fe/H] (Gonzalez 1997; Santos
et al. 2004; Fischer & Valenti 2005). Johnson et al. (2010) provided a comprehensive analysis,
using a sample of 1266 local stars to ask whether the trend with metallicity persists across
all stellar masses M∗. The answer is contained in their Figure 2. The need for supersolar
metallicity is clear for M dwarfs (0.2 < M∗/M� < 0.7), where the average metallicity of the
planet-hosting stars is [Fe/H] = 0.4. Metal-rich stars presumably once carried metal-rich
disks, and so the planet-metallicity correlation for M dwarfs supports our results, and those
of others (Sekiya 1998; Youdin & Shu 2002; Lee et al. 2010; see also Johansen et al. 2009;
Bai & Stone 2010a) that planetesimals form much more readily in metal-rich environments.
In particular the data for M dwarfs indicate that a mere factor of 100.4 = 2.5 increase in
metallicity above solar substantially increases the probability of planet occurrence. This is
consistent with our finding of a super-linear trend between maximum dust-to-gas ratio and
bulk metallicity (§3.5.2 and Appendix A.1).

However, the planet-metallicity correlation weakens systematically with increasing stellar
mass (Johnson et al. 2010). For A stars (1.4 < M∗/M� < 2.0), the correlation is arguably
not present. This calls into question the need for supersolar metallicities to form planetesi-
mals. The observations of Johnson et al. (2010) might still be reconciled with gravitational
instability if more massive stars host more massive disks, although disk mass would have
to scale with stellar mass in a faster than linear way to lower the threshold Toomre density
(equation 3.10). The possibility also remains that the observations are not actually a direct
or sensitive probe of the theory. The observations concern stellar metallicity, which might
at best correlate with the global metallicity of the disk, integrated over both disk height and
disk radius. By comparison, theory concerns the local metallicity Σd/Σg, integrated over
height but not radius. This local metallicity (not to be confused with the local dust-to-gas
ratio µ) can evolve substantially from its global value, as a consequence of radial particle
drifts and photoevaporation (e.g., CY10).

Rather than look to their parent stars for evidence for local disk enrichment, we can look
to the planets themselves. If planetesimals can only form in metal-enriched environments, we
expect that the resultant planets will also be metal-enriched. Guillot et al. (2006) computed
the bulk metallicities of the first nine extrasolar planets discovered to be transiting, all of
which are hot Jupiters. The results are listed in Table 3.1, together with the modeled bulk
metallicities of Jupiter and Saturn. All eleven are indeed metal-enriched, by factors ranging
from 2–47 relative to the Sun, and 2–20 relative to their host stars. One caveat behind these
results is that models of hot Jupiter interiors are subject to the uncertainty over the extra
source of internal heat responsible for their unexpectedly large radii (see, e.g., Batygin &
Stevenson 2010, who also describe a promising solution). To inflate planetary radii, Guillot
et al. (2006) included in each hot Jupiter model an additional source of power equal to 0.5%
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Table 3.1 : Metallicities of Extrasolar Planets (Guillot et al. 2006) and Solar System Gas Giants
(Guillot 2005).

Name Mplanet MZ
a Zplanet Zplanet/Z�

b [Fe/H]∗ Zplanet/Z∗
(M⊕) (M⊕) (MZ/Mplanet)

HD209458 210 20 0.095 6.35 0.02 6.06
OGLE-TR-56 394 120 0.304 20.3 0.25 11.418
OGLE-TR-113 429 70 0.163 10.9 0.15 7.7
OGLE-TR-132 350 105 0.3 20 0.37 8.531
OGLE-TR-111 168 50 0.297 19.84 0.19 12.81
OGLE-TR-10 200 10 0.05 3.33 0.28 1.75

TrES-1 238 50 0.21 14.0 0.06 12.2
HD149026 114 80 0.70 46.78 0.36 20.42
HD189733 365 30 0.082 5.479 -0.03 5.87
Jupiter 318 10–42 0.03–0.13 2.0–8.8 0 2.0–8.8
Saturn 95.2 15–30 0.16–0.32 11–21 0 11–21

aThe metal content for each listed extrasolar planet was derived from a model of a planetary
interior that includes an additional energy source at the planet’s center whose power equals 0.5%
of the incident stellar luminosity.

bThe solar metallicity Z� is taken to be 0.015 (Lodders 2003).

of the received stellar irradiation (Guillot & Showman 2002). The bulk metallicities inferred
from the models depend on the details of this extra energy source.
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Figure 3.12 : Richardson numbers Ri from the marginally stable profile of our standard procedure
(top left) and from the marginally stable profile of our modified procedure (bottom left), for the
case of solar metallicity. Vertical dotted lines separate the “core” from the “edges” in the standard
profile (top right); these dotted lines are extended into the bottom panels for reference. We plot
Ri everywhere except where density gradients are too small to compute reliably; thus we avoid
the entire core region of the standard profile, and the midplane of the modified profile. Over
most of the edges—those layers outside the dotted lines which have directly experienced instability,
almost certainly related to the KHI—the Richardson number varies between ∼0.1–0.3. Thus, the
traditional assumption that dusty sublayers relax to states of spatially constant Ri receives some
empirical support from this figure.
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Figure 3.13 : Same as Figure 3.12 except for the case of 4× bulk solar metallicity. Here the evi-
dence that layers relax to states of spatially constant Ri is even stronger than for the case of solar
metallicity. Moreover, the value to which Ri tends in this metal-rich case is higher than for the
solar metallicity case: 0.4–0.6 here, versus 0.1–0.3 in Figure 3.12. This trend of increasing Ri with
increasing bulk metallicity Σd/Σg is the same trend independently identified in Paper I (see Fig-
ure 6 of that paper). In the bottom panels showing the marginally stable profile identified using
our modified procedure, the bumps near z ≈ ±0.005Hg are probably artificial, a reflection of our
imposed weighting function W (z).
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Chapter 4

Bondi-Hoyle Accretion in an Isothermal
Magnetized Plasma

1 In regions of star formation, protostars and newborn stars will accrete mass from their
natal clouds. These clouds are threaded by magnetic fields with a strength characterized
by the plasma β—the ratio of thermal and magnetic pressures. Observations show that
molecular clouds have β <∼ 1, so magnetic fields have the potential to play a significant role
in the accretion process. We have carried out a numerical study of the effect of large-
scale magnetic fields on the rate of accretion onto a uniformly moving point particle from
a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach
numbers of upM ≈ 45, magnetic fields that are either parallel, perpendicular, or oriented
45◦ to the flow, and β as low as 0.01. Our simulations utilize adaptive mesh refinement in
order to obtain high spatial resolution where it is needed; this also allows the boundaries to be
far from the accreting object to avoid unphysical effects arising from boundary conditions.
Additionally, we show our results are independent of our exact prescription for accreting
mass in the sink particle. We give simple expressions for the steady-state accretion rate
as a function of β and M for the parallel and perpendicular orientations. Using typical
molecular cloud values of M ∼ 5 and β ∼ 0.04 from the literature, our fits suggest a
0.4 M� star accretes ∼ 4 × 10−9 M�/year, almost a factor of two less than accretion rates
predicted by hydrodynamic models. This disparity can grow to orders of magnitude for
stronger fields and lower Mach numbers. We also discuss the applicability of these accretion
rates versus accretion rates expected from gravitational collapse, and under what conditions
a steady state is possible. The reduction in the accretion rate in a magnetized medium leads
to an increase in the time required to form stars in competitive accretion models, making
such models less efficient than predicted by Bondi-Hoyle rates. Our results should find
application in numerical codes, enabling accurate subgrid models of sink particles accreting
from magnetized media.

1Large portions of this chapter have been previously published as Lee, A. T., Cunningham, A., McKee,
C., Klein, R. 2014. Bondi-Hoyle Accretion in an Isothermal Magnetized Plasma. ApJ, 783, 50.
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4.1 Introduction
Accretion is ubiquitous in astrophysics. With examples including protostellar accretion

from molecular clouds, mass transfer between binary companions, and gas falling onto a
supermassive black hole in the center of galactic nuclei, understanding how (or whether) a
gravitating source gathers mass has received much attention over the past century. In the
case of star formation, considerable study has been given to understanding the process of
accretion from a background medium. Knowing how much mass a star can accrete from its
natal cloud will help elucidate, for example, whether the final mass of the star is determined
primarily through gravitational collapse (e.g., Shu 1977) or through post-collapse accretion
(e.g., Bonnell et al. 1997, 2001). Mass accretion also could play a role in the dynamics
of stars in clusters. If the accretor is moving relative to the background gas, then the
accretion of mass and momentum will be non-spherical, and this may play a role in the
radial redistribution of objects in stellar clusters (Lee & Stahler 2011).

Several physical processes exist for transferring mass from the cloud to the surface of a
(proto)star. In core-collapse models (Shu 1977), a dense core’s self-gravity induces global
gravitational collapse, resulting in supersonic infall either directly onto the stellar surface or
into a surrounding centrifugally supported disk. Material that ultimately ends up on the
star comes from a local gravitationally bound region of the parent molecular cloud. If the
core is not collapsing directly onto the star+disk, or if the core is exhausted and the star
is moving through the more tenuous regions of the cloud, another accretion mechanism is
at play. Here the local gas initially unbound to the star can be captured and subsequently
accreted. The self-gravity of this local gas is negligible relative to the gravity of the star itself.
Such accretion is often called Bondi accretion when the star is stationary or Bondi-Hoyle(-
Lyttleton) accretion when the star is moving relative to the background gas, named after
the pioneering investigators (Hoyle & Lyttleton 1939; Bondi & Hoyle 1944; Bondi 1952).

The primary goal of this work is concerned with understanding the steady-state mass
accretion rate for Bondi-Hoyle accretion when the background gas is an isothermal plasma
pervaded by a magnetic field. In particular, we seek to construct an interpolation formula
that reproduces both known analytic and numerical results as well as the steady-state accre-
tion rates we will obtain via numerical simulations. In our work and these previous works, the
effects of stellar winds and outflows are neglected. We begin this study by summarizing some
of the known results in the next section. From there, we propose new interpolation formulas
for the mass accretion rate of magnetized Bondi-Hoyle flow. This function will have two
free parameters, which we fix by fitting to numerical simulations. Section 4.3 discusses our
methodology and numerical convergence studies of the numerical code. Section 4.4 presents
the numerical results and the results of fitting our proposed interpolation formulas to the
simulation data. In Section 4.5 we discuss the applicability of such steady-state models in
regions of star formation. Section 4.6 concludes this work with a summary and discussion.
How these models can be implemented in sub-grid and sink particle algorithms is discussed
in Appendix B.
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4.2 Mass Accretion Rates

4.2.1 Known Results

The study of steady-state accretion from an initially uniform background medium has
enjoyed many analytical and numerical studies. Edgar (2004) gives a nice pedagogical review
of some of the earlier work. Hoyle & Lyttleton (1939) first solved the problem for a point
particle of mass M∗ moving through a collisionless fluid at (hypersonic) speed v0. Matter
was focused into a vanishingly thin wake and accreted through a spindle downstream of the
accretor. The accretion rate was

ṀHL = 4πr2
HLρ0v0 =

4πG2M2
∗ρ0

v3
0

, (4.1)

for the far-field mass density ρ0. Associated with v0 is the characteristic radius

rHL ≡
GM∗
v2

0

, (4.2)

which measures the dynamic length scale within which gravity wins over the inertia of the
gas. In the opposite limit of stationary or subsonic motion, the thermal pressure exceeds
the ram pressure of the gas by a factor of ∼ (cs/v0)2 for sound speed cs. Bondi (1952)
analytically solved the problem for a stationary accretor, arriving at

ṀB = 4πλr2
B ρ0cs =

4πλG2M2
∗ρ0

c3
s

(4.3)

= 1.02× 10−6

(
M∗

0.4 M�

)2 ( n0

104 cm−3

)( T

10 K

)−3/2

M� yr−1 , (4.4)

where we have defined the Bondi radius

rB ≡
GM∗
c2

s

= 9.0× 1016

(
M∗

0.4 M�

)(
T

10 K

)−1

cm . (4.5)

In our numerical evaluations, we have normalized the temperature T to 10 K, the number
density n0 to 104 particles per cm3, and masses to the solar mass M�. The mass density is
related to the number density by ρ0 = (2.34× 10−24 grams) · n0. The symbol λ is a function
of the adiabatic index γ (λ = exp(3/2)/4 ≈ 1.12 for an isothermal gas, γ = 1).

Both limits then established, Bondi proposed his venerable Bondi-Hoyle interpolation
formula that connects the stationary and hypersonic regimes:

ṀBH =
4πρ0r

2
Bcs

(1 +M2)3/2
=

ṀB/λ

(1 +M2)3/2
, (4.6)

where we have introduced the sonic Mach number M ≡ v0/cs. The characteristic velocity
for Bondi-Hoyle accretion is

vBH = (c2
s + v2

0)1/2 , (4.7)
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and the corresponding Bondi-Hoyle radius is

rBH =
GM∗
v2

BH

=
rB

1 +M2
. (4.8)

We will see in Section 4.4 that magnetic fields reduce the accretion rate below these values.
Furthermore, for the fiducial values of n0 and T and for M∗ > 0.4M�, Bondi accretion is not
in a steady state (Section 4.5).

We shall express all accretion rates in terms of the Bondi accretion rate in two equivalent
forms. For example, the Bondi-Hoyle accretion rate will be written as

ṀBH = φBH · 4πλr2
BHρ0vBH = φBH

(
cs

vBH

)3

ṀB . (4.9)

This first form emphasizes the underlying physical parameters, and we have introduced a
correction factor φBH = φBH(M), which will be of order unity. The second form is

ṀBH =

(
cs

vBH,eff

)3

ṀB . (4.10)

Here, the effective Bondi-Hoyle velocity vBH,eff is an interpolation formula; the rationale for
introducing the second form will become clear below.

Simulations have shown that Bondi’s interpolation formula (φBH = 1/λ) can be in er-
ror by several ten’s of percent (Shima et al. 1985; Ruffert 1994). These authors, among
others, have considered the non-isothermal case as well and have proposed two-dimensional
interpolation formulas (in M and γ) to match simulation results. Typically such formulas
are monotonically decreasing functions of both M and γ and agree well the simulations.
A complication is that Ruffert (1994, 1996) has shown that accretion rates do not decrease
monotonically as M increases, but instead increase near M ∼ 1 and then asymptote to
ṀHL. For the isothermal case, we have found that

φBH =
(1 +M2)3/2[1 + (M/λ)2]1/2

1 +M4
, (4.11)

corresponding to

MBH ≡
vBH,eff

cs

=
(1 +M4)1/3

[1 + (M/λ)2]1/6
, (4.12)

and agrees with the numerical results of Ruffert (1996, for γ = 1.01) and those reported
below with a maximum error of 27%. Observe that φBH → 1 asM→ 0 and φBH → 1/λ for
M� 1. This function is plotted in Figure 4.1.

Other numerical studies of accretion have studied the role of additional physics like
radiation pressure (Milosavljević et al. 2009), turbulence (Krumholz et al. 2006), turbulence
and magnetic fields in spherically symmetric accretion (Shcherbakov 2008), the presence of
a disk (Moeckel & Throop 2009), or thermal instabilities (Gaspari et al. 2013). Our finding
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is that Equation (4.9) with φBH given by Equation (4.11) is a reasonable measure of the
accretion rate for isothermal Bondi-Hoyle accretion when additional physics do not play an
appreciable role in the dynamics of the gas near the accretor.

One physical effect that could play an important role in the gas dynamics is a global
magnetic field. In star-forming regions, there is ample evidence that molecular clouds are
pervaded by magnetic fields (Crutcher 1999; McKee & Ostriker 2007), whose strength (i.e.,
its ability to influence dynamics) can be characterized by the plasma β, the ratio of the
thermal pressure to the magnetic pressure:

β ≡ ρc2
s

B2/8π
= 2

(
cs

vA

)2

= 2

(
MA

M

)2

, (4.13)

for magnetic field amplitude B. We have also introduced the Alfvén Mach number MA =
v0/vA, the ratio of the gas velocity to the Alfvén velocity, vA = B/

√
4πρ. Observations of the

Zeeman effect, linear polarization emission of dust, and the Chandrasekhar-Fermi method
(see the review of Crutcher 2012) have suggested molecular clouds have β values of most
order unity, but more have β < 0.1 (e.g., Crutcher 1999).

Cunningham et al. (2012) have studied accretion from a magnetized, isothermal, static
medium. For the case in which thermal pressure is negligible (the low-β limit) they argued
that gas would collapse along the field lines from a distance ∼ rB above and below the point
mass, and would then accrete from ∼ an Alfvén radius,

rA ≡
GM∗
v2

A

=
c2

s

v2
A

rB (4.14)

at velocity ∼ vA. In our notation,

ṀA = φA · 4πλrBrAρ0vA . (4.15)

As a result, the accretion rate varies as v−1
A ∝ β1/2,

ṀA = φA

(
cs

vA

)
ṀB = φA

(
β

2

)1/2

ṀB . (4.16)

Cunningham et al. (2012) expressed the accretion rate as

ṀA =

(
β

βch

)1/2

ṀB , (4.17)

where βch is a numerical factor; this corresponds to φA = (2/βch)1/2. They estimated βch ≈ 5,
so that φA = 0.63. From here, they generalized this to include a finite temperature (the
“Alfvén-Bondi" case). By writing vA, rA → vAB, rAB in Equation (4.15), the accretion rate
becomes

ṀAB = φAB · 4πλrBrABρ0vAB = φAB

(
cs

vAB

)
ṀB , (4.18)

=

(
cs

vAB,eff

)
ṀB , (4.19)
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where vAB ≡ (c2
s + v2

A)1/2 and rAB = GM∗/v
2
AB.2 The effective Alfvén-Bondi velocity, vAB,eff ,

can be chosen to provide an interpolation formula between the Alfvén and Bondi cases that
agrees best with the numerical simulations; Cunningham et al. (2012) adopted

vAB,eff ≡

[
cns +

(
βch

2

)n/2
vnA

]1/n

=

[
1 +

(
βch

β

)n/2]1/n

cs , (4.20)

which gives

ṀAB =

[
1 +

(
βch

β

)n/2]−1/n

ṀB . (4.21)

They found that n = 0.42 and βch = 5.0 gave agreement with their numerical results to
within 5% for β ≥ 0.01.

4.2.2 Alfvén-Bondi-Hoyle Accretion

We wish to extend the work of Cunningham et al. (2012) to the case in which the
accreting mass is moving through a magnetized ambient medium. Our primary interest is in
star-forming regions, which are approximately isothermal because the dust and the molecules
can efficiently radiate the energy supplied by compression; we therefore assume that the gas is
isothermal.3 The magnetic flux in stars is orders of magnitude less than that in the gas from
which they form, so most of of the magnetic flux in the accreting gas decouples from the gas
and accumulates in the vicinity of the protostar (Zhao et al. 2011). As a result, even in cases
where the thermal pressure (∼ ρc2

s ) or ram pressure (∼ ρv2) initially control the dynamics
of the gas near the accretor, accretion can redistribute magnetic flux so that the magnetic
pressure (∝ B2) eventually dominates the dynamics near the accreting object. In steady-
state Bondi accretion from a magnetized gas, Cunningham et al. (2012) found that even if
β was initially > 1, a steady-state was reached when the gas within ∼ rAB of the accretor
had β ≈ 1. In a steady-state flow where there is relative motion between the gas and the
accretor (i.e., magnetized Bondi-Hoyle accretion), we anticipate that ifMA � min(1,M),
the inertia of the gas will play a small role in setting the steady-state accretion rate, so Ṁ
will be well approximated by the Alfvén-Bondi result (Eq. 4.18). If instead MA � 1, the
inertia of the gas is able to drag away most of the magnetic flux so that the the magnetic
field is not dominant anywhere and the accretion rate should approach the non-magnetized
Bondi-Hoyle limit. We wish to develop an approximate analytic expression for the rate
of accretion by a point mass moving at a constant speed through a uniform, isothermal,
magnetized medium by further generalizing the above known results. Our expression will

2Note that Equation (16) of Cunningham et al. (2012) has a typo, one factor of rAB should be written
as rB instead.

3As we discuss in Section 4.6, our results should also be applicable to the central regions of active galactic
nuclei.
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therefore also include parameters n and βch, which we can then adjust to best reproduce the
results of our simulations of magnetized Bondi-Hoyle flow.

We generalize Equation (4.18) by replacing rB with rBH, rAB with rABH, and vAB with

vABH ≡ (c2
s + v2

0 + v2
A)1/2 . (4.22)

Here, and throughout the remainder of the chapter, cs is the isothermal sound speed. With

rABH ≡
GM∗
v2

ABH

, (4.23)

the accretion rate is then

ṀABH = φABH · 4πλrBHrABHρ0vABH = φABH

(
c3

s

v2
BHvABH

)
ṀB (4.24)

=

(
c3

s

v2
BH,effvABH,eff

)
ṀB. (4.25)

Equations (4.24–4.25) do not take into account the orientation of the flow relative to the
ambient magnetic field. In Section 4.4.2 below, we find that we need different interpolation
formulas for the cases where the flow is parallel and perpendicular to the magnetic field. For
the parallel case, we generalize vAB,eff to vABH,‖,eff with

vABH,‖,eff

cs

=

[(
vBH,eff

cs

)n
+

(
βch

β

)n/2]1/n

. (4.26)

The accretion rate in this case is

Ṁ‖ =
1

M2
BH

{
Mn

BH +

(
βch

β

)n/2}−1/n

ṀB , (4.27)

whereMBH was defined in Equation (4.12). Observe that this expression reduces to Bondi
accretion for M = β−1 → 0, to Bondi-Hoyle accretion if β → ∞, and to Alfvén-Bondi
accretion forM = 0 and arbitrary β. The factor φABH,‖ in this case is then

φABH,‖ = φ
2/3
BH ·

(
vABH

vABH,‖,eff

)
; (4.28)

it is also plotted in Figure 4.1.
For flows perpendicular to the field, we obtain better agreement with our simulations

with the less-intuitive interpolation

vABH,⊥,eff

cs

≡ max
[
vBH,eff

cs

,
vABH,‖,eff

vBH,eff

]
(4.29)
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in Equation (4.25). One can readily verify that this has the correct limits for Bondi, Bondi-
Hoyle, and Alfvén-Bondi accretion. We then obtain

Ṁ⊥ =
1

M2
BH

min

 1

MBH

, MBH

[
Mn

BH +

(
βch

β

)n/2]−1/n
 ṀB . (4.30)

An immediate interesting result of this formulation—that is born out in our simulations, see
§4.2—is for the particular case of highly supersonic flow with an Alfvén Mach number >∼ 1,
the accretion rate for the perpendicular case reduces to

Ṁ⊥ =
ṀB/λ

M3
= ṀHL (M� 1, MA ≥ 1) , (4.31)

even whenMA ≈ 1.
If the point mass is moving through a medium at an angle θ with respect to the magnetic

field, we approximate the accretion rate by

Ṁ ' Ṁ‖ cos2 θ + Ṁ⊥ sin2 θ . (4.32)

Indeed, we confirm for one of our simulations that when θ = 45◦, the resulting accretion rate
is decently approximated by the average of the two limiting rates. If the orientation changes
randomly in time, the proposed average accretion rate is

Ṁ ' 1

2

(
Ṁ‖ + Ṁ⊥

)
. (4.33)

In order to test our proposed interpolation formulas, we study the problem of Bondi-
Hoyle accretion in a magnetized plasma using the RAMSES MHD code (Teyssier 2002) over
a range of field strengths and sonic Mach numbers relevant for star formation. These simu-
lations employ the adaptive mesh refinement (AMR) capabilities of the code to retain high
spatial resolution where it is needed—close to the accreting object—while allowing for a
large computational domain to prevent the boundaries of the domain from influencing the
steady-state flow. As noted above, we do not consider the effects of stellar winds or outflows
on the accretion rate. The numerical methodology is described in the next section.

