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Pore-scale CFD simulations of clay
mobilization in natural porous media due to

fresh water injection
Pramod Bhuvankar1†, Abdullah Cihan1 and Jens Birkholzer1

1Energy Geosciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA

Abstract

The present work investigates mechanisms of permeability impairment as a result of low-
salinity fluid injection into brine-saturated porous media containing dispersible clays. We
present a computational fluid dynamics model at the pore-scale to simulate detachment,
migration and straining of fine particles in porous media. The model uses an immersed
boundary method to simulate the motion of clay fines in a fluid. In addition to the
hydrodynamic forces, we model the Derjaguin-Landau-Verwey-Overbeek forces (DLVO)
between clay fines and grains. Our simulations show the impact of the injected fluid’s
salinity and velocity on the concentration of clay fines retained on the grain surface.
We see clay particles dislodging from the grain surface in clusters of up to 12 particles.
Our simulation results also demonstrate clogging of narrow pore spaces by the detached
particles from the grain surfaces.

1. Introduction
Migration of fine particles in porous media is of interest to many subsurface engineering 

applications such as water disposal, water treatment, well drilling, oil recovery, geother-
mal energy, and geological CO2 storage (Corapcioglu et al. 1987; Xie et al. 1987; Khilar & 
Fogler 1998). Such applications often involve injection of lower-salinity fluids in relatively 
high-salinity native brine. Consequently, clay fines detach due to sharply decreasing salt 
concentrations near the low-salinity fluid i njection w ells, m igrate, a nd fi nally cl og the 
pores, which can lead to an increase in hydraulic resistance in porous media (Chequer & 
Bedrikovetsky 2019). This phenomenon of permeability decline is known to reduce the 
well injectivity (Chequer et al. 2018). Efforts to mitigate this problem will require an 
understanding of the behavior of fines i n p orous media. The p resent s tudy f ocuses on 
permeability impairment as a result of low-salinity fluid i njection i nto brine-saturated 
porous media containing dispersible non-swelling clay.
In the presence of high-salinity brine, the fine p articles, r anging f rom 0 .1µm t o 10µm 
in size (Khilar & Fogler 1998), are bound to the pore surfaces by the influence o f the 
Derjaguin-Landau-Verwey-Overbeek forces (DLVO) comprising of the Van der Waals, 
electric double layer, and Born-repulsion forces (Chequer & Bedrikovetsky 2019). These 
DLVO forces are also active between any two clay particles in contact. The injection of 
fresh water causes an expansion of the electric double layer at the grain and clay surfaces, 
leading to a reduction in the net force binding the fines to the grain. The injected fresh 
water exerts hydrodynamic drag and lift forces on the fine particles t hat f urther a id in 
the removal of the fine particles. When the hydrodynamic forces acting on the clay fines 
overcome the DLVO forces, the particles detach from the grain surface, migrate down-
gradient and eventually settle. Song & Kovscek (2016) show a visualization of mobile

† Email address for correspondence: pbhuvankar@lbl.gov
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clay fines clogging pore spaces under low salinity conditions. It is widely noted that in
porous media, the gravitational and lift forces are orders of magnitude smaller than the
electrostatic and drag forces (Chequer & Bedrikovetsky 2019; Brady et al. 2015; Elimelech
et al. 1995). Khilar & Fogler (1998) discuss in detail the analytical expressions for the
various components of the DLVO forces for simple geometries, like spheres and plates.
For more complex geometries, researchers have used the surface element integration
method (SEI) proposed by Bhattacharjee & Elimelech (1997); Bhattacharjee et al. (1998).
Chequer & Bedrikovetsky (2019) and Russell et al. (2019) have used the expression for
Stokes drag on a sphere to approximate the drag force on clay particles.
Existing studies point to the detachment of the fine particles when the torque on the
fines due to the hydrodynamic and double-layer forces exceeds that due to the Van der
Waals force (Russell et al. 2019; Zeinijahromi et al. 2012). Zeinijahromi et al. (2012)
used this approach to define a parameter called the erosion number ε as the ratio of the
hydrodynamic to DLVO torques. They present the permeability decline as function of the
said parameter ε. More recently, Chequer & Bedrikovetsky (2019) performed experiments
to show that clay fines detach in clusters of 2 to 12 particles, and that a torque-based
estimation under-predicts the detachment velocity. Existing models for representing fine
migration and permeability decline rely on kinetic expressions with empirical coefficients
derived from core-scale laboratory experiments (You et al. 2016; Chequer et al. 2018;
Zeinijahromi et al. 2012).
The recent years have seen a growing interest in pore-scale computational fluid dynamics
for insights into particulate flow in porous media. Developments in numerical techniques
such as the immersed boundary method (Mittal & Iaccarino 2005) and tensorial penalty
method (Vincent et al. 2014) have enabled simulations of multiple immersed particles
in porous media. Su et al. (2019) performed 2D immersed boundary method based
simulations of particulate flows in porous media reconstructed from micro-CT scans.
They show that the inlet pressure increases when mobile particles clog pore spaces. They
consider particles of size 150µm to 190µm, and their analysis does not included DLVO
interactions between the particles and grains. Sefrioui et al. (2013) use the tensorial
penalty method (Vincent et al. 2014) to simulate the motion of a spherical clay particle
of radius 400nm over a wedge. Their simulations include DLVO interactions between
the clay particle and the wedge derived using the surface element integration method
(Bhattacharjee & Elimelech 1997).
In summary, most existing studies on clay mobilization in porous media rely on empirical
correlations constructed using lab data. The pore-scale simulation studies have either
dealt with a single particle or have not taken DLVO effects into account. In the present
work, we extend an immersed boundary method discussed in Bigot et al. (2014) to include
clay-grain and clay-clay DLVO interactions. We perform 2D pore-scale computational
fluid dynamics simulations to determine the detachment characteristics of the clay in
response to varying the injected fluid salinity and velocity. Additionally, we conduct
simulations to show the clogging mechanism by which mobile clay particles cause the
permeability to decline.

