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EML1 is essential for retinal 
photoreceptor migration 
and survival
Deepak Poria1,2,9, Chi Sun1,9, Andrea Santeford1, Michel Kielar3, Rajendra S. Apte1,4,5, 
Oleg G. Kisselev6,7, Shimming Chen1,4* & Vladimir J. Kefalov1,2,8*

Calcium regulates the response sensitivity, kinetics and adaptation in photoreceptors. In striped 
bass cones, this calcium feedback includes direct modulation of the transduction cyclic nucleotide-
gated (CNG) channels by the calcium-binding protein CNG-modulin. However, the possible role of 
EML1, the mammalian homolog of CNG-modulin, in modulating phototransduction in mammalian 
photoreceptors has not been examined. Here, we used mice expressing mutant Eml1 to investigate 
its role in the development and function of mouse photoreceptors using immunostaining, in-vivo and 
ex-vivo retinal recordings, and single-cell suction recordings. We found that the mutation of Eml1 
causes significant changes in the mouse retinal structure characterized by mislocalization of rods and 
cones in the inner retina. Consistent with the fraction of mislocalized photoreceptors, rod and cone-
driven retina responses were reduced in the mutants. However, the Eml1 mutation had no effect on 
the dark-adapted responses of rods in the outer nuclear layer. Notably, we observed no changes in the 
cone sensitivity in the Eml1 mutant animals, either in darkness or during light adaptation, ruling out 
a role for EML1 in modulating cone CNG channels. Together, our results suggest that EML1 plays an 
important role in retina development but does not modulate phototransduction in mammalian rods 
and cones.

Absorption of a photon by the visual pigment in vertebrate rod and cone photoreceptors triggers the activation 
of a transduction cascade that ultimately results in hyperpolarization of the cells and reduction in the release 
of neurotransmitter. The continuous function of photoreceptors over a wide range of light intensities with the 
constantly changing light conditions requires adaptation of their signaling. This is accomplished by controlling 
the gain of the phototransduction cascade by inhibitory calcium feedback mechanisms in these  cells1,2. The 
dominant components of this feedback in both rods and cones involve regulation of cGMP synthesis via a couple 
of calcium-binding guanylyl cyclase activating  proteins3,4 and regulation of the lifetime of the activated visual 
pigment via the calcium-binding protein  recoverin4,5. A relatively less studied aspect of this calcium feedback is 
the direct modulation of the CNG channels in the plasma membrane of rod and cone photoreceptors. Previous 
studies in amphibian rods have shown that calcium can modulate the sensitivity of these channels by activating a 
cytoplasmic  protein6,7. However, the protein mediating this effect had remained unidentified. Studies with mouse 
rods expressing a mutant CNG B1-subunit with the calmodulin binding site deleted, have shown normal rod 
physiology, ruling out calmodulin as the calcium regulator of rod  channels8. Recently, in striped bass, a novel 
protein termed CNG-modulin was shown to directly modulate the transduction CNG channels in  cones9 and 
later in zebrafish cones its homolog Eml1 (echinoderm microtubule associated protein 1 (EMAP1)-like), was 
shown to modulate these  channels10. Based on these findings, we hypothesized that EML1 may play a role in the 
modulation of CNG channels in mammalian photoreceptors.
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In this study, we sought to address this question by examining the effect of a mutation in the Eml1  gene11 on 
mouse photoreceptors. We found that loss of the full length EML1 protein did not affect the sensitivity or light 
adaptation of mouse rods and cones. Interestingly, our study revealed that the absence of full-length EML1 causes 
abnormal structural development of retina, characterized by dramatic mislocalization of some rods and cones 
to the inner retina. The mislocalized cells survived beyond the course of retinal development but their number 
decreased over time. Notably, the photoreceptors that were properly localized in the outer nuclear layer (ONL) 
retained normal function. Thus, while proper EML1 function appears important for the lamination of the outer 
retina, it does not seem to regulate directly the function of rod and cone photoreceptors. In the course of the 
preparation of this paper, another group published a study using an unrelated Eml1 mutant causing a loss of 
the short length splice of the gene that also affected the localization of photoreceptors in the developing mouse 
 retina12. Thus, it appears that loss of either the full length or the short splice form of Eml1 disrupts photoreceptor 
migration and survival.

Results
Eml1 is expressed throughout the mouse retina. As Eml1 has been shown to modulate the sensitivity 
of cones in zebrafish  retina10, we first sought to determine if Eml1 is expressed in the cones of mouse retina. For 
this, we performed an in situ hybridization assay on 8 weeks-old wild type retina using an Eml1 probe. We found 
that Eml1 was expressed throughout the whole retina. The Eml1 transcript was predominantly present in the 
photoreceptor layer, with relatively sparse expression in the other retinal layers (Fig. 1A). Rods constitute 97% 
of the photoreceptors in the mouse  retina13, making it hard to discern the possible expression of Eml1 in mouse 
cones. To address this question, we examined the expression of Eml1 in the Nrl knockout (Nrl−/−) retina, which 
lacks rods and is populated exclusively by cone-like  photoreceptors14. Similar to the wild type retina, we found 
robust expression of Eml1 transcripts in the photoreceptor layer of the Nrl knockout retina (Fig.  1B). These 
observations are consistent with retinal single-cell RNA sequencing studies that have found Eml1 to be expressed 
ubiquitously in the mouse  retina15. Thus, our results demonstrate that in the mouse retina Eml1 is expressed in 
both rods and cones.

