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Abstract

Glassy Dynamics in an Intrinsically Disordered Protein Region

by

Ian Lewis Morgan

Conservative estimates indicate that 30% of known proteins contain long (>40 residues)

intrinsically disordered regions (IDRs). In contrast to globular proteins, IDRs adopt

multiple distinct conformations in their native state, similar to a random-walk polymer

in a good solvent. While the sequence properties of IDRs have been extensively stud-

ied, their physical properties are still poorly understood. Characterizing these physical

properties is an important step towards understanding the numerous biological functions

and diseases associated with IDRs. Recently, Magnetic Tweezers (MTs) have emerged

as a powerful tool for determining the structural properties of polymers in a manner that

is orthogonal to other approaches, e.g., scattering experiments. With MTs, researchers

use the thermodynamic effects of applied tension to study the conformations of single

polymers via their end-to-end extension. This approach is particularly desirable for IDRs

because many of them are found in the cellular cytoskeleton, where they play a critical

structural and mechanical role.

In the first part of this dissertation, I present my work on improving the MT tech-

nique with the aim of studying IDRs. I develop a computational tool for the robust

calibration of forces and their uncertainty, an important but often overlooked aspect of

these experiments. I also study the effects of surfaces on the low-force entropic elastic

response of polymers, showing that they can be used to extract the radius of gyration.

In the second part of this dissertation, I present the unexpected finding of glassy

dynamics in a model IDR system, a polyprotein of the disordered neurofilament light

vi



tail (NFLt) domain. The NFLt is part of a large group of IDRs in neurons that are

responsible for the structure and mechanics of the axon. Glassy dynamics in globular

proteins was a major finding nearly 50 years ago that emphasized the importance of

protein dynamics. However, it is attributed to conformational behaviors that are missing

from IDRs. Nevertheless, using MT experiments, I show that a NFLt polyprotein’s

extension changes, in response to a change in applied tension, with a nonexponential

time dependence that is history dependent, two characteristic features of glassy systems.

I show that the extension changes can be predicted using a phenomenological framework

adapted from bulk glassy systems. Finally, I show that the glassy dynamics can be

understood in terms of multiple, independent, and heterogeneous globules within a single

NFLt. This mechanism for glassy dynamics is novel and likely to apply broadly to other

IDRs.
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Chapter 1

Introduction

Part of the content of this chapter is adapted from a collaborative review [1]. It is used

here with permission from IOP Publishing.

1.1 Motivation

The 1977 Nobel Laureate in Physics, Phillip Anderson, described the nature of glasses

as one of “the deepest and most interesting and unsolved problems in solid state the-

ory” [2]. This problem has broad applicability because many complex systems share

the properties of structural glasses, i.e., liquids that are supercooled below their freezing

point. For this reason, these properties are often called ‘glassy.’

One of these properties is glassy dynamics, which refers to the slow, nonexponen-

tial time dependence of a system that is driven out of equilibrium [3]. Glassy dynamics

is typically attributed to competing interactions that make it difficult to transition be-

tween states, i.e., frustration [4]. As a system relaxes, it becomes trapped in long-lived

metastable states and, in some cases, may never reach equilibrium on humanly observ-

able time scales. Hence, while a simple system’s state can be determined by equilibrium

1
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Native
state

Random
coil

G

Q
Substates

Figure 1.1: A possible free energy, G, surface for proteins with the fraction of native
contacts, Q, as the reaction coordinate. The surface has a double-well structure,
where the random coil state is entropically favored and the native state is energetically
favored with a nucleation activation barrier separating them. The native state is the
global minima; however, frustration leads to multiple local minima, corresponding to
structural substates.

thermodynamics, a glassy system’s state depends on its kinetics and history.

Heteropolymers are inherently frustrated systems due to the constraints imposed by

a connected chain with many possible heterogeneous interactions [4]. For example, a

random chain with many possible hydrophobic and hydrophilic pairs may require un-

favorable contacts in order to form favorable contacts. As a result of this ‘energetic

frustration,’ random heteropolymers often form multiple different structures with similar

energies. Transition between these structures may require breaking favorable contacts

and avoiding steric clashes. This ‘topological’ or ‘geometric’ frustration can lead to sub-

stantial activation barriers between structures and a rugged energy landscape. Together,

these types of frustration can lead to glassy dynamics.

In 1973, Austin et al.[5] reported the observation of glassy dynamics in a small globu-

lar protein, myoglobin. At low temperatures, ligand rebinding experiments with this pro-

tein exhibited a nonexponential time dependence. Based on these findings, Frauenfelder

et al. [6, 7] concluded that proteins can have multiple different substates in their native

2
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state. Prior to this, proteins were often thought to have a rigid structure, corresponding

to a single well-defined minima on its free energy surface. However, Frauenfelder et al.

described the free energy surface as rugged with multiple local minima, corresponding to

the different structural substates (Fig. 1.1). Depending on thermal energy and the acti-

vation barriers between local minima, proteins will interconvert between these different

substates, which is thought to be crucial for their biological function [8].

Yet, unlike random heteropolymers, the large scale conformational changes of small

single-domain proteins often follow an exponential time dependence. In 1987, Byngelson

and Wolynes [9] introduced the principle of minimal frustration to explain this phe-

nomenon. It states that evolution has selected for protein sequences that avoid kinetic

traps and have a single global free energy minimum. Their work was based on earlier

work by Gō which posited that a protein’s native interactions are the main driving force

of folding [10]. The principle of minimal frustration leads to a one-dimensional free en-

ergy surfaces with the fraction of native contacts as the reaction coordinate. Generally,

the random coil state is entropically favored, the native state is energetically favored, and

transitions between the two are treated as a cooperative, two-state process. (Fig. 1.1B).

Intrinsically disordered proteins and protein regions

In contrast to the principle of minimal frustration, many proteins contain disordered

regions that adopt multiple distinct conformations in their native state [11, 12, 13, 14].

While it had long been known that disordered regions exist, there prevalence had not

been fully appreciated [15]. In 1988, a computer algorithm revealed that more than

15,000 proteins in the Swiss Protein Database contain long (>40 residues) disordered

regions [16]. Current conservative estimates indicate that 30% of known proteins con-

tain long disordered regions, leading to considerable scientific interest in their sequence,

3
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structure, and function [12].

Disordered regions have been called many names in the literature [12]; however, now,

the field appears to have coalesced around two terms. Globally disordered proteins

are called Intrinsically Disordered Proteins (IDPs), while locally disordered regions are

called Intrinsically Disordered Regions (IDRs). As IDPs and IDRs share many of the

same characteristics, for brevity, I will refer to both as IDRs unless specified otherwise.

Protein disorder appears to be driven by distinct sequence preferences, which com-

puter algorithms use to identify IDRs [17, 18]. In general, IDRs have fewer hydrophobic

residues and more charged and hydrophilic resides than globular proteins [19, 20, 14]

(Fig. 1.2). However, their sequence preferences can be further broken up into three

categories, polar tracts, polyelectrolytes, and polyampholytes, that depend on the frac-

tion of negatively and positively charged residues [21]. Sequences rich in polar but not

charged residues are called polar tracts and are predicted to form compact globules due

to poor solvation by the surrounding solution [22, 23]. Sequences with a large fraction

of either positively or negatively charged residues are polyelectrolyte and are predicted

to be more extended in isolation due to electrostatic repulsion. Polyelectrolytes con-

formations also depend on their surrounding environment; they will often bind small

charged molecules or undergo complex coacervation [21]. Sequences with both positively

and negatively charged residues are polyampholytes and are sometimes further divided

into weak and strong depending on the total fraction of charged residues in the IDR

[24]. Polyampholytes with well-mixed residues are predicted to behave like random coils,

while blocky polyampholytes (i.e., oppositely charged residues are segregated) form more

compact configurations.

These sequence propensities drive the structural properties of IDRs. Due to their

many possible conformations, the structural properties of IDRs are often characterized

by their ensemble average characteristics [1]. Specifically, experiments (e.g., Small An-

4
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Figure 1.2: Disorder is driven by charge and hydrophilicity [1]. (A) Nearly 250 folded
proteins (open circles) and 90 IDRs (filled diamonds) are empirically separated (diag-
onal line) by their mean absolute charge (e) and hydrophobicity (normalized Kyte–
Doolittle scale [25]) [19]. (B) Certain amino acids are more common in IDRs, sug-
gesting they promote disorder [20]. Disorder propensity is defined as the fractional
difference of amino acid composition from IDRs in the DisProt database and folded
proteins from the Protein Data Bank (PDB). This figure is reproduced from Ref. [1].

gle X-ray Scattering (SAXS) [26] and Förster Resonance Energy Transfer (FRET) [27])

measure the end-to-end distance (Ree) or radius of gyration (Rg), which scale with the

number of residues, N , and the Flory exponent, ν, e.g., Rg ∝ Nν (Fig. 1.3). The Flory

exponent captures the balance between intra-chain and solvent-chain interactions, i.e.,

solvent quality. Good (ν ≈ 0.6), theta (ν = 0.5), or poor (ν ≈ 0.3) solvent quality

indicates intra-chain attractions that are less, equal, or greater than solvent-chain at-

tractions, respectively. While IDRs are generally more similar to random-walk polymers

in a good solvent than folded proteins, they often contain residual secondary structure

or, as noted, sequence-specific interactions that affect their structural properties [28].

The structural properties of IDRs drive their biological functions [1] (Fig. 1.3). In

several cases, certain stimuli trigger IDRs to undergo disorder-to-order transitions that

enable them to interact strongly and specifically with a single binding partner via a ‘lock

and key’ mechanism [29]. Other IDRs serve as ‘master keys,’ interacting weakly with

many different binding partners, facilitating their role as regulators in cellular signalling

5
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Sequence
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Function

Order-to-Disorder
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Figure 1.3: A protein’s sequence of amino acids influences its structure, which, in
turn, influences its biological function. Modified from Ref. [1].

pathways [15, 30, 31]. Relatedly, IDRs have received considerable attention for their

ability to assemble proteins and nucleic acids into liquid-like condensates and hydrogel

networks [32, 33, 34]. Many IDRs also benefit directly from their structural flexibility,

particularly in the cytoskeleton, where they play an important role in the structure and

mechanics of cells [35, 36].

In addition to these beneficial biological functions, IDRs are also associated with a

number of diseases, including cancer, cardiovascular disease, diabetes, and neurodegener-

ation [12, 1]. Many of these diseases involve the aggregation of IDRs into toxic oligomers

or amyloids [37]. Others involve IDRs found in pathogens, such as the recently emerged

novel coronavirus (SARS-CoV-2), which encodes an IDR in its nucleocapsid that is criti-

cal for genome packaging [38]. The possibility of interrupting the action of these diseases

presents an attractive target for new drugs.

While the sequence properties of IDRs have been extensively studied, their structural

properties are still poorly understood. Characterizing the structural properties of IDRs

is an important first step towards understanding their biological functions and associated

6
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diseases.

Single-Molecule Force Spectroscopy

As noted, the structural properties of IDRs lend themselves to polymer physics de-

scriptors. Single-Molecule Force Spectroscopy (SMFS) has emerged as a powerful method

for characterizing the structural properties of polymers in a manner that is orthogonal to

other approaches, such as SAXS and FRET. The most common SMFS instruments in-

clude Atomic Force Microscopes (AFMs), Optical Tweezers (OTs), and Magnetic Tweez-

ers (MTs). These instruments use the thermodynamics effects of applied tension to probe

polymers’ conformations via their end-to-end extension, yielding valuable information

about their structural length scales, free energy surface, and conformational dynam-

ics [39]. These experiments are also particularly relevant for cytoskeletal IDRs, which

play a critical role in the structure and mechanics of cells [35, 36].

The force-extension response of a polymer is well-described by scaling theories that

account for the local bending stiffness and “excluded-volume” interactions via various

structural length scales, including the persistence length, lp, Kuhn length, `, thermal

blob size, ξth, and Rg [40]. The applied force effectively screens interactions below the

tensile screening length, ξf = kBT/f , leading to several different force regimes [41]. In

the low-force regime, corresponding to forces less than kBT/`, the extension scales as

a powerlaw with the force, ∼ fγ. For example, when ξth < kBT/f < Rg, the relevant

metric is the Pincus exponent, γ = 2/3 [41]. Hence, it is possible to extract the polymer’s

structural length scales from the changes in γ with force.

In an SMFS experiment, the polymer extension is measured in response to an applied

force. Hence, it measures a one-dimensional free energy surface, with the extension as the

reaction coordinate [42]. Most reactions can be modeled as a simple two-state system with

7
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Figure 1.4: (A) Force tilts the free energy surface favoring the extended state (state 2)
over the compact state (state 1), lowering the activation barrier to transition from state

1 to 2 from ∆G0‡
12 to ∆G‡12(f) = ∆G0‡

12−f∆x‡12, and increasing the activation barrier to

transition from state 2 to state 1 from ∆G0‡
21 to ∆G‡21(f) = ∆G0‡

21− f∆x‡21, where x‡12

and ∆x‡21 are the distances from state 1 or state 2 to the transition state, respectively.
The free energy difference ∆G between the two states determines the equilibrium
populations of each state. (B) In a MT experiment, a polymer is tethered between
a static surface and micron-scale paramagnetic bead. The polymer’s extension, L, is
measured in response to an applied force, f .

a double-well structure. The free energy difference, ∆G between states determines the

equilibrium populations of each state (Fig. 1.4). At zero force, the time to go from state

1 to state 2 is given by the Arrhenius equation: τ12 = A1e
∆G0‡

12/kBT , where A corresponds

to an attempt frequency [43] and ∆G0‡
12 is the height of the activation barrier. Similarly,

the time to go from state 2 to state 1 is given by τ21 = A2e
∆G0‡

21/kBT .

To a first approximation, an applied force tilts the free energy surface linearly with

the magnitude of the force, changing the heights of the activation barriers, such that

∆G‡12(f) = ∆G0‡
12 − f∆x‡12 and ∆G‡21(f) = ∆G0‡

21 − f∆x‡21, where x‡12 and ∆x‡21 are the

distances from state 1 or state 2 to the transition state, respectively [44] (Fig. 1.4A). As

a result, the time to go from state 1 to state 2 decreases and the time to go from state

2 to state 1 increases. This effect was worked out by Zhurkov for fracture mechanics in

1965 [45] and later introduced into biophysics by Bell in 1978 [46]. For this reason, I

refer to it as the Bell-Zhurkov expectation in this dissertation.

8
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Constant-force experiments provide a straightforward means of directly measuring the

free energy surface via a polymer’s conformational dynamics: extension changes directly

correspond to diffusion along the free energy surface. Some SMFS experiments, e.g., AFM

force-clamp, require active feedback loops to maintain a constant force, which can lead

to experimental artifacts and difficulties in interpreting results [42]. Other experiments,

e.g., MTs, passively apply constant forces, making it simpler to carry out and interpret

results. In some cases, under constant forces, biopolymers will ‘hop’ between the two

states when the activation barrier between state 1 and 2 is of a similar height to the

barrier between state 2 and 1 [44]; however, for many proteins, there is no single force at

which this hopping behavior is experimentally accessible.

An alternative means of measuring the conformational dynamics of polymers is force-

jump experiments. In these experiments, the force is changed rapidly to a set value, and

then, the polymer extension is measured at constant force. Assuming the transition time

is longer than the time required to execute the jump and the entropic elastic relaxation

time (i.e., the Rouse time [47, 48]), the transition time can be directly measured from the

change in polymer extension. Conformational changes are stochastic thermally induced

events, but, for small-single domain proteins, the ensemble time-average of many events

often follows an exponential time-dependence, corresponding to a cooperative, two-state

process with the occasional addition of transient intermediates states [49, 44].

While SMFS techniques have been used extensively to study globular proteins, there

have been considerably fewer studies of IDRs. Notable exceptions include AFM pulling

experiments on several amyloid precursor IDRs, which showed a sawtooth pattern indica-

tive of the mechanical unfolding of multiple different structures [50]. Similarly, optical

tweezer pulling experiments on α-synuclein showed it has several marginally stable and

rapidly fluctuating subsegment structures [51]. However, to my knowledge, the confor-

mational dynamics of IDRs under constant force have not been investigated.

9
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1.2 This dissertation

In this dissertation, I present my work on extending the capabilities of SMFS exper-

iments and conducting high-precision nanomechanical assays on a model IDR system.

Magnetic tweezers

Much of the experimental work in this dissertation uses a custom-built MT instrument

that is described in detail in Appendix A. In a MT experiment, the polymer of interest

is tethered between a static surface and a micron-scale paramagnetic bead in a flow

cell (Fig. 1.4B). The force on the bead (and thus, the polymer of interest) is set by

the distance between the bead and magnet assembly, resulting in ultra-stable forces.

This is advantageous for two reasons. First, it enables the application of low forces in

force-extension measurements. Second, when measuring the conformational dynamics of

polymers, the force remains constant over time.

Neurofilament light tail

The model IDR system is derived from the disordered tail domain of the neurofilament

light protein (UniProt accession number P08551). The neurofilament light protein is part

of a large group of neuronal-specific proteins (e.g., α-internexin, vimentin, microtubule-

associated protein 2, and tau [52, 36, 53, 54]) with long IDRs that help to determine the

structure, size, and mechanics of axons, with direct effects on electrical conduction [55].

The native Neurofilament light tail (NFLt) domain contains 146 residues with an

average net charge per residue of -0.25 e; however, it can be divided into two subdomains

with highly distinct sequence features (Fig. 1.5). Subdomain A is 47 residues in length,

making up the first one-third of the NFLt. Its sequence features are consistent with a

polar tract, containing relatively few charged residues and more polar residues (Fig. 1.5).

10
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Figure 1.5: The sequence characteristics of the NFLt’s two subdomains differ sub-
stantially. (A) Subdomain A (green) has mostly polar residues and very few charged
residues. Subdomain B (orange) has mostly negatively charged residues with a few
positively charged residues. The net charge per residue represents a five residue rolling
average over the sequence. (B) Subdomain A can be classified as a polar tract, while
subdomain B can be classified as a negative polyelectrolyte based on the fraction of
negative and positive residues [24].

Specifically, it is rich in serine (S, 30%) and the aromatic residue tyrosine (Y, 10%).

Subdomain B is 99 residues in length, making up the latter two-thirds of the NFLt. Its

sequence features are consistent with a negatively charged polyelectrolyte, but it contains

a few positively charged residues, particular towards the C-terminus. These positively

charged residues have been shown to play an important role in assembling neurofilaments

into a hydrogel network [52, 56]. Specifically, the sequence is rich in glutamic acid (E,

45%) and lysine (K, 12%). Secondary structure predictors suggest that the NFLt might

contain some long alpha helices and beta sheets [36]; however, Circular Dichroism (CD)

measurements are more consistent with a random coil configuration [57].

MT experiments require long polymers to prevent interactions between the bead and

surface. To facilitate MT experiments with the NFLts, they are polymerized into a

polyprotein as described in detail in Appendix B. In short, the NFLts are modified to

contain terminal cysteines and induced to form disulfide bonds, resulting in a polydisperse

sample with polyproteins of varying lengths.

11



Introduction Chapter 1

A computational tool for robust force calibration

In order to interpret the results of the NFLt experiments, the applied forces need

to be accurately and precisely calibrated. While robust force calibration methods exist,

they can be difficult to implement computationally. As a result, many researchers opt to

use alternative methods [58]. However, as has been argued elsewhere, the lack of stan-

dardized methods across SMFS experiments hinders the reproducibility of results [59].

In Chapter 2, I present the development of a software tool for robust force calibration in

SMFS experiments. This tool calibrates both the magnitude of forces and its uncertainty,

an important but often overlooked part of these experiments. I envision that this tool

will help to standardize force calibration in SMFS experiments, leading to more accurate

and reproducible results.

Surface effects on low-force powerlaw behavior

The stochastic polymerization of the NFLts results in polyproteins of varying lengths,

some of which are short (. 0.5 µm). These tethered polyproteins often exhibit a bias

in the γ metric of their force-extension curves at low forces. In chapter 3, I study these

γ biases using well-characterized polymers, showing that they come from interactions

between the polymer and the surface. I show that these biases can be used to extract

the Rg of the polymer, broadening the capabilities of MT experiments.

Glassy dynamics in an IDR

In chapter 4, I present the unexpected discovery of glassy dynamics in the NFLt

polyprotein. In response to a change in applied force, I show that the polyproteins

exhibit a change in extension that follows a nonexponential, often logarithmic, time

dependence. Furthermore, I show that polyproteins exhibit a memory effect, indicating

12
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that each NFLt contains multiple, independent relaxation events. Using a continuum

model based on a mathematical framework devised for bulk glassy systems [60] and the

Bell-Zhurkov expectation, I show that the force dependence of the logarithmic relaxations

can be predicted with a single fitting parameter.

Origins of glassy dynamics in an IDR

In chapter 5, I study the origin of the glassy dynamics in the NFLt polyprotein. I

consider several possible biochemical sources for the relaxations. I show that the glassy

dynamics is history dependent, a characteristic feature of glassy systems and further proof

that each NFLt contains multiple, independent, and heterogeneous relaxation events.

Lastly, I show that the glassy dynamics can be understood in terms of a discrete model

with globules of varying size that quantitatively captures the force dependence of the log-

arithmic relaxations without any fitting parameters. This mechanism for glassy dynamics

is, to my knowledge, novel and likely to apply broadly to other IDRs.

Appendices

Following the main body of the dissertation are several appendices. Appendix A con-

tains a description of the custom-built magnetic tweezer used to carry out most of the

experiments in this dissertation. Appendix B contains basic protocols and experimental

methods. Appendix C contains supporting information for the chapters, including cer-

tain derivations and control experiments. Appendix D contains a comprehensive list of

abbreviations used in this dissertation.
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Chapter 2

Calibrating Forces in

Single-molecule Video-tracking

Experiments

Using MTs to characterize the conformations of IDRs and the glassy dynamics requires

the accurate and precise calibration of forces. Typically, the force is calibrated by compar-

ing the thermal fluctuations of the bead to a model derived from the Langevin equation.

Previous work from the Saleh lab had shown that the Allan variance (AV) of the para-

magnetic bead fluctuations could be used to reliably calibrate forces [61]. However, this

work did not address how to calculate the uncertainty or reliability of forces. Instead,

to determine the uncertainty, a MT user would collect three or more independent force

measurements for each magnet position on the same bead from which to calculate the

average and standard deviation (a single ‘bad’ measurement still lead to a poor estimate

of the uncertainty). When this works, it is slow and tedious. For example, a typical

force-extension curve with 31 forces took 20 min; hence, three measurements required at

least an hour (usually more). This was alleviated, somewhat, by the ability to measure
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multiple polymers in parallel.

Around this time, it came to my attention that many researchers were using different,

often less robust force calibration methods. As has been argued elsewhere, this lack of

standardized methods hinders reproducibility in the SMFS field[59]. Hence, I developed

a straightforward and easy-to-use computational tool that not only robustly calibrates

forces but also calculates their uncertainty from a single measurement. In the interest

of open science, I wrote the tool in Python, a common and freely available program-

ming language, so it could be used regardless of access to proprietary and expensive

programming languages, such as Matlab, Mathematica, and Labview.