4.3 Numerical Methods
Our methods are similar to those described in Cunningham et al. (2012). Here we sum-

marize the methods, highlighting the significant differences in this work, present the results of
our convergence study, and point to where the reader can find additional details if interested.
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We solve the equations of ideal MHD for an isothermal gas with a fixed point mass at
the origin:

∂ρ

∂t
+∇ · ρv = −SM(x) , (4.34)

∂ρv

∂t
+∇ · (ρvv) = −∇

(
Pth +

B2

8π

)
+

B · ∇B
4π

− GM∗ρ

x2
x̂− SM(x) · v , (4.35)

∂B

∂t
−∇× (v ×B) = 0 , (4.36)

Pth = ρc2
s . (4.37)

Here v is the velocity of the gas, x is the position relative to the sink particle, and B is the
magnetic field. Self-gravity of the gas is neglected. In the code, the point mass is represented
by a fixed sink particle located at the center of the computational domain. The term SM
allows for mass accretion onto the central point mass if gas flows into a sphere of radius
4∆x, where ∆x is equal to the size of the grid cell on the finest AMR level. The accreted
gas’s momentum is also removed from the grid, though the particle is held stationary at the
center of the domain.4 The sink particle is allowed to accrete mass but not magnetic flux,
and it accretes as much mass in a timestep ∆t as it can without introducing a new local
maximum in the Alfvén speed amongst the cells located within a shell with radius r between
4∆x and 6∆x from the accreting particle. That is,

SM(x) =


1

∆t
max

(
0 , ρ− B

4πv2
A,max

)
if |x| < 4∆x

0 otherwise
, (4.38)

where vA,max = max(vA(x); 4 ≤ |x|/∆x ≤ 6). The reader can also see the paragraph contain-
ing Equation (7) of Cunningham et al. (2012) for more details on the sink particle algorithm.

Since the sink particle accretes mass but not flux, the cells interior to the sink particle
radius decouples the gas from the field. In reality, non-ideal MHD effects remove the majority
of the accreted gas from the field within the accretion disk < 100 AU from the star; see
equation (48) of (Li & McKee 1996) or the review of Armitage (2011). Our sink particles
will typically have a radius of ∼ 500 AU, so our treatment of non-ideal MHD effects requires
a sub-grid model; our prescription was given above.5 Furthermore, this also means that
gas just interior to the sink particle radius could be artificially affected by non-ideal effects.
Nonetheless, both the exact prescription for how gas is removed from the field lines and
the size of the sink particle are unimportant as long as the gas entering the sink region

4We note that the absence of the −SM(x) · v term in the equations of Cunningham et al. (2012) is a
typographical mistake.

5Non-ideal effects can also play a role at larger distance (. 1000 AU) within shocks that originate from
the collision of in-falling gas and the magnetic field that has been freed from accreted material (Li & McKee
1996).



4.3. NUMERICAL METHODS 76

has accelerated to free-fall. If this has occurred, the in-falling gas has causally disconnected
from the surrounding medium and any artificial prescriptions cannot alter the far-field gas.
We discuss how are results are independent of the sink particle conditions in more detail in
Section 4.2.

In addition to the very small magnetic flux the star gains by accretion, the star might
also generate its own field through dynamo action. The fields of newborn stars are observed
with strengths of order kGauss, but the dipole component of the field falls off as (R∗/R)3,
making the stellar field strength a few µGauss at ∼ 10 AU, which is already smaller than
the field in the ISM. Therefore, we neglect the field generated by the star itself.

For all our integrations, the gas is initially uniform with density ρ0 and sound speed cs.
The magnetic field is initially set to be uniform in the ẑ−direction with a magnitude set by
β. The speed of the gas is initially set to v0, which is oriented either parallel or perpendicular
to the B-field, except in one case where we orient v at an angle of 45 degrees. We explore a
parameter space of β andM. We consider β values of 1030, 102, 10, 1, 0.1, and 0.01 and
sonic Mach numbers that range from 0.014 to 44.7. For a given β, we select our velocities to
be either equal to the Alfvén velocity or -1, -1/2, 1/2, or 1 decade from this value. This gives
us a combination of runs that are both sub and super-sonic as well as sub and super-Alfvénic.
Table 4.1 tabulates the parameter space explored, and Figure 4.2 shows this parameter space
graphically. The plot identifies four regions of parameter space, depending on whether M
and MA are greater or less than one. Including the stationary runs of Cunningham et al.
(2012), our runs explore two of these regions quite well (M,MA > 1 and M,MA < 1).
The empty region (M < 1, MA > 1) is explored by hydrodynamic models of Bondi-Hoyle
flow (Ruffert 1996). The final region (M > 1,MA < 1) is only explored by one simulation.
Typical star forming regions have MA ≈ 1 (Crutcher 2012), so we also explore two cases
with an Alfvén Mach number of unity.

We carried out our computations using the RAMSES code (Teyssier 2002), an adaptive-
mesh-refinement (AMR) code with an oct-tree data structure. The computational domain is
a three-dimensional Cartesian domain with a length of 50 rB in each direction. We discretize
the domain onto a Cartesian base-level grid of 643. Denote this level as level L = 0. We
allow for seven additional levels of refinement (L = 1, 2, ..., 7), with each level incrementing
the grid-cell density by 23 above the previous level. Each grid cell in the domain is initially
refined up to level L if its distance x from the center of the domain satisfies(

25

2L+1

)
rB < x <

(
25

2L

)
rB .

That is, initially the grid is a set of concentric spheres of increasing refinement as the radius
decreases. We also allow for further adaptive refinement if a particular pair of zones has a
steep density gradient: if any component of (∆x/ρ)∇ρ exceeds 1/2, those cells are refined.
In this evaluation, the ρ in the denominator is the average of the two cell densities. This
second criterion is met only at later times when transient features develop near the sink
particle.

Seven AMR levels sufficiently resolve the relevant lengths scales for the majority of our
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runs. Since our runs include thermal pressure, gas motion, and magnetic fields, we want
to ensure not just that the length scale rAB scale is resolved—as was done in Cunning-
ham et al. (2012)—but that the Alfvén-Bondi-Hoyle length scale (Equation 4.23) is ad-
equately resolved. The maximum level of refinement provides an effective resolution of
∆x = 50 rB/(64 · 27 cells) = rB/(164 cells). Table 4.1 tabulates the value rABH/∆x. All
length scales are resolved by at least 7 cells on the finest level. We note that we are allow-
ing one less level of refinement compared to Cunningham et al. (2012), who allowed up to
Lmax = 8. Even though some runs have the smallest length scale resolved by ≤ 8 zones, we
have confirmed through numerical convergence studies that reducing the number of AMR
levels from Lmax = 8 to Lmax = 7 does not affect the steady-state accretion rate for several
of our runs; see Figure 4.3, where the mass accretion rate for several examples is compared
as a function of Lmax. In cases where increasing Lmax changes the steady state accretion rate
by more than 30%, we include additional levels of refinement until the disparity between
simulations diminishes.

The cases (β,M) = (0.1, 44.7) , (0.1,4.47) and (0.01,4.47) require special treatment. For
the first, rABH ≈ rBH ≈ rB/2000 is not adequately resolved by even one cell at the finest
level of refinement with our standard procedure. Furthermore this implies the sink particle—
having a radius of four times the finest grid cell—exceeds the smallest length scale and thus
no longer approximates a point particle. Since rBH is orders of magnitude smaller than the
other two length scales—and consequently the ratio of pressures Pram/PB ≈ 200—we expect
the inertia of the gas to dominate the dynamics, so the time for the flow to reach a steady
state should be of order tABH ≈ tBH = rBH/v0 = tB/M3 � tB = rB/cs. Unperturbed fluid
traverses only a small part of the computational domain in the time required for the flow to
achieve steady-state. In order to adequately resolve the Bondi-Hoyle length scale in this case,
we reduce the size of the box by a factor of 27, making the length of the domain ≈ 780 rBH.
We also allow one additional level of refinement, making the finest level of refinement smaller
by an additional factor of 2 so that rBH/∆x ≈ 21. A steady state is reached in a few tBH,
so we need not worry about boundary conditions affecting the state of the flow near the
accretor.

For the cases of (β,M) = (0.1, 4.47), and (0.01, 4.47), rABH/∆x ≈ 4 and 1, respectively,
when Lmax = 7. A convergence study showed that, for the parallel orientation, two additional
levels were required for the former case and one for the latter. Convergence is achieved in
the latter case even though the ABH length, rABH, is resolved by only about 2 zones. The
former required more levels becauseMA = 1, and we find that the accretion rates for these
cases are most sensitive to the flow morphology ∼ rABH from the accretor, and thus require
the most resolution at these scales (see Figure 4.3). For the perpendicular orientations, only
one additional level was required to show convergence.

All quantities are computed in the cell centers, except for the magnetic field, which is
computed on the cell faces. The magnitude of a particular cell’s magnetic field is then the
average of the magnitude of the cell faces.

We set ρ0 = 10−8(M∗/r
3
B) in all our simulations. The total mass of the gas is then

(50 rB)3ρ0 ≈ 10−3M∗ � M∗, justifying our neglect of the gas’s self gravity. Integrations are
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run to a final time tend sufficiently long to attain a statistically steady accretion rate onto
the central particle. Using a stellar mass of M� with T = 10 Kelvin gas, rB ∼ 22, 000 AU.
For our default resolution with seven levels of refinement, the finest level has a resolution
of ∼ 135 AU, and the radius of the sink particle is 540 AU. For the Mach 44.7 run where
the box size is reduced, the radius of the sink particle is ∼ 2 AU. For this run only, the
stellar field could influence the gas surrounding the sink particle. However, given the high
momentum of the gas (MA = 10), this run will mimic non-magnetic hydrodynamic flow
where additional non-ideal effects play little-to-no role in setting the final accretion rate.

4.4 Results

4.4.1 Morphology

All of our subsonic runs are also sub-Alfvénic, making the gas morphologies and the final
accretion rates well approximated by the stationary models of Cunningham et al. (2012). In
this section we describe the supersonic cases, particularly theM = 1.41 andM = 4.47 runs.

Figures 4.4 and 4.5 show snapshots late in the simulations after a steady state accretion
rate has been established. These two-dimensional slices through the center of the computa-
tional domain show the gas density (color bar), velocity of the gas (arrows), and magnetic
flux direction (lines) for β ≥ 0.1 and M = 1.41 and 4.47. Figure 4.6 takes the M = 1.41
and β = 1 runs and plots the local values ofM, β,MA, and B2 at the same late time.

The general evolution of the runs goes as follows. Initially, gravity pulls nearby gas
towards the sink particle, pinching the magnetic field perpendicular to the far-field flow
direction for the parallel orientation, and parallel to the flow for the perpendicular orienta-
tion. Gas flows relatively undisturbed until it hits the developing shock at the Mach cone
or, in some cases, a bowshock propagating upstream. These shocks retard the gas to sub-
magnetosonic velocities, and the gas continues to flow along field lines downstream of the
shocks. Near the source, field lines are drawn towards the sink particle, creating a network
of pathways for gas to flow onto the accretor. The extent which field lines can be dragged
toward the source depends on the values of M and MA; stronger fields are more resis-
tant to bending (compare, for example, field lines downstream of the shocked region for the
M = 1.41 parallel runs in the left panel of Figure 4.4). Mass-loaded field lines that reach
the sink are relieved of their gas, eliminating the gravitational force pulling holding them
at the sink. Like a released bowstring, the field snaps back into the surrounding gas (this
is prominently shown in the perpendicular orientation for M = 1.41 and β = 1 in Figure
4.5; here the downstream field lines were recently released). While the mass accretion rate
reaches an approximate steady state, the morphology of the flow shows larger fluctuations.
The details of this morphology depend on the initial orientation of the field to the flow,
which we now consider in turn.
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Parallel Orientations

In the parallel case, there are two types of shock: hydrodynamic, in which B is unaffected,
and switch-on shocks, in which a perpendicular component of the field appears behind the
shock front (Draine & McKee 1993). The conditions for the occurrence of a switch-on shock
are (1)MA > 1: (2) vA > cs, corresponding to β < 2; and (3) the post-shock flow must be
less than vA cos θ2, where the subscript 2 denotes post-shock quantities and θ is the angle
between the magnetic field and the flow velocity. The first two requirements ensure that the
shock velocity exceeds the fast-wave velocity vF , which is max(vA, cs) = vA in this case. The
third, post-shock requirement translates to an upper bound on the pre-shock velocity. For
isothermal gas (γ = 1), as in our simulations, this upper bound is infinite (Draine & McKee
1993).

Gravity amplifies ρ and B relative to the background values ρ0 and B0, but primarily
inside rABH. Elsewhere, shocks can also produce density and/or field enhancements. For
the parallel orientations, a Mach cone develops immediately for all the supersonic runs and
typically extends far beyond rABH. This is the enhanced density region surrounding and
downstream from the accretor in Figure 4.4. At the later times shown in this Figure, the
Mach cone may have joined onto shocks propagating upstream of the accretor, which also may
end up disturbing the Mach cone’s shape (e.g., theM = 1.41 runs in Figure 4.4). In the case
ofM = 4.47 and β = 0.1, the Mach cone shock front is located only close downstream from
the accretor. Here, the unshocked, low-β, fast-moving gas drags the shocked gas downstream
along field lines rather than allowing the Mach cone to extend at the same opening angle.
Upstream shocks develops for allM = 1.41 runs, either immediately when β = 1 (MA = 1)
or at later times for β > 1. Figure 4.7 plots the shock front location as a function of time
for β = 1 andM = 1.41. A least-squares fit to an exponential function suggests the shock
will vanish at ∼ 3rABH, whereMA drops to unity.

As noted above, switch-on shocks occur only for β < 2. Our simulations show that
perpendicular field components can develop in the flow at a finite distance downstream of
the shock; of course, if the shock is not exactly parallel, then the upstream perpendicular
component of the field can be amplified by the compression in the shock. In either case, the
perpendicular field component causes material to pile up on one side of the sink particle, and
the inertia of the gas drives kinks in the field farther downstream from the shock (see the
left side of Figure 4.4). As the field piles up, magnetic pressure eventually dominates and
the field straightens itself out, but overshoots, collecting on the opposite side of the accretor.
The resulting morphology upstream is an oscillating motion of the field and the flow with a
period of ∼ tB.

Material not immediately upstream of the accretor flows into the Mach cone and then
primarily travels through the region immediately downstream of the shock towards the sink
particle. However, we note that for these particular simulations, the region of reduced B
along the Mach cone is most likely due to numerical reconnection because the field flips
orientation over a few grid cells; we have not carried out higher resolution simulations to
test if this structure is converged. However, we have ensured that the mass accretion rate
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is converged, as discussed in the next subsection. The Mach cone results in the downstream
being less dense than the background, rather than material forming a downstream wake as
in the hydrodynamic limit.

ForM = 4.47, the bowshock only forms for β = 0.01. Even though β = 0.1 givesMA = 1
initially, the region interior to rABH is so close to the accretor that any decrease with β also
occurs with an increase in M, resulting in MA < 1 never being satisfied. For larger β,
even less field enhancement occurs upstream. As a result, the M = 4.47 runs resemble
non-magnetic flows, with a downstream “wake" forming as the region of gas shocked from
the Mach cone. The majority of the mass accretion occurs through this wake.

Perpendicular Orientations

For the perpendicular orientation, shocks occur if the flow velocity exceeds vF , which is
(v2

A + c2
s )1/2 = cs(1 + 2/β)1/2 in this case. Even if this condition is not initially satisfied, a

magnetosonic wave launched from the sink particle boundary can steepen into a weak shock
as it moves upstream from the sink particle. We see this, for example, in the M = 1.41,
β = 1 case. Initially vF = (3/2)1/2v0. Immediately upstream of the shock, both ρ and B are
increased from compression, but ρ has increased even further from material falling down field
lines. This results in an increased β and reduced vF . Figure 4.7 plots this front location.
Since β has increased to ∼ 1.2, the wave (which has steepened into a weak shock) moves at
a speed ∼ (1 + 2/1.2)1/2cs − v0 ∼ 0.22cs upstream, relative to the accretor. Perpendicular
to the flow, a weak shock moves outward at ∼ vF .

The M = 1.41 runs all show the development of a dense irrotational disk around the
accretor interior to ∼ 0.25rB, with the disk normal perpendicular to the incoming flow. For
β = 1 and 10, this disk attaches to a downstream wake. In the β = 100 case, colliding flows
have made the inner ∼ 0.25rB flow unstable, similar to the oscillating flow we saw in the
parallel cases. The weak field ends up draped around the shocks that form around the sink
particle. For M = 4.47, again the flow resembles the non-magnetic case. No bowshock is
launched except in the β = 0.1 case, but, as discussed above, this is a transient of the flow.

We also perform one run at β = 1,M = 1.41 with a 45-degree angle between the flow and
magnetic field. Within ∼ rABH, the flow tends to align itself with the local magnetic field,
and the general flow resembles that of the parallel orientation. The remaining runs, with
M = 44.7 and β = 0.1 or with M = 1.41, 4.47 and β = 1030, are dynamically dominated
by the ram pressure of the gas and therefore closely resemble non-magnetic hydrodynamic
flow.

4.4.2 Mass Accretion Rate

For each simulation, the mass accretion rate, Ṁ , rises with time and then levels off after
a few tB = rB/cs. Each simulation is run until the rate plateaus for a least a few tABH.
The rate quoted in Table 1 is the average over the last 1/6 of the integration, following
Cunningham et al. (2012).
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Figure 4.8 gives an example of the time evolution of Ṁ for the β = 1 runs. The rate
is averaged over 0.2tB bins to reduce noise. In general, when M < 1 or MA � 1, the
orientation of the field makes little difference in the final accretion rate despite the very dif-
ferent morphologies. WhenMA ≈ 1, the perpendicular rate always exceeds the parallel rate.
WhenM� 1, ṀHL well approximates the perpendicular accretion rate, even, surprisingly,
whenMA ≈ 1.

In the high β (≥ 100) subsonic runs of both our work and that of Cunningham et al.
(2012), the accretor undergoes a period of rapid accretion before the accretion rate suddenly
drops to ∼ 1/2 of the original value (see Figure 6, right panel of Cunningham et al. 2012).
The reason for this effect is that the magnetic field eventually becomes dynamically dominant
after enough flux has built up near the accretor. Cunningham et al. (2012) showed that this
occurs after t >∼ (β/100)1/2tB for a dynamically weak field and could take an arbitrarily long
time as β →∞. We note that we do not see this effect for ourM = 1.41 run with β = 100.
In this case, the magnetic flux is unable to appreciably build up within rABH ∼ rB/4 before
the gas pulls the flux downstream. Below, when we determine the best fit parameters for our
interpolation formulas, we use the initial (larger) steady-state value for the mass accretion
rate since in astrophysical applications the flow is often not steady for long time periods.

Two requirements are needed to ensure that the accretion rate has converged. First, the
value of Ṁ should not depend on the resolution of the grid. As explained in §3, we have
verified that this is the case. Increasing the resolution also decreases the size of our sink
particle, which has a radius of 4∆x. The second requirement is to ensure that the sink
particle boundary conditions cannot influence the value of Ṁ . To do this, we require that
the accreting gas pass through the fast magnetosonic point at r > 4∆x, so that it becomes
causally disconnected from the ambient medium before encountering the sink region. For
each run, we calculate the mass-weighted volume average ofMF = v/vF for the cells either
5 or 6 ∆x from the sink particle. Recall that gas is removed from flux tubes inside the
sink region. The resulting low-density flux tubes are interchange unstable and will rise away
from the accretor. Since we are interested in verifying that the accreting gas is causally
disconnected from the ambient medium, we include only accreting gas (i.e., gas from cells
where v ·x < 0, where x is the position vector from the sink particle’s center) in calculating
the average of MF . This averaged value is given in Table 1. For all our runs, we confirm
that we have captured the transition.

With the simulation data, we can now determine βch and n in our proposed interpo-
lation formulas (Equations 4.27 and 4.30) from Section 4.2.2 . Recall that these formulas
generalized and built upon previous known analytic and numerical results. In particular,
we have proposed a simple interpolation formula for the Bondi-Hoyle limit (Equation 4.9),
which matches the simulation results of Ruffert (1996). We performed two β = 1030 runs
to verify this equation, finding it underestimates the true accretion rate by only 19% and
3% for M = 1.41, 4.47, respectively. The mass accretion rate for the diagonal case lies
between the the parallel and perpendicular rates; the average of the predicted parallel and
perpendicular rates (Equation 4.33) reproduces this diagonal case to 18%.

We perform a least-squares fit to Equations (4.27) and (4.30) using the union of data
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from this work and from Cunningham et al. (2012). Since the values of the accretion rate
can vary over orders of magnitude, we define the residuals in the least-squares function to
be the difference of the logarithms rather than of the absolute values:

S =
∑

(log10 Ṁdata − log10 Ṁfit)
2 . (4.39)

Each data point is given an equal statistical weighting. Minimizing S, we find βch = 18.3±
0.004 and n = 0.94 ± 0.15 with S = 0.956. We do not include the diagonal run or the two
hydro runs in our fit.