An insertion mutation in Eml1 introduces a premature stop codon and a shorter transcript in 
mouse retina. Homozygous HeCo mice carrying a spontaneous Eml1 mutation have been found to exhibit 
a subcortical heterotopia in the brain with associated hydrocephalus and cognitive  impairment11. In our colony, 
we bred these mice with C57BL6 wild-type mice to generate heterozygous and then homozygous and wild type 
mice to study the role of EML1 in rod and cone response. The homozygous Eml1 mutant mice were fertile and 
showed no apparent behavior abnormalities. The genetic screening of the mutant mice revealed an insertion 
of several hundred base pairs in the intron 22 of the Eml1 gene which introduced a premature stop codon in 
exon 23 (Fig. 1C), potentially leading to a shorter transcript. To test that possibility, we performed real time 
PCR analysis using primers that amplified all known Eml1 transcripts. At postnatal day 14 (P14), this RT-PCR 
analysis identified Eml1 transcripts in both wild type and mutant retinas (Fig. 1D). The Eml1 mutant retinas 
completely lacked the full-length transcript, and instead, gained a shorter spliced variant as  reported11, confirm-
ing the expression of mutant products.

Eml1 mutation leads to reduction in the scotopic light response. Because Eml1 was expressed in 
both rods and cones in the mouse retina, we set out to investigate the possible role of EML1 in both photorecep-
tor types, starting with the rods. We used in-vivo electroretinography (ERG) recordings to obtain rod-driven 
(scotopic) responses from control wild type and Eml1 mutant mice that were 8 weeks-old. We found that both 
the scotopic a-wave and b-wave responses from the Eml1 mutant mice (Fig. 2B) were reduced compared to 
controls (Fig. 2A). The maximum scotopic a-wave response in the mutants was reduced to 35% of the con-
trols (Fig. 2C) and the corresponding b-wave response was also recorded to be 34% of the wild type response 
(Fig. 2D). Thus, the Eml1 mutation caused a dramatic suppression of the rod-driven photoresponses.

Because of the ubiquitous expression of Eml1 in the mouse retina, we considered the possibility that it could 
modulate not only the rod photoreceptor responses but also the responses from rod bipolar cells. To investigate 
the possible regulation of rod bipolar cell function by EML1, we compared the relative amplitudes of scotopic 
b-wave responses from mutant and control mice to their corresponding a-waves at all test flash intensities. We 
found that the ratio of scotopic b-wave amplitudes and a-wave amplitudes was comparable for Eml1 mutants 
and controls (not shown). Thus, the reduction on b-wave amplitude of the mutant mice was proportional to 
their a-wave amplitude reduction, indicating that the Eml1 mutation affected selectively the function of rod 
photoreceptors and produced no detectable change in signaling from a-wave to b-wave.

We next tested the rod response using ex-vivo transretinal recording, which allowed us to pharmacologically 
isolate the photoreceptor response. Using this more precise and reproducible recording method, we also found 
a substantial reduction in the rod response of Eml1 mutant rods compared to controls (Fig. 3A,B). Comparison 
of their intensity-response curves revealed a 49% reduction of the maximal response amplitude of Eml1 mutant 
rods (Fig. 3C; Table 1). Interestingly, the normalized family of flash response curve was shifted slightly to the 
left in Eml1 mutants as compared to the controls (Fig. 3C, inset) indicating slightly higher fractional sensitivity 
in the mutant rods. Consistent with this, the test flash intensity required to produce half-maximal response,  I1/2, 
was found to be also slightly lower in the Eml1 mutants than the controls (Table 1). If EML1 in rods modulates 
the  Ca2+-sensitivity of the transduction CNG channels, it would be expected that light adaptation in the mutant 
rods would be compromised so that they will desensitize more steeply than control rods. However, we did not 
find any notable difference in the sensitivity of the mutants and controls during light adaptation in a series of 
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Figure 1.  Expression of Eml1 in mouse retina. In-situ hybridization showing the expression of Eml1 in 
photoreceptors of 8 week-old wild type mouse retina (A) and age matched cone-only (Nrl−/−); (B) retina. The 
scale bar applies to both panels. outer segments (OS) and inner segments (IS) of photoreceptors, outer nuclear 
layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL) and ganglion 
cell layer (GCL). (C) Location of the mutation (represented by an early retrotransposon, ETn) insertion site in 
the mutant Eml1 gene in the intron 22. The sequence at the insertion site is magnified to show the location of the 
premature stop codon TAG (highlighted in red box) in the gene (C, inset). (D) RT-PCR from P14 wild type and 
age matched Eml1 mutant mice (the marker lane is from the same gel, see supplementary Fig. 1).
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backgrounds with increasing intensity (Fig. 3D). Thus, EML1 does not appear to modulate rod sensitivity in 
darkness or in background light.

To determine the reason for the reduced maximal rod-driven responses observed both in-vivo and ex-vivo, 
we next performed single-cell suction recordings from control and Eml1 mutant rods. Surprisingly, we did 
not find any notable difference in the individual rod response between the control and the mutants (Table 2). 
The saturated flash responses were nearly identical in amplitude (Fig. 4A,B; Table 2). The  I1/2 values were also 
comparable in the mutant rods and controls (Fig. 4C; Table 2), indicating normal sensitivity in the Eml1 mutant 
rods. Similarly, there was no significant difference in the kinetics of the dim flash response of Eml1 mutant rods 
and controls (Fig. 4D; Table 2). Thus, our single-cell recordings from rods demonstrate normal function of indi-
vidual Eml1 mutant rods, comparable to that of control rods. This finding suggested that the abnormally small 
responses obtained from eyes or whole retinas of Eml1 mutant mice are not caused by intrinsic differences in the 
functional properties of mutant and control rods, but rather could be the result of a change in the total number 
of rods generating the overall retina response. This possibility was evaluated by analysis of the structure of the 
Eml1 mutant that revealed a surprisingly aberrant lamination in the outer retina. The effect of EML1 on retinal 
lamination is examined in detail below.

