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Abstract

The central idea, which is not new for those who study human
organizations but which is sometimes forgotien by computer
agent researchers, is that the design of coordination mecha-
nisms cannot rely on the principled construction of the agents
alone, but must rely on the structure and other characteris-
tics of the task environment. Such dependencies include the
structure of the environment (the particular kinds and patterns
of interrelationships that occur between tasks) and the uncer-
tainty in the environment (both in the a priori structure of
any episode within an environment and in the outcomes of an
agent’s actions). In this talk, I will briefly describe a mod-
eling framework, T/EMS, for representing abstract task envi-
ronments. TAMS has been used both for environment model-
ing/simulation and as an internal representation for computer
agents to plan, schedule, and coordinate thier activities with
other agents (human or computer). 1'll describe examples of
both of these uses. This written summary provides a back-
ground bibliography, and pointers to the work discussed in the
talk.

Introduction

The design of organizations or other coordination mecha-
nisms for groups of agents depends in many ways on the
agent’s task environment. Just two of these dependencies are
on the structure of the tasks and on the uncertainty in the task
structures. The task structure includes the scope of the prob-
lems facing the agents, the complexity of the choices facing
the agents, and the the particular kinds and patterns of in-
terrelationships that occur between tasks. A few examples
of environmental uncertainty include uncertainty in the a pri-
ori structure of any particular problem-solving episode, in the
actions of other agents, and in the outcomes of an agent’s
own actions. These dependencies hold regardless of whether
the system comprises just people, just computational agents,
or a mixture of the two. For example, the presence of both
uncertainty and high variance in a task structure can lead
a system of agents to perform better by using coordination
algorithms that adapt dynamically to each problem-solving
episode (Decker & Lesser, 1993). Designing organizational
coordination mechanisms also depends on non-task charac-
teristics of the environment such as communication costs, and
properties of the agents themselves. Representing and reason-
ing about the task environment must be part of any computa-
tional theory of coordination.

TAMS (Task Analysis, Environment Modeling, and Simu-
lation) was developed as a framework with which to model

and simulate complex, computationally intensive task envi-
ronments at multiple levels of abstraction and from multiple
viewpoints. It is a tool for building and testing computational
theories of coordination. TAMS is compatible with both
formal computational agent-centered approaches and exper-
imental approaches. The framework allows us to both math-
ematically analyze (when possible) and quantitatively simu-
late the behavior of multi-agent systems with respect to inter-
esting characteristics of the computational task environments
of which they are part. We believe that it provides the cor-
rect level of abstraction for meaningfully evaluating central-
ized, parallel, and distributed control algorithms, negotiation
strategies, and organizational designs.

The use of TEMS to model external environments has led
to its use by computer agents as an internal, subjective model
of the external environment. As part of an agent’s internal
representation of its environment, a TEMS model allows an
agent to reason about how multiple, interacting decision cri-
teria change in response to actual and possible local and non-
local agent actions. The most significant internal-agent work
using TEAMS—which I will not discuss—has been the devel-
opment of an agent local activity scheduler (Garvey & Lesser,
1993; Garvey, Humphrey, & Lesser, 1993; Wagner, Garvey,
& Lesser, 1997).

Background

Artificial Intelligence, growing as it has from the goal of mod-
eling individual intelligence, or at least replicating or aug-
menting it, has focused primarily on representations of indi-
vidual choice and action. A large effort has gone into describ-
ing the principled construction of agents that act rationally
and predictably based on their beliefs, desires, intentions, and
goals (Wooldridge & Jennings, 1995). Fairly recently, re-
searchers concerned with real-world performance have also
realized that Simon’s criticisms and suggestions about eco-
nomics (March & Simon, 1958) also hold for many realis-
tically situated individual agents—perfect rationality is not
possible with bounded computation (e.g., (Boddy & Dean,
1989)). Distributed Al has too often kept the individualis-
tic character of its roots, and focused on the principled con-
struction of individual agents. It hasn't even, so far, really
concerned itself with the questions of bounded rationality in
real-time problem solving when it comes to the principled
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construction of individual agents'. Worst of all, it has failed
yet to bring the environment to center stage in building and
analyzing distributed problem solving systems.