The content of this chapter is adapted from a manuscript that, at the time of the

writing of this dissertation, is currently undergoing review for publication in PLOS One.

2.1 Introduction

Single-molecule force spectroscopy (SMFS) instruments are powerful tools with a wide

variety of experimental applications. They can be used to study polymer elasticity [62, 40]

and dynamics [63], measure bond energies and lifetimes [64, 65], assess the activity of

molecular motors [66, 67], and characterize protein and nucleic acid folding [68].

To obtain accurate and reproducible results, an essential first step in any SMFS ex-

periment is force calibration. Typically, force calibration relies on comparing the thermal

motion of a trapped bead to a model derived from the Langevin equation [69]. These

methods have limitations; notably, at times, t . 10−4 s, the standard Langevin equation

does not account for certain hydrodynamic effects between the bead and the surrounding

fluid [70]. Nevertheless, for longer times, these hydrodynamic effects can be ignored and

the bead motion is well-described by the overdamped Langevin equation, which only

depends on two parameters: the drag coefficient of the bead, γ, and the spring con-
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Figure 2.1: (A) Schematic of a MT experiment. The spring constant, κ, is calibrated
from the bead fluctuations in the x-direction, parallel to the magnetic field, ~B. (B)
Simulated bead trajectories for κ = 0.1, 0.2, and 0.5 pN/nm.

stant of the trap, κ, from which the force can be calculated. For MT experiments, the

bead-tether system is modeled as an inverted pendulum and κ is determined from bead

fluctuations parallel to the magnetic field (Fig. 2.1). Applying Hooke’s law and the small

angle approximation, it follows that the applied force is κL.

In practice, analyzing and fitting the bead trajectory must be done carefully. Several

factors, including spectral distortions, the exposure time of the detection system (e.g.,

video cameras or photodiodes), parasitic noise (e.g., tracking errors and mechanical drift),

and biased fitting, can all lead to inaccurate parameter estimates [71, 72, 73, 74, 61].

Robust calibration methods that account for all of these factors exist, yet they can be

complex to implement computationally, leading some researchers to opt for alternative

strategies [58].

Existing force-calibration software packages [75, 76, 77, 78] only account for some

sources of bias; most notably they do not account for the finite exposure time of the

camera in video-tracking experiments. Thus, it is often up to researchers to write with

their own calibration code, of which published examples are only available in proprietary

programming languages (e.g., MatLab [79] and LabView[80]), hindering easy access. As

16



Calibrating Forces in Single-molecule Video-tracking Experiments Chapter 2

has been argued elsewhere [81], different computational implementations, even those

based on the same algorithms, can often lead to different numerical outcomes. This

lack of standardized calibration methods and computational implementations hinders

reproducibility and makes comparison across different research groups, instruments, and

experiments difficult [59].

To help improve and standardize SMFS force calibration, we present Tweezepy:

a Python package for calibrating forces in single-molecule video-tracking experiments.

Tweezepy uses maximum likelihood estimation (MLE) to estimate parameters, and their

uncertainties, from a user-provided bead trajectory via a thermal motion-based model of

the power spectral density (PSD) or Allan variance (AV). It accounts for the most com-

mon sources of biases and parasitic noise in SMFS video-tracking experiments. Moreover,

it is written in Python, a popular and freely available programming language, and is

available on GitHub [82], the Python package index [83], and the Zenodo database [84],

making it easy to distribute and install. It is designed for ease-of-use, with docstrings

and usage examples, yet it has a versatile object-oriented framework that can be used as

part of a larger scripted workflow or in a Jupyter notebook as a lab journal page [85, 86].

In this chapter, we provide a comprehensive overview of Tweezepy’s force calibration

scheme. In Section 2.2, we describe several common force calibration methods and mo-

tivate the use of the PSD and AV. In Section 2.3, we give closed-form expressions that

account for common sources of parameter biases and parasitic noise in video-tracking

experiments, such as the finite exposure time of the detection system and tracking er-

rors. In Section 2.4, we review how to compute the experimental PSD and AV from a

bead trajectory. In Section 2.5, we describe how to use MLE to reduce biased fitting and

estimate parameters and their uncertainties. We note here that estimating parameter

uncertainties using MLE has received relatively little attention in the SMFS literature.

For experienced readers that are familiar with force calibration theory, we recommend

17



Calibrating Forces in Single-molecule Video-tracking Experiments Chapter 2

skipping ahead to Section 2.6 , which covers the computational implementation of the

calibration methods in Tweezepy. In Section 2.7, we use Tweezepy to calibrate simulated

bead trajectories, and show that it accurately estimates parameters and their uncertain-

ties, as compared to previously published results in Ref. [61].

2.2 Background

Most force calibration methods fall into two categories: methods that calibrate against

known forces, such as Stokes drag or gravitation [87], and methods that calibrate based

on the thermal motion of the bead [69]. The first category generally relies on intrinsic

parameters of the system (e.g. the density and viscosity of the solution) that can be

difficult to measure and often vary within an experiment, leading to large uncertainties

in calibrated forces [88].

In comparison, thermal motion-based calibration methods are advantageous because

they only rely on the temperature of the system, which is much easier to measure and

control in most experiments. Thermal calibration methods model the random, diffusive

motion of the bead within the harmonic potential generated by the applied trap. By the

equipartition theorem, the standard variance of the bead position, σ2
x, can be related to

the spring constant of the trap, κ:

σ2
x =

kBT

κ
. (2.1)

where kB is the Boltzmann constant and T is the absolute temperature of the system

[89]. When the time between measurements, τs, is much faster than the relaxation time

of the bead, τc ≡ γ/κ, the spring constant can be determined from Eq. 2.1. However,

in practice, sources of parasitic noise always increase the variance, leading to systematic
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underestimates of the apparent spring constant [73].

A better approach to thermal motion-based calibration is the PSD, which permits

separation of thermal motion from parasitic noise [90, 73]. The PSD describes the distri-

bution of the variance (i.e., total power) from different frequency components in a signal.

Invariably, parasitic noise sources have different spectral signatures from the bead’s ther-

mal motion. As discussed in detail below, when using the PSD to calibrate video-tracking

experiments, one needs to account for several factors, including 1) distortions from alias-

ing and spectral leakage [91, 71], 2) low-pass filtering from the exposure time of the

camera [72], and 3) biased parameter estimates from improperly using least squares fit-

ting routines with experimental PSD values that do not have Gaussian-distributed errors

[74].

An alternative means of thermal motion-based calibration, that also distinguishes

parasitic from thermal noise, is the AV. The AV measures the noise in the bead position

over different observation times and was designed as a means of measuring drift in a

system [92]. It was originally introduced into the SMFS literature to assess optimal

measurement times [93] and low-frequency noise [94, 95]; however, it was quickly realized

that the AV could be fit directly to calibrating forces [61]. As discussed in detail below,

the AV is naturally suited to video-tracking experiments because it intrinsically accounts

for low-pass filtering from the exposure time of the camera. As with the PSD, improperly

using least-squares fitting routines on AV values that do not have Gaussian-distributed

errors will lead to biased parameter estimates [61].

When identifying and accounting for various sources of parasitic noise, the PSD and

AV have complementary strengths [95]. The PSD is excellent at identifying high fre-

quency coherent noise sources, such as line frequencies from power sources, while the AV

is ideal for identifying low frequency noise sources, such as mechanical drift. In combina-

tion, the PSD and AV can be used to identify most forms of parasitic noise, and under
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optimal conditions, both give accurate parameter estimates and uncertainties.

2.3 Modeling thermal motion in the PSD and AV

2.3.1 Langevin dynamics

Thermal motion-based calibration methods rely on Langevin dynamics, which model

the trapped bead in an SMFS experiment as randomly diffusing in a harmonic potential.

Collisions between the bead and water molecules create a stochastic (Langevin) force,

FL, that obeys the fluctuation-dissipation relation, 〈FL(t+t′)FL(t)〉 = 2γkBTδ(t
′), where

δ(t) is the Dirac delta function. For a micron-scale bead in water, inertial effects only

become important at microsecond timescales [96, 70], well below the sampling time, τs,

of most SMFS video-tracking instruments (τs & 10−4 s) [39]. Thus, the bead’s motion is

well-described by the overdamped Langevin equation:

κx(t) + γẋ(t) = FL(t). (2.2)

2.3.2 A closed-form expression for the PSD

For bead motion, the predicted PSD, P , at each frequency, f , follows from Fourier

analysis of Eq. 2.2:

P (f) =
kBT

2π2γ

[(
κ

2πγ

)2

+ f 2

] . (2.3)

For frequencies above the corner frequency, fc ≡ κ/2πγ, the bead motion is purely

diffusive and the PSD can be approximated as P (f) ≈ kBT
2π2γf2

. For frequencies below the

corner frequency, the bead is constrained by the trap, and the PSD can be approximated

as P (f) ≈ 2kBTγ
κ2

.
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Eq. 2.3 does not account for the exposure time of the camera, τ0, which introduces a

low-pass filter to the experimental bead positions. It can be included through a correction

function, I [72]:

PA(f) = P (f)I(f). (2.4)

where

I(f) =
sin2 (πfτ0)

(πfτ0)2
. (2.5)

Eq. 2.4 also needs to be adjusted for aliasing distortions: for an instrument with a

sampling rate, fs ≡ 1/τs, the PSD at each positive frequency, f ′, (0 < f ′ < fs/2) contains

the summed power of other frequencies, nfs, for all integers, n [71]:

PA,B(f) =
∞∑

n=−∞
PA(|f + nfs|). (2.6)

In the special case that τ0 = τs, the sum in Eq. 2.6 can be performed analytically to

give an exact, closed-form expression for the PSD that accounts for both aliasing and

the exposure time of the camera [61]:

PA,B(f) =
2kBTγ

κ3

κ+
2γfs sin2

(
πf
fs

)
sinh

(
κ
γfs

)
cos
(

2πf
fs

)
− cosh

(
κ
γfs

)
 . (2.7)

Most modern video cameras are designed to maximize captured light, with a dead time

(∼ 10−6 s) that is much less than the sampling time (τs ∼ 10−1 s to 10−4 s). This ensures

that the exposure time is about the same as the sampling time, τ0 = τs, i.e., zero dead-

time, fitting the criteria for applying Eq. 2.7.

While sources of parasitic noise will vary among different SMFS instruments, most

video-tracking experiments have a frame-to-frame tracking error arising from the im-

precision of the bead localization algorithm. Assuming the tracking error is Gaussian-
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Figure 2.2: Tracking errors in simulated (A) and experimental (B) PSD values. The
PSD values were computed using 35 half-overlapping bins. (A) Larger tracking er-
rors lead to larger deviations in the simulated PSD values at higher frequencies.
Simulations consisted of 20480 points carried out with parameters fs = 1000 Hz,
γ = 1.77× 10−5 pNs/nm, κ = 1.2× 10−4 pN/nm, and ε = 0, 10, and 20 nm (blue,
green, orange). Dotted lines are overlays based on Eq. 2.8 with the known parameter
values. (B) Experimentally derived PSD values are better described by an expression
that includes tracking errors (Eq. 2.8, orange) than one that does not (Eq. 2.7, green)
as judged by the normalized residuals, ∆, and Akaike Information Criterion (AIC),
which balances the fit quality with the number of parameters (AIC = 334 vs. 739).
The data were collected at 400 Hz on double-stranded DNA using a custom-built mag-
netic tweezer [98] with a video camera detection system and compared to both func-
tions using MLE. The best fit parameters for PA,B,C are κ = 1.8± 0.2× 10−4 pN/nm,
γ = 1.78± 0.04× 10−5 pNs/nm, and ε = 8.0± 0.3 nm.

distributed with a standard deviation, ε, this adds a frequency-independent white noise

term to PA,B [97]:

PA,B,C(f) = PA,B(f) +
ε2

fs
. (2.8)

In the PSD, the effect of tracking errors is most apparent at high frequencies, where the

thermal motion is diminished (Fig. 2.2 A).
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2.3.3 A closed-form expression for the AV

For bead motion, the predicted AV, σ2
AV , at each observation time, τ , is similarly

derived through analysis of Eq. 2.2 [61]:

σ2
AV,A(τ) =

2kBTγ

κ2τ

(
1 +

2γ

κτ
e−

κτ
γ − γ

2κτ
e−

2κτ
γ − 3γ

2κτ

)
. (2.9)

For observation times that are shorter than the bead relaxation time, τ � τc ≡ γ/κ,

neighboring positions are highly correlated, and the AV increases as σ2
AV,A ≈ 2kBTτ/3γ.

For observation times that are longer than the bead relaxation time, neighboring positions

become uncorrelated, and the AV decreases as σ2
AV,A ≈ 2kBTγ/τκ

2 [94]. The peak of the

transition between the two regimes can be numerically calculated as τmax ≈ 1.89τc [61].

In its definition, the AV implicitly accounts for the exposure time of the camera and

assumes zero dead-time, i.e., τ0 = τs. As discussed in the previous section, this is usually

a reasonable assumption for SMFS video-tracking systems. When this is not the case,

the AV is biased and requires an additional correction function [99]. Conveniently, this

bias is negligible when τs � τc [94], so Eq. 2.9 can usually be applied, without further

modification, to photodiode-based detection systems that include dead-time [100].

As with the PSD, tracking errors in video-tracking experiments can be accounted for

by adding a white-noise term to σ2
AV,A:

σ2
AV,A,B(τ) = σ2

AV,A(τ) +
ε2τs
τ
. (2.10)

The effect of tracking errors is most apparent at short observation times, when the bead

motion is mostly diffusive (Fig. 2.3).
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Figure 2.3: Tracking errors in (A) simulated and (B) experimental AV values. (A)
Larger tracking errors lead to larger deviations in the simulated AV values at shorter
observation times. The simulated data with tracking errors are the same as in Fig. 2.2,
ε = 0 , 10, and 20 nm (blue, green, orange). Dotted lines are overlays based on Eq. 2.10
with the know parameter values. (B) Experimental derived AV values are better
described by an expression that includes tracking errors (Eq. 2.10, orange ), than one
that does not (Eq. 2.9, green), as judged by the normalized residuals, ∆, and AIC
(AIC = 161 vs. 198). These data are the same as in Fig. 2.2. The best fit parameters
for σ2

AV,A,B are κ = 1.7± 0.1× 10−4 pN/nm, γ = 1.77± 0.04× 10−5 pNs/nm, and
ε = 7.9± 0.9 nm.

2.4 Computing the PSD and AV

The SMFS experiment generates an experimental bead trajectory containing Nx

points. This trajectory must be converted into a noise metric (the PSD or AV) con-

taining Ny points, which is then fit with the expressions in Section 2.3 so as to extract

parameter estimates. The conversion of the experimental trajectory to the noise metric

has a few subtleties which are described here.

2.4.1 Computing the experimental PSD with Welch’s method

The experimental PSD is optimally computed from the bead trajectory using Welch’s

method [101], i.e., by averaging periodograms. This method consists of splitting the
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trajectory into half-overlapping bins, each containing m points. The total number of

bins is thus M = 2Nx/m − 1. The PSD is calculated for frequencies fk = kfs/2m, for

k ∈ (1, 2, . . . ,m), where fs is the sampling frequency; note the final number of calculated

points is Ny = m. A smaller m improves the signal-to-noise ratio of the final experimental

PSD, at the cost of reduced sensitivity at lower frequencies [74]. The PSD values for each

bin, P̂n, are calculated from bead positions, x̂j, j ∈ (0, 1, 2, . . . ,m− 1), as

P̂n(fk) =
1

mfs

∥∥∥∥∥
m−1∑
j=0

wjx̂j exp

(
−2πijk

m

)∥∥∥∥∥
2

, (2.11)

then averaged together to give the final experimental PSD, P̂ :

P̂ (fk) =
1

M

M∑
n=1

P̂n(fk). (2.12)

The windowing function, wj, accounts for the phenomenon of spectral leakage: the fi-

nite duration of the measurement causes power at one frequency to show up at other

frequencies [102]. Most computational implementations of Welch’s method use the Hann

windowing function [103]:

wj =

√
8

3
sin2

(
πj

b

)
, (2.13)

reducing the total power of each experimental PSD value in a frequency-independent

manner, which is then corrected by the leading factor of
√

8/3. The use of the Hann

window, in conjunction with half-overlapping bins, means that data near the termini of

one bin is diminished by the window, but that same data is near the center of the next

bin, and thus captured by the window; this provides a reasonable trade-off between over-

and under-utilizing all of the data [101].

In practice, most computer algorithms use a more computationally efficient fast
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Fourier transform based on the Cooley-Tukey algorithm to calculate the experimental

PSD values [104].

2.4.2 Computing the overlapping AV

The experimental AV is optimally computed from the bead trajectory by partitioning

it into octave-sampled, overlapping bins. Octave sampling consists of using bin lengths,

mk, in powers of 2, i.e., mk = 2k for k ∈ (1, . . . , Ny), where Ny = blog2(Nx/2)c. The bin

lengths determine the number of overlapping bins, M = Nx−2mk+1, and the observation

times, τ = mkτs, where τs is the sampling time. For each τ , the experimental AV, σ̂2
AV , is

calculated as one-half the mean-squared difference of consecutive average bin positions:

σ̂2
AV (τ) =

1

2(M − 1)

M−1∑
n=1

(x̄n+1 − x̄n)2 (2.14)

where x̄n is the average of bead positions, x̂j, j ∈ (1, 2, . . . ,mk):

x̄n =
1

mk

mk∑
j=1

x̂j. (2.15)

In practice, computing all the average bin positions for each τ can be slow, so an equiv-

alent, but more computationally efficient, method is often used [99, 105].

2.5 Biased fitting

After computing the set of experimental AV or PSD values, ŷk, k ∈ (1, 2, . . . , Ny),

they are compared to the Langevin model predictions, yk (Eqs. 2.7-2.10), using maximum

likelihood estimation (MLE), to extract the best-fit parameter estimates for γ and κ.

MLE accounts for the expected probability distributions of each experimental value. For
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the AV and PSD, the probability, pk, of measuring each experimental value is given by

the Gamma probability distribution function:

pk(ŷk, yk(γ, κ)) =
ŷηk−1
k e−ŷk/θk

θηkk Γ(ηk)
(2.16)

where ηk is termed the shape parameter, θk = yk/ηk is termed the scale parameter, and

Γ is the gamma function.

For the PSD, the shape parameter is given by the number of bins, ηk = M , which

is notably the same for all values ŷk. For the AV, the shape parameter is generally

ηk = νAV,k/2, where νAV,k counts the degrees of freedom for each value. νAV,k depends

on the number of differences used to calculate the kth value, as well as the dominant

type of noise at that value [99]. It is common to approximate νAV,k from the number of

successive differences between non-overlapping bins of length mk that are present in the

trajectory, νAV,k = (Nx/mk)− 1 [61]; however, this is an underestimate.

For both the PSD and AV, as ηk →∞, the Gamma distribution approaches a normal

(Gaussian) distribution, and least-squares fitting can be used. However, for moderate

values of ηk, the distribution is not normal, and least-squares fitting routines lead to

biased parameter estimates. While it is possible to correct for these biases analytically,

in general, MLE gives more accurate parameter estimates [74].

2.5.1 Maximum likelihood estimation

MLE is based on estimating the parameters, γ̂ and κ̂, that maximize the likelihood

function, L, which is the joint probability of all pk:

L(γ, κ) =

Ny∏
k=1

pk(ŷk, yk(γ, κ)). (2.17)
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In practice, rather than maximizing L, it is more convenient to minimize the cost function,

` ≡ − ln L. Given Eqns. 2.16 and 2.17, the cost function is given by:

`(γ, κ) =

Ny∑
k=1

ηk

[
ŷk

yk(γ, κ)
+ ln(yk)

]
+ const, (2.18)

where the final term is a constant with respect to the parameters. Minimizing ` is

a straightforward optimization problem that can be solved numerically with standard

algorithms (e.g., Nelder-Mead [106]).

2.5.2 Parameter uncertainties

After finding the best-fit parameters, γ̂ and κ̂, an estimate of their uncertainties can

be found from standard approaches: In particular, the likelihood function, L, is assumed

to have a Gaussian form in the vicinity of its maximum. Then, the matrix of second

partial derivatives of L (i.e., the Hessian matrix) are calculated, and inverted to find the

squared uncertainties (i.e., the covariance matrix). Details of this approach can be found

in statistical references, e.g. Ref. [107].

The applicability and robustness of Hessian-based estimates of parameter uncertainty

rests on whether L behaves as a Gaussian over a significant region near (γ̂, κ̂). This ques-

tion is distinct from that of the proper distribution governing the AV or PSD estimates

themselves (i.e, the values ŷk)– the ŷk values, in certain cases, are calculated from a rela-

tively small number of samples, and so are distributed in a highly non-Gaussian manner

(Eq. 2.16), which drives the use of MLE rather than least-squares optimization methods.

However, the MLE cost function is based on a relatively larger number of points (Ny),

and so, by the central limit theorem, is well-modeled as Gaussian. Therefore, in practice,

the Hessian approach typically results in robust estimates of parameter uncertainty.

That said, in some cases, it may not be appropriate to approximate the likelihood
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Figure 2.4: Parameter probability distributions represented as 1 and 2D histograms
from Monte Carlo sampling. The distributions arise from the experimental data shown
in Fig. 2.2B. On the 2D histogram, the contour (black) lines represent the 1,2, and
3 standard deviations. On the 1D histograms, the dotted (black) line represent 1
standard deviation. The blue line represents the best-fit MLE estimate.

function as a Gaussian, e.g., when there are small sample sizes, outliers, or complex

parameter correlations. Such situations can be handled by an alternate, numerical ap-

proach in which a Monte Carlo algorithm is used to sample the parameter space [107].

To carry out Monte Carlo sampling, several ‘walkers’ are initiated around the estimated

parameters. These ‘walkers’ take random steps in parameter space and evaluate the

cost function, which determines whether each step is accepted or rejected. After a pre-

determined number of steps, a histogram of the accepted steps is used to generate an

empirical probability distribution for the parameters (Fig. 2.4). From this distribution,

the confidence intervals can be evaluated. Typically, the standard errors are estimated

as half the difference between the 15.8th and 84.2nd percentiles, which corresponds to

one standard deviation for a Gaussian distribution.
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2.5.3 Fit quality

After fitting, the quality of the fit needs to be judged. There are several means of

judging the quality of the fit, each with its own advantages and disadvantages. The

simplest means is to look at the normalized residuals, ∆k, i.e., the deviations between

the experimental and predicted values:

∆k =
ŷk − yk(γ̂, κ̂)

σy,k
, (2.19)

where σy,k is the standard deviation of the kth experimental value. The normalized

residuals can be plotted to assess systematic deviations between the data and the fit.

If the normalized residuals follow a Gaussian distribution, their variance corresponds

to the reduced chi-squared value, χ2
νy :

χ2
νy =

χ2

νy
=

1

νy

Ny∑
k=1

∆2
k. (2.20)

The degrees of freedom, νy, are estimated as νy = Ny − K, where K is the number of

parameters. A reduced chi-squared value of one is usually considered a ‘good’ fit [107].