Eml1 mutation leads to reduction in the photopic light response. We next characterized the func-
tion of cone photoreceptors in the Eml1 mutants. This was of particular interest because the effect of Eml1 on 
cones had already been demonstrated in zebrafish  retina10. We performed transretinal recordings from control 
and Eml1 mutant retinas from 8 weeks-old mice in Gnat1−/− background which allowed us to isolate the cone-
driven component of the retina  response17. We found that, similar to the case of rod-driven responses, the cone-
driven transretinal responses were also substantially suppressed in Eml1 mutant eyes (Fig. 5A,B). The maximal 
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Figure 2.  Effect of Eml1 mutation on retinal function. In-vivo ERG responses in scotopic conditions. 
Representative scotopic flash responses from wild type (A) and Eml1 mutant (B) mice. Flash intensities for both 
panels were (in Cd s  m−2): 2.5 ×  10–5, 2.5 ×  10–4, 2.5 ×  10–3, 2.5 ×  10–2, 0.25, 2.5, 20 and 250. For comparison, the 
responses to a flash of 2.5 ×  10–4 Cd s  m−2 are highlighted in red in the two panels. Averaged intensity-response 
data for the a-wave responses (C) and b-wave responses (D) from wild type (black squares) and Eml1 mutant 
(red circles) mice. The continuous lines represent a fit to the data with the Naka-Rushton function. Error bars 
show S.E.M for all data.
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Figure 3.  Effect of Eml1 mutation on collective rod responses. Representative rod responses to a family of 
flashes (photons μm−2): 0.3, 1, 3.5, 10, 35, 117, 385, 1270 and 3810 from wild type (A) and Eml1 mutant (B) 
mice. For comparison, the responses to a flash of 10 photons μm−2 are highlighted in red. (C) Ensemble-average 
responses of wild type and Eml1 mutant rods plotted as a function of flash intensity. The lines represent Naka-
Rushton function fits to the data. (C, inset) Average normalized response curve for wild type and Eml1 mutant 
rods. (D) Average normalized sensitivity of wild type and Eml1 mutant mice as a function of background light 
intensity. The lines represent data fitted to Weber-Fechner function. Error bars show S.E.M for all data.

Table 1.  Rod ex-vivo ERG analysis parameters. Rmax, saturated response amplitude measured at the plateau. 
I1/2, intensity required to produce half of the saturated response. SfD, dark-adapted sensitivity. All values are 
given as Mean ± S.E.M.

Rmax (μV) I1/2 (phot μm−2) SfD (×  10–2  phot−1 μm2)

Wild type (14) 634 ± 70 103 ± 7 1.30 ± 0.11

Eml1 mutant (22) 326 ± 23 62 ± 4 1.60 ± 0.08

p-value  < 0.001  < 0.0001 0.015

Table 2.  Rod outer segment suction recording analysis parameters. Idark, saturated response amplitude 
measured at the plateau. I1/2, intensity required to produce half of the saturated response. SfD, dark-adapted 
sensitivity. Tp, time to peak of a dim flash response. Tint, integration time of the response. Trec, recovery time 
constant during response shut off. All values are given as Mean ± S.E.M.

Idark (pA) I1/2 (phot µm−2) SfD (×  10–2  phot−1 μm2) Tp (ms) Tint (ms) Trec (ms)

Wild type (14) 13.8 ± 0.6 49 ± 3 1.10 ± 0.04 203 ± 2 836 ± 75 284 ± 23

Eml1 mutant (22) 13.0 ± 0.5 45 ± 3 1.20 ± 0.08 207 ± 4 924 ± 39 233 ± 18

p-value 0.37 0.25 0.15 0.31 0.31 0.098
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cone-driven response in Eml1 mutant mice was 40% of that in control retinas (Table 3). However, to our surprise, 
the sensitivity of cones was not affected by the Eml1 mutation so that the intensity-response curves for Eml1 
mutant and control cones were comparable (Fig. 5C). Consistent with this, both  I1/2 and the fractional sensitivity 
of dark-adapted cones were comparable for mutant and control retinas (Table 3). The kinetics of the cone dim 
flash responses were also comparable overall (Fig. 5C, inset), with only slightly slower time to peak and integra-
tion time in the mutant cones (Table 3).

Finally, we examined the effect of the Eml1 mutation on light adaptation in mouse cones. If EML1 modulates 
the cone CNG channel conductance, its mutation would be expected to compromise cone light adaptation and 
cause steeper decline of cone sensitivity with increasing background light  intensity4. However, we found that 
the sensitivity of mutant cones was comparable to that of controls over a wide range of background light condi-
tions (Fig. 5D). Together, these results clearly demonstrate that unlike in the case of fish, EML1 plays no role in 
modulating cone phototransduction in darkness or during light adaptation in the mouse retina.