2. Numerical method
2.1. Governing equations

In the present work we use the immersed boundary method to model the flow around
the clay fines and grains. While the clay fines exist in the form of platelets, needles or
flakes (Khilar & Fogler 1998), in our current work we represent them as circular (2D)
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Figure 1. Showing the different contours of φ around the solid-liquid interface.

or spherical objects, as doing so will significantly simplify the numerical analysis. This
representation has been used in several existing analyses of colloids in porous media
(Chequer & Bedrikovetsky 2019; Bedrikovetsky et al. 2011; Russell et al. 2019; Sefrioui
et al. 2013). Likewise, the grains are assumed to be circular (2D) in our present work.

We use a finite volume method framework to solve the incompressible Navier-Stokes
equations and the continuity equation. The fractional-step method(Kim & Moin 1985)
is employed to solve the said equations. Listed below are the continuity and momentum
equations, respectively, in the index notation:

∇ · u = 0, (2.1)

ρ (∂tu +∇ · (uu)) = −∇p+∇ ·
{
µ
(
∇u + (∇u)T

)}
+ ρg + ρF. (2.2)

Here, ρ is the liquid density, p is the pressure, µ is the liquid viscosity, and u is the velocity
vector field. The computational domain has ‘solid’ and ‘liquid’ zones. The distance
function φ is used to represent the solid-liquid interface. φ(x) is the shortest distance
of point x from a solid surface. φ is positive outside the solid zone and negative inside.
Shown in figure 1 is a schematic of solid and liquid zones separated by the zero-level set
of the distance function. The ρF term in the end of equation 2.2 is the immersed body
force. There is a transition zone spanning 3 cells between the liquid and solid zones.
We define a color function c(x) which has a value 0 in the solid, 1 in the liquid and an
intermediate value 0 < c(x) < 1 in the transition zone. The color function is defined
using the distance function as:

c(x) =
1

2

[
1 + tanh

(
2φ(x)
∆x

)]
. (2.3)

The color function is equal to 0.5 at the interface. Figure 2 shows the different zones
with their color function values. The term ρF in equation 2.2 is added to enforce rigid
body behavior with a prescribed velocity and angular velocity in the solid section of the
computational domain. Equations 2.1 and 2.2 are solved everywhere in the computational
domain. The force F is non-zero only if c(x) < 1, and is equal to zero everywhere else in
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Figure 2. Showing the computational domain with different zones.

the liquid. The forcing function F is modeled as

F(x) = (1− c(x))
[
U(x)−U∗(x)

∆t

]
. (2.4)

Here, U is the solid velocity we wish to impose at location x, and U∗ is the velocity
obtained in the predictor step of the fractional-step method used to solve equation 2.2.
For a rigid body, we have

U = up + ωp × (x− xp) . (2.5)

xp is the position of the center of mass of the solid object. If we consider a control volume
around a solid zone in the domain, we have

d

dt

∫
vp

ρudv = ρvp
dup
dt

=

∫
Sp

τ.ndS +

∫
vp

ρFdv, (2.6)

and
d

dt

∫
vp

ρ(r× u)dv = I
dωp
dt

=

∫
Sp

(r× (τ.n))dS +

∫
vp

ρr× Fdv. (2.7)

u is the velocity vector obtained from the solution of equations 2.1 and 2.2. up and ωp
are the velocity and angular velocity of the particle, respectively. vp is the volume of the
solid, ρp is the density of the solid, and Sp is its surface. I is the moment of inertia of
the solid zone. For a solid object with the outlined interface immersed in the liquid, we
have the following linear and angular momentum equations.

ρpvp
dup
dt

=

∫
Sp

τ.ndS + ρpvpg, (2.8)

and

Ip
dωp
dt

=

∫
Sp

(r× (τ.n))dS, (2.9)
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where Ip is the moment of inertia of the solid object. Combing equations 2.6,2.7,2.8, and
2.9 results in the following equations.

dup
dt

= g− 1

(ρp − ρ) vp

∫
vp

ρFdv, (2.10)

and

Ip
dωp
dt

= − ρp
(ρp − ρ)

∫
vp

ρ(r× F)dv. (2.11)

In order to solve the discussed system of equations we first solve equations 2.10 and 2.11
to obtain the velocity and angular velocity of the solid object at the present time-step
in the simulation. Then, we obtain the forcing function F from equations 2.5 and 2.4.
We solve the Navier-Stokes equations 2.2 numerically using the fractional-step method
to obtain the velocity field at the subsequent time-step. We then update the position of
the solid object using up and ωp. Using the new position of the solid, we can construct
the distance function field φ(x), and the color function field c(x) at all the grid points
in the computational domain. Once we have this color function we can start over the
process.
Two points worth mentioning are that firstly, inside the stationary grains of the porous
medium, up and ωp are equal to zero. Hence for the stationary grains we do not need to
solve equations 2.10 and 2.11. However, if the solid object under consideration is a mobile
clay fine, we need to solve for up and ωp using equations 2.10 and 2.11. Secondly, if the
mobile fines are circular or spherical in shape in 2D and 3D, respectively, the distance
function evaluation is straightforward and given by

φc(x) = |x− xc| − rc. (2.12)

rc being the radius of the mobile fine. Likewise, if the grains are spherical or circular in
shape with radius rg, we have:

φg(x) = |x− xg| − rg. (2.13)

In a system with N grains and M clay particles, we have:

φg(x) = min{φg1(x), φ
g
2(x), .., φ

g
N (x)}, (2.14)

and
φc(x) = min{φc1(x), φc2(x), .., φcM (x)}. (2.15)

The final distance function is given by:

φ(x) = min{φc(x), φg(x)}. (2.16)

For a system with non-spherical grains, given the binary function β (x) such that

β (x) =

{
0 if grain at x,
1 otherwise,

(2.17)

φg(x) is computed by following the re-initialization algorithm from the conventional
level-set method for multiphase flows (Gibou et al. 2018; Sethian & Smereka 2003). If we
define

φg0(x) = (β(x)− 0.5)∆x, (2.18)
where ∆x is the grid spacing for the simulation, φg(x) is the steady state solution to the
PDE

∂φg

∂τ
+ sgn (φg0) (|∇φg| − 1) = 0, (2.19)
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with the initial condition
φg(x, 0) = φg0(x). (2.20)