In contrast, the organizational science community has
since the 60’s (e.g. (Lawrence & Lorsch, 1967)) regarded the
task environment as a crucial, central variable in explaining
complex systems, and a whole branch of research has grown
up around it (contingency theory). Representations in this
community are rarely mathematically formal in nature but
rather try to present very rich descriptions using terms such
as uncertainty, decomposability, stability, etc.

TZAEMS, as a framework to represent coordination problems
in a formal, domain-independent way, is unlike any existing
computational representation that is focussed on coordina-
tion issues. The form of the framework is more detailed in
structure than many organizational-theoretic models of or-
ganizational environments, such as Thompson's notions of
pooled, sequential, and reciprocal processes (1967), Burton
and Obel’s linear programs (1984), or Malone's queueing
models (1987), but is influenced by them, and by the im-
portance of environmental uncertainty and dependency that
appear in contingency-theoretic and open systems views of
organizations (Lawrence & Lorsch, 1967; Galbraith, 1977;
Stinchcombe, 1990; Scott, 1987). As a problem representa-
tion for computational tasks, it is richer and more expressive
than game theory representations (Rosenschein & Zlotkin,
1994). For example, a typical game or team theory prob-
lem statement is concerned with a single decision; a typical
TZ/EMS objective problem solving episode represents the pos-
sible outcomes of many sequences of choices that are inter-
related with one another (e.g., “‘schedules”). TAMS can rep-
resent a game theoretic problem, and we could boil down a
single decision made by an agent faced with a TEMS task
structure into a game theoretic problem.> Because TEMS is
more expressive, we can use it to operationalize some of the
rich but informal concepts of organizational science, espe-
cially those that focus on various dependencies and uncer-
tainties that are the basis of (for example) both contingency
theoretic and transaction cost economic (Williamson, 1975;
Moe, 1984) views of organizations. An example of this is our
recreation of Burton and Obel’s experiments on decompos-
ability (Burton & Obel, 1984, Decker, 1997).

As a tool for building and testing computational theories
of coordination, the TAMS framework can, for example, sup-
port the construction of ACTS theory instances (Carley & Pri-
etula, 1994). In ACTS theory organizations are viewed as col-
lections of intelligent agents who are cognitively restricted,
task oriented, and socially situated. TAMS provides ways
to think about and represent environmental constraints (task
characteristics and social characteristics involving communi-
cation links and what information and what possible actions

'On the other hand, work on (mostly standalone) robotic agents
has wrestled with these questions, e.g., (Simmons et al., 1997)

21£MS does not say how agents make their decisions. It is per-
fectly reasonable for an (computer) agent to use game-theoretic rea-
soning processes.

are available to what agents). While simple models can some
times be solved analytically (Decker & Lesser, 1993), many
complex models require simulation techniques. Compared to
other organizational simulations such as (Lin & Carley, 1993)
or (Levitt et al., 1994), TAMS provides a much more detailed
model of task structures, and does not provide any fixed agent
model.

The contingency theory observation that no single organi-
zation or coordination mechanism is ‘the best’ across envi-
ronments, problem-solving instances, or even particular sit-
uations is also common in the study of multi-agent coopera-
tive distributed problem solving (Fox, 1981; Durfee, Lesser,
& Corkill, 1987, Durfee & Montgomery, 1991; Decker &
Lesser, 1993). Key features of task environments demon-
strated in both these threads of work that lead to different co-
ordination mechanisms include those related to the structure
of the environment (what we will call task interrelationships)
and environmental uncertainty.

Short Overview of T/ EMS

The principle purpose of a T£MS model is to analyze, ex-
plain, or predict the performance of a system or some com-
ponent. While TAMS does not establish a particular perfor-
mance criteria, it focuses on providing multi-criteria perfor-
mance information such as the temporal intervals of task exe-
cutions, and the gualiry of the execution or its result. Quality
is an intentionally vaguely-defined term that must be instanti-
ated for a particular environment and performance criteria—
there could be a whole vector of result/state attributes, over
which an agent would presumably express its preferences.
Examples of guality vector attributes include the precision,
belief, or completeness of a task result. TAMS models de-
scribe how several quantities—the quality vector produced
by executing a task, the time taken to perform that task, the
time when a task can be started, its deadline, and whether the
task is necessary at all—are affected by the execution of other
tasks.