Loss of Eml1 function downregulates rod-specific phototransduction proteins. Our results 
show that the Eml1 mutation leads to reduction in the light response of both rods and cones in the whole retina 
while responses from individual rods remain normal. One possible explanation for this apparent discrepancy 
is the presence of two populations of photoreceptors in the Eml1 mutant retina—a group of photoreceptors 
that preserve normal function, and another distinct group where photoresponses are suppressed or completely 
absent. As a first step in determining the cause of the reduction of the whole retina responses, we examined the 
overall expression of several phototransduction proteins in control and Eml1 mutant retinas from 8 weeks-old 
mice. Western blot analysis of the whole retina lysates for β-actin showed that control and Eml1 mutant retinas 
contain identical amount of this common housekeeping protein (Fig. 6A). Thus, β-actin was used as loading 
control. We attempted to detect the EML1 protein with a commercially available polyclonal antibody (PA5-
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(black) and Eml1 mutant (red) rods for comparison of response kinetics. Error bars show S.E.M for all data.
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30016) generated against the N-terminal polypeptide corresponding to the 32–349 amino acid region of EML1. 
However, only a protein band corresponding to the short EML1 isoform with molecular weight of approximately 
85–89 kDa was identified in both control and mutant samples (Fig. 6B). Thus, the antibody was not able to 
recognize the long EML1 isoform in wild type mouse retina. Notably, we found a reduction in the expression of 
rhodopsin (Fig. 6C), the α-subunit of transducin (Gtα; Fig. 6D), the γ-subunit of transducin (Gtγ; Fig. 6E) and 
the γ-subunit of phosphodiesterase (PDEγ; Fig. 6F) in the mutants as compared to the controls. The reduction 
in the expression of these phototransduction proteins is consistent with the reduction in the rod-driven response 
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Figure 5.  Effect of Eml1 mutation on cone ERG responses. Representative cone responses to a family of flashes 
(photons μm−2): 35, 116, 382, 1260, 4170, 13,800, 45,600 and 151,000 from wild type (A) and Eml1 mutant 
(B) mice. For comparison, the responses to a flash of 382 photons μm−2 are highlighted in red. (C) Ensemble-
average normalized responses of control and Eml1 mutant cones plotted as a function of flash intensity and 
fitted by the Naka-Rushton function. (C, inset) Averaged normalized dim flash responses of control and Eml1 
mutant cones. (D) A plot of average normalized sensitivity as a function of background light intensity from the 
control and Eml1 mutant cones in light adapted conditions. The lines are fits calculated using a Weber-Fechner 
function. Error bars show S.E.M for all data.

Table 3.  Cone ex-vivo ERG analysis parameters. Rmax, saturated response amplitude measured at the plateau. 
I1/2, intensity required to produce half of the saturated response. SfD, dark-adapted sensitivity. Tp, time to peak 
of a dim flash response. Tint, integration time of the response. Trec, recovery time constant during response shut 
off. All values are given as Mean ± S.E.M.

Rmax (μV) I1/2 (phot μm−2) SfD (×  10–4  phot−1 μm2) Tp (ms) TInt (ms) Τrec (ms)

Control (Gnat1−/−) (14) 174 ± 11 4,005 ± 465 2.3 ± 0.2 81 ± 2 173 ± 10 38 ± 3

Eml1 mutant (Gnat1−/−) (15) 69 ± 9 3,976 ± 370 2.4 ± 0.2 97 ± 2 192 ± 7 49 ± 4

p-value  < 0.0005 0.96 0.74  < 0.00001 0.12 0.037
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from whole retina observed in the mutants (Figs. 2 and 3). However, the normal responses that we obtained by 
suction electrode recordings from individual rods (Fig. 4A,B) indicate that these rods are likely to express pho-
totransduction proteins at normal levels. Together, these results appear to be consistent with the notion of two 
separate populations of photoreceptors, one with normal function that is accessible for suction recordings, and 
another with suppressed photoresponses and reduced expression of phototransduction proteins that is inacces-
sible for suction recordings.

Mutation in Eml1 leads to structural impairment of retina. In order to explain the reduction of 
ERG responses, we next considered the possibility of morphological changes in the retina caused by the Eml1 
mutation. To assess that, we did a preliminary screening using optical coherence tomography (OCT) and found 
some striking differences between the mutant and wild type retinal lamination. Specifically, the ONL appeared 
thinner and the central section of the retina, corresponding to outer plexiform layer (OPL) and inner nuclear 
layer (INL), appeared substantially intermixed in the Eml1 mutant compared to control retinas (Fig. 7A vs. E). 
To investigate this apparent difference, we next stained the retinas for hematoxylin and eosin and compared 
thickness of the ONL of Eml1 mutant and control retinas. We found that the ONL was thinner in the mutants 
compared to controls at postnatal day 14 (P14, Fig. 7B vs. F; I). This difference in ONL thickness persisted in 
adult animals and could be observed in 8 weeks-old mice (8WK, Fig. 7C vs. G) and even 5 months-old mice 
(5MON, Fig. 7D vs. H; J). Surprisingly, we also found aberrant changes in the INL of the mutant retinas. At P14, 
the INL of the mutant retinas was much thicker compared to controls (Fig. 7B vs. F; K) and contained nuclei that 
were smaller than usual and similar to the photoreceptor nuclei in the ONL in size and appearance (Fig. 7F). 
However, unlike the persistent difference in ONL thickness in older animals, the thickness of the mutant INL 
gradually declined with age (Fig. 7F–H) and in 5 months-old animals was comparable for that of control retinas 
(Fig. 7D vs. H; L). The ONL thickness peaked at P21 and remained stable thereafter (Fig. 7M). The aberrant 
disorganization in the INL was already present at P14, shortly after the time of eye opening. Surprisingly, the 
INL thickness increased until P21, but then by the 8th week had decreased back to P14 levels, where it remained 
stable at 5 months of age (Fig. 7N).