τ here, is the pseudo-time for the re-initialization algorithm. sgn(a) is +1 or −1 if a
is positive or negative, respectively. Equation 2.19 yields a steady state solution where
|∇φg| = 1, which implies that it is the distance function. For a detailed account of the
spatial and temporal schemes used to accurately solve equation 2.19 refer to Min (2010).
Once we obtain φg (x), we can use equation 2.16 to calculate the overall distance function
φ (x). Since the grains are stationary, φg are fixed throughout the simulation. The color
function is computed using equation 2.3. In a standard level-set approach (Sethian &
Smereka 2003), the distance function is advected at each time-step and reinitialized
every few time-steps. There is usually some loss in volume of the solid if the level-set
formulation is not conservative in nature. However, in the present approach involving
spherical/circular fines we compute φci of the ith clay particle using xc,i and equation
2.12 at each time-step instead of advecting it. This approach avoids any volume loss in
the solid. Once we have φci , where i = 1, 2, 3...M , we compute φc and φ using equations
2.15 and 2.16, respectively.

2.2. Clay-clay collision
In the present study we assume all collisions to be perfectly inelastic in nature. Existing

studies in the area of particulate flow simulations have included the lubrication force
arising in the thin liquid film between colliding objects (?Vincent et al. 2014). In our
work however, we do not include that force for simplicity. We use a spring-damper model
to mimic collisions between any two clay particles. The said spring-damper model is
activated when any two clay particles come in contact with one another. Our collision
model allows any two colliding clay particles to penetrate one another by a maximum
distance of one grid spacing ∆x. To estimate the spring constant, we perform a scaling
analysis using an idealized energy balance equation. The energy stored in the spring
during compression has the same order of magnitude as the sum of the externally imposed
pressure gradient’s work and the kinetic energy of the clay:

1

2
ksp(∆x)

2 ∼
∣∣∣∣dPdx

∣∣∣∣ vmax∆x+
1

2
ρpvmax|u|2max. (2.21)

Here, |u|max is the maximum magnitude of the velocity in the computational domain,
and vmax is the volume of the largest clay particle. The second term in the equation
is the work done by the characteristic force-scale in the problem.

∣∣dP
dx

∣∣ is the externally
imposed pressure gradient, if any. It is to be noted that the above analysis only provides
an estimate of the magnitude of ksp and its exact value may have to be adjusted for
stability depending on the characteristic velocity scale of the problem. To ensure that
the collision is inelastic and that the clay particles do not oscillate, we define the damping
coefficient to satisfy the critical damping condition as

csp = 2
√
mpksp = 2

√
ρpvmaxksp. (2.22)

We define the velocity of approach between clay particles i and j as

uij = (up,i − up,j) · nij , (2.23)

where nij is the unit normal from particle i to j computed as

nij =
xp,j − xp,i
|xp,j − xp,i|

. (2.24)
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Here, xp,i and xp,j are the positions of clay particles i and j, respectively. The spring
extension is defined as

d = |xp,i − xp,j | − rp,i − rp,j , (2.25)
rp,i and rp,j being the radii of particles i and j, respectively. The collision force fij on
clay particle i due to a collision with clay particle j is the sum of the spring compression
force and the damping force. It is activated when the distance between the two particles
is less than the sum of their radii and is defined as

fij =

(kspd− cspuij)nij , if d < 0

0 otherwise.
(2.26)

Consequentially, we have
fji = −fij . (2.27)

The total collision force due to clay-clay collisions on particle i in a system with M
particles is given by

Fcol =

M∑
j=1,j 6=i

fij . (2.28)

The above term is then plugged into equation 2.45.

2.3. Clay-grain collision
When a moving clay particle undergoes an inelastic collision with a grain, the compo-

nent of its velocity normal to the grain surface vanishes. We implement this result for
clay particle i when its surface touches the grain, as defined by the criterion

φ̂g (xp,i) 6 rp,i. (2.29)

Here, φ̂g (xp,i) is the value of φg interpolated at the center of particle i located at xp,i.
rp,i is the clay particle’s radius. The direction normal to the surface of the grain is given
by

ni =
(
∇φg

|∇φg|

)
xp,i

, (2.30)

which is evaluated at the location xp,i. When the criterion in equation 2.29 is met at
time-step n, the velocity of the particle i at the subsequent time-step is given by

un+1
p,i =


unp,i −

(
unp,i · ni

)
ni, if

(
unp,i · ni

)
< 0

unp,i otherwise.
(2.31)

2.4. DLVO forces
The DLVO forces in clay-clay and clay-grain interactions are significant compared

to the hydrodynamic force when the clay size is in the range of 0.1-5µm. The DLVO
forces are composed of the Van der Waals force, the electric double layer force, and the
Born repulsion force. Since the born repulsion forces become dominant at far smaller
length scales compared to the former two forces, they are neglected in the present work.
Existing studies such as Russell et al. (2019) and Khilar & Fogler (1998) have proposed
expressions for DLVO forces between clay fines and grains under the assumption that the
clay particles are spherical in shape and small in size compared to the typical grain size.
Since our simulations are in 2D we cannot use their proposed expressions for spherical
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Property Value

Liquid density 1000 kgm−3

Clay density 2000 kgm−3

Viscosity 8.9× 10−4Pa·s
A 6× 10−21J

e 1.602× 10−19C

ε0 8.85× 10−12Fm−1

εr 80

Table 1. List of material properties used in the present study

geometries.
Bhattacharjee et al. (1998) proposed the surface element integration (SEI) technique to
evaluate the Van der Waals and electric double layer forces for arbitrary geometries. Their
method involves decomposing the two surfaces into small flat plates. The interaction
energy between different pairs of area elements can then be integrated to find the net
interaction energy. The Van der Waals interaction energy per unit area between two flat
plates is given by

EV (h) = −
A

12πh2
, (2.32)

and the electric double-layer interaction energy per unit area is given by

ED(h) =
ε0εrκ

2
(ζ21 + ζ22 )

(
1− coth(κh) +

2ζ1ζ2
ζ21 + ζ22

csch(κh)
)
. (2.33)

Here, A is the Hamaker constant for clay-liquid-grain interactions. ε0 is the permittivity
of vacuum, εr is the relative permittivity of the liquid, ζ1 and ζ2 are the zeta potentials
of the clay and grain under a given salinity. h is the distance between the two plates and
the κ is the inverse Debye length. At room temperature, κ is given by (Elimelech et al.
1995):

κ = 0.73× 108
√∑

Ciz2i , (2.34)

where Ci and zi are the ionic concentration in moles/m3 and valence, respectively, of the
ith ion. The total DLVO interaction energy for the two bodies is given by

ET (h) =

∫ ∫
(n1 · k1)(n2 · k2)(EV (h) + ED(h))dS, (2.35)

where n1 and n2 are the normal to the two surfaces and k1 and k2 are the unit normal
of the two plates along their respective z directions. The net DLVO force is given by

FDLV O(h) = −
∂ET
∂h

. (2.36)

In the present work we use the zeta potential data from the work of Russell et al. (2019).
Table 1 shows the values of e, ε0, and εr used in the present study.