A reduced chi-squared value that is greater than one is generally considered a ‘poor’ fit,

whereas a reduced chi-squared value that is less than one is usually considered an overfit.

However, the reduced chi-squared value has a variance that scales as 2/νy, so values based

on small sample sizes or models with a large number of parameters can be misleading.

Instead, the cumulative distribution function of chi-squared-distributed values, F , is

usually a better measure of fit quality (also termed the support for the fit) [75]:

F (χ2, ν) =
1

Γ(νy/2)

∫ χ2/2

0

zνy/2−1 exp(−z)dz. (2.21)
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The support evaluates the probability that repeating the experiment will give a larger

χ2
νy value. It is closely related to the p-value, i.e., 1− F . For a ‘good’ fit, the support is

expected to be close to one.

While the support for the fit evaluates agreement between the experimental and pre-

dicted values, other statistical metrics, such as the Akaike Information Criterion (AIC),

are better at comparing models with different numbers of parameters [108]. The AIC

balances the quality of fit with the number of parameters. It is calculated as

AIC = 2K − 2 ln(L̂). (2.22)

Due to varying constants and sample sizes, individual AIC values are not informative.

Instead, the data are considered to be best described by the model with the lowest AIC

value, AICmin, regardless of the number of parameters, when the difference between two

models’ AIC values is ∆AIC = AIC− AICmin ≥ 4 [108], as applied in Figs. 2.2 and 2.3.

2.6 Tweezepy

Tweezepy is a Python package for thermal motion-based force calibration in SMFS

video-tracking experiments that estimates parameters and their uncertainties from a user-

provided bead trajectory, using MLE, via the PSD or AV. For a detailed explanation

of the package, including expected inputs and outputs, the reader is referred to the

docstrings and usage examples. In this section, we discuss specific implementation choices

and practical considerations for using the package.

To use Tweezepy, the user provides a bead trajectory and sampling frequency to

either the PSD or AV class objects. Given this information, Tweezepy computes the

experimental values and compares them to a user-selected predictive model using MLE.
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After fitting, it reports the parameter estimates and uncertainties, as well as the fit

quality. The experimental and predicted values, as well as the normalized residuals, can

be visualized using the included utility plotting functions.

To compute the experimental PSD, Tweezepy uses Welch’s method (Sec. 2.4.1). By

default, it uses a Hann windowing function with three half-overlapping bins. The signal-

to-noise ratio of the experimental PSD values can be improved by increasing the number

of bins, which helps to visualize the values and slightly reduces the parameter uncertain-

ties. However, there is a trade-off: as the number of bins increases, the low-frequency

resolution decreases. For low corner frequencies, this can lead to a substantial bias in

the parameter estimates (Fig. 2.5). Unfortunately, it is difficult, a priori, to know the

optimal number of bins, so it is up to the user to choose the appropriate number of bins.

This is a distinct drawback of the PSD method.

Tweezepy uses MLE to compare the experimental PSD values to, by default, Eq. 2.7,

which accounts for both aliasing and the finite bandwidth of the detection system. This

function assumes the exposure time is the same as the time between measurements, i.e.,

zero dead-time. As discussed in Section 2.3.2, this assumption is typically good for video-

tracking experiments, but may not be appropriated for detection systems with dead-time

(e.g., photodiodes). When dead-time is present in the measured bead trajectory, the

user can also select an alternative function that uses a closed-form expression based on

Eq. 2.6 that assumes a negligible exposure time [74, 61], i.e., it only accounts for aliasing.

Additionally, the user can select to use a modified version of either function that includes

tracking errors from video-tracking bead localization algorithms (e.g., Eq. 2.8).

To compute the experimental AV, Tweezepy uses the octave-sampled overlapping AV.

It empirically determines the degrees of freedom for each value using the Greenhall algo-

rithm [109], based on the dominant type of power-law noise for each experimental value.

It estimates the dominant type of noise using the Lag1 autocorrelation algorithm [110].
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This algorithm has lower precision for AV values with fewer bins, i.e., for long observation

times when Nx/mk < 32, so Tweezepy uses the previously estimated noise type for those

values. If the algorithm fails to estimate the dominant type of noise, it warns the user

and falls back on using the approximate degrees of freedom based on nonoverlapping

bins, i.e., νAV = Nx/mk− 1. The user can choose to use only the approximate degrees of

freedom by setting the keyword argument ’edf’ to ’approx’. For visualization purposes,

the user can select to plot all or decade-spaced observation times. As discussed in Section

2.4.2, the approximate degrees of freedom give nearly identical parameter estimates but

underestimate the confidence for each AV value, leading to slightly larger parameter er-

rors. After computing the experimental AV values, Tweezepy compares them to Eq. 2.9.

Additionally, the user can select a predefined function that accounts for tracking errors

from the video-tracking bead localization algorithms (Eq. 2.10).

In addition to its predefined functions, Tweezepy also accepts user-defined functions

to compare to the experimental values. If these functions include additional fitting pa-

rameters, it is recommended that they are compared to a function without the additional

parameters using the AIC to avoid overfitting (Sec. 2.5.3). Additionally, the normalized

residuals can be plotted and visualized to detect deviations between the data and theo-

retical values. Typically, it is easier to visualize the residuals of the AV compared to the

PSD because it has fewer values.

Evaluating the AIC can also be useful for determining whether one or more parameters

is poorly constrained during the fit. As discussed later (Sec. 2.7), in some cases, the

sampling frequency is not fast enough to resolve the purely diffusive motion of the bead,

causing γ to be poorly constrained during fitting. However, κ can usually still be reliably

estimated by fixing γ to a known value. Tweezepy contains keyword arguments for fixing

any of the parameters for its predefined functions during the fit. Ideally, the known

γ value should be estimated from the same bead at a lower force, and adjusted for
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surface effects using Faxen’s correction [111]. To determine whether fixing a parameter

is necessary, the AIC of the fits with and without fixing are compared, and the fit with

the lowest AIC value is used.

When sources of parasitic noise are present but cannot be properly described by the

selected model analytically, it is recommended that the user subtract a reference spectrum

or bandpass filter the measured data. Alternatively, the user can select upper and lower

cutoff frequencies (observation times) to compare the function to a limited region of the

data using the keyword argument ‘cutoffs’.

To calculate parameter uncertainties, Tweezepy evaluates and inverts the expected

Hessian (Sec. 2.5.2). To evaluate the Hessian, it uses the Autograd Python package.

Autograd uses automatic differentiation to evaluate derivatives by repeatedly applying

the chain rule to elementary operations. This speeds up code and reduces numerical

precision errors that can occur with numerical and symbolic differentiation [112, 113]. In

addition to calculating and inverting the Hessian, Tweezepy contains an optional method

for robust uncertainty estimates via Monte Carlo sampling (Sec. 2.5.1). This method uses

the Emcee Python package [114] to carry out Monte Carlo sampling. In our hands, this

more robust, but slower (with computation time on the order of 10 s), method produces

near-identical uncertainty estimates to the faster (≈ 10 ms) method that inverts the

Hessian.

In addition to the packages mentioned above, Tweezepy makes use of the standard

python library [115], including NumPy [116], SciPy [117], and Numba [118]. All the

package dependencies are noted in the requirements and setup files for easy installation.
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2.7 Results

To evaluate Tweezepy, we sought to benchmark its fit results against known param-

eter values. Following the example of Ref. [61], we simulated bead trajectories using

Nx = 4096, fs = 100 Hz, and γ = 1.0× 10−5 ps/nN (a typical drag coefficient for a

one micron spherical bead in water), and varied the corner frequency, fc, logarithmically

from 0.2 Hz to 100 Hz, giving spring constants κ that ranged from 1.4× 10−4 pN/nm to

6.8× 10−3 pN/nm. To carry out the simulations, we recast Eq. 2.2 as an equation of

probability flux and iteratively generated successive bead positions. To mimic the effects

of the camera exposure time, we used a time step of δt = 1000/fs, split the trajectory

into bins of 1000 points, and took the average of each bins to generate a downsampled

trajectory. For each corner frequency, we simulated 1000 trajectories and used both cal-

ibration methods in Tweezepy to estimate the parameters and their uncertainties. To

estimate bias, we calculated the ratio of the median parameter estimates and true values.

To estimate the error, we calculated the ratio of the median parameter uncertainties and

true values.

For nearly all corner frequencies, the bias for γ and κ estimates is within±1% (Fig. 2.5

A and C magenta box). There is an increase in the bias and error for κ estimates at lower

corner frequencies because, for the simulated length of the trajectory, the bead motion

is mostly unconstrained by the trap. As a result, the κ estimate is poorly constrained

during fitting. This effect is slightly worse for the PSD because binning decreases its low

frequency resolution more than the AV. In practice, this bias can usually be reduced by

increasing the length of the trajectory.

At high corner frequencies, fc ' fs/8, there is a minimum in the error, after which,

the error and bias increase for both parameters (Fig. 2.5 C and D), consistent with

previous findings [74, 61]. This is because the sampling frequency is not fast enough to

35



Calibrating Forces in Single-molecule Video-tracking Experiments Chapter 2

0.950

0.975

1.000

1.025

1.050

B
ia

s (
|

/
|)

A

0.950

0.975

1.000

1.025

1.050

B
ia

s (
|

/
|)

C

AV
PSD
AV-
PSD-

10 1 100 101 102

fc (Hz)

10 2

10 1

Er
ro

r (
/

)

B

10 1 100 101 102

fc (Hz)

10 2

10 1

Er
ro

r (
/

)

D

Figure 2.5: Bias and error for the AV and PSD methods in Tweezepy. Each point
represents the median of 1000 simulations; each simulation contained 4096 bead po-
sitions with a constant drag coefficient, γ = 1× 10−5 ps/N, and sampling frequency,
fs = 100 Hz. The corner frequency was varied logarithmically between 0.2 Hz to
100 Hz. The blue and green points represent two-parameter AV and PSD method fit
results. The orange and red points represent fixed gamma AV and PSD method fit
results. In the bias plots, the magenta box represents the ±1% bias region.
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resolve the unconstrained diffusive bead motion. As a result, the γ estimate is poorly

constrained during fitting, which leads to poor estimates for both parameters. In practice,

for force calibration in video-tracking experiments, it is usually advantageous to collect

bead trajectories at the highest available sampling frequency.

It is worth noting that the authors in Ref. [79] recommend using a low-pass-corrected

standard variance calibration method [72] to avoid the small bias at high corner frequen-

cies with the PSD and AV. However, we note that their implementation of this alternative

method fixes γ to a known value during fitting. We find that fixing γ with the PSD and

AV similarly removes the increased bias and error at high corner frequencies (Fig. 2.5 C

and D). This suggests that, under optimal conditions, all three methods can accurately

estimate parameters.

2.8 Conclusions

In this article, we have reviewed robust thermal motion-based force calibration in

SMFS experiments using the PSD and AV, and discussed implementing them compu-

tationally into a Python package, Tweezepy, that is freely available on Github and the

Python package index.

In designing Tweezepy, our goal was to make it as robust, versatile, and user-friendly

as possible. It uses MLE to estimate parameters via the PSD or AV, and goes beyond

previous computational implementations by calculating the empirical degrees of freedom

for the overlapping AV and determining parameter uncertainties from MLE, either by

inverting the Hessian or, optionally, via Monte Carlo sampling. It includes several pre-

defined closed-form expressions that account for the most common biases and parasitic

noise in SMFS video-tracking experiments. Yet, it also accepts user-defined functions, so

it can be adapted to account for additional sources of noise or applied to other problems
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that rely on fitting the PSD or AV of a bead trajectory, e.g., torque calibration [100].

Lastly, Tweezepy uses sensible default options to make it easy-to-use, only requiring a few

straightforward lines of code, with computation times on the order of 10 ms. Our hope

is that Tweezepy can serve as a useful tool to improve and standardize force calibration

across different SMFS research groups, instruments, and experiments.
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Chapter 3

Surface-induced Effects of Polymer

Elasticity

3.1 Preface

My original goal was to characterize the low-force entropic elastic response of the

NFLt polyproteins. During these early experiments, I often encountered short (. 0.5 µm)

polyproteins due the polydispersity of the samples. These shorter polymers often exhib-

ited an anomalous decrease in the powerlaw scaling metric of the force-extension response

at low forces. Similar behavior had been observed with other polymers. Hence, to facili-

tate my experiments on the NFLt polyproteins, I sought to understand these experimental

biases using other well-characterized polymers.

The content of this chapter previously appeared in the Journal of Chemical Physics

[119]. It is reproduced here with permission from AIP publishing.
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3.2 Introduction

The mechanical manipulation of single molecules permits direct insight into polymeric

elasticity and, in turn, polymer structure. This methodology has proven quite powerful

and broadly applicable, having given insights into the structure of long biopolymers of

every type (proteins, polysaccharides, nucleic acids), along with a variety of synthetic

polymers. For example, single-molecule stretching has enabled understanding of entropic

elastic effects in muscles[120] and permitted the study of solution electrostatic effects in

nucleic acids[121]. Theory plays a central role in these advances, particularly as statis-

tical mechanical methods are capable of predicting polymeric force-extension behaviors.

Such approaches, in combination with experimental abilities to precisely measure and

control force and polymer extension, allow direct, statistically significant comparisons

between the model and data, permitting confident validation/negation of polymer struc-

tural understanding.

The majority of prior experimental and theoretical work has focused on relatively

high-force elastic behavior, with less emphasis placed on understanding low-force elas-

ticity. Low forces are those that permit the chain to loop back on itself, corresponding

to forces less than kBT/`, where ` is the chain’s Kuhn length, and kBT is the thermal

energy[40]. For most flexible biopolymers (e.g. single-stranded nucleic acids, disordered

proteins, polysaccharides), ` ranges from one to ten nanometers, so typical values of

kBT/` are 0.4 to 4 pN. Such small forces can be reliably controlled by magnetic-tweezer

manipulation methods[39, 40], and are relevant to most biological and biomaterial situ-

ations where polymers are frequently under little to no tension.

In the low force regime, polymers adopt a random walk structure on short length

scales, and models based on the classic scaling approaches of polymer physics become

appropriate. The key physical metric defining such behavior is typically a power-law
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Figure 3.1: (A) Sketch of magnetic tweezer experimental geometry: A paramagnetic
bead subject to a field B oriented in x̂, but with a gradient in ẑ, feels a force F ẑ,
stretching the attached polymer. (B) Typical experimental measurement of fluctuat-
ing bead position for three representative constant forces, 12 pN (blue; 895 points),
1.6 pN (orange; 2175 points) and 0.42 pN (green; 7743 points), on a tethered PEG
chain. (C) Black dots: absolute extension, 〈Z〉, vs. F curve for the same PEG chain as
in panel B. Colored lines indicate estimates of local power-law slope, γ, resulting from
applying Eq. 3.1b to the measured fluctuations for the three representative forces.
The gray line is a fit of the worm-like chain elastic function to the high force (F > 4
pN) data, returning Lc = 2900 nm and lp = 0.6 nm. (D) Full curve of γ vs. F for the
same PEG tether, showing a downturn for forces below F ∗ = 0.6 pN.
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exponent. Here, the relevant metric is the Pincus exponent [41], γ ≈ 2/3, which dictates

that the polymer extension grows as fγ with force, f , for a self-avoiding chain in the

regime f . kBT/`. Direct measurement of γ in a single-molecule experiment has been

accomplished [122]; however, there is not a full understanding of the experimental con-

ditions and their potential effects in biasing estimates of γ. One key issue is the effect

of surfaces. Surfaces are an unavoidable component of magnetic tweezer experiments,

as the polymer under study must be attached at both ends to mechanically-rigid points

(typically a glass surface and paramagnetic bead; see Fig. 3.1A).

We explore the effect of surfaces in biasing experimental estimates of γ. Our focus

is on a method of estimating γ from single-polymer extension fluctuations[123, 40]. We

show that this method leads, at very low forces, to an unexpected decrease in the γ

estimate in measurements of both Hyaluronic Acid (HA) and Polyethylene glycol (PEG)

chains. To explain this decrease, we formulate a model permitting an estimate of the

effect of both surfaces in restricting the available configurations of a chain under tension.

The calculation replicates the observed low-force decrease in γ, and predicts that the

decrease begins when the external force is ≈ 3kBT/Rg, where Rg is the chain’s radius

of gyration. This prediction is validated through comparison with the PEG and HA

data. We show that estimates of Rg based on the decrease in γ are consistent with those

generated from knowledge of microscopic polymer parameters, themselves gleaned from

other parts of the force-extension curve.

3.3 Fluctuation estimates of polymer elasticity

Resolving power-law exponents by direct fitting to sections of extension/force curves

is difficult, as it is not clear which points are fully within a given regime, and which

are affected by neighboring regimes. Further, in the low-force regime, absolute extension
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becomes very small, leading to sensitivity to systematic errors based on, e.g., the precise

tethering position of the polymer to the probe [124, 125]. An alternate approach is

based on analysis of the fluctuations in polymer extension[123, 40]. The fluctuation

based method is an application of linear response theory [126], and is discussed in detail

elsewhere [40]. We consider a force oriented in the ẑ direction that leads to a mean

extension 〈Z〉 of the chain (see Fig. 3.1A). Assuming a power law elastic relation 〈Z〉 ∼

fγ, the effective exponent in the vicinity of force f can be estimated from

γ(f) =
fvar(Z)F
kBT 〈Z〉F

(3.1a)

=
var(Z)F
var(X)F

(3.1b)

where var indicates the variance of a parameter about its mean, and Eq. 3.1b adjusts

Eq. 3.1a by substituting the pendulum physics result for lateral thermal fluctuations,

var(X) = kBT 〈Z〉 /F , as is commonly applied for magnetic tweezer experiments [89].

We use the lateral fluctuations in the direction of the magnetic field (here, x̂; see Fig. 3.1)

to avoid the significant confounding effect of extra fluctuations due to bead rotational

motion in ŷ.

Eq. 3.1b does not rely on knowledge of the mean extension of the chain. Thus,

the resulting exponent estimate is independent of that found from the force-extension

curve. Further, measurement of var(Z) and var(X) is robust, since it relies on sensing

large changes in relative position of the bead, which is insensitive to the systematic

errors in measuring 〈Z〉. Experimental application of Eq. 3.1b results in a fluctuation

estimate of slope that matches the direct force-extension curve at moderate and high

forces (Fig. 3.1C, D). The estimated γ is consistent with 2/3 at moderate force before

decreasing as the chain extension approaches its contour length.

At lower forces, the fluctuation estimate of γ clearly decreases; however, it is difficult
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to judge if this downturn agrees with the direct force-extension curve. Further, this

downturn does not match simple theoretical expectations at low force, which predict γ

would increase from 2/3 to 1 in the lowest force linear-elastic regime[127, 40].

3.4 Model of polymer/surface interactions

The major goal of this chapter is to explain the low force downturn in γ observed

in Fig. 3.1D. We postulate it is caused by polymer/surface interactions, particularly

the exclusion of the monomers from the volume occupied by the two tethering surfaces.

Indeed, in this situation, at very low forces, one expects the chain extension to plateau

near Rg, leading to an incompliant state that would decrease γ [128]. However, in the

experimental data, the γ downturn is clear at extensions much larger than Rg. For

example, for the PEG chain shown in Fig. 3.1, the downturn is clear at 〈Z〉 ≈ 300 nm,

while we estimate this chain has a much smaller value of Rg ≈ 43 nm. The Rg estimate

is found from the best-fit contour length, L = 2900 nm, and using prior estimates of

0.278 nm contour length per PEG monomer [129], the monomer molecular weight of 44

Da, and the relation of Rg to PEG molecular weight Mw, Rg = 0.0215M0.583
w , found from

light scattering measurements [130].

To test whether polymer/surface interactions can explain the γ downturn, we for-

mulate a model of the surface’s effect on the polymer configurational distribution. We

use the image principle to estimate the number of allowed configurations of an ideal

random-walk chain in the presence of a surface [131, 132, 133]. The experimental chains

are non-ideal, as shown by the swollen-chain (γ ≈ 2/3) behavior at moderate elasticity

(Fig. 3.1); however, swollen chain behavior is significantly more difficult to analyze. We

thus focus on a tractable ideal-chain model, with the goal of testing whether the surface

effect can indeed decrease γ at relatively large chain extensions.
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Figure 3.2: (A) Dimensionless extension vs. force relation computed from the model
for an ideal chain tethered between two parallel planar surfaces (solid line), compared
with that of an unconstrained entropic spring (dashed line). (B) γ vs. dimension-
less force computed from the model using Eq. 3.1b (solid line), compared with the
unconstrained entropic spring expectation γ = 1 (dashed line). In both panels, the
coordinates at which γ = 0.9 are emphasized with gray dashed lines. Inset, panel (B):
γ vs. absolute force for chains with (right to left) Rg = 10, 20, 40 and 80 nm.
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When applied to a single excluded surface[131], the image method gives the statistical

weight (proportional to the number of allowed configurations), G1S(~R, ~R′), of an ideal

chain tethered at position ~R to a planar surface (taken to be the z = 0 plane), and whose

opposite end is free and located at ~R′:

G1S(~R, ~R′) = e
− (X−X′)2

4R2
g e

− (Y−Y ′)2
4R2
g

(
e
− (Z−Z′)2

4R2
g − e−

(Z+Z′)2
4R2
g

)
. (3.2)

Here, the subtraction removes forbidden configurations (i.e. those that would in-

tersect with the surface) from the ensemble of free chains (i.e. the permitted chain

configurations in the absence of the surface). The Gaussian form of Eq. 3.2 enforces

an infinitely-extensible polymer; this is unphysical, but consistent with our focus on

low-force, low-extension behavior. It does lead to disagreement with experiment in the

high-force regime, when the finite extension of the actual polymer is approached.

We rewrite Eq. 3.2 as G1S(~R, ~R′) = Gfree(~R, ~R
′)(1 − p1S(~R, ~R′)), where Gfree is the

statistical weight of an unconstrained chain, and p1S is the probability that a member of

the unconstrained ensemble will follow a forbidden path, given by

p1S(~R, ~R′) = e−ZZ
′/R2

g . (3.3)

We must account for two surfaces, since, in the experiment, the chain is tethered to

both a planar surface and a spherical bead. Since the bead radius (≈ 525 nm) is much

larger than Rg, we treat it as a second planar surface, parallel to the first. This situation

is entirely symmetric with respect to the two surfaces, which means that p1S is the same

for each surface individually. We then posit that (1 − p1S)2 is a good estimate for the

probability that a member of the unconstrained ensemble will not intersect either surface.

This estimate assumes there is no correlation in the chance of intersection between the
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two surfaces. In reality, there is likely some correlation– particularly, the probabilities

are likely anti-correlated, since a path that loops back to intersect one surface has less

contour available to reach the other surface. However, we assume here that this is a small

effect.