Figure 6.  Western blot analysis of Eml1 mutant retinas. Graphs showing optical density of Western blot bands 
against amount of total retina protein, n = 3. Eml1 mutant retinas (empty circles) as compared to the wild type 
retinas (filled circles). Linearity of plots demonstrates sub-saturating ECL signal ensuring direct quantitative 
comparison. (A) Actin, (B) EML1, (C) Rhodopsin, Rh, (D) transducin alpha, Gtα, (E) transducin gamma, Gtγ, 
and (F) phosphodiesterase gamma (PDEγ). Representative staining for each protein is shown in insets (for 
complete blot pictures see supplementary Fig. 4).
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Figure 7.  Morphology of Eml1 mutant retinas. (A,E) Comparison of 8 weeks-old wild type and age matched 
Eml1 mutant OCT screening respectively. H&E staining from wild type retina at P14, 8 weeks and 5 months 
of age (B–D respectively) and age-matched Eml1 mutant retina (F–H respectively). The quantification of ONL 
thickness as a function of the distance from the optic nerve head shown as spider plots in wild type retinas 
(triangles) and Eml1 mutant retinas (circles) at P14 (I) and at 5 months (J). The quantification of INL thickness 
as a function of the distance from the optic nerve head shown as spider plots in wild type retinas (triangles) and 
Eml1 mutant retinas (circles) at P14 (K) and at 5 months (L). The temporal pattern of relative ONL (M) and INL 
(N) thickness measured at 500, 1000 and 1500 μm from the optic nerve head (ONH) at P14, P21, 8 weeks and 
5 months in Eml1 mutants. Error bars show S.D. for all data.
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Identification of mislocalized cells in Eml1 mutant retina. The mislocalized cells in the INL resem-
bled photoreceptors by their nuclear morphology. Thus, we hypothesized that these mislocalized cells are photo-
receptors which could have been trapped in the INL during development. We tested this hypothesis by screening 
the cells in the INL for the expression of the photoreceptor markers rhodopsin, for rods, and cone arrestin, for 
cones. Consistent with our hypothesis, we found rhodopsin-positive rods and cone arrestin-positive cones, but 
not co-labeled cells, in the INL where most of the small mislocalized nuclei were located (Fig. 8A). The number 
of rhodopsin-expressing cells in the INL decreased with age and they were barely noticeable at around 5 months. 
The outer segment length measured at 8 weeks and 5 months was also significantly shorter in the mutants as 
compared to controls (Fig. 8B).

Figure 8.  Identification of the mislocalized cells in Eml1 mutant retina. (A) Immunofluorescence staining from 
the Eml1 mutant retina at P14, 8 weeks and 5 months (left panels) and wild type retina at 8 weeks (right panel) 
for rhodopsin (green) and cone arrestin (red) and nuclear stain DAPI (blue). An outer segment of a rhodopsin-
positive cell within the INL in the Eml1 mutant retina at 5 months (starred). Images of the 220 µm acquisition 
were taken at 1000 µm from ONH. (B) The outer segment length as a function of the distance from the optic 
nerve head presented as spider plots in the Eml1 mutant retinas (circles) and wild type retinas (triangles) at 
8 weeks (left) and 5 months (right). (C) Cone cell density analysis in ONL (left) and INL (right) in wild type 
retinas (blue) and Eml1 mutant retinas in a 1000 µm-wide retina section (yellow). Error bars show S.D. for all 
data.
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To substantiate the surprising possibility that the cone arrestin-positive cells in the INL are mislocalized cones, 
we also sought to determine whether there is a corresponding reduction in the density of cones in the ONL of 
mutant mice. We quantified the cone arrestin-positive cells at P14, 8 weeks and 5 months and found that their 
density in the ONL was significantly reduced in the Eml1 mutants at all ages (Fig. 8C, left panel) and consistent 
with the morphology, the cone density remained stable there from 8th week onwards. As expected, no cone cells 
were found in the INL of control retinas. In contrast, in Eml1 mutant retinas, cones were observed in the INL, 
with density peaking at P14 and then declining significantly by the 8th week and stabilized onwards (Fig. 8C, right 
panel). These results confirmed that a substantial number of the rods and cones were misplaced to the INL in the 
retinas of Eml1 mutant mice. The reduced photoreceptor response from mutant retinas, but normal responses 
from individual rods, in the ONL suggests that the mislocalized photoreceptors provide little to no contribution 
to the overall retinal response. Indeed, we attempted to record responses from photoreceptors mislocalized to 
the INL using a suction electrode, but were not able to observe any responses. Together, these results indicate 
that EML1 is important for the normal structural development of retina that supports photoreceptor function.

Discussion
In this study, we investigated the effect of an insertion mutation in the Eml1 gene on the visual function of 
mouse photoreceptors. Our results demonstrate that the EML1 protein, which is predominantly expressed by 
photoreceptors in the retina, does not have a role in regulating the sensitivity of rods and cones. This is surpris-
ing because previous studies in zebrafish have shown that Eml1 regulates sensitivity of  cones10. We confirmed a 
premature stop codon in the genetic screening of the Eml1 mutant mice that should lead to a shorter transcript. 
It is not clear if the regulation of sensitivity in Eml1 mutants remains unaffected due to a shorter yet partially 
functional transcript produced by the mutant gene because the CNG binding site on the EML1 protein remains 
unknown. Thus, our findings open up a possibility for an alternate protein modulating the CNG channel sen-
sitivity in mouse retina.

Additionally, we show that the mutation in Eml1 impairs normal structural development of retina. This is 
consistent with a recent study where a point mutation (transversion from T to A), introduced in exon 18 in the 
Eml1 gene, altered the short splice variants of Eml1 transcripts causing aberrant photoreceptor localization in 
 retina12. In our case, however, the mutation affected the long splice variants of Eml1 transcripts leading to signifi-
cant thinning of ONL because of mislocalization of the photoreceptors to the INL. Thus, two separate mutations 
in Eml1, one targeting the full-length transcript, and one targeting the short splice transcript, were both found to 
cause mislocalization of photoreceptors to the inner nuclear layer past normal development and into the adult 
stage of mouse retina. Together, these findings clearly demonstrate that Eml1 is involved in mediating the proper 
migration of photoreceptors in the developing retina.