2.5. Algorithm
The algorithm we employ to solve equations 2.1, 2.2, 2.10, and 2.11, is similar to Bigot

et al. (2014), and goes as follows:



Clay mobilization in porous media 9

Step 1: With the up-to-date values of un(x) and φn(x), compute cn(x).

Step 2: Compute Fn(x) by plugging cn(x), the individual clay particle velocities
unp,k, and particle angular velocities ωnp,k into equations 2.4 and 2.5. Note that the grain
velocity is zero.

Step 3: Use the semi-implicit fractional-step method (Kim & Moin 1985) to solve
for pn+1 and un+1. The x and y momentum equations are split into fractional steps as

u∗ − un

∆t
=

∗
diff,x −

n
con,x, (2.37)

u∗∗ − u∗

∆t
= F ∗x , (2.38)

un+1 − u∗∗

∆t
= −1

ρ
(∇p)n+1

x , (2.39)

and
v∗ − vn

∆t
=

∗
diff,y −

n
con,y, (2.40)

v∗∗ − v∗

∆t
= F ∗y , (2.41)

vn+1 − v∗∗

∆t
= −1

ρ
(∇p)n+1

y , (2.42)

respectively. The continuity equation is discretized as(
∂u

∂x

)n+1

+

(
∂v

∂y

)n+1

= 0. (2.43)

Here, u and v are the x and y components of the velocity vector u, respectively, on a
staggered grid. The superscripts n,∗,∗∗, and n + 1 mean that the term in question is
evaluated at the current time-step, the first fractional time-step, the second fractional
time-step and the subsequent time-step, respectively. (∇p)n+1

x and (∇p)n+1
y are the x

and y components of the pressure gradient evaluated at the (n + 1)th time-step. con,x
and diff,x are the discretizations of the convective and diffusive terms from equation
2.2, respectively, along the x direction. The same applies to con,y and diff,y along the
y direction. While the temporal scheme described in equations 2.37−2.43 is first-order in
time, the same approach can be extended to higher order methods including the Runge
Kutta-2 method (Butcher 2008). We use the leap-frog scheme to achieve second order
accuracy.

In the current work we use a second-order central difference scheme for diff and
a second-order upwind scheme for con. Note that ∗

diff,x = diff,x(u
∗, vn, ν), and

n
con,x = con,x(u

n, vn). Equation 2.37 is used to set up a system of equations to solve
for u∗. u∗ is then plugged into equation 2.38 to compute u∗∗. F ∗x is computed by using
equation 2.4. u∗∗ is then plugged into equation 2.39. The same process is used to set up
a system of equations to solve for v∗ using equation 2.40, which is subsequently used
to compute v∗∗ with equation 2.41. v∗∗ is plugged into equation 2.42. Equations 2.39
and 2.42 are then plugged into equation 2.43 to develop a pressure poisson equation for



10 P. Bhuvankar, A. Cihan and J. Birkholzer

pn+1. The solution for pn+1 would be stable in time if the time-step

∆t = C
∆x

|u|max
, (2.44)

C being the CFL number such that C < 1. Since our method is semi-implicit, there is
no stability criterion imposed by diffusion.

Step 3: Plug pn+1, u∗∗ and v∗∗ into equations 2.39 and 2.42, to compute un+1

and vn+1, respectively.

Step 4: Update the location and velocity of the individual clay particles. The acceleration
of a clay particle is given by

anp = g− 1

(ρp − ρ) vp

∫
vp

ρFndv +
Fncol + FnDLVO

ρpvp
. (2.45)

Fcol and FDLVO are the collision force and DLVO forces, respectively, experienced from
both particle-particle and particle-grain interactions. If we use a simplified first-order
scheme in time, we have

un+1
p = unp + anp∆t, (2.46)

and

xn+1
p = xnp + unp∆t+

1

2
anp∆t

2. (2.47)

Step 5: Using the updated position of the clay particles xn+1
p , reconstruct the distance

functions φc(x) and φ(x). Return to step 1.

We solve the resulting system of linear equations using the successive over-relaxation
(SOR) method with a residue of ε = 10−5. We use a time-step of ∆t = 10−8 sec, which
ensures stability in the solution of the pressure poisson equation and the trajectory of
the clay particles.

3. Results and discussion
3.1. Verification of the SEI method

We consider two spheres, one made up of Kaolinite clay and the other of sandstone,
both having a diameter of 800nm, in water with an NaCl concentration of 0.024M at a
temperature of 298K. We compute the electric double layer and Van der Waals forces by
performing surface element integration explained in subsection 2.4. We use 10000 area
elements on each sphere. The analytical solution for the Van der Waals interaction energy
between two spheres of the same radius r, as proposed by Elimelech et al. (1995) is

EaV DW = − Ar

12h
. (3.1)

The analytical electric double-layer interaction energy between two spheres of radius r
with constant surface potentials as presented in Bell et al. (1970) is

EaEDL =
64πε0εrr

2

(h+ 2r)

(
kBT

ze

)2

γ1γ2e
−κh, (3.2)
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Figure 3. SEI based calculations and the analytical solutions of the Van der Waals,
double-layer and the total DLVO forces F as a function of separation h.

where,

γi = tanh
(
zeζi
4kBT

)
. (3.3)