A TAMS model of environmental and task characteristics
has three levels: generative, objective, and subjective. The
generative level describes the statistical characteristics of ob-
jective problem instances (called episodes) in a domain. A
generative level model consists of a description of the gener-
ative processes or distributions from which the range of alter-
native problem instances can be derived. and is used to study
performance over a range of problems in an environment. The
objective level describes the essential, ‘real’ task structure of
a particular problem-solving situation or instance over time.
Typically no agent ever has access to this complete and total
information in the model or simulation. Finally, the subjec-
tive level describes the agents’ view of the situation. A sub-
jective level model is essential for evaluating coordination al-
gorithms, because while individual behavior and system per-
formance can be measured objectively, agents must make de-
cisions with only subjective information.> Obviously, when

*In organizational theoretic terms, subjective perception can be
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TAEMS is used as an internal agent representation language in
the real, non-simulated world, only the subjective information
actually exists!

A problem instance (called an episode) is defined as u set
of task groups, each with a deadline. The task groups may ar-
rive at different times. A task group consists of a set of tasks
related to one another by a subtask relationship that forms
an acyclic graph (usually a tree). The circles higher up in
the tree represent various subtasks involved in the task group,
and indicate precisely how quality will accrue depending on
what leaf tasks are executed and when. Tasks at the leaves
of the tree (without subtasks) represent basic actions or exe-
cutable methods, which are the actual computations or actions
the agent will actually execute (in the figure, these are shown
as boxes). The arrows between tasks and/or methods indi-
cate other task interrelationships where the execution of some
method will have a positive or negative effect on the quality
or duration components of another method. This notation and
associated semantics are formally defined in (Decker, 1995).

Hospital Patient Scheduling Example

Let’s look at a brief example of a TAMS task structure model
in terms of its ability to reason about organizational decision
making. The following description is from an actual case
study (Ow, Prietula, & Hsu, 1989):

FPatients in General Hospital reside in units that are or-
ganized by branches of medicine, such as orthopedics or
neurosurgery. Each day, physicians request certain tests
and/or therapy to be performed as a part of the diagno-
sis and treatment of a patient. [... | Tests are performed
by separate, independent, and distally located ancillary
departments in the hospital. The radiology department,
for example, provides X-ray services and may receive
requests from a number of different units in the hospital.

Furthermore, each test may interact with other tests in re-
lationships such as enables, requires—delay (must be per-
formed after), and inhibits (test A’s performance invalidates
test B's result if A is performed during specified time pe-
riod relative to B). Note that the unit secretaries (as schedul-
ing agents) try to minimize the patients’ stays in the hospi-
tal, while the ancillary secretaries (as scheduling agents) try
to maximize equipment use (throughput) and minimize setup
times.

Figure 1 shows an subjective TAMS task structure cor-
responding to an episode in this domain, and the subjec-
tive views of the unit and ancillary scheduling agents after
four tests have been ordered. Note that quite a bit of de-
tail can be captured in just the “‘computational’ aspects of the
environment—in this case, the tasks use peoples’ time, not a
computer's. However, TEMS can model in more detail the

used to predict agent actions or outputs, while unperceived, objec-
tive environmental characteristics affect performance (or outcomes)

(Scott, 1987).
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physical resources and job shop characteristics of the ancil-
laries if necessary (Decker, 1995). Such detail is not neces-
sary for us to analyze the protocols developed by (Ow et al.,
1989), who propose a primary unit-ancillary protocol and a
secondary ancillary-ancillary protocol.

We use min (AND) to represent quality accrual because in
general neither the nursing units nor ancillaries can change
the doctor's orders—all tests must be done as prescribed. We
have added two new non-local effects: requires—delay and
inhibits. The first effect says that a certain amount d of time
must pass after executing one method before the second is
enabled. The second relationship, A inhibits B, means that B
will not produce any quality if executed in a certain window
of time relative to the execution of A, and can be defined in a
similar manner.