The finding that the rhodopsin staining in the INL appears around most of the small nuclei and cone arrestin 
around a few, gives rise to the possibility that these ectopic photoreceptors extend outer segments in that region. 
This could explain the OCT observation of OPL and INL that appeared intermixed. So, we tried recording the 
activity of the mislocalized photoreceptors by patching large regions of the outer INL where most of the mislocal-
ized cells were found. We used synaptic blockers in the perfusion solution to filter the response of bipolar cells 
originating from the normal photoreceptors. However, we could not record any light response from these regions. 
This indicates that the misplaced cells might not have developed functional light response. The rhodopsin and 
cone arrestin expression also suggests that these cells were committed to develop into photoreceptors. Addition-
ally, we did not observe any co-labeling of rod and cone immunolabels suggesting that the EML1 might not be 
involved in the cell fate specification (Fig. 8A).

The cells in the developing retina undergo programmed apoptosis triggered by a number of factors including 
but not limited to the cell type, their interaction with their environment and the maturation  stage16. Interestingly, 
we observed that during the course of development and aging of the animals, the number of mislocalized cells in 
the INL in Eml1 mutants gradually decreased (Fig. 7N) and by 5 months of age, the Eml1 mutant retinas attained 
normal lamination (Fig. 7A). This could be either due to the migration of mislocalized cells back to the ONL or 
to the death of these mislocalized cells. In the former case, the migratory cells would be expected to restore at 
least partially the photoreceptor responses and the thickness of the ONL while in the latter case they would not 
affect the overall retina photoresponses. The findings that the thickness of ONL (Fig. 7M,N) and the ONL cone 
cell density (Fig. 8C) remain unchanged in the Eml1 mutants after reaching adulthood argue against migration 
of mislocalized photoreceptor from INL to the ONL in mutant with age. To confirm this, we also tested how the 
physiological responses of Eml1 mutants are affected by age. However, we observed no evidence for age-driven 
increase in either the a-wave or the b-wave amplitudes in the mutant retinas (Supplementary Fig. 2). Thus, the 
most likely explanation for the gradual loss of mislocalized photoreceptors in the INL is not their recruitment to 
the ONL but rather degeneration. To confirm this, we performed a TUNEL assay on the Eml1 mutant retinas at 
5 months and found TUNEL-positive cells there (Supplementary Fig. 3), suggesting that some of these mislocal-
ized cells were going into apoptosis. Together, these findings suggest that the mislocalized cells fail to migrate to 
ONL in the Eml1 mutant retinas and instead gradually degenerate.

Interestingly, loss of photoreceptors was limited to the mislocalized cells in the INL and did not affect the cells 
present in the ONL of the mutant animals. Thus, photoreceptor mislocalization is the primary effect of the Eml1 
mutation rather than degeneration of these cells, which appears to be a secondary effect to the mislocalization 
of photoreceptors to the INL. It remains unclear whether the degeneration of mislocalized cells in the INL is a 
continuation of the apoptotic mechanisms triggered during development or is dependent on their emergence 
in the INL. Further studies are required to establish the mechanisms by which EML1 controls cell migration 
during retinal development.
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It is not clear why only a subset of photoreceptors becomes abnormally localized in the inner nuclear layer 
while the rest localize properly in the outer nuclear layer. Notably, the photoreceptors in the outer nuclear layer 
display normal photoresponses indicating that the lack of EML1 has not affected their function. One possibility 
is that the different splice isoforms of  Eml111,12 can partially compensate for each other. In that scenario, when the 
full length Eml1 is lost in our case, or the short splice form of Eml1 is lost in the case of the Eml1tvrm360  mouse12, 
the remaining alternative form of Eml1 is able to compensate and drive the normal migration of some of the 
photoreceptors. That this occurs only in a subset of the photoreceptors might indicate a threshold mechanism, 
where the remaining splice form of Eml1 is expressed at sufficient level in only some of the cells. Interestingly, 
the death of rods localized in the inner retina early during mouse retina development has been observed and 
is considered part of normal  development17. As many as 40% of differentiating mouse rods are localized in the 
inner retina early in development. These cells rapidly migrate to the outer nuclear layer, although a substantial 
fraction of them degenerates in the  process17. However, normally this process is completed by postnatal day 11, 
whereas in our Eml1 mutant mice, mislocalized photoreceptors persist for weeks and months, while gradually 
degenerating. Thus, it is possible that the mechanism driving degeneration of inner photoreceptors early in devel-
opment is different from that driving the progressive loss of mislocalized photoreceptors in Eml1 mutant retinas.

Methods
Ethical approval. All experimental protocols were in accordance with the Guide for the Care and Use of 
Laboratory Animals and with the ARRIVE guidelines, and were approved by the institutional Animal Studies 
Committee at Washington University.

Animals. The homozygous Eml1 mice and wild type controls were derived from crossing the Eml1  mutants11 
with C57BL6 mice. For cone experiments, additional cross was carried out with Gnat1 knockout  mice18 lacking 
rod function. The animal colonies were maintained in 12/12 h light/dark cycle at all times. Both male and female 
animals were used in the experiments.