The standard errors show that matching the data to these interpolation formulas is not
terribly sensitive to the exact value of n. Since the data are consistent with using n = 1,
we adopt this value for simplicity. Fixing n = 1, a least-squares fit to the data yields
βch = 19.8± 0.006 with S = 0.96. We fix βch as 19.8.

In Section 4.2.2 we wrote all accretion rates in terms of ṀB, which is constant across our
entire parameter space. Since we are studying gas initially in uniform motion, normalizing
to ṀBH (Equation 4.10) is also useful. Indeed with this normalization, our parallel accretion
rate can be written in terms of one parameter

MBHβ
1/2 = 21/2MBH

(
cs
vA

)
, (4.40)

which varies as B−1 if the other parameters are held constant (MBH is defined in Equation
4.12; recall thatMBH → 1 asM→ 0). Equations (4.27) and (4.30) can be rewritten as

Ṁ‖

ṀBH

=

[
1 +

4.4

(MBHβ1/2)

]−1

, (4.41)

Ṁ⊥

ṀBH

= min

{
1 , MBH

[
1 +

4.4

(MBHβ1/2)

]−1
}

. (4.42)

The perpendicular rate, however, potentially requires knowledge of both MBH and β indi-
vidually. Figures 4.9 and 4.10 plot these fits for the parallel and perpendicular orientations.
These fits are able to reproduce the simulation data to within a factor of three.

For typical molecular cloud values of M ∼ 5 and β ∼ 0.04 (Crutcher 1999), which
corresponds to MA = 0.71, MBH = 5.15, and MBHβ

1/2 = 1.03, Equation (4.33) gives
an accretion rate of 4.2 × 10−3 ṀB. For the fiducial parameters given in Equation (4.4),
this corresponds to 4.3×10−9 M� yr−1, which is not that different from the hydrodynamical
prediction (Equation 4.10) of ṀBH = 6.9×10−9 M� yr−1. However, for smaller Mach numbers
of ∼ 2 and 0, the ratio of the predicted average accretion rate to the hydrodynamic value
decreases to 0.19 and 0.048, respectively. Figure 4.11 plots our parallel and perpendicular
fits, normalizing to ṀB (Equation 4.3). Here the disparity between the perpendicular and
parallel fits can be seen, especially whenMA < 1. We remind the reader that our runs only
have one instance where MA < 1 and M > 1: β = 0.01 and M = 4.47, and we found
little difference between the parallel and perpendicular rates, whereas the fits predict the
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perpendicular rate should be 4.6 times the parallel rate. However, this region of parameter
space is only a small region of the overall parameter space (Figure 4.2) and our fits do predict
the disparity between the parallel and perpendicular rates in the other three regions, as well
as whenMA = 1. Since we chose our non-magnetized limit to well reproduce the results of
Ruffert (1996), our fits also succeed in predicting the accretion rates forM < 1 andMA > 1,
even though we performed no runs ourselves in this region of parameter space.

4.5 Validity of the Steady-State Approximation
In both this work and that of Cunningham et al. (2012), we have made several approx-

imations in our analysis of Bondi- and Bondi-Hoyle-type accretion: (1) the accretion must
be in a steady-state (at least when averaged over times ∼ tB = rB/cs); (2) the accreting
gas must not be self-gravitating; and (3) the accretion rate must be determined by the mass
of the particle, not by the gravitational collapse of the ambient medium. As we shall see,
these approximations are all connected. We have also assumed that the ambient medium
is uniform and that the particle is small compared to rABH, but we shall not discuss these
approximations here. To keep our discussion simple, we restrict ourselves to Bondi accretion.

We define the Bondi mass as
MB ≡ 4πρ0r

3
B , (4.43)

so that the Bondi accretion rate is

ṀB '
MB

tB
, (4.44)

where the approximation consists of setting λ ' 1. The Bondi mass is the mass of gas located
within the Bondi radius of the particle and is approximately the mass accreted within one
Bondi time. For steady-state accretion, the mass of the particle must change slowly, i.e., the
mass accreted in one Bondi time must be small compared to the particle mass: ṀBtB �M∗.
Therefore, the steady-state approximation reads

MB

M∗
' ṀBtB

M∗
� 1 . (4.45)

The self-gravity of the ambient gas is characterized by the gravitational mass,

MG ≡
c3

s√
G3ρ0

; (4.46)

the Bonnor-Ebert mass, the maximum mass of an isothermal sphere in hydrostatic equilib-
rium, is 1.182MG (Ebert 1955; Bonnor 1956). We then have the identity

MBM
2
G = 4πM3

∗ , (4.47)
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which implies
MB

MG

=
1√
4π

(
MB

M∗

)3/2

� 1 (4.48)

(Equation 4.45). The condition for the accreting gas to be non-self-gravitating is that the
mass inside the Bondi radius be small compared to the gravitational mass, MB � MG.
Equation (4.48) then implies that Bondi accretion is in a steady state if and only if the
accreting gas is not self gravitating.6 In other words, the first two approximations listed at
the start of this section are really only one approximation. The steady-state approximation,
together with the identity (4.47), place an upper bound on the particle mass,

√
4π

M∗
MG

=

(
MB

M∗

)1/2

� 1 , (4.49)

so that

M∗ � 0.36

(
T

10K

)3/2(
104 cm−3

n0

)1/2

M� , (4.50)

where n0 is the density of hydrogen nuclei in the ambient gas. The right-hand side of
Equation (4.50) is just MG/

√
(4π). If M∗ >∼MG/

√
(4π), the gas mass within rB is massive

enough to be self-gravitating, and therefore the mass of the particle will not change slowly.
For example, if M∗ = 1.0M�, then for the fiducial parameters above, MB ≈ 2.5 M�, which
exceeds MG ≈ 1.3 M�: The fact that MB exceeds MG means that the gas is self-gravitating,
and the fact that MB exceeds M∗ means that that accretion is not in a steady state. Note
that Equation (4.50) is based on the assumption that turbulence inside rB is negligible; if
turbulence is important on that scale, as it may be in regions of high-mass star formation,
then the theory presented here would have to be generalized, as it was for the non-magnetic
case by Krumholz et al. (2006).

Finally, we compare the accretion rate due to gravitational collapse,

ṀG ∼
c3

s

G
, (4.51)

(Shu 1977) with that due to Bondi accretion. Observe that the mass accreted due to gravi-
tational collapse in one Bondi time is very large, ṀGtB ∼M∗, so that

ṀG

ṀB

∼ M∗
MB

� 1 , (4.52)

for steady Bondi accretion. We therefore have the apparently paradoxical result that the
rate of accretion via gravitational collapse greatly exceeds that due to Bondi accretion when
the latter is in steady state (MB � M∗). There are then two possibilities for normal Bondi

6Lee & Stahler (2011) also showed that a steady state is realizable for Bondi-Hoyle accretion when the
gas is not self-gravitating.
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accretion: First, the cloud in which the accreting particle is embedded could be gravitation-
ally stable, making ṀG not meaningful (for the simple isothermal, unmagnetized case we are
considering, that requires that the cloud mass, Mc, be less than MG). Second, gravitational
collapse could occur on a large scale, but not be focused on the accreting particle. A real
molecular cloud is turbulent and inhomogeneous, and it can undergo gravitational contrac-
tion without having mass accumulate at a central point. Our analysis is valid provided the
cloud is approximately uniform within a Bondi radius of the accreting particle.

In summary, Bondi-type accretion is in steady state if and only if the gas inside the Bondi
radius is not self-gravitating,

Steady state ↔ MB �M∗ �MG . (4.53)

Figure 4.12 shows this schematically. The steady-state condition places an upper limit on
the particle mass, M∗ �MG/

√
(4π) (see Equation 4.50).

This discussion is directly relevant to the issue of whether stars form by gravitational
collapse or competitive accretion (Bonnell et al. 2001; Krumholz & McKee 2008). The
isothermal sound speed, cs, must be replaced by the one-dimensional velocity dispersion,
σ, in both MG (McKee & Ostriker 2007) and MB (Krumholz et al. 2006). In order for
competitive accretion to dominate, one requires ṀB � ṀG, and according to Equation
(4.52) this implies MB � M∗: The accreting gas must be self-gravitating, the accretion is
not in a steady state, and the upper limit on the protostellar mass in Equation (4.50) does
not apply. However, Equation (4.47) then implies that MG �M∗. Since M∗ is less than the
mass of the cloud from which it is accreting, Mc, it follows that MG �Mc: the cloud is very
sub-virial. That is, the ratio of the kinetic energy in the cloud to the gravitational energy,
which is of order the virial parameter αvir ≡ 5σ2R/GMc, is much less than unity. Krumholz
& McKee (2008) argued that since molecular clouds appear to have virial parameters of order
unity, this implies that stars form by gravitational collapse, not competitive accretion. If the
observed virial parameter reflects collapse instead of turbulence, then competitive accretion
may be viable, but the accretion rates would be reduced by magnetic fields.

4.6 Summary and Discussion
The accretion of gas onto an object due to its gravity is generally referred to as Bondi

accretion when the object is stationary and Bondi-Hoyle accretion when the object is moving.
Such accretion has been employed in many observational, theoretical, and numerical studies
to explain the growth of planets, brown dwarfs, stars, compact objects, and supermassive
black holes, to name a few (e.g., Hopkins et al. 2006; Kokubo & Ida 2012; Andre et al.
2012; Toropina et al. 2012). Here we have determined the effects of a uniform magnetic
field on Bondi-Hoyle accretion under the assumption that the gas is isothermal and that
the accreting mass is a point particle, thereby generalizing the results of Cunningham et al.
(2012) to include the effects of the motion of the accretor. In keeping with most previous
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treatments of Bondi and Bondi-Hoyle accretion, we did not consider the effects of stellar
winds and outflows on the steady-state accretion rate.

Our primary application is to protostellar accretion, but our results should apply to
stellar accretion in any medium in which the gas is approximately isothermal. We have not
considered the effects of stellar winds, which in some cases are strong enough to suppress
accretion. Our results might also be applicable to accretion onto supermassive black holes in
active galactic nuclei. There the Bondi radius is rB ' 3(M/108M�)(107 K/T ) pc. Compton
heating and cooling can maintain isothermality near the Bondi radius if the luminosity
is sufficiently high (Woods et al. 1996). In some cases, Compton-heated gas is thermally
unstable, and Gaspari et al. (2013) have shown that then Bondi accretion rates based on the
temperature of the hot gas can underestimate the true accretion rate by up to two orders of
magnitude.

The time-averaged mass-accretion rate for isothermal accretion flow onto a static point
mass of massM∗ was determined by Bondi (1952), ṀB = 4πλρ0rB

2cs, where λ is a numerical
constant, ρ0 is the ambient density, rB = GM∗/c

2
s is the Bondi radius, and cs is the isothermal

sound speed. If the object is moving, then the morphology of the accretion flow and the
accretion rate also depend on the sonic Mach number,M = v0/cs, where v0 is the velocity
of the mass through the ambient medium. If the medium is magnetized, two additional
parameters enter, the plasma β = 8πρ0c

2
s/B

2
0 and θ, the angle between the the field and the

velocity of the object relative to the medium. (For moving objects, β can be replaced by the
Alfvén Mach number,MA = v0/vA,0 = (β/2)1/2M, where vA,0 is the Alfvén velocity in the
ambient medium). When bothM andMA are large, the accretion resembles non-magnetized
Bondi-Hoyle flow. When either M or MA is small, the ambient medium is approximately
static and the flow resembles the stationary magnetized models of Cunningham et al. (2012).
Here we have explored the case in which both magnetic fields and motion of the mass through
the medium are important by performing three-dimensional simulations of a gravitating point
particle accreting from an initially uniform, isothermal gas pervaded by a uniform magnetic
field that is either parallel or perpendicular to the direction of motion. Since the magnetic
flux in stars is small compared to that in the gas from which the stars formed, we assume
that only gas, not magnetic flux, accretes onto the point mass (discussed in §4.3). Our
main results are approximate expressions (4.27) and (4.30) for the accretion rates, which
reduce to known numerical and analytic limits and agree with our simulation data and that
of Cunningham et al. (2012) to within a factor of three (see Figures 4.9 and 4.10).

The key assumption underlying the theory of Bondi-Hoyle accretion is that the gas is
not self-gravitating on the scale of the Bondi radius or, equivalently (as shown in Section
4.5) that the accretion rate is steady after averaging over the fluctuations that occur on
time scales <∼ tB. This assumption must be validated for each astrophysical situation that
employs it. The conditions for the validity of the steady-state assumption are that the stellar
mass be larger than the Bondi mass,MB = 4πρ0rB

3, but smaller thanMG, the mass at which
self-gravity becomes important, so that MB � M∗ � MG (Equation 4.53). For the simple
case we considered in Section 4.5, in which magnetic fields are negligible (and, as is true
throughout this chapter, turbulence is also negligible), the steady-state assumption is valid



4.6. SUMMARY AND DISCUSSION 87

for stars less than ∼ 0.4M� for fiducial molecular cloud parameters (Equation 4.50).
Sub-grid particle accretion methods have been employed to model protostellar accretion

in large-scale numerical simulations of molecular clouds. Our results should be of particular
utility for extending the sub-grid accretion models in such codes. Previous work has used
unmagnetized accretion rates even though the sink particles were moving through a magne-
tized medium, thereby overestimating the true accretion rate onto the particle. We outline
our implementation of Equations (4.27) and (4.30) in ORION2 sink particles in Appendix B
and demonstrate that this implementation succeeds in reproducing the correct accretion rate
even when the accretion length scale ∼ rABH is not well resolved (Figure B.3). However, it
should be noted that our accretion rates apply to gas that is not turbulent, and so they do
not include the reduction associated with vorticity (Krumholz et al. 2005).

Finally, our results have implications for the theory of star formation. At present, there
are two main paradigms for the formation of massive stars: gravitational collapse, in which
stars form via the gravitational collapse of a pre-existing protostellar core (McKee & Tan
2003), and competitive accretion, where protostars compete for gas from a common reser-
voir initially unbound to the stars (Zinnecker 1982; Bonnell et al. 1997, 2001). Our study
shows that magnetic fields make competitive accretion scenarios for the growth of pre-main
sequence stars less efficient than predicted from Bondi-Hoyle accretion rates. For example,
the amount of suppression for a cloud with average values of β ∼ 0.04 (Crutcher 1999) and
M ∼ 1/2 (Bonnell et al. 2001) is a factor of ∼ 20 (Figures 4.9 and 4.10). This reduction
increases for lower β and M. Models that employ Bondi accretion to transform molecular
clouds into stars (e.g., Murray & Chang 2012) may be underestimating the timescale for the
buildup of massive stars, and therefore, assuming these massive stars are what eventually
destroy the cloud, are underestimating the lifetime of the molecular clouds in these models.
Delayed buildup from magnetic fields would predict that these models have molecular clouds
that persist beyond their typically observed lifetimes. In case of direct simulations, as long as
the Alfvén-Bondi-Hoyle radius is resolved and the flow transitions to super-Alfvénic speeds,
the accretion rates obtained will still be correct regardless of the subgrid model (e.g, Price
et al. 2012, also see the Appendix).
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Table 4.1 : Simulation Parameters

β M MA rABH/∆x tend/tB 〈Mfast〉a|| 〈Mfast〉a⊥ (Ṁ/ṀB)|| (Ṁ/ṀB)⊥ (Ṁ/ṀB)45◦

100 0.014 0.1 161 8 1.4 1.7 0.323 0.379
100 1.41 10 54 9 2.2 1.6 0.363 0.332
10 1.41 3.2 51 7 1.4 1.1 0.273 0.294
10 4.47 10 8 4 3.8 3.5 0.012 0.011
1 1.41 1 33 5 1.6 1.0 0.106 0.182 0.116
1 4.47 3.2 7 3 2.1 2.0 0.013 0.012
0.1 0.447 0.1 8 3 1.7 1.5 0.064 0.061
0.1b 4.47 1 16 0.5 1.8 1.1 0.00163 0.0112
0.1c 44.7 10 21 3× 10−4 8.2 8.6 10−5 8.12× 10−6

0.01d 4.47 0.32 2 0.5 1.3 1.00 0.0024 0.0026
∞e 1.41 n/a 55 5 6.7 0.4
∞e 4.47 n/a 8 5 5.5 0.01

a Computed as the volume average over the cells 5 and 6 ∆x from the sink particle. Cells are included if the gas is
in-falling (i.e., if v · x < 0.)

b For this simulation, two additional levels of refinement are allowed for the parallel run, reducing the value of ∆x by
a factor of 22. For the perpendicular run, only one additional level is allowed, reducing ∆x by a factor of 2.

c For this simulation, one additional level of refinement is allowed and each dimension of the computational domain
is reduced from 50 rB to 50/64 rB by a factor of 27, reducing the value of ∆x by a factor of 27+1.

d For this simulation, one additional level of refinement is allowed, reducing the value of ∆x by a factor of 2.
e For these simulations, β is set to 1030 to approximate non-magnetic flow.
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Figure 4.1 : Various numerical parameters φ as a function of Mach numberM and plasma β. Colors
refer to different magnitudes of β, whereas the linestyles differ for different φ. The high M limit
is 1/λ. The subplot shows the stationary limit of φABH as a function of β. This has the same
functional form as φAB, defined in the text, but with different fitting parameters βch and n, which
are determined in §4.4.2. The asymptotes are

√
2/βch ≈ 0.32 and unity.
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Figure 4.2 : Parameter space to be studied. Black dots represent models explored in this work,
with the two runs with arrows corresponding to β = 1030. Red dots are the stationary models
of Cunningham et al. (2012). With this choice of axes, the left vertical axis approximates non-
magnetic flow, where the bottom horizontal axis approximates stationary flow. The diagonal line
plotsMA = 1, while the horizontal line plotsM = 1. Our runs explore two regions of this parameter
space quite well. The region of M < 1 and MA > 1, not explored by us, was studied by Ruffert
(1994, 1996) in his investigations of non-magnetized isothermal Bondi-Hoyle accretion. Since typical
star forming regions haveMA ≈ 1 (Crutcher 2012), we also explore two cases with an Alfvén Mach
number of unity.
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Figure 4.3 : Convergence study for three of our marginally resolved models. For the β = 1 and 10
models, the dotted, solid, and dashed lines represent Lmax = 6, 7, and 8. The solid and dashed
represent Lmax = 8, and 9 for the β = 0.01 model. Increasing the number of levels increases the
ratio rABH/∆x. For all of these runs the velocity and magnetic field are parallel. The sudden jump
for β = 10, Lmax = 6 at t/tB ≈ 0.7 occurs because an instability develops in the flow that allows
magnetic flux to escape from the region surrounding the sink particle, allowing more mass to accrete.
The β = 0.01 case appears converged even though for eight levels of refinement, rABH/∆x ∼ 2.
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Figure 4.4 : Slices in the x − z plane showing the region near the sink particle for the parallel
orientations. The left and right columns have M = 1.41 and 4.47, respectively. From top to
bottom, the rows show β = 0.1, 1, 10 and 100. All plots are shown at t = 3tB except the β = 0.1

plot, which is at 0.5tB. The color map indicates log10(ρ/ρ0), green lines represent magnetic flux
tubes drawn from equidistant foot-points 0.5rB upstream of the sink particle, and white arrows
represent the flow pattern in the plane of the slice. The black circle indicates the size of the sink
particle, equal to 4∆x.
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Figure 4.5 : Same as Figure 4.4 but for perpendicular orientations.



4.6. SUMMARY AND DISCUSSION 94

Figure 4.6 : Characteristic flow quantities for M = 1.41, β = 1 at t = 3tB. The left and right
columns shown the parallel and perpendicular orientations. The top row showsM, the second row
shows β, the third row showsMA, and the bottom row shows (B/B0)2. The colormaps are in log10

space, where the axes are linear (with units of rB). The black circle indicates the size of the sink
particle, equal to 4∆x.
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Figure 4.7 : Location of the shock front along the upstream axis. To provide data for a fit, the
location is plotted at t/tB = 0.2, 0.5, and then every 0.5 tB until 3 tB, when the simulations end.
The parallel orientation is plotted with circles, perpendicular triangles. A least-squares fit to the
function shown is performed. The parallel shock velocity tends to zero at ∼ 3 rABH, where the flow
is unchanged from the background flow. For the perpendicular case, the shock maintains a nearly
constant speed equal to the local magnetofast velocity.
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Figure 4.8 : Mass accretion rates as a function of time and field orientation for β = 1.0. All
rates are normalized to the Bondi accretion rate (Equation 4.3). The short (red) lines identify the
steady-state Bondi-Hoyle accretion rates (Equation 4.9).
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Figure 4.9 : Steady-state mass accretion rates for the parallel orientations as a function of the
plasma beta β (horizontal axis) and sonic Mach number M (symbols). Here we have defined
MBH = vBH,eff/cs. All accretion rates are normalized to our Bondi-Hoyle accretion rate (Equation
4.9). The solid line is our best fit Ṁ‖ with βch = 19.8 and n = 1.0 (Equation 4.27 or 4.41). Subsonic
runs with β ≥ 100 are plotted with their second steady-state value. The dashed lines connect these
points to their initial steady state values (no data point shown).
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Figure 4.10 : Steady-state mass accretion rates for the perpendicular orientations as a function of
the plasma beta β (horizontal axis) and sonic Mach number M (symbols). All accretion rates
are normalized to our Bondi-Hoyle accretion rate (Equation 4.9). The lines are our best fit Ṁ⊥
with βch = 19.8 and n = 1.0 (Equation 4.30 or 4.42) for four values of M: solid M = 0; dashed
M = 1.41; dot-dashedM = 4.47; and dottedM = 44.7. Subsonic runs with β ≥ 100 are plotted
with their second steady state value. The dashed lines connect these points to their initial steady
state values (no data point shown).
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Figure 4.11 : Mass accretion rate as a function of sonic Mach number (x-axis) and plasma β. From
top to bottom, the curves represent decreasing β values. The solid curves show the parallel fit while
the dashed curves show the perpendicular fit (Equations 4.27 and 4.30). The right y-axis uses the
fiducial parameters given in Equation (4.3) M∗ = 0.4M� yr−1, n0 = 104 cm−3 and T = 10 K. The
points identify whereMA = 1. The fits are identical at low Mach numbers, and the perpendicular
rate always equals or exceeds the parallel rate. OnceMBH,eff >MABH,eff/MBH,eff (Equation 4.30),
the perpendicular fit becomes identical to the hydrodynamic fit, which is well-approximated by the
β = 100 curves.