A Summary of TAMS-related work

Analysis in TAAMS: The methodology we have been build-
ing uses the TEMS framework and other DAI formalisms
to build and chain together statistical models of coordina-
tion behavior that focus on the sources of uncertainty or
variance in the environment and agents, and their effect on
the (potentially multi-criteria) performance of the agents.
For example, we have used this methodology to develop
expressions for the expected value of, and confidence in-
tervals on, the time of termination of a set of agents in
any arbitrary simple distributed sensor network environ-
ment that has a static organizational structure and coordi-
nation algorithm (Decker & Lesser, 1993). We have also
used this model to analyze a dynamic, one-shot reorganiza-
tion algorithm (and have shown when the extra overhead is
worthwhile versus the static algorithm) (Decker, 1995). In
each case we can predict the effects of adding more agents,
changing the relative cost of communication and compu-
tation, and changing how the agents are organized (in this
case, by changing the range and overlap of their capabili-
ties). These results were achieved by direct mathematical
analysis of the model and verified through simulation in
TAEMS.

Agent Internal Architectures: We have used TAMS as a
core element in the design of computational agent architec-
tures (DECAF (Decker et al., 1995) and RETSINA (Sycara
et al., 1996; Decker et al., 1997a). These computer agents
may work only with other computer agents, or with peo-
ple (see the examples below). A complete agent com-
prises seven parts (some of which can be omitted in certain
task environments). The central component is the belief
knowledge base, which stores a representation of the cur-
rent agent objectives, the structure of the proposed tasks
to achieve those objectives, and annotations on these tasks
such as local and non-local commitments, using TEMS
or a TAMS-like language. The other components are an
agent communication component (using KQML, a stan-
dard agent communication language), a decision-making
component (that uses decision theory to choose what ob-
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Figure 1: High-level, subjective task structure for a typical hospital patient scheduling episode. The top task in each ancillary is really the

same objective entity as the unit task it is linked to in the diagram.

jectives to achieve), a planning component (that builds
or retrieves task structures to achieve objectives), a local
scheduling component (that orders and locates in time ba-
sic executable tasks), an execution monitoring component
(that can check task executions for progress and/or missed
deadlines), and a coordination component named GPGP
(that helps agents to coordinate their actions by communi-
cating task structures and commitments to certain tasks).

Generalized Partial Global Planning: The important thing
to remember is that no one agent has a global picture of
what every other agent could do/is doing. The complete
task structure is broken up across potentially many agents.
Some might have the big picture, but no details; others
might have all the details but only for some small portion
of the problem. The key observation is that whenever a co-
ordination relationship (subtask, enables, facilitates, etc.)
extends between the part of a task structure known by one
agent and that known by another agent, that there exists an
opportunity (or perhaps a requirement) for coordination of
the activities of the two agents. The GPGP family of co-
ordination mechanisms includes agent communication be-
haviors to tease out these spanning coordination relation-
ships, and provides individual mechanisms to react and re-
spond to each possible coordination relationship. Different
environments will require different subsets of coordination
mechanisms for good performance. Several of our papers
have dealt with specifying and analyzing these coordina-
tion mechanisms, and learning the situations and environ-
ments in which they are useful.

The GPGP algorithm family specifies three basic areas
of the agent’s coordination behavior: how and when to
communicate and construct non-local, partial task struc-
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ture views of the current problem solving situation; how
and when to exchange the partial results of domain prob-
lem solving; how and when to make and break commit-
ments to other agents about what results will be available
and when. We have experimented with 7 different coordi-
nation mechanisms, including a set meant to emulate the
orginal PGP algorithm (Decker & Lesser, 1995), discovery
of the need for “sucessor-side” coordination mechanisms
in the distributed data processing domain (Prasad, Decker,
Garvey, & Lesser, 1996), and ongoing analysis and eval-
uation of mechanisms for the hospital patient scheduling
problem presented earlier.