Electrophysiology. For physiology experiments, all animals were dark-adapted overnight prior to the day 
of experiment. For in-vivo ERG recordings, the animals were anesthetized using a cocktail of Ketamine (100 mg/
kg) and Xylazine (20 mg/kg). Pupils were dilated using 1% atropine sulphate ophthalmic solution (Akorn, Inc., 
Lake Forest, IL) followed by application of 2.5% Gonak™ hypromellose ophthalmic demulcent solution (Akorn, 
Inc., Lake Forest, IL) to retain the moisture during the recording. The visual responses to flash stimuli were then 
recorded using a clinical ERG setup (LKC Technologies; Model UBA-4200c) adapted for mice.

For ex-vivo transretinal recordings, the animals were euthanized by  CO2 and then eyes were enucleated 
under dim red light followed by dissection under infrared illumination. The dissection was performed in a dish 
containing oxygenated Ames medium (Sigma). The eyeball was cut close to the limbus and then the retina was 
gently detached from the posterior eye cup by tearing the sclera and RPE using forceps. The retinas were stored 
in oxygenated Ames medium in a dark chamber at room temperature until recording. Recordings were con-
ducted using previously described  methods19. The recordings were made using a closed chamber containing the 
retinas mounted photoreceptors facing up. The recording chamber was continuously supplied with oxygenated 
Ames medium at a flow rate of 3–5 ml/minute. For isolating the photoreceptor component of the transretinal 
response, 50 μM DL-AP4 (Tocris) and 100 μM  BaCl2 (Sigma) were included in the Ames medium. The chamber 
temperature was maintained at 35–36 °C and retinas were allowed to adapt to the chamber temperature for at 
least 15 min before experiments. Ex-vivo transretinal recordings were made by presenting 530 nm light flashes 
produced by computer-controlled LEDs (Thor Labs). The signals were amplified using a differential amplifier 
(Warner Instruments), low-pass filtered at 300 Hz (Krohn Hite Corp.), digitized using Digidata 1440 (Molecular 
Devices), and recorded on a computer at a sampling frequency of 10 kHz using pClamp 10 software.

For single cell suction recordings from rod outer segments, following eyes dissection under infrared illumi-
nation, the retinas were chopped into small pieces in a dish containing oxygenated Locke’s solution (in mM): 
NaCl 112.5, KCl 3.6,  MgCl2 2.4,  CaCl2 1.2, HEPES 10,  NaHCO3 20, EDTA 0.02,  Na2-Succinate 3, Na-Glutamate 
0.5, Glucose 10 and 0.1% vitamins. The retinal pieces were then transferred to an open chamber maintained at 
35–36 °C with a continuous supply of heated Locke’s solution at 2–3 ml/per minute. Borosilicate glass pipettes 
pulled to ~ 1 µm inner diameter over a heated filament (Sutter Instruments), fire-polished, and filled with elec-
trode solution (in mM): NaCl 140, KCl 3.6,  MgCl2 2.4,  CaCl2 1.2, HEPES 3, EDTA 0.02, Glucose 10 (pH adjusted 
to 7.4 with NaOH) were used in these experiments. Single rod outer segments were approached under infrared 
visual control and were gently drawn into the glass pipette. Recordings were made by presenting flash stimuli 
produced by computer-controlled LEDs (Thor Labs). Signals were amplified using Axopatch 200B, low-pass 
filtered at 10 Hz (Krohn Hite Corp.), digitized using Digidata 1440 (Molecular Devices), and recorded on a 
computer at a sampling frequency of 10 kHz using pClamp 10 software.

Data analysis. Data was analyzed using Clampfit 10.7 (Molecular Devices), Microsoft Excel and Origin 
9.8.5 (64 bit, SR2, OriginLab) and presented as mean ± SEM. P-Values lesser than 0.05 were considered sig-
nificant. The flash family response curves were fitted by a Naka-Rushton function using the following equation:
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where,  Rmax is the maximum response amplitude, I is the flash intensity, n is the Hill coefficient and  I1/2 is the 
intensity to produce half-saturating response. The light adaptation data were fitted by a modified Weber-Fechner 
function as follows:

where,  Sf is the response sensitivity defined as the dim flash response normalized to the maximum response 
divided by the flash strength (used to produce the dim flash response in photons µm−2),  SfD is the response 
sensitivity in darkness defined as the dim flash response normalized to the maximum response divided by the 
flash strength (used to produce the dim flash response in photons µm−2), n is a slope factor, I is the background 
light intensity (in photons µm−2  s−1) and  I0 is the background intensity to reduce the sensitivity to 50% of the 
sensitivity in darkness.

Single-molecule RNA in situ hybridization. RNA in situ hybridization experiments were performed 
using  RNAscope®, an RNA in situ hybridization technique described  previously20. A paired double-Z oligonu-
cleotide probe was designed against target RNA using custom software as follows: Mm-Eml1, cat no. 519231, 
NM_001043335.1, 20 pairs, 1511–2473 (probe name, catalog number, GenBank accession number, number 
of probe pairs, and probe target region for each probe). The  RNAscope® Mm-Eml1 Base Scope™ Reagent Kit 
(Advanced Cell Diagnostics, Newark, CA) was used according to the manufacturer’s instructions. Paraffin 
embedded tissue sections were prepared according to manufacturer’s recommendations. Bright field images 
were acquired using an Olympus BX51 microscope at 40× magnification.