The statistical weight in the presence of both surfaces is then

G2S(~R, ~R′) = GFree(~R, ~R
′)
(

1− p1S(~R, ~R′)
)2

. (3.4)

To apply the image method to a tethered polymer, the terminus is fixed at a small

distance, d, from the tethering surface[131]; this accounts for the unique chemical ability

of the functional group to bind to the surface in a position disallowed to the monomers.

So, for surface separation Z, the end monomers are located at ~R1 = (0, 0, d) and ~R2 =

(X, Y, Z − d). Further, we include the effect of force by weighting each configuration

by the Boltzmann factor of the work done by the system, efZ/kBT . Thus, the partition

function for the system is

Z =

∫ ∞
−∞

dX

∫ ∞
−∞

dY

∫ ∞
0

dZefZ/kBTG2S(~R1, ~R2), (3.5)

where the bounds of the integrals reflect the bead’s ability to move laterally, but its

inability to pass through the glass surface. While Eq. 3.5 can be analytically integrated,

the result is quite complex. In practice, we work with an approximate form of Z, taken

in the d/RG � 1 limit, where the dependence on d drops out of the results.

We calculate ensemble average quantities of the parameters of interest, 〈Z〉, 〈Z2〉,

and 〈X2〉, from the partition function, Eq. 3.5, in the small d limit. We set var(Z) =

〈Z2〉 − 〈Z〉2. Note that var(X) = 〈X2〉 = 2R2
g for all forces. The model prediction for γ

is found as the ratio of variances, per Eq. 3.1b.
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3.5 Results and comparison to data

The model produces the expected entropic-spring behavior, 〈Z〉 = 2R2
gF/kBT , for an

ideal chain in the high force limit (Fig. 3.2A). Similarly, in Fig. 3.2B, we see that the

model’s estimate of the variance ratio results in the expected value, γ = 1, in the high

force limit. For an unconstrained ideal chain, linear behavior should persist to low forces

(dashed lines in Fig. 3.2). In contrast, the model prediction for γ shows a downturn

(Fig. 3.2B), in qualitative agreement with experiment (Fig. 3.1D). At a similar force,

the force-extension curves show a transition to a regime where 〈Z〉 is independent of

force. By approximating the partition function, we find the predicted low-force limiting

values: limF→0〈Z〉 = 4Rg/
√
π ≈ 2.26Rg and limF→0 γ = 3 − (8/π) ≈ 0.45. The latter

estimate is similar to the variance ratio estimated from simulations of self-avoiding chains

constrained by tethering to a single surface [134].

The calculated surface-induced decrease in γ occurs at a force that scales with kBT/Rg,

as suggested based on inspection of the form of the partition function. The dependence

on Rg is made explicit in the inset of Fig. 3.2, which shows γ versus absolute F (in pN)

for a range of Rg values. As shown, the downturn moves to higher forces as Rg decreases.

While the location of the predicted γ downturn scales with kBT/Rg, the actual pre-

dicted location has a greater-than-unity multiplicative prefactor in both force and length.

We judge the downturn as having begun when the γ value decreases by about 10% (this

is when it is experimentally visible, as shown by the placement of F ∗ in Fig.3.1). The

model predicts that, when γ = 0.9, the force is 2.9kBT/Rg, and the extension is 6.5Rg;

these values are indicated by the gray lines in Fig. 3.2.

To gain more insight into the actual location of the downturn, and to confirm exper-

imentally whether kBT/Rg is the controlling force scale for the γ downturn, we turn to

a broad set of single-molecule data. In particular, we analyzed 44 force-extension curves
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Figure 3.3: Experimental correlation of F ∗ with kBT/Rg for single polymers of HA
(blue stars) and PEG (orange triangles). F ∗ is estimated from the low-force down-
turn in the fluctuation estimate of γ (see Fig. 3.1D), and Rg is estimated from the
parameters extracted from high-force Worm-like Chain (WLC) fits (see Fig. 3.1C),
with ` = 2lp and N = L0/`. The HA and PEG data show better overlap when using
self-avoiding estimates of Rg (main plot) rather than ideal estimates (inset). The
self-avoiding data is well-fit by a line passing through the origin, with slope 7.4± 0.3.
Error bars reflect the discrete sampling of force and/or an intrinsic 5% uncertainty in
force calibration.
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acquired from single chains of PEG, and 43 curves acquired from single chains of HA

(details in Appendix C, and an example HA data set, Fig. ). For the polyelectrolyte HA,

data was acquired over a range of salt concentrations, which tunes the effective Kuhn

length of the chain[135]. We apply Eq. 3.1b to the data, generating a γ vs. F curve, then

estimate F ∗ from the observed low-force downturn (as in Fig. 3.1D).

We separately estimate the chain Kuhn length ` and number of Kuhn monomers

N = L0/` by fitting the high-force portion of the 〈Z〉 vs. F curve to the WLC elasticity

function[136, 137] (see Fig. 3.1C), and setting ` = 2lp, where lp is the best-fit persistence

length. Across all chains, the PEG fits gave 〈`〉 = 1.3 nm with a standard deviation

of 0.2 nm, and L0 ranging from 940 nm to 6300 nm; the HA data had ` ranging from

7.6 nm to 17.8 nm, and L0 ranging from 800 nm to 5400 nm. The observed variation of

the contour length is consistent with the polydisperse samples that were used.

Both PEG and HA form higher-order structures due to hydrogen bonding between

neighboring monomers, and/or between monomers and water [138, 129, 125]. High forces

have been shown to disrupt these interactions [139, 129, 125], which leads to deviations

from WLC behavior, and can lead to elasticity-based estimates of lp that are smaller

than lp in the absence of force. This issue is minimized here: those prior observations are

based on AFM studies at a force scale of ≈ 100 pN . Here, our lp estimates are based on

fits at a much lower force scale (1 pN to 10 pN), where force-induced structural changes

are a minor effect. Thus, we expect our WLC fit parameters to be a good estimate of

low-force (< 1 pN) polymer structure.

We find that, in the experimental data, kBT/Rg indeed controls F ∗, with a smooth

dependence across both HA and PEG data sets seen if Rg is estimated from a scaling

relation as Rg = `N0.588. Using this self-avoiding approximation leads to substantial over-

lap between the HA and PEG data, with F ∗ linearly increasing with kBT/Rg (Fig. 3.3).

Using the ideal relation, Rg = `N1/2, results in little overlap between the PEG and HA
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data (inset, Fig. 3.3).

To more quantitatively compare data and model, we focus on PEG, for which De-

vanand and Selser (DS) [130] provide a relation between chain molecular weight and

gyration radius. We calculate molecular weight for each PEG chain from the best-fit L0

value, as described above, and apply their formula to find Rg,DS; the resulting values

are tightly correlated with the scaling estimate (see Fig. C.2), but have the advantage of

using a known numerical prefactor. Applying this gyration radius estimate, we then cal-

culate the value of the rescaled force and length at downturn across all 44 PEG curves,

finding Mean(F ∗Rg,DS/kBT ) = 3.3 ± 1.3 and Mean(〈Z(F ∗)〉/Rg,DS) = 4.0 ± 1.4 (the

weighted mean is used for F ∗, and errors are given as the standard deviation). The large

variation in each value across the population occurs because our ability to resolve F ∗

from the PEG data is somewhat error prone (as seen in Fig. 3.3) due to low-force noise

in γ. However, the greater-than-unity value of both parameters qualititatively confirms

the model predictions, and quantitatively match well in the case of F ∗, where the model

predicted F ∗Rg/kBT = 2.9. The match is less good for rescaled length, where the model

predicted 〈Z(F ∗)〉/Rg = 6.5. This could be due to deficiencies in the model (notably

its focus on ideal, rather than more realistic swollen chains), or due to aforementioned

systematic experimental issues in estimation of small absolute extensions.

3.6 Discussion

Our results confirm and illuminate the initial hypothesis: At low stretching forces,

polymer extensional fluctuations become cut off by exclusion from the tethering surface,

decreasing the variance of the extensional distribution, and leading to the downturn in

γ seen in Fig. 3.1D. Our image-based model of the effect of the surface captures this

behavior (Fig. 3.2B), and analysis of the model predicts that the force, F ∗, at which γ
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decreases by 10% is given by F ∗ ≈ 3kBT/Rg. From a scaling viewpoint, experimental

validation is demonstrated by the linear variation of the measured force at downturn,

F ∗, with independent experimental estimates of kBT/Rg for two types of chains (HA and

PEG), and over a wide range of contour and Kuhn lengths (Fig. 3.3). Quantitatively, our

measurements of PEG, for which Rg can be reliably independently estimated, indicate

F ∗Rg/kBT ≈ 3.4, in relatively good agreement with the model predictions.

Certain prior studies [127, 40] predict that, in the absence of a surface, the compliance

of a self-avoiding chain would increase as tension decreases through kBT/Rg. The ob-

served γ downturn, corresponding to a decrease in chain compliance, occurs at the same

scale, obscuring the predicted compliance-increase effect. Our results are consistent with

the work of Neumann [128], who discussed a plateau 〈Z〉 ≈ Rg as F → 0, as occurs in

our calculation (Fig. 3.2A). But, we do not clearly observe that plateau in experiment

(Fig. 3.1C), due to the small values of 〈Z〉, and potentially due to confounding system-

atic errors. In contrast, the measured transition in γ is more clear (Fig. 3.1D), indicating

that, in the low-force limit, variance based metrics are more sensitive probes of elasticity

than absolute extension.

The transition measured here joins a variety of other elastic transitions that occur

when stretching single polymer chains. These include the transition from random-walk

to straight chain behavior[127, 40], at F ∼ kBT/` ; the transition from WLC to FJC

behavior that occurs at f ∼ kBT/b, where b is the bond length [140]; and the emergence

of excluded volume for rod-like chains, occurring below f ∼ kBTv/`
4, where v is the

monomer-level excluded volume parameter [141, 142]. A major difference of the present

transition is its sensitivity to the chain contour length: the other transitions only depend

on intensive, microscopic polymer parameters such as Kuhn or bond length. Thus, given

two chains of identical composition, but different lengths, all transitions except the γ

downturn will occur at the same forces. Indeed, this is directly demonstrated here in our
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analysis of experimental data (Fig. 3.3).

A remaining puzzle is to understand the behavior of γ in the zero-force limit. The

model presented here relies on both linear-response theory and the pendulum approxi-

mation to calculate γ through the application of Eq. 3.1b, and predicts a plateau in γ in

the zero-force limit (Fig. 3.2B). In preliminary work, we have instead explored directly

applying Eq. 3.1a, which still is a linear-response result, but does not make the pendulum

approximation. In that case, we still find a downturn in γ below kBT/Rg. However, when

using Eq. 3.1a, γ decreases continuously at low forces, rather than reaching a plateau.

This disagreement points to an issue with the pendulum approximation in the presence

of a surface and at low forces; more work is required to understand this aspect.

3.7 Conclusion

We have shown that fluctuation-based estimates of polymer elasticity are sensitive to

surface effects for forces below kBT/Rg. An elastic transition at that scale was indeed

anticipated by prior work[127, 40]; however, this work clarifies that, in the presence

of surfaces, the experimental signature of this transition is a decrease, rather than an

increase, in chain compliance. The ability to observe this transition in a magnetic tweezer

experiment means it is possible to independently estimate both Rg (from F ∗), as well

as N and ` (from high-force fitting) from a single measured force-extension curve. This

broadens the capabilities of single-molecule manipulation instruments.
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Chapter 4

Glassy Dynamics and Memory

Effects in an IDR Construct

4.1 Preface

Given that IDRs are generally thought to behave like a random walk polymer in

a good solvent [12], I did not expect the NFLt polyproteins to exhibit any significant

conformational changes during my experiments. Hence, my original goal was to carry out

force-extension measurements on the NFLt polyproteins and characterize their low-force

entropic elastic response. Collecting a force-extension curve consists of repeatedly moving

the magnets away (or towards) the flow cell, pausing at a magnet position for some time,

and collecting a bead trajectory from which both the extension and force is determined.

Typically, at a constant magnet position, the bead-tether system is assumed to be in

a stationary state - i.e., the extension is independent of time; however, as I carefully

analyzed my data, I noticed that the extension was changing over time. First, I performed

several control experiments on other polymers to make sure the extension changes were

not due to instrumental drift. Next, I tried several different passivation strategies and
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carefully analyzed the positions of the bead to ensure the polyproteins were not adhering

to the the bead or the flow cell. Having convinced myself that the extension changes were

not experimental artifacts, I designed a force jump protocol with better programmatic

control of the magnet position to characterize these extension changes.

The conformational dynamics of small single domain proteins typically exhibit an

exponential time dependence, so I tried fitting the extension changes to an exponential

function, but the fits were not robust. Eventually, I tried plotting the data on semiloga-

rithmic and log-log axis, which revealed that the extension changes followed a remarkably

slow logarithmic time dependence. Looking over my data, it was as if I knocked a wrench

off a table, went off to grab a coffee, and came back to find that it had yet to hit the

ground.

The content of this chapter previously appeared in Physical Review Letters [143]. It

is reproduced here with the permission of the American Physical Society.

4.2 Introduction

The conformational changes of globular, folded proteins can exhibit glass-like kinetics,

typically measured as nonexponential relaxations [7, 144, 145, 146, 147]. This behavior is

associated with the roughness of the conformational energy landscape, i.e., the presence

of multiple local free energy minima that are separated by appreciable activation barriers

[148]. Based on studies of random-sequence biopolymers, the heights of the barriers are

usually related to either the difficulty in rearranging connected residues within the dense

protein core (‘topological frustration’), or to kinetic trapping by nonnative contacts (‘en-

ergetic frustration’), as enabled by the nonspecific nature of the dominant hydrophobic

interactions [4].

Unlike globular proteins, intrinsically disordered protein regions (IDRs) exhibit a high
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degree of conformational freedom in their native state [11]. IDRs generally are enriched

in hydrophilic and charged residues [11], permitting them to assume a dynamic ensemble

of structures analogous to those of a random-walk polymer in good solvent, though

with the typical addition of some secondary-structure formation [28] or other forms of

weak attraction between residues [36, 56, 54, 149]. These structures and interactions are

thought to give IDRs a rough, flat, energy landscape [51, 14]. However, because IDRs

have fewer hydrophobic residues than globular proteins, and no dense core, the barriers

on this landscape are small; thus, IDRs would not be expected to exhibit significant

frustration, nor, in turn, glass-like kinetics.

Yet, here we show that single molecules of a model disordered protein construct,

consisting of multiple repeats of the intrinsically disordered neurofilament-low (NFL)

protein tail region [150], exhibit glass-like behavior in the form of slow, logarithmic

relaxations in response to a one-step change in applied tension. Further, when subject to

a two-step force-change protocol, the construct displays a nonmonotonic change in the

polymers’ extension, a glassy memory effect termed the ‘Kovacs hump’ [151, 152]. Based

on work on other glassy systems [60, 153], we attribute these behaviors to the existence of

multiple, independent local structure-forming processes with widely-varying dynamics.

We corroborate this picture by showing that the force-dependence of the logarithmic

relaxation is well-described by a model that couples an ensemble of parallel structuring

processes to Bell-Zhurkov mechanochemistry [46, 45]. Overall, this work demonstrates

glassy behavior in this IDR construct is due to a heterogeneous, distributed mechanism

different from the frustration-based ones of certain globular proteins.
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4.3 Methods

IDR purification and polymer synthesis are described in detail in the Appendix B.

In short, single NFL IDRs, each containing 168 amino acids, were modified to carry

cysteine residues at each terminus, recombinantly expressed, and purified. These IDRs

f

L

NFL tail

disulfide
linkage

Magnets

Polymer

a)

b) c)

Figure 4.1: (a) Experimental setup: A polymer consisting of multiple NFL IDRs
joined by disulfide bonds is stretched with a force f while its extension L is tracked.
Stuck beads are tracked to remove drift. (b) Example force-quench experiment on
a single polymer: at t = 0, the force was decreased from f1 = 50 to f2 = 9 pN,
resulting in a rapid elastic response followed by a slow logarithmic relaxation (inset).
(c) Typical force dependence of the logarithmic relaxation after quench from f1 = 50
pN, plotted as the compaction, ∆L ≡ L(t)−L(t0), after a reference time t0 = 1 s. At
higher f2 (labeled, in pN), the relaxation slows due to hindering of chain shortening by
tension. Data points and error bars are the mean and standard error of the mean after
logarithmic binning in time (error bars are smaller than points); lines are best-fits to
b log (t/t0).
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were polymerized together to form a linear polymer by inducing disulfide bonds between

the cysteines. The polymers were terminally labeled with azide and biotin, respectively,

allowing specific attachment between a functionalized glass surface and a 2.8-µm-diameter

magnetic bead; this enabled stretching experiments [Fig. 4.1(a)].

Experiments were carried out with a custom-built magnetic tweezer setup [98, 154],

at T = 20 ◦C, in a pH 7 buffer containing 20 mM 2-(N-morpholino)ethanesulfonic acid

(MES), 10 mM NaCl, and 0.05% Tween-20. The stretching force was set by adjusting

the distance between a pair of movable magnets and the flow cell surface [Fig. 4.1(a)].

The polymers’ end-to-end extension was measured by analyzing the image of the bead

[98, 155], as captured by a CMOS camera operating at 400 Hz. Instrumental drift was

eliminated by simultaneously tracking reference beads stuck to the glass surface, and sub-

tracting their height from that of the experimental beads [Fig. 4.1(a)]; the success of this

procedure was demonstrated through control measurements of DNA tethers (Fig. C.4).

The stretching force was estimated by analyzing lateral bead fluctuations [61], with a

typical uncertainty of . 5%.

For each polymer, the number of monomer tails, N , was estimated from the polymer

(Lp) and monomer (Lm ≈ 64 nm) contour length, N = Lp/Lm ≈ 2–29, by assuming

a contour length per amino acid of 0.38 nm and 168 amino acids per monomer. The

polymers’ contour lengths were estimated from their high force (& 50 pN) extension.

After accounting for N , the polymers’ polydispersity did not affect our measurements.

During force-quench experiments, the force was changed from f1 to f2 < f1 by moving

the magnets away from the flow cell surface. The motion of the magnets lasted ≈ 0.25 s;

we only analyzed extension changes that occur after that, particularly setting the zero of

time, t = 0, as the point at which magnet motion stops. During the motion, the polymer

extension changed rapidly due to its entropic elasticity [Fig. 4.1(b)]. The time scale of

elastic relaxation is expected to be ≈ 10 ms, as judged by estimating either the Rouse
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time [47] of the polymer or the relaxation time associated with the drag of the bead;

thus, elastic relaxation is unrelated to the observed long timescale extension changes.

The relaxation data and analysis code have been made available in a public repository.

4.4 Logarithmic relaxations

Following a force quench, the polymer extension, L, decreased logarithmically in time

[Fig. 4.1(b), inset]. As shown in Fig. C.5, logarithmic relaxations have been observed to

last for up to 3 decades in time, although our analysis focused on 2-decade relaxations

[Fig. 4.1(c)]. During relaxation, the extension change was smooth without any detectable

discrete transitions of 10 nm or larger, suggesting that the underlying individual com-

paction events each contribute a length change of order 1 nm.

We studied the force-dependence of the relaxation by keeping f1 constant, typically

50–70 pN, and quenching to different values of f2. For all polymers, the relaxation

was logarithmic for all f2, with the rate becoming faster for smaller f2 [Fig. 4.1(c)], as

expected for a structure-forming process that is hindered by an opposing force [46, 45].

All relaxations were well-fit by the relation L(t) = b log (t/t0), with t0 being an arbitrary

reference point chosen throughout to be t0 = 1 s, and b corresponding to the log-slope of

the relaxation.

4.5 Heterogeneity

Recent work has suggested there are multiple classes of logarithmically-relaxing sys-

tems [60, 153]. Among these, Amir et al. [60] identified a mechanism in which the system

is highly heterogeneous, consisting of multiple modes that relax independently and with

a broad spectrum of timescales. Lahini et al. [153] showed that this mode structure is
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Figure 4.2: (a) Typical two-step experiment: The force was initially f1 = 60 pN, then
held at f2 = 7 pN for tw = 10 s, then increased to f3 = 19 pN. (b) Detail of extension
dynamics at f3 from the data in (a), showing a nonmonotonic change in L, i.e. a
Kovacs hump [152]. Data points and error bars are the mean and standard error of
the mean after logarithmic binning in time (error bars are smaller than points). (c)
Cartoon of heterogeneous dynamics within a single IDR domain that result in the
Kovacs hump: Incubation at f2 for tw (left) allows folding of fast segments, but is
not long enough to allow folding of slow segments. Application of the higher force
f3 causes unfolding of some fast segments, leading to the increase, L2 > L1. At long
times, the slow segments finally fold, causing the slow decrease, L3 < L2.

associated with an experimentally-observable memory effect, the Kovacs hump [151, 152],

which here corresponds to the prediction of a nonmonotonic change in extension with

time (i.e. an increase followed by a decrease in L) after a particular two-step pattern of

changes in applied force. Such a behavior unambiguously demonstrates heterogeneity:

as the trajectory progresses, certain values of L are reached twice, but are followed by

different system behaviors (i.e. lengthening or contraction). Thus, knowing the single

parameter L is not sufficient to predict future behavior. Instead, predicting the correct
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behavior requires the knowledge of more parameters, i.e. the status of the diverse modes,

which store the system’s memory of past force application [153, 152, 156].

To assess whether the present IDR system belongs to this ‘Kovacs class’, we tested

for the Kovacs hump by subjecting the chain to three successive forces, f1, f2, f3, such

that f2 is held for a time tw, and the final force lies between the prior two, f1 > f3 > f2

[Fig. 4.2(a)]. We found that single NFL IDR polymers, and not control DNA molecules

Fig. C.7, consistently showed a clear Kovacs hump at f3 ([Fig. 4.2(b)]; observations on

8 other polymers are shown in the Appendix C ). The hump consisted of a slow increase

in L followed by a slow decrease, and thus was not related to the fast elastic response

of the polymer. We conclude that the polyIDR can be assigned to the heterogeneous,

Kovacs-class of aging systems.

4.6 Microscopic view

The results of Fig. 4.2 indicate that the IDR polymers contain multiple independent

relaxation modes, but does not clarify their microscopic identity. We posit that each mode

corresponds to a different segment of the chain, with each segment able to independently

transition from an extended coil to a compact structure. As discussed below, the different

segments do not correspond to individual IDRs within the polyIDR chain, but rather to

different clusters of residues within each IDR. Indeed, previous work has observed short-

range structure, such as salt bridges and residual secondary-structure elements, in the

NFL tail domain [36, 56, 54].

Such local structure implies the Kovacs hump occurs in the following manner (see also

Fig. 4.2(c)): Incubation at the high force f1 converts all segments to the extended coil

state. After quenching to f2 and holding for a time tw, a fraction of the segments become

structured (i.e. those with relatively fast dynamics), while the slower segments remain
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unstructured. Jumping to the final force f3 causes a transition back to the extended

state for some fast segments (leading to the initial increase). After a long time, the slow

segments become structured (leading to the long-term decrease).