4.6. SUMMARY AND DISCUSSION 100

1
MB/M ∗∝M 2

∗

1

M
c/
M

G

Shu-Type Accretion
Late Time

Gravitational Collapse

Steady State
Bondi Accretion

Time Dependent
Bondi Accretion

S
ta

b
le

U
n

st
a
b

le
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Figure 4.12 : Method of accretion as a function of the stellar mass M∗ and the host core’s mass
Mc. The core is stable against its own self gravity if its mass is less than MG (Equation 4.46). The
gas interior to radius rB is not self gravitating if this gas mass MB is less than M∗ (or equivalently,
M∗ < MG/

√
4π). If both of these relations are satisfied, steady-state Bondi accretion occurs. Once

the stellar mass grows so that MB
>∼M∗, the accreted mass is comparable to M∗ and this accretion

rate becomes time dependent. Regardless, if the core is collapsing via its own self-gravity, accretion
occurs by gravitational collapse and a steady state is never realized.
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Chapter 5

Radiative Feedback in the Formation of
Population III Stars

1 The formation of the Universe’s first stars initiated the transition from a pristine dark
Universe to a complex, metal-rich Universe filled with stars. The exact role these first stars
played in reionization, metal-enrichment, and the formation of subsequent generations of
stars depends on their initial mass function, which is likely regulated by the stars’ own UV
feedback. We have carried out a numerical study on the effect of stellar feedback and the
development of HII regions around the first stars. Our simulations draws initial conditions
from the spherical models of Tan & McKee (2004) and McKee & Tan (2008) utilizes the
adaptive mesh refinement code ORION2. We track the ionizing radiation from a forming
protostar using a newly implemented ray tracing routine to study the development of an HII
region around that protostar. Once the star exceeds ∼ 300M�, the radius of the HII region
exceeds the star’s gravitational radius GM/c2

s ∼ 1.5× 103 AU, where the sound speed of the
ionized gas is comparable to the free-fall velocity. This allows the heated gas to escape from
the star’s gravitational pull, and the accretion onto the star dramatically reduces.

5.1 Introduction
Our Universe today bears little resemblance to the Universe at early times. At the time

of recombination and the release of the cosmic microwave background (at redshift z ∼ 1100),
the structure of the Universe was uniform and devoid of stars, galaxies, and any elements
beyond Lithium. Density perturbations grew and dark matter began to amass in some
of the first structures in the Universe. Around z ∼ 20 − 30, the formation of ∼ 106M�
dark matter minihalos along the intersection of filaments and sheets created reservoirs where
baryonic matter collected (e.g., Abel et al. 2002; Yoshida et al. 2003). These ∼ 103M� gas

1Large portions of this chapter will eventually be published as Lee, A. T., McKee, C. F., Stacy, A. R.,
Rosen, A.R., Klein, R.I. Radiative Feedback in the Formation of Population III Stars I. HII Regions. in the
Monthly Notices of the Royal Astronomical Society. Appropriate permissions to reproduce it here have been
obtained from the co-authors.
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clouds (e.g., Bromm et al. 2002) are where it is believed that enough hydrogen amassed to
develop a sufficient abundance of H2 to cool the gas through rovibrational transitions and
enable collapse (e.g., Haiman et al. 1997; Tegmark et al. 1997; Yoshida et al. 2003). This
collapse commenced the formation of the first metal-free primordial stars (e.g., Omukai &
Nishi 1998a), the so-called Population III (Pop III) stars.

Since Pop III stars’ initial rays of light, cosmic evolution has largely been driven by
stars. The stellar winds and supernova explosions of the first generations of stars enriched
the Universe with elements beyond lithium (e.g., Mori et al. 2002; Karlsson et al. 2013).
Furthermore, the first stars and their potentially violent finales commenced the reionization
of the developing intergalactic medium (e.g., Kitayama et al. 2004; Sokasian et al. 2004;
Whalen et al. 2004; Johnson et al. 2007a). How much these Pop III stars affected their
surroundings, either through their radiative or mechanical output, depends on their initial
mass function (IMF). The Pop III IMF is believed to be top-heavy, dominated by stars
that are tens to hundreds of solar masses (Abel et al. 2002; Dopcke et al. 2013), compared
to the present-day IMF that is dominated by low-mass stars (Kroupa 2002; Chabrier 2003).
Simulations have shown that these first stars can have a variety of masses, ranging from Sun-
like to hundreds of solar masses (Clark et al. 2011; Stacy et al. 2012), though simulations
have yet to converge on the exact form for the IMF.

The IMF of Pop III stars informs the role these stars played in reionization and the
evolution of the early Universe. Just as in the metal-enriched case, the luminosity of a
Pop III star scales super-linearly with mass, and super-luminous stars can wreak havoc
on their surroundings. For example, massive Pop III stars emit copious Lyman-Werner
radiation between 11.2 eV and 13.6 eV, which can dissociate molecular hydrogen (Bromm &
Yoshida 2011). This presents an extra challenge to subsequent generations of star formation,
since H2 is an important coolant in these high-redshift environments (Haiman et al. 2000;
Glover & Brand 2001; Johnson et al. 2007b). Indeed, simulations have shown that the
Lyman-Werner radiation from a single massive Population III star is sufficient to prevent
further cooling and star formation in its natal halo (Omukai & Nishi 1998a). Though these
first stars unlikely played a dominant role in directly reionizing the developing IGM, they
likely impacted subsequent star formation. Fully understanding the Pop III IMF will inform
whether subsequent star formation contributed to reionization, or whether the developing
first galaxies (and their central black holes) played a larger role (Greif & Bromm 2006).

These stars can also undergo a variety of stellar deaths. For non-rotating stars, those
in the ranges 40− 140 M� or > 260M� likely collapse directly into black holes, dispersing,
at most, a tiny amount of metal-enriched mass into its surroundings, but will continue to
irradiate in X-rays and above as they accrete mass (Jeon et al. 2012; Hummel et al. 2015).
With rotation, these black holes may also become the first collapsar gamma-ray bursts
(Woosley 1993; Stacy et al. 2011, 2013) observable with current and planned observatories
(Salvaterra 2015; Ghirlanda et al. 2015). Stars falling in the intermediate range 140−260 M�
end their lives as pair-instability supernovae, events that disrupt the entire star and leave
behind no compact remnant (Heger et al. 2003). Stars between 8M� and 140M� end their
lives as traditional Type II supernovae. While individual Pop III stars are too faint to be
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detectable by next-generation telescopes like the James Webb Space Telescope (Gardner et al.
2006), Pop III stars of lower mass (< 0.8M�) could survive to the present day, allowing for
direct detection in the Milky Way through, for example, Gaia (Perryman et al. 2001) or
SkyMapper (Keller et al. 2007). These direct detections, or the lack thereof, could place
strong constraints on the lower mass range of Population III stars (Hartwig et al. 2015).

Previous theoretical work has found that typical stellar masses of Pop III stars are smaller
than that of the ∼ 103 M� host cloud primarily due to the stellar radiative feedback emitted
by these first stars (e.g., Omukai & Inutsuka 2002; McKee & Tan 2008; Stacy et al. 2016). As
stellar mass increases, bipolar HII regions develop above and below the accretion disk of these
first stars, halting accretion in these regions. The disk eventually photo-evaporates from the
increasing stellar radiation, setting the final mass of the star (McKee & Tan 2008). Simu-
lations have begun to bear out this picture. The two-dimensional radiative-hydrodynamic
simulations of Hosokawa et al. (2011), Hosokawa et al. (2012b), and Hirano et al. (2014)
show UV radiation playing a primary role in setting a star’s final mass, though fails to cap-
ture the true dynamical nature of the three-dimensional accretion process. This work has
since been extended by the three-dimemsional non-axisymmetric simulations of Stacy et al.
(2012), Susa et al. (2014), Stacy et al. (2016), and Hosokawa et al. (2016), for example,
which have continued to support this picture that stellar feedback plays an important role
in setting the star’s final mass.

Initial disagreements between simulations resulted primarily from different combinations
of physical processes used. As our numerical capabilities have advanced, these simulations are
converging on the physics involved in the Pop III star formation process, differing primarily
in their implementations and the initial conditions used. A substantial numerical challenge
in all of these simulations is the implementation of the direct UV component from growing
stellar sources. The stellar feedback component dramatically affects the hydrodynamics
and chemistry of the surrounding gas, so this radiation must be tracked both in space
and in time. This is typically done through ray tracing approaches. Early simulations
that incorporated the direct UV component from stellar sources were predominately two-
dimensional (e.g., Hosokawa et al. 2011) to reduce the computational demand, whereas
three-dimensional simulations have used coarse ray tracing schemes (Greif et al. 2009; Stacy
et al. 2016).

While simulations support the basic picture of Pop III formation above, simulations
are not yet in agreement. This picture may also be too simplistic: stars do not form in
isolation. Fragmentation of the host cloud and gravitationally unstable accretion disks may
form multiple objects, which can form higher-order systems even before stellar feedback
becomes important, as is found in Stacy & Bromm (2013), or these higher-order systems can
ultimately disrupt or never form in the first place, as is found in Hosokawa et al. (2016). These
simulations typically considered only one or a few sets of initial conditions. Hirano et al.
(2014) considered instead 110 star forming regions, and found that the true final mass of the
star likely depends on a combination of feedback effects and the dynamics of the gas within
the halo (Hirano et al. 2014). The final masses of Pop III stars from these simulations span
from ∼M� to ∼ 103 M�. Another challenge in these simulations is achieving the resolution
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necessary to capture the small-scale dynamics of the accretion disks. The best simulations
resolve down to ∼ 10 AU, which makes resolving the vertical structure of the accretion
disk (∼ AU) as well as small-scale fragmentation within the accretion disk a challenge.
Treatment of the hydrodynamics on these small scales become important when modeling
how mass gets transported within the accretion disk onto the surface of the radiating star.
Episodic accretion from the disk puffs up the radius of the star, which additionally lowers
its surface temperature. The ultimate reduction of UV feedback may allow the central star
to grow beyond the UV-regulated limits suggested by earlier studies (Hosokawa et al. 2016).

Recently, we implemented a new ray tracing in our ORION2 gravity-hydrodynamics
code. This scheme achieves parallel scaling out to thousands of processors, a major advance
over all the existing ray tracing schemes to date (Rosen et al. 2017), and gives us, for the
first time, the capabilities of running simulations that incorporate a high resolution direct
radiation component. In this final chapter, we present the preliminary work for such three-
dimensional simulations. In Appendix C, we discuss our implementation of hydrogen-ionizing
physics in the ray trace routine and show several tests that demonstrate excellent coupling
with ORION2’s hydrodynamics physics module. The simulations reported here follow the
growth of a Pop III star until radiative feedback from the massive star develops an expanding
HII region. We employ ORION2’s sink particle routines to represent the growing protostar.
The simulations of this chapter draw initial conditions from the spherical models of Tan &
McKee (2004) and McKee & Tan (2008). Particularly, these simulations allow us to test the
coupling of the ray trace with the gravity-hydrodynamic physics already present in ORION2.
From here, future work will incorporate more realistic initial conditions that are drawn from
the cosmological simulations of Stacy & Bromm (2013).

This chapter is organized as follows. Section 5.2 describes the numerical methodology
of our star formation code ORION2. Section 5.3 discusses the results of these simulations.
Section 5.4 summarizes and discusses the results.

5.2 Numerical Methods

5.2.1 Overall Methodology

In this study of the growth and evolution of the first stars, we use the ORION2 adaptive
mesh refinement (AMR) code (Li et al. 2012). The physics modules used in these simula-
tions include self-gravity (Martin et al. 2008), hydrodynamics (Li et al. 2012), gravitating
and accreting sink particles (Krumholz et al. 2004a; Myers et al. 2013a; Lee et al. 2014),
and protostellar feedback due to protostellar luminosity (Offner et al. 2009). In addition,
ORION2 now has a highly-parallelized ray tracing routine to model the ionizing radiation
emitted from forming protostars (Appendix C, Rosen et al. 2017). ORION2 uses the Chombo
library for AMR (Applied Numerical Algorithms Group & LBNL Computational Research
Division 2012) and an extended version of the Constrained Transport scheme from PLUTO
(Mignone et al. 2012) to evolve the system. Each AMR level is evolved through discrete
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time steps ∆tl, which differ for each level l with the property ∆tl+1 = 0.5∆tl. We define
the one-dimensional cell size of a cell on level l as ∆xl, which relates to ∆xl+1 by the same
0.5 factor. Details regarding the implementation of these modules in ORION2 can be found
in the references. Below we highlight any parameter choices and assumptions we made and
address aspects of the modules that will be specific to this work.

ORION2 uses a Cartesian adaptive grid where every cell has a set of conserved quantities:
the mass density ρ, the momentum density ρv of gas moving at velocity v, the specific
internal energy e, and a set of tracer fields. For this work, we trace the mass density of
neutral atomic hydrogen ρH . Future work will include our recently completed primordial
chemistry package based off the packages of Gray & Scannapieco (2010) and Glover & Abel
(2008), which will trace and evolve these species along with twelve other relevant atoms,
molecules, and ions of hydrogen and helium to accurately calculate the proper heating and
cooling rates in primordial environments.

Independent of the grid, ORION2 includes Lagrangian sink particles to model regions
of gas that have collapsed beyond the resolution of the grid. These sink particles represent
the growing protostars and can interact with the gas through gravity and radiation. The
characteristics of the protostar (such as its luminosity) are determined by a protostellar
evolution model, described below, which is based off the model of Stacy et al. (2016). Sink
particles accrete mass, momentum, and energy from a sphere centered on the sink particle
that extends four computational zones in radius (Krumholz et al. 2004a).

The equations governing the evolution of the gas in ORION2 are

∂ρ

∂t
= −∇ · (ρv)−

∑
p

ṀpW (rp) , (5.1)

∂(ρv)

∂t
= −∇ · (ρvv)−∇P − ρ∇(ψ + ψp)−

∑
p

[ṗpW (rp)] , (5.2)

∂(ρe)

∂t
= −∇ · [(ρe+ P )v]− ρv · ∇(ψ + ψp) +

∑
p

[Ėrad,p − ε̇pW (rp)] , (5.3)

∂ρt
∂t

= −∇ · (ρtv) +
∑
p

Ċrad,p(ρt, e)− Ṁp,tW (rp) , (5.4)

∇2ψ = 4πGρ , (5.5)

P =
ρkBT

µmH

= (γ − 1)ρe . (5.6)

These equations are the standard equations of mass, momentum, and energy conservation,
a continuity equation for the mass density of each tracer ρt, and Poisson’s equation for the
gravitational potential ψ of the gas. The equations are closed with the ideal gas law for the
pressure P . The summations over the particles p incorporate how the sink particles interact
with the gas. The gravitational potential of the particles evaluated at a cell center is the



5.2. NUMERICAL METHODS 106

sum
ψp = −

∑
p

GMp

|rp|
, (5.7)

where rp is the vector connecting the sink particle and a cell center. The distribution of how
much mass, momentum, and energy that is removed from the accretion zone surrounding
the sink particle is described by a weighting kernel

W (rp) ∝ exp
(
−(|rp|/∆xlmax)2

)
, (5.8)

which has units of 1/volume and is zero for |rp| > 4∆xlmax . Accelerations from the particles
are softened by increasing the distance one finest cell length. Mass accretion also removes
mass from the tracer fields but preserves the relative mass fractions of the gas. The mass
accreted also imparts momentum and energy to the particle at rates ṗp and Ėp. For this work,
we will also track the ionizing radiation from stellar sources; this feedback will impart energy
into the gas, as well as change its composition, at volumetric rates Ėrad,p and Ċrad,p(ρt, e),
respectively. How these terms are evaluated is described in Appendix C. The ideal gas law
relates the pressure to the temperature T and the mean molecular weight µ of the gas. The
remaining symbols are standard constants: kB is Boltzmann’s constant and mH is the mass
of a neutral hydrogen atom. The second equality in Equation (5.6) is the thermodynamic
relation between pressure and the internal energy. This expression incorporates the adiabatic
index γ, defined as the ratio of the heat capacities at constant pressure and volume.

Furthermore, the sink particles are updated via the N -body equations

dMp

dt
=

∑
cells

Ṁp , (5.9)

dxp
dt

= vp , (5.10)

dvp
dt

= −∇ψ −
∑
q 6=p

GMq

|rpq|2 + ∆x2
lmax

r̂pq +
∑

cells i

ṗi
Mp

, (5.11)

where the ‘cell’ sum is done over the accretion zone of particle p. The distance vector between
two sink particles is rpq, which defines the unit vector r̂pq = rpq/|rpq|.

5.2.2 Chemistry

Above ∼ 102 Kelvin, rotational and vibrational modes of H2 can be excited, which can
lower the cell’s value of γ below 5/3. Figure 5.1 shows γ for H2, assuming an ortho to para
ratio of 3:1, which is appropriate for primordial gas (Glover 2013). A proper calculation of
a cell’s adiabatic index is the sum over all species

1

γ − 1
=
∑

species

ni/nt
γi(T )− 1

, (5.12)
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where ni is the number density of the species, nt is the total number density, and γi(T ) is the
adiabatic index of species i. If we consider only atomic and molecular hydrogen, and helium,
only the molecular hydrogen γ depends on temperature; the remaining γi = 5/3. Since the γ
value for molecular hydrogen depends on the temperature and temperature is not a quantity
tracked in the above hydrodynamic equations, Equation (5.12) is simultaneously solved with

e =
1

γ − 1

ρkBT

µmH

(5.13)

to obtain γ (and T , if needed) for each cell.
Beyond γ, chemistry plays a vital role in triggering primordial star formation. Primordial

gas proceeds to collapse because of the eventual formation and cooling of molecular hydrogen.
H2 is unable to form via dust grains as it is believed to form in the contemporary universe
(Gould & Salpeter 1963). Furthermore, the heating and cooling rates vary considerably
from local star forming environments. The proper calculation of µ, γ, and these heating and
cooling rates would involve solving a chemical network for the pristine gas found in Pop III
environments. The relevant species include three states of atomic hydrogen (H, H+, H−),
three states of atomic deuterium (D, D+, D−), three states of atomic helium (He, He+, He++),
two states of molecular hydrogen (H2, H+

2 ), two states of molecular deuteride (HD, HD+),
and free electrons (e−) (Glover & Abel 2008). Here superscripts give the charge of each
species, with + representing ions, and − representing anions. This network would include
relevant formation scenarios for molecular hydrogen, including the three-body reaction that
occurs above number densities of nH ∼ 108 cm−3:

H + H + H→ H2 + H , (5.14)

with a smaller contribution of H2 coming from reactions involving already present H2 molecules
and helium atoms (Palla et al. 1983).2 The increasing fraction of H2 is accompanied with
increased H2 line cooling, resulting in a slight drop in temperature as the H2 fraction ap-
proaches unity.

In this preliminary study, we will approximate the details above. Omukai & Nishi (1998b)
and Ripamonti et al. (2002) considered one-dimensional calculations of accretion onto a
forming Pop III protostar and found that the accreting gas can be accurately treated as
isentropic with an adiabatic index γ ≈ 1.1 due to H2 cooling; i.e., each mass element satisfies
the relation P = Kρ1.1 with a constant entropy parameter K. We will adapt this value for
γ globally; future work will incorporate a primordial chemistry package that will allow γ to
vary both spatially and temporally.

2The rate of this crucial three-body reaction has been debated in the literature, with rate coefficients
varying by orders of magnitude (Turk et al. 2011a) prior to the recent quantum mechanical calculations of
Forrey (2013).
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5.2.3 Primordial Stellar Evolution Model

Once sink particles form, an internal model is used for gas that has been accreted. This
model incorporates the protostellar mass M∗, the history of the accretion rate Ṁ∗ and an
approximate set of equations for the stellar structure to determine quantities like the pro-
tostellar radius R∗, the effective temperature T∗, the luminosity L∗, and the number flux
of photons with energies above 13.6 eV (Ṅion). Our protostellar evolution model follows
that of Stacy et al. (2014, 2016), which is derived by fitting to the stellar evolution models
of Stahler et al. (1986b), Stahler et al. (1986a), Omukai & Palla (2003), Hosokawa et al.
(2010b), and Hosokawa et al. (2012a). These evolution models particularly determine the
evolution of the Pop III star as it contracts toward the main sequence. In this chapter we
will be primarily focused on stars that exceed ∼ 100M�, so the exact details of what follows
will not impact the results of this chapter. Nonetheless, we recap the model here, since it
will play an important role in future studies.

The stellar luminosity is determined by two components, the internal luminosity Lint and
the accretion luminosity Lacc:

L∗ = Lacc + Lint = α
GM∗Ṁ∗
R∗

+ Lint . (5.15)

To smooth the episodic accretion rate expected from accreting from a discretized grid, we
smooth Ṁ∗ over the last 32 finest time steps. Here α parameterizes the fraction of the
accretion energy that is radiated from the star. The gravitational energy of the infalling
gas can either be radiated away, advected into the interior of the star, or, in the case where
magnetic fields are present, be extracted through magnetic forces. In an extreme limit, the
gas can gently settle into the atmosphere of the star, losing all its excess energy so that the
infalling gas’s thermal state matches that of the stellar atmosphere. In reality, the infalling
gas advects additional energy into the interior of the star and α < 1.

For this particular simulation, the exact value of α does not impact the results: after
M∗ & 100M�, the internal luminosity Lint will dominate the total luminosity output. The
value of α can matter at earlier times where the advected energy can result in inflation of the
stellar radius (Hosokawa et al. 2013). Nonetheless, we adopt α = 0.99, following estimates
from Hosokawa et al. (2016).

The Pop III stellar model begins on the Hayashi track of the Hertzsprung-Russell diagram.
These tracks are described by a nearly constant effective temperature, which is ∼3000 to
5000 Kelvin. The lower opacities of Pop III stars result in higher effective temperatures
compared to their contemporary counterparts. We choose an initial effective temperature of
4500 Kelvin; the resulting luminosity is then

LHay = 4πR2
∗σSB(4500 K)4. (5.16)

As the stellar mass increases, nuclear reactions eventually commence in the core and the star
transitions to the Henyey track, characterized by a nearly constant luminosity. Fitting to
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the 10M� zero-metallicity track yields

LHen = 103.5L�

(
M∗

9M�

)22/5(
T∗

104 K

)4/5

(5.17)

(Henyey et al. 1955). We use the Hayashi luminosity for the sink particle until its magnitude
is exceeded by the Henyey luminosity. At that point, the Henyey luminosity is used. Once the
radius of the protostar in the stellar model approaches the zero-age main sequence (ZAMS)
luminosity, we switch over to the ZAMS luminosity:

LZAMS = 140L�

(
M∗
M�

)2

(5.18)

(Hosokawa et al. 2010b). We note that since the radius of the protostar can fluctuate from
rapid and episodic accretion, this model allows the star to enter and leave the ZAMS.