Histology and immunohistochemistry (IHC). For retinal morphology, the eyeballs were fixed over-
night in 4% paraformaldehyde at 4 °C, embedded in paraffin, and then sectioned in 10 micron thickness. For 
identification of the dorsal and ventral side of the retinas, the eyes were marked by a high-temperature marker 
on the ventral surface of the cornea. To compare the retinal morphology, retinal sections were stained for hema-
toxylin and eosin (H&E) to label the nuclei followed by measurement of outer and inner nuclear layer thickness 
using ImageJ software (NIH). Thickness of outer nuclear layer and outer segments were measured at specific 
locations from the optical nerve head. Results of measurements were plotted in a spider graph. At least 4 biologi-
cal replicates of each genotype were used in the statistical analysis. Two-way ANOVA with multiple comparisons 
were performed with P < 0.05, CI: 95% using Graphpad Prism 8 (GraphPad Software, CA).

For immunohistochemistry, five micron thick retinal sections were cut on a microtome. Sections firstly went 
through antigen retrieval with citrate buffer, and blocked with a blocking buffer of 5% donkey serum, 1% BSA, 
0.1% Triton-x-100 in 1X PBS (pH-7.4) for 1 h. Sections were then incubated with primary antibodies at 4 °C 
overnight. Sections were washed with 1X PBS containing 0.01% TritonX-100 (PBST) for 30 min, and then incu-
bated with specific secondary antibodies for 1 h. Primary and secondary antibodies [Rhodopsin (MilliporeSigma 
O4886, mouse monoclonal), Cone Arrestin (MilliporeSigma AB15282, rabbit polyclonal)] were applied with 
optimal dilution ratios (Rhodopsin 1:500, Cone Arrestin 1:500). All slides were mounted with hard set mounting 
medium with DAPI (Vectashield, Vector Laboratories, Inc., CA). TUNEL assay was performed with  ApopTag® 
Fluorescein Direct In Situ Apoptosis Detection Kit (MilliporeSigma S7160) according to the manufacturer’s 
protocol. For cell counting analysis, numbers of fluorescent objects were tallied. Student’s t-test were performed 
with P < 0.05, CI:95% using Graphpad Prism 8.

Real-time PCR (RT-PCR). Each RNA sample was extracted from 2 retinas of a mouse using the Nucle-
oSpin RNA Plus kit (Macherey–Nagel, PA). RNA concentrations were measured using a NanoDrop One spec-
trophotometer (ThermoFisher Scientific). 1 μg of RNA was used to produce cDNA using First Strand cDNA 
Synthesis kit (Roche, IN). Three technical triplicates were run for each gene. Primers used in this study were 
Forward (5’-3’) ACA CGA GTT GGC AAG TGC TC, and Reverse (5′-3′) CCA CTG TAG ATG TGG CTT GG. The 
reaction master mix consisted of EvaGreen polymerase (Bio-Rad Laboratories, CA), 1  μM primer mix, and 
diluted cDNA samples. Samples were run by 40-cylce of stepwise reactions (95 °C for 5 s, 58 °C for 15 s, 72 °C 
for 10 s). PCR products were run out on a 2% agarose gel. Bands were visualized on a Syngene G Box Chemi 
HR16 (Syngene, MD).

Optical coherence tomography. Mice were anesthetized by intraperitoneal injection of ketamine hydro-
chloride (86.9 mg/kg) and xylazine (10 mg/kg). Pupils were dilated using 1% tropicamide ophthalmic solution 
(Akorn, Inc.; Lake Forest, IL) and a drop of 2.5% Gonak™ hypromellose ophthalmic demulcent solution (Akorn, 
Inc.) was applied each eye to prevent drying and irritation. Eyes were imaged using a Micron III rodent fundus 
imaging microscope equipped with image-guided 830 nm OCT module (Phoenix Research Laboratories; Pleas-
anton, CA) with Micron OCT software Version 7.

Western blotting. Retinal cell lysates were prepared from flash frozen retinas obtained from 6 to 8 weeks-
old dark-adapted mice after dissection in a dish containing phosphate buffered saline. Bio-Rad precast 12% 
Mini-Protean TGX with fifteen wells were used for all SDS-gels. EML1/WT samples were loaded side by side on 
all gels in pairs of increasing retina amounts to aid reliability of protein quantification. Protein transfer was using 
Trans-Blot SD semi-dry cell on PVDF membrane. Rabbit polyclonal antibodies PA5-30016 generated against the 
recombinant polypeptide 32–349 of human EML1 were from Invitrogen; sc-389-Gαt1, sc-15382-rhodopsin were 
from Santa Cruz Biotechnology. Rabbit PDE6G PA1-723, beta Actin PA1-16889 and secondary goat HRP anti-
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bodies were from Invitrogen. Rabbit antibodies against Gγ1 were a gift from N. Gautam (Washington University, 
St. Louis, MO). All primary antibodies were used at dilution 1:1000. Secondary antibody dilution was 1:10,000. 
All gels/blots were developed and analyzed in compliance with the Nature digital image and integrity policies. 
Prior to blocking non-specific binding by 5% BSA in TBST, the PVDF membranes were cut to size using Amer-
sham Rainbow molecular weight markers as a guide. The lower left corner was cut for orientation. For proteins 
with significantly different molecular weights, such as Gαt1 and Gγ1, the membrane was cut in half horizontally 
into the upper and lower portions, which were stained with individual antibodies. After staining with primary 
and secondary antibodies, blots were developed using Amersham ECL Prime detection kit. Chemiluminescence 
was visualized using Li-COR C-DiGit® Blot Scanner that was setup to collect and save time-lapse data in the 
high-sensitivity mode. Quantitation was performed using Image Studio software. The pixel saturation tool was 
used to ensure that optical density (OD) of protein bands is not saturated. Local background was subtracted. 
Cross-comparisson of the OD values between EML1 mutant and WT samples were from the same membranes 
processed under identical conditions.

Data availability
The datasets generated and analyzed for this study are available on request from the corresponding authors.
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