Using the established effect of force on transition kinetics, we can develop a model

that quantifies this microscopic picture, and tests it through comparison to data. We

focus on the single-step force quench, and assume each IDR consists of n independent

segments (and thus that the entire polymer contains Nn such segments). We then adopt

the mathematical framework of Amir et al. [60], and take each segment to relax, on

average, exponentially after the force quench, so the contraction dynamics of the jth

segment follows Lj(t) = α(f)e−t/τj(f), where j = 1, 2, . . . , n. Both τj, the contraction

timescale, and α, the relaxation amplitude, carry a force-dependence. Each structuring

event within a single IDR is discrete and stochastic; however, the presence of multiple

IDRs in the polymer (N � 1) means that the measured extension change will follow the

exponential ensemble-average behavior.

The force-dependence of α accounts for segment elasticity, which is likely dominated

by the flexible coil state. Thus, we take α(f) = `α0(f), where ` is the coil contour length,

and α0(f) is the relative extension, given by the worm-like chain model [136] with lp = 0.8

nm, as appropriate for polypeptides [157]. Using more nuanced elastic models does not

greatly affect our results, as described in the appendix C. While different segments likely

have different `, we expect that variation to be small (< 10×) compared to the range

of values of τj that must underlie the multi-decade dynamics, and thus take ` to be the

same for all segments.

This mode structure predicts logarithmic relaxation if the characteristic relaxation

times are distributed as P (τ) ∝ 1/τ [60]. We implement this here by noting it implies

a uniform distribution of log-relaxation-time, P (log (τ)) ≡ η, where η is the density of

mode states in log-time units. This means that the log of the time between successive
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relaxation events is, on average, 1/η. Thus, during a time interval t, the number of

relaxation events that occurs in a single IDR is η log t. Since each event contributes the

same contraction, this leads to a logarithmic relaxation.

To compare to force-quench data, we enforce the condition that there is no relaxation

if f2 = f1, reference the relaxation to the time t0, and scale by N to get the extension

change of the entire chain:

L(t, f2)− L(t0, f2) = −Nα(f2) [η(f2)− η(f1)] log (t/t0) (4.1)

As noted, η must carry a force dependence, since the transition times τ vary with f .

The dependence on force follows from enforcing an Arrhenius dependence of τ on

activation barrier, τ = τ0 exp(∆G/kBT ), and using the Bell-Zhurkov expectation that

∆G varies as f∆x, for activation distance ∆x [46, 45]. The constraint, P (τ) ∝ 1/τ ,

corresponds to a uniform distribution of ∆G [60]; thus we take

∆Gj = G0 + jf2δx (4.2)

where G0 is the barrier at zero force, and jδx is the distance between the initial (extended)

state and the jth activation barrier. Eq. 4.2 implies that P (∆G) = 1/fδx, and thus that

η = kBT/fδx, which when combined with Eq. 4.1 results in a prediction for the log-slope

b.

This analysis indicates useful normalized parameters for the slope and force-quench

magnitude are b̄ ≡ bf1/NkBTα0(f2) and f̄ ≡ f2/f1. Indeed, plotting b̄ vs. f̄ collapses

the data [Fig. 4.3], including removing the effects of polydispersity in length, as shown
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Figure 4.3: Bottom: Dependence of the normalized logarithmic relaxation rate, b̄,
on the force-quench magnitude, f̄ ≡ f2/f1. Each data point represents a single
force-quench on a single polymer, with error estimated from the uncertainty in the
measured slope. 248 data points, from 16 separate polymers, are shown. The line
is a fit to Eq. 4.3 with best-fit parameter ρ = 0.108 ± 0.004 (error estimated from
bootstrapping, as described in the appendix C). Top: standardized residuals of the
fit, ∆b̄/σb̄, where ∆b̄ is the difference between the data and the fit, and σb̄ is the error
estimate of the data. Inset: The data is linearized by plotting b̄ vs. 1/f̄ .

in the appendix C. The model specifically predicts:

b̄ =
1

ρ

[
1− 1

f̄

]
(4.3)

The single unknown parameter ρ represents the spacing between activation barriers rel-

ative to the coil contour length, ρ ≡ δx/`. For our model to be self-consistent, we expect

nδx < ` and ρ < 1/n < 1.
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4.7 Results and discussion

The microscopic model, Eq. 4.3, successfully describes the force-quench data, cor-

roborating the picture of multiple independent structured segments that each follow

Bell-Zhurkov mechanochemistry. We show this by fitting Eq. 4.3, using the single fitting

parameter, ρ, to the results of 248 different force-quench experiments [Fig. 4.3]. The

best-fit is found with ρ = 0.108 ± 0.004. The fit gives a reasonable reduced-chi-squared

fitting metric, χ̄2 = 10.7. Note that χ̄2 ≈ 1 is expected for a statistically valid fit given

the stochastic errors of the data; the elevated value here is due either to unknown system-

atic errors, or to physical effects ignored in our approximate model. The standardized

residuals show no systematic deviation [Fig. 4.3, top], strongly suggesting our model

captures the key features of the system.

The best fit estimate of ρ < 1 is consistent with the physical restriction on the

activation barrier spacing, δx < `. The fit value of ρ implies that the upper limit on the

number of structured segments per IDR is nmax = 1/ρ ≈ 9. This value is also consistent

with the data: A typical polymer has N = 25 IDRs; taking n = 9 structures per IDR,

and with each structure contributing a compaction α ≈ 1 nm, we can estimate the total

length change during relaxation, ∆L ≈ 200 nm. This is indeed the magnitude of the

total length change seen in the force-quench experiments [Fig. 4.1(c)], further supporting

our picture.

The polymeric nature of the construct allows for the possibility of inter-tail interac-

tions [158, 159], however the measured relaxation is likely dominated by multiple intra-tail

structures. Given that there are no observable discrete length changes [Fig. 4.1(b)] and

the total length change is a small fraction (< 10%) of the polymer’s contour length, the

structure-forming interactions must be quite short-range. With only N ≈ 25 abutting

neighbors, nearest-neighbor inter-tail interactions, contributing ≈ 1 nm length changes
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each, could not account for the observed 200 nm length changes.

While the precise identity of the structures is as yet unclear, we can roughly estimate

their free energy based on their ability to compact against a known load. Extrapolated to

zero force, we find that single-segment structure stability is likely between 3 and 9kBT ;

the wide range is due to sensitivity to the choice of ` (see Appendix C.2.3). This range is

reasonable and suggests some possible mechanisms; it encompasses prior estimates of the

stability of local structures in IDRs [51], as well as estimates of attractive electrostatic

interactions in the NFL tail [52, 36, 56, 54].

4.8 Conclusion

In summary, our analysis indicates that the NFL IDR has multiple independent

structures with a broad distribution of relaxation times. The distribution of relaxation

timescales produced a logarithmic relaxation of polymer extension that can last for three

decades in time (Fig. C.5). We attribute the long timescales to the slowing of individual

compactions by applied force, in analogy to the slowing caused by low temperatures in

observations of nonexponential relaxations in globular proteins [7]. The heterogeneous,

independent nature of the structures was confirmed by the observation of the Kovacs

hump. Finally, our picture of IDR compaction dynamics is confirmed by a model that

combines Bell-Zhurkov mechanochemistry with a specific distribution of independent seg-

ment relaxation times; this model successfully describes the dependence of relaxation rate

with force, and produces consistent estimates of microscopic parameters.

The nonexponential relaxations reported here are similar to those observed in prior

work on globular proteins [7, 146, 147] as well as those expected for random-sequence

biopolymers [4], but occur for a different reason: Heterogeneity and disorder in the IDR

occur due to the varying dynamics of structure formation of independent segments, and
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not because of the topological/energetic frustration effects that dominate the dynamics

of certain globular proteins[7, 146, 147] and random-sequence chains [4].

However, there is at least one reported mechanism for nonexponential dynamics in a

globular protein that is a more apt comparison: lysozyme was shown to exhibit hetero-

geneous nucleation dynamics [144], where different small segments independently form

local tertiary structures with varying dynamics; this is analogous to the ‘foldons’ pro-

posed theoretically [160, 161]. This behavior is similar to that proposed here, with the

major difference being the type of structure formed, as tertiary interactions are lacking

in the IDR.

Finally, it has been suggested that many IDRs contain multiple subsegments that

form local structures or interactions in an independent, noncooperative fashion [51, 14].

Our analysis indicates that the existence of such distributed, heterogeneous structures

is the key feature underlying the slow, logarithmic dynamics. Thus, it is reasonable to

expect that glassy relaxations and memory effects could occur broadly in other systems

with IDRs.
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Chapter 5

Origin of Glassy Dynamics in an

IDR construct

5.1 Preface

Using a continuum model based on a general framework for bulk glassy systems [60],

I was able to predict the force dependence of the glassy dynamics; however, its molecu-

lar and biochemical origins remained unclear. Furthermore, in bulk glassy systems, the

spectrum of relaxations contains many closely-spaced timescales, which can then be com-

bined and simplified by applying methods of calculus, particularly through transforming

the sum of discrete, exponential relaxations into a smooth, continuous logarithmic relax-

ation [162]. The conceptual underpinnings of such an approach for the nanoscale NFLt

polyproteins was also unclear. Hence, I sought to determine the origins of the glassy

dynamics and understand it using physically realistic parameters.
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5.2 Introduction

Intrinsically disordered protein regions (IDRs) are found throughout the cytoskele-

ton, where they play an important role in cellular mechanical processes [35, 36]. An

important first step to understanding these processes, is characterizing the mechanical

response of single IDRs. In contrast to globular proteins, IDRs have a greater degree

of conformational freedom due to a large fraction of charged and hydrophilic residues

[19, 12]. Instead, their structure is more similar to a random-walk polymer in a good

solvent with the addition of both transient and stable secondary structures, electrostatic

attractions, and amorphous globules [21].

The conformational changes of proteins often exhibit glass-like kinetics in their native

state, typically measured as a nonexponential time dependence [5, 7]. These kinetics are

associated with the roughness of the native energy landscape, i.e., multiple local free

energy minima corresponding to different substates [6]. However, under force, a protein’s

conformational changes is often well-described by a simple two-state system with a native

and unfolded state, as well as the occasional addition of transient intermediate states

[44]. This system can be represented by a one-dimensional free energy landscape with

two wells separated by an activation barrier along the reaction coordinate, i.e., the end-

to-end extension. At constant force, transitions between states are stochastic, but their

ensemble average typically follows an exponential time dependence [49].

Yet, recently, we reported force jump experiments that show a highly nonexponential

time dependence in the extension of an IDR polyprotein at constant force. This polypro-

tein consists of multiple repeats of the disordered neurofilament light tail (NFLt) region

[143], an IDR that is critical to the structure and mechanics of the axonal cytoskeleton

in neurons [163]. After a one-step force jump, the extension of single NFLt polyproteins

exhibited a slow, logarithmic decrease in their extension. After a two-step force jump,
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they exhibited a nonmonotonic time dependence, reminiscent of the “Kovacs hump” in

glassy systems [151, 153]. To explain this phenomenon, we developed a continuum model

based on work on bulk glassy systems (e.g., crumpled paper balls and semiconductor

materials [60]) and Bell-Zhurkov mechanics that predicted the force dependence of the

logarithmic relaxations. However, the conceptual underpinnings for this model, as well

as the physical and biochemical origins of the relaxations remained unclear.

Here, we revisit the NFLt polyprotein system with the goal of understanding the

origins of the relaxation behavior. We present data showing the relaxations are his-

tory dependent, indicative of a system with multiple, independent, and heterogeneous

relaxation events. We also show that both force increases and force decreases lead to

logarithmic relaxations, consistent with structure-forming and breaking events. Based

on this evidence, we develop a discrete model that is physically realistic and, without

fitting, qualitatively predicts the force dependence of the logarithmic relaxations. Overall

this work demonstrates that the relaxation behavior is likely caused by hidden lengths

within each NFLt, which, to our knowledge, is a novel mechanism for glassy dynamics.

5.3 Materials and methods

Polymer synthesis and tweezer experiments

NFLt purification and polyprotein synthesis was carried out as previously described

[143]. In short, in short single NFLts, each containing 168 amino acids, were modified

with cysteine residues at each terminus. The cysteines were induced to form disulfide

bonds resulting in a linear polyprotein.

The polymerization was stochastic, producing polydisperse polyproteins with a vari-

able number of monomer tails. The number of monomer tails, N , in each polyprotein
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was calculated from the ratio of its contour length, Lp, and monomer NFLt contour

length, Lm: N = Lp/Lm ≈2–29. The polyprotein contour length was estimated from its

extension at high force. The monomer contour length, Lm ≈ 64 nm, was estimated from

the number of residues in a single NFLt assuming a residue contour length of 0.38 nm.

After polymerization, the polyproteins were terminally labeled with azide and bi-

otin, then reacted with a DBCO-functionalized glass surface and a 2.8 µm-diameter

streptavidin-coated paramagnetic bead in a flow cell, resulting in tethered polyproteins.

The flow cell contained an inlet and outlet to enable solution exchange between ex-

periments. Unless otherwise stated, the solution in the flow cell was a 20 mm 2-(N-

morpholino)ethanesulfonic acid (MES) buffer, with 10 mm NaCl and 0.05% Tween-20 at

pH 7 and room temperature (≈ 20 °C).

The polyprotein extension, L, over time, t, was measured as described in Chapter A.

The applied force was calculated using the Allan variance as described in Chapter 2.

The one-step force jump protocol was carried out as illustrated in Fig. 5.1B. First,

the polyprotein was kept at a force, f1, for a long time (> 100 s). Next, the force was

jumped from f1 to a second force, f2, by moving the magnets closer or further from the

flow cell, increasing or decreasing the force, respectively. The magnet motion typically

lasted ≈ 0.25 s, during which the polyprotein extension changed rapidly due to entropic

elasticity. Once the magnet motion stopped, t was set to zero and the force was constant.

At constant force, the polyprotein exhibited a slow extension change that cannot be

accounted for by the elastic relaxation timescale ≈ 10 ms, as judged by the Rouse time

[47]. The relaxations are reproducible; repeating the same one-step force jump on the

same polyprotein results in the same slow extension change. During relaxation, the

extension changes were smooth without any detectable discrete transitions of 10 nm or

more, consistent with underlying compaction or expansion events each contributing a

length change of ∼ 1 nm.
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D

Figure 5.1: Schematic of experimental setup. (A) A polyprotein consisting of disul-
fide-linked NFLts is subject to an applied force, f while its extension, L is tracked.
Single NFL tails contain multiple, independent globules. Typical one-step force jump
data from a single polyprotein. (B, upper) The force, f , was jumped from f1 to f2.
(B, lower) During the jump, there is a large change in extension due to the entropic
elastic response. After the jump, there is a slow change in extension (dotted black
box) due to compaction within each tail. (B, inset) The slow change in extension
shows a logarithmic time-dependence when plotted on a logarithmic time axis. (C)
In the continuum model, each globule corresponds to an independent free energy, G,
landscape, which tilts with the application of force, favoring the extended state. There
average spacing between activation energy barriers is δx. (D) In the discrete model,
the free energy well is given by the WLC elastic model. Increasing the force deepens
the well and increases length change.
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As previously described in Ref. [143], the one-step force jump relaxation data appear

linear when plotted on a semilogarithmic time axis, consistent with a logarithmic time

dependence (Fig. 5.1B, inset). The relaxation data are binned logarithmically in time to

average out noise from the bead fluctuations. After binning, the data are well-fit by the

empirical logarithmic function, L(t) = a + b log(t/1 s), where b is the log slope and a is

the extension at t = 1 s.

Continuum model

The relaxation data can be interpreted in terms of a continuum model [143]. This

model is based on a generic mathematical framework for bulk glassy systems by Amir et

al. [60] and Bell-Zhurkov mechanics [46, 45].

In this model, a polyprotein consists of N tails, each of which contain a total of

n independently relaxing subsegments (Fig. 5.1A). The differential length of each jth

(j ∈ 1, 2, . . . , n−1, n) subsegment varies exponentially αj(f)e−t/τj(f), over a time interval,

t. As noted, both the total length change, αj, and characteristic timescale, τj, carry a

force dependence.

The force dependence on αj accounts for the subsegments elasticity, which is likely

dominated by the extended coil state, such that α(f) = `α0(f). The coil contour length,

`, and the relative extension, α0 are estimated from the worm-like chain model [136,

137] using a persistence length, lp, of 0.8 nm, as appropriate for unfolded polypeptides

[157]. While different subsegments likely have different `, the variation is likely to be

small compared to range of τj. Hence, for simplicity, ` is taken to be the same for all

subsegments (Fig. 5.1C).

The continuum model predicts a logarithmic relaxation if the relaxation times are

distributed as P (τ) ∝ 1/τ [60], corresponding to a uniform distribution of log-relaxation-
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time, P [log(τ)] = n/ log(τmax(f)/τmin(f)) ≡ η(f), where τmin and τmax are the shortest

and longest timescales in the system. The log of the time between successive relaxations

is, on average, 1/η. We assume the system starts in equilibrium at an initial force, f1.

After a force jump to f2, the differential polyprotein extension, ∆L(t, f2) ≡ L(t, f2) −

L(1 s, f2), is

∆L(t, f2) = Nα(f2)(η(f1)− η(f2)) log(t/1 s) (5.1)

= b log(t/1 s), (5.2)

assuming tmax > t > tmin. Note that Eq. 5.2 predicts both force increases and force

decreases should produce a logarithmic time dependence.

History dependence

The continuum model can be extended to multiple force jumps by accounting for

the non-equilibrium state of each subsegment. After the first force jump, the system is

allowed to relax at f2 for a time interval, tw, before jumping to a third force, f3. At a time

interval, t, later, the average extension of the jth globule is α(f3)(1 − etw/τj(f3))e−t/τj(f3)

[60]. It then follows that the differential polyprotein extension is

∆L(t, f3) = Nα(f3)

{
[η(f2)− η(f3)] log

(
t

tmin

)
+ [η(f1)− η(f2)] log

(
t+ tw
tmin

)}
. (5.3)

Eq. 5.3 predicts the relaxations are history-dependent, i.e., they depend on tw. If

f3 = f1, it predicts a monotonic differential extension that follows a logarithm for t < tw

and a power law for t > tw [60]. If f1 > f3 > f2, it predicts a nonmonotonic relaxation

where the time to reach the peak increases with tw [153].

74



Origin of Glassy Dynamics in an IDR construct Chapter 5

Force dependence

The force dependence of the relaxations can be understood by enforcing Arrhenius

kinetics, i.e., τj is associated with an activation barrier, Gj, such that τj = τ0e
Gj/kBT ,

where τ0 corresponds to the transition attempt frequency [43] (Fig. 5.1C). From the

Bell-Zhurkov expectation, the activation barriers vary linearly with the force, f , and

activation distance, ∆xj, i.e., Gj(f) = G0 + f∆xj, where G0 is the activation barrier

at zero force. The constraint, P (τ) ∝ 1/τ [60], corresponds to a uniform distribution of

activation barriers. It follows that the activation distance is ∆xj = jδx, where δx is the

average spacing between activation distances and η(f) ∼ kBT/fδx.

It is convenient to use normalized parameters, b̄ = bf1/NkBTα0 and f̄ = f2/f1, to

compare relaxation data across from different force jump combinations and polyprotein

lengths. Combining Eq. 5.2 with the Bell-Zhurkov expectation, it follows that

b̄ =
1

ρ

(
1− 1

f̄

)
. (5.4)

Eq. 5.4 contains a single unknown parameter ρ that represents the average spacing be-

tween activation barriers and the coil contour length, ρ ≡ δx/`. For this model to be

self-consistent, we would expect nδx < ` and ρ < 1/n < 1.

Discrete model

As with the continuum model, the discrete model is built from a set of n independently

relaxing subsegments in the NFLt. Each subsegment is taken to collapse with an expo-

nential time dependence, i.e. the extension of the ith segment will vary as αi exp(−t/τi),

the sum of which gives the total extension change, as in Eq. 5.2. Thus, the relaxation of

each subsegment depends on two parameters, its total length change, αi, and timescale
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τi. However, in contrast to the continuum model, these parameters are estimated from

the physical properties of each subsegment.

To estimate αij, we assume the following: immediately after a quench from a high

force, each subsegment is initially in a fully extended state, acting as a stretched, un-

structured polypeptide with a certain mean extension, 〈Xi〉. This mean extension can

be calculated from the subsegment contour length `i and the applied force f within a

WLC model, given a persistence length, which we take to be lp = 0.6 nm. Thermal fluc-

tuations will cause Xi to vary, and we assume that, once Xi shortens to a certain critical

value ri, the chain will collapse. We take ri to scale with the number m of residues as

Rg = 0.3m1/3 nm, as appropriate for the size of a compact protein [164]. Consequently,

we take the total length change of each subsegment to be

αi = 〈Xi〉 − ri = 〈Xi(f, `i, lp)〉 − 0.3m
1/3
i (5.5)

To estimate τi, we consider the activation barrier that governs the subsegments’ ther-

mal fluctuations. Particularly, we assume the subsegment extension explores a free energy

well, G(Xi), defined by the thermodynamics of a stretched WLC. As shown in the meth-

ods, G(Xi) can be estimated by integrating the WLC force-extension function (which

accounts for internal entropy lost by the chain as it is stretched), and subtracting an

fXi term (which accounts for the work performed by the stretching force) [44]. Notably,

the energy well predicted from this procedure depends on f, `i and lp, with the latter

again taken to be 0.6 nm. An example of an energy well calculated in this way is shown

in Fig. 5.1D. Given G(Xi), we can then calculate the activation barrier controlling col-

lapse as ∆G†i = G(ri)−G(〈Xi〉). We then enforce Arrhenius kinetics, and set the mode

timescale to be

τi = τ0e
∆G†i/kBT (5.6)
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In practice we are concerned with the relative (multiplicative) magnitude of various

relaxation modes, not the absolute timescale, so we set τ0 = 1 throughout.

The discrete model gives the entire relaxation trajectory at a given force from the

values of all αi and τi, which in turn are fixed by the number and lengths of the globule-

forming subsegments, i.e. the set of residues {mi} in the subsegments. The choice of {mi}

can be made in a physically reasonable fashion by inspecting the 168-residue sequence

of the construct. While NFLt contains a significant negatively-charged polyelectrolyte

domain that is unlikely to collapse, there are four regions that are better candidates: three

largely neutral segments enriched with somewhat hydrophobic residues (aa 1-28, 35-59,

76-82), and a region near the C terminus with multiple positive charges that has been

implicated in prior work as having large electrostatic interactions, here assumed to occur

with nearby negative charges (aa 152-162). This suggests using a set {mi} = 7, 11, 15, 29.

Notably, such a set has only 62 total residues, a modest fraction of the total length; this

is in accord with experiment, where the chain’s length changes upon relaxation are only a

small amount compared to the total contour length (see Fig. 5.1B). That said, these {mi}

values are only rough estimates; they are useful for testing whether reasonable sequence

metrics can give reasonable relaxation behaviors, but should not be regarded as precise.