WARREN: A multi-agent financial portfolio management

organization (Sycara et al., 1996; Decker et al., 1997a).
Many computational agents work together in a dynami-
cally organized team in order to efficiently and robustly
retrieve changing stock prices, news, and fundamental data
from various locations on the Internet, and to analyze that
data in various contexts in order to provide an up-to-date
financial picture. The WARREN system is open, mean-
ing agents can come and go at any time. A WARREN or-
ganization consists of a portfolio interface agent for each
user, two task agents for fundemental stock analysis and
price-news graphing, a news information agent for Dow-
Jones and Clarinet news, several different stock ticker in-
formation agents, and two EDGAR information agents as-
signed to the SEC's electronic archives for quarterly and
annual reports. Organizational information agents include
a “matchmaker” or yellow-pages agent that helps an in-
formation requestor find the appropriate information server
in the dynamic, open system. Other organizational agents
include “brokers™ or middle-managers that can help bal-



ance workloads in some subsystems. One important re-
quirement was robustness, so that when any WARREN
agent leaves the system (or crashes) the remaining agents
reorganize so as to carry on as effectively as possible.
We have analyzed and experimentally verified some sim-
ple models of the performance of these simple alternate
organizational forms withe respect to characteristics such
as efficiency, adaptability, robustness, and privacy/security
(Decker, Sycara, & Williamson, 1997b).

MADEsmart: A project for coordinating mixed human- and
computational-agent systems in concurrent engineering de-
sign (Obrst et al., 1997). The initial domain problem is the
design of helicopter body panels using composite materi-
als. MADEsmart seeks to partially automate the integrated
product teams used to organize design engineers through
the use of multi-agent approaches. For example, associated
with each human engineer in an integrated product team is
a user assistant agent that can interact with that engineer.
Other agents wrap around existing computationally inten-
sive resources such as composite fiber placement simula-
tions and the COSTADE design cost analysis tool, which
uses an existing FORTRAN-based model.

We plan to eventually apply our scheduling technologies
to intelligent user interfaces. The user assisstant agent will
help a user to schedule his or her activities at the worksta-
tion and display that schedule in a meaningful and expres-
sive form that can be queried and explained. Of course,
users will have significant freedom in the ordering of their
activities—the purpose of the Local Schedule Display is to
make sure that tasks are not forgotten, that time critical or
critical enabling tasks are identified to the user, and that
facilitating or other soft-related tasks are also identified.

Future Directions

T/AEMS is a framework for describing complex task environ-
ments. When combined with traditional DAI tools for de-
scribing coordination algorithms and agents, it provides a ba-
sis for analysis and/or simulation in any standard Common
Lisp environment. When analyzing an existing or proposed
organizational design or coordination algorithm, we advocate
an approach that focuses first on behavior due to coordina-
tion relationships in certain situations and then expanding
this model to incorporate the sources of uncertainty that are
present. Such a process may iteratively refine the organiza-
tion or algorithm—with a parameterized algorithm one might
approach this as a pure parameter optimization problem. On
the other hand, when trying to design an organization or coor-
dination algorithm for a given environment, one can also start
with both the coordination relationships and the uncertainties
present, and add features to deal with each explicitly (our im-
plementation of the GPGP algorithm, which features several
independent ‘plug-in’ modules to deal with different classes
of interrelationships, is a case in point).

TAMS is also a language that can be used internally
by agents to represent and reason about thier subjective
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views of the current problem-solving situation. Significant
work has been done on scheduling agent activities efficiently
when agent meta-knowledge and preferences are dynami-
cally changing during the problem-solving process. How-
ever, much work remains to be done in linking traditional
(or non-traditional) planning work to such architectures and
dynamic environments. Finally, we need to build, model,
analyze, and thus better understand larger, more complex
multi-agent organizations—going beyond simple mdynami-
cally atchmade teams and simple brokered hierarchies. This
work will progress both in the study of totally artificial
agent organizations (e.g. WARREN) and mixed human- and
computational-agent organizations (e.g. MADEsmart).

Many of these papers are available from the author’s web
site, http://www.cis.udel.edu/“decker/, which
also contains pointers to the UMass and CMU agents web
sites.
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