The radial evolution of the star also proceeds in two phases, the adiabatic accretion
phase and the Kelvin-Helmholtz (KH) contraction phase (Stahler et al. 1986a; Hosokawa
et al. 2010b). In which phase the protostar resides depends on how well the protostar is able
to radiate away energy. When the accretion time scale tacc ∼M∗/Ṁ∗ is shorter than the KH
timescale tKH ∼ GM2

∗/R∗L∗, energy is inefficiently radiated away from the surface. In this
phase, the radius R∗ gradually increases with mass. In the opposite regime, the protostar
contracts until it reaches the zero-age main sequence (ZAMS).

We can derive an approximate stellar evolution model for the stellar radius using the
models of Hosokawa et al. (2010b) and Hosokawa et al. (2012a). The simplest models assume
a constant Ṁ∗. These papers solved for the radial structure of the star, and included the
effects of deuterium burning even before hydrogen burning commences. They considered
two accretion geometries, namely, accretion via an accretion disk and spherical accretion.
The former can be viewed as the gentler of the two, where the accreted gas impacts a small
fraction of the stellar surface. The latter, on the other hand, can create an accretion shock
over a substantial fraction of the stellar atmosphere. In addition, Hosokawa et al. (2010b,
2012a) found that their protostellar radii undergo a swelling phase near the end of the
adiabatic accretion phase (see, e.g., their Figure 2 for the spherical accretion geometry or
their Figure 4 for disk-like accretion in Hosokawa et al. 2010b). In this stage, the rapidly
increasing luminosity output from the center of the star creates what they call a “luminosity
wave” that transports entropy outward toward the surface. As it moves toward the surface,
the star continues its gradual expansion, which lowers the opacity of the star as it grows.
The surface layers of the star eventually absorb part of this luminosity wave and bloat to
larger radii. Our model below will not capture this swelling phase that divides the adiabatic
accretion and KH contraction phases. However, we note that this swelling phase occurs
before the ionizing flux of the star becomes substantial (M ≤ 10M�), so this phase will not
impact our initial results here.

The details of the protostar’s radial evolution depend on the accretion geometry. For
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purely spherical accretion, the radius during the adiabatic phase can be approximated as

Rad,sph = 49R�

(
M∗
M�

)1/3
(
Ṁ∗

Ṁfid

)1/3

, (5.19)

where Ṁfid = 4.4× 10−3 M�/yr (Omukai & Palla 2003; Hosokawa et al. 2010b; Stacy et al.
2012). The Kelvin-Helmholtz phase is given by

RKH,sph = 141R�

(
M∗

10M�

)−2
(
Ṁ∗

Ṁfid

)
. (5.20)

Around M∗ ∼ 10M�, Kelvin-Helmholtz contraction begins. For purely spherical accretion
with a constant mass accretion rate–ignoring the swelling phase for now–setting the radius
equal to the minimum of these two quantities at any given time generally reproduces this
result (Stacy et al. 2016). These approximations are also consistent with the 2D semi-analytic
model of Tan & McKee (2004).

If the accretion geometry is disk-like, the protostar evolves differently than the spherical
case just described. With a smaller energy flux compared to spherical accretion, the protostar
contracts sooner when accreting through a disk. Hosokawa et al. (2010b) found that the
radius for spherical accretion models are at most three times that of disk models. For the
disk values of Rad,dk and RKH,dk, we set them as one-third the values of the spherical case
(Stacy et al. 2016).

Finally, the ZAMS radius is given as

RZAMS = 0.28R�

(
M∗
M�

)0.61

. (5.21)

We note from Hosokawa et al. (2010b) that this radius is smaller for Pop III stars compared
to stars of the same mass with metallicity. The lack of C, N, and O elements delay the
onset of the CNO-cycle until these elements are generated through triple-α burning, and
the proton-proton nuclear reaction chain is unable to halt contraction until these stars have
contracted to lower radii.

Following Stacy et al. (2016), we use our choice of α to delineate between these spherical
and disk-like accretion tracks. During every update of the star’s radius, we set the radius as

R∗ = (1− α) min(Rad,sph, RKH,sph) + αmin(Rad,dk, RKH,dk) . (5.22)

If this radius is less than RZAMS, we reset the radius as the ZAMS radius. Equation (5.22)
is a very rough approximation that captures the fact that more energy is advected into the
stellar interior in spherical accretion than in disk accretion. As noted above, the exact value
of α is not important for us since we are focusing on the stage where the star is massive
enough to be on the main sequence.
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When the accretion rates are low, the above expressions can lead to rapidly decreasing
radii, which can become unphysically low, especially at early times. Indeed, this would
require the protostars to shrink at rates faster than the Kelvin-Helmholtz rate. If we evaluate
Ṙ∗ and its magnitude exceeds R∗/tKH, where the previous value of R∗ is used in this criterion,
we restrict Ṙ∗ to be exactly −R∗/tKH. This allows our protostars to smoothly decline in
radius, but still contract rapidly enough to high effective temperatures once the star has
grown beyond ∼ 10M�.

Once the new radius is determined, it is used to calculate a new stellar luminosity. If the
radius is within 5% of the ZAMS radius, we set the luminosity to LZAMS. Else we set the
luminosity equal to the maximum between LHen and LHay. The previous value of L∗ is used
to estimate T∗ for the Henyey luminosity. The exception to this luminosity calculation is if
the luminosity exceeds the Eddington rate

Ledd = 3.8× 106L�

(
M∗

100M�

)
. (5.23)

at which point we cap the luminosity to Ledd. Again, this limit can occur at early times
when the accretion rate is large (Hosokawa et al. 2012a), and at later times when the star
grows beyond ∼ 100M� in mass.

Figure 5.2 gives an example radius evolution from our stellar evolution model when the
mass accretion rate is fixed at Ṁ = 10−3 M�/yr. The radius initially grows via the adiabatic
phase, eventually transitioning to KH-contraction toward the main sequence.

5.2.4 Ray Tracing

To model the radiative feedback from the massive protostar in our simulation, we employ
ORION2’s ray tracing module (Rosen et al. 2017). Particularly, we use this module to trace
the ionizing radiation emitted from stars; both this component of the ray tracing routine, as
well as how the rays interact with the cells, are described in Appendix C. For this simulation,
we do not include the radiation pressure imparted from the ionizing radiation and therefore
the ray tracing module only changes the composition and internal energy of the gas.

The primary role of the protostellar evolution model is to calculate the number of ionizing
photons emitted from the star. Given L∗ and R∗, they give T∗, which can be used to compute
the integral

Ṅion = 4πR2
∗

∫ ∞
ν0

πBν(T∗)

hν
dν

where ν0 = 13.6 eV/h is the minimum frequency to ionize hydrogen. The logarithm of this
integral is computed as a table and linear interpolation is done to quickly calculate the
number of ionizing photons coming from a given star. Figure 5.2 also shows Ṅion for the
constant Ṁ∗ example.
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5.2.5 Initial Conditions

We draw our initial conditions from the spherical models of Tan & McKee (2004) and
McKee & Tan (2008), which studied the gravitational collapse of a virialized cloud. For sim-
plicity, the cloud is initialized without rotation, therefore we do not expect an accretion disk
to form in this simulation. To incorporate the effects of H2 cooling without directly incor-
porating chemistry, we follow the approximation of these papers, Omukai & Nishi (1998a),
and Ripamonti et al. (2002), who found these effects can be modeled by assuming a global
adiabatic index of γ ≈ 1.1. This is incorporated by assuming a polytropic relationship be-
tween the pressure and density: P = Kρ1.1 for a given entropy parameter K. With these
assumptions, Tan & McKee (2004) derived the hydrostatic equilibrium solution for the total
mass interior to radius r (their Equation 14):

Mr = 980

(
r

pc

)7/9

K ′10/9M� , (5.24)

where K ′ is the normalized entropy parameter K ′ = K/(1.88× 1012 cgs). Equivalently, the
density at a given radius is given by ρ = (7/36π)Mr/r

3. Without radiative feedback from
the central protostar, they derive a mass accretion rate of

Ṁ∗ = 0.026K ′15/7

(
M∗
M�

)−3/7

M�/yr , (5.25)

(Equation 8 of Tan & McKee 2004). The mass accretion rate scales as t−3/10, and the time
required to build a star to a given stellar mass is

t∗ = 27K ′−15/7

(
M∗
M�

)10/7

yr. (5.26)

These equations will serve as our basis for comparison when radiative feedback is included.
For this simulation, we set K ′ = 1. Figure 5.3 shows the initial radial profile of ρ. For
the ray tracing routine, we assume a chemical composition that is initially neutral hydrogen
and helium with mass fractions X = 0.76 and Y = 0.24, respectively. This gives a mean
molecular weight of µ = 1.22.

We employ inflow/outflow boundary conditions in our simulation. The finite size of the
computational domain and this choice of boundary conditions creates two artifacts that must
be addressed. First, in our case where gas at the boundaries is generally moving toward the
center of the box, inflow/outflow boundary conditions simply copy the state quantities of
the gas in the boundary cells to generate the gas that flows into the domain. This inflow
may not be representative of the actual inflowing gas where we to initialize a larger volume
of the halo. Second, the Poisson solver treats the edge of the domain as an equipotential
surface, which would not be the case if the box were extended to include more of the halo.

Our simulations will run until the star reaches ∼ 300M� in size, which occurs in ∼ 105

years (McKee & Tan 2008). Considering the inflowing speed of the gas, we use a box that
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is Lbox = 0.78 parsecs along each dimension. The gas that forms the star comes primarily
from the central 50% of the box, and this also ensures that boundary conditions for the
hydrodynamics and self-gravity will not significantly influence our results.

5.2.6 Grid Parameters and Refinement Criteria

The power of AMR codes comes from their ability to refine only the areas of interest.
This is particularly useful in simulations of star formation, which have large dynamic ranges
but which only a small volume requires high resolution to accurately track the collapse of
gas into stars. During the simulation, grids can be added and removed based on criteria set
by the user.

Our simulations uses a base grid (level 0) of 1283 and allows up to lmax = 5 levels of
refinement, giving an effective resolution of 40 AU. Atop the base grid, we statically refine
the region around the sink particle that forms in the center of the domain. All level 0 cells
within a cube centered on the protostar that spans ±(1/24)Lbox in each direction are refined
to level 1. Similarly, we refine all level 1 cells to level 2 if they reside in a similar cube that
spans ±(1/25)Lbox in each direction. This process is repeated all the way to the maximum
level. These choices allow the central ∼ 1000 AU to be located on the finest two levels. The
refined grid is redrawn every two coarse time steps by recursively calling the above criterion
for each level.

Finally, sink particles are created on the finest level if the density of a cell exceeds the
Truelove-Jeans density:

ρTJ(J = 1/4, l = lmax) =
πJ2c2

s

G∆x2
l

=
πc2

s

16G∆x2
lmax

(5.27)

(Krumholz et al. 2004a). This criterion creates sink particles when the Jeans length (∼√
cs/Gρ) is no longer resolved by four grid cells, which has been shown to prevent artificial

fragmentation (Truelove et al. 1997). The sink particle’s initial mass is equal to the excess
mass in that cell M∗,0 = [ρ− ρTJ(1/4, lmax)]∆x3

lmax
, and our protostellar model is initialized

with starting values for R∗ and L∗. For these initial conditions, a ∼ M� star is formed at
t = 0 and no additional protostars form over the course of the simulation.

5.3 Results
To test ORION2 against the analytical predictions of Tan & McKee (2004), we first run

the simulation without radiative feedback effects. Figure 5.4 shows the mass of the protostar
as a function of time. Comparing with Equation (5.26), we note excellent agreement between
our numerical results and the analytical prediction of Tan & McKee (2004). The offset occurs
because the sink particle that forms at t = 0 cannot immediately accrete all of the material
within the sink particle’s accretion zone (see Section 5.2.6). Instead, this material gets
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accreted over the first few timesteps, which offsets the M∗(t) curve compared to the one
predicted by Tan & McKee (2004).

From here we considered the effects of protostellar feedback on the infalling gas. Without
any initial angular momentum, infall proceeds radially and no accretion disk forms during
the simulation. Therefore, radiation can effectively shut down accretion onto the star if the
heated ionized gas can escape the gravitational pull of the star, which occurs when the radius
of the HII region exceeds the star’s gravitational radius

rg =
GM∗
c2
s

= 525

(
M∗

100M�

)(
T

2.5× 104 K

)−1

AU (5.28)

in size (McKee & Tan 2008). The sink particle’s accretion zone spans four grid cells in
radius, equivalent to ra = 157 AU for our highest resolution simulations. This radius con-
siderably exceeds the radius of our central Pop III star, which is less than 100R� ∼ 0.5
AU in size. Because the gas within the sink particle’s accretion zone has become modified
through accretion, it has a reduced optical depth that allows radiation to escape more read-
ily. For the resolution of this simulation, the radius of the accretion zone matches rg when
M∗ = 30M�. Since the ionizing radiative output is considerable at these mass (Figure 5.5),
artificial breakout of the HII region could occur if we employed the ray tracing routine at
this mass. Indeed, we confirmed this to be the case by employing the ray tracing routine
once M∗ ≈ 45M� and rg/ra = 1.5. Within ∼ 2× 103 yrs, the accretion rate decreased from
the expected Ṁ∗ = 5× 10−3 M�/yr to 10−5 M�/yr.

The primary goal of this chapter is to study the breakout of the HII region around a
massive primordial star. In this case where the total angular momentum of the system is
low, this breakout effectively sets the star’s final mass. Therefore, we seek to demonstrate
two cases: one where despite radiative feedback the HII region remains confined within the
star’s gravitational radius, and another where the star has exceeded M∗ ∼ 275M� and the
HII region grows and exceeds this radius (Tan & McKee 2004). We note that when rotation
is included, the density distribution becomes modified and breakout above and below the
denser accretion disk can occur at earlier masses (McKee & Tan 2008).

Therefore, we turn the ray tracing routine on at two particular instances, once when
M∗ ≈ 127M� and again when M∗ ≈ 300M�. The former’s HII region should remained
confined near the star, where the latter’s HII region should eventually break free. The
evolution of the HII region expands within ∼ 104 years (McKee & Tan 2008), so we run
these two simulations for ≥ 2 × 104 years to assess whether the HII region will remain
confined or expand. For the high mass case, however, we note that since the ray tracing is
immediately turning on, the expansion of the HII region will initially proceed faster than
what would be predicted from theory. In a more self-consistent simulation, an HII region
would have already been present at this stellar mass.

In Appendix C, we discussed our ionization sub-cycling routine and showed that for the
simplified D-Type ionization front test, using a ray trace timestep that is 10% the smallest
value of the recombination timescale 1/αBne or the temperature evolution timescale ė/e,
where e is the internal energy of the gas. Even when the timestep criterion was increased
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to 50%, our results still remained within 10% of the analytical prediction. For both of these
simulations, we use sub-cycling limitation of 100% instead, since the ray tracing routine
becomes computationally demanding once several layers of AMR are introduced.3 This
will inevitably introduce some error into our results, but the introduced error should not
significantly change the intended results.

Figure 5.6 shows example slices of the gas temperature and neutral hydrogen mass frac-
tion for both of these cases after radiative feedback has been turned on, and a circle with
radius rg is drawn as a dotted circle. In the lower mass instance, rg/ra = 3.3, where the
higher mass case has rg/ra = 10.1. For the lower mass snapshots, where Ṅion ≈ 1050.2, the
HII region remains confined within the gravitational radius of the star. The resulting mass
accretion rate fluctuates and slightly reduces from the predicted rate of Ṁ∗ ≈ 3×10−3 M�/yr
(Tan & McKee 2004). The infalling gas replenishes the region just outside the sink particle’s
accretion radius with neutral hydrogen. As a result, only the gas just outside the accretion
radius (and within the gravitational radius) becomes heated and partially ionized. Overall,
the radiative feedback is unable to significantly alter the dynamics of the gas.

Alternatively, the M∗ ≈ 300M� (Ṅion ≈ 1051) star creates an HII region that ultimately
breaks free from the star. Within the first ∼ 103 years, the radius of the HII region exceeds
∼ rg/2, where the infalling gas compares to ∼ 2cs. At this stage, the HII region launches
a shockwave ahead of the ionized gas, which eventually accelerates beyond rg. During this
phase, we notice a sharp decrease in the total accretion rate onto the star, with the majority
of the infalling gas piling up within the post-shock region. Had rotation been included, some
of the shocked gas could have fallen onto the accretion disk and continued accreting this way.
In our case, this breakout effectively sets the final mass of the central star at M∗ ≈ 301M�,
with accretion rates dropping several orders of magnitude.

We do identify one error that is introduced by using larger timesteps than we had used
in Appendix C. Once the HII region forms, the time step is typically determined by the
recombination timescale limit. The larger time steps mean that each individual ray carries
more photons and rays travel farther before becoming depleted and terminated. Since we
employ an operator-split method and apply recombinations only after the rays have all
terminated, the rays travel farther than they would had recombinations been included self-
consistently. Additionally, if multiple rays pass through a cell, rays moving in one direction
may reach a cell first and ionize the cell before subsequent rays arrive. Coupled with the fact
that the grid becomes coarser as the distance from the star increases, so that ray splitting
occurs less frequently, asymmetrical ray artifacts become more pronounced. The result of
these errors is asymmetrical spokes of heated and partially ionized gas that extend beyond
a generally spherical HII region. These spokes generally develop and fade as the gas heats
and cools, due to the random initial orientation of the rays at the start of each ray trace.
In the future, using a more restrictive time step and even allowing the rays to divide more
readily can help eliminate these artifacts.

3Particularly, recall that the ray trace is called at least once on every finest time step.
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5.4 Summary and Future Work
We have examined the formation of a Pop III star resulting from the gravitational collapse

of a virialized spherical cloud. Tan & McKee (2004) and McKee & Tan (2008) described
the rate of collapse of one of these primordial gas cores, whose physical properties are set
mostly by the cooling of H2. Tan & McKee (2004) described the rate of collapse of these
gas cores, and we find this simple analytical picture is reproduced with the ORION2 code
when radiative feedback from the forming star is not included (Figure 5.4).

When radiative feedback is included, the heated photoionized gas within the HII region
breaks free of the central star when this region grows beyond the gravitational radius rg =
GM∗/c

2
s in size. When the gravitational radius is comparable to the sink particle’s accretion

radius, which spans four cells on the finest AMR level, the HII region can artificially break
free and shut off the accretion onto the central star, a result of the gas density being artificially
modified in a region that greatly exceeds the physical stellar radius. With future studies,
where we will have ∼AU resolution on the finest cell level, the similarly reduced accretion
zone around the star will allow us to obtain a more self-consistent solution for the evolution
of the HII region at early times. In this case, the increased mass density of the infalling gas
will confine the ionized gas, as opposed to our current work where the accretion zone exceeds
the gravitational radius until the star has grown beyond ∼ 30M�. To overcome this issue,
we employed our ray tracing routine only when the mass of the star has exceeded 100M�,
and the gravitational radius is & 3 times the accretion radius of the star.

For these simulations, as the spherical cloud collapses and the star grows, the total mass
accretion rate gradually decreases . Eventually the hydrogen-ionizing luminosity Ṅion exceeds
the incoming neutral hydrogen flux and the radiation can begin developing a long-lasting
HII region. As the ionization luminosity continues to grow, this region can grow beyond
rg. Employing radiative feedback when the star is M∗ = 127M�, the higher mass accretion
rate and a lower ionizing luminosity flux prevents the HII region from growing beyond rg.
However, our M∗ = 300M� star creates an HII region that spreads beyond rg and effectively
shuts off the accretion rate. These simple simulations shown here corroborate prior studies
(e.g., McKee & Tan 2008; Hosokawa et al. 2016; Stacy et al. 2016) that show that the ionizing
radiative feedback of the first stars plays an important role in determining the star’s final
mass.

Section 5.2 highlighted several additional improvements we will employ in future studies
of Pop III stars, including incorporating a primordial chemistry package and further im-
provements to our stellar evolution model. An additional improvement we will incorporate
is the use initial conditions drawn from cosmological simulations. We plan to draw our ini-
tial conditions from Stacy & Bromm (2013), who ran N-body and SPH simulations using
Gadget-2 (Springel 2005). They evolved a 1.4 comoving Mpc box from cosmological initial
conditions at z = 100 using a ΛCDM cosmology with ΩΛ = 0.7, ΩM = 0.3, ΩB = 0.04, and
H0 = 70 km/s/Mpc. As the simulation progressed, they continued to refine ten regions that
formed dark matter mini-halos, each tens of parsecs in size. Our next set of simulations will
simulate the central (pc)3 [physical] region of their Halo 9, starting at redshift z = 24.71. To
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prepare the data for use in ORION2, we developed a projection routine that transforms SPH
simulation to AMR grid data. This routine, described in Appendix D, allows us to project
the baryonic gas component, centered around the location of highest density, onto a 5123

grid. This region is well inside the dark matter halo such that the gravitational potential
from the dark matter is uniform, and therefore we do not have to include dark matter in
our ORION2 simulations. Utilizing AMR to achieve resolutions down to a few AU, we will
be able to study the collapse and fragmentation of the first star forming clouds, allowing
us to assess the role radiative feedback plays in the determining the initial mass function,
multiplicity, and ultimate fate of the first stars.
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Figure 5.1 : Adiabatic index of molecular hydrogen, found by summing 500 terms in its partition
function, assuming an ortho to para ratio of 3:1. Above ∼ 102 and ∼ 103 Kelvin, rotational and
vibrational modes become excited, respectively.
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Figure 5.2 : Example of our stellar evolution model in the case of a constant mass accretion rate
of Ṁ = 10−3M�/yr, showing the logarithm of Ṅion (top, units of number of ionizing photons/sec)
and the stellar radius R∗ (bottom, units of R�). The dashed line shows the main sequence radius
as a function of mass.
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Figure 5.3 : Initial equilibrium solution for the density profile from Tan & McKee (2004). Rotation
is not included and a polytropic relationship P = Kρ1.1 is assumed. The dashed line shows a r−2

profile, for comparison.
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Figure 5.4 : Mass of the central star as a function of time. Without radiative feedback, we get
excellent agreement with the analytical prediction of Tan & McKee (2004, also our Equation 5.26),
shown as the dashed line. When feedback is included but the accretion zone of the star compares
to the gravitational radius (Equation 5.28), the HII region can break out and artificially shut off
accretion onto the star. When M∗ ≈ 120M�, the feedback is unable to sufficiently ionized the
infalling gas, and the star continues to grow. At M∗ ≈ 300M�, the ionizing luminosity ionizes the
within and beyond rg, and accretion onto the star precipitously drops within ∼ 103 years. Though
the simulation was only run for ∼ 104 years, we extend the line to t = 2× 105 years for clarity.
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Figure 5.5 : Number of hydrogen-ionizing photons emitted from the central star as a function of
stellar mass. The dashed line shows the results of Tan & McKee (2004). The ionizing luminosity
of the central star when the accretion rate is not modified by feedback effects, is shown as the solid
line.
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Figure 5.6 : Confined and expanding HII regions, as seen using temperature slices (left column)
through the center of the domain and the neutral hydrogen mass fraction (right column). Both
plots zoom in toward the sink particle region. The gravitational radius of the central star is shown
as a dotted circle. (Top) Example slices when the initiallyM∗ ≈ 120M� star has reached ≈ 140M�.
The ionized gas barely extends beyond the accretion radius of the sink particle, and the gas just
beyond the sink particle’s radius becomes partially ionized and heated. The overall accretion rate
fluctuates but does not substantially decrease. (Bottom) Example slice when M∗ ≈ 300M�. After
103 years, the HII region has moved beyond the gravitational radius and continues to move outward
as a D-Type ionization front. The value of Ṁ∗ has dropped over three orders of magnitude.
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Appendix A

Background Protoplanetary Disk Model

1 For numerical estimates in this paper, we adopt the standard disk model derived in the
review by Chiang & Youdin (2010). The disk has surface densities

Σg = 2200F
( r

AU

)−3/2

g cm−2 (A.1)

Σd = 33F Zrel

( r

AU

)−3/2

g cm−2 (A.2)

in gas (g) and dust (d). The dimensionless parameters F and Zrel ≡ (Σ/Σg)/0.015, typically
of order unity, describe how much total mass the disk has relative to the minimum-mass solar
nebula, and how metal-rich the disk is compared with a gas of solar abundances, respectively.
The minimum-mass solar nebula (F = 1, Zrel = 1) uses a condensate mass fraction for solar
abundances of Σd/Σg = 0.015 (Lodders 2003). Values of Zrel > 1 correspond to supersolar
metallicities Σd/Σg > 0.015. Integrated to r = 100 AU, equation (A.1) yields a total disk
mass of 0.03FM�.