Here is the Boltzmann constant kB = 4.116× 10−21J , the electron charge is e = 1.602×
10−19C, and T is the temperature in Kelvin. z is the valence of ions in the brine. ζ1 and ζ2
are the zeta potentials of the grain and clay, respectively. By interpolation from the data
presented in the work of Russell et al. (2019), we have ζ1 = −27.7mV and ζ2 = −42.12mV
as the zeta potentials. The Hamaker constant for kaolinite-water-sandstone is assumed
to be A = 6× 10−21J , consistent with the range of values presented in Khilar & Fogler
(1998). By definition, we have the analytical forces

F aEDL = −∂E
a
EDL

∂h
, (3.4)

F aV DW = −∂E
a
V DW

∂h
, (3.5)

and
F aT = F aEDL + F aV DW . (3.6)

Figure 3 shows the comparison between the SEI and the analytical solutions for the Van
der Waals, electric double-layer, and the total DLVO forces, respectively. SEI is able to
match the analytical DLVO force with 10000 elements on each sphere. Figure 3 shows
that the force barrier to overcome in order to separate the two spherical particles is the
absolute value of the minimum of the total force, which is 5× 10−13N .

3.2. DLVO forces on circular particles
We apply the SEI technique verified in subsection 3.1 to a 2D circular particle in an

NaCl solution. We consider a circular grain of size 30µm and circular clay particles with
size ranging between 0.5-3µm. The zeta potential values for kaolinite and sandstone at
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(a)

(b) (c)

Figure 4. (a) DLVO force per unit length as a function of the separation between two circular
surfaces. DLVO force per unit length for various ionic strengths and particle sizes for (b)
grain-clay and (c) clay-clay interactions.

various ionic strengths of NaCl is interpolated from the data presented in the work of
Russell et al. (2019). For 2D simulations on the XY plane, SEI gives us the DLVO force
per unit length along the Z direction. Figure 4(a) shows the variation of the total DLVO
force as a function of the distance between the two surfaces h, for an ionic strength of
0.024M . At equilibrium, the distance between the surfaces of the two circular objects
is the h where F is equal to zero. Any hydrodynamic process to separate the particle
from the grain or another particle will have to overcome a force barrier of FGC = 8.3×
10−6Nm−1. We calculate the clay-clay DLVO force FCC in a similar manner. Figures 4(a)
and (b) show the variation of the grain-clay and clay-clay DLVO forces, respectively, with
the ionic strength of the liquid IS(M), for different clay particle sizes. The grain size is
constant and equal to 30µm. In both the clay-clay and grain-clay cases, the force is
weakened by three orders of magnitude as the brine is diluted from 0.1M to 0.001M .
Figure 4(a) illustrates that the grain-clay DLVO force increases in magnitude as the
particle diameter increases. For a particle size of 3µm, the grain-clay force is around 1.25
times the magnitude of clay-clay forces.



Clay mobilization in porous media 13

The clay-clay DLVO force on particles i due to particle j is

Fcij =

FCCnij , if |xp,i − xp,j | 6 rp,i + rp,j +∆x

0 otherwise,
(3.7)

where, nij is the unit vector from particle i to j given by equation 2.24. Consequentially,
we have

Fcji = −Fcij . (3.8)
The grain-clay DLVO force on particle i is given by

Fgi =

−FGCni, if φ̂g (xp,i) 6 rp,i +∆x

0 otherwise,
(3.9)

where ni is the unit normal to the grain surface, and φ̂g (xp,i) is the grain distance
function φg interpolated at the location of particle i by using bi-linear interpolation. In
all our CFD simulations we assume that a force equal to FDLV O acts on a clay particle
whenever it is contact with another particle or a grain surface. The total force on a clay
particle is thus,

FDLVO =

M∑
j=1,j 6=i

Fcij + Fgi . (3.10)

This force is plugged into equation 2.45 before solving for the trajectory of the particle.
For all our simulations we interpolate the different forces from the data presented in
figures 4(a) and (b).

3.3. Validation of the immersed boundary method
We consider the benchmark problem of flow over a stationary cylinder to validate our

immersed boundary method. Reynolds number Re is defined using the cylinder diameter,
flow velocity, liquid viscosity and density as

Re =
ρUD

µ
. (3.11)

Our computational domain comprises of a stationary circular obstacle of diameter D
with an incoming flow of velocity U . The top and bottom edges have a free slip boundary
condition while the right edge has an outflow boundary condition coupled with a fixed
uniform pressure. The length and breadth of the computational domain is 10D and 6D,
respectively, D being the diameter of the circular object. Figure 5 shows the problem
setup along with the boundary conditions imposed. We record the drag force Fdrag on
the object at steady-state and compute the drag coefficient as

CD =
Fdrag

1
2ρU

2D
. (3.12)

Fdrag is computed by using the following equation:

Fdrag = − ρp
(ρp − ρ)

∫
vp

ρFdv. (3.13)

We verify our results for Reynolds numbers Re = 10 and 30. Existing studies on immersed
boundary methods have used this problem as a benchmark to validate their techniques
(?Bigot et al. 2014). Figures 6(a) and (b) show the evolution of the drag coefficient as a
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FREE	SLIP		∂u/∂y	=	0			

FREE	SLIP		∂u/∂y	=	0			

INFLOW	 OUTFLOW	

∂u/∂x	=	0	
								p	=	c	

ux	=	U	
uy	=	0	

XL	=	10D	

YL	=	6D	

Figure 5. Schematic of the simulation with boundary conditions.

(a) (b)

Figure 6. Drag coefficient for the cases of (a)Re = 10 and (b)Re = 30.

function of the non-dimensional time for Re = 10 and 30, respectively. We have a uniform
grid along the X and Y directions such that there are 30 grid points across the diameter
of the circular obstacle. Our results match those of ? for both the cases. In flows through
porous media, the Reynolds number is typically as low as 10−4 to 10−5. However, the
results presented above validate our numerical method and it can be used to run stokes
flow simulations of conventional porous media problems.