5.4 Results

Two-step force jumps indicate individual relaxation events are

independent and heterogeneous

We sought to determine whether our logarithmic relaxation data is caused by indepen-

dent relaxation events, as called for in both the continuum and discrete models. Recent

work on glassy systems has suggested that multiple classes of logarithmically relaxing
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system exist [60]. However, systems with independent relaxation events typically exhibit

history dependent behavior [60, 153]. Based on the continuum model, if the system is

composed of independent relaxation events, it should exhibit history dependent behavior

when subject to a two-step force jump.

Our first two-step force jump protocol is illustrated in Fig. 5.2A. First, we allowed the

protein to relax for a long time (� 100 s) at an initial force f1. Next, we increased the

force to f2 and waited for a time, tw, during which the polyprotein extension increased

logarithmically in time. Then, we decreased the force back to f1 and measured the

resulting relaxation. After the second force jump, we found that polyprotein extension

time dependence varied with tw. Initially, tw shows a logarithmic time dependence, but,

for short tw, it slows down and appears to approach a steady state (e.g., tw = 3 s in

Fig. 5.2B). As tw increases, the relaxation becomes more logarithmic until, at tw ' 100 s,

it is indistinguishable from a one-step force jump.

Our second two-step force jump protocol is illustrated in Fig. 5.2C. As before, we first

allowed the polyprotein to relax for a long time (� 100 s) at an initial force f1. Next,

we decreased the force to f2 and waited for a time, tw. Then, we increased the force to

a new intermediate force, f3, such that f1 > f3 > f2. After the second force jump, we

observed a variety of different relaxation behaviors depending on tw. For short tw (e.g.,

tw = 3 s in Fig. 5.2D), we found that extension largely decreases over time. For longer

tw (e.g., tw = 100 s in Fig. 5.2), we found that the ∆L largely increases over time. As

previously reported[143], for intermediate tw (e.g., tw = 10 s in Fig. 5.2D), we found that

∆L shows a nonmonotonic time dependence, first increasing until it reaches a peak, then

decreasing.

Together, the two-step force jump data indicate that the NFLt polyprotein relax-

ation behavior can be explained by multiple, independent, and heterogeneous relaxation

events. These results lend confidence to the use of the continuum and discrete models in
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BA

C D

Figure 5.2: Two-step force jumps demonstrate history dependent relaxations. (A) A
two-step force jump protocol where the force is first increased from f1 to f2. After
waiting for tw at f2, the force is decreased back to f1. (B) After the second force jump,
the extension initially decreases with a logarithmic time dependence before diverging,
depending on tw. (C) Another two-step force jump protocol where the force is first
decreased from f1 to f2. After waiting for tw at f2, the force is increased to f3. (D)
At f3, the extension decreases, increases, or shows a nonmonotonic time dependence,
depending on tw.

interpreting our relaxation data.
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Continuum model quantitatively predicts force jump decreases

To study the force dependence of the relaxations, we carried out a series of one-step

force jumps between a single high force and various low forces. As predicted by the

continuum model, we observed a logarithmic time dependence for both force increases

and decreases, so we fit them to a logarithmic function to determine the log slope, b

(Fig. 5.3A). When f2 > f1, we observed an increase in the differential extension ∆L =

L(t) − L(t0) and that b increased with f2, as expected for a structure breaking process.

When f2 < f1, we observed a decrease in ∆L and that b decreased with f2, as expected for

a structure forming process. Additionally, we found that both force jump increases and

decreases depended on f1, as predicted by the continuum model. Specifically, we found

that b increased monotonically with the force jump magnitude f̄ = f2/f1 (Fig. 5.3B).

This result indicates that the relaxations are also sensitive to the history of applied forces.

In total, we collected 450 one-step force jump relaxations across 16 polyproteins with

varying f̄ and fit each relaxation to determine b. To compare b across polyproteins with

varying lengths, we used the normalized log slope, b̄. Plotting b̄ vs. f̄ collapses all the

data onto a single curve (Fig. 5.3C).

We compared the data to the continuum model by fitting it to Eq. 5.4, which has

a single fitting parameter. First, when fitting to all the data together, we found poor

agreement with the model, as judged by the reduced chi-square fitting metric, χ2 = 70,

and substantial deviations in the standardized residuals. We note that a reduced chi-

square fitting metric of 1 is expected for a ‘good’ fit with Gaussian distributed errors.

Next, we fit the f̄ < 1 and f̄ > 1 data to Eq. 5.4, separately. For f̄ > 1, we

found the best fit to be ρ = 0.4± 0.1 and a reduced chi-squared fitting metric of χ2
ν =

69.4. Both the data and standardized residuals show systematic deviations from the fit.

We attribute the poor fit to the experimental noise in the data, which is of a similar
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A

B

C

Figure 5.3: (A) Typical one-step force jump relaxation data and (B) b values from a
single polyprotein using different values of f̄ ≡ f2/f1. (C, bottom) The normalized log
slope, b̄, as a function of the force jump magnitude, f̄ ≡ f2/f1 for all 450 relaxations on
16 separate polymers, where f̄ < 1 values are blue and f̄ > 1 are green. Errorbars are
omitted for visual clarity. The solid and dotted lines represent fits to f̄ < 1 (blue) and
f̄ > 1 (green) values with best-fit parameters ρ = 0.4± 0.1 and ρ = 0.108± 0.004,
respectively (error estimated from bootstrapping). (C, inset) Zoomed in region of
f̄ > 1 values. (C, top) Standardized residuals, ∆b̄/σb̄, where ∆b̄ is the difference
between the data and the fit, and σb̄ is the error estimate of the data.

magnitude to the expected variation in b̄ (Fig. 5.3A, inset). For f̄ < 1, we found the

best fit with ρ = 0.108± 0.004 and a reduced chi-squared fitting metric of χ2
ν = 10.7. In

contrast to the f̄ > 1 data, both the data and standardized residuals show no systematic

deviations from the fit, suggesting the model captures the key features of the system

in this regime. We attribute the elevated reduced chi-squared values to nongaussian or

systematic underestimates of the errorbars, either due to unknown systematic errors or

physical effects not captured by the model.
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Sensitivity of relaxations to solution conditions

With an aim to determine the biochemical driving force behind our relaxation data, we

performed one-step force jump experiments in various solution conditions. The flow cell

permits solution exchange and heating between experiments, allowing us to differentiate

the effects of different solution environments on individual polyproteins. We found that

the relaxations are insensitive to screening by monovalent salt (NaCl) up to 1000 mm

(Fig. 5.4A). In contrast, we found that the relaxations are significantly inhibited by

high concentrations of an ionic denaturant, 6m GuHCl (Fig. 5.4B). A solution with

similar viscosity (20% glycerol) to the denaturant does not inhibit relaxations (Fig. 5.4C).

Finally, we found that the relaxations occur faster at higher temperatures (Fig. 5.4D).

Discrete model qualitatively predicts force jump decreases

We also formulated a more physically realistic discrete model for the relaxations. Since

the experimental data measured relaxations spanning two decades in time, we focused

the model on that range, which meant only using forces in the range 6 pN ≤ f ≤ 30 pN.

For f < 6 pN, the model predicts relaxations that are complete in less than two decades

of time, while for f > 30 pN, the relaxations become so widely spaced in time that only

one occurs within the two decade window. Predicted trajectories in that force range

are shown in Fig. 5.5A. The modeled relaxations show some waviness, i.e. they are not

perfectly logarithmic; this is an unavoidable consequence of not using the continuum

approximations. However, they are roughly logarithmic in shape, particularly for the

lower forces. Further, the magnitude of relaxation (∼ 5 nm over two decades in time) is

similar to that measured in the experiment, when scaled to a single NFLt.

The resulting discrete-model predictions of b̄ vs. f̄ match relatively closely to the

experimental data points (Fig. 5.5B), at least in the range where the model predicts two-
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Figure 5.4: Solution dependence of logarithmic relaxations. One-step force jump on
a polyprotein from (A) 68 pN to 9 pN in 10 mm to 1000 mm NaCl, (B) 85 pN to 15 pN
in 10 mm NaCl and 6m GuHCl, (C) 70 pN to 6 pN in 0 and 20% glycerol, and (C)
60 pN to 5 pN at 23 and 37 °C.
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Figure 5.5: Discrete model predictions. (A)Predicted relaxations, for various forces,
from the discrete model for a set of globule sizes {mi} = 7, 12, 17, 22 . Solid lines:
relaxation trajectories predicted from the discrete model for forces between 6 and 30
pN, as labeled. Dashed lines: best-fit logarithms to the two decades of relaxation plot-
ted for each trajectory. For each trajectory, the time axis is rescaled by τmin = τ1/2,
where τ1 is the relaxation time constant for the fastest (7-residue) globule. (B) Nor-
malized log-slope of relaxation, b̄, vs. normalized force, f̄ , for both experimental data
(points) and the discrete model using globule sizes {mi} = 7, 12, 17, 22 (line). The
model is truncated at low f̄ because it does not predict near-logarithmic relaxations
for f̄ < 0.2, in disagreement with the data, in which log relaxations persist down to
f̄ . 0.1. Yet in the range of validity, the agreement is relatively good; note no fitting
is performed here.

decade log relaxations (f ≥ 6 pN, corresponding to f̄ ≥ 0.2). The major disagreement

occurs for f̄ < 0.2, where the discrete model does not predict two-decade logarithmic

relaxations, yet the experiment continues to show them.

5.5 Discussion

Taken together, our analyses suggest that the origin of the relaxation behavior is

the (un)folding of multiple, independent, and heterogeneous subsegments (Fig. 5.1A).

The heterogeneity in the subsegments accounts for the remarkably slow nonexponential

relaxations under an applied force. The effect of the applied force varies across the dif-
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ferent subsegments leading to the broad distribution of timescales. As the force increases

this distribution broadens, in analogy to the slow kinetics caused by low temperatures

on structural glasses [3]. The history dependence implies that at least some of the sub-

segments are independent, i.e., noncooperative. The nearly 10% contour length change

indicates that there must be multiple subsegments in each tail (Fig. 5.1B). This picture

is supported by the discrete model that quantitatively predicts the force dependence of

the relaxations with physically realistic parameters.

While we attribute the relaxation to multiple subsegments in each tail, the polymeric

nature of the polyproteins allows for the possibility of intertail interactions [158, 159].

However, the applied force, during the relaxations, limits the interactions to short-range

interactions with nearby residues. For example, a polyprotein with an ≈ 1 µm contour

length corresponds to N ≈ 15 NFLts (as in Fig. 5.1B). Given that there are no discernible

discrete transitions, interactions of ≈ 1 nm between abutting neighbors would not be able

to account for the observed ≈ 100 nm length changes. Hence, intratail interactions are

more likely to be the dominant source of the relaxations.

The free energy of the intratail interactions can be roughly estimated by their ability

to relax against a known load. Extrapolating to zero force, the free energy of these

structures is likely between 3 kBT to 9 kBT; the wide range is due to the sensitivity in

the choice of ` [143]. This range encompasses prior estimates of local structures in IDRs

[51].

Multiple sources of intratail interactions have been identified in the literature [21],

including secondary structure, electrostatic attractions, and amorphous globules (similar

to a polymer in a poor solvent). The NFLt is overall negatively charged with an average

-0.25 e per residue; however, it contains some positively charged residues. The charged

residues are largely segregates into the later two-thirds of the tail. The first two-thirds

contain a large fraction of uncharged, mostly polar, residues, such as serine and tyrosine.
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Previous work has shown that intertail electrostatic attractions play an important

role in assembling reconstituted neurofilament networks [52, 56, 54]. Similar intratail

attractions could presumably lead to electrostatic attractions. To test this, we sought to

screen out electrostatic attractions with the addition of 1m monovalent salt (Fig. 5.4A).

The relaxations were insensitive to the addition of the monovalent salt, suggesting that

electrostatic attractions are not the dominant source of the intratail interactions; however,

previous measurements have shown that the NFLts can be insensitive to monovalent salt

even when electrostatic interactions are present [52, 150]. Hence, it is still possible that

electrostatics play a role in the relaxations.

Another source of compaction is polar regions in IDRs that form amorphous globules.

The collapse of these segments into globules is attributed to poor solvation of the nonpolar

backbone by the aqueous environment, which can be improved with denaturants, such

as Urea and GuHCl [23]. These amorphous globules can sometimes act as molecular

recognition regions and are implicated in amyloid formation [21]. The first one-third of

the NFLt is relatively devoid of charged residues and rich in polar residues, including the

aromatic residue tyrosine, suggesting it could form amorphous globules. Indeed, with

the addition of denaturant, the relaxations are significantly inhibited, suggesting either

hydrophobic interactions or hydrogen bonding plays a role in the relaxations (Fig. 5.4B).

Similar experiments in 20% glycerol do not have effect on the relaxations, suggesting that

the changing viscosity with denaturant is not the source of the inhibition (Fig. 5.4C).

Further evidence for hydrophobic interactions is given by the increase in the rate of the

relaxations with increasing temperature (Fig. 5.4D). Nevertheless, multiple sources of

compaction are possible.

While IDRs are devoid of tertiary structure, many contain transient or stable sec-

ondary structure, which could lead to the observed length changes. Sequence-based

secondary structure algorithms disagree on whether NFLt contains α-helices [36]; how-
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Wavelength

Figure 5.6: (Left) Molar ellipticity of single NFLts taken using a 1 mm path length in a
10 mm phosphate buffer at pH 7. Fits and residuals are based on the web-based BestSel
fitting algorithm [165]. (Right) Fits indicate that the tails are mostly disordered with
a fraction of beta-sheets and beta-turns. The BestSel algorithm can misclassify IDRs
as containing beta-sheets, casting doubt on whether they are present in the tails [165].

ever, previously reported circular dichroism measurements suggest that they only adopt

α-helices at pH 4 and not at pH 7 [57]. We also conducted our own circular dichroism

measurements on the NFLts and fit the data using the web-based BestSel fitting algo-

rithm [165]. Consistent with previous measurements, the circular dichroism measure-

ments indicate that NFLts are largely disordered and devoid of alpha-helices (Fig. 5.6).

The BestSel fits indicate a substantial fraction of beta-sheets could be present, but the

algorithm is known to misclassify IDRs as containing beta-sheets [165], casting doubt on

their presence in the tails. The algorithm also identifies a significant fraction of beta-turns

in the tails. The presence of turns is consistent with previous work based on sequence

metrics [57]. It is possible that the beta-turns are responsible for some of the relaxation

events and their hydrogen bonding would be disrupted by the denaturant.

Regardless of the source of the relaxations, they can largely be explained by a con-

tinuum model based on a phenomenological framework developed for glassy systems [60]

coupled with Bell-Zhurkov mechanochemistry [46, 45]. This model qualitatively predicts
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the logarithmic time dependence of the one-step force jump data and the history de-

pendence of the two-step force jump data. After fitting the normalized relaxation data

to Eq. 5.4, it also quantitatively predicts the force dependence of b for the force jump

decreases, i.e., f̄ < 1 (Fig. 5.3C). Likely due to the experimental noise in the data, the

model does not capture the force jump increases, i.e., f̄ > 1. However, the different fits

to the b̄ < 1 and b̄ > 1, suggest that the logarithmic increases represent activation barrier

crossings from the compact to extended states, and decreases represent crossings from

the extended to compact states. Furthermore, the model is self-consistent; the best fit

estimate of ρ < 1 for both fits is consistent with the physical restriction on the activation

barrier crossing δx < `. Assuming that ` ∼ 1 nm, the fit value of ρ from the f̄ < 1 data

implies an upper limit on the number of independent forming structures, nmax = 1/ρ ≈ 9.

Together, these results support the use of the phenomenological framework.

Yet, the phenomenological framework was developed to explain the glassy relaxation

dynamics of bulk systems (e.g. crumpled paper balls or semiconductor materials), con-

taining thousands or millions of independent relaxation processes [60]. For such systems,

the spectrum of relaxations contains many closely-spaced timescales, which can then be

combined and simplified by applying methods of calculus, particularly through transform-

ing the sum of discrete, exponential relaxations into a smooth, continuous logarithmic

relaxation (Eq. 5.2) [162]. However, the conceptual underpinnings of this approach are

unclear for the NFLt polyproteins: unlike the bulk systems for which the continuum

theory was developed, the nanoscale size of the NFLt means it can only support a few

independent relaxation events (n . 10). Thus, the mathematical criteria implicit in the

discrete-to-continuous transformation are not rigorously met, leading to some uncertainty

in interpreting the results of the model.

Hence, to better interpret our results, we formulated a discrete microscopic model for

the NFLt relaxations that requires only a few independent relaxation events. While this
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model does not result in a simple analytical function like the continuum model, it allows

for more physically realistic parameters. For example, the continuum model artificially

enforces that all independent relaxation modes share a common contour length, whereas

the discrete model allows the contour length to vary, permitting more physically-realistic

relaxation behavior.

Without any fitting parameters, the discrete model gives a quantitatively similar

prediction for the normalized log slope vs. force jump magnitude (Fig. 5.5), at least in

the range where the model predicts logarithmic relaxations. The disagreement at low

forces could be due to larger (and thus slower) globules in the NFLt than in the model.

Alternatively, it could be because of higher-order relaxations, where two globules, that

each collapsed independently, coalesce with each other, leading to long-time relaxation

behavior that would extend the trajectory in a way unaccounted for by the discrete

model. Nevertheless, the discrete model suggests that physically realistic parameters

could lead to the observed relaxation behavior.

The exponential time dependence of proteins under a constant applied force is largely

based on polyproteins consisting of small folded, globular proteins [44]. While there have

been previous reports of polyproteins of globular proteins exhibiting nonexponential time

dependence under force [146], the deviations from an exponential time dependence are

small and only apparent after averaging over many polyproteins. In contrast, our data

show that single IDR polyproteins exhibit a remarkably slow, highly nonexponential time

dependence over at least three decades in time [143]. Such nonexponential relaxations

are reminiscent of the conformational changes of proteins in the absence of force [166, 7],

but occur for a different reason: the heterogeneity comes from independently relaxing

subsegments and not because of a rough native energy landscape. The NFLt kinetics are

more similar to the complex kinetics of large multidomain proteins with independently

folding subunits [167, 168].
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5.6 Conclusion

In summary, our analysis indicates that NFLts likely contain multiple, independent,

and heterogeneous hydrophobic globules. The formation of these globules under an ap-

plied force lead to a highly nonexponential time dependent mechanical response. It has

been suggested that many IDRs contain subsegments that form local structures in an

independent, noncooperative fashion [51, 14]. The NFLt is one of many IDRs that play a

similar functional role in the cytoskeleton [35, 36]; hence, it is reasonable to expect that

the rich and complex mechanical kinetics observed here could apply to other IDRs.
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Chapter 6

Conclusions and Future Outlooks

6.1 Conclusions

In this dissertation, I described the improvement of SMFS techniques and the unex-

pected discovery of glassy dynamics in a model IDR construct.

In Chapter 2, I presented Tweezepy, a computational tool for calibrating forces in

SMFS video-tracking experiments. Robust force calibration is critical for accurate results

in these experiments. While robust methods have been available in the literature, they

are not routinely used due to their computational complexity. This computational tool

removes this barrier and provides a straightforward means of estimating the uncertainty in

calculated forces, an important but often overlooked aspect in SMFS experiments. There

have been calls for standardization to enhance reproducibility in the SMFS field[59].

Towards this end, Tweezepy provides a straightforward, reliable, and versatile tool for

standardizing force calibration across SMFS experiments.

In Chapter 3, I presented work examining the effects of surfaces in MT experiments

on low-force polymer elasticity. In the SMFS literature there has been considerably lit-

tle attention give to low-force elasticity measurements, despite their relevance to most
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biological and biomaterial situations. At low forces, I showed that surfaces in MT exper-

iments can bias power-law force-extension behavior. I showed that it is possible to use

this bias to independently estimate Rg, an important polymer structural length scale.

This finding broadens the capability of MT experiments to study polymers.

In Chapter 4, I presented the unexpected discovery of glassy dynamics in a model IDR

system, derived from disordered NFLt. In response to a change in applied force, I showed

that the change in polyprotein extension exhibits an extraordinarily slow, logarithmic

time dependence. I also showed that these relaxations were force-dependent and, after a

two-step force jump, exhibited a nonmonotonic time dependence, indicative of memory

effects. Based on these findings, I presented a continuum model that predicted the force-

dependence of the relaxations.

Fundamentally, the continuum model was based on a phenomenological framework

for bulk glassy systems; however, the conceptual underpinnings of this approach are

for the nanoscale IDR. Bulk glassy systems have thousands to millions of relaxation

events. For such systems, the spectrum of relaxations contains many closely-spaced

timescales, which can then be combined and simplified by applying methods of calculus,

particularly through transforming the sum of discrete, exponential relaxations into a

smooth, continuous logarithmic relaxation [162].

In Chapter 5, I revisited the glassy dynamics to determine its microscopic origins.

In addition to force decreases, I showed that force increases also produce a logarith-

mic relaxations. I addressed the biochemical origins of the relaxations and identified

multiple possible sources. I also showed that the extension changes are history depen-

dent, a characteristic feature of glassy systems that indicates multiple, independent, and

heterogeneous relaxation events. To account for these findings, I presented a new dis-

crete model based on physically realistic parameters that qualitatively accounts for the

relaxation data.
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In summary, I have developed new tools for SMFS and conducted high-precision

nanomechanical experiments on a model IDR system. My work on SMFS instrumentation

improves the usability of SMFS instruments and broadens their capabilities to measure

polymer length scales. My work on NFLt reveals the rich structural and mechanical

complexity of IDRs, which is likely to be relevant for its biological role and, more broadly,

for many other IDRs.

6.2 Future Outlooks

My findings hint at a plethora of opportunities for improving SMFS instrumentation

and characterizing the structure and function of IDRs.

Currently, SMFS instrumentation is relatively inaccessible to nonexperts. This is due,

in part, to the lack of easily accessible and standardized software. Tweezepy was a first

step towards making SMFS analysis more accessible. I envision a suite of standardized

software tools for operating operating SMFS instruments and analyzing their data. In

fact, our lab has already begun work on a suite of software tools for operating MT

instruments.

While we showed that surface effects can be used to extract Rg from force-extension

measurements, they remain a nuisance in most experiments. One way that SMFS tech-

niques get around this issue is to use dsDNA handles to move proteins away from sur-

faces [169]. Unfortunately, when attached to a flexible polymer, dsDNA handles are too

flexible to extract reliable force-extension data without prior knowledge of the persistence

length. However, DNA origami is much stiffer, so it would not have the same issues. In

collaboration with the Liedl lab, I worked with a summer student make a DNA tower

for MT experiments using a construct from Ref. [170]. While we ran into some technical

issues getting the origami to fold correctly, with a little more work, these DNA towers
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could be useful for future MT experiments on short polymers.

To my knowledge, the work in this dissertation represents the first example of MT

experiments on an IDR; however, there are many opportunities for further experimental

work on single IDRs. With regards to the NFLt system, my findings indirectly suggest

that it contains distributed structures of varying size. However, this could be more

directly proven with NMR experiments. Alternatively, this could be checked by looking

for glassy dynamics after removing portions of the NFLt sequence - e.g., only using

subsegment A or B. Furthermore, the NFLts’ low-force elasticity behavior remains to

be resolved. Equilibrium elasticity measurements appear to be possible below ≈ 10 pN.