At the disk midplane, the gas temperature, scale height, and density are given by

T = 120
( r

AU

)−3/7

K (A.3)

Hg = 0.022r
( r

AU

)2/7

(A.4)

ρg0 = 2.7× 10−9F
( r

AU

)−39/14

g cm−3 . (A.5)

These are adapted from Chiang & Goldreich (1997), adjusted for a disk obeying (A.1)–(A.2),
orbiting a pre-main-sequence star of mass M∗ = 1M�, radius R∗ = 1.7R�, and temperature
T∗ = 4350 K.

1Large portions of this appendix have been previously published as Lee, A. T., Chiang, E., Asay-Davis,
X., Barranco, J. 2010. Forming Planetesimals by Gravitational Instability. II. How Dust Settles to its
Marginally Stable State. ApJ, 725, 1938.
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A.1 The Super-Linear Relation Between µ0 and Σd/Σg

We derive µ0 as a function of Σd/Σg under the assumption of a constant Ri. Some
evidence supporting a constant Ri was found in our simulations (§3.5.1). The density profile
for constant Ri is used in a number of papers (Sekiya 1998; Youdin & Shu 2002; Paper I) and
we begin by repeating the result, neglecting self-gravity as we have throughout our paper.
The dust-to-gas ratio is given by

µ(z) =

[
1

1/(1 + µ0)2 + (z/zd)2

]1/2

− 1 (A.6)

where

zd ≡
Ri1/2 vmax

ΩK

(A.7)

is a characteristic dust height and vmax = ηΩKr (see equations 3.5 and 3.6) is a constant
equal to the difference in azimuthal velocity between a strictly Keplerian flow and dust-free
gas. The dust density drops to zero at

z = ±zmax = ±
√
µ0(2 + µ0)

1 + µ0

zd . (A.8)

A comment on equation (A.6), in the limit that µ0 � 1: except where µ is nearly
constant near z � zmax/µ0 and where it falls to zero near z = zmax, the shape of µ(z) is
that of 1/z. This form follows simply from the constancy of Ri. Because the numerator of
Ri is approximately constant with µ (§3.5.2), the denominator must be as well: ∂vφ/∂z ∼
(vmax/µ)/z ∼ constant, which implies µ ∝ 1/z. From this we can deduce the super-linear
trend between µ0 and Σd/Σg as follows. The integral of µ with respect to z is proportional
to the total surface density of dust Σd. Because µ ∝ 1/z, flattening off as z decreases below
zmax/µ0, this integral varies as log µ0. Then µ0 ∝ exp Σd, crudely.

More formally, we have

Σd = 2

∫ zmax

0

ρd dz = 2ρg0

∫ zmax

0

µ dz (A.9)

where ρg0 is the midplane gas density, assumed constant because zmax � Hg. The gas
density profile always well approximates a Gaussian (see footnote 4), from which it follows
that Σg ≈

√
2πρg0Hg. Then

Σd

Σg

=

√
2

π

1

Hg

∫ zmax

0

µ dz . (A.10)

Inserting (A.6) into (A.10) we have
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√
π

2

Hg

zd

Σd

Σg

= log[1 + µ0 + µ
1/2
0 (2 + µ0)1/2]− µ

1/2
0 (2 + µ0)1/2

(1 + µ0)
. (A.11)

In the limit µ0 � 1, the exponential dependence of µ0 on Σd/Σg is evident. Equation (A.11)
is plotted in Figure A.1, with Ri = 0.25 and vmax/cs = 0.025. Overlaid is the same equation
but with varying Ri = Ricrit ≈ 0.25(µ0/9), the relation we found in Paper I (see Figure 5 of
that paper). The two data points representing the maximum µ0 achieved in this paper are
also plotted. The data track the variable Ricrit(µ0) curve much better than the constant Ri
curve.

Finally note that Hg/zd ∝ cs/vmax enters into equation (A.11) the same way that Σd/Σg

does. Thus µ0 increases super-linearly with cs/vmax as well. This result leads us to suspect
that our numerical results for µ0 (2.9, 26.4) depend sensitively on our choice for vmax/cs =
0.025. In this paper we did not run simulations with different vmax/cs and so did not test
this suspicion.
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Figure A.1 : Super-linear trend between the midplane dust-to-gas ratio µ0 and height-integrated
metallicity Σd/Σg for dust profiles characterized by a spatially constant Richardson number Ricrit.
Equation A.11 is plotted twice: the dashed curve uses Ricrit = 0.25, whereas the solid curve varies
Ricrit according to the relation found in Paper I: Ricrit ≈ 0.25(µ0/9)1.0 (see Figure 5 of Paper I).
Both curves fix vmax/cs = 0.025. The maximum values of µ0 achieved in this paper are plotted as
points. These data follow the variable Ricrit(µ0) curve more closely than the constant Ricrit curve,
corroborating the evidence we found in §3.5.1 that Ricrit is spatially constant but varies with µ0

(equivalently Σd/Σg).
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Appendix B

Sink Particle Sub-grid Model

1 A collapsing molecular cloud forms structures that can be several to many orders of
magnitude smaller in size than the original cloud. Large scale astrophysical simulations
attempt to resolve these structures in order to follow their evolution, but this requires over-
coming additional computational burdens, be it the reduced time step needed to ensure
numerical stability or resource demands due to the increased memory requirements of the
computational domain. Sink particle methods have been developed for both Lagrangian
(Bate et al. 1995; Hubber et al. 2013) and Eulerian mesh (Krumholz et al. 2004b; Federrath
et al. 2010) codes to allow for collapsing flows that proceed beyond the finest resolved scale
of the simulation. Material that enters these sink particles can be removed from the com-
putational domain according to an analytical prescription that is intended to best estimate
the physical processes that occur at those unresolved scales. In this section, we develop an
implementation for embedding Lagrangian sink particles into an Eulerian mesh to model the
accretion of an ideally magnetized gas, extending the approaches of Krumholz et al. (2004b,
2006) for non-magnetized flow. We review the criterion for the creation of a sink particle in
a magnetized medium and we then determine the accretion rate of the sink particle, allowing
for the finite resolution of the data. Only these prescriptions depend on the strength of the
local magnetic field, whereas the others (sink particle mergers, coupling the sink particle’s
gravity to the hydrodynamics, etc.) do not and so are left unchanged. It should be borne in
mind that, based on the observation that stars have far less magnetic flux than the gas from
which they formed, we assume that the sink particles accrete mass but not magnetic flux.

B.1 Sink Particle Creation
In simulations of gravitational collapse, mass accumulates in a small fraction of the grid

cells. Sink particle algorithms must be able to identify whether these regions would continue
to collapse if they were afforded higher resolution. On physical grounds, Jeans (1902) showed

1Large portions of this appendix have been previously published as Lee, A. T., Cunningham, A., McKee,
C., Klein, R. 2014. Bondi-Hoyle Accretion in an Isothermal Magnetized Plasma. ApJ, 783, 50.
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that perturbations on scales larger than the Jeans length,

λJ =

(
πc2

s

Gρ

)1/2

, (B.1)

are unstable since thermal pressure cannot resist the self-gravity of the gas. Truelove et al.
(1997) showed that Eulerian simulations are subject to purely numerical fragmentation if
this Jeans scale is not resolved by at least four cells. A sink particle is introduced at the
center of a cell when the cell mass density ρ exceeds a critical density, which we term the
Truelove-Jeans density,

ρTJ =
πJ2c2

s

G∆x2
, (B.2)

where J = ∆x/λJ is the (user-provided) inverse of the number of cells required resolve the
local Jeans length. Once this is satisfied, a sink particle is initialized with mass (ρ−ρTJ)∆x3,
and an equal mass is removed from the gas in the host cell. Myers et al. (2013b) extended
this to incorporate ideal MHD, deriving a magnetic Truelove criterion: sink particles are
initialized in cells whose density exceeds

ρTJ,mag = ρTJ (1 + 0.74/β) (B.3)

(see their Appendix A). The additional term arises in Equation (B.3) because of the inclusion
of magnetic pressure, which also acts to prevent gravitational collapse. Federrath et al. (2010)
arrived at a similar condition. Following the work of Myers et al. (2013b), we adopt J = 1/8
in our Truelove criterion for sink particle creation.

B.2 Sink Particle Accretion

B.2.1 Estimated Accretion Rate, Ṁfit

After the sink particle has formed, it will continue to accrete nearby gas. The rate of
accretion onto the sink particle may be determined by processes that occur on scales that
cannot be resolved in many modeling applications of interest. Here we develop an expression
for the accretion rate onto sink particles that incorporates our new interpolation formulas
(Equations 4.27 and 4.30) and that works at all resolutions. Our results for the accretion
rate are based on the assumption that the ambient medium is uniform, but in simulations of
star-forming regions, the medium is far from uniform. We therefore need an expression for
the accretion rate that depends on locally measured quantities. To obtain this, we ran the
models in this work and in Cunningham et al. (2012) at a range of different resolutions and
developed a prescription for the correct accretion rate based on quantities measured in the
vicinity of the sink particle.

Two limits for the sink-particle accretion rate may be considered: The well-resolved case,
in which rABH is much larger than the cell size, and the under-resolved case, in which it is
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much smaller. We need a prescription for the accretion rate that works in these limits, as well
as in the intermediate case. Since rABH ∝M∗, more massive stars are likely to have accretion
flows that are well resolved, whereas low-mass stars are likely to have under-resolved flows
(see Section 4.5).

First consider the well-resolved case. In this case, the exact prescription for how much
mass gets removed from the host and neighboring cells of the sink particle is not important
since the flow’s transition to velocities exceeding the fast magnetosonic velocity, vF, is re-
solved. Once v ≥ vF, the flow becomes causally disconnected from the background and will
collect near the sink particle regardless of the conditions of the surrounding medium. If our
prescription underestimates the mass accretion rate, gas will collect in the sink particle’s
host cell until the gas density exceeds ρTJ,mag, at which point a sink particle will be formed
and immediately merged with the existing sink particle (Krumholz et al. 2004b). If our
prescription overestimates the accretion rate, the density in the superfast infall will drop
below the correct value, and the accretion rate in the next time step will be reduced. Thus,
in the well-resolved case, the mass accretion rate is effectively set by the supersonic infall.
The work described earlier in this paper using RAMSES is an example of this regime, since
we ensured that the length scale rABH was resolved. The insensitivity to the accretion rate
algorithm is also true for simulations of global supersonic collapse onto a particle (Shu 1977).

Next, consider the under-resolved regime, where rABH is not well resolved. In this regime,
the flow inside the sink cell is causally connected to the rest of the flow for v0 < vF (the
subfast case) and to the flow in the downstream Mach cone for v0 > vF (the superfast case).
The prescription for the amount of gas to be taken from the particle’s host cell is important
in this regime: not all the gas that flows through the cell should necessarily accrete onto
the sink particle. Furthermore, the amount of gas in the particle’s host cell determines
the pressure support in the cell. The correct accretion rate in this regime is the Alfvén-
Bondi-Hoyle rate that we have determined. The problem is that this accretion rate depends
on the properties of the ambient medium, which we have assumed is homogeneous; in a
simulation of a star-forming region, however, there is no homogeneous ambient medium. We
therefore must estimate the accretion rate from the values of the parameters in the vicinity
of the sink particle. Star-forming regions are supersonically turbulent, and Krumholz et al.
(2006) showed that such turbulence has two countervailing effects on the accretion rate:
the rate is increased by the density fluctuations, but decreased by the vorticity in the flow.
Our simulations include the first effect so long as density variations are well-resolved (i.e.,
except in shocks). We have not included vorticity, however, so our results are necessarily
approximate when applied to a turbulent medium.

The results we have obtained for the accretion rate depend on quantities—the ambient
density, ρ, the ambient plasma β, the Mach number of the flow past the accretor,M, and the
angle between the flow velocity and the field, θ—that are assumed to be constant far from
the accreting particle. In star-forming regions, however, these quantities are not constant far
from the accretor. To deal with this problem in simulations, we have developed a two-step
procedure: We first measure these quantities near the accretor; these values are denoted
with a bar (e.g., ρ̄). In the limit of low-resolution, these values can be used for the ambient
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values that appear in our results for the accretion rate in Section 4.2.2. However, when
the flow is resolved, gravitational focusing amplifies the density and magnetic field near the
accretor, and values of these quantities must be extrapolated in order to estimate the ambient
values; these estimates for the ambient values are denoted by a dagger (e.g., ρ†). We do not
distinguish the local and extrapolated values of the Mach number of the flow relative to the
sink particle since they are the same in the limit of steady accretion (i.e.,M† ' M̄).

In general, the angle θ between v and B may be time-dependent, so it is not possible
to infer the ambient value of θ by extrapolation; we therefore set θ† = θ̄. With Equations
(4.27) and (4.30) for Ṁ‖ and Ṁ⊥, our estimate of mass accretion rate onto a sink particle is
then

Ṁfit = Ṁ⊥(ρ†, β†,M̄) sin2 θ̄ + Ṁ‖(ρ
†, β†,M̄) cos2 θ̄ . (B.4)

In order to compute local values of the quantities ρ̄, β̄, M̄, and θ̄, we take averages over
all the cells in a spherical shell of radius ravg ± ∆x around the sink particle, where ∆x is
the smallest grid size of the computational domain. The shell radius must be larger than
4 ∆x, the region from which mass is removed from the cells and deposited onto the particle
(Krumholz et al. 2004b), but not so large that the sink particle is sampling far from the local
region that sets its current accretion rate. We have found the best results by sampling over a
shell with radius ravg = 11∆x. In particular, the value of M̄ is computed as a mass-average
over the volume of the shell, and θ̄ is the angle between the volume-averaged magnetic field
and volume-averaged momentum directions within this shell. We have found the best results
by imposing the refinement criterion that every AMR level cover a sphere with a radius of
16 zones centered on the sink particle.

As noted above, if the flow near the sink is well resolved—i.e., if ravg < rAB, rBH—
then the density and magnetic field will be amplified by gravitational focusing, so that
ρ̄ > ρ† and B̄ > B†. First consider the density. Following Krumholz et al. (2004b), we
determine ρ† by assuming that the density near the sink particle is well approximated by
the stationary Bondi (1952) solution, ρ(r) = ρ†α(r/rB), where the function α is determined
by a set of transcendental equations. We evaluate this function at ravg, so that ρ(ravg) = ρ̄.
To incorporate relative motion between the sink particle and the gas, we instead normalize
the radius in α to rBH (Krumholz et al. 2004b), giving

ρ̄ = ρ†α(ravg/rBH) . (B.5)

The function α(r) is a monotonically decreasing function with the limit α→ 1 as r →∞. In
Figure B.1 we plot α(r/rBH). In the absence of a magnetic field, our estimate for the ambient
density would be ρ† = ρ̄/α(ravg/rBH). Since the magnetic field limits the compression,
we adopt an ansatz for the ambient density in which ρ† = ρ̄α−χ, where χ goes smoothly
from 1 in the hydrodynamic limit to 0 (i.e., no compression) in the limit of a strong field;
an explicit expression for χ as a function of β† will be given below. At sufficiently high
resolution, directly simulating the accretion onto a totally absorbing sphere is more precise
than our accretion rate fits. We have found that this condition is met when ∆x <∼ rABH/8. A
resolution-dependent, piecewise prescription for the argument of α−χ is necessary to give a
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precise accretion rate in the limit of an asymptotically converged grid resolution, regardless
of the error of our approximate fit.

Whatever the functional form for α−χ, it has several requirements. In order to have the
sink particle transition to a totally absorbing sphere in the high-resolution limit, the value
of ρ† should be similar to the near-sink value of ρ̄— i.e., α−χ should be of order unity. For
under-resolved flows, ravg is sampled farther from the sink particle. In the weak field limit,
α−χ should approach 1/α(ravg/rBH), which gives an accurate correction factor between ρ†

and ρ̄ (Krumholz et al. 2004b). As β decreases, the value of α−χ should decrease until the
field becomes so strong that any gravitational enhancement of ρ occurs well within ravg. For
smaller values of β, α−χ should rise back up to be of order unity. We adopt

ρ† = ρ̄

(
α

[
max

(
1,

8∆x

rABH

)
11rABH

8rBH

])−χ
(B.6)

as our functional form for ρ†, which we later show achieves all the requirements above. Note
that the factor 11/8 does not have any special significance; it is the result of our choice of
ravg = 11∆x and our result that the criterion for being well resolved is ∆x < rABH/8.

The magnetic field is also amplified in the accretion flow. For 1D compressions, B ∝ ρ so
that β ∝ ρ/B2 ∝ 1/ρ. The accretion flow is far more complicated than that, but we use this
simple relation as the basis for our ansatz for β. Guided by this asymptotic consideration,
we choose the following ansatz for β†:

β† = β̄

[
α

(
11∆x

rBH

)]χ
. (B.7)

For the length scales rBH and rABH, the input quantity β† is used in the expressions given
by Equations (4.8) and (4.23), so Equation (B.7) an implicit function for β†. Note that,
in contrast to the prescription for ρ†, the prescription for β† does not require an explicit
piecewise transition with resolution: the piecewise prescription for ρ† transitions our estimate
to a totally absorbing sphere in the limit of high resolution, and by definition this is insensitive
to the field strength.

It remains to give an expression for χ(β†). We construct this function so that the func-
tional form of the density profile (Equation B.6) best reproduces the azimuthally-averaged
steady state density profiles in Cunningham et al. (2012). The functions are fit to the profile
in the equatorial plane, defined as the plane perpendicular to the original magnetic field
direction that also goes through the center of the sink particle. After some experimentation,
we obtained a reasonably good fit with

χ(β†) =


0 : log10 β

† < −3.1,

1.27− 0.5/(β†)
0.13

: −3.1 ≤ log10 β
† ≤ 2.0,

1 : log10 β
† > 2.0.

(B.8)

This function is a monotonically increasing function of β†. With this final parameter speci-
fied, Equations (B.7) and (B.8) are solved simultaneously by iteration until β† converges to
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one part in 104 or until β† > 109. At this point, the four inputs ρ†, β†, M̄, and θ̄ are known
and Ṁfit can be determined.

We now show that this formulation satisfies the criteria given above. First, in the high-
resolution limit, the sink should become totally absorbing, which requires that α−χ be of order
unity. In this case, the argument of α is 11rABH/(8rBH), so that α−χ → [α(11/8)]−1 ' 1/2
in the high-β limit. In the low-β limit, χ→ 0, so that α−χ → 1. For intermediate values of
β, α depends on both β andM as shown in Figure B.2. The smallest value of α−χ occurs
forM = 0; it is 0.064 at β = 0.022.

Next, for under-resolved flows (∆x > rABH/8), α is evaluated at ravg/rBH = 11∆x/rBH

and is resolution dependent. We argued that in the weak-field limit, α−χ should approach
[α(ravg/rBH)]−1; this occurs naturally, since χ→ 1 in this limit. In the strong-field limit, we
required α−χ ' 1; this is satisfied since χ → 0 in this limit. At intermediate values of β,
we suggested that α−χ should have a minimum. Although we have not portrayed α−χ for
different values of ∆x in Figure B.2, this figure does show the expected minimum when ∆x
is at the boundary between low and high resolution (∆x = rABH/8). As one moves into the
low-resolution regime (increasing ∆x), the argument of α increases and so does α−χ. As a
result, the values of α−χ for the high-resolution case in Figure B.2 provide a lower bound for
the values in the low-resolution case.

B.2.2 The Adjusted Accretion Rate, Ṁsink: Capping the Alfvén Ve-
locity

With Ṁfit given by the prescription above, mass is extracted from a sink region within
4 ∆x of the particle as an operator-split source term that is applied every fine AMR level
time step increment ∆t. In well-resolved accretion flows care must be taken in extracting
mass from the grid. In such cases we do not want to introduce a new local maximum in the
speed of magnetosonic waves—similar to what was described in Section 4.3. In the opposite
case of poorly-resolved accretion flow (e.g when rABH is not resolved) not introducing a new
maximum in the value of vA, could arbitrarily diminish the accretion rate onto the sink
particle. We therefore define a characteristic square-velocity V 2 as the maximum of two
quantities, depending on whether rABH is resolved (rABH < ∆x) or not (rABH ≥ ∆x):

V 2 = max


v̄ 2

A,max : rABH < ∆x
v̄ 2

A,max∆x2

r2
ABH

: rABH ≥ ∆x
. (B.9)

The value for v̄ 2
A,max is computed by taking the maximum Alfvén speed inside the same

spherical shell described above. This defines the ∆ρ that can be extracted while only intro-
ducing a new local maximum in the Alfvén speed when rABH is not resolved and avoiding
vanishing time-step pathologies when it is resolved. The value of ∆ρ extracted from a par-
ticular cell near the sink particle is set to the minimum of two quantities while holding the
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specific kinetic energy of the gas constant:

∆ρ = min

{
(Ṁfit∆t/∆x

3)W (r) : Mass accretion estimated from fit.
ρ−B2/(4πV 2) : New maximum Alfvén velocity avoided.