3.4. Grid independence
For the sake of representation, we use green, red, and blue colors to indicate the clay,

liquid, and grain phases, respectively. Note that the display color is not the same as the
color function used in subsection 2.1. Since the clay particles have a size of 3µm which
is an order of magnitude smaller than that of the computational domain, an important
parameter to consider is the minimum number of grid points required across a particle
diameter for an accurate simulation. To determine that number, we consider a test case
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t = 0.005 sec

(a)

t = 0.03 sec

(b)

t = 0.04 sec

(c)

Figure 7. Motion of a particle initially resting on a grain for U = 10−3ms−1 at (a)t = 5ms,
(b)30ms, and (c)40ms.

with a single grain of size 20µm and a single clay particle, as shown in figure 7(a). We
have an inflow boundary condition on the left side of the domain with a velocity of
U = 10−3ms−1. On the right side we have an outflow boundary condition. The top and
bottom sides of the domain have free-slip boundary conditions. The dimensions of the
domain are 40µm×40µm. There are no DLVO forces involved in this problem. As seen
in figures 7(b) and (c), the particle slides on the surface of the grain and departs the
grain surface. It is to be noted that the clay particle and the grain are cylindrical in
shape extending into the plane of the paper. We test five different grid configurations
ranging from 50 × 50 to 200 × 200. Figures 8(a),(b), and (c) show the x vs t, y vs t,
and the trajectory plots of the clay particle, respectively. Overall we observe less than
a 5% difference between the coarsest and the finest grid cases barring the 50 × 50 case
for all the plots. Figure 8(a) and (b) show that beside the 50 × 50 case, all other cases
match 200× 200 case. We conclude that a grid configuration of 80× 80 is fine enough to
guarantee an accurate simulation of the particle motion. This grid configuration ensures
7 grid points across the clay-particle diameter. Hence, in all subsequent simulations we
use 7 grid points across the clay-particle diameter.

3.5. Clay retention
Consider a porous medium composed of sandstone with kaolinite clay particles. We

define Cp to be the initial clay content in terms of clay volume per unit volume of
solids. σ is the attached clay concentration defined as the ratio of the attached clay
volume to the total volume of the domain. σi is the initial attached clay concentration.
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(a) (b)

(c)

Figure 8. Grid independence analysis of the clay particle trajectory showing (a) x vs time,
(b) y vs time, and (c) x vs y for five different grid configurations.

Lx = 90μm

Ly = 60μm

INFLOW OUTFLOW

U = 1.2x10-3ms-1

Figure 9. A schematic of the initial and boundary conditions for the clay retention
simulations.

NaCl solutions of different ionic strengths are injected into this porous medium. As the
velocity of the injected fluid U(ms−1) is increased and the ionic strength IS(M) of the
fluid phase is decreased, the hydrodynamic forces dislodge the clay particles from the
grain. Under these conditions (σ/σi) is the retention ratio. As the brine is diluted and
the velocity increased, we expect the retention ratio (σ/σi) to decrease from 1 to 0.
Consider the setup shown in figure 9. The computational domain has dimensions
90µm×60µm, with a single grain of diameter 30µm and 30 clay particles of size
3µm. The grain is placed at (30µm, 30µm). We have inflow and outflow boundary
conditions on the left and right sides of the computational domain, respectively. The
top and the bottom sides have a free-slip boundary condition. The injection velocity
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IS = 0.002 M

(a)

IS = 0.003 M

(b)
IS = 0.005 M

(c)

IS = 0.006 M

(d)
IS = 0.008 M

(e)

IS = 0.009 M

(f)

Figure 10. The steady-state of the simulation for ionic strength (a)0.001M , (b)0.002M ,
(c)0.005M , (d)0.006M , (e)0.008M , and (f)0.009M . Plots of (g)the x−velocity contour around
the grain for IS = 0.005M and (h) the color function contour as the clay particles depart at
t = 0.11 sec.

IS = 0.005 M;  t = 0.11 sec

(a)

u (m/s): 0.0002 0.00075 0.001 0.0015 0.002 0.0027 0.0031

IS = 0.005 M

(b)

Figure 11. Plots of (a)the x−velocity contour around the grain for IS = 0.005M and (b) the
color function contour as the clay particles depart at t = 0.11 sec.
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Figure 12. A plot of the retention ratio as a function of IS for injection velocity
U = 1.2× 10−3ms−1.

is U = 1.2 × 10−3ms−1. These conditions correspond to Cp = 0.3 and σi = 0.04. The
properties of various materials used in our simulations are provided in table 1. All the
clay particles are initially placed uniformly on the surface of the grain. For a fixed inflow
velocity of 1.2× 10−3ms−1, we simulate 12 cases of ionic strengths ranging from 0.001M
to 0.01M . The particle-grain DLVO force increases from 7×10−8Nm−1 to 5×10−5Nm−1
as ionic strength of NaCl is increased from 0.001M to 0.01M .
Shown in figure 10(a) to (f) are the final configurations of the clay particles on the grain
for cases with IS= 0.002M to 0.009M . We observe that the clay particles detach from
the grain more reluctantly as the ionic strength of the solution is increased. The clay
particles initially tend to roll over one another to reorient themselves downstream of the
grain. Subsequently, they form triangular structures downstream which eventually break,
releasing the clay particles in clusters. We see that clay particles depart in larger clusters
for the higher ionic strengths. This is due to the fact that higher ionic strengths result in
stronger clay-clay attractive DLVO force. An example of a departing cluster is illustrated
in figure 11(a), corresponding to IS= 0.005M . In this example we see a cluster of 14
particles. Figure 11(b) shows the x-velocity distribution in the computational domain
with low magnitudes in the vicinity of the grain.
Figure 12 is a plot of the clay retention ratio σ/σi from our simulations with ionic
strengths ranging from 0.001M to 0.012M . At ionic strengths less than 0.001M , the
retention ratio σ/σi is zero, meaning that all the clay particles are dislodged from the
grain surface. At ionic strengths larger than 0.012M the retention ratio is one, meaning
that all the clay particles are intact. Going from brine to fresh water we observe a
transition zone between 0.09M and 0.001M where the clay retention ratio drops from
1 to 0. This means that in a porous medium with an average grain diameter 30µm,
clay size 3µm, attached clay concentration σ0 = 0.04, and an injection velocity of
U = 1.2× 10−3ms−1, the onset of permeability decline occurs at IS= 0.009M . Since the
initial clay content is made up of a finite number of particles, ie., 30, the transition zone
is not expected to be smooth. We see from figure 12 that the variation of σ/σi is not
entirely monotonous in the transition zone.
Figure 13 shows the variation of the retention ratio with the ionic strength for three
different injection velocities. We observe that as the velocity is increased, the onset
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Figure 13. A plot of the retention ratio as a function of ionic strength for various injection
velocities. The data points with black colored marker are the same as those in Figure 12