As of the writing of this dissertation, our lab is currently working on understanding its

power law behavior.

Experimental data suggest that other IDRs form compact structures with noncooper-

ative local segments [14]. Hence, it is reasonable to expect that the mechanism for glassy

dynamics presented here could occur in other IDRs. However, glassy dynamics in other

IDRs remains to be experimentally proven. MT experiments on other IDRs are likely

to provide further insights into their structural and dynamic properties. Specifically,

another IDR with a similar biological role is the tau protein. As of the writing of this

dissertation, this protein is currently being studied by several labs on campus due, in

part, to its prominent association with neurodegenerative disorders [171]. With the help

of one of these labs, our lab has begun work on expressing and polymerizing tau protein

for MT experiments.

Together with future findings, my findings are likely to lead to better SMFS instru-

mentation and data analysis, as well as a better understanding of the structural properties

of IDRs, and thus, their associated biological functions and diseases.
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Appendix A

Magnetic Tweezers

Much of the experimental work in this dissertation was carried out on a custom-built

MT instrument. A schematic of this intrument is shown in Fig. A.1A. In short, the MT

instrument is based on an inverted microscope with the addition of a magnet assembly

above the sample. The focal plane is controlled via a piezoelectric device attached to

an oil-immersion objective. A light source is focused between the magnet assembly onto

the sample, allowing the sample to be imaged through the objective onto a high-speed

camera.

A MT experiment begins with the preparation of a flow cell, consisting of a fluid

channel in between two glass coverslips as described in Sec. B.4. In the fluid channel, the

polymers of interest are tethered between the bottom glass coverslip and paramagnetic

beads as described in Sec. B.3 (Fig. A.1B). The bottom surface of the flow cell contains

a dense covalently bound PEG layer to prevent nonspecific adsorption of the polymer or

beads. A small fraction of the PEG are functionalized to permit polymer attachment.

Once the flow cell has been prepared, it is placed on the microscope stage with the

bottom coverslip touching the immersion oil on the objective. The high-speed camera is

attached to a computer which displays the sample image on a monitor. The user can then
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Figure A.1: Our custom-built magnetic tweezer. (A) Schematic of the magnetic
tweezer. (B) The polymer of interest is tethered between a glass surface and paramag-
netic bead. Tracking partially melted reference beads permits the removal of common
mode noise. (C) A typical image of experimental beads. (D) A typical experimental
bead trajectory with x, y, and z positions.
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begin the experiment by looking for tethered polymers. A typical experiment consists of

bringing the magnets close to the flow cell and translating the flow cell with the stage to

find a field of view with many ‘good’ tethers. For my experiments, a good tether 1) only

has one polymer tethered between the bead and the surface, 2) has a polymer attached

near the center of the bead, and 3) is ideally long (& 0.5 µm). 1 and 2 can be verified

by rotating the magnets and tracking the bead’s position. The polymers in a doubly

tethered bead will wrap around each other when rotated, resulting in a characteristic

extension change. A ‘mistethered’ bead has a polymer attached away from its center

and will produce a limacon pattern when rotated[172]. The length of a polymer can be

typically be estimated by eye from the change in its diffraction pattern when the magnets

are close and far away from the flow cell.

Once good tethers are found, the x and y positions of the bead in the imaging plane

are determined via centroid tracking (Fig. A.1C). The z position out of the imaging plane

requires a calibration between the bead height and the diffraction ring pattern from the

interference between the incident light of the light source and the light scattered off the

bead[173]. During this calibration, the bead is typically held at a high force to suppress

Brownian fluctuations.

Once the calibration is completed, the bead height (z-position) can be tracked; how-

ever, it is susceptible to instrumental drift. To minimize the effects of drift, partially

melted reference beads (or stuck beads) are adhered to the bottom coverslip to serve as

reference beads. Subtracting the common mode noise of the reference beads from the

experimental beads eliminates most instrumental noise. As noted in Chapter 2, tracking

errors are not removed by the reference beads.

In order to determine the polymer extension, the experimental bead are tracked in the

absence of force - either by moving the magnet far away or taking it off the instrument

- to determine the height of the glass surface. The difference between the height of the
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bead and glass surface is the end-to-end extension, L, of the polymer(Fig. A.1B). These

raw extension values are then multiplied by the ratio of the index of refraction of the

experimental buffer and the immersion oil to give the final measured extension, L.

For a given magnet position, the force is determined by modeling the bead-tether sys-

tem as an inverted pendulum. Using the bead fluctuations parallel to the magnetic field,

the spring constant, κ of the harmonic potential is determined from the bead fluctuations

as described in Chapter A. Applying Hooke’s law and the small angle approximation, it

follows that the applied force is f = κL.

To make a force-extension curve (Fig. 3.1C), the magnets are moved further from or

closer to the flow cell. Then, at a constant magnet position, a bead trajectory is collected

for a predetermined amount of time. This process is repeated for the desired number

of points (typically, 31 points). From the bead trajectory, the force is calibrated and

time-averaged extension is calculated.

For force-jump experiments, the magnets are moved further from or closer to the

flow cell, resulting in a force decrease or increase, respectively. In contrast to the force-

extension curves, the magnet position and polymer extension is tracked during and after

the magnet motion. Once the magnet motion stops, the time, t, is set to zero and the

polymer extension is monitored.

A.1 Instrument setup

The custom-built MT instrument (Fig. A.1) is based on designs in Refs.[98, 174]. To

illuminate the beads, light is passed through a focusing lens and a magnet assembly onto a

flow cell. The instrument’s light source is a super-luminescent diode (SLD) (QPhotonics

QSDM-680-2) or fiber-coupled light-emitting diode (LED) (Thorlabs M470F3). The

SLD has similar temporal coherence as the LED, but since the SLD is single-mode, it
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has better collimation preventing clipping from the magnets[173]. It also leads to sharper

bead diffraction patterns; however, it increases speckle and has a longer spatial coherence,

leading to diffraction patterns from dust on the surface of the flow cell.

The magnet assembly consists of a machined aluminum casing with two pairs of 1/2”

NdFeB magnets oriented north-north and south-south, with two low-carbon steel pole

pieces that confine the large magnetic field gradient near its tips. The magnet assembly is

connected to linear translation and rotation motors (Physik Instrumente M-126, C-843).

The motors control the distance between the magnet assembly tips and the top of the

flow cell, as well as the orientation of the magnetic field.

The flow cell contains the polymer of interest and is assembled as described in Ap-

pendix B.4. In short, the flow cell consists of layer of parafilm wax, sandwiched between

two No. 1 glass coverslips (Fig. B.3A). The bottom coverslip (22 mm2) is passivated with

a covalently attached PEG layer (Microsurfaces Inc.) to prevent nonspecific adsorption

of the polymers and paramagnetic beads. A small fraction of the PEG layer is function-

alized with a N-Hydroxysuccinimide (NHS) or maleimide functional groups to facilitate

attachment of the polymer of interest. The flow cell is secured to an XY microscope stage

(Physik Instrumente M-545.2P, operated by a Physik Instrumente C-867-260 controller)

with Scotch tape. The stage moves the flow cell with 0.5 µm resolution and a 25 mm2

travel range, enabling the user to search for tethered polymers. In addition, the stage

motors are self-locking at rest and hold the stage in a table position without generating

heat.

After passing through the flow cell, the light is collected by a high numerical aperture

oil immersion objective (Nikon CFI Plan Fluor 60XS Oil NA 1.2). The objective is

mounted on a piezoelectric nanopositioning device (Physik Instrumente P-725.2CD) with

0.5 nm resolution and a 400 µm travel range, which allows both coarse and fine control

of the image focal plane. After passing through the objective, the light is reflected by a
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mirror through a 200 mm focal length lens onto a high-speed CMOS camera (Mikotron

EoSens 3CXP). The high-speed camera captures up to 563 frames per second (fps) at

full resolution (2,336 x 1,728 pixels) or up to 7,490 fps at reduced resolution (128 x 128

px). The camera transfers the images to the computer via a frame grabber (BitFlow

Cyton-CXP4). Unless otherwise stated, all of the data in this dissertation were collected

at 400 fps.

A.2 Tracking and data analysis

The computer receives and processes frames from the high-speed camera to extract the

three-dimensional position of the beads. This is accomplished in real-time using a custom-

written program in LabView based on a GPU-accelerated algorithm from Ref. [174].

To operate the program, the user first selects the beads of interest. Then, the program

performs a calibration step, where it images the beads while changing the focal plane

in 0.1 µm increments for 5 µm to 10 µm. From these images, the program computes the

average radial profiles of the diffraction rings at each focal plane and inputs them into a

look-up table. During an experiment, the program uses this look-up table to determine

the bead’s vertical (z) position with a typical accuracy of 1 nm to 10 nm [155, 98]. To

determine the lateral (x, y) bead positions, the program uses a centroid tracking algorithm

that has a typical accuracy of 1 nm to 2 nm [98].

To analyze the data, it needs to be converted into real units. The program collects

the lateral bead positions in pixels and the vertical position in uncorrected microns. The

lateral positions are converted to nm using a precalibrated conversion factor for each

objective and lens configuration. The vertical positions are also converted to nm using

another correction factor that accounts for the difference in the index of refraction of

the immersion oil, noil and experimental buffer in the flow cell, nsol. The correction

100



Magnetic Tweezers Chapter A

factor is the ratio of the two refractive indices, nsol/noil. At 20 °C, the refractive index

of water is nsol ≈ 1.333 and Type A immersion oil is noil ≈ 1.515, so the correction

factor is nsol/noil ≈ 0.880. This correction factor varies with the experimental buffer and

temperatures. All of the experiments in this dissertation calculated this correction factor

using refractive indices from Ref. [175].

During the experiment, the measured bead positions will drift due to instrumental

noise. This common mode noise can be removed by simultaneously tracking immobilized

“reference beads” and subtracting their positions from the experimental beads.

Lastly, the bead’s vertical position is converted to polymer extension, L, by calculating

its height above the glass surface. The height of the glass surface is chosen to be the

beads’ 2.5th percentile z position when the magnet assembly is at the furthest distance

from the flow cell.

A.3 Determining the applied force

The applied force on each tethered bead depends on the properties of the magnet

assembly and beads. The paramagnetic beads have an inherently asymmetric distribution

of magnetic material causing them to align along their axis with the magnetic field of

the magnets (in our setup, this is the x-direction). The magnetic gradient applies a force

towards the magnets given by

~f =
[
~m( ~B) · ~∇

]
~B (A.1)

where ~B is the magnetic field and ~m( ~B) is the bead’s field-dependent magnetic moment

[155]. For a typical magnetic position, the magnitude and gradient of the magnetic field

varies by no more than 0.02% and 0.2% over the field-of-view [98]. Hence, theoretically,
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it should be possible to determine the applied force a priori.

In practice, it is more accurate to determine the force a posteriori separately for each

bead and magnet position. For MT experiments, the bead-tether system is modeled as

an inverted pendulum. As described in Chapter 2, the spring constant of the harmonic

potential, κ, is determined from bead fluctuations parallel to the magnetic field. Applying

Hooke’s law and the small angle approximation, it follows that the applied force is f = κL.

The paramagnetic bead’s are polydisperse, so each bead has a different amount of

magnetic material and magnetic moment. For constant volume magnetization, the mag-

netic moment, and thus the force, increases with its volume, RB, f ∝ R3[176]. We use

Dynabeads MyOne C1 (RB ≈ 0.5 µm) or M-280 (RB ≈ 1.4 µm) for their low polydisper-

sity; however, they still have a size distribution that is ≈ 3%, leading to a ≈ 9% variation

in their magnetic moment and expected forces [98]. Indeed, across different beads our

calculated applied forces typically vary by ≈ 10%.

The gradient of the magnetic field, and thus the force, depends on the distance

between the magnet assembly and the beads. The force decays roughly exponentially

with this distance with a characteristic length scale of ∼1 mm, resulting in an effective

stiffness of 1× 10−6 pN/nm [39]. This means that the applied force is extremely stable:

a 10 µm change in the height of the paramagnetic bead will only change the force by

0.01 pN. This stability is one of the major advantages of the MT technique because it

enables the application of low and/or constant forces over long periods of time.
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Experimental Protocols

B.1 Neurofilament light polyproteins

The main polymer of interest in this dissertation is the model IDR system. Our model

IDR system is derived from the disordered tail domain of the mouse neurofilament light

(UniProt accession number P08551).

The NFLt gene was ligated into a pET vector with a PagP fusion protein with a short

linker containing the sequence SRHW. The PagP improves expression of IDRs [177] by

accumulating in insoluble inclusion bodies. The SRHW linker is readily cleaved via a

non-enzymatic nickel-assisted peptide bond hydrolysis [178]. After purification, only the

NFLt, with some minor sequence modifications, remains.

The full length NFLt and PagP fusion gene was determined via sequencing to produce

the amino acid sequence:

M G C G S G A S E N L Y F Q G A S T R L S F T S V G S I T S G

Y S Q S S Q V F G R S A Y S G L Q S S S Y L M S A R S F P A Y Y

N S H V Q E E Q T E V E E T I E A T K A E E A K D E P P S E G

E A E E E E K E K E E G E E E E G A E E E E A A K D E S E D T
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K E E E E G G E G E E E D T K E S E E E E K K E E S A G E E Q

V A K K K D G G G S C G S R H W Y F L S E F M N A D E W L T T F R E

N I A Q T W Q Q P E H Y D L Y I P A I T W H A R F A Y D K E K T D R Y N E

R P W G G G F G L S R W D E K G N W H G L Y A I A F K D S W N K W E P I

A G Y G W E S T W R P L A D E N F H L G L G F T A G V T A R D N W N Y I

P L P V L L P L A S V G Y G P A T F Q A T Y I P G T Y N N G N V Y F A W I

R F Q F L E H H H H H H

The purified protein sequence is bolded and the native sequence is italicized. From

the 146 residues in the native sequence, a single glutamic acid (E) was deleted from the N-

terminus. A single Threonine (T, boxed) was mutated to an asparagine (N) to suppress

unintended cleavage. A canonical Tobacco etch virus (TEV) protease site [179] was

added to the N-terminus to enable in situ specific cleavage. Cysteines (C) were added

to the N and C termini to enable polymerization. Glycines (G) and serines (S) were

added around the cysteines to facilitate its availability for polymerization. In total, our

construct contains 23 additional residues, 17 at the N-terminus and 6 at the C-terminus,

for a total of 168 residues.

Expression, purfication, and polymerization

Following a similar protocol to Pregent et al.[150], competent Escherichia coli BL21(DE3)

Rosetta were transformed with the modified pET vector and plated on agar plates con-

taining 100 µg/µL ampicillin. Colonies from these plates were picked and used to inocu-

late a 1 L Terrific broth containing 100 µg/µL ampicillin and 30 µg/µL chloramphenicol.

Expression cultures were grown in a baffled Erlenmeyer flasks in a shaking incubator at

37 °C at 300 rpm for 3 h to 5 h until the optical density at 600 nm reached 0.7–1. Protein

expression was induced by addition of Isopropyl b-D-1-thiogalactopyranoside (IPTG) at
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Ladder Polymer
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25
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Figure B.1: Electrophoresis assay (Sodium Dodecyl Sulfate (SDS)-Polyacrylamide Gel
Electrophoresis (PAGE)) of the polymerization product. Polyproteins are separated
on a polyacrylamide gel with 3 regions of either 3, 6, or 15% polyacrylamide from top–
to-bottom (marked by the dashed lines). (Left) Standard protein ladder with sizes in
kDa. (Right) Polymer sample. The monomer and polymers that are . 300 kDa (≈ 6
units) have entered the 15% polyacrylamide and are clearly resolved. In certain cases,
there are two bands of similar weight. These are likely closed loops and open-ended
polymers. A band is clearly visible near the interface between 3% and 6% polyacry-
lamide. These polymers are > 300 kDa.

a final concentration of 0.5 mm. The cultures were grown for 4 h before harvesting. Cells

were pelleted and stored at −80 °C for later use. For purification of proteins, cell pellets

were resuspended in a ratio of 10 mL lysis buffer to 1 g pellet. The lysis buffer con-

tained 20 mm pH 8.0, 0.1% 2-Mercaptoethanol, 1% Triton and 0.5 mg/ml lysozyme. The

resuspended pellets were incubated at 25 °C for 20 min followed by addition of 10 mm

MgSO4 and 1:20,000 vol/vol Benzonase nuclease (250 units/1 µL) for 20 min at 25 °C.

Cell debris and NFLt-PagP were precipitated by centrifuging at 18,500 x g for 30 min.

The pellets were homogenized in a resuspension buffer containing 20 mm Tris-HCl pH 8,

6 mm GuHCl, 20 mm imidazole, and 0.1% 2-Mercaptoethanol, then centrifuged as before.

After centrifugation, the supernatant was flowed through a 10 mL home-packed nickel-
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affinity column at a rate of 1 mL/min. The column was pre-equilibrated and washed with

100 mL washing buffer containing 20 mL Tris pH 8.0, 6m GuHCl,20 mm imidazole, and

0.1% 2-Mercaptoethanol. NFLt-PagP protein was eluted with elution buffer containing

20 mm Tris pH 8.0, 500 mm imidazole and 0.1% 2-Mercaptoethanol. The protein was

then dialyzed overnight in a 14 kDa molecular weight cut-off (MWCO) dialysis membrane

against 1 h of 20 mm MOPS pH 8.5. For cleavage, the protein was adjusted to GuHCl

6m MOPS 20 mm NiSO4 5 mm pH 8.5 and incubated for 20 h at 50 °C [178, 177]. After

incubation, 100 mm EDTA and 0.1% 2-Mercaptoethanol was added to the solution.

The solution was dialyzed to 20 mm Tris-HCl , 2 mm EDTA, and 0.1% 2-Mercaptoethanol

and centrifuged as before. The pellet was discarded and 6 M GuHCl was added to

the solution. Cleaved protein was run through a 100 mL size-exclusion column (HiPrep

16/60 Sephacryl S-200 HR) pre-equilibrated with 1m GuHCl, 20 mm Tris-HCl, 0.1% 2-

Mercaptoethanol, pH 8. NFLt was dialysed against a buffer containing 20 mm Tris pH 7.8

and 0.1% 2-Mercaptoethanol and purified by reverse-phase HPLC using semi-preparative

Vydac C18 column. Prior to purification, the column was equilibrated with water con-

taining 0.1% TFA. For elution of NFLt, a linear gradient of acetonitrile (from 0 to 50%)

in 0.1% TFA was flowed through the column at a flow rate of 3 mL/min for 30 min.

Fractions containing the eluted protein were detected by absorbance at 280 nm. Final

purity was >95% as determined by SDS-page gels.

For polymerization, monomer NFLts were first reduced with Dithiothreitol (DTT)

and exchanged 2− 3× with a 50 mm MES pH 7 and 500 mm NaCl buffer using a 10 kDa

spin column. The reduced tails (100 mm) were mixed with functional caps (maleimide-

biotin and maleimide-azide) at a ratio of 1:100 and allowed to polymerize under oxidative

conditions for one week. The mixture was allowed to polymerize for one week and yielded

polymers with a molecular weight of > 300 kDa as determined by SDS-PAGE [Fig. B.1].

Prior to incubation in the flow cell, 2 µL of 1 µm NFLt polymers were added to a
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500 µL pH 11 carbonate buffer to deaggregate NFLt polymers for ≈ 1 h. Deaggregated

polymers were buffer exchanged with a 100 kDa spin column into a 10 mm MES pH 6.8

buffer with 10 mm NaCl, also removing unreacted caps and monomers prior to incubation

in the flow cell.

B.2 Other polymers

In some parts of this dissertation, we use PEG, HA, or Double-stranded DNA (ds-

DNA). While these polymers have interesting properties in their own right, they have

generally been well-studied, and thus, are primarily used in this dissertation to verify

expected behaviors.

HA with a molecular weight of ≈ 2.5 MDa was purchased from Creative PEGworks

with a single biotin group at the reducing end, and thiol groups incorporated at random

throughout the chain with a stoichiometry of one thiol group per chain.

PEG with a molecular weight of ≈ 1 MDa was a gift from Christina G. Rodriguez

and Nathaniel A. Lynd (University of Texas, Austin). Briefly, it was synthesized by

modification of a commercial PEG-diol with tosylated ends. The tosyl groups were

displaced with potassium thioacetate, then deprotected to reveal the thiols. Biotin-

maleimide was added with a stoichiometry of one per molecule, resulting in a large

fraction of molecules with a single biotin at one terminus, and a single thiol at the other.

dsDNA of ≈ 8.2 kbp, corresponding to a ≈ 2.8 µm contour length, was synthesized

from λ phage DNA via Polymerase Chain Reaction (PCR) using two primers labeled on

the 5’ end with a biotin and thiol group. Primer 1 is called JB15 with sequence thiol-5’

GGGATACGGGAAAACGTAAA 3’. Primer 2 is called JB16 with sequence biotin-5’

TTCAGCATGAGAAATTGCCT 3’. For PCR, combine the following:
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Reagent Volume (µL)

Taq polymerase master mix 10

Milli-Q ultrapure water 35

Primer 1 - JB15 10 µm 1.5

Primer 2 - JB16 10 µm 1.5

λ phage dsDNA (50 ng/µL) 2

Then, use a thermocycler to run the program (BJ):

Step Temp (°C) Time

1 95 30 s

2 95 30 s

3 59 30 s

4 68 4 min

5 Repeat 2-4 30x

6 68 5 min

7 4 hold

and clean with a zymogen DNA cleanup kit.

Purified dsDNA was characterized using the nanodrop and agaraose gel electrophore-

sis. The typical purified concentration was 100 ng/µL. The agarose gel showed a clear

band of ≈ 8.2 kbp, which corresponds to an ≈ 2.8 µm contour length.

B.3 Polymer attachment

Unless specified otherwise, all solutions contain 0.05% Tween-20, a non-ionic surfac-

tant, to prevent nonspecific adsorption between the polymer, glass surface, and param-
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Figure B.2: A 1% agarose gel of the heterobifunctional dsDNA PCR product shows
a distinct band at ≈ 8.2 kbp. From left to right, there is a DNA ladder (2-Log NEB),
a sample that was stored at 4 °C for several months, and a fresh sample.

agnetic bead.

For NFL tail polyproteins, the bottom coverslip of the flow cell contained a PEG layer

with low-density NHS functional groups. The flow cell was first washed with 1X PBS pH

7, then treated with a 1 mg/ml Dibenzocyclooctyne (DBCO)-Amine in a 1:1 Dimethyl

sulfoxide (DMSO):PBS solution for 30 min to make a DBCO-functionalized PEG layer.

The flow cell was washed with 1m Tris pH 7 buffer, to deactivate any remaining NHS,

and then with PBS. After washing, the polyprotein in PBS is incubated in the flow cell

for 1 h at room temperature. The flow cell is washed again with the starting experimental

buffer, typically 10 mm MES with 150 mm NaCl, to remove untethered polymers.