∣∣∣∣ , (B.10)

where r is the distance of that cell’s center from the sink particle and the function W (r) is
a Gaussian kernel that extends out to r = 4 ∆x and is normalized to unity (Krumholz et al.
2004b). Note that the second expression for ∆ρ is non-negative by definition. These two
measures in the piecewise definition of ∆ρ are guided by physical considerations. However,
if the sink particle accretes faster than the background flow can supply material, a void will
open around the sink particle. If the density contrast between the void and the surroundings
is allowed to become arbitrarily deep, the stability of the hydrodynamic scheme could be
adversely impacted. This is particularly true in the limit of β → ∞, where our Alfvén cap
would not prevent this pathology. Therefore, we further impose the constraint that if the
∆ρ results in a particular cell having density less than ρ†/10, then ∆ρ is adjusted so that the
cell’s density is floored at ρ†/10. Finally, mass and momentum that is extracted from the
grid is added to the sink particle mass in a manner than preserves global mass conservation,

∆Msink =
∑

r≤ 4 ∆x

∆ρ∆x3 , (B.11)

and the momentum of the sink particle is updated in a likewise manner that preserves global
momentum conservation.

B.2.3 Verifying the Algorithm for the Accretion Rate

We have implemented this MHD sink particle algorithm in the ORION2 code (Li et al.
2012). To test the method, we repeat the models of this work and Cunningham et al. (2012)
on geometrically nested meshes having a base grid over 16rB of at least 643 and enough
AMR levels so that we coarsely resolve the accretion scales to be rB/∆x = 2, 8, 32, and 64
on the finest level. In Figure B.3 we show the comparison between the ORION2 results and
those from RAMSES . In general, we achieve accretion rates that are typically within a factor
of two of the result obtained from high-resolution RAMSES models. In Figure B.4 we show
the convergence properties in ORION2 of a M = 1.41, β = 1 model with a parallel field
orientation. The parameters of this test case were chosen so that magnetic, thermal and
ram pressure effects are all of comparable importance and that the influence of all of these
effects on Ṁ converge with sufficient resolution. Note that at low resolution, the accretion
rate is ∼ 40% low and that the method transitions toward a pressure-less totally absorbing
sphere by rB/∆x > 64, converging at high resolution to within 11% of the RAMSES model.
The ∼ 11% difference when ORION2 is at comparable or higher resolution reflects intrinsic
differences in the codes when resolving flows with a finite resolution.
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Figure B.1 : Density profile from Krumholz et al. (2004b) for steady-state Bondi accretion onto a
point source as a function of distance from the source r. The density is normalized to ρ† = ρ(r →∞).
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Figure B.2 : The value of α−χ from Equation (B.6) for high resolution (8∆x ≤ rABH). Four different
Mach numbers are considered, increasing from bottom to top. The function for χ(β) is given in
Equation (B.8). For low resolution flows (8∆x ≥ rABH), α−χ is a monotonically decreasing function
as ∆x decreases. Therefore, these curves also give the minimum value of α−χ for a particular β and
M in the low resolution limit.
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Figure B.3 : Test of the magnetized sink particle algorithm implemented in ORION2 . Plotted for
each model is the ratio of steady-state accretion rates of ORION2 (Ṁsink) and RAMSES (ṀRams) as
a function of the smallest grid cell size ∆x. Black points show the parallel orientation runs, green
shows perpendicular. The Mach number of the run is given by the symbol.
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Ṁ
O
ri
on
/Ṁ
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Figure B.4 : Convergence study of the ORION2 implementation as a function of the number of grid
cells per rB. Plotted is the ratio of steady state accretion rates of ORION2 versus RAMSES (ṀRams)
for theM = 1.41, β = 1.0 parallel case. For comparison, the default resolution RAMSES model had
rB/∆x ≈ 164, marked by the short dashed line.
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Appendix C

Ray Tracing and Ionization

1 Radiation from stars can strongly affect the surrounding environment. This radiation
plays a crucial role in topics such as stellar atmospheres, the interstellar medium, star for-
mation, galaxy formation, supernovae, and cosmology. Radiative transfer is a well-studied
problem (e.g., Mihalas & Mihalas 1984; Rybicki & Lightman 1986), but its numerical treat-
ment in multi-dimensional non-equilibrium calculations is difficult. Radiative processes de-
pend on seven variables: three spatial, two angular, one in frequency, and one in time. This
radiation is not uniform, and the nonlocal thermal and hydrodynamical response to intense
radiative sources further adds to the difficulty of this problem.

Several methods have been developed to model radiation diffusing through optically thick
gas. In this case where the radiation is strongly coupled to the hydrodynamics, flux-limited
diffusion methods (Krumholz et al. 2007), M1 methods (first-moment methods; González
et al. 2007), and variable Eddington tensor methods (Aubert & Teyssier 2008) have been
employed, often using moment equations and assumptions of symmetry to reduce the number
of independent variables. These flux-limited and moment methods have the advantage of
being fast and independent of the number of radiation sources, although can become diffusive
and result in incorrect solutions when inappropriately employed. An additional restriction
is that these methods typically assume local thermodynamic equilibrium, which restricts the
methods ability to capture scattering and multi-frequency radiative-hydrodynamics.

When the radiation is not strongly coupled to the hydrodynamics, long characteristic ray
tracing methods are often used instead. These methods solve the radiative transfer equations
along specific rays (e.g., Abel et al. 1999; Razoumov & Scott 1999; Susa 2006; Wise & Abel
2011). By tracing rays on a cell by cell basis, ray tracing can provide the highest accuracy
for radiation emitted directly from point sources. The challenge with these methods is that
they are often computationally expensive, since a large number of rays is typically necessary
to hit distant cells or particles in a statistically significant manner. The problem does not

1Large portions of this appendix will eventually be published as Lee, A. T., McKee, C. F., Stacy, A. R.,
Rosen, A.R., Klein, R.I. Radiative Feedback in the Formation of Population III Stars I. HII Regions. in the
Monthly Notices of the Royal Astronomical Society. Appropriate permissions to reproduce it here have been
obtained from the co-authors.
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benefit from parallelization algorithms as much as one would hope, especially when the rays
are emitted from a few sources and travel only a small fraction of the domain’s volume.
In these situations, processors without rays idle while a small number of processors handle
the entire ray tracing workload. The computational cost scales linearly with the number of
sources, rays traced, and grid cells with which the rays interact. Unfortunately, standard
load balancing algorithms often focus on balancing the total number of cells across processors
and do not focus on equalizing the ray workload.

In Rosen et al. (2017), we recently implemented a highly-parallelizable long characteristic
method to treat radiation from point sources. Section C.1 briefly describes our ray tracing
method in ORION2, and Section C.2 describes how we have used this ray tracing method to
trace the hydrogen-ionizing radiation from stars. Finally, Section C.3 discusses several tests
we performed to assess the robustness of our method with regards to ionization.

C.1 Ray Tracing Method
We have implemented a long characteristic ray tracing method in the ORION2 adaptive

mesh refinement code. Great care has been taken to optimize the parallel performance of the
algorithm, which can operate on patched-based adaptive grids. In short, our parallel per-
formance employs a completely asynchronous and non-blocking communication algorithm,
which allows us to achieve near-perfect scaling up to O(103) processors on distributed mem-
ory machines.

Since the ray tracing is part of the AMR code ORION2, it is worthwhile to briefly describe
the order of operations and domain decomposition in ORION2. The domain is decomposed
into a set of nested grids with different cell sizes, with l = 0 denoting the coarsest level
(the ‘base-grid’) and l = lmax denoting the finest level. ORION2 load balances using the
knapsack algorithm, where each processor shares a roughly equal number of cells on each
level. As a result neighboring and nested grids need not exist on the same processor. Grids
on a given level are non-overlapping, and the grids are properly nested such that a cell on
level l may have as its neighbor another level l cell or a cell of level l− 1 or l + 1, but not a
cell of any other level. Each AMR level advances at a time step ∆tl, such that ∆tl > ∆tl+1.
In ORION2, we use a refinement factor of 2, making ∆tl+1 = 0.5∆tl, and similarly for cell
sizes. A given level with l > 0 synchs in time with the l − 1 level every two time steps.

For simplicity of example, assume here that lmax = 2; what is described below is easily
generalizable to an arbitrary number of levels. In a simulation with only hydrodynamics, a
single hydrodynamical coarse time step proceeds as follows. If the time at the beginning of
the time step is t and the time step on the base grid is ∆t0:

1. Update: l = 0 grids are advanced ∆t0. Cells on level 0 are now advanced to t+ ∆t0.

2. Update: l = 1 grids are advanced ∆t1 (= ∆t0/2). Cells on level 1 are now advanced
to t+ ∆t1 = t+ 0.5∆t0.
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3. Update: l = 2 grids are advanced twice at ∆t2. Cells on level 2 are now advanced to
t+ 2∆t2 = t+ ∆t1.

4. Synchronize: The cells on levels 1 and 2 have now advanced to the same moment in
time. The l = 1 grids with nested l = 2 grids are then synchronized; the finer grids
are interpolated up to the l = 1 cells.

5. Update: l = 1 grids are advanced ∆t1. Cells on level 1 are now advanced to t+2∆t1 =
t+ ∆t0 .

6. Update: l = 2 grids are advanced twice at ∆t2. Cells on level 2 are now advanced to
t+ 4∆t2 = t+ ∆t0 .

7. Synchronize: The cells on levels 1 and 2 have now advanced to the same moment in
time. The l = 1 grids with nested l = 2 grids are synchronized;

8. Synchronize: The cells on levels 0 and 1 have now advanced to the same moment in
time. The l = 0 grids with nested l = 1 grids are synchronized.

9. The next coarse time step is determined and the process repeats until the desired end
time is reached.

Synchronization interpolates information from the finer cells up to the coarser cells before
the coarser cells are advanced again.

Ray tracing occurs during the finest level advances. In the example above, ray tracing is
called 2lmax = 4 times for every coarse time step. As rays travel through the domain, they
interact with the finest grid available at a given location.

One computational expense of previous ray tracing methods is that a large number of
rays are needed adequately sample cells that are traversed by rays. When cells have a
characteristic size ∆x, then ∼ 4π(r/∆x)2 rays are needed from the onset to ensure that every
cell within a radius r from the source is hit by at least one ray. In the optically thin limit,
the (r/∆x)2 factor can be a significant memory and computational request. Additionally,
it is challenging to know a priori how far the rays will travel during a single ray trace. To
ease the computational burden and assure ourselves that rays adequately sample the domain
they traverse, we instead use a method similar to the method of Abel & Wandelt (2002) and
Wise & Abel (2011), where we launch a smaller number of rays from each source, allowing
the rays to divide as they travel. The initial directions of the rays are chosen using the
Hierarchical Equal Area isoLatitude Pixelization of the sphere (HEALPix) to sample the
full 4π steradians (Górski et al. 2005). Rays subdivide into four child rays once a division
criterion is met.

We define a pixel level j for each ray, which increases as the rays divide. The minimum
level, given by the user, determines the number of rays that are initially launched from the
source. The pixel number Npix = 12× 4j designates the total number of rays that exist if all
rays from a particular source are on the same pixel level j. Every time the ray subdivides,
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the level increases by one. Typically we set jmin = 3 or 4, meaning that 768 or 3072 rays are
initialized for each source. The solid angle sampled by a ray on level j is Ωray = 4π/Npix(j).
A given ray splits when the ratio

Ωcell

Ωray

=
(∆x/r)2

4π/Npix(j)
< Φc ,

where Φc is a fixed constant, which we set to four.
When the rays are initialized, the base luminosity is equally divided amongst the rays,

and the current luminosity is equally split amongst child rays when splitting occurs. Rays
do not merge when they overlap. As rays travel from cell to cell, the path-length ∆l through
each cell is used to calculate how much radiation is absorbed by the cell. Once the luminosity
of the ray decreases below 0.01% the luminosity of the base ray, the ray is terminated. The
reduction in luminosity from ray splitting is not included in this termination criterion. If
rays make it to the edge of the domain, the rays are also terminated.

Our parallelization scheme addresses several serial bottlenecks and is described in detail
in Rosen et al. (2017), see particularly Algorithm 1 of that paper. Since the number and
position of sources and the distribution AMR grids in memory are not known in advance,
the ray tracing workload is never equally spread among the processors, and a given ray
may need to be communicated between several processors as it propagates. By using non-
blocking and asynchronous communication, available since version 3.0 of the Message Passing
Interface standard library, a processor can handle any rays that currently exist in its memory,
communicating and receiving rays without blocking other processors from working on their
own rays. This eliminates processors from idling because they are waiting for communication
between other processors to complete. The accuracy of this adaptive ray tracing algorithm,
along with the results of weak and strong scaling tests, are shown in Rosen et al. (2017).
Below, we detail our implementation of ionization physics, which has not been discussed
elsewhere.

C.2 Ionization
At a basic level, our ionization ray tracing scheme tracks the ionizing emission from stars,

which are represented by sink particles. Each ray solves the radiative transfer equation

∂I

∂t
+∇I · n = −κI ,

where I is specific intensity as seen in the direction defined by n. The right-hand side includes
only a sink term with an absorption cross section κ, which accounts for the attenuation of
the radiation field by the medium. For a ray traveling from a source in the radial direction
r, it is convenient to write this equation in terms of photon flux P . Integrating over the solid
angle of the ray with a closed surface containing the emitting source, we arrive at
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1

c

∂P

∂t
+
∂P

∂r
= −κP

(e.g., Rosen et al. 2016; Baczynski et al. 2015). This expression can be a function of wave-
length; we will assume hydrogen-ionization at a single wavelength for now (see Rosen et al.
2017, for how this can be done).

Rays travel through the domain on a cell-by-cell basis, considering the highest level cell
at any given location. Ray tracing methods typically consider each cell as a uniform block
of gas with optical depth τ = κρdl, for the path length through the cell dl. Since each
ray has with it an associated solid angle Ωray, the ray reaches a cell at a distance r with a
cross sectional area A = r2Ωray. We assume that the ‘volume’ of the gas being ionized by
the ray is Adl, which is approximate when the ray hits the cell at an angle and when the
ray passes near a cell corner. For photon-conserving schemes like our own, this introduced
error is compensated for by an equal and opposite error in adjacent cells. Since rays are
launched in random directions from the source, subsequent ray traces reduce the overall
error statistically.

For a uniform cell of gas, a number flux P enters the cell and Pe−τ leaves, and the number
flux reduces by dP = P (1− e−τ ). The sum of dP for every ray that passes through the cell
gives the total ionization rate for the cell. Equating −

∑
dP/∆x3 with ṅ0

H, the change in the
neutral atomic hydrogen density is ∆n0

H = ṅ0
H∆t. As long as n0

H + ∆n0
H ≥ 0, this approach

is a photon-conserving scheme. Knowing the energy released per ionization also allows us to
calculate the total heating; in addition, knowing the direction of the original rays allows us
to calculate the total momentum imparted to the gas.

Sub-cycling on the finest time step can be done to prevent abundances and the total
energy of the cells from changing too much between hydrodynamic updates. For exam-
ple, during a single ray trace, Wise & Abel (2011) used the previous ray trace to set the
subsequent time step to be

∆tray = min

(
0.1ne
|dne/dt|

,
0.1n0

H

|dn0
H/dt|

,
0.1e

|de/dt|
,
∆thydro

2

)
where ne is the electron number density, e is the gas’s specific energy, and dthydro is the hydro
time step on the finest level. This limits the change of relevant species or energies to no more
than 10% and requires at least two ray trace calls per fine time step.

These approaches are not without their flaws. When calculating the optical depths of
the cells, typically the original state is used for every ray that passes through the cell,
thus overestimating the number of absorptions when multiple rays pass through. This risks
breaking the photon conserving nature of the rays in cases where more ionizing photons are
absorbed than there are neutral hydrogen atoms. In this case, to avoid negative number
densities, the code resets the number density to zero, throwing away photons that would
have continued to propagate. Furthermore, such sub-cycling requirements are typically over-
restrictive, requiring an unnecessary number of sub-cycles for cells with low optical depths.
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To alleviate these problems, we have developed a sub-grid model for our radiative transfer
scheme. Other approaches use a method like the one above, where a net ionization rate is
determined by the ray trace, using the original state of the gas. This rate is then multiplied
by ∆t to determine to the total number of ionizations. In reality, the state of the gas
continuously changes over ∆t. Our approach below addresses this issue.

C.2.1 Sub-Grid Model

In general the equation for the number density of neutral hydrogen n0
H is

∂n0
H

∂t
= −∇ · n0

Hv + αBnen
+
H − CHnen

0
H −

∑
rays i

FiσHn
0
H ,

where αB is the recombination coefficient, assuming the on-the-spot approximation, CH is
the collisional ionization coefficient, Fi is the ionizing flux of ray i passing through the cell,
σH is the ionization cross section, ne is the electron number density, and n+

H is the number
density of ionized atomic hydrogen.

Considering only a single ray and that the time step is small enough so the various terms
can be computed via an operator split technique, the ionization term becomes

∂n0
H

∂t
= −FσHn

0
H .

The flux here is the flux arriving at the cell after traveling some distance r from the source.
We now integrate over the volume of the cell, setting F = 0 outside the ray. Recalling that
the volume of the ray is ∼ Adl, we arrive at2

∂NH

∂t
= −AF (1− e−τ ) ,

where τ = n0
HσHdl is the optical depth of the ray in the cell and NH is the total number of

neutral hydrogen atoms inside the cell.
We now determine the change of neutral hydrogen over a time step ∆tray without assum-

ing that the change of neutral hydrogen is small. Since n0
H = NH/∆x

3, we have

∂n0
H

∂t
= − AF

∆x3

(
1− e−τ

)
,

so that
∂τ

∂t
= −AFσHl

∆x3

(
1− e−τ

)
.

If τ0 is the optical depth along the ray through the cell at time t and τ0 + ∆τ is the optical
depth at t+ ∆tray, then one can integrate over time to obtain

∆τ = σH∆x∆n0
H = ln

[
e−τ0 + (1− e−τ0)e−∆t′

]
, (C.1)

2Since the rays are diverging, accuracy can be improved by replacing A with A(1 + l/r).
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where
∆t′ =

(
AFσHl

∆x3

)
∆tray

is the time measured in units of the mean ionization time of an atom in the cell. It is easy
to see that the argument of the logarithm is less than unity so that ∆τ < 0, as it must be
for ionization. One can further show that τ0 + ∆τ > 0, i.e., it is therefore impossible to
over-ionize the cell if the neutral abundance is changed in accordance with this equation.

The number of photons removed from the ray exactly matches the number of ionizations.
Subsequent rays see an altered cell upon arrival and calculate a reduced τ0. Overall, the
scheme remains photon conserving regardless of the size of the time step.

C.2.2 Algorithm

For each ray trace call, we perform the following:

1. Enter the ray trace routine with the current time t and the finest hydro time step ∆t.
Set the time needed in ray tracing to tray = ∆t. The variable tray represents the amount
of time remaining before the ray trace is completed for the current hydrodynamical
time step. A temporary array is created to store the total number of ionizations that
occur in each cell.

2. Beginning of main loop: Particles store the value of the next ray trace time step
∆tray. If it exceeds tray, set ∆tray = tray. If this is the first time ray tracing is being
called in the simulation, set ∆tray = 0.1tray. Particles calculate the ionizing luminosity,
assuming their luminosity is constant over this tray. ORION2 stores integrals of the
Planck equation for rapid table lookups.

3. Subtract ∆tray from tray.

4. Particles cast their rays. Rays are moved via the ray tracing algorithm described above.

5. For every cell a given ray passes through, Equation (C.1) is used to calculate ∆n0
H, and

∆n0
H∆x3 photons are removed from the ray. Currently we assume a monochromatic

spectrum and use a constant photoionization cross section σH = 6.3× 10−18 cm2.3 In
the future, we will allow each ray to calculate σH based on the ray’s average photon
energy. The ray’s current flux F and ∆tray are used in calculating ∆t′. The value of τ
is calculated using the properties of the cell and the path length of the current ray. If
the temporary array entry for this cell is non-zero, the ionizations from previous rays
are incorporated when calculating τ .

3This value for σH is the cross section for ∼ 13.6 eV photons. In general σH ∝ (hν/13.6 eV)−3 until
the energies become comparable to Compton scattering; for hydrogen, this occurs at hν ≈ 2.5 keV (Draine
2011). For main-sequence stars below ∼ 20M�, the average photon energy above 13.6 eV remains below 20
eV, where σH has dropped only to 0.3σH(hν = 13.6 eV).



C.3. TESTS 146

6. After the total number of ionizations are computed for a given ray passing through a
given cell, the number of ionizations are added to the temporary array.

7. Secondary loop: Once the ray casting has finished, ionizations and recombinations are
applied to change the actual state of the gas. Each processor loops over every cell it
owns and applies ionization chemistry and heating. We assume that 2 eV is imparted to
the electron gas per ionization. Ionizations are applied first, and then recombinations
are applied.4 The recombination coefficient is calculated as

αB(T ) = 2.59× 10−13

(
T

104

)−0.833−0.034 log(T/104)

cm3/s

(Draine 2011), where the temperature of the gas is calculated using the resulting in-
ternal energy of the cell e after ionizations have been applied. Recombination cooling
is incorporated assuming that(

0.684− 0.0416 log

(
T

104

))
kBT ergs

are lost per recombination. On average, this is ∼ 0.7kBT but accounts for the fact that
in hotter gas the higher energy electrons are harder to capture (Draine 2011). The net
heating rate ė for every cell is temporarily stored.

8. Compute the next ray trace time step ∆tray,1 for each cell. The next time step for each
cell as the minimum of either 10% of the recombination time scale 1/αBne or 10% of
the heating/cooling time scale e/ė. This concludes the second loop.

9. After the second loop is complete, the minimum value of ∆tray,1 in the computational
domain is the next ray trace time step ∆tray. This time step is stored with the sink
particles.

10. If tray = 0, exit ray tracing. Else return to the top of the main loop, repeating the ray
tracing routine until tray = 0.

C.3 Tests
In this section, we detail two benchmark tests performed to assess the accuracy of the

ionization ray tracing method. Additional tests not specific to ionization can also be found
in Rosen et al. (2017). Our method can be directly compared to other ionizing ray tracing
methods, for example, that of Wise & Abel (2011) and Baczynski et al. (2015), which perform
similar tests.

4This approximation assumes that ∆tray is small compared to trec. In the future we plan on improving
the accuracy of this step by applying recombinations at half time-steps between incorporating ionizations.



C.3. TESTS 147

C.3.1 Photon conservation and R-Type Ionization Front Expansion

Consider an initially uniform neutral medium where an embedded star suddenly turns
on. The resulting ionization front initially expands much faster than the sound speed of
the surrounding ambient gas, leaving no time for the photo-heated, overpressured gas to
compress the surroundings. The front moves into neutral rarified gas and is commonly
described as the R-Type expansion phase of the ionization front. Since this phase depends
only on the state of the initial medium and the ionizing luminosity, this is an apt test to
assess the ray tracing algorithm and the ionization and recombination rate calculations.

The ionization front will move outward as long as ionizing photons can make it to the
front before being absorbed by recombining ionized gas inside the HII region. The radius
where the recombination rate balances the ionization luminosity is the Strömgren radius

RS =

(
4πQ

3n+
HneαB

)1/3

,

where Q is the number of ionizing photons emitted per second (Strömgren 1939). The radius
as a function of time can readily be derived, yielding

R(t) = RS (1− exp(−t/trec))
1/3 . (C.2)

Here trec = (αBne)
−1 is the recombination time. The exponential can be expanded to obtain

R(t) =

(
3Q

4πn0
H

)1/3

t1/3 (C.3)

as the leading term, which is the same expression you would derive for the location of the
ionization front when αB = 0.

We perform a set of simulations for an isothermal gas with adiabatic index γ = 1.0001
that is comprised initially of neutral hydrogen. For these simple tests, the recombination
coefficient is either set to 0 or 4.4×10−12 cm3/s. The atomic hydrogen number density is set
to n0

H = 100 cm−3. One source is placed at the center of the domain and emits Q = 4×1049

photons/sec. The domain has a base resolution of 643, which spans 12 pc in size. We set
the heating and cooling rates in our ray tracing algorithm to zero. The simulation is run
for 4000 years, which is a bit more than three recombination times. For these parameters,
RS = 5 pc.

Since the radiation time step is determined only by the number density, the evolution of
the front should not depend on resolution. We have performed this test also with a base grid
of 1283 and with a base grid of 643, while allowing one or two levels of AMR refinement, and
obtain identical results to those shown below.5 Additionally, we have run this test by placing
several particles within the innermost 8 grid cell at the center of the domain, adjusting the
output luminosity so the total luminosity output equals Q = 4×1049 photons/sec. Once the

5For the AMR tests, refinement was applied where the gradient of the neutral hydrogen mass fraction
exceeded 25%.
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front’s radius exceeds ∼ 10 grid cells, the radial evolution of the front for this star cluster
matches that of the single-star tests.

Figures C.1 shows example slices of the inner 10 parsecs of the domain, where the colorbar
represents the neutral hydrogen fraction, for 643 and 1283 grids. In general the ionization
front is sharply defined and spans only a grid cell in length. The spherical symmetry depends
on the total number of rays arriving at a certain radius; by adjusting the base number of
rays launched from the source or by increasing the rate of ray refinement, the symmetry of
the region can be further improved.

We use YT analysis tools (Turk et al. 2011b) to find the spherical radius where the
ionization fraction first reaches 50%; this defines the ionization front. Figure C.2 plots the
ionization front for different sets of simulation parameters. The left panel uses αB = 0 to test
the photon-conserving nature of the ray trace. This is tested with different base resolutions
and with three different ray refinement factors (2, 4–the default, and 8). We test our results
against Equation (C.3) and find near-perfect agreement regardless of grid resolution and the
refinement factor that determines when rays divide.

Second, we set αB to the constant value 4.4×10−12 cm3/s; these results are shown on the
right panel of Figure C.2. Sub-cycling only depends on the recombination time scale criterion,
which is initially set to ∆tray,max = 0.1trec. Put another way, this criterion requires ∼ 10 ray
traces per recombination time of a purely ionized cell. We consider more restrictive time
stepping criterion up to requiring ∼ 160 ray traces per recombination time. At early times,
before recombinations begin to matter, all simulations agree with one another. Beyond
∼ 0.5trec, our results generally overshoot the analytical solution but all asymptote to the
correct value. If at least 20 ray traces are done per recombination, the ionization front is
within one grid-cell of the analytical solution at all times. Similar results are found with
higher resolution grids.

C.3.2 D-Type Ionization Front Expansion

Once the ionization front slows to twice the sound speed of the ionized gas ci, the over-
pressured gas launches a shock wave ahead of the ionization front, making the front move
through dense post-shocked gas (this is called the “D-Type” expansion phase). Hosokawa &
Inutsuka (2006) derived the solution for the ionization front during this phase, arriving at

R(t) = RS

(
1 +

7

4

√
4

3

cit

RS

)4/7

. (C.4)

This is similar to the solution originally derived by Spitzer (1978), which omits the square-
root factor. Eventually, the expansion should come to rest once the pressure of the ambient
medium matches the ever-decreasing pressure exerted by the ionized region (Raga et al.
2012). This D-Type phase of the ionization front expansion serves as a strong test for the
hydrodynamical response to the overpressured HII region and the continuous driving of the
shell by ionizing radiation.
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This test was recently performed by several ray tracing codes in a benchmark study by
Bisbas et al. (2015). We use initial conditions that match those described in this paper.
To test the coupling of ray tracing and hydrodynamics, we measure our numerical solution
against Hosokawa & Inutsuka (2006) at times before the pressure of the ambient gas becomes
comparable to the ionized gas pressure, which Bisbas et al. (2015) refers to as the “early
phase.” To best reproduce the conditions assumed in the analytical solution, we assume that
∼ 2 eV of heating occurs per ionization, and the recombination cooling removes 0.7kT per
recombination. However, at the end of the ray tracing, before the hydrodynamic update is
applied, we apply a ceiling to the temperature of the ionized gas at 104 Kelvin, which is the
assumed constant temperature in Bisbas et al. (2015). This allows us to keep the ionized
gas at a nearly constant temperature, which matches what is assumed in the analytical
derivation of Hosokawa & Inutsuka (2006).

For these simulations, our domain is decomposed onto a 643 or 1283 base grid that spans
8RS in each dimension.6 The gas is initially given a mass density of ρ0 = 5.21×10−21 g/cm3

with a temperature of 100 Kelvin. The central star emits Q = 1049 ionizing photons/second.
We run our simulations for 0.13 Myrs, which allows the ionization front to expand to ∼
4RS ∼ 1.3 pc in radius. At this point the shocked gas reaches the edge of the domain. Here
we use both the recombination time scale and net energy injection time scale criterion when
determining the ray trace time step. The location of the ionization front is determined using
the same algorithm as the previous section.

Figure C.3 shows error between the numerical radius and the analytical radius of the
ionization front as a function of time. Here, as is done in Bisbas et al. (2015), we define t = 0
as the time where the ionization front first reaches R = RS in size, which is approximately
2 − 3 trec. Additionally, Figure C.3 shows the results of other 3D participating codes in
Bisbas et al. (2015, taken from Figure 6 of that paper). The reader is encouraged to consult
that paper for references and details regarding individual codes.

Overall, our code achieves excellent agreement with the analytical answer. For both
resolutions we consider, the solution appears to asymptote to 98−99% the radius calculated
by Hosokawa & Inutsuka (2006). Figure C.4 shows example slices of the HII region at late
times after the shock wave has propagated ahead of the ionization front. While we notice
ray tracing artifacts in the ionization fraction from ray trace to ray trace, like what can be
seen on the left panel of Figure C.4, the random orientation of the subsequent rays cast
statistically reduce these errors and have little impact on the overall dynamics (even when
the temperature ceiling is not applied). Furthermore, increasing the sub-cycling restriction
from 10% to 25% or 50% of the recombination and heating time scales only increases the error
by a few percent. In generally, our algorithm performs ∼ 1000 ray traces per hydrodynamic
time step7 at early times, a result of an intense source suddenly heating neighboring cells
of gas. Once the HII region begins to move outward, the ray trace time step is limited

6We note that the resolution in Bisbas et al. (2015) is equivalent to using a 2563 grid, so we are simulating
the front at a lower resolution.

7The hydrodynamical time steps are determined by the Courant condition: ∆thydro ≈ 0.5∆x/cs(T =
104 K).
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Figure C.1 : Slices showing the neutral hydrogen mass fraction for (left) a 643 and (right) an 1283

base grid. The width of the ionization front is approximately one grid cell. The spherical symmetry
depends on the total number of rays arriving at a certain radius; by adjusting the base number
of rays launched from the source or by increasing the rate of ray refinement, the symmetry of the
region can be further improved.

primarily by the recombination time scale requirement. During this time, ∼ 100 ray traces
are performed per hydrodynamical time step for these coarse resolution runs.
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Figure C.2 : Ionization front as a function of time. (Left) Without recombinations, our results
nearly exactly match the analytical solution. The error bars show the length of one grid cell. The
legend records the base grid resolution and the refinement factor (“ref”) used in determining when
the rays divide. (Right) With recombinations, our results are within one grid cell of the analytical
solution at all times when at least 20 ray traces are done per recombination time. All runs are done
with a 643 grid. For both plots, the ionization front is defined as the spherical radius where the
ionization fraction first reaches 50%.
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Figure C.3 : Error between the numerical radius and the analytical radius of the ionization front
as a function of time. The analytical solution is taken from Hosokawa & Inutsuka (2006), which is
our Equation (C.4). Results of other codes that participated in Bisbas et al. (2015) benchmark test
are also shown. The error bars assume the location of the front is known to within one grid cell.
Overall, our numerical solution asymptotes to 98−99% the analytical solution and generally agrees
with the solution to better than 5%.
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Figure C.4 : Late-time slices showing the neutral H mass fraction (left) and the temperature (right)
of the gas for one of our D-Type simulations. The ionized region maintains a nearly-constant
temperature of 104 Kelvin, and a shock wave can clearly be seen propagating ahead of the ionization
front. This example shows our 1283 base grid run.
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Appendix D

Monte Carlo Projection Code

1 The major astronomical problems of computational hydrodynamics, including galaxy
formation and evolution, the collapse of interstellar clouds and star formation, and the
evolution of accretion disks, have been approached from both the Eulerian and Lagrangian
viewpoint. The former utilizes a static grid, sometimes with the option of dynamically sub-
dividing the grid if necessary; such an approach is often called Adaptive Mesh Refinement
(AMR). The latter closely resembles the classic N -body problem and tracks ‘particles’ of
fluid as they move through the computational domain. These particles represent a discrete
bundle of the fluid’s mass, and extend N -body methods by bestowing each particle with
gas properties (e.g., pressure); such an approach is called Smoothed Particle Hydrodynamics
(SPH). Each approach has its advantages and disadvantages, and the best computational
approach depends on the given problem. For example, SPH codes are by design self-adaptive
and do not require complex methods to provide high resolution in regions of high density,
though the artificial imbibing of gas properties to the particles makes the treatment of shocks
and turbulence considerably more difficult (e.g., Price & Federrath 2010).

In Chapter 4 of this thesis, we used the Eulerian code Ramses to simulate magnetized gas
around young protostars. Chapter 5 uses the Eulerian code Orion2 (Li et al. 2012), which
now incorporates a ray tracing module to track the ionizing radiation from stars (Appendix
C), to study the formation of Population III stars. Future work on the formation of these
stars will use initial conditions from the simulations of Stacy & Bromm (2013), which used
the SPH code Gadget2 (Springel 2005). In this appendix, we describe a method to map the
SPH results of Stacy & Bromm (2013) to uni-grid initial conditions for use in Orion2. Below
we briefly describe some of the methods of SPH codes. Section D.1 discusses our projection
routine, and Section D.2 describes our initial conditions and the results of the conservation
tests we have performed.

SPH extends the N -body approach by assuming each particle represents not a point
1Large portions of this appendix will eventually be published as Lee, A. T., McKee, C. F., Stacy, A. R.,

Rosen, A.R., Klein, R.I. Radiative Feedback in the Formation of Population III Stars I. HII Regions. in the
Monthly Notices of the Royal Astronomical Society. Appropriate permissions to reproduce it here have been
obtained from the co-authors.
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mass, but a smeared-out distribution of density

ρj(r) = mjW (|r− rj|, hj) , (D.1)

where the density of particle j at some point r depends on the particle’s total mass mj, the
location of the particle’s center rj, and a scale parameter hj (Price 2012). The functional
form of the smoothing kernel W describes the extent to which the mass is spread out, and
it should at least have the following properties: (1) W should be positive and have units of
1/volume, (2) W should monotonically decrease away from rj, (3) W should have smooth
derivatives, (4)W should not be sharply peaked, and (5) the integral of ρj over the particle’s
volume returns mj. The last property is equivalent to∫

Vj

W (|r− rj|, hj) dV = 1 . (D.2)

At a given point in space, the total density is the summation over all Npart particles

ρ(r) =

Npart∑
j=1

mjW (|r− rj|, hj) . (D.3)

Property (4) prevents small changes in the position of nearby neighbors from affecting the
value of ρ(r), and Property (3) ensures that gradient of ρ is smooth. Since hydrodynamics is
driven in part by ∇P , the functional form ofW is a key component of SPH codes.2 A natural
choice for the kernel is the Gaussian function. This form satisfies the requirements above,
and the flattened central region of the Gaussian helps to ensure that slight adjustments of
nearby neighbors does not change the density gradient at the center of an SPH particle.
However, this function has infinite extent, and therefore the sum in Equation (D.3) requires
O(N2

part) operations to calculate the density and its derivative at each particle’s location.
Having a kernel with compact support, i.e., that models a Gaussian but truncates at a finite
radius, is used instead. This reduces the sum to O(NneighNpart), where Nneigh is usually
∼ 102. The smoothing length of individual particles is chosen to ensure that each particle
overlaps with a target number of neighbors.

For three-dimensional problems, a popular choice is the Monaghan & Lattanzio (1985)
kernel:

W (r, h) =
1

πh3

[
1− 3

2

( r
h

)2

+
3

4

( r
h

)3
]
, 0 ≤ r/h ≤ 1 (D.4)

W (r, h) =
1

4πh3

[
2−

( r
h

)]3

, 1 ≤ r/h ≤ 2

W (r, h) = 0 , r/h ≥ 2

2This is not meant to be an introduction to SPH codes. Evaluating pressure gradients involves more than
just calculating ∇W for each particle. See Price (2012) for the details.



D.1. MAPPING METHOD 156

where r = |r− rj|. Only neighbors within 2h contribute to the sum; the list of such particles
can be quickly computed using tree methods (e.g., Hernquist & Katz 1989).

The choice of a Gaussian, or any other functional form of W , may appear arbitrary,
especially when imagining a few lone particles. One may be inclined to scoff at the idea
that a fluid is composed of a discrete set of Gaussian balls. The error in this thinking arises
by failing to recognize that the power of SPH comes about when there are many particles
overlapping each other at every point in space. Indeed, SPH codes set the smoothing length
of particles so to ensure that each particle overlaps with a constant or minimally varying
number of neighbor particles Nneigh (e.g., Springel 2005). Just as Fourier analysis discretizes
a signal into a set of frequencies, SPH can be thought of as discretizing the local fluid into a
collection of finite fluid elements; the macroscopic fluid quantities arise from the superposition
of all of these particles.3 Also, any well-functioning kernel in the limit of increased resolution
(h → 0) should begin to resemble a delta function and provide results independent of the
exact form of W . In this limit, in order to ensure the Nneigh requirement, SPH codes would
decompose the fluid into an infinite number of particles. This method has been extensively
studied, with several kernels considered, and the Gaussian form becomes an ideal choice
(Fulk & Quinn 1996). Below, when we describe how we map Gaussian shaped particles onto
a grid, continue to bear in mind that every cell of the grid will receive contributions from
many particles.

D.1 Mapping Method
Given a set of particles from an SPH simulation, each with its own mass, smoothing

length, velocity, internal energy density, we wish to project these quantities onto a three-
dimensional grid in such a way that conserves mass, momentum, and energy, as well as retains
the large-scale structure that was present in the SPH simulation. We also can project any
tracer species, quantities that are advected with the flow into a fixed set of cells. Currently
our projection algorithm projects onto a uniform grid of cells–obtained by subdividing the
domain equally in each dimension–but there is no reason why this could not also work with
adaptive grids that have differing sized cells throughout the domain.

The density distribution of each particle depends on the kernel. For a given cell that
overlaps with a given particle, the particle’s kernel is not constant within that cell. A correct
evaluation of the total mass of particle j within that cell is an integral over the cell

mp

∫
cell

W (rij, hj) dV ,

where here rij = |ri − rj| and ri is a point within the cell. Our projection routine evaluates
this integral using a Monte Carlo method.

3As an aside, this analogy extends to the shortcomings of this method as well: just as Fourier analysis
struggles with discontinuities, the major shortcoming of SPH methods is the treatment of shocks.
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For cell i, we compute the fraction fij of the kernel-weighted volume of particle j that
overlaps with the cell. We do so by evaluating the kernel W (rij, hj) at N random points ri
in the cell and computing the sum

〈W 〉 =
1

N

N∑
i=1

W (rij, hj) ,

so that
fij =

∫
cell

W (rij, hj) dV ≈ 〈W 〉
∫

cell

dV = 〈W 〉∆x3 .

Here we have assumed each dimension has a length ∆x. Assuming cube cells is not necessary
for this method, however. The standard deviation of the mean for this method is

σM =

√
〈W 2〉 − 〈W 〉2

N
=

1√
N

 1

N

N∑
i=1

W 2(rij, hj)−

(
1

N

N∑
i=1

W (rij, hj)

)2
1/2

.

For a given particle and cell, we track both 〈W 2〉 and 〈W 〉, re-evaluating σM every N = 2, 500
samples. Once σM < 0.001, we exit the Monte Carlo routine for that particular particle-cell
pair. We evaluate whether a given particle overlaps the cell before entering the Monte Carlo
routine. Furthermore, we automatically set fij = 1 if the particle is entirely contained within
the cell. Our choice of N = 2, 500 was selected to reduce the chance that our random set
of points would mis-calculate the kernel-weighted volume of a particle that barely overlaps
with a given cell.4

To project the entire set of SPH particles onto the grid, we proceed using the following
parallelized routine:

1. Input a set of SPH particles, the physical dimensions of the box to project into, and
the grid imposed on that domain.

2. The center of the box is assumed to be (0,0,0). Adjust the positions of all the SPH
particles so that the center of the densest particle’s center is located at (0,0,0). Shift
the velocities into the center of mass frame.5

3. Share the list of SPH particles with every processor. Each processor then gets a fraction
of the grid cells. This eliminates the need for the processors to ever communicate with
each other.

4. For each cell:
4This demand may be overkill, since those particles would barely contribute to the cell’s ultimate state

anyway.
5For these simulations, the densest particle’s center and the simulations center of mass are nearly the

same.
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(a) Loop through the particles and tag particles that overlap with that cell.

(b) For each tagged particle, compute fij using the Monte Carlo routine. Particle j
then contributes ρij = fijmj/∆x

3 to the cell.

(c) The cell also receives momentum and a density-weighted internal energy: ρijvj,
and ρijej. A similar quantity is calculated for any tracer fields included.

(d) Once all tagged particles have been projected into the cell, the total density of
the cell has been computed: ρi =

∑
j ρij.

(e) Divide the projected momentum and density-weighted internal energy to get the
cell’s velocity and internal energy: e.g., vi =

∑
j ρijvj/ρi. Similarly for the tracer

fields.

5. At this point, that cell is now completely initialized. This process is repeated for each
cell the processor owns. Data can be outputted incrementally or all at once.

6. Once all processors have completed these tasks, the individual files from each processor
can be stitched together to give a full set of initial conditions on the grid.

Richardson et al. (2013) used a similar method to map SPH particles to a grid. If a given
particle overlapped the cell center xi, they projected ρij = mjW (|rj − xi|, hj) into the cell.
The projected mass need not equal the actual mass of the particle. They define a correction
factor cj as the ratio of the particle’s actual mass and the total mass projected from that
particle.6. They apply this correction factor to the densities deposited in each cell from that
particle to enforce mass conservation. The remaining particle’s quantities are projected in
the same vein as above. With sufficient resolution, the gradient ofW will be negligible across
each cell, and the correction factor will be close to unity. Otherwise, this method tends to
concentrate mass near the center of each particle when cj > 1 and smooths out the particle
when cj < 1. This becomes an issue only when hj/∆x is ∼ 10 or smaller.

D.2 Example & Conservation Test
Future work will use initial conditions drawn from Halo 9 of Stacy & Bromm (2013).

Their simulations commenced at z = 100 from cosmological initial conditions that are in
accordance with a Λ-cold dark matter cosmology (ΩΛ = 0.7,ΩM = 0.3,ΩB = 0.04, σ8 = 0.9,
and h = 0.7). Their box was 1.4 Mpc [comoving] in size using Gadget-2 (Springel 2005).
As the simulation progressed, they continued to refine ten regions that formed dark matter
mini-halos, each tens of parsecs in size. We will simulate the central (pc)3 [physical] region of
their Halo 9, starting at redshift z = 24.71. Our initial conditions project any particle whose
physical extent overlaps with the intended domain, including particles with centers outside
of our box. We project only the baryonic matter since within this region the dark matter

6We note that they incorrectly define this quantity as the inverse ratio in their paper.
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distribution is nearly uniform and does not contribute to the gradient of the gravitational
potential.

In order to test how well our projection method conserves mass, momentum, and energy,
we perform this projection again, using the same domain but projecting only the particles
that lie entirely within it. Since each particle has a well-determined mass, momentum,
and energy, prior to the projection we can sum over these entirely contained particles to
calculate the total mass, momentum, and energy to be projected. After projecting, these
can be compared to the sum over the cells of the same quantities. While this projection
is not identical to our actual initial conditions, this allows us to assess the global accuracy
of the Monte Carlo routine. Doing so, we find that mass, momentum, and energy are all
conserved to better than 0.01% for a 5123 grid. We note, however, that even with coarser
grids (down to 643), we find that all three quantities are conserved to better than 1%. Figure
D.1 displays a density slice of our example initial conditions.
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Figure D.1 : Density slice through the center of the box of our example initial conditions. SPH data
from Stacy & Bromm (2013) was used to project onto a 1283 grid; future work will instead utilize
a 5123 grid for our initial conditions.
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