Figure 14. A plot of the retention ratio as a function of velocity for various ionic strengths.

of damage occurs at a higher ionic strength. It is also clear from figure 13 that the
transition zone is wider for larger velocities. For a fixed ionic strength there exists a
critical velocity that marks the onset clay detachment. This is evident from figure 14
which shows the retention ratio as a function of velocity at different ionic strengths.
At velocities above the critical velocity value we can expect a decline in permeability.
We observe that as the ionic strength is increased the critical velocity increases and
the transition zone becomes wider. Russell et al. (2019) and Bedrikovetsky et al. (2011)
define the critical clay concentration σcr (U, IS) to be the maximum clay concentration
that can remain intact on the grain surface at a given velocity U and ionic strength IS.
As per their definition, figure 14 indicates that the critical clay concentration

σcr
(
U = 1.9× 10−3ms−1, IS = 0.015M

)
= 0.04, (3.14)

σcr
(
U = 8.6× 10−4ms−1, IS = 0.008M

)
= 0.04, (3.15)
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Figure 15. A plot of the retention ratio as a function of dimensionless velocity.

and

σcr
(
U = 1.5× 10−4ms−1, IS = 0.002M

)
= 0.04. (3.16)

Um is defined by Bedrikovetsky et al. (2011) as the minimum velocity at which no particles
are attached to the grain. Figure 14 indicates that we have Um = 1.03 × 10−3ms−1,
4.11 × 10−3ms−1, and 7.26 × 10−3ms−1, corresponding to IS = 0.002M , 0.008M , and
0.015M , respectively. Bedrikovetsky et al. (2011) and Russell et al. (2019) proposed
correlations in the form

σ ∝

[
1−

(
U

Um

)2
]
, (3.17)

They assumed the clay to detach as singular particles. Consistent with the observation of
Chequer & Bedrikovetsky (2019) we notice that the clay departs in clusters of up to 14
particles in our simulations. Using the data from our simulations we plot (σ/σi) against
the dimensionless velocity (U/Um). Figure 15 shows a collapsed plot with an inflection in
the transition zone. A cubic fit with the constraint σ

σi
(Um) = 0 results in the following

correlation:
σ

σi
= 3.16

(
1− U

Um

)[(
U

Um

)2

−
(
U

Um

)
+ 0.41

]
(3.18)

Note that equation 3.18 holds true only in the transition zone of 0.1 < U
Um

6 1
and is specific to a clay size of 3µm. It is also to be noted that this result holds true
for an initial clay concentration of σi = 0.04. In this case when U

Um
< 0.1, we have σ = σi.

It is worth mentioning that for macroscopic porous media simulations, there exist
equilibrium based (Bedrikovetsky et al. 2011) and kinetic based techniques to model the
clay fine concentration. The equilibrium model assumes a maximum clay fine retention
concentration that depends on the ratio of the drag force to the normal force on the
clay fine. The kinetic approach uses the capture and release rates of the clay fines.
These release and capture rates are usually fine-tuned to fit experimental data. Recently,
Cihan et al. (2021) modeled the clay fine release rate as a step function of the critical
velocity and the critical salinity. The clay fine capture rate is usually modeled by using
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Lx = 240μm

Ly = 100μm

INFLOW OUTFLOW

U = 5x10-4ms-1

PERIODIC BC

PERIODIC BC

Figure 16. A schematic of the porous medium flow simulation showing the initial and
boundary conditions.

the classical filtration theory. The CFD technique presented in our study can be used to
determine the critical salinity and critical velocity values. Additionally, it can be used
to determine the maximum retention concentration of the clay fines and to fine-tune the
kinetic release and capture rates. It is worth noting that several additional simulations
will have to be conducted using our numerical method to extensively cover the parameter
space. The expansion of the parameter space to include additional variables such as
porosity, fine size distribution, and the grain size distribution, is beyond the scope of the
present work.

3.6. Mechanism of permeability decline
The permeability decline upon fresh water injection is understood to occur as a result of

the filtration process of the mobile clay particles in the porous medium. This phenomenon
has been investigated in detail by existing studies such as Pang & Sharma (1997), Russell
et al. (2019), Chequer et al. (2018), Khilar & Fogler (1998). The colloidal filtration
theory (Herzig et al. 2004; Tufenkji 2007) is often used to estimate the permeability
decline with empirically determined capture and release coefficients. If a mobile clay
particle encounters a pore-space smaller than its size, it clogs the pore-space leading to a
local pressure build-up. The cumulative effect of this phenomenon results in the overall
permeability decline. To illustrate this process, we setup a simulation as shown in figure
16.
The computational domain has dimensions 240µm×100µm with inflow and outflow
boundary conditions on the left and right boundaries, respectively. The injection velocity
is kept constant at U = 5×10−4ms−1. The top and bottom boundaries have the periodic
boundary condition. The porous medium is constructed using 42 circular grains of size
20µm. The concentration of the attached clay particles is initialized as σi = 0.01. The
diameter of the clay particles is chosen to be 3µm. All the clay particles are initially
distributed uniformly on the surfaces of six grains. We use an algorithm that inputs
42 random values for locations of the grains and initializes them under the constraint
that the closest distance between any two grain surfaces has to be 1µm at a minimum.
Also, the closest distance between a clay carrying grain surface and a neighboring grain
surface has to be 3µm at minimum. This allows the released clay particles to experience
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some extent of mobilization before clogging the pores. To achieve the randomized grain
configuration with the aforementioned separation constrained, we randomly initialize
position xg,i, of grains i = 1, 2, .., 42 followed by implementing Algorithm 1.
The porosity of this system is ψ = 0.55. All the random numbers are generated using a

Algorithm 1: Randomized locations of 42 grains with the desired separation
Result: xg,i
D = 20µm;
dimin = 2.5µm ∀ i 6 6 ; // Clay carrying grains
dimin = 0.5µm ∀ i > 6 ;
α = 0.01 ;
Flag=0;
while Flag = 0 do

counter = 0;
∆xg,i = 0 ∀ i 6 42;
for i = 1 to 41 do

for j = i+ 1 to 42 do
di,j = |xg,i − xg,j | − (D + dimin + djmin);
if di,j < 0 then

counter := counter+1;
∆xg,i := ∆xg,i + α(xg,i − xg,j);
∆xg,j := ∆xg,j − α(xg,i − xg,j);

end
end

end
for i = 1 to 42 do

xg,i := xg,i +∆xg,i;
end
if counter = 0 then

Flag = 1;
end

end

uniform random distribution. We use a 480 × 200 grid configuration, which is sufficient
to resolve the clay particles according to the criterion discussed in sub-section 3.4. The
pressure drop across the medium is calculated by averaging the inlet pressure along
the y-direction and subtracting the constant outlet pressure from it. We consider ionic
strengths of the injected fluid ranging from IS = 0.001M to 0.08M .
Figure 17 shows the initial configuration on the left and the final configurations for IS
= 0.001M and IS = 0.08M on the top-right and bottom-right, respectively. We note
that in the case of IS = 0.001M more clay particles detach from their original grain
surface compared to the IS = 0.08M case. In the latter case we see that some clay
particles reorient themselves behind their original grains. We also note that in the case
of IS = 0.08M more clay particles are clustered together in their final state compared
to the IS = 0.001M case. This is due to the higher clay-clay attractive DLVO forces
in the former case. Due to the lower magnitude of attractive clay-clay and clay-particle
DLVO forces in the IS = 0.001M case, it has a greater mobilization of the clay particles
compared to IS = 0.08M . As a result, four pore throats are clogged in the IS= 0.08M
case and ten pore throats are clogged in the IS = 0.001M case, as is evident from figure
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INITIAL CONDITION

IS = 0.001 M

IS = 0.08 M

Figure 17. Left: The initial condition of the simulation. Right: The steady state solution for
IS = 0.001M on top and IS = 0.08M at the bottom.

Figure 18. Pressure difference between the inlet and outlet for various ionic strengths.

17. This type of pore clogging can be seen in the SEM images presented in the work of
Chequer & Bedrikovetsky (2019).
Figure 18 shows the pressure difference ∆P between the inlet and the outlet at the steady
state for the different ionic strengths simulated. As the salinity of the fluid is decreased
from IS = 0.08M to 0.001M we observe that the pressure drop ∆P increases. We also
observe that the increase in ∆P becomes more pronounced as the salinity is decreased
below IS = 0.05M . We see a difference of up to 216 Pa in ∆P as the salinity of the fluid
is decreased from IS = 0.08M to IS = 0.001M . This increase in ∆P is caused by the
clogged pore throats seen in the upper-right section compared to the lower-right section
of figure 17. When clay particles clog the pore throats they increase the local tortuosity
of the porous medium, thereby increasing the overall resistance to the flow. We also note
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Figure 19. The decline in permeability k/k0 as a function of salinity IS(M).

that for IS 6 0.04M the variation of ∆P is not smooth. The reason for this noise is that
there is an uncertainty associated with the final positions of the clay particles as they
become more mobile. The steady-state pressure drop is a function of the final positions
of the various clay particles, and since figure 18 is based on a single realization of the
porous medium, it is understandable that the pressure drop trend is not smooth at the
lower salinity values. We can expect a smoother trend for the lower values of salinity
in figure 18 if we carry out multiple simulations with different realization of the porous
medium with the same values of σi and ψ followed by averaging the pressure drops. Since
the aim of the present work is to demonstrate the physical mechanism of permeability
decline, the said analysis is out of scope for our study. For a fixed injection velocity of
U = 5× 10−4ms−1, we can express the permeability ratio k

k0
as

k

k0
=
∆P0

∆P
, (3.19)

where k0 and ∆P0 are the permeability and pressure drop, respectively at IS = 0.08M . k
is the permeability. Figure 19 shows the decline in permeability as the salinity is decreased
from 0.08M to 0.001M . We see a decline in the permeability by up to 23% in the range
of salinity simulated. The red dashed line in figure 19 show a tanh fit on the simulated
data points.

4. Conclusion
An immersed boundary method based numerical technique has been developed to carry

out pore-scale simulations of mobile clay particles in porous media. The numerical method
was validated by comparison with benchmark results from literature. The numerical
method is able to incorporate the DLVO forces that act between clay particles and the
grain surfaces. The surface element integration method has been verified by comparison
with the analytical DLVO force between two spheres. Our simulations of flow over a
clay-laden grain showed that for a given velocity there is a range of ionic strengths in
which the clay retention ratio falls from 1 to 0. This range becomes narrow as the velocity
is decreased. For a fixed ionic strength, our simulations showed that the clay retention
ratio decreases as the velocity is increased. We also found that the retention ratio plots
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for all values of ionic strengths simulated collapse into a single plot when the velocity is
normalized using the cutoff velocity Um. Contrary to the assumption made by existing
models of clay detachment, we found the clay particles to depart in large clusters of up
to 14 particles. This is in line with the findings of Chequer & Bedrikovetsky (2019) who
observed the clay particles to depart in clusters of 2 to 12 particles. Additionally, we
performed simulations of an idealized porous medium containing a clay concentration of
σi = 0.01 for a range of ionic strength and a single injection velocity. Our simulations
showed a decline in permeability of up to 23% as the salinity is reduced from IS = 0.08M
to 0.001M . The onset of significant decline in permeability was found to occur at IS
= 0.05M .
The next step in this study would be to extend the 2D numerical method to 3D in
order to study 3D porous media. The correlations derived from said 3D simulations
between the permeability, injection velocity, ionic strength and clay concentration can
then be integrated into Darcy flow simulations carried out at much larger length scales.
The future work in this study will also involve an examination of more heterogeneous
porous media and the effects of clay particle size distributions on clay retention and
permeability decline. It is also of interest to examine the effect of clay particle shapes on
the detachment characteristics and permeability decline.
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