For PEG, HA, and dsDNA experiments, the bottom coverslip of the flow cell con-
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tained a PEG layer with low-density maleimide groups. Biotin-PEG-thiol attachment

was carried out in a flow cell in 1x PBS (pH 7.4) with 100 mM TCEP, and the HA-

surface attachment was carried out in a 50 mM sodium phosphate buffer (pH 7.2), 50

mM NaCl and 10 mM TCEP. After attachment, excess polymer was removed by rinsing

with low (≤ 10 mm ionic strength buffer (phosphate buffer or MOPS).

For all MT experiments, the biotin-labeled ends of the molecules were bound to

≈ 1 µm (Dynabeads MyOne C1) or ≈ 2.8 µm (Dynabeads M280) diameter streptavidin-

coated paramagnetic beads (Invitrogen). Unbound beads were washed away by flowing

through excess buffer.
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A B
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Bottom coverslip

Top coverslip

Top View

Side View

Figure B.3: Schematic of flow cell. (A) Top (upper) and Side (lower) view of the flow
cell. The inlet and outlet of the flow cell allows buffer to be exchanged between ex-
periments. (B) Inside the flow cell, heterobifunctional polymers are tethered between
a functionalized paramagnetic bead and PEGylated glass coverslip. Reference beads
are adhered to the glass surface and tracked to remove common mode noise during
data analysis.

B.4 Flow cell construction

The flow cell is assembled as follows: 1 µL to 2 µL of nonmagnetic 2.5 µm diameter

polystyrene beads in ≈ 100% isopropyl alcohol or ethanol is spread across the bottom

coverslip. The solution is allowed to evaporate, depositing the beads on the coverslip.

The beads are adhered to the coverslip by partially melting them for 1.5 min at 100 °C. A

22 mm2 parafilm square with a diagonally oriented channel is cut with a CO2 Laser Cutter

(Full Spectrum Laser) or cutting machine (Cricut Maker) and placed onto the bottom

coverslip (Fig. B.3). A top coverslip (18 mm2) is plasma cleaned to make it hydrophilic,

then treated on one side with a hydrophobic coating (Rain-X, ITW Global Brands). The

top coverslip is placed onto the parafilm layer with the hydrophobic surface facing up,

creating a central channel with approximate L×W×H dimensions 18 mm×3 mm×100 µm.

The central parafilm layer is melted through the glass coverslips with a soldering iron to

seal the flow cell.
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Supplementary Information

C.1 Supplementary Information for Chapter 3

Determining downturn force

The force below which gamma decreases due to surface interactions, f ∗, was deter-

mined by analysis of γ vs. force curves (see Fig. 3.3D and Fig. C.1B). In the case of PEG,

γ typically reaches a relatively stable plateau value in the vicinity of 0.7, then decreases

below 1 pN (Fig. 3.3D). f ∗ is estimated from the first force value that has γ < 2/3, and

that has decreasing γ values for each of the two adjacent lower-force points. The latter

condition reduces the effect of noise.

In the case of HA, a plateau in γ was not typically observed (Fig. C.1B), likely due

to some combination of the larger persistence length and polyelectrolyte effects. Instead,

as force decreases from a high value, γ first increases (corresponding to increasing chain

compliance as the extension recedes from the contour length), then decreases (due to the

surface effect). Thus, we estimate f ∗ simply as the force just below which γ is maximum,

though again, to reduce the effect of noise, we require the next two lower-force points to
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Figure C.1: Representative experimental measurement on a tethered HA chain. (A)
Black dots: absolute extension, 〈Z〉, vs. f . The gray line is a fit of the WLC elastic
function to the high force (f > 0.9 pN) data; fit shown returns lp = 4.6 nm and
L0 = 1100 nm. (B) Full curve of γ vs. f for the same HA tether, showing a downturn
for forces below f∗ = 0.188 pN.

show a continuous decrease in γ.

C.2 Supplementary Information for Chapter 4
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Figure C.2: Correlation of two different Rg calculations of PEG. For each PEG
chain measured, WLC fits in the high-force regime give estimates of contour length
(L0) and kuhn length (` = 2lp). The “Rg from DS” value (x-axis) plots the result
of the Devanand and Selser phenomenological formula for PEG Rg [130]; this es-
timate inputs only L0 (in nanometers), which is converted to molecular weight as
Mw = 44(L0/0.278), then used in their formula. The “Rg from scaling” value uses
both L0 and `, setting Rg = `(L0/`)

0.588. The results are tightly correlated, and well–
fit by a line that passes through the origin with slope 2.78 ± 0.03. This correlation
supports our ability to estimate chain extent, up to a numerical prefactor, from the
WLC fits.
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Figure C.3: Force-quench experiment on NFL polymers (left) before and (right) after
logarithmic binning. Before logarithmic binning the relaxation does not show any
observable discrete steps.

115



Supplementary Information Chapter C

0 200 400 600 800 1000

t (s)

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

L
(µ

m
)

100 101 102 103

t (s)

1.91

1.92

1.93

1.94

1.95

1.96

0 200 400 600 800 1000

t (s)

1.8

2.0

2.2

2.4

2.6

2.8

L
(µ

m
)

100 101 102 103

t (s)

1.900

1.905

1.910

1.915

1.920

1.925

1.930

1.935

0 200 400 600 800 1000

t (s)

1.9

2.0

2.1

2.2

2.3

L
(µ

m
)

100 101 102 103

t (s)

1.890

1.895

1.900

1.905

1.910

1.915

Figure C.4: Control force-quench experiments with double-stranded DNA demonstrat-
ing long-term instrument stability. The experiments were carried out at T = 20 °C,
in a pH 7 buffer containing 20 mM 2-(N-morpholino)ethanesulfonic acid (MES), 10
mM NaCl, and 0.05% Tween-20. After force-quench, from f1 = 26, 41, and 32 pN to
f2 = 2, 4, and 3 pN, respectively (top to bottom), all traces show a small relaxation of
. 20 nm over the initial 10 s; we attribute this to re-hybridization dynamics of short
AT rich regions occurring after the DNA structure is modified by the overstretching
transition [62]. Note that, while the midpoint of the overstretching transition for a
long DNA molecule in high salt is 65 pN, prior work has shown that this force is
significantly lowered within AT-rich sequences and at low ionic strengths [180, 181].
However, after 10s, the DNA extension remained stable to within 5 nm for hundreds
to thousands of seconds, confirming that the slow relaxations analyzed in the main
text are due to biopolymer behavior rather than instrumental drift.
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Figure C.5: Long-term logarithmic relaxations observed for three different disordered
protein constructs. The relaxations proceeded for three to four decades in time. Ul-
timately, observing longer relaxations was limited by the tendency of the tethers to
break after long times at moderately high force. From left to right, the force-quench
values are f1 = 78, 47, and 88 pN and f2 = 50, 4.1, and 40.8 pN. Data points and
error bars are the mean and standard error of the mean after logarithmic binning in
time (error bars are smaller than points).
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Figure C.6: Examples of the two-step experiment on eight different disordered protein
constructs. All measurements used a 10 s waiting time, with force values as noted.
The Kovacs hump [152] is clearly visible in all the traces. Data points and error bars
are the mean and standard error of the mean after logarithmic binning in time (error
bars are smaller than points).

Figure C.7: Control two-step experiments on three different double-stranded DNA
molecules. The forces f1, f2, f3 for each molecule were (Left) 23.3, 2.9, 7.3 pN, (Center)
27.0, 3.1, 11.3 pN, and (Right) 46.3, 5.9, 12.4 pN. The control DNA molecules do not
show a kovacs hump. Data points and error bars are the mean and standard error of
the mean after logarithmic binning in time.
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Figure C.8: Logarithmic slopes, b, from least-squares fits to 248 measured relaxations
from 16 polymers (left) collapse onto a single curve after normalizing to b̄ (right).
Data points and error bars are the best-fit value and associated error. Color and color
bar indicates the number of tails in each polymer.

C.2.1 Fitting

For each relaxation, we used a least-squares fit to determine the best-fit value and

fitting error for the logarithmic slope, b. The raw b values without normalization are

shown in Fig. C.8(a), alongside a plot of the fully-normalized b̄ (Fig. C.8(b), which

repeats the data shown in the Fig. 3 of the main text). Fig. C.8 also shows information

on the contour length of the polymers, emphasizing the success of our normalization

scheme in collapsing data over a wide range of contour lengths.

To determine the error in the parameter, ρ, we performed 10,000 bootstrapping it-

erations, in which each iteration consisted of a least-squares fit to Eq. 3 of a randomly-

resampled b̄ vs. f̄ data-set, with the fit weighted by 1/σb̄. Random resampling was

carried out assuming each polymer was an independent sample (not each data point

from each polymer), as there could be correlated behavior between the data points from

a single polymer, which would invalidate the assumptions of the bootstrapping algo-

rithm [182]. This procedure generated 10,000 estimates of ρ; the reported value and
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Figure C.9: Fig. 3 with (top) standardized and (center) absolute residuals. The
absolute residuals show that as f̄ → 0 (i.e. for larger force-quenches) the variance in
b̄ increases. However, the standardized residuals show no systematic deviation.

error, ρ = 0.108 ± 0.004, represents the mean and standard deviations of those 10,000

estimates. We used the mean value of ρ to plot the standardized residuals in Fig. 3 and

Fig. C.9.
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C.2.2 Extrapolating to zero force

We wish to estimate the free energy between the structured and coiled state of a

segment at zero force, ∆G(f = 0) = Gc(0) − Gs(0), from the observation that the

amplitude of the extension change is around 1 nm, and that compaction proceeds against

30 pN of hindering force (in fact, we observe compaction even against slightly larger

forces, but for relatively few chains; 30 pN represents a force where we have observed

compaction for most of the chains).

The question of how to extrapolate the energetics of structure formation at f > 0 to

f = 0 has been previously answered [183, 184], and we use those results here. Particularly,

the present experiments are done under conditions of constant force (‘isotensional’), in

which case the effect of force on free energy of a single state can be written:

G(f) = G(0) + Φ(f) (C.1)

Φ(f) = −
∫ f

0

x(f ′)df ′ (C.2)

where x(f ′) represents the elastic function (extension vs. force) for the state in question.

Thus the free energy difference between coil and structured states at zero force is:

∆G(0) = ∆G(f) + ∆∆G(f) (C.3)

∆∆G(f) =

∫ f

0

α(f ′)df ′ (C.4)

where the amplitude of length change is the difference of extensions of the two states,

α(f) ≡ xc(f)− xs(f). Assuming the segments just barely form structures at f = 30 pN,

then the free energy change at that force is not much bigger than zero, ∆G(f = 30pN) &
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0, and the zero-force free energy change is

∆G(0) & ∆∆G(f) (C.5)

Thus, we expect ∆G(0) to be not much bigger than the integral of α up to 30 pN

(Eq. C.4).

To carry out this calculation, the major question is what elastic functions to use for

the coil and structured states. The choice for the coil state, xc(f), is relatively clear: as

discussed in the main text, and based on prior literature on unstructured polypeptides,

we treat the coil state as a worm-like chain governed by the Marko-Siggia elastic function,

with a persistence length lp = 0.8 nm [157]. The contour length, `c, is unknown, but the

results are not strongly dependent on the absolute magnitude of that parameter, so we

choose a reasonable value `c = 3 nm for all calculations that follow (Table C.1).

The choice of the structured-state elasticity function is more ambiguous, as we do not

know the actual structure. However, it is sensible to assume that, because of the presence

of intra-segment binding contacts, the structured state is more rigid than the coil state.

Thus, as an approximation, we assume that the structured state is perfectly rigid, such

that xs(f) is governed by the Langevin elasticity function. In particular, we assume the

structured state acts like a single Kuhn segment, of length `s, of a freely-jointed chain,

and thus the structured elastic function is

xs(f) = `s

[
coth

(
f`s
kBT

)
− kBT

f`s

]
(C.6)

We then are left with one final parameter choice: the length, `s, of the structured state.

Two issues constrain this choice: First, that the extension change α should be around

1 nm. Second, we require that the extension always decreases upon structure formation
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Approx. # residues 9 9 9
Coil contour length, `c [nm] 3 3 3

Structured contour length, `s [nm] 1.1 1.5 2.0
Coil extension, xc(30 pN) [nm] 2.4 2.4 2.4

Structured extension, xs(30 pN) [nm] 0.9 1.4 1.8
α(30 pN) [nm] 1.5 1.0 0.5

∆∆G(30 pN) [kBT ] 8.9 6.0 2.7
Best-fit ρ 0.112± 0.005 0.099± 0.004 0.066± 0.002

χ2 11.9 11.0 11.5

Table C.1: Parameters used in estimating the elastic response of the coiled and struc-
tured states, along with the results of the integral, Eq. C.3, used to estimate zero-force
stability for each parameter set. Also listed are the best-fit ρ and goodness-of-fit pa-
rameter, χ̄2, found after normalizing b by elastic functions found from each parameter
set (Eq. C.7), and fitting the resulting b̄ vs. f̄ curves (see Fig. C.10).

for the relevant range of forces– that is, α(f) = xc(f) − xs(f) > 0 for 1 ≤ f ≤ 50 pN.

We know this must be true because in our experiments the chain always decreases in

extension after the force quench, for all final forces. We enforce these constraints by

appropriate choice of `s; the values used are shown in Table C.1.

Using these assumptions and estimates, we can then carry out the integration in

Eq. C.4, which results in the ∆∆G(f = 30 pN) values listed in Table C.1. Following

Eq. C.5, these values act as rough estimates of ∆G(f = 0), and vary between 3 and 9

kBT , as mentioned in the main text. These values can roughly be understood as the

difference between the work against the applied force (fα ≈ 7.4kBT at 30 pN, given a

1 nm amplitude), and the relative loss of entropy between the two states upon being

stretched. The entropy loss is larger for the coil state, thus the final ∆G(f = 0) value is

less than the work term.
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Figure C.10: b̄ calculated by normalizing by a function that accounts for elasticity
of both structured and coil states (Eq. C.6), and using the parameters of Table C.1.
Results of fitting to Eq. 3 are shown. In (a,b), the value of ρ does not change signifi-
cantly compared to that quoted in the main text. The parameters used in (c) lead to
a slight decrease in ρ, though we note that systematic deviations in the residues also
begin to appear, likely indicating this parameter set is imperfect.

C.2.3 Normalizing by more nuanced elastic models

We can use the estimates of elasticity of both structured and coiled state, as described

in Table C.1, to calculate the compaction length and normalize b̄. That is, in the main text

we normalize b only by the worm-like chain relative extension function, α0, corresponding

to the dominant elastic effect of the coil state. Here, we extend this treatment to consider

the elasticity of the structured state. We particularly normalize by the following relative

elasticity function, as defined in the prior section:

α′0 =
xc(f)− xs(f)

`
(C.7)

where the denominator consists of the different in maximum extensions (i.e. the contour

lengths) of the coil and structured states, i.e., ` = `c − `s. We then recalculate b̄, now

normalizing by α′0 in place of α0, for the different parameter choices shown in Table C.1.
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The best-fit ρ, and goodness-of-fit, are shown for each parameter choice in that same

table; the fits themselves are shown in [Fig. C.10]. The variation in ρ is relatively small,

and all of fits have similar reduced-chi-squared metrics. This shows that our main-

text conclusions regarding the maximum number of relaxation events per tail are robust

against choice of elasticity parameters.
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Appendix D

Abbreviations

AFM Atomic Force Microscope. 7

AV Allan variance. 14

CD Circular Dichroism. 11

DBCO Dibenzocyclooctyne. 109

DMSO Dimethyl sulfoxide. 109

dsDNA Double-stranded DNA. 107

DTT Dithiothreitol. 106

FRET Förster Resonance Energy Transfer. 5

HA Hyaluronic Acid. 42, 107

IDP Intrinsically Disordered Protein. 4

IDR Intrinsically Disordered Region. 4, 91
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IPTG Isopropyl b-D-1-thiogalactopyranoside. 104

MT Magnetic Tweezer. 7, 95, 98

NFLt Neurofilament light tail. 10, 92, 103

NHS N-Hydroxysuccinimide. 99

OT Optical Tweezer. 7

PAGE Polyacrylamide Gel Electrophoresis. 105

PCR Polymerase Chain Reaction. 107

PDB Protein Data Bank. 5

PEG Polyethylene glycol. 42, 99, 107

SAXS Small Angle X-ray Scattering. 4

SDS Sodium Dodecyl Sulfate. 105

SMFS Single-Molecule Force Spectroscopy. 7, 91

WLC Worm-like Chain. 49, 50
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[70] B. Lukić, S. Jeney, C. Tischer, A. J. Kulik, L. Forró, and E.-L. Florin, Direct
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R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,
A. M. Archibald, A. H. Ribeiro, F. Pedregosa, and P. van Mulbregt, SciPy 1.0:
Fundamental algorithms for scientific computing in Python, Nature Methods 17
(Mar., 2020) 261–272.

[118] S. K. Lam, A. Pitrou, and S. Seibert, Numba: A LLVM-based Python JIT
compiler, in Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, LLVM ’15, (New York, NY, USA), pp. 1–6, Association
for Computing Machinery, Nov., 2015.

[119] S. N. Innes-Gold, I. L. Morgan, and O. A. Saleh, Surface-induced effects in
fluctuation-based measurements of single-polymer elasticity: A direct probe of the
radius of gyration, The Journal of Chemical Physics 148 (Dec., 2017) 123314.

[120] M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante,
Folding-Unfolding Transitions in Single Titin Molecules Characterized with Laser
Tweezers, Science 276 (May, 1997) 1112–1116.

[121] D. R. Jacobson, D. B. McIntosh, M. J. Stevens, M. Rubinstein, and O. A. Saleh,
Single-stranded nucleic acid elasticity arises from internal electrostatic tension,
Proceedings of the National Academy of Sciences 114 (May, 2017) 5095–5100.

137



[122] O. A. Saleh, D. B. McIntosh, P. Pincus, and N. Ribeck, Nonlinear Low-Force
Elasticity of Single-Stranded DNA Molecules, Physical Review Letters 102 (Feb.,
2009) 068301.

[123] D. B. McIntosh, G. Duggan, Q. Gouil, and O. A. Saleh, Sequence-Dependent
Elasticity and Electrostatics of Single-Stranded DNA: Signatures of
Base-Stacking, Biophysical Journal 106 (Feb., 2014) 659–666.

[124] D. Klaue and R. Seidel, Torsional Stiffness of Single Superparamagnetic
Microspheres in an External Magnetic Field, Physical Review Letters 102 (Jan.,
2009) 028302.

[125] S. Liese, M. Gensler, S. Krysiak, R. Schwarzl, A. Achazi, B. Paulus, T. Hugel,
J. P. Rabe, and R. R. Netz, Hydration Effects Turn a Highly Stretched Polymer
from an Entropic into an Energetic Spring, ACS Nano 11 (Jan., 2017) 702–712.

[126] L. D. Landau and E. M. Lifsic, Statistical Physics, Cours of Theoretical Physics,
vol. 5. Elsevier, Amsterdam [u.a, 1980.

[127] R. R. Netz, Strongly Stretched Semiflexible Extensible Polyelectrolytes and DNA,
Macromolecules 34 (Oct., 2001) 7522–7529.

[128] R. M. Neumann, Polymer stretching in an elongational flow, The Journal of
Chemical Physics 110 (Apr., 1999) 7513–7515.

[129] F. Oesterhelt, M. Rief, and H. E. Gaub, Single molecule force spectroscopy by
AFM indicates helical structure of poly(ethylene-glycol) in water, New Journal of
Physics 1 (Jan., 1999) 6–6.

[130] K. Devanand and J. C. Selser, Asymptotic behavior and long-range interactions in
aqueous solutions of poly(ethylene oxide), Macromolecules 24 (Oct., 1991)
5943–5947.

[131] T. Bickel, C. Jeppesen, and C. Marques, Local entropic effects of polymers grafted
to soft interfaces, The European Physical Journal E 4 (Jan., 2001) 33–43.

[132] E. Eisenriegler, Polymers near Surfaces : Conformation Properties and Relation
to Critical Phenomena. World Scientific, Singapore, 1993.

[133] J. A. Rudnick and G. D. Gaspari, Elements of the Random Walk : An
Introduction for Advanced Students and Researchers. Cambridge University Press,
Cambridge, 2004.

[134] R. Bubis, Y. Kantor, and M. Kardar, Configurations of polymers attached to
probes, EPL (Europhysics Letters) 88 (Nov., 2009) 48001.

138



[135] J. P. Berezney and O. A. Saleh, Electrostatic Effects on the Conformation and
Elasticity of Hyaluronic Acid, a Moderately Flexible Polyelectrolyte,
Macromolecules 50 (Feb., 2017) 1085–1089.

[136] J. F. Marko and E. D. Siggia, Stretching DNA, Macromolecules 28 (Dec., 1995)
8759–8770.

[137] C. Bouchiat, M. D. Wang, J. F. Allemand, T. Strick, S. M. Block, and
V. Croquette, Estimating the Persistence Length of a Worm-Like Chain Molecule
from Force-Extension Measurements, Biophysical Journal 76 (Jan., 1999)
409–413.

[138] A. Almond, A. Brass, and J. K. Sheehan, Oligosaccharides as Model Systems for
Understanding Water-Biopolymer Interaction: Hydrated Dynamics of a
Hyaluronan Decamer, The Journal of Physical Chemistry B 104 (June, 2000)
5634–5640.

[139] M. I. Giannotti, M. Rinaudo, and G. J. Vancso, Force Spectroscopy of Hyaluronan
by Atomic Force Microscopy: From Hydrogen-Bonded Networks toward
Single-Chain Behavior, Biomacromolecules 8 (Sept., 2007) 2648–2652.

[140] A. V. Dobrynin, J.-M. Y. Carrillo, and M. Rubinstein, Chains Are More Flexible
Under Tension, Macromolecules 43 (Nov., 2010) 9181–9190.

[141] A. Dittmore, D. B. McIntosh, S. Halliday, and O. A. Saleh, Single-Molecule
Elasticity Measurements of the Onset of Excluded Volume in Poly(Ethylene
Glycol), Physical Review Letters 107 (Sept., 2011) 148301.

[142] D. W. Schaefer, J. F. Joanny, and P. Pincus, Dynamics of Semiflexible Polymers
in Solution, Macromolecules 13 (Sept., 1980) 1280–1289.

[143] I. L. Morgan, R. Avinery, G. Rahamim, R. Beck, and O. A. Saleh, Glassy
Dynamics and Memory Effects in an Intrinsically Disordered Protein Construct,
Physical Review Letters 125 (July, 2020) 058001.

[144] L. A. Morozova-Roche, J. A. Jones, W. Noppe, and C. M. Dobson, Independent
Nucleation and Heterogeneous Assembly of Structure During Folding of Equine
Lysozyme, Journal of Molecular Biology 289 (June, 1999) 1055–1073.

[145] J. Sabelko, J. Ervin, and M. Gruebele, Observation of strange kinetics in protein
folding, Proceedings of the National Academy of Sciences 96 (May, 1999)
6031–6